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Abstract

This thesis addresses the problems of classification of microarray data and the
statistical integration of molecular data to test for network changes. For the
classification problem, we consider the unpreprocessed and preprocessed microarray
data sets. We implement an extension of the partial least squares generalized
linear regression (PLSGLR) Bastien et al. (2005) achieved by combining it with the
logistic regression to get partial least squares generalized linear regression-logistic
regression model (PLSGLR-log) and also with the linear discriminant analysis to
get the partial least squares generalized linear regression-linear discriminant analysis
denoted by (PLSGLRDA). These two classification methodologies are then compared
with the classical methodologies namely the k-nearest neighbours (KNN), linear
discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA),
ridge partial least squares (RPLS), the support vector machine (SVM). Furthermore,
we implement a recent algorithm by Dalmau et al. (2015) known as kernel multilogit
algorithm (KMA). The results indicate that for the noisy unpreprocessed data, the
KMA emerged as the clear “winner” based on based on their low misclassification
error rates. For the preprocessed normalized data, there was no clear “winner” since
there was no single method that performed outstandingly better than the rest. The
KNN emerged as a clear “loser” since it consistently had a relatively higher rate of
misclassification both when applied to the un-preprocessed and preprocessed data
sets.

The statistical integration of molecular data to test for network changes considers
an experiment involving two main groups namely the healthy (H) and acute
rheumatic fever (ARF) subjects. For each group, each specimen is divided in
two portions so that one portion is group A streptococcus (GAS) stimulated while
the other is unstimulated so that we end up with four sub groups: Healthy GAS
stimulated, Healthy unstimulated, ARF-GAS stimulated and ARF unstimulated.
As a result, we have dependence within the groups and independence between the
groups. For all the groups, p genes are measured for expression. We identify a
prior network from the curated literature and online sources. The genes considered
in the experiment are then matched with the ones in the prior network so that
we reduce the prior network to only the genes that are found in the experimental
data. We then construct two networks, one for the healthy and the other one for
the ARF. The nodes are coloured based the log fold changes to indicate the genes



that remain unchanged, up or down regulated. A group or cluster of genes that
constitute a certain important functional group or that have some known interactions
are identified and their sub networks extracted from both groups. A likelihood
ratio test statistic for testing for network changes assumption of variance-covariance
matrix is unknown is therefore developed. A simulation study is done to demonstrate
the applications of the developed statistics. The experiments confirm that the test
statistics follow a chi-square distribution. This research contributes a theoretical
analysis motivated by a practical problem for which no formal statistical method is
in use.
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Chapter 1

Introduction

This dissertation looks into two major themes in the biological data analysis namely
the classification and statistical integration of molecular data to test for network
changes. Furthermore, we give a brief review of the developments in the field of
genomics as regards to data generation and analysis.

1.1 Introduction to the classification problem

The field of genomics has witnessed a tremendous increase in the data generation due
to biotechnological advances like the microarrays and the next-generation sequencing
platforms. These biotechnological advances have made it possible to simultaneously
monitor expression levels in cells for thousands of genes and thus help in solving
particular problems related to the identification of molecular variations in genes,
classification, diagnosis, prognosis and treatment. The high dimensional data
generated from microarray technology involve many thousands of genes measured
simultaneously using several microarrays, that is, different microarray for each
individual. This definitely introduces some noise and unwanted variations that might
be from technical or unknown sources.

In a microarray experiment let n and p be the numbers of the samples and genes
respectively so that the generated data is a n× p matrix. The main challenge with
these technologies is that the resultant data generated is noisy due to biological
and technological variations and at the same time usually have more variables (high
dimension) but low sample size (few samples), that is, n << p. This condition
n << p makes the direct application of most classical statistical methodology

1



2 Chapter 1. Introduction

implausible and so there have been attempts to find a solution to this problem by
different researchers.

Normally, before the down stream analysis of the data generated from DNA
microarray, preprocessing and normalization is done to it so as to remove the noise,
filtering out the genes with low expression values, missing values are addressed and
the data is standardized via log-transformation. One of the most used preprocessing
procedure for the microarray data is the one one proposed by Dudoit et al. (2002)
which entails three basic steps namely thresholding, filtering out of genes with a
given minimum/maximum intensities and finally, standardization of the expression
values by taking log transformation Alshamlan et al. (2013); Dudoit et al. (2002).

In this disseration, the classification problems for microarray data sets are
considered under two conditions, namely the un-preprocessed and the preprocessed
one. In the un-preprocessed data, we use all the genes in the study while in
the preprocessed one, only the subset of genes believed to play important role
towards the biological problem of interest are used. We extend the Partial Least
Squares Generalized Linear Regression (PLSGLR) algorithm Bastien et al. (2005)
by combining it with the logistic regression (PLSGLR-log) and also with the Linear
Discriminant Analysis to come up with (PLSGLRDA). Furthermore we compare their
performance with those of kernel multilogit algorithm (KMA) proposed by (Dalmau
et al., 2015) and the classical methods namely, the k-Nearest Neighbour (KNN),
Ridge Partial Least Squares (RPLS), Partial Least Squares-Linear Discriminant
Analysis (PLSDA), the usual Linear Discriminant Analysis (LDA) and the Support
Vector Machines (SVM) when applied to three sets of microarray data, namely the
Colon (Alon et al., 1999), Leukemia (Golub et al., 1999) and the Prostate (Singh
et al., 2002) data sets. We evaluate the classifiers not only on the misclassification
rates but also on the proportion of false negatives percentages attributed to each of
them for the data sets considered.

In many studies involving classification problems in microarrays with higher
dimensional data ad lower number of samples (or subjects), the two stage strategy
has been used for example by (Nguyen and Rocke, 2002a,b). It is worth noting
that,most studies including those by Nguyen and Rocke (2002a,b) involve the use
the original PLS to build the components even though the response variables are
discrete. This is intuitively not correct since the original PLS is an algorithm best
suited for the continuous response variables. Secondly, in most of the procedures,
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a variable (gene) selection step is involved while in our case, we study the models
with and without the gene selection step in order to evaluate the performance of
each classifier. Furthermore the original PLS used can not handle the missing values
unlike the PLSGLR.

Therefore, we propose to use the two stage strategy in solving the classification
problem as follows.

Table 1.1: Proposed strategy

Steps

Step 1: Dimension reduction
In this stage, we propose to use the PLSGLR to project the high dimensional
data to a low dimension space thus resulting in new components (latent
variables) which have information about the intrinsic structure of the data.
Use the algorithm presented in Section 2.5.

Step 2: Use of latent variables for classification
to use the obtained latent variables with a lower dimension with the classical
statistical classifiers:

(i) PLSGLR components with logistics regression to get the PLSGLR-
logistic model denoted as (PLSGLR-log)

(ii) PLSGLR components with linear discriminant analysis model to
get PLSGLR-Linear Discriminant Analysis model denoted as (PLS-
GLRDA)

To the best of our knowledge, the proposed combination of PLS generalized linear
regression algorithm with logistic and discriminant analysis have not been so far used
in the cases where n << p to evaluate its effectiveness in the classification problems.
The PLS generalized linear regression algorithm is simple and a good performance
compared to the classical methods would make it an attractive alternative.

1.2 Statistical integration of molecular data

The second major problem addressed in this thesis is the statistical integration of
molecular in order to test the network changes. This study is motivated by the on-
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going research on acute rheumatic fever (ARF) at the Speed and Wicks Labs at the
Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC. The research
in these labs are geared towards understanding the type of inflammation occurring
in ARF patients with the ultimate goal being to find new diagnostic markers to
diagnose ARF and new drugs. The ARF still remains a major challenge to the
developing countries and to the poor people of the developed countries living in poor
unhygenical conditions e.g the Aboriginal and Torres Islanders of New Zealand and
Australia.

The key idea in this part of the thesis is to integrate a known network (also
referred to as the prior network), usually the protein-protein interaction (PPI)
network is used with the experimental molecular data. Specifically, we consider
an experiment in two groups of subjects namely the healthy control (HC) and the
ARF subjects are involved. Each sample is further divided into two sub-samples
whereby one sub-sample is Group A Streptococcus (GAS) stimulated while the other
sub-sample is unstimulated. As a result, we now have paired samples for the HC and
also another paired samples for the ARF, resulting into four different subgroups. The
samples from all these groups are then sequenced to measure the expression levels
for the p genes under consideration. The genes whose expression levels are measured
are the same for all the subgroups. It is expected that the GAS stimulation of HC
and ARF subjects will help in understanding how the GAS affects the HC and ARF
subjects thereby possibly able to identify the biomarkers associated with the ARF.
Assume that the sample sizes for HC and ARF are m and k respectively and that
p genes are considered in the experiment. The paired measurements are correlated
within subjects, but independent between subjects, as well as being independent
between HC and ARF group. Furthermore, since the genes usually act in a group,
the p genes are expected to be correlated. The fact that genes interact with each
other can be captured through a prior network like the PPI network. The network
is obtained from the online and curated literature sources. Now, we integrate this
prior network with the experimental molecular data so that we get two networks,
one for the HC and another one for the ARF. To integrate the experimental data,
we get the edge list from the prior network and use the obtained list of edges for
constructing networks for HC and ARF. The nodes for the constructed networks are
coloured to reflect the changes in the genes with regards to up or down regulations
or no change. For the two networks, we expect that with the GAS treatment, some
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genes will be upregulated, others downregulated while some will remain the same
for different network. These changes are easily measured using the log fold change
(logFC).

The aim is to develop a statistical framework for comparing the changes in
expression levels in the different sets of genes between the two networks. These
genes are selected from the different sub-networks that are believed to be important
functional groups in the ARF disease. We use the well known likelihood ratio theory
to formally derive a new test for measuring the difference in the differences of the
mean expression levels for the healthy and ARF subjects in the context of network
changes.

Even though the motivation for the test statistic developed in this part of the
thesis is from the research on ARF, this kind of study is very useful in other general
situations involving hypothesis testing for the differences of means across groups
where the measurements within the subjects are dependent, while the subjects and
groups are independent.

1.3 Preliminaries of genetics

All living organisms consist of cells which in turn consist of molecules. Every human
cell except the red blood cells contain a nucleus which has chromosomes that carry the
individual’s genetic information. These chromosomes contain the deoxyribonucleic
acid (DNA) and proteins. The DNA is the main information carrier molecule
required for the development and functioning of an organism. The DNA consists
of two strands, each with a linear backbone of alternating sugar (deoxyribose) and
phosphate residues. Four bases namely, adenine (A), guanine (G), cytosine (C) and
thymine (T) are covalently attached to the backbone. The two strands of the DNA
are connected by hydrogen bonds between two complementary opposing bases, that
is thymine (T) connects with adenine (A) while cytosine (C) connects with guanine
(G) so that the resulting DNA resembles a ladder commonly described as a double
helix. Therefore the two DNA fragments only differ with respect to the arrangement
of the bases Ziegler and König (2008). The basic building blocks in the nucleic acids
are known as nucleotides consisting of a phosphates, pentose sugar and a heterocyclic
amine. The order in which the bases occur determines the information for protein
synthesis which is basically a two-step process including, first the transcription in
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which information is read from the sequence of bases to make amino acids and
ribonucleic acid (RNA). The second step is the translation by which the RNA form
proteins (Mitra et al., 2014).

Figure 1.1: Structure of the DNA (source: Wikipedia). The DNA consists of two strands,
each with a linear backbone of alternating sugar (deoxyribose) and phosphate residues. Four
bases namely, adenine (A), guanine (G), cytosine (C) and thymine (T) are covalently attached
to the backbone. The two strands of the DNA are connected by hydrogen bonds between two
complementary opposing bases, that is thymine (T) connects with adenine (A) while cytosine (C)
connects withs guanine (G) so that the resulting DNA resembles a ladder commonly described as
a double helix.

The RNA is smaller and much shorter than the DNA. It is constructed like the
DNA but has the following major differences: the RNA is a single strand, its sugar
component is composed of ribose instead of deoxyribose and also it has uracil (U)
instead of thymine (T) that exist in the DNA.

The basic physical and functional unit of heredity in humans are the genes, which
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are made up of DNA. More importantly, the DNA encodes the genes that in turn
produce compounds of amino acids known as proteins which are essential elements in
most of the cellular functions like biochemical reactions, cell signalling, metabolism,
cell cycle and immune responses. This transfer of biological information from the
DNA to proteins is usually referred to as the central dogma of molecular biology
and it involves two major steps, the first being transcription; a process in which the
information encoded in DNA is transcribed by a polymerase into ribonucleic acid
(RNA) and the second step is translation, a step in which the RNA is synthesized
into proteins by ribosomes (Babu, 2004; Ziegler and König, 2008).

Despite the fact that all the cells in the human body contain identical genetic
material, the same genes are not active in every cell therefore studying the active and
inactive genes in different cell types helps scientists to understand both how these
cells function normally and how they are affected when various genes do not perform
properly. For instance, all the cells of the human body contain the same DNA, yet
there are hundreds of different types of cells, each expressing a unique configuration
of genes from the DNA. Previously, it was only possible to conduct these genetic
analyses on a few genes at once. However, with the invention of microarrays and
various sequencing technologies, it is now possible to examine thousands of genes
simultaneously. The DNA encodes genes and regulatory elements control whether
genes are on or off (Ziegler and König, 2008).

The gene expression measurement involves the measuring of the abundance
of the RNA transcripts in order to find out some aspects of the cell function.
This approach of measuring the levels of RNA transcripts is cheaper in the high-
throughput technology than measuring the protein levels in the translation stage
Brazma and Vilo (2000). Two main technologies that have been extensively used
for gene expression measurement among others include the DNA microarray and the
next generation sequencing technologies.

1.3.1 Microarray technology

A microarray is typically a glass slide on to which DNA molecules are fixed in
an orderly manner at specific locations called spots (or features). It consists of
ordered probes which include nucleic acids, proteins, carbohydrates, tissues, cells
and polymers which are to be investigated in general to detect a biological target
(Ventimiglia and Petralia, 2013; Babu, 2004).
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Two types of microarrays that are popular among the others include;

• Spotted or cDNA microarray: Uses complementary copy of the original
DNA and each probe represents one gene. In this technology the probes are
synthesized apart and printed mechanically on the slide. This is also referred
to as the two colour array.

• Oligonucleotide chips (Affymetrix): In this case, the probes are directly
synthesized on the surface. The sythesis process allows to create only small
fragments so that a gene is not represented by one probe but a set of probes.
This technology uses only one sample per chip, it simplifies the experiment and
is much more sensitive.

To carry out microarray sequencing, a gene is activated thereby igniting cellular
machinery to copy certain segments of that gene resulting in a product is known
as messenger RNA (mRNA), a body’s template responsible for protein creation.
The mRNA binds to the original portion of the DNA strand from which it was
copied due to the fact that it is complementary. The genes which are turned on
and the ones turned off are identified by first collecting the mRNA molecules in a
particular cell and then each mRNA is labelled by using a reverse transcriptase
enzyme (RT) to generate a complementary cDNA from the mRNA. The cDNA
refers to an mRNA transcript’s sequence, expressed as DNA bases (GCAT) rather
than RNA bases (GCAU). The fluorescent nucleotides are attached to the cDNA
during this process. Next is to label the samples for example if they are tumor or
normal with different fluorescent dyes and then onto a DNA microarray slide. The
labeled cDNAs will hybridize to their synthetic complementary DNAs attached on
the microarray slide, leaving its fluorescent tag. Hybridization is the process of
combining two complementary single-stranded DNA or RNA molecules and allowing
them to form a single double-stranded molecule. A special scanner is then used to
measure the fluorescent intensity for each spot/areas on the microarray slide. A very
active gene will produce more messenger RNA, thus, more labeled cDNAs, which
hybridize to the DNA on the microarray slide to generate a very bright fluorescent
area. The less active ones will produce fewer mRNAs, thereby less labeled cDNAs,
resulting to fluorescent spots with low intensity. If a gene is inactive then there will
be no fluorescence, implying that none of the messenger molecules have hybridized
to the DNA. As an example, when co-hybridizing tumor samples (Red Dye) and
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normal sample (green dye) together compete for the synthetic complementary DNAs
on the microarray slide. Consequently, if the spot is red, then that specific gene
is more expressed in tumor than in normal (upregulated in cancer). A green spot
means that the gene under consideration is more expressed in the normal tissue
(downregulated in cancer). On the other hand, a yellow spot shows that a gene is
expressed in both normal and tumor (see, National Human Genome Institute on
https://www.genome.gov/10000533/dna-microarray-technology/).

