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Introduction

In this work we consider a family of one-real parameter of piecewise monotone real-
valued functions given by fbpxq “ ℘Λpxq`b, where b is a real parameter and ℘Λ denotes
the Weierstrass ℘ function defined over a real square lattice Λ, and restricted over the
real line.

Each element in the family fb defines a periodic function over the real line with
singularities at the integer multiples of its real period. When restricted to a fundamental
interval, the family fb exhibits some dynamical similarities to the quadratic family
Qcpxq “ x2 ` c. One of the main problems addressed in this thesis is to show that
under certain conditions on the parameter b and the lattice Λ, fb acts over the real line
as a chaotic dynamical system.

The second problem considered in this work is related to Sharkovskii’s Theorem,
one of the most celebrated theorems in real dynamics. This theorem states a period
forcing result: if f is a continuous function over the real line that has a periodic point
of period n, then it must also have a periodic point of period k, with k smaller than n in
the Sharkovskii ordering. Taking into account that each fb is no longer continuous in
the whole real line, we provide a partial period forcing result for the family fb following
Sharkovskii’s ordering.

Chapter 1 presents fundamental concepts in real discrete dynamical systems. We
start by considering the family of quadratic functions defined by

Qcpxq “ x2
` c

with c is a real parameter. This family serves as a model example that will allow us to
understand the dynamical behavior of one-parameter family fb in Chapter 3. As the
parameter c changes, the dynamics of Qc also changes remarkably for certain values of
c. The noticeable dynamics happens when c ă ´2. But for simplicity, we are interested

in studying the family only with the case c ă ´
5` 2

?
5

4
. Our aim is to define and

understand the properties of a chaotic dynamical system. According to R. L. Devaney
in [3] and [4], a dynamical system pX, fq is said to be chaotic if the following three
conditions are satisfied: density of periodic points, transitivity and sensitivity
to initial conditions. To achieve our purpose, the concept of symbolic dynamics
is introduced, which plays a very important role in order to prove a system is chaotic.
For this task, we construct an itinerary map that defines a conjugacy between the
action of Qc restricted to the invariant set Λ and the symbolic system pΣ2, σq. The main
result in this section is that each element of the quadratic family is chaotic whenever

iii
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c ă ´
5` 2

?
5

4
.

Chapter 1 ends with an introduction to elliptic functions and properties of the
Weierstrass ℘ function, defined by

℘Λpzq “
1

z2
`

ÿ

λPΛ´t0u

„

1

pz ´ λq2
´

1

λ2



,

where Λ “ tmλ1`nλ2 | m,n P Zu is a lattice over the complex plane C. Two straight-
forward properties of the Weierstrass ℘ elliptic function are that λ1 and λ2 are its
periods and has double poles at its lattice points.

In Chapter 2, we provide a complete proof of Sharkovskii’s theorem which plays an
important role in real dynamics. The Sharkovskii’s ordering is an ordering of all natural
numbers in a little bit strange way as follows:

3Ź 5Ź 7Ź ¨ ¨ ¨ Ź 2 ¨ 3Ź 2 ¨ 5Ź 2 ¨ 7Ź ¨ ¨ ¨ 2p Ź 2p´1
Ź ¨ ¨ ¨ 22

Ź 2Ź 1.

The proof is based on the idea of P. Stefan given in [11] and also described in [9]. This
technique is based on the action of the function f restricted to a given interval whose
image may contain another interval. For an n-cycle with n odd, the transition graph
of a function f over a partition of intervals determined by the n-cycle contains a special
subgraph called Stefan’s transition graph. This allows us to prove the period forcing
for a real-valued continuous function f : RÑ R.

In Chapter 3, we study the dynamics of the family fbpxq “ ℘Λpxq ` b, where Λ is
the central real square lattice. This lattice has been introduced in [7] and has the
property that the real critical point λ{2 is fixed under ℘Λ. Here we provide the main
results of our thesis. First, we study the period forcing properties of each element of
the family fb for any b P R. Under this assumption and the restriction of ℘Λ to the real
line, we obtain a complete directed graph, whose vertices are fundamental intervals and
the arrows represent when the image of one interval under fb contains another interval.
Ultimately, we end up that regardless of parameter b, each member fb has the property
that for any periodic point of odd period n, then there exists a point of period k with
k smaller that n in the Sharkovskii’s ordering.

On the other hand, for the second result, we just consider the case b “ 0. It is
shown that on each fundamental interval Ij “ pjλ, pj ` 1qλq for any integer j, the
function ℘|Ij is piecewise monotone and unicritical, thus, dynamically similar to the
quadratic family studied in Chapter 1. The results presented in Chapter 1 inspire the
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proof that fb exhibits a chaotic behavior when restricted to an invariant subset of the
real line. Unlike the quadratic case, each element fb family is piecewise continuous with
discontinuities at λ and its integer multiples. However, as Theorem 3.21 shows, on each
fundamental interval Ij there exists an invariant set Γj on which fb : Γj Ñ Γj is chaotic,
for each j ě 1.



Chapter 1

Preliminaries

In this section we gather the fundamental concepts of dynamical systems and several
necessary results of a particular complex-valued function called Weierstrass ℘ function
which is an elliptic function with poles on the associated lattice. Here we also mainly
discuss the meaning of chaotic dynamical system. The basis of the material that we
present in this chapter come principally from [12] and [9].

1.1 Discrete dynamical systems

Through out this work we are only interested in a real-valued function of one variable as
encountered in elementary calculus. We will start our work by discussing the quadratic
family Qcpxq “ x2 ` c where c P R is constant. One of the important questions we will
address in this chapter is how the dynamics of the function changes as the parameter
changes.

The n-iteration of a function f is a composition of the function f with itself n
times.

Example 1.1. For Qcpxq “ x2 ` c, the second iteration of Qc is Q2
cpxq “ QcpQcpxqq “

px2 ` cq2 ` c “ x4 ` 2cx2 ` c2 ` c and so forth.

Let f : Dpfq Ñ R be a real-valued function with domain Dpfq Ă R an open and
non-empty set. Given x0 P Dpfq, the orbit of x0 under f , denoted by Of px0q, is the
set

Of px0q “ tx0, fpx0q, f
2px0q, ¨ ¨ ¨ u,

1
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whenever the iterate fnpx0q is defined for all n ą 0. A point x0 is called a fixed point
if fpx0q “ x0. Since the fixed points are roots of the algebraic equation fpxq “ x, thus
geometrically we could examine the fixed points of a function by finding the intersection
points between the graph of function and the diagonal line y “ x.

Another important type of orbit is a periodic orbit or a cycle. A point x0 is
called periodic point of period n P N if fnpx0q “ x0 for some n. The minimum n that
satisfied this equation is called least period of x0.

A point x0 is called eventually fixed and eventually peroidic point if it is not
fixed nor periodic but for some point in the orbit of x0 it becomes fixed or periodic. In
addition, let us look at the following example to see other types of orbit.

Example 1.2. Let f and g be real-valued functions on the real line defined by

fpxq “ 3x and gpxq “ x{3.

f and g has a single fixed point at x “ 0. But for any point x ‰ 0, we have

|fnpxq| “ |3nx| Ñ 8 as nÑ 8;

|gnpxq| “ |x{3n| Ñ 0 as nÑ 8.

We have discussed several types of orbit such as fixed, periodic, eventually fixed,
eventually periodic, tending to infinity and tending to a specific value. Still, there are
some more complicated orbits as we will see in Section 1.2.2.

Theorem 1.3 (Fixed Point Theorem). Let f : ra, bs Ñ ra, bs be continuous. Then
there is a fixed point for f in ra, bs.

Proof. Let gpxq “ fpxq ´ x. Since f is continuous, then g is continuous. Also we have
gpaq “ fpaq ´ a ě 0 and gpbq “ fpbq ´ b ď 0. Then it follows by the Intermediate
Value Theorem that there exists a point c with a ă c ă b such that gpcq “ 0, that is,
fpcq “ c. Hence there is a fixed point for f in ra, bs.

Definition 1.4. Let x0 be a fixed point for f . There are three remarkable types of fixed
points. The point x0 is an attracting, repelling or neutral fixed point if |f 1px0q| ă 1,
|f 1px0q| ą 1 or |f 1px0q| “ 1, respectively.