A microarray experiment results in an image of the microarray, in which each
spot that corresponds to a gene has an associated fluorescence value representing the
relative expression level of that gene across two conditions.The gene expressions data
obtained from the experiment are then processed using three main stages, namely;
image processing, transformation and normalization.

Image processing involves the identification of the spots and distinguishing them
from spurious signals. Thereafter, the determination of the local region to estimate
background hybridization follows. Summary statistics are then reported followed
by assigning spot intensity after subtracting for background intensity. A very active
gene produces many molecules of mRNA, thus, more labeled cDNAs, which hybridize
to the DNA on the microarray slide and generate a very bright fluorescent area. On
the other hand, genes that are less active produce fewer mRNAs, thus, less labeled
cDNAs, which results in dimmer fluorescent spots. If there is no fluorescence, no
mRNA molecules have hybridized to the DNA, indicating that the gene is inactive.
In this manner, the activity of various genes at different times are examined, see
(Babu, 2004).

The relative expression level for the cDNA microarray a gene is measured as the
amount of red or green light emitted after excitation. The most common metric
used in microarray data analysis is called expression ratio. The expression ratio is a
relevant way of representing expression differences in a very intuitive manner. For
example, genes that do not differ in their expression level will have an expression
ratio of 1. Thus up-regulation is blown up and mapped between 1 and infinity,
whereas down-regulation is compressed and mapped between 0 and 1 (Babu, 2004).
A logarithmic to base 2 is often used for data transformation and is considered by
some researchers to be a better alternative to the ratio. On the other hand, the
Affymetrix chips represent each gene as a set of probes corresponding each one to
one short oligonucleitotide chain. Each probe is a probe pair consisting of perfect

https://www.genome.gov/10000533/dna-microarray-technology/
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match (PM) probe that corresponds to the original DNA and a miss-match (MM)
probe whose central nucleotide has been changed. The key idea here is that anything
that hybridizes with the miss-match probe does not represent the real expression but
anything else that is background see (Babu, 2004).

Data normalization is a term that is used to describe the process of eliminating
various variations to allow appropriate comparison of data obtained from the two
samples. Once the data has been preprocessed it can then be represented in the
form of a matrix, (called gene expression matrix) that contains rows representing
genes and columns representing particular sample. Each entry is a value, given in
arbitrary units, that reflects the expression level of a gene under a corresponding
sample (Babu, 2004).

1.3.2 Next generation sequencing (NGS) technology

The NGS technology has revolutionized research in the fields of computational
biology, pharmacology, medicine and many other fields of research involving the
molecular biology and computations. The NGS technology can be classified into two
main categories namely the high-end and bench-top platforms. The former being
more expensive, bulky instrument, higher cost of setup and offers long reads (for
example, Illumina-HiSeq) and therefore more appropriate large sequencing centers
and core facilities while the latter (for example Ion PGM, MiSeq) are less costly and
more suitable for microbial applications (Mitra et al., 2014; van Dijk et al., 2014).

NGS platforms have three steps module namely library preparation in which
the genomic DNA is extracted and purified, polymerase chain reaction (PCR)
amplification which involves the cloning of the DNA molecules in the library,
preparing them for the final step which is sequencing where the base pairs are read.
The “reads" are the final products of all the next generation sequencing platforms.

Once the reads are obtained, it is usually necessary to align and merge fragments
from a longer DNA sequence in order to reconstruct the original genome, a process
referred to as genome assembly. This process heavily depends on the computer
algorithms. For more details see Metzker, M. L. (2010); Mitra et al. (2014); van Dijk
et al. (2014).
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1.4 Multiple hypothesis testing in the high-dimensional

data

In many classical hypothesis testing problems at α level, the probability of observing
at least one significant hypothesis by chance when α = 0.05 for one hypothesis is
just 0.05 which is low and reasonable. However, as the number of hypotheses to be
tested increase, the probability of committing type 1 error or of finding a significant
hypothesis by chance also increases. As an illustration, if we have 100 hypotheses
tested simultaneously at α = 0.05 then by assuming independence the probability of
finding at least one significant hypothesis by chance is given by

P(At least 1 significant hypothesis) = 1− P(no significant results)

= 1− (1− 0.05)100

= 0.9940795.

The illustration in Table 1.2 seeks to highlight the problem of multiple hypothesis
testing for high dimensional data that are nowadays the order of the day due to
advances in technology in the fields of biology, chemometrics and many other fields.
The probability of getting a significant result simply due to chance tends to 1 as
the number of hypotheses increases and so there has been many suggestions for
controlling this probability of false discovery. Some of the suggested methods to
address the above problem are presented next.

In a multiple comparison setting for n hypotheses, four outcomes are possible,
as presented in Table 1.2 where U, V, S, T are unobserved random variables while R
is the observed one with the quantities of interest being the sizes of V and R. Two

Table 1.2: Errors committed when testing n hypotheses

Accepted Rejected Total
True null hypothesis U V go
False null hypothesis T S g − go
Total g −R R g

general ways of addressing the multiple hypothesis problem and include the control of
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the family wise error (FWER) and the False Discovery Rate (FDR). FWER control
can be defined as the control of probability of any error, that is, FWER=P(V ≥ 1).
Some procedures that control FWER include;

• Bonferroni’s method: controls FWER at level α in strong sense such that
E(V ) ≤ go

g
α. The adjusted p-values for the Bonferroni’s method is given by

p̃i = min{gpi, 1}. This method is often criticized as being too conservative.

• Sidak’s procedure: considers each test under independence improves on the
Bonferroni’s bound by rejecting the null hypothesis when pi ≤ 1 − (1 − α)1/N

so that the corresponding adjusted p-value is given by p̃i = 1− (1− pi)N .

• Holm’s procedure: is a more elaborate procedure for controlling familywise
error. Let the ordered p-values be;

p(1) ≤ p(2) ≤ ... ≤ p(g)

a null hypothesis is rejected when its corresponding p-value corresponding to
p(i) is

p(j) ≤
α

n− j + 1

for j = 1, 2, ..., i. It is worth noting that the Bonferroni correction is usually
very conservative.

• Others include the Westfall and Young procedures.

Procedures for controlling FDR include:

• Benjamini-Hochberg (BH) procedure: define FDR as the expectation
of Q where Q = V/(V+S) = V/R. The procedure is as follows; for g
hypotheses H1, ..., Hg based on the p-values p1, p2, ..., pg. Let the ordered p-
values be p(1) ≤ p(2) ≤, ...,≤ p(g). Now, denoting the ith hypothesis as H(i)

corresponding to p(i) then BH procedure is given by: let k be the largest i for
which p(i) ≤ i

g
q∗ then reject all H(i), i = 1, 2, ..., k. This controls the FDR at q∗

for any independent test statistics (Benjamini and Hochberg, 1995), in other
words FDR is controlled by controlling the proportion of false discovery. In
practice, each p(i) is compared against i

g
q∗.
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The decision on whether to choose the FWER or FDR procedures depends on
whether researcher is afraid of getting stuff in the significant list that should not
be there and so in that case the FWER methods should be used. However, if the
researcher is afraid of missing out on some interesting genes and does not mind
having more significant stuff in the list then the FDR methods would be a better
choice.

1.5 Outline of this thesis

The remainder of this thesis is organized as follows; Chapter 2 reviews some of the
statistical methods used in classification problems in genomics. A comparative study
of the different classification methods to real data sets are presented in Chapter 3.
The statistical integration of molecular data to test for network changes and a
framework for testing for network changes is presented in Chapter 4. Conclusions,
summary and future works are presented in Chapter 5.
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Chapter 2

Methods for classification

2.1 Introduction

In this chapter, we review the some of the existing classification methods which
have been used independently or in combination with other methods. In particular,
we review the logistic regression, linear discriminant analysis (LDA), the k-nearest
neighbours (KNN), ridge partial least squares (RPLS), support vector machines
(SVM) and the kernel multilogit algorithm (KMA). Statistical decision theory which
form the framework for the above mentioned models is also reviewed.

Classification involves predicting a certain response variable based on a given set
of explanatory variables. An algorithm is usually developed from the training set is
then used to discover relationships between the attributes thus making it possible to
predict the response.

The problem of classification is not new but then the modern day challenges
with regards to classification stems from the complex, high dimensional-low sample
data that are generated by different technologies in various disciplines for instance
in genomics and signal processing. The structure of the data does not allow
for the direct application of the classical multivariate classification techniques.
Consequently, there is an obvious need to develop new methods and or adjust the
old methods in tandem with the current data structure (Alshamlan et al., 2013).

15
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2.2 Basics of classification

Following Dudoit and Fridlyand (2003), classification is a learning problem consisting
of a variable to be predicted which consists of K predefined, unordered set
{c1, c2, ..., cK} which are arbitrarily assigned labels say 0, . . . , K − 1 or any other
convenient labelling scheme. The K values are predefined according to a given class
for example “infected" vs “not infected" depending on the context of the problem at
hand. Each object is this case is associated with a corresponding response variable
or class label , Y ∈ {1, 2, ..., K} and a set of G predictor variables X = (X1, ..., XG).
The feature vector X belongs to the feature space X i.e. (RG). Thus the main task
is to classify an object into one of the possible K classes based on the observed data
X. This in other words implies predicting Y based on X. A classifier is a rule C that
reveals the connection between the response and predictor variables. The classifier
C maps the feature space X into {1, 2, ..., K}, C : X 7−→ {1, 2, ..., K}. In this way,
the feature space X is partitioned by the classifier C into disjoint K subsets that are
exhaustive.

In gene expression data, the approaches for deriving classifiers can broadly
be categorized into two: (a) Simple “manual” methods usually univariate. (b)
Statistical learning methods which are often multivariate, complicated but give better
performance. The recipe for building a classifier using statistical learning involves
first, choosing a classification method. Then a feature selection/dimension reduction
is implemented. The classifier is thus trained and finally the performance of the
trained classifier is assessed. Typically, to build a classifier, the data is first partioned
into the learning set L and the test data T. This partioning should be done arbitrarily
in a random manner so as to minimize the risk of biaseness. Dudoit et al. (2002),
recommend a division of a ratio of 2 : 1 in favor of the learning set.

Decision theory

Let X ∈ Rp and Y ∈ R denote a real valued random explanatory and response
variables respectively with a joint distribution P (X, Y ). To predict the values of
Y given X we need a function f(X) and a loss function to penalize the prediction
errors. Denote the squared loss function as L(Y, f(X)) = (Y − f(X))2 so that the
expected prediction error (EPE) is given by
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EPE(f) = E(Y − f(X))2 (2.1)

=

∫
[y − f(x)]2P (dx, dy). (2.2)

Noting that P (X, Y ) = P (Y/X)P (X), that is, conditioning on X then 2.2 can be
written as

EPE(f) = EY |X([Y − f(X)]2|X) (2.3)

which minimizes EPE pointwise

f(x) = arg mincEY |X([Y − c]2|X = x) (2.4)

whose solution is basically a regression function f(x) = E(Y |X = x). Thus the
best prediction is given by the conditional mean with reference to the mean squared
error, see (Hastie et al., 2009). Now, considering a categorical variable Y with K

elements then the estimate Ŷ is expected to assume the values in the space Y of all
possible classes same as G. The loss function will be a K ×K matrix L with zeros
on the diagonals and non-negatives on off the diagonal and K = card(Y). L(k, l) is
the price paid for classifying a sample as belonging to class Yk as Yl. The expected
prediction error is therefore given by

EPE = E{L(Y, Ŷ (X))}. (2.5)

Taking expectation with respect to to the joint distribution and conditioning, we get;

EPE = EX

K∑
k=1

L[Yk, Ŷ (X)]P (Yk|X) (2.6)

to minimize the EPE pointwise

Ŷ (x) = arg miny∈Y

K∑
k=1

L(Yk, y)P (Yk|X = x) (2.7)

which simplifies to
Ŷ (x) = arg miny∈Y[1− P (y|X = x)] (2.8)
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Ŷ (x) = Yk if P (Yk|X = x) = maxy∈YP (Y |X = x) (2.9)

also known as the Bayes classifier classifies using the most probable class based on the
conditional distribution P (Y |X) (which is just the class posterior distribution). For
a K-class problem, the Bayes Classifier can be presented as E(Yk|X) = P (Y = Yk|X)

via estimation of the squared loss function (Dudoit and Fridlyand, 2003).

Linear discriminant analysis (LDA)

Let the prior probability of class k be given by P (Y = k) = πk , where
∑K

k=1 πk = 1

and the conditional density P (X = x|Y = k) = fk(x), it follows that the posterior
distribution is given by

P (Y = k|X = x) =
fk(x)πk∑K
l=1 fk(x)πl

. (2.10)

Now given a value, say x, in order to assign it to a given class, a good strategy would
be to consider the class with the highest posterior probability. In that sense, x is
assigned to k if P(k|x)

P(l|x)
> 1 or when fk(x)

fl(x)
> πk

πl
(for all l not equal to k) while on

the boundary {x ∈ R : fk(x)
fl(x)

= πk
πl
} then the assignment to a particular class can be

resolved by tossing a fair coin.
The LDA utilizes the multivariate Gaussian density with the assumption that the

classes have a common variance such that Σk = Σ ∀k. To compare classes k and l,
one strategy would be to compare the log odds ratio so that

log
P (Y = k|X = x)

P (Y = l|X = x)
= log

fk(x)

fl(x)
+ log

πk
πl (2.11)

Equation 2.11 is linear and implies that the decision boundary between the classes
k and l is the set where P (Y = k|X = x) = P (Y = l|X = x) is linear in x;
in p dimensional hyperplane. From equation 2.11 linear discriminant functions are
given by δk(x) = xTΣ−1µk − 1

2
µTkΣ−1µk + log πk and are equivalent in terms of the

decision rule with Y (x) = arg maxk δk(x) with unknown parameters estimated from
the learning set. When the covariances of k classes are not assumed equal then we
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end up with the quadratic discriminant function presented as

δk(x) = log πk −
1

2
log|Σk|−

1

2
(x− µk)TΣ−1

k (x− µk) (2.12)

with the decision boundary for classes k and l described by {x : δk(x) = δl(x)}. For a
comprehensive discussion see Hastie et al. (2009); Mitchell (1994). One problem with
the quadratic discriminant analysis (QDA) is caused when some of the attributes
have zero variance in one class resulting in to non-invertible covariance matrix.
This problem is usually avoided by adding a small positive constant term to the
diagonal terms of the covariance matrix or solved by using a combination of the class
covariance and the pooled covariance (Mitchell, 1994).

The k-nearest neighbour (KNN)

This approach focuses on the distance (usually the euclidean distance) between
elements of a data set especially the closest elements without taking into
consideration the distributional assumptions. In this method k is a number to be
determined by the researcher for instance when k = 1 then only the nearest neighbour
is taken into consideration and any new object will assigned to the class of its nearest
neighbour. The classification should be quite straightforward in situations where the
k > 1 nearest neighbours are all of the same class otherwise a majority vote is
considered for decision making. There is no universal rule of thumb for the choice
of k, optimal value of k can be picked by trying various values on the data under
consideration and checking the respective performance of various values of k. Another
alternative is to use the leave one out cross validation to pick the optimal value of k.

Logistic regression

Consider a data set of sample size n and p covariates with the data points being (xi, yi)

with i = 1, . . . , n, where yi is the response variable in 0/1 and xi = (xi1, . . . , xip)
T .

Rewriting in matrix form, then y = (y1, . . . , yn) and X = (xT1 , . . . , x
T
p )T . The logistic

regression is thus expressed as

logitπi = log

(
πi

1− πi

)
= ZT

i β (2.13)
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where πi = E(Yi),Z = {(1, . . . , 1)T ,X},β = {β0, . . . , βp}. The log-likelihood
function for this model is then written as

logL(β) =
n∑
i=1

[yiζi − log(1 + exp(ζi))] (2.14)

where ζi = zTi β and β is estimated by the usual maximum likelihood estimation
via iterative algorithms. In some cases when n << p then the MLE of β may not
even exist and so a penalized logistic regression like the popular lasso L1 and L1/2

penalization which was recently proposed by Liang et al. (2013) may be utilized.