We say that the point x0 is super-attracting fixed point if |f 1px0q| “ 0, that is, x0

is attracting and also a critical point of f .
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Theorem 1.5 (Mean Value Theorem). Suppose that f is real-valued function which
a continuous function on the closed interval ra, bs and differentiable at any point on the
open interval pa, bq. Then there exists c such that a ă c ă b and

f 1pcq “
fpbq ´ fpaq

b´ a
.

This theorem simply says that the slope of line connecting the endpoints of the
closed interval is the same as the derivative of the function at some interior point of
the interval.

Theorem 1.6 (Attracting Fixed Point Theorem). Let x0 be an attracting fixed
point for a function f . Then there exists a neighborhood I of x0 such that for every
x P I then fnpxq P I for all n P N and moreover fnpxq Ñ x0 as nÑ 8.

Theorem 1.7 (Repelling Fixed Point Theorem). Let x0 be a repelling fixed point
for a function f . Then there exists a neighborhood I of x0 such that for every x P
I ´ tx0u, there exists N “ Npxq P N such that fNpxq R I.

This theorem tells us that for any point in the deleted neighborhood of x0, the
iteration will leave that interval for some large enough iteration.

Theorem 1.8 (Chain Rule). Let x0, x1, ¨ ¨ ¨ , xn´1 be a cycle of period n for a function
f with xj :“ f jpx0q. Then

pfnq1px0q “
n´1
ś

j“0

f 1pxjq.

This theorem allow us to classify a periodic point x0 of period n as either attracting,
repelling, or neutral by considering absolute value of pfnq1 evaluated at any point in
the cycle.

Corollary 1.9. Let x0, x1, ¨ ¨ ¨ xn´1 lie on a cycle of period n for a function f . Then

pfnq1px0q “ pf
nq1px1q “ ¨ ¨ ¨ “ pf

nq1pxn´1q.

Example 1.10. For the quadratic family Qc, we have two fixed points: the solutions
of the equation Qcpxq “ x are given by p´ “

1
2
p1´

?
1´ 4cq and p` “

1
2
p1`

?
1´ 4cq.

In order to classify these fixed points, observed that Q1cpxq “ 2x. Then

Q1cpp´q “ 1´
?

1´ 4c , Q1cpp`q “ 1`
?

1´ 4c.

Analyzing the expression of these derivatives, we can conclude the following:
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• If c ą 1{4, there is no fixed point and all orbits tend to infinity.

• If c ă 1{4, Qc has two fixed points at p´ and p`.

• If c “ 1{4, Qc has a single fixed point at p` “ p´ “
1
2

that is neutral.

The fixed point p` is always repelling. If c ă ´1{4 we can classify p´ in terms of c
as:

• If ´3{4 ă c ă 1{4, p´ is attracting.

• If c ă ´3{4, p´ is repelling.

• If c “ ´3{4, p´ is neutral.

For further discussion see [4].

1.1.1 Bifurcations

Definition 1.11. A one-parameter family of functions Fc goes through a saddle-node
bifurcation at the parameter value c0 if there is an open interval I and an ε ą 0 such
that:

1. For c0 ă c ă c0 ` ε, Fc has no fixed points in the interval I.

2. For c “ c0, Fc has one fixed point in I and this fixed point is neutral.

3. For c0 ´ ε ă c ă c0, Fc has two fixed points in I, one attracting and one repelling.

From the previous analysis of the quadratic family Qcpxq “ x2 ` c, we see that Qc

goes through a saddle-node bifurcation at c “ 1{4 choosing ε “ 1{2.
Periodic points of period 2 are the solutions to the equation Q2

cpxq “ x. A quick
computation shows the existence of two periodic points of least period 2 given by

q´ “
1

2
p´1´

?
´4c´ 3q and q` “

1

2
p´1`

?
´4c´ 3q.

For the family Qcpxq “ x2 ` c :

• For ´3{4 ă c ă 1{4, Qc has an attracting fixed point at p´ and no 2-cycle.

• For c “ ´3{4, Qc has a neutral fixed point at p´ “ q˘ and no 2-cycle.

• For ´5{4 ă c ă ´3{4, Qc has repelling fixed point at p´ and attracting 2-cycle at
q˘.
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Definition 1.12. A one-parameter family of functions Fc goes through a period-
doubling bifurcation at the parameter value c “ c0 if there is an open interval I and
an ε ą 0 such that:

1. For each c in the interval rc0´ ε, c0` εs, there is a unique fixed point pc for Fc in I.

2. For c0 ă c ă c0 ` ε, pc is attracting and Fc has no cycles of period 2 in I.

3. For c0 ´ ε ă c ă c0, there is a unique 2-cycle q1
c , q

2
c in I with Fcpq

1
c q “ q2

c . This
2-cycle is attracting. Meanwhile, the fixed point pc becomes repelling.

4. As cŒ c0, we have qic Ñ pc0 .

Thus the quadratic family Qcpxq “ x2 ` c goes through period-doubling bifurcation at
c “ ´3{4 choosing ε “ 1{2.

1.1.2 Invariant set Λc

In this section we consider only the case when c ă ´2. Form Example 1.10 Qc has
two fixed points, p´ and p`. Let I “ r´p`, p`s and let us consider the square formed
by vertices pp`, p`q, p´p`, p`q, pp`,´p`q and p´p`,´p`q. It follows that p´ is in the
square since |p´| ă p`. The intersection points of the graph of quadratic function Qc

and the bottom edge of the square are roots of the equation

x2 ` c “ ´p`.

Solving this equation we obtain

x1
´ “ ´

c

´2c´ 1`
?

1´ 4c

2
and x1

` “

c

´2c´ 1`
?

1´ 4c

2
. (1.1)

Since the quadratic map is even, then Qcpx
1
´q “ Qcpx

1
`q “

´1`
?

1´4c
2

, that is, Qcpx
1
´q “

Qcpx
1
`q “ ´p`. Observe that ´p` “ ´

1
2
p1`

?
1´ 4cq ą c for c ă ´2. This inequality

is equivalent to 4cpc` 2q ă 0 whenever c ă ´2. Thus, the points x1
´ and x1

` lie outside
the interval I “ r´p`, p`s.

Let us denote A1 “ px
1
´, x

1
`q the set of points that escape from interval I just after

one iteration of Qc. For each n ě 1 let

An “ tx P I | Q
k
c pxq P I, k “ 1, 2, ¨ ¨ ¨ , n´ 1, Qn

c pxq R Iu.

Denote by Λc the set of points in I that never leave the interval I, that is,

Λc “ tx P I | Q
n
c pxq P I,@n P Nu.

Notice that p´ and p` lie in Λc.
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Definition 1.13. A set C is a Cantor Set if it is nonempty, closed, totally dis-
connected and perfect. A set is totally disconnected if it contains no interval. A set
is perfect if every point in it is an accumulation point or a limit point of other points
in the set. Equivalently, a set is perfect if it is closed and contains no isolated points.

Example 1.14. The Cantor Middle-Thirds set is a Cantor set. And any other Cantor
set is homeomorphic to the Cantor Middle-Thirds set as the one below.

Theorem 1.15. For c ă ´2, Λc is nonempty, closed, totally disconnected and perfect.

Proof. First, we have p´ and p` are fixed points inside I0. So p´ and p` lie in Λc. Now,

notice that Λc “ I ´
8
Ť

n“1

An and since An is open for every n P N, it follows that Λc is

closed.

Suppose that Λc contains an interval J with l “ lengthpJq ą 0 (when l “ 0, the
interval J reduces to a point). By Mean Value Theorem, for any two points x, y P J
such that x ‰ ˘y, then there exists a point z in an open interval with endpoints x and
y such that

ˇ

ˇQ1cpzq
ˇ

ˇ“

ˇ

ˇQcpxq ´Qcpyq
ˇ

ˇ

|x´ y|
.

For simplicity, let us assume that c ă ´5`2
?

5
4

. Then for any x lies in I0 or I1, we have
|Q1cpxq| ą 1. Now we can choose λ ą 1 such that |Q1cpxq| ą λ. Then it follows that
ˇ

ˇQcpxq ´Qcpyq
ˇ

ˇą λ|x´ y|. By definition of Λc and J Ă Λc, we have QcpJq Ă Λc. Then
Qcpxq and Qcpyq lie in Λc with Qcpxq ‰ ˘Qcpyq since Qc is even. Applying Mean Value
Theorem again, we have

ˇ

ˇQ2
cpxq ´Q

2
cpyq

ˇ

ˇ

ˇ

ˇQcpxq ´Qcpyq
ˇ

ˇ

ą λ.