The ridge partial least squares (RPLS)

The RPLS was developed by Fort and Lambert-Lacroix (2005) for situations in
which the response variable was binary unlike in the original PLS where the response
variable is continuous. RPLS works by substituting the categorical response variable
of the PLS by a continuous-valued pseudo-response variable whose expected value has
a linear relationship with the covariates. When n << p the usual Iterative reweighted
least squares (IRLS) algorithm (to be introduced next) no longer works since the
limiting pseudo-response variable is infinite in norm. Therefore, the likelihood
criterion is penalized to constrain the pseudo-response variable to be finite. The
RPLS algorithm broadly contains two procedures: first is to combine the ridge
penalty step with the PLS step then dimension reduction is incorporated in the
classification step.

Iterative reweighted least squares (IRLS) and ridge IRLS

(RIRLS)

From 2.14, the estimate of β can be computed as the limit of a converging Newton-
Raphson sequence also known as the IRLS algorithm (Fort and Lambert-Lacroix,
2005) where each iteration is divided into two steps:

β̂m+1 = (ZTV(m)Z)−1ZTV(m)ϑ(m)

ϑ(m+1) = Zβ̂m + (V(m))−1
[
y − π(m)

]
.
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Here, ϑm is the pseudo-variable while π̂(m) =
[
π̂

(m)
1 , . . . , π̂

(m)
n

]
is the vector of the

estimated probabilities of success for each observation, π̂(m)
i = logit−1

(
zTi β̂

(m)
)
,

V(m) = diag (vmi , . . . , v
m
n ) is the diagonal empirical variance matrix of observations

yi at step m where, vmi = π̂mi [1− π̂mi ]. The IRLS algorithm achieves the successive
resolution of a weighted least squares regression since each step can be viewed as a
regression of the pseudo-variable ϑm against Z with the weight matrix being V(m).
Accordingly, the pseudo-variable ϑ∞ is produced as the limit of the sequence (ϑm)m≥1

computed during each iteration. That is, ϑ∞ = Zβ̂
∞

+ ε, where β̂∞ is the solution
of the likelihood optimization while ε is a vector of noise of the covariance matrix
(V∞)−1, where V∞ is the limit of the matrix sequence (Vm)m≥1.

When Z is not of full rank the MLE parameter is not unique if it exist and may
not even exist due to the infinite norm especially so when n << p, n = rank(Z) and
so regularization by applying the l2 norm penalty constraint on the co-efficients is
done to get

logL(β)− 0.5λβTΣ2β (2.15)

where Σ2 is diagonal and is the empirical variance of Z and λ > 0. The optimization
of the regularized log-likelihood function leads to the Ridge IRLS (RIRLS) so that
the weighted regression of each IRLS iteration is replaced by the ridge reweighted
regression, hence

β̂(m+1) = (ZTV(m)Z + λΣ2)−1ZTV(m)ϑ(m) (2.16)

which guarantee a unique solution which is computed as the limit of (β̂(m))m≥1 see
(Fort and Lambert-Lacroix, 2005).

Weighted PLS (WPLS)

Consider the response vector y ∈ Rn and X a n× p dimensional data matrix and V
being a symmetric positive definite n × n matrix. According to Fort and Lambert-
Lacroix (2005), the PLS defines κ, V -orthogonal scores tk, k = 1, . . . , κ which are
linear combinations of Z for all k,1′nV tk = 0 and also performs a V-weighted least
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squares regression of the response y on (1n, t1, . . . , tκ) to yield

y = b01n + b1t1 + · · ·+ bκtκ + eκ+1 = Zβ̂PLS,κ + ek+1

where eκ+1 is the error term which is V-orthogonal to the vector (1n, t1, . . . , tκ). The
usual PLS algorithm is derived using V = I an identity matrix Fort and Lambert-
Lacroix (2005) for the weighted PLS algorithm.

Therefore, the RPLS basically involves two major steps with the first one being
to build the the pseudo-response variable which is continuous ϑ(∞) with a ‘dispersion
matrix’ [V∞]−1 then the second step is to implement a weighted PLS. RPLS depends
mainly on the two parameters λ and κ where λ is determined in the first step by
Bayesian Information Criterion (BIC) criterion while the determination of κ that is,
the number of PLS components to be used is still an open problem even though there
are several proposals for determining it such as cross validation and hard thresholding
depending on the context, see (Fort and Lambert-Lacroix, 2005).

Support vector machines (SVM)

The review in this section comes mainly from and Cortes and Vapnik (1995)
Hastie et al. (2009) among other references. Given a training set consisting of
(x1, y1), . . . , (xN , yN) with xi ∈ Rp and yi ∈ {−1, 1}; SVM finds an hyperplane
{x : f(x) = xTβ + β0 = 0} that creates the biggest margin m = 2/‖β‖ between the
training points for the two classes. If the classes are assumed separable then function
f(x) = xTβ + β0 with yif(xi) ≥ 1,∀i can be found. This optimization problem can
be solved by the Lagrange multiplier equation L given as

La =
1

2
‖β‖2−

∑
i

αi(yi(x
Tβ + β0)− 1). (2.17)

where α′is are Lagrangian multipliers, one for each data point. The parameters β, β0

and αi determine the unique maximal margin (m) boundary line solution and are
determined by taking partial derivatives with respect to each parameter respectively.
For the maximum margin, the positive and negative data points on the edges of
the margin with non-zero alpha values are known as the support vectors and are
associated with the weights αi which determine the amount of influence on the
surrounding region. The vectors with zero weights αi are known as the non-support
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vectors and usually dont influence the decision boundary.
When the data points are not linearly separable then one strategy is to introduce

variables ξ = (ξ1, ξ2, . . . , ξN) which allow some individual observations to be on the
wrong side of the hyperplane leading to a convex optimization problem of

yi(x
T
i β + β0) ≥ m(1− ξi), (2.18)

∀i, ξi ≥ 0,
∑N

i=1 ξ ≤ k, where k is a constant. Thus equation 2.18 leads to the
standard support vector classifier (Hastie et al., 2009) which can conveniently be
re-expressed as

min
β,β0

1

2
‖β‖2+C

N∑
i=1

ξi, subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i, (2.19)

where C is the cost and equals infinity when the classes are separable. The Lagrange
function for 2.19 is given by

Lp =
1

2
‖β‖2+C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi, (2.20)

where αi and µi are positivity constraints.
Equation 2.20 is minimized with respect to the unknown parameters to obtain the

following β =
∑N

i=1 αiyixi,
∑N

i=1 αiyi and α = C − µi,∀i and also ξi ≥ 0 ∀i. These
results are substituted into equation 2.20 to obtain the Lagrange dual objective
function

LD =
N∑
i=1

αi −
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj. (2.21)

Equation 2.21 is maximized subject to 0 ≤ αi ≤ C and 0 =
∑N

i=1 αiyi = 0.
Noting that equation 2.17 basically requires us to compute the dot products of

β and x amounts to requiring the computation of the “distance” between β and
x. Consider a function φ such that φ : RN → H, i.e., φ maps from the original
space to a higher dimensional space H. The original data X input space with the
classification rule G(x) = sign(xTβ + β0) subject to β =

∑N
i=1 αiyixi can be mapped
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into a higher dimenional space feature space φ(x) such that G(x) = sign(φxTβ+ β0)

subject to β =
∑N

i=1 αiyiφ(xi). The transformed feature vectors φ(xi) need not
be known explicitly but any function defined by K(., .) : RN × RN → R and
is positive definite (satisfying the Mercer condition) guarantees existence of φ, so
that K(xi, xj) = 〈φ(xi), φ(xj)〉 (Cortes and Vapnik, 1995). Thus the Lagrange dual
function for the transformed feature space is given by

L =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyj〈φ(xi), φ(xi)〉. (2.22)

The solution function f(x) can therefore be written as

f(x) = φ(x)Tβ + β0 =
N∑
i=1

αiyi〈φ(x), φ(xi)〉+ β0. (2.23)

The parameters αi, β0 can be obtained by solving yif(xi) = 1 in equation 2.22
for all xi for which 0 < αi < C. The solution for equation 2.23 is consequently
written as f̂(x) =

∑N
i=1 α̂iyiK(x, xi) + β̂0. Some of the kernel functions that can

be used for K(., .) include, the linear kernel K(xi, xj) = 〈xi, xj〉, gaussian radial
basis function (RBF) kernel K(xi, xj) = exp [−σ‖xi − xj‖2], the Laplace radial basis
function (LRBF) K(xi, xj) = σ‖xi−xj‖, the polynomial kernel and the linear splines
kernel in one dimension among many others.

The choice of an appropriate kernel is usually a non-trivial task and regardless
of the kernel chosen, the kernel parameter needs to be tuned in order to get a good
performance. One of the most popular tuning method that has frequently been
employed is the K-fold cross validation.

Kernel multilogit algorithm (KMA)

The KMA was recently proposed by Dalmau et al. (2015). This algorithm works by
first transforming a categorical response variable to a continuous one via multilogit
transformation. The transformed variable is then used with the explanatory variables
in a regression model for classification and prediction. Finally, the new predicted
variables are transformed back using the inverse multilogit function to the original
space to enable classification.

Let the response variable vector y be a categorical with class labels {1, 2, . . . , C},
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to classify a discrete variable from predictor variables x, the first step is to transform
the response variable y into a new space using the multilogit function. The
multinomial logit model with C as the reference category can be given as

Pr(y = j|x) =
exp{f(x;θj)}

1 +
C−1∑
i=1

exp{f(x;θi)}
, j = {1, 2, . . . , C − 1}

Pr(y = C|x) =
1

1 +
C−1∑
i=1

exp{f(x;θi)}
,

(2.24)

where f(x;θi) = xTθi. The expected value of y being multinomial random variable
is given by E(y|x) = [Pr(y = 1|x),Pr(y = 2|x), . . . ,Pr(y = C|x)]T . Now, denoting
t = E(y|x), the original response variable y is not used but instead a transformed
version ϑ = logit(t) is used. The logit transformation is done with C as the reference
category as follows

ϑj = logit(tj) = log
tj
tC
, j = {1, 2, . . . , C − 1} (2.25)

where ϑj ∈ ϑ, tj ∈ t.
In the second step a parametric linear model is proposed and its param-

eter estimates can be obtained via the standard Bayesian formula Pr(ϑ|x) =

Pr(x|ϑ)Pr(ϑ)/Pr(x) where Pr(ϑ|x) is the posterior probability distribution, Pr(x|ϑ)

is the likelihood function and Pr(x) is the normalization constant. Assuming
that ϑ ∈ RC−1 for a given x ∈ Rm follows a multivariate normal distribution
ϑ|x ∼ N(ΘTx, α2I), Θ ∈ Rm×C−1 and Pr(ϑ|x) is also multivariate normally dis-
tributed. Furthermore, the prior parameters are assumed to follow a normal dis-
tribution, i.e. θ ∼ N(0, β2I) where β is known. The parameter matrix Θ is thus
estimated by optimizing an equivalent of regularized least squares function

Θ̂ = arg min
Θ

U(Θ)

U(Θ) = ‖ϑ−XΘ‖2
F + λ‖Θ‖2

F ,
(2.26)

where ϑ = [ϑ(i)]Ti=1,2,...,n, X = [x(i)]Ti=1,2,...,n, ‖.‖F is the Frobenius norm of a matrix
and λ is the regularization parameter. The result is a closed form estimate given by
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Θ̂ = (XTX + λI)−1XTϑ. To capture non-linearities which may be present, a dual
representation Θ = XTΓ is taken so that

U(Γ) = ‖ϑ−XXTΓ‖2
F + λ‖XTΓ‖2

F

then U(Γ) is optimized to get Γ̂ = (K+λI)−1ϑ, where K = XXT is the Gram matrix,
Kij = 〈x(i),x(j)〉+ 1. However a more general kernel Kij = ((φ(x(i)), φ(x(j))) where
φ(·)is a nonlinear mapping, is preferred in practice.

The final step of the algorithm involves prediction/classification given a new set
of response variables xnew. This entails estimation of ϑnew by ϑnew = Γ̂T x̂new, but
x̂new = K((φ(x(i)), φ(x(new))). The computed ϑnew is used to estimate tnew by using
tnew = logit−1(ϑnew). The inverse of a logit function is given by

tnewj =
exp{ϑnewj }

1 +
C−1∑
i=1

exp{ϑnewj }
, j = {1, 2, . . . , C − 1}

tnewJ =
1

1 +
C−1∑
i=1

exp{ϑnewj }
.

(2.27)

The class labels associated with xnew are then computed using the estimated
conditional distribution by finding the components that maximises the components
of tnew i.e. using the Bayes rule. The computed tnew is then used to get the class
label (ŷnew) of the new data , for details see Dalmau et al. (2015).

2.3 Partial least squares (PLS) and some of its

applications in genomics

The PLS is a very useful approach because it is able to analyze data with many,
noisy, collinear as well as incomplete variables. PLS is usually utilized in data
reduction when there is multicollinearity or when the data has more variables than
the number of samples. Essentially, the PLS aims at maximizing the covariance
between the response variables Y and the predictors X, i.e., cov(XTY ) of highly
multidimensional data by finding a linear subspace of the explanatory variables (Wold
et al., 2001; Höskuldsson, 1988). Some literature on PLS can be found on Wold et al.
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(2001, 1984); Höskuldsson (1988) among others.
The research on PLS is still very active due to its ability to address

problems associated with the high dimensional data such as multicolinearity,
high dimensionality, among others. In recent past, the PLS has been utilized
predominantly in the high dimensional data in different fields like chemometrics
and the “omics” like genomics, proteomics and many other fields that generate large
amounts of data like spectroscopy (Gromski et al., 2015). Some recent applications
of PLS in microarray studies include, Huang et al. (2013) who applied PLS regression
(PLSR) in breast cancer intrinsic taxonomy, for classification of distinct molecular
sub-types by using PAM50 signature genes as predictive variables in PLS analysis and
the latent gene component in binary the logistic regression for each molecular sub-
type. Telaar et al. (2013) extended the notion of PLS-discriminant analysis (PLS-
DA) to Powered PLS-DA (PPLS-DA), introducing a so called ‘power parameter’,
which is maximized towards the correlation between the components and the group-
membership thereby achieving a minimal classification error. Furthermore, Xi
et al. (2014) discussed the PLS-DA with applications to metabolites data. Other
articles involving the usage of PLS include, Dong et al. (2014) who used PLS to
investigate the underlying mechanism of the post-traumatic stress disorder (PTSD)
using microarray data. Gusnanto et al. (2013) made gene selection based on partial
least squares and logistic regression random-effects (RE) estimates for evaluation in
classification models. Gene selection involving PLS was also done by Wang et al.
(2015). The sparse PLS has also been utilized by many researchers for instance
Chun and Keles (2009); Lee et al. (2011) provided an efficient algorithm for the
implementation of the sparse PLS for variable selections in high dimensional data.
Furthermore, Lê Cao et al. (2008) used a sparse PLS for variable selection when
integrating omics data. They implemented sparsity via lasso penalization of the PLS
loading vectors when computing the singular value decomposition.

2.4 PLS regression (PLSR) algorithm

Starting with the response variables’ matrix Y and the predictors’ matrix X with
dimensions N ×K and N ×M respectively. The matrices are scaled and centered
previously to make their distributions fairly asymmetric. Höskuldsson (1988) and
Wold et al. (2001) give a good summary of the PLS with application in Chemometrics.
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The PLSR uses the estimates of the latent variables or the PLS components as the
new variables denoted by (th, h = 1, ..., H). These new variables are estimated as a
linear combination of the of the original variable xk with the co-efficients, “weights”
w∗kh.

tih =
∑
k

W ∗
khXik; T = XW∗ (2.28)

where T is a matrix of PLS components/X-scores, W is a matrix of weights. The th’s
have the property that when multiplied by the loadings phk they give good summaries
of X so that the residuals eik are small.