Then
ˇ

ˇQ2
Cpxq ´Q

2
Cpyq

ˇ

ˇą λ
ˇ

ˇQcpxq ´Qcpyq
ˇ

ˇą λ2|x´ y|. For n iteration, we have

ˇ

ˇQn
c pxq ´Q

n
c pyq

ˇ

ˇą λn|x´ y|.

Then
lim
nÑ8

ˇ

ˇQn
c pxq ´Q

n
c pyq

ˇ

ˇą lim
nÑ8

λn|x´ y|.

Since |x´ y| ą 0 and λ ą 1, then λn|x´ y| Ñ 8. But lim
nÑ8

ˇ

ˇQn
c pxq ´Q

n
c pyq

ˇ

ˇă l and l is

finite. This gives us a contradiction and thus Λc contains no interval.
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Finally, we will prove that Λc is perfect. We have seen that it is closed, so it
remains to see that it does not contain an isolated point. First notice that Qc has a
single critical point at x “ 0 and the critical value Qcp0q “ c lies outside the interval
I “ r´p`, p`s. Also, the endpoints of the intervals An belong to Λc for all n ě 1.
Moreover, if x is an endpoint of An, then Qn

c pxq “ ´p` and Qn`1
c pxq “ p`. Indeed, if

n “ 1 we have A1 “ px
1
´, x

1
`q where x1

´ and x1
` given in Equation 1.1. We then have

Qcpx
1
´q “ Qcpx

1
´q “ ´p` so that Q2

cpx
1
´q “ Q2

cpx
1
´q “ p`. Assume that it is true for

case n. To prove the case n`1, assume that x is the endpoint of An`1. Then x “ Q´1
c pyq

for some y which is the endpoint of An. Now Qn`1
c pxq “ Qn`1

c pQ´1
c pyqq “ Qn

c pyq “ ´p`
and so Qn`2

c pxq “ p`.
Now, assume p P Λc is an isolated point. We have two cases as follows. First, if p
is not an endpoint of any interval An, then there exists a sequence of endpoints aj
that converges to p. This implies that p is a limit point of elements in Λc, which is
a contradiction. Second, assume p is an endpoint of Ak for some k ě 1. Then, there
exists a neighborhood Nppq of p such that Nppq X Ak ‰ H. Then for every x P Nppq,
Qk
c pxq ă Qk

c ppq “ ´p`. This says that p is a local maximum of Qk
c |Nppq. That is,

pQk
c q
1ppq “ 0 and by the chain rule,

pQk
c q
1
ppq “

k´1
ź

j“0

Q1cpQ
j
cppqq “ 0

so there must exist at least one j P t0, . . . , k ´ 1u such that Q1cpQ
j
cppqq “ 0. In other

words, Qj
cppq “ 0. But then, Qj`1

c ppq “ c R I, a contradiction as p P Λc and hence all its
iterates remain in Λc. We completed the second case and thus the theorem is proved.

Theorem 1.16. Let c ă ´2. The invariant set Λc for a quadratic map Qc is a Cantor
set.

1.2 Symbolic and chaotic dynamics

1.2.1 Symbolic dynamics

Let I0 and I1 be two closed intervals lying respectively the left and the right of A1, so
that I0 Y A1 Y I1 “ I.

Definition 1.17. Let x P Λc. The itinerary of x is the infinite sequence given by

Spxq “ ps0s1s2 ¨ ¨ ¨ q

where sj “ 0 if Qj
cpxq P I0 and sj “ 1 if Qj

cpxq P I1.
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Example 1.18. Spp`q “ p111 ¨ ¨ ¨ q, Sp´p`q “ p011 ¨ ¨ ¨ q.

Definition 1.19. The sequence space on two symbols is the set

Σ2 “ tps0s1s2 ¨ ¨ ¨ q|sj “ 0 or 1u.