Xik =
∑
h

tihphm + eik; X = TPT + E. (2.29)

In a similar manner for Y when (M > 1), the corresponding “Y-score” (uh), when
multiplied by weights chm gives good summaries of Y so that the residuals gim are
small

yim =
∑
h

uihchm + gim; Y = UCT + G. (2.30)

The X-scores (th)’s are good predictors of Y so that

yim =
∑
h

cmhtih + fim; Y = TCT + F (2.31)

where fim, are residuals for the observed responses and the modelled ones. Rewriting
equations 2.28 and 2.29 as a multiple regression we get;

yim =
∑
h

cmh
∑
k

w∗khxik + fim =
∑
k

bmkxik + fim; Y = XW∗ + F = XB + F.

(2.32)
Also, the regression parameters can be written as

bmk =
∑
h

cmhw
∗
kh; B = W∗CT (2.33)

The estimated coefficients are not independent unless the number of PLS
components are equal to the number of X-variables and so their confidence-intervals
are infinite according to the classification statistics (Wold et al., 2001). The matrix
X is usually deflated after each component h by subracting X − thpTh making it
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possible to express the PLS model in terms of weights wh referring to the residuals
after previous dimension Eh−1 instead of relating to X-variables themselves (Wold
et al., 2001). Thus we write 2.28 as

tih =
∑
k

W ∗
kheik,h−1; th = Eh−1Wh

eik,h−1 = eik,h−2 − ti,h−1p
′
h−1; Eh−1 = Eh−1 − th−1p′h−1

eik,0 = Xik; E0 = X.

(2.34)

The weights W can be transformed to W∗ which is directly related to the original
variables as W∗ = W(P′W)−1. The matrix Y can also be deflated by subtracting
thc′h but the deflation or non deflation of Y does not affect the results. According
to Höskuldsson (1988); Wold et al. (2001), the first weight vector w1 is the first
eigenvector of the combined variance-covariance matrix, X′YY′X and the weight
vector component h are the eigenvectors to the deflated matrix Z′hYY′Z′h where
Zh = Zh−1 − Th−1P′h−1. The first component t1 is an eigenvector to XX′YY′ and
th = ZhZ′hYY′. The vectors wh form orthogonal set, furthermore the vectors th
are orthogonal to each other. However, the loadings ph are not orthogonal to each
other and neither are uh’s. On the other hand, the u’s and the p’s are orthogonal
to t’s and w’s respectively. It implies that u′itj = 0 and p′iwj = 0 if i > j and also,
w′ip′h = 1 (Wold et al., 2001). There are several variants of the PLSR algorithms
that have been developed by different researchers. Some vital properties to consider
when designing an algorithm include orthogonality between model components, good
summarizing properties of the components th and interpretability of the model. Now
we present the NIPALS algorithm (Wold et al., 2001, 1984). The algorithm starts
with optionally standardized or mean centred data X and Y. The steps in Table 2.1
are then implemented.
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Table 2.1: PLS Regression Algorithm

Algorithm:

1. Set u to be the first column of Y

2. Calculate the weights w :w = XTu/(uTu)

3. Normalize the w as : w = w/‖w‖

4. Obtain X-scores: t = Xw

5. Calculate Y -scores: c = Y′/(t′t)

6. Normalize c to be of length one

7. Update the Y -scores: u = Y′c/(c′c)

8. If there is convergence then go to step 9 otherwise 2

9. X-loadings: p = X′t/(t′t)

10. Y-loadings: q = Y′u/(u′u)

11. Regress u on t : b = u′t/u′u

12. Obtain the residual matrices: X −→ X− tp′ and Y −→ Y− tq′

The convergence is tested by determining the change in t of the norms “old” and
“new” values divided by the norm of the “old” values. The next set of iterations begin
with the residual matrices obtained in step 12 and continue until X contains zeros
or a stopping rule can be used.

Other important issues in PLS include determination of the number of
components to be included. Care must be taken so as to avoid over-fitting. A
practical way to determine the number of components would be to use cross validation
(CV). Depending on the sample size, we can do k-fold cross validation or leave
one out CV. Another issue is the model validation to determine whether the model
consistently predicts Y with a new set of predictors. In this case, the CV still is a
formidable tool.
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2.5 PLS generalized linear regression algorithm

In this section, we present an algorithm that can be applied to any Generalized Linear
Regression which was developed by Bastien et al. (2005). Consider the response data
y with the explanatory variables x1, . . . ,xp then a PLS-General Linear Regression
(PLSGLR) can be written as

g(θ) =
m∑
h=1

ch

( p∑
j=1

w∗hjxj

)
, (2.35)

where θ a conditional expectation of the variable y if its distribution is continuous
or a vector of probabilities if the variable y follows a discrete distribution with a
finite support, while g(.) is the link function chosen according to the probability
distribution of y. The PLS components are given by th =

∑p
j=1w

∗
hjxj, j =

1, . . . , p, h = 1, . . . ,m. To compute the PLS components let X = x1, . . . ,xp be
a matrix of p centred explanatory variables xj’s. The key objective is to determine
m orthogonal PLS components defined as a linear combination of the xj’s. The
algorithm is presented as follows:

1. Computation of the first PLS component t1 : First, the regression coefficients
a1j of xj are computed using the usual GLM procedure of y on xj, j = 1, ..., p.
The column vector a1 which contains a1j is then normalized : w1 = a1/‖a1‖.
Finally, the component t1 is computed as t1 = Xw1/w

′
1w1.

2. Computation of the first PLS component t2 : Involves the computation of
the linear model coefficients a2j of xj in the GLM setting of y on t1 and
xj, j = 1, ..., p. Since the main idea of PLS is to create the orthogonal
components t2, the component t1 is added as a variable in estimating y on
t1 and xj, j = 1, ..., p. This is because the structure of PLSGLR does not
allow the residuals of y to be obtained in each iteration that would aid in
construction of orthogonal components. The column vector a2 which contains
a2j is normalized: w2 = a2/‖a2‖ and thereafter, the residual matrix X1 is
obtained via the regression of X on t1. The use of residual matrix in the
obtaining the next component ensures orthogonality between the different
components. The component t2 is calculated by t2 = X1w2/w

′
2w2. Finally, t2

is expressed in terms of X : t2 = Xw∗2.
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3. Computation of the hth PLS Component th: Consider the already been
computed components t1, ..., th−1, the final component th is computed by
calculating the GLM coefficients ahj of xj by fitting y on t1, ...th−1 and
xj, j = 1, ..., p. Next, the column vector ah which contains ahj are normalized
as: wh = ah/‖ah‖. The residual matrix Xh−1 of the regression of X on
t1, ..., th−1 is then computed. The use of the residual matrix and the previously
obtained t1, ...th−1 as covariables in calculating the GLM coefficients helps with
creating orthogonal components as previously explained. The final component
th is thus computed as th = Xh−1wh/w

′
hwh. Finally, th is expressed in terms

of X : th = Xw∗h.

Bastien et al. (2005) note that while computing the components th, the
nonsignificant elements in ah can be set to zero in order to simplify calculations since
only the significant response variables are needed to build the PLS components. The
number of m components to be used can be determined through cross-validation or
by hard thresholding. The iteration can be stopped once there are no more significant
coefficients in ah.

Consider xh−1,i a column vector of the transpose of the ith row of Xh−1, then
thi = x′h−1,iwh/w

′
hwh of the ith case on the component th. This is basically the

slope of the fitted line of the univariate OLS linear regression without intercept for
xh−1,i on wh which can be estimated even with some data missing. Consequently,
the component is computed based on the available data. Therefore the PLSGLR
algorithm by Bastien et al. (2005) effectively copes up with missing data.
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Applications to real data sets

3.1 Introduction

This section presents the data, methodology and explanations of the various aspects
of the application of the classification methods to three sets of real microarray data.
Each of these data sets is analysed under two different conditions, preprocessed
and un-preprocessed. For the preprocessed sets, the PLS Generalized Regression
combined with Logistic Regression and also Linear Discriminant Analysis are
implemented and their performance compared with the classical methodologies like
KNN, LDA, RPLS, PLSDA and SVM. The same is done for the un-preprocessed
data sets but in addition to the previous methodologies, the KMA algorithm is
implemented.

3.2 Analysis of the unpreprocessed data sets

Colon data is due to Alon et al. (1999) obtained from the R package plsgenomics

is a (62 × 2000) matrix giving the expression levels of 2000 genes for the 62 Colon
tissue samples. Out of the 62 tissues, 22 are healthy while 40 had Colon cancer. The
Leukemia data was a matrix of dimension (38×7129) where 11 patients suffered from
acute myeloid Leukemia (AML) while 27 were acute lymphoblastic Leukemia (ALL)
patients. The third data set was the Prostate cancer dataset is due to Singh et al.
(2002) was a (102×12600) in dimension. Out of it, 50 were normal and 52 were tumor.
The unpreprocessed Leukemia and Prostate cancer data were downloaded freely from
www.stats.uwo.ca/faculty/aim/2015/9850/microarrays/FitMArray/data/.

33
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3.2.1 Some exploratory analysis

We use the Colon data to visualize the differences in the unpreprocessed and
preprocessed microarray data sets. The preprocessing is done using the R

package plsgenomics see https://rdrr.io/cran/plsgenomics/ that implements
the recommendations of (Dudoit et al., 2002). To visualize the differences between
the preprocessed and non-preprocessed data sets, we consider the pairs of box
plots, relative log expression (RLE) and principal components analysis (PCA) plots
presented in Figures 3.1,3.2, 3.3, 3.4 and 3.5 respectively.
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Figure 3.1: Box plot for the non-preprocessed colon data. The box plot for unpreprocessed
data clearly shows that the data is noisy and has a lot of variations. The data has some unwanted
variations that are expected to affect its analysis. It also lacks symmetry.

https://rdrr.io/cran/plsgenomics/


3.2. Analysis of the unpreprocessed data sets 35

2 4 6 8 10 12 14 16 18 20 22 24 39 42 43 48 50 51 54 55 60 62 1 3 5 7 9 11 13 15 17 19 21 23 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 44 45 46 47 49 52 53 56 57 58 59 61

−2

0

2

4

Preprocessed colon data

sample

Normal

Tumor

Figure 3.2: Box plot for the preprocessed colon data. This plot looks reasonable with less
variations. The data seem to have a symmetric distribution and does not show the presence of
unwanted variation. From the two figures, it is expected that the preprocessed data would be easy
to analyze.

Next the same pair of data sets is examined using RLE plots to show how the
preprocessed data compares with the un-preprocessed one with regards to the batch
effect or any other abnormality. The RLE plots have been extensively used in the
studies of the microarray data to reveal the effectiveness of data normalization for
example see Gagnon-Bartsch and Speed (2011). The RLE plots are simple yet very
powerful in the visualization of data to detect unwanted variations. To understand
how an RLE plot is constructed, consider a data matrixXp×n where p is the number
of genes while n the number of microarray sample and so the element of the data
matrix xij represents the ith gene in the jthsample. To construct the RLE plot,
we calculate the median across each of the p rows and then subtract the respective
median across each row of the data matrix X, i.e (xij −median xi∗). The median is
used because it is robust and not affected by the outliers. A box plot is then generated
for each of the n samples and a good one will be centered around zero and its width
(interquartile range) should be equal to or less than 0.2 see (Gagnon-Bartsch and
Speed, 2011).
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Figure 3.3: RLE plots for the non-preprocessed and pre-processed colon data. The RLE
plot for the unprocessed data shows the presence of a lot of heterogeneity which reveals that the
data has variations that do not necessarily come from the biological factors. However, the RLE plot
for the processed data shows homogeneity and lack of unwanted noise and should give relatively
good results when analyzed statistically.
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Finally we compare the ease of classification between the un-preprocessed and
preprocessed data. The simplest way to visualize the separability of categories in a
given data set is the use of principal components analysis (PCA) plots.
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Figure 3.4: PCA plot for the nonpreprocessed Colon data. The PCA plots show that the
it is harder to separate/classify the unpreprocessed data.
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Figure 3.5: PCA plots for the preprocessed Colon data. It is relatively easier to
separate/classify compared preprocessed data.

Gagnon-Bartsch and Speed (2011) note that one of the key challenges of the
removal of unwanted variation is the difficulty in distinguishing the unwanted
variations from the biological variation of interest. Further more they note that
the most appropriate way to deal with unwanted variation depends so much on the
final objective of the analysis for instance, differential expression (DE), classification,
or clustering.

3.2.2 Results from the analysis of the unpreprocessed data

The key objective of this set of analyses was to compare the performance of our
proposed model extensions PLSGLR-log, PLSGLRDA and the KMA Dalmau et al.
(2015) with the classical methods when the data had not been preprocessed nor
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variables selected. In other words, to test the performance of the classification
algorithms in the presence of noise. In that regard, none of the data sets was
preprocessed and neither was the feature selection implemented for any of them.
The performance of the methodologies were then compared using the cross validation.
In this case a 10 fold cross validation (10-CV) was carried out and corresponding
missclassification percentages computed. The results are presented in Table 3.1.

Table 3.1: Percentage missclassification for the different methods when applied to the
unpreprocessed data sets

DATA PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
Colon 38.3 31.7 60.0 25.0 11.7 15.0 18.3 1.7
Leukemia 5.6 1.4 34.7 5.6 1.4 1.4 100.0 1.3
Prostate 11.6 8.0 100.0 9.8 7.1 6.2 7.1 0.8

A particular method is judged to be the “best” if it has a misclassification per-
centage relative to the other methods, otherwise its a poor classifier. The results
based on minimal cross validation misclassification percentages indicate that for the
colon data, the KMA emerged the best followed by PLSDA, RPLS while the worst
was the KNN and PLSGLR-log. For the Leukemia data, KMA was the best, while
the second best had a tie between, PLSGLRDA, PLSDA and RPLS while KNN and
the SVM were the worst classifiers in this case. Finally, for the Prostate data, KMA
still emerged as the best followed by PLSGRDA, PLSDA and SVM while KNN re-
tained the worst performance while the other methodologies performed fair. The
results suggest that KMA, PLSGRDA, RPLS and PLSDA seem to perform well in
the absence of preprocessing and gene selection. In overall, for the un-preprocessed
noisy data sets, it is clear that KMA is the best classifier, KNN is the worst while
for the rest there is no clear “winner".
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Figure 3.6: Box plots for the error rates for the unpreprocessed Colon data. The errors
for all the classifiers are not symmetric except the SVM. The boxplots confirm that the top best
classifiers are the KMA, PLSDA and RPLS. The KNN is outstandingly performing poor.
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Figure 3.7: Box plots for the error rates for the unpreprocessed Leukemia data. This
set of data had a relatively lower rate of missclassification. The best classifiers are the KMA,
PLSDA, RPLS and PLSGLRDA. The KNN remains consistent in it’s poor performance.
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Figure 3.8: Box plots for the error rates for the unpreprocessed Prostate data. The
best methodologies remain the KMA, PLSDA, RPLS and SVM. The KNN remains the worst.
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3.2.3 Feature selection

Feature selection is a very important step in microarray data analysis because out
of the thousands of variables (genes) generated, only a handful play an important
role towards the biological problem of interest. The thousands of data points, are
likely to be noisy due to biological or technical reasons. Thus the feature selection
extracts a subset of the genes that are most informative thereby reducing the noise
in the data and at the same time improving the efficiency of the classifiers. It seeks
to reduce the number of features by targeting an optimum subset of features and
removing the irrelevant or redundant features (Awada et al., 2012; Dudoit et al.,
2002). Most commonly used feature selection methods involve ranking the genes
based on some value of a univariate statistic like t-statistic, F-statistic, Wilcoxon,
and Kruskal-Wallis statistics. A cut-off point based on either the number of genes
or p-value is imposed so as to determine the number of variables to be used. Dudoit
et al. (2002) suggest a gene selection method based on ranking. This is achieved by
finding the ratio of between-group to within-group sum of squares (BSS/WSS) so
that for a gene j,

BSSj/WSSj =

∑
i

∑
k I(yi = k)(x̄kj − x̄.j)2∑

i

∑
k I(yi = k)(xij − x̄kj)2

(3.1)

where x̄.j and x̄kj are the average expression level of gene j and across all samples in
class k respectively. The p genes with the biggest ratio are selected. In this study,
we adopted the Dudoit et al. (2002) method of feature selection.