Let s “ ps0s1s2 ¨ ¨ ¨ q and t “ pt0t1t2 ¨ ¨ ¨ q be two points in Σ2. The distance between
s and t is given by

dps, tq “
8
ÿ

j“0

|sj ´ tj|

2j
.

Proposition 1.20. pΣ2, dq is a metric space, and it is homeomorphic to the Cantor
set.

Lemma 1.21. Let s “ psjq and t “ ptjq be two points in Σ2. If sj “ tj for j “
0, 1, ¨ ¨ ¨ , n, then dps, tq ď 1

2n
. Conversely, if dps, tq ă 1

2n
, then sj “ tj for j “ 0, 1, ¨ ¨ ¨ , n.

Definition 1.22. The shift map σ : Σ2 Ñ Σ2 is defined by

σps0s1s2 ¨ ¨ ¨ q “ ps1s2s3 ¨ ¨ ¨ q.

Proposition 1.23. The shift map σ : Σ2 Ñ Σ2 is continuous.

Proof. Let ε ą 0 and s P Σ2. There is a natural number n such that 1
2n
ă ε. We take

δ “ 1
2n`1 . Then for any point t in Σ2 such that dps, tq ă δ, by Lemma 1.21, we have

sj “ tj for j “ 0, 1, ¨ ¨ ¨ , n ` 1. In other words, t “ ps0 ¨ ¨ ¨ sn`1tn`2 ¨ ¨ ¨ q. Applying the
shift σ on t, we get σptq “ ps1 ¨ ¨ ¨ sn`1tn`2tn`3 ¨ ¨ ¨ q. But σpsq “ ps1 ¨ ¨ ¨ sn`1sn`2sn`3 ¨ ¨ ¨ q.
Since σpsq and σptq coincide in the first n` 1 terms, by Lemma 1.21, we obtain

dpσpsq, σptqq ď
1

2n
ă ε.

Hence, this completes the proof.

1.2.2 Chaotic dynamics

Definition 1.24. Let X and Y be topological spaces. Suppose that F : X Ñ X and
G : Y Ñ Y are two continuous functions. We say that F and G are conjugate if
there is a homeomorphism h : X Ñ Y such that h ˝ F “ G ˝ h. The map h is called a
conjugacy.
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Theorem 1.25. Considering a family of nonempty, closed and bounded intervals In “
ran, bns, where n P N. If for every n, we have an ă an`1 ă bn`1 ă bn, then

8
č

n“0

In ‰ H.

The main goal of this section is to prove the following results.

Theorem 1.26. Suppose c ă ´
5` 2

?
5

4
. Then the itinerary map S : Λc Ñ Σ2 is a

homeomorphism.

Proof. We will prove that S is one-to-one, onto and continuous together with a contin-
uous inverse S´1.

One-to-one: Let x, y P Λc with x ‰ y. Suppose that Spxq “ Spyq. This means
that Qn

c pxq and Qn
c pyq always lie in the same subinterval I0 or I1 for every n P N. We

know that Qc is one-to-one on each of these intervals and condition c ă ´5`2
?

5
4

implies
that |Q1cpxq| ą λ ą 1 for all x P I0 Y I1 and some λ. Let us assume that the interval
rx, ys Ă I0. For each n P N, Qn

c maps interval rx, ys onto interval rQn
c pxq, Q

n
c pyqs. Mean

Value Theorem implies that

|Qn
c pxq ´Q

n
c pyq| ě λn|x´ y|.

Since λ ą 1 and thus λn Ñ 8, we have a contradiction unless x “ y. Similarly, we
prove the case where rx, ys Ă I1. Thus Qc is one-to-one.

Onto: We first introduce the following notation. Let J Ă I be a closed interval.
Let

Q´nc pJq “ tx P I | Q
n
c pxq P Ju.

In particular, Q´1
c pJq denotes the preimage of J inside I. Notice that if J Ă I is a

closed interval, then Q´1
c pJq consists of two closed subintervals, one in I0 and one in I1.

Now let s “ ps0s1s2 ¨ ¨ ¨ q P Σ2 be arbitrary. To find x P Λc with Spxq “ s “ ps0s1s2 ¨ ¨ ¨ q,
we define

Is0s1¨¨¨sn “ tx P I | x P Is0 , Qcpxq P Is1 , ¨ ¨ ¨ , Q
n
c pxq P Isnu.

Since sj “ 0 or 1 for each j, the set Isj is equal to either one of I0 or I1 depending on
the digit sj. We may rewrite Is0s1¨¨¨sn as follows

Is0s1¨¨¨sn “ Is0 XQ
´1
c pIs1q X ¨ ¨ ¨ XQ

´n
c pIsnq

“ Is0 XQ
´1
c pIs1 X ¨ ¨ ¨ XQ

´pn´1q
c pIsnqq

“ Is0 XQ
´1
c pIs1¨¨¨snq.
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We claim that the Is0s1¨¨¨sn are closed intervals that are nested. Clearly Is0 is a closed
interval. By induction we assume that Is1¨¨¨sn is a closed interval. Then Q´1

c pIs1¨¨¨snq
consists of a pair of intervals, one in I0 and one in I1. In either event, Is0XQ

´1
c pIs1¨¨¨snq “

Is0s1¨¨¨sn is a single closed interval.
These intervals are nested because

Is0¨¨¨sn “ Is0¨¨¨sn´1 XQ
´n
c pIsnq Ă Is0¨¨¨sn´1 .

Therefore we conclude that
8
č

n“0

Is0s1¨¨¨sn

is nonempty by Theorem 1.25. Let us choose x P
8
Ş

n“0

Is0s1¨¨¨sn , then x P Is0 , Qcpxq P Is1 ,

and so forth. Hence Spxq “ ps0s1 ¨ ¨ ¨ q. This prove that S is onto.

Note that
8
Ş

n“0

Is0s1¨¨¨sn consists of a unique point. This follows immediately from the

fact that S is one-to-one. In particular, from the hypothesis c ă ´5`2
?

5
4

, it follows that
Q´1
c is a strict contraction in I. Then diam Is0s1¨¨¨sn Ñ 0 as nÑ 8.

Continuity: Let x P Λc and suppose that Spxq “ ps0s1s2 ¨ ¨ ¨ q. Let ε ą 0 and then
pick n P N so that 1

2n
ă ε. Let Jn be closed subinterval Jn Ă Isn such that Qn

c pxq P Jn.
Then Q´1

c pxq consists of two closed intervals, one in I0 and one in I1. Let Jn´1 be closed
subinterval of Isn´1 such that Qn´1

c pxq P Jn´1. We apply this for 0 ď j ď n so that we
obtain

Jj Ă Isj with Qj
cpxq P Jj.

Then for x, y P J0 we have Qj
cpxq, Q

j
cpxq P Jj for j “ 1, 2, ¨ ¨ ¨ , n. It follows that Spyq

agrees with Spxq in the first n` 1 terms. By Lemma 1.21, we have

dpSpxq, Spyqq ď
1

2n
ă ε.

This proves the continuity of S.

Continuity of S´1: Since S is a bijection, then there exists S´1, inverse function
of S, defined from Σ2 to Λc. Let s P Σ2 and ε ą 0. Then there is n P N such that
1

2n
ă ε. Since S is a bijection, so there is x P Λ such that s “ Spxq. Take δ “

1

2n
ą 0.

Suppose t “ Spyq P Σ2 for some y P Λ such that dps, tq ă
1

2n
. This says that for
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0 ď j ď n, Qj
cpxq and Qj

cpyq always lie on the same interval I0 or I1. Let us suppose it

is I0. For c ă ´
5` 2

?
5

4
, there is λ ą 1 such that

ˇ

ˇQk
c pxq ´Q

k
c pyq

ˇ

ˇ ą λk|x´ y| for any

k. Equivalently,

|x´ y| ă

ˇ

ˇQk
c pxq ´Q

k
c pyq

ˇ

ˇ

λk
.

But
ˇ

ˇQk
c pxq ´Q

k
c pyq

ˇ

ˇ ă l “lengthpI0q ă 1. Then |x´ y| ă
l

λk
ă

1

λk
. Now choose k P N

such that
1

λk
ă

1

2n
.

Then |x´ y| ă 1
2n
ă ε. Equivalently, |S´1 pSpxqq ´ S´1 pSpyqq| ă ε. Then,

ˇ

ˇS´1
psq ´ S´1

ptq
ˇ

ˇ ă ε.