3.2.4 Analysis of the preprocessed data sets

Each data set was divided at random into a training and test sets of approximately 2:1
samples respectively. For instance, if a data set had n observations, then it was split
into the training n1 and test n2 sets respectively where n = n1 + n2. The classifiers
were then built using the n1 training set and then prediction/classification done using
the n2 test set. The proportion of the misclassified labels are determined and thus
the method with the lowest misclassification proportion was judged to be the best.
A re-randomization study was implemented by repeating splitting of the data 100

times by re-sampling the samples and thereafter the proportion of misclassification
was measured for each subdivision.
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The preprocessing was done on the training set using the recommendations of
Dudoit et al. (2002). Furthermore, the gene selection was done following the steps
recommended by Dudoit et al. (2002). Both the preprocessing and gene selection were
implemented in the R package plsgenomics. The top p genes were thus selected using
Equation 3.1 for the implementation of the classification methods. The number of
the top p genes to be used was arbitrarily chosen. The same procedure was repeated
for all the other methods under consideration.

The colon and the leukemia data sets were preprocessed using the recommen-
dations of Dudoit et al. (2002) while the Prostate data was obtained from the
website http://stat.ethz.ch/~dettling in a preprocessed data by (Dettling and
Bühlmann, 2002). Colon data had p = {50, 100, 500, 1000}, leukemia data had
p = {100, 300, 500, 1000} and the Prostate data had p = {100, 300, 500, 1500}.

3.2.5 Results and discussions for analysis of preprocessed

data

As described in the introduction of Subsection 3.2.4, each data set was subdivided
into two sets namely, the training set and the test set at a ratio of 2:1 for training
and testing respectively. A resampling study of 100 random subdivisions was done
and the test error for each subdivision summarized in tables and the box plots.

For the determination of PLSGLR components, the p genes were selected from
the preprocessed data set, the first stage thus was to determine the genes that
significantly contribute to the response variable. This was done by running separate
logistic regressions for each of the selected p genes. The logistic regressions that
were significant at 0.05 level were retained for building the first component t1. The
hard thresholding was implemented in which the non significant coefficients of the
logistic regressions were recoded to zero in order to eliminate their effects in the
construction of the PLS components. The PLSGLR algorithm was then implemented
for the remaining components and stopped when there were no more significant GLM
coefficients. The computed PLS components were then used in the PLSGLR-log and
the PSGLRDA.

The classical classification methods namely, the k-nearest neighbour (KNN), the
linear discriminant analysis (LDA), the ridge partial least squares (RPLS) , the
partial least squares linear discriminant analysis (PLS-LDA) and SVM were also

http://stat.ethz.ch/~dettling
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implemented in order to compare them with the proposed methods. To choose k in
the KNN, a 10-fold cross-validation was used and k that leads to the smallest number
of misclassifications was chosen. For the SVMs, the cost parameter C and parameter
gamma were determined through the 10-fold cross validation. Furthermore, the
choice of kernel was influenced by the misclassification rates for different kernels
so that the kernels that produced the lowest misclassification were preferred. The
results for the analysis of Colon data are presented in Table 3.2.

Table 3.2: Percentage Misclassification for the Colon Data Set

p PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
50 15.1 14.1 21.0 27.0 13.4 15.3 17.7 14.1
100 17.0 14.8 20.5 17.8 13.9 15.6 17.2 14.6
500 20.8 16.7 20.2 14.5 13.7 15.7 16.4 15.2
1000 20.8 16.8 21.2 14.8 13.9 15.1 16.8 14.6
Average 18.4 15.6 20.7 18.5 13.7 15.4 17.0 14.6

Table 3.2 shows that for classification of the colon data set, the PLSDA had the
lowest percentage misclassification followed by the KMA, RPLS and PLSGLRDA.
The difference in the percentage misclassification for the four top (best) classifiers is
however marginal and so we can say that the three perform in almost the same
manner. The highest misclassification percentage was observed with the KNN
method. In this data set, the LDA performed poorly just like the KNN. Next we
examine how each classifier performed in terms of False Positive and False Negative
proportions.

Table 3.3: The proportions of False Positives and False Negatives for the Colon Data

p 50 100 500 1000 Average
Method C.C.N N.C.C C.C.N N.C.C C.C.N N.C.C C.C.N N.C.C C.C.N N.C.C
PLSGLR-Log 6.9 8.0 7.8 9.2 9.7 11.10 9.6 11.1 8.5 9.9
PLSGLRDA 8.5 5.6 9.1 5.7 10.0 6.7 9.62 7.1 9.3 6.3
KNN 9.1 11.8 9.2 11.3 8.7 11.5 9.2 12.0 9.1 11.7
LDA 15.7 11.3 9.7 8.1 8.3 6.2 8.6 6.3 10.6 8.0
PLSDA 6.7 6.7 6.7 7.2 6.5 7.1 6.6 7.2 6.6 7.1
RPLS 8.4 6.9 9.1 6.6 9.0 6.76 8.5 6.6 8.8 6.7
SVM 10.6 7.1 10.1 7.1 9.7 6.7 10.5 6.2 10.2 6.8
KMA 6.7 7.4 7.6 7.1 8.5 6.7 7.8 6.9 7.7 7.0

In Table 3.3 for the Colon data, we look at the proportion of Cancer tissues
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that were classified as normal abbreviated as C.C.N and the proportion of normal
tissues classified as cancer (N.C.C). In our opinion, it is much worse to classify a
cancer tissue as normal than to classify a normal tissue as cancerous. As a result, a
classifier with a higher proportion of C.C.N performs relatively poorly compared to
the one with higher proportion of N.C.C. In comparing the misclassification rates and
proportions of C.C.N, then PLSDA and KMA emerge as the better options among
the top four classifiers with lower misclassification rates. However, the RPLS and
the PLSGLRDA equally performed well with regards to proportion of C.C.N. For
the two methodologies, the difference in the proportions of C.C.N were small and
thus a clear ‘winner’ was not established.

Table 3.4: Percentage Misclassification for the Leukemia Data Set

p PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
100 4.1 4.0 5.7 3.5 4.3 2.7 2.6 4.2
300 4.4 3.1 5.6 1.9 2.7 1.9 1.9 2.4
500 3.4 3.2 4.8 2.6 2.4 1.5 1.2 1.9
1000 3.0 3.2 2.9 4.2 1.5 1.2 1.1 0.0
Average 3.7 3.4 4.8 3.1 2.7 1.8 1.7 2.1

Table 3.4 presents the misclassification percentages for the Leukemia data. This
data set is perceived to be “easy" or “less problematic" to classify so that it is possible
to achieve excellent classification accuracy in this data set even with trivial methods,
see (Fort and Lambert-Lacroix, 2005; Boulesteix, 2004). In our case, SVM had the
lowest misclassification percentage followed by KMA, RPLS, PLSDA, LDA and the
PLSGLR-log while KNN had the highest percentage. Once again, the difference
between the top best methods are not big. It is worth noting that unlike in the colon
data see Table 3.3, the SVM performed very well in terms of the misclassification
error rates. The leukemia data was used to classify two types of cancers namely;
acute lymphoblastic Leukemia (ALL) and acute myeloid Leukemia (AML). The
proportions of ALL classified as AML or otherwise are next presented in Table 3.5.
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Table 3.5: Proportions for types of misclassification for the Leukemia Data

p 100 300 500 1000 Average
Method LCM MCL LCM MCL LCM MCL LCM MCL LCM MCL
PLSGLR-Log 2.4 1.7 1.9 2.5 0.9 2.5 0.77 2.2 1.5 2.2
PLSGLRDA 3.2 0.8 2.8 0.3 0.3 2.9 3.08 0.2 2.3 1.0
KNN 5.7 0.0 5.6 0.0 4.8 0.0 2.92 0.0 4.8 0.0
LDA 2.1 1.5 1.4 0.5 2.2 0.4 3.31 0.9 2.3 0.8
PLSDA 2.8 1.5 1.7 1.0 1.7 0.7 0.85 0.7 1.8 1.0
RPLS 1.2 1.5 0.8 1.1 0.8 0.7 0.69 0.5 0.9 0.9
SVM 1.2 .5 0.9 0.9 0.5 0.7 0.6 0.5 0.8 0.65
KMA 3.5 0.6 1.9 0.5 1.5 0.4 0.0 0.0 1.7 0.38

LCM: lymphoblastic leukemia (ALL) classified as myeloid leukemia (AML); MLC:
myeloid leukemia (AML) classified as lymphoblastic leukemia (ALL)

Table 3.6 presents the results for the Prostate data set. The task here was to
classify two tissues as either tumors or non tumor. The results are similar to the one
for Colon data whereby the best methods were SVM, RPLS, PLSDA, PLSGLRDA
and KMA. Once again, the difference in misclassification percentages is minimal
between the top four methods. The KNN once again emerged as the worst option
due to its high misclassification rate, a result consistent with Fort and Lambert-
Lacroix (2005).

Table 3.6: Percentage Misclassification for the Prostate Data Set

p PLSGLR-log PLSGLRDA KNN LDA PLSDA RPLS SVM KMA
100 10.6 8.5 11.9 18.5 7.3 9.2 10.0 10.9
300 12.1 8.7 15.8 8.9 7.0 8.4 8.8 13.7
500 12.1 9.3 18.6 8.5 7.1 8.4 8.2 13.5
1500 12.4 10.3 22.1 8.4 7.6 8.2 8.2 0.0
Average 11.8 9.2 17.1 11.1 7.3 8.5 8.8 9.5

Table 3.7 presents the types of misclassifications with the non tumor classified as
tumor abbreviated as N.C.T while the tumor classified as non tumor is abbreviated as
T.C.N. We once again suggest that a good classifier should have a lower proportion of
T.C.N. From the table, the SVM, RPLS and PLSDA methods had a relatively lower
proportion of T.C.N followed PLSGLRDA and KMA while KNN had a relatively
high proportion of the same.
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Table 3.7: The proportions False Positives and False Negatives for the Prostate Data

p 100 300 500 1500 Average
Method TCN NCT TCN NCT TCN NCT TCN NCT TCN NCT
PLSGLR-Log 5.8 4.8 6.5 5.5 6.7 5.5 7.15 5.3 6.5 5.3
PLSGLRDA 5.1 3.4 5.0 3.7 4.9 4.4 5.32 4.9 5.1 4.1
KNN 9.5 2.4 13.6 2.2 16.2 2.4 18.71 3.4 14.5 2.6
LDA 9.6 8.9 5.2 3.6 4.9 3.7 5.38 3.1 6.3 4.8
PLSDA 4.5 2.8 4.0 3.0 4.2 3.0 4.71 2.9 4.4 2.9
RPLS 4.6 4.5 4.2 4.1 4.2 4.2 4.21 4.0 4.3 4.2
SVM 4.3 5.7 3.9 4.91 3.7 4.5 3.4 4.7 3.8 5.0
KMA 5.3 5.7 7.6 6.1 7.6 6.0 0.0 0.0 5.1 4.5

NCT: Non Tumor Classified as Tumor; TCN: Tumor classified as Non Tumor

Now focusing on the box plots Figures 3.9, 3.10, 3.11 for the three sets of data
with the corresponding classification method. For the Colon data, the error rates
for PLSGLRDA, PLSDA and RPLS are generally lower than the rest. In the case
of Leukemia data, all the classification methods seem to have low test errors and at
the same time have more or less similar distribution of the errors. Furthermore, the
RPLS and the PLSDA exhibit the lowest error rates. For the Prostate data set, the
PLSGLRDA, PLSDA and RPLS have an almost similar distribution of classification
errors.
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Figure 3.9: Box plots for the Test Errors for the Colon Data. The box plot shows that
the distribution of errors for PLSDA and RPLS are the same for all the number of genes selected.
The distributions are symmetric with the mean below 0.2. The LDA has a higher error rate for
p = 50 while PLSGLRDA has higher error rates for p = {500, 1000}.
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Figure 3.10: Box plots for the Test Errors for the Leukemia Data. For the leukemia data,
most of the classifiers have a low miss-classification rate. The RPLS and SVM have very low error
rates for p = {300, 500, 1000}.
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Figure 3.11: Box plots for the Test Errors for the Prostate Data. The outstanding bars
are the ones for KNN which seem have a relatively higher rate of mis-classification and this rate
increases with the increase in the number of genes p selected. In general, the test error rate for this
data set for all the algorithm have many outliers.
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3.3 Summary on classification methods

For the un filtered/un-preprocessed Colon data without gene selection, KMA
emerged as the best with lowest misclassification error followed by PLSDA and RPLS
while KNN, PLSGLR-log and PLSGLRDA were the worst. For leukemia data, the
KMA emerged the best followed PLSGLRDA, PLSDA, RPLS while KNN remained
the worst. For Prostate data, KMA was the best followed by PLSGLRDA, PLSDA,
SVM and PLSGLRDA-log while KNN performed the worst. The KMA perform very
well for the large sample sizes compared to when the data has a smaller sample size.

The results suggest that KMA and the suggested PLSGLRmethodologies perform
well in the presence of noise and with many features. The KMA and the suggested
PLSGLR extensions have proven to perform well in the presence of noise without
variable selection. However, the KMA emerges as a clear “winner" in the un-
preprocessed data. Furthermore The KMA and the suggested PLSGLR extensions
are relatively simple to implement.

Furthermore, we have extended the Bastien et al. (2005) PLS Generalized to PLS
Generalized Linear Regression-Linear Discriminant Analysis (PLSGLRDA) using
the two step procedure consisting of dimension reduction followed by application
of standard statistical procedures like logistic regression and the LDA to classify
three microarray data sets namely the Colon, Leukemia and the Prostate data sets.
Our proposed combination (PLSGLRDA) has proved to be competitive with the
RPLS, SVM, PLSDA and so can be used as an alternative classification method for
the classification problems in microarray data since it equally easier to implement
and perform as well as the existing classical methodologies. The PLSGLR therefore
can be considered as an important addition to the existing classes of data reduction
methodologies in the microarray data analysis and other data types with similar
structure as the microarray data. It is important to note that KNN, LDA and
PLSGLR-Log consistently performed poorly in terms of misclassification errors and
as such are the worst option for these kinds of data considered in this study.
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Chapter 4

Statistical integration of molecular
data to test for network changes

4.1 Introduction

The work in this section is motivated by ongoing research on the acute rheumatic
fever (ARF), an autoimmune disease which is consequence of infection with group
A streptococcus (GAS) at the Walter and Eliza Hall Institute of Medical Research,
Melbourne, Australia. Among others symptoms, ARF causes an acute generalised
inflammatory response and an illness that selectively affects the heart, joints, brain
and skin. It is important to note that despite the acute nature of the infections, the
ARF does not leave lasting damage to the brain or joints but the leaves long term
damage to heart valves leading to a condition known as known as rheumatic heart
disease (RHD) which can become a chronic condition leading to congestive heart
failure, strokes, endocarditis which is inflammation of the inside lining of the heart
chambers and heart valves (endocardium). ARF may also cause death (Carapetis
et al., 2007; Seckeler and Hoke, 2011).

GAS, also known as Streptococcus pyogenes is a human-restricted pathogen that
can spread through direct contact with the mucus or sore skin and is responsible
for a wide range of both invasive and noninvasive infections such as commonly
mild superficial infections of the pharynx, skin and life-threatening ones such as
necrotizing fasciitis is a serious skin infection, spreads quickly and kills the body’s
soft tissue. GAS infection leads to acute rheumatic fever (ARF), sudden appearance
of red blood cells in urine and probably, paediatric autoimmune neuropsychiatric

53
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disorders associated with streptococcal infections (Martin et al., 2015).
The ARF is usually diagnosed using the Jones criteria Jones (1944) which involves

the major and minor signs. Diagnosis is made by the presence of either two major
or one major and two minor criteria in addition to evidence of recent streptococcal
infection.