Thus, S´1 : Σ2 Ñ Λc is continuous. Hence, S is a homeomorphism.

Theorem 1.27. For any x P Λc, we have S ˝Qcpxq “ σ ˝ Spxq.

Proof. Let x P Λc and let the itinerary of x be given by Spxq “ ps0s1s2 ¨ ¨ ¨ q. This
means that Qj

cpxq P Isj for j ě 0. Then, σpSpxqq “ ps1s2s3 ¨ ¨ ¨ q. Now, SpQcpxqq “
ps1s2s3 ¨ ¨ ¨ q.

Corollary 1.28. For any x P Λc and n P N, we have S ˝Qn
c pxq “ σn ˝ Spxq.

Figure 1.1

From Theorem 1.26 and Theorem 1.27, we can conclude that the itinerary map
S : Λc Ñ Σ2 is the conjugacy for σ and Qc.

Theorem 1.29. The shift map σ : Σ2 Ñ Σ2 is conjugate to the quadratic map Qc :

Λc Ñ Λc whenever c ă ´
5` 2

?
5

4
.
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Definition 1.30. A dynamical system is transitive if for any pair of points x and y
and any ε ą 0 there is a third point z within ε of x whose orbit comes within ε of y.

Definition 1.31. A dynamical system pX,F q depends sensitively on initial con-
ditions if there is a β ą 0 such that for any x P X and any ε ą 0 there is a y P X
within ε of x and an integer k such that the distance between F kpxq and F kpyq is at
least β.

Definition 1.32. Let X be a topological space and F : X Ñ X be a continuous map.
We say that a dynamical system pX,F q is chaotic if:

1. Periodic points for F are dense in X. [Density Property]

2. F is transitive. [Transitivity Property]

3. F depends sensitively on initial conditions. [Sensitivity Property]

The following theorems show the equivalence between being chaotic and the exis-
tence of a dense F -orbit when some properties of the space X is added.

Theorem 1.33. If X has no isolated points and it has a dense F -orbit, then the
dynamical system pX,F q is transitive.

Theorem 1.34. If X is a separable space, of second category and pX,F q is tran-
sitive, then X has a dense F -orbit.

Proposition 1.35. Periodic points under the shift map σ form a dense subset of Σ2.

Proof. Let s “ psjq P Σ2 and ε ą 0. Then there is n P N such that 1
2n
ă ε. Let us

consider the sequence of periodic points ptjqjě0 with tj “ ps0s1 ¨ ¨ ¨ sjq. Then for any
j ě n, we have dptj, sq ď

1
2n
ă ε. Hence, the set of periodic points of the shift map σ

forms a dense subset of Σ2.

Proposition 1.36. The shift map σ is transitive.

Proof. We observe that Σ2 has no isolated points. By Theorem 1.33, we need to find a
point whose orbit form a dense subset of Σ2. Let us consider

s˚ “ p 01
loomoon

1 blocks

00 01 10 11
looooomooooon

2 blocks

000 001 010 011 100 101 110 111
loooooooooooooooooooomoooooooooooooooooooon

3 blocks

¨ ¨ ¨ q P Σ2.

In words, s˚ is constructed successively listing all block of 0’s and 1’s of length n and
then n` 1 and so forth. We claim that the orbit of this point forms a dense subset for
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the sequence space Σ2. Indeed, let s “ psjq P Σ2 be arbitrary and ε ą 0. Then there
exists n P N such that 1

2n
ă ε. By the expression of s˚, we have that there is a block of

length n` 1 consisting s0s1 ¨ ¨ ¨ sn. Then there exists some integer k so that

σkps˚q “ ps0s1 ¨ ¨ ¨ sn ¨ ¨ ¨ q.

Now we see that the first n` 1 terms of s and σkps˚q coincide, it follows from Lemma
1.21 that

dpσkps˚q, sq ď
1

2n
ă ε.

Thus, we proved that there is a dense orbit for σ on Σ2.

Proposition 1.37. The shift map σ depends sensitively on initial conditions.

Proof. Let us choose β “ 1. Let s P Σ2 and ε