Table 4.1: Major and minor Jones criteria for the diagnosis of acute rheumatic fever

Major Minor
Migratory polyarthritis Arthralgia
Carditis Fever
Erythema marginatum First-degree heart block
Sydenham chorea Elevated markers (ESR, CRP)
Subcutaneous nodules
CRP: C-reactive protein, ESR Erythrocyte sedimentation rate

Martin et al. (2015) explain that the evidence of previous streptococcal infection
is usually confirmed by elevated or rising serum antibodies to streptococcal antigens,
such as streptolysin O and deoxyribonuclease B. This is because the throat culture
tends to be negative for GAS for the ARF patients. ARF is usually treated with a
goal to eradicate streptococcal organisms and bacterial antigens from the pharyngeal
region using penicillin for persons who are not at risk of allergic reaction.

The ARF and RHD are not common in the developed countries where there is
proper hygiene, improved nutrition, less crowding and access to medical facilities.
However, the disease is still prevalent in the developing countries and amongst the
poor, mainly indigenous populations in the developed countries including Australia.
Despite an obvious clinical need, there is no definitive method for diagnosing ARF,
in fact the current diagnosis lacks specificity and sensitivity. Current blood tests
to assist in the diagnosis of ARF involve the measurement of antibody titres to
streptococcal antigens, streptolysin O and DNase B. These markers increase in
numerous group A streptococcal infections that do not lead to ARF resulting
into uniformly high background titres of these antibodies in the remote Australian
Aboriginal communities. Misdiagnosis of ARF is a major contributor to the high
rates of RHD seen in Aboriginal communities in the Northern Territory, Australia,
with 29% of patients with supposed “primary" episodes of ARF already having
established RHD. Timely diagnosis of an initial ARF episode and subsequent use
of antibiotic prophylaxis is currently the best method of preventing RHD. There is
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currently no treatment for the acute episode of ARF that alters the development
of RHD. In clinical trials, non-steroidal anti-inflammatory medications and cortico-
steroids do not appear to have long-term benefit (Carapetis et al., 2005, 2007; Martin
et al., 2015).

Research on ARF is very active and several experiments are being carried out to
achieve different objectives. However, despite decades of research, there is still no
diagnostic test or vaccine for ARF. Of interest is the research that has been going
on in the Prof. Ian Wicks lab at the Walter and Eliza Hall Institute of Medical
Research. The researchers in this lab have been working towards understanding the
type of inflammation occurring in ARF patients with the ultimate goal being to find
new diagnostic markers to diagnose ARF and new drugs.

4.2 Example of a pilot laboratory experiment data

The RNA-seq data considered in this section of the thesis is from pilot experiments
done at the Wicks Laboratory, Inflammation Division at the Walter and Eliza Hall
Institute of Medical Research (WEHI), Melbourne, Australia and was partially
analyzed at Smyth Lab, Bioinformatics Division in the same institute. The
experiment involved two groups of subjects namely the healthy donors and the ARF
patients.

The experiment involved two groups of subjects namely the healthy and the ARF.
The healthy subjects were 3 while the ARF ones were 25 Aboriginal people. Out
of the ARF group, 18 had were ARF patients, 5 were healthy controls (no ARF
infection) and 2 had alternate diagnoses - RHD and a cardiac disease respectively.
For each subject, a specimen of peripheral blood mononuclear cell (PBMC) was taken
and divided in two portions. One portion is GAS stimulated while the other portion
remain unstimulated. The samples were then sequenced at the Australian Genome
Research Facility (AGRF) on the Illumina HiSeq platform under five different
conditions: unstimulated 0 hour, unstimulated 24 hours, GAS stimulated 24 hours,
hydrochloroquine (HCQ) stimulated 24 hours and GAS & HCQ stimulated 24 hours.
However, in this thesis our focus is on studying the PBMCs GAS stimulated 24 hours
vs unstimulated 24 hours.
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4.3 RNA-seq data

Recently, in many experiments gene expressions levels are usually measured through
technologies like the next generation sequencing technology that produces the RNA-
seq data. The RNA-seq data is usually summarized by a data matrix consisting of
counts. The count data matrix for this can conveniently presented in a format such
as in Table 4.2.

Table 4.2: Illustration of a table of read counts for the two categories of the samples and groups.

Healthy subjects
GAS stimulated Unstimulated

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6
gene 1 h11 h12 h13 h14 h15 h16

gene 2 h21 h22 h23 h24 h25 h26

...
...

...
...

...
...

gene p hp1 hp2 hp3 hp4 hp5 hp6

Library size N1 N2 N3 N4 N5 N6

ARF subjects
GAS stimulated Unstimulated

sample 1 sample 2 sample 3 sample 4 sample 5 sample 6
gene 1 a11 a12 a13 a14 a15 a16

gene 2 a21 y22 a23 a24 a25 a26

...
...

...
...

...
...

gene p ap1 ap2 ap3 ap4 ap5 ap6

Library size K1 K2 K3 K4 K5 K6

Table 4.2 shows the read counts per sample often referred to as the library. The total
number of reads on the other hand is known as the library size which in this case are
Ni, i = 1, 2 . . . , 6 and Ki, i = 1, 2 . . . , 6 healthy and ARF subjects respectively. The
aim of such an experiment is to identify the genes that are differentially expressed
between the treated samples and the untreated ones. The samples in these matrix
are paired even though the labelling is continuous. The pairing is usually captured
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by the design matrix during the data analysis. Same genes are considered in both
the the two categories i.e. for healthy and the ARF subjects. Typically in such
experiments a total number of p = 20, 000 genes are considered.

Considering the healthy subjects then using the approach of Chen et al. (2014),
let hgi denote the read count for a particular gene g in the ith sample given the
experimental conditions. The sequence depth is then given by

E(hgi) = µgi = λgi ·Ni, (4.1)

where Ni is the library size and λgi is the expected proportion of reads mapped to
gene g for the treated and unstimulated groups respectively. Denote the parameters
associated with the treated samples as λg1 = λg2 = λg3 = λt while the ones associated
with the untreated samples as λg4 = λg5 = λg6 = λu, where g=(gene 1,. . . , gene p),
then the hypothesis to be tested for a differential analysis can be formulated as

Ho : λt = λu versus H1 : λt 6= λu. (4.2)

The read count hgi is usually assumed to follow a generalized linear model of the
negative binomial family with a logarithmic link hgi ∼ NB(µgi, αg) where µgi is the
mean and αg the dispersion parameter. The parameter λgi is assumed to be presented
by a log-linear model

logλgi = xTi βg, (4.3)

where xi is a vector indicating different treatment conditions applied to sample i while
βg is a vector of regression coefficients for covariate effects for gene g. Consequently,
we have

logµgi = xTi βg + logNi. (4.4)

Now, putting the covariates xi into a design matrix X, the vector of linear predictors
for gene g is given by Xβg and therefore in our example of treated/unstimulated
conditions, the regression coefficients will be βg = [βg1, βg2]′ where βg1 and βg2

represent the log-expression for the GAS stimulated and unstimulated samples
respectively. The parameters βg1 = logλtg and βg2 = log(λtg/λ

u
g ) leading to the
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hypothesis as

H0 : βg2 = 0 versus H0 : βg2 6= 0 (4.5)

for all the genes. In other words we are testing the null hypothesis that the
logarithmic fold change between the treatment and control is for a gene g is zero. This
set of hypotheses can be tested using the asymptotic chi-square approximation to
the likelihood ratio statistic and can be implemented using a Biocundoctor software
package like edgeR by (Chen et al., 2014).

4.4 Statistical integration of molecular data

Numerous studies have shown that genes tend to act in groups and that the ones
which have correlated expression changes over different conditions are likely to be
involved in similar functional or cellular processes. This is because they most likely
share DNA sequence elements and are therefore regulated by common transcription
factors. These relationships between genes from a given functional or cellular
groups can be represented as a network. There exist many biological networks in
the literature and online data bases that provide important information about the
protein-protein interactions, gene networks, functional pathways among others. The
molecular networks and interactions provide a convenient way to study the changes
in gene expression and integration of a number of measurements (Ideker et al., 2001).

Several studies of gene expressions have revealed that the genes tend to interact
with and respond to an organism’s environment. Some genes are always expressed
regardless of the stimuli in the organism’s environment, while some tend to be turned
on or off depending on the stimuli. Using the prior network from literature, we want
to develop a statistical framework to test for some changes in the genes expression
with regards to up regulation, down regulation or no changes.

The protein-protein interactions (PPI) or protein-DNA interactions have been
widely used to integrate the network information (that is, interactions between the
proteins/genes) with the ‘omics’ data to generate statistical hypotheses that reveal
some underlying mechanisms observed in the gene expressions. This is usually done
by identifying the most active hubs or subnetworks. The hubs in this case implies
the nodes that are highly connected with other nodes or in other words are the nodes
that have higher degree within a network or subnetwork.
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Some specific examples include, Ideker et al. (2001) build, test and analyze
changes to critical pathway components using DNA microarrays and quantitative
proteomics. Their approach consist of four major steps with the first one being
to define all of the genes and the subset of genes, proteins or any other molecules
contained in the pathway of interest. An initial model of the interactions governing
pathway functions is defined from existing literature. Next, each pathway component
is perturbed by changing different experimental conditions using technologies and
then the expression values are measured. In this step, a generalized likelihood ratio
test (GLRT) is calculated for each gene to determine the ones whose mRNA levels
differed significantly from the reference under some changes. The identified genes
are then clustered using self organizing maps so that each cluster contain genes
with similar expression responses over all changes see Ideker et al. (2001). To
check whether the changes in mRNA expression are also reflected at the level of
protein abundance, the protein abundance is examined under different experimental
conditions then a ratio is calculated that is compared to that of the mRNA-
expressions via correlation coefficient. The third step is to integrate the observed
gene or protein data with the known network of protein-protein or protein-DNA
interactions networks. Here, the authors assemble a network curated from existing
literatures. The interactions between the genes from the mRNA expressions are then
compared based on the information from the interactions in the catalogued network.
Finally, new hypotheses are formulated to explain changes that are not predicted by
the model.

The integrative approach has also been utilized by Ideker et al. (2002) who
introduced an algorithm that uses a statistical scoring method which captures the
changes in gene expression within a given set of genes to find subnetworks in which
the connected sets of genes seem to have high levels of differential expressions. This
methodology starts by calculating the p-values for the expression changes for each
gene and then a z−score corresponding to each p-value is calculated. An aggregate
z−score is then computed for a given subnetwork by finding the mean of the z−scores
for all the genes within that subnetwork. A higher agregate z−score indicates a higher
biological activity within a particular subnetwork. An algorithm using the Monte
Carlo approach and simulated annealing is then devised to find the highest scoring
subnetwork and at the same time capture the connection between expression and
network topology.
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Other integrative “omics” studies have been carried out by Taylor et al. (2009);
Han et al. (2004); Schramm et al. (2013) and Jayaswal et al. (2013). Their techniques
in general involve differential network mapping which combines the gene expression
data with some predetermined interaction networks (for instance, protein-protein)
from curated literature and or online high-throughput database sources to identify
the differentially expressed interactions under different conditions (Schramm et al.,
2013; Taylor et al., 2009). Once the interaction networks have been selected from
the curated sources, the identification of the nodes that interact with many partners
follows. These nodes that interact with more partners are referred to as the ‘hubs’
and the number of interacting partners that qualify a particular node to be a ‘hub’ is
selected by the researcher. The next step is to quantify the interactions between the
hubs and their interacting partners via some association measure depending on the
number of conditions under consideration. For two conditions, a measure like the
correlation coefficient may be used while for more than two conditions an F-statistic
may be appropriate. Once a measure of association has been calculated, the estimate
of p-value for the test statistic is calculated using a permutation test.

To develop ideas and motivation for this work, we use the pilot laboratory
experimental expression data in Section 4.2 in conjunction with a prior PPI network
information to illustrate the problem at hand. Specifically, we aim to integrate prior
PPI network curated from literature and existing database with the experimental
gene expression data in order to properly formulate a statistical framework for testing
changes in a network.

We start by identifying a prior known network, which in this case we chose a
comprehensive web resource, which includes a database of unified protein-protein
interaction known as Protein Interaction Network Analysis (PINA) http://omics.
bjcancer.org/pina/ as the source of the prior network. The identification of the
genes or proteins of interest that match for the experimental data and the known
curated PINA network follows. In this research, the Th-specific genes were chosen
based on previous studies for instance Zhu et al. (2010) as well as the recent study
in the Wicks laboratory, WEHI showed that Th1 and Th17-like T cells played an
important role in the pathogenesis of acute rheumatic fever and rheumatic heart
disease.

The experimental data is thereafter mapped on to the known prior network using
the gene list from the experimental data and the edge list is retrieved from the curated

http://omics.bjcancer.org/pina/
http://omics.bjcancer.org/pina/


4.4. Statistical integration of molecular data 61

prior network. The nodes are coloured according to the log2Fold Change (log2FC)

calculated based on the experimental RNA-seq data to reflect whether a gene ex-
pression is up or down regulated or unchanged. An arbitrary threshold of −0.5 <

log2FC < 0.5 is chosen but guided by looking at the corresponding number of genes
that are either up or down regulated in order to make an informed decision. Subnet-
works are then chosen based on functional groups of interest. Examples are given in
Figures 4.1 and 4.2.
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Figure 4.1: Sub network 1 consisting mainly of the functional group Th1/Th17. The
choice of the genes used in this subnetwork 1 is based on other experiments carried out in the Wicks
Lab that led to the hypothesis that pathogenic Th1/Th17 T cells are key mediators of the heart
inflammation and damage in ARF. The edge information is obtained from the PINA network. The
nodes (genes) are coloured in such a way that the yellow nodes represent upregulated genes, light
blue nodes are downregulated genes (or groups of genes) while the white ones are neither up nor
down regulated. We aim to develop a statistical framework to test for the changes in the similar
genes for each of the subnetwork for healthy and ARF subjects. For example, in the healthy subjects
network, the gene LCN2 is neither up or down regulated while in the ARF subjects the same gene
is upregulated. Furthermore, in the healthy PBMCs, the gene RELA is upregulated while in the
ARF patients PBMCs the same gene’s average expression level is unchanged. It is these kind of
changes we refer to as changes and we want to develop a statistical framework to test them.



4.5. The likelihood ratio testing 63

Healthy PBMCs GAS effect 2

IL4R

IL2RG

STAT6

STAT1

STAT5A

STAT5B

JAK1

JAK3
JAK2

TYK2

IL6ST

IL21R

IL2RA

IL2RB

IL6R

IL6

PLCG1

IL27RA

NFATC1

IFNGR1

IFNG

IL2

Patients PBMCs GAS effect 2

IL4R

IL2RG

STAT6

STAT1

STAT5A

STAT5B

JAK1JAK3

JAK2

TYK2

IL6ST

IL21R

IL2RA

IL2RB

IL6R

IL6

PLCG1

IL27RA

NFATC1

IFNGR1

IFNG

IL2

log2FC ≥ 0.5

log2FC ≤ − 0.5

−.5 < log2FC < .5

Figure 4.2: Sub network 2 for functional group Th2. Bhatnagara et al. (1999) also found
out that chronic rheumatic heart disease (CRHD) patients secreted IL-4 and IL-10 in large amounts,
i.e. Th2 type of cytokine profile. The genes in this subnetwork would help determine the changes
of the Th2 group for the ARF patients and healthy subjects. The edge list is obtained from the
prior network (PINA). The nodes (genes) are coloured in such a way that the yellow nodes are
upregulated, light blue nodes are downregulated while the white ones are neither up nor down
regulated. The aims and objectives for this figure are similar to those discussed for Figure 4.1.

4.5 The likelihood ratio testing

The theory of the likelihood ratio test is well understood and has been utilized
extensively in the field of statistical inference. Most standard multivariate statistics
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books like for example Anderson (2003); Seber (2004); Mardia et al. (1980); Johnson
and Wichern (2007), to mention but a few, contain comprehensive treatment of this
subject matter. In general, let θ be the parameter vector for the likelihood function
L(θ) with observations x1, . . . ,xn with a density function given by f(x;θ). Now, if
the parameter space is given by Θ and suppose we want to test the null hypothesis
Ho : θ ∈ Θ0 where Θ0 is a subset of Θ. The parameter space θ is referred to as
unconstrained while θ0 is constrained. The likelihood ratio statistic is given by

Λ =
maxθ∈ΘoL(θ)

maxθ∈ΘL(θ)
. (4.6)

The null hypothesisHo is rejected when Λ < k where k is a critical value depending on
the type-I error. The likelihood ratio test has good power properties asymptotically
and usually is as good or better than many other test statistics Seber (2004). The
log likelihood ratio (LRT) statistic under general conditions and with large samples
are approximately χ2

(d) distributed where d is the degree of freedom which in general
is given by the total number of variables under consideration. The LRT is given by

−2LogΛ = maxθ∈Θ0{−2Log L(θ)} −maxθ∈Θ{−2Log L(θ)}. (4.7)

Some outstanding common problems that have been tackled in the said standard
multivariate statistics analysis books with regards to the likelihood ratio test include
the following.

• Suppose we haveN observations onX that is multivariate normally distributed
according to N(µ,Σ), a test statistic is derived to test for the hypothesis
H0 : µ = µ0 when Σ is unknown. The obvious MLE for Σ in this case is the
sample covariance. The resultant test statistics is the T 2 statistics which follows
the T 2 Hotelling distribution. This test can be used for testing the hypothesis
about the mean vector µ of the population and obtaining the confidence region
for the unknown vector µ see Anderson (2003); Seber (2004); Mardia et al.
(1980); Johnson and Wichern (2007).

• The two sample problem with unequal covariance matrices is addressed. In
this case, let

{
y

(i)
j

}
, j = 1, . . . , N be samples from N(µ(i),Σi), i = 1, 2 a test

statistic for testing H0 : µ(1) = µ(2) is developed. The distribution for the
respective sample mean vectors is given by E(ȳ(1) − ȳ(2)) = µ(1) − µ(2) while
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the covariance for the difference Cov(ȳ(1) − ȳ(2)) = 1
N1

Σ1 + 1
N2

Σ2. It is shown
that when N1 6= N2 and assuming that N1 < N2 then a suitable test would
still be a T 2 test with (N1 − 1) degrees of freedom can be used, see Anderson
(2003).

• When Σ1 and Σ2 are assumed to be equal and unknown, then a pooled sample
covariance is used as an estimate. The test statistic is found to be the usual
T 2 which follows the T 2 distribution see Anderson (2003); Seber (2004).

• The topic of paired comparisons is also treated especially in Johnson and
Wichern (2007) in which for the paired samples, the difference between them
is calculated. The T 2 test is then applied to the differences.

• Most of the likelihood problems tackled in these standard multivariate books
only compare two mean vectors and the resultant statistic is the T 2 with a
certain degree of freedom depending on the problem set-up.

4.5.1 Likelihood ratio test for network changes

To set-up a statistical framework for testing network changes, consider an experiment
consisting of two groups namely Healthy (H) and ARF (A). The healthy (H) group
has m subjects while the ARF (A) group has k subjects. For each group, two
measurements are done for the same subject so that we have paired measurements.
The measurements are administered in a similar manner between the groups. For
instance, each subject has a measurement when it is unstimulated and when GAS
stimulated for p different genes. As an illustration, for healthy subjects each
gene has m paired measurements [(hu1, hs1), (hu2, hs2), . . . , (hum, hsm)] where the
first measurement is for unstimulated while the second one is for GAS stimulated
specimen for the same subject. In a similar fashion, the ARF subjects have k paired
measurements for each gene [(au1, as1), (au2, as2), . . . , (auk, ask)] for the unstimulated
and GAS stimulated specimens in each pair respectively. We wish to test the
hypothesis that there is no difference in the difference of the means for the GAS
stimulated and unstimulated subjects for healthy subjects and ARF patients. This
kind of hypothesis would give an important insight in to how differently or similarly
the healthy people and the ARF patients react to GAS treatment. The overall
objective is to derive a likelihood ratio test for the p genes that are assumed to be
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correlated based on some protein-protein interaction (PPI) network.
Them healthy subjects assumed to come from a multivariate normal distributions(

hu
hs

)
∼ N2p [( µu

µs ) ,Σ] and the k ARF subjects are also assumed to come from a
multivariate normal distribution ( au

as ) ∼ N2p [( νuνs ) ,Σ].

The matrix Σ can be partitioned as

[
Σ11 C12

C21 Σ22

]
. Note that C21 = C ′12 and

we assume that these matrices of covariance within each of the groups are equal.
In the block matrix, Σ11 and Σ22 represent the variance-covariance matrices for the
unstimulated and GAS stimulated subjects respectively.

The hypothesis to be tested is

H0 : (µu − µs) = (νu − νs) versus Ha : (µu − µs) 6= (νu − νs).

Case 1: Assuming the covariance matrix Σ is known

Form healthy subjects denote a 2p×1 vector of parameters µ = ( µu
µs ) for the random

vector h =
(
hu
hs

)
where the first p elements represent the elements of hu while the

remaining p represents the hs. Similarly for the k ARF subjects we have the vector
of parameters being ν = ( νuνs ) and is associated with random variables a = ( au

as ) and
ν is of 2p× 1 dimension.

Therefore, the joint probability density function is given as

f(h,a) = (2π)−p|Σ|−1exp
{
− 1

2

[
(h− µ)′Σ−1(h− µ) + (a− ν)′Σ−1(a− ν)

]}
.

(4.8)

A reduced −2 Log of the likelihood function (dropping the terms that do not include
the parameters) in terms of sufficient statistics is given by

−2LogL(µ,ν) = B +m(h̄− µ)′Σ−1(h̄− µ) + k(ā− ν)′Σ−1(ā− ν). (4.9)

where B is a constant that does not contain the parameters under consideration and
will vanish during the optimization.
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Maximum Likelihood Estimates (MLEs)

To get the MLEs under Ho, we consider the parameter space given by Θ = {µ,ν :

−∞ < −∞ < µ,ν < ∞} and then we optimize the constrained Log-likelihood
function using the Lagrangian S(Θ,λ) = −2LogL(µ,ν) + λ′(µu − µs − νu + νs).
The constraint on 2p×1 can be conveniently expressed in matrix form as A(µ−ν) = 0

where A = (I,−I) and I is a p× p identity matrix. The constraint to be added to
−2LogL(µ,ν) is of the form 2(µ−ν)′A′λ = 2[λ′A(µ−ν)]′. We then find the MLEs
as follows

∂S(Θ,λ)

∂µ
= −2mΣ−1(h̄− µ) + 2A′λ (4.10)

∂S(Θ,λ)

∂ν
= −2kΣ−1(ā− ν)− 2A′λ (4.11)

∂S(Θ,λ)

∂λ
= 2A(µ− ν). (4.12)

Equating 4.10, 4.11 and 4.12 to zero and simplify get

Σ−1(h̄− µ)− 1

m
A′λ = 0 (4.13)

Σ−1(ā− ν) +
1

k
A′λ = 0 (4.14)

A(µ− ν) = 0 (4.15)

Now subtracting equation 4.13 from 4.14 and with some algebraic manipulations
results in
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Σ−1(ā− ν − h̄+ µ) +
( 1

m
+

1

k

)
A′λ = 0

(ā− ν − h̄+ µ) = −
( 1

m
+

1

k

)
ΣA′λ

A(µ− ν) + A(ā− h̄) = −
(m+ k

mk

)
AΣA′λ

A(h̄− ā) =
(m+ k

mk

)
AΣA′λ

λ =
( mk

m+ k

)
(AΣA′)−1A(h̄− ā)

λ =
( mk

m+ k

)
(AΣA′)−1∆ (4.16)

where ∆ = Ah̄− Aā. From equations 4.13 and 4.14, we get

µ̂0 = h̄− 1

m
ΣA′λ (4.17)

ν̂0 = ā+
1

k
ΣA′λ (4.18)

The next set of MLEs under the alternative hypothesis Ha obtained by maximizing
the unconstrained likelihood function are given by; µ̂ = h̄ and ν̂ = ā.

Let θ be the parameter vector for the likelihood function L(θ) with observations
from the paired samples of healthy and ARF subjects as previously explained.
Consider the parameter space given by Θ; we wish to test the null hypothesis
Ho : θ ∈ Θ versus the alternative Ha : θ /∈ Θ. Recall that -2log likelihood ratio
statistic is given by 4.7.

Substituting the MLEs under H0 4.17 and 4.18 into the log likelihood function
4.9 we get

supθ∈Θo
{−2Log L(θ)}

= B +m
( 1

m
ΣA′λ

)′
Σ−1

( 1

m
ΣA′λ

)
+ k
(1

k
ΣA′λ

)′
Σ−1

(1

k
ΣA′λ

)
= B +

1

m

(
λ′AΣ

)
Σ−1

(
ΣA′λ

)
+

1

k

(
λ′AΣ

)
Σ−1

(
ΣA′λ

)
= B +

1

m

(
λ′AΣA′λ

)
+

1

k

(
λ′AΣA′λ

)
= B +

(k +m)

mk

(
λ′AΣA′λ

)
(4.19)
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Substituting for the values of λ from 4.16 then equation 4.19 can be written as

supθ∈Θo
{−2Log L(θ)} =

B +
(k +m)

mk

( mk

(m+ k)
(AΣA′)−1∆

)′
(AΣA′)−1

( mk

(m+ k)
(AΣA′)−1∆

)
= B +

mk

(m+ k)
∆′(AΣA′)−1∆.

(4.20)

Under the unconstrained hypothesis supθ∈Θ{−2Log L(θ)} = B and therefore from
4.20

−2LogΛ =
mk

(m+ k)
∆′(AΣA′)−1∆ (4.21)

The distribution of ∆ = Ah̄−Aā is ∆ ∼ N
(

(A(µ− ν), (k+m)
mk

(AΣA′)−1
)
. Now, ifH0

is true then A(µ−ν) = 0 so that ∆ ∼ N
(

0, (k+m)
mk

(AΣA′)−1
)
. It is well known that

given thatX ∼ Np(0, V ) then V −
1
2 ∼ N(0, I) implying that (V −

1
2X)T (V −

1
2X) ∼ χ2

(p)

and so XTV −1X ∼ χ2
(p), thus

−2LogΛ =
mk

(m+ k)
∆′(AΣA′)−1∆ ∼ χ2

(p). �

Case 2: Assuming the covariance matrix Σ is unknown

To estimate the covariance matrix, the -2log likelihood is re-written as follows

l = mplog(2π) +mlog|Σ|+ trΣ−1Sh + trΣ−1(h̄− µ)(h̄− µ)′

+kplog(2π) + klog|Σ|+ trΣ−1Sa + trΣ−1(ā− ν)(ā− ν)′
(4.22)

where Sh =
∑m

i=1(hi − h̄)(hi − h̄)′ and Sa =
∑k

j=1(aj − ā)(aj − ā)′. The partial
derivative with respect to Σ−1 is obtained as

∂l

∂Σ−1
= −m

(
(Σ−1)−1

)′ − k ((Σ−1)−1
)′

+ Sh + Sa +
[
m(h̄− µ)(h̄− µ)′

]′
+ [k(ā− ν)(ā− ν)′]

′

= −(m+ k)Σ + Sh + Sa +m(h̄− µ)(h̄− µ)′ + k(ā− ν)(ā− ν)′ (4.23)
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The estimator for the variance-covariance matrix is given by

Σ̂ =
1

(m+ k)

[
Sh + Sa +m(h̄− µ̂)(h̄− µ̂)′ + k(ā− ν̂)(ā− ν̂)′

]
. (4.24)

Now, substituting the plug-in estimator for µ̂ and ν̂ which are h̄ and ā

respectively, we get the plug-in estimator for the covariance matrix as

Σ̂ =
1

(m+ k)
[Sh + Sa] . (4.25)

The estimator Σ̂ is then plugged-in into the test statistic given by 4.21 which has
χ2

(p) distribution to get

−2LogΛ =
mk

(m+ k)
∆′(AΣ̂A′)−1∆. (4.26)

Proposition

Denote 4.21 by Λ1 = mk
(m+k)

∆′(AΣA′)−1∆ and 4.26 by Λ2 = mk
(m+k)

∆′(AΣ̂A′)−1∆ and

noting that Σ̂ is a consistent estimator of Σ, since Λ1
d∼ χ2

(p) then Λ2
a∼ χ2

(p), where
d∼ means exactly distributed while a∼ stands for asymptotically distributed.

Proof
Since Σ̂

p−→ Σ as n→∞ where n = m+k and the fact that (AΣA′) is positive definite,
we had shown in case 1 that A(h̄− ā)

d∼ N
(
0, m+k

mk
AΣA′

)
under H0 then it follows

that in a similar manner A(h̄− ā)
a∼ N

(
0, m+k

mk
AΣ̂A′

)
under H0. Consequently the

test statistic mk
(m+k)

∆′(AΣ̂A′)−1∆
a∼ χ2

(p). �

4.6 Simulation study for the multivariate problem

In this section, we carry out a simulation experiment and use it with the likelihood
ratio statistics that has been developed in this thesis. The summary of the simulation
set-up is given below.

• The mean vector for the “healthy unstimulated” is obtained by simulating p
uniform random variables in the range of (0, 0.5) to be the vector µu.
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• Similarly, we generate p uniform random variables in the interval (0.6, 0.75) to
create µs which is the “healthy stimulated".

• For the “ARF unstimulated”, the values for simulating νu were the range
(0, 0.55) to generate uniform random variables of dimension p.

• The νs are obtained by generating a p uniform random variables of the interval
(0.001, 0.2) to obtain the mean vector for the “ARF stimulated".

The covariance matrices are generated using the R package clusterGeneration in
order to get a p× p positive definite matrix. The number of subjects for the healthy
group is arbitrarily set at 100 while the ARF group is set at 105.

Results for the analysis of the multivariate data

Simulation experiment I

The data was simulated for four different values of p = {2, 5, 8, 15} while the sample
sizes were fixed at m = 100 and k = 105. A test statistic and corresponding p-value
calculated when Σ is assumed to be unknown and when it is known. A resampling
distribution was then obtained from which an approximate p-value is then computed.
The results are shown in Tables 4.4 and 4.3 in addition to Figures 4.3 and 4.6.

Table 4.3: Calculated test statistics when Σ is known

p=2 p=5 p=8 p=15
Log RT 8.46 18.84 22.43 56.09
calculated p-valuee 0.016 0.002 0.004 0.000
p-value from resampling 0.01 0.000 0.006 0.000
e p-values calculated from the exact χ2

(p) distribution

Table 4.4: Calculated test statistics when Σ is unknown

p=2 p=5 p=8 p=15
Log RT 10.65 21.32 25.81 84.07
calculated p-valuea 0.005 0.001 0.001 0.000
p-value from resampling 0.005 0.001 0.002 0.000

a p-values calculated from the asymptotic χ2
(p) distribution

The results reveal that both the calculated p-value and the one obtained from
resampling lead to the same conclusions regarding the hypothesis testing. In this
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case, for all the cases, the difference in the means was statistically significant at 5%
level. Next we look at the sampling distribution of the test statistics for different
numbers of p.

The Figures 4.3 and 4.4 show the histograms are based on the test statistics
calculated from resampling the simulated data and the curves are the chi-squared
densities for the corresponding degrees of freedom p. The plots show that the
distributions for the −2 log likelihood test statistic follow a chi-square distribution
and are also positive skewed. However, as the number of p increases, the distributions
look like normal distribution and the skewness is less when the degree of freedom is
higher. The normal looking distribution are still a chi-squared, for they approach
N(p, 2p) as the degree of freedom gets large. The red vertical lines shows the position
of the computed stastistic for the unresampled data.

Figures 4.5 and 4.6 show the histograms are obtained from the simulated data
while the curves are chi-squared densities with p degrees of freedom. This set of
histograms exhibit the same properties as the ones discussed in Figures 4.3 and 4.4.
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Figure 4.3: Histograms for the simulated data for p=2 and p=5 when Σ is known.
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Figure 4.4: Histograms for the simulated data for p=8 and p=15 when Σ is known.
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Figure 4.5: Histograms for the simulated data for p=2 and p=5 when Σ is unknown.
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Figure 4.6: Histograms for the simulated data for p=8 and p=15 when Σ is unknown.
.
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Simulation experiment II

In this experiment, we fix p = 20 but vary the sample sizes m and k during the
simulation. On the same data sets, we apply our test statistics when Σ is assumed
known and then when it is assumed to be unknown. The test statistic is computed
and then a resampling procedure is carried out to get a sampling distribution for
both cases.

Table 4.5: Calculated test statistics and p-values when Σ is known for different values of m and
k.

m=150, k=180 m=200, k=190 m=k=250 m=300, k=350
Log RT 60.98 56.62 91.42 81.32
calculated p-valuee 0.001 0.000 0.000 0.000
p-value from resampling 0.006 0.000 0.000 0.000

e p-values calculated from the exact χ2
(p) distribution

Table 4.6: Calculated test statistics and p-values when Σ is unknown for different values of m and
k.

m=150, k=180 m=200, k=190 m=k=250 m=300, k=350
Log RT 44.61 69.45 105.20 103.76
calculated p-valuea 0.001 0.000 0.000 0.000
p-value from resampling 0.006 0.000 0.000 0.000

a p-values calculated from the asymptotic χ2
(p) distribution

Both Tables 4.5 and 4.6 show that the difference in the mean differences is
significant at 5%. It is worth noting that for both the cases when Σ is assumed
known and unknown, the respective test statistics lead to the same conclusion of
rejecting a null hypothesis in this case.
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Figure 4.7: Histograms for the simulated data for p=20, m=200 & k=190 when Σ is
known.
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Figure 4.8: Histograms for the simulated data for p=20, m=300 & k=350 when Σ is
known.

The histograms in Figures 4.7 and 4.8 exhibit the same properties as the
ones discussed in Figures 4.5 and 4.6.
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Figure 4.9: Histograms for the test statistic computed from resampling the simulated
data for p=20 and Σ is unknown. This set of histograms exhibit the same properties as the
ones already discussed in 4.5 and 4.6.
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Figure 4.10: Histograms for the test statistic computed from resampling the simulated
data for p=20 and Σ is unknown. This set of histograms exhibit the same properties as the
ones discussed in the previous figures.
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4.7 Some special cases

In this subsection, we present special cases for comparing the healthy and ARF
groups while integrating the graph network information when p = 1 with Σ being
known and when it is unknown.

4.7.1 One gene problem

Consider the paired measurements framework described in Subsection 4.5.1 and let
p = 1. In this case, the healthy and ARF subjects come from a bivariate normal
distributions

(
hu
hs

)
∼ N [( µuµs ) ,Σ] and ( auas ) ∼ N [( νuνs ) ,Σ] respectively. The variance-

covariance matrix given by

Σ =

[
σ2
u σus

σsu σ2
s

]
, σus = ρσuσs.

Assuming that σu = σs = σ and is known, it can be shown that the parameter
estimates under the null hypothesis H0 are obtained by optimizing the constrained
likelihood function with respect to µu, µs, νu, and νu to get

µ̂u = h̄u +
m

2(k +m)
∆

µ̂s = h̄s −
m

2(k +m)
∆

ν̂u = āu −
k

2(k +m)
∆

ν̂s = ās +
k

2(k +m)
∆.

(4.27)

where ∆ = ∆h − ∆a, ∆h = h̄u − h̄s and ∆a = āu − ās. The MLEs under Ha are
obtained by optimizing the unrestricted log likelihood function and are given by

µ̂u = h̄u, µ̂s = h̄s, ν̂u = āu, ν̂s = ās. (4.28)

The −2 Log likelihood ratio test is given as

−2Logλ =
mk

8(1− ρ)(k +m)σ2
∆2, (4.29)
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The variance var(∆) = 2(m+k)σ2(1−ρ)
mk

and therefore

mk

8(1− ρ)(k +m)σ2
∆2 ∼ χ2

(1). �

On the other hand, when we assume that σu = σs = σ and unknown, we can get the
MLE expression for σ2 by optimized the constrained likelihood function with respect
to σ2 to get

σ̂2 =
1

(m+ k)(1− ρ2)

{[ m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2+

k∑
i=1

(asi − ās)2 +
k∑
i=1

(aui − āu)2
]

+
[
m(h̄u − µu)2 +m(h̄s − µs)2 + k(ās − νs)2 + k(āu − νu)2

]
− 2ρ

[
m(h̄u − µu)(h̄s − µs) + k(āu − νu)(ās − νs)

]}
.

(4.30)

To get the expression for the estimate of ρ let, B =
[∑m

i=1(hui− h̄u)2 +m(h̄u−µu)2 +∑m
i=1(hsi − h̄s)2 +m(h̄s − µs)2 +

∑k
i=1(aui − āu)2 + k(āu − νu)2 +

∑k
i=1(asi − ās)2 +

k(ās− νs)2
]
and C=

[
m(h̄u−µu)(h̄s−µs) + k(āu− νu)(ās− νs)

]
then the expression

for ρ can be found as

(m+ k)(ρ− ρ3)− ρ

σ2
B + (1 + ρ2)C = 0. (4.31)

The MLE expressions for the variance and correlation coefficient under H0 are
obtained by substituting 4.27 into 4.30 to get respectively as

σ̂2
0 =

1

(m+ k)(1− ρ̂2
0)

{[ m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2 +
k∑
i=1

(asi − ās)2

+
k∑
i=1

(aui − āu)2
]

+
(1− ρ̂0)km

2(k +m)
∆2

}
,

(4.32)

and

(m+ k)(ρ̂0 − ρ̂3
0)− ρ̂0

σ̂2
0

B0 + (1 + ρ̂2
0)C0 = 0. (4.33)
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where B0 =
[∑m

i=1(hui− h̄u)2 +
∑m

i=1(hsi− h̄s)2 +
∑k

i=1(aui− āu)2 +
∑k

i=1(asi− ās)2 +

km
2(k+m)

∆2
]
and C0 = km

4(k+m)
∆2 where ∆ = ∆h−∆a, ∆h = h̄u− h̄s and ∆a = āu− ās.

Substituting the MLEs 4.28 into 4.30 we get that the expressions for the variance
and correlation coefficients are given respectively under Ha as

σ̂2
1 =

1

(m+ k)(1− ρ2)

{
m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2

+
k∑
i=1

(asi − ās)2 +
k∑
i=1

(aui − āu)2

}
,

(4.34)

and

(m+ k)(ρ̂1 − ρ̂3
1)− ρ̂1

σ̂2
1

B1 = 0. (4.35)

where

B1 =

[
m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2 +
k∑
i=1

(aui − āu)2 +
k∑
i=1

(asi − ās)2

]
.

The estimates σ̂0, ρ̂0, σ̂1 and ρ̂1 can be obtained using numerically. The log likelihood
ratio function under H0 is given by

LogL(Θ0) =

−(m+ k)

2

[
2logσ̂2

0 + log(1− ρ̂0)
]
− 1

2(1− ρ̂2
0)σ̂2

0

{[ m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2

+
k∑
i=1

(asi − ās)2 +
k∑
i=1

(aui − āu)2
]

+
(1 + ρ̂0)km

2(k +m)
∆2

}
.

(4.36)
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The unrestricted log likelihood function is given by

LogL(Θ1) =

= −(m+ k)log (2π)− (m+ k)

2

[
2logσ̂2

1 + log(1− ρ̂1)
]

− 1

2(1− ρ̂2
1)σ̂2

1

[ m∑
i=1

(hui − h̄u)2 +
m∑
i=1

(hsi − h̄s)2 +
k∑
i=1

(asi − ās)2 +
k∑
i=1

(aui − āu)2
]
.

(4.37)

From 4.36 and 4.37 we get the −2 Log Likelihood ratio test by

−2Logλ = −2LogL(Θ0) + 2LogL(Θ1) (4.38)

The distribution of 4.38 is not explicitly known, we can use the resampling methods
like the permutation test in order to find the its sampling distribution for making
inferences.

4.7.2 Simulation study of the one gene problem (p=1)

Simulation Experiment III

In this simulation experiment, we set p = 1 and simulate the data with the following
means and variance-covariance matrix

Σ =

[
6.6 0.06

0.06 6.6

]
, µ =

[
2

3

]
, ν =

[
2

5

]
.

The simulation was done for different values of m and k. When σu = σs = σ and
assumed known, we use the test statistic given in 4.29. The statistics and p-values
shown in Table 4.7.

Table 4.7: Calculated test statistics and p-values when Σ is known for different values of m and
k for the one gene problem.

m=150, k=180 m=200, k=190 m=k=250 m=300, k=350
Log RT 7.52 6.58 6.84 9.34
calculated p-valuee 0.006 0.010 0.009 0.002
p-value from resampling 0.006 0.000 0.000 0.000

e p-values calculated from the asymptotic χ2
(1) distribution
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When σu = σs = σ and assumed unknown, we still use the data that was
previously simulated but in this case we now estimate the correlation coefficient
and the variance using numerical methods because ρ does not have a closed form
solution in this case. The R function nlminb is used to implement the numerical
estimation and then the −2Logλ is computed for each of the 1000 permutations of
the labels of the healthy and the ARF subjects. Since the distribution of the test
statistic is not known, permutations are used to compute the sampling distribution
of the statistic given in 4.38 and the results given in Table 4.8.

Table 4.8: Calculated test statistics and p-values when Σ is unknown for different values of m and
k for the one gene problem.

m=150, k=180 m=200, k=190 m=k=250 m=300, k=350
−2log RT 59.32 50.01 56.10 76.97
p-value from resampling 0.006 0.000 0.000 0.000

The results for when sigma is known and when unknown, both lead to the
same conclusions of significant difference in the difference of the means for the two
categories under consideration. The sampling distributions for various cases are
presented in Figures 4.11, 4.12, 4.13 and 4.14 which exhibit the same properties as
the ones discussed in Figures 4.3 and 4.4.
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Figure 4.11: Histograms for the test statistics computed by resampling the simulated
data for p=1, different values of m and k when σ is known.
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Sigma known, p=1, m=250, k=250
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Figure 4.12: Histograms for the test statistics computed by resampling the simulated
data for p=1, different values of m and k when σ is known.
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Sigma unknown, p=1, m=150, k=180
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Figure 4.13: Histograms for the test statistics computed by resampling the simulated
for p=1, different values of m and k when σ is unknown.
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Sigma unknown, p=1, m=250, k=250
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Figure 4.14: Histograms for the test statistics computed by resampling the simulated
for p=1, different values of m and k when σ is unknown.
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4.8 Summary for the testing for network changes

To integrate network information, the first step is to identify the appropriate prior
network that contains the same genes as the experimental data. From the prior
network, a list of edges is extracted. This list is used with the experimental data to
build a graph network where the genes are represented by the nodes while the edges
are the connectivity information obtained from the list of edges. The nodes are
coloured to reflect up/down regulation or no change in the gene expression values.
The colouring of the nodes is aided by use of the log fold change calculated from
the experimental data. From the network, subnetworks that represent a certain
functional group are chosen. The genes in the chosen subnetwork(s) are utilized
to select the subset of the original experimental data used in testing for network
changes.

We have used the known likelihood ratio theory to develop a statistic that can
be used to formally test for network changes. The simulation study has shown that
the developed likelihood ratio tests are capable of testing for the changes from a
practical point of view. For a small number of variable p, the sampling distributions
are chi-square. As the degree of freedom increases, the distributions tend to look like
a normal distribution. That is due to the fact that the skewness decreases as the
degrees of freedom increases.
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Chapter 5

Summary, conclusions and future
work

5.1 Summary and conclusions

In thesis, two major themes have been looked in to: the classification and statistical
integration of the molecular data to test for network changes.

The classification problem has been addressed using two different approaches;
first using the un-preprocessed data and secondly using the preprocessed data. The
methodology of Bastien et al. (2005) has been combined with the logistic regression
(PLSGLR-log) and also with the linear discriminant analysis (PLSGLRDA), then
applied to the microarray data sets. The performance of these two extensions
are then compared with with the classical methodologies like KNN, LDA, RPLS,
PLSDA, SVM in addition to the KMA, an algorithm that was recently proposed
by (Dalmau et al., 2015). For the un-preprocessed data, using the 10-fold cross
validation, the KMA emerges as clear winner, the new extensions PLSGLR-log and
PLSGLRDA perform competitively well relative to the classical methodologies. The
worst classifier is the KNN due to its consistent high error rates compared to the
other methodologies. On the other hand, for the preprocessed data, the methods
are assessed based on the error rates and the type of misclassification (i.e whether
a normal tissue is classified as tumor and vice versa, especially for the Colon and
Prostate data sets). The distribution of the classification error rates are also studied
through box plots. For the preprocessed Colon data, PLSDA emerged as the best,
followed by RPLS, PLSGLRDA while KNN emerged as the worst methodology.

93
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Looking at the type of misclassification, PLSDA had the lowest proportion of cancer
tissues classified as normal. Furthermore, the RPLS and PLSGLRDA also had a
relatively lower proportion of cancer tissue classified as normal. For the preprocessed
Leukemia data, SVM emerged as the best followed by RPLS, PLSDA and LDA, with
KNN being the worst classifier. For the preprocessed Prostate data, PLSDA was the
best followed by RPLS, SVM and PLSGLRDA in that order. The SVM and the
RPLS have a relatively lower proportion of tumor tissues classified as cancer and so
in addition to their low classification errors, they can be considered as good classifiers.
In general, it is important to note that the difference in the classification error rates
between the methodologies is very small and that no particular methodology has
been declared the “winner" in all the cases for the preprocessed data. As such it is
fair to conclude that there is no clear winner for the classifications of preprocessed
data sets. However, there is a clear “loser” which is the KNN since it has consistently
performed poor.

For the statistical integration of molecular data to test for network changes, we
start by first identifying the prior network to be used. The network is curated from
the literature and (or) online databases. The genes considered in the experimental
data are then identified so that only the nodes of the prior network containing the said
genes are retained. From the prior network, an edge list containing the connections
between different nodes (gene) are identified. We take advantage of the fact that
genes usually act in groups according to some pathological functional groups and
this kind of relation is reflected the adjacency matrix from the prior network. Recall
that the experimental data has two main groups healthy (H) and ARF. These groups
have two subgroups each namely, the GAS stimulated and unstimulated. We use the
prior network edge list to construct the networks for each of the two groups (H and
ARF). Furthermore, we colour the nodes for each network to reflect the up or down
regulation or no change for each of the gene expression. We identify a sub network
from a given group of genes guided by biology (e.g some functional group or genes
associated with some disease). From this information, we extract subnetworks from
network for the healthy and the one for the ARF. We then test for the changes in
the nodes (genes) with regards to log fold change. These changes in the nodes is
what we refer to as changes. We have shown that this is not a trivial problem and
so derived a likelihood ratio test for these changes. The derived test do follow a chi-
square distribution with p degrees of freedom when the variance-covariance matrix
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is known. We have assumed that the variables (genes) follow a multivariate normal
distribution with a known variance-covariance matrix which can be deduced from
the prior network that has been chosen. Finally, the likelihood ratio test statistic
for changes has been derived when the variance-covariance matrix is unknown. A
simulation study has been done and demonstrated that the developed tests can be
useful for testing the network changes and can be applied to other cases which have
similar problem set-ups. The test statistics have a chi-square distribution when the
number of variables are few but tends to a normal distribution as the number of
variables increase.

5.2 Future work

With respect to the classification problem, it would be interesting to study the
mathematics behind the good performance of the kernel multilogit algorithm’s
superior performance in the classification problems when applied to the noisy un-
preprocessed data sets.

For the part on testing for network changes the following are possible open
problems for future work.

• In this thesis we developed methods for analyzing only two groups (Healthy
and ARF) but these methods can be extended to situations involving more
than two groups.

• It would be to derive a test statistic for testing the changes by constraining the
covariance matrix to reflect the structure of the prior network and considering
the whole network of p genes and not the subnetworks. That is, by using the
structure of the adjacency matrix of the prior network used in the integration
of network information with the molecular data.

• In situations for testing networks where the number of samples is less than the
number of genes then a regularized estimate for Σ would be needed.

• Since the multivariate tests are usually very sensitive to outliers, it would be
important to develop a robust variant of the methods developed in this part of
the thesis.
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• The developed test can be extended from the normal distribution to a more
general family of distributions for instance the elliptical family.
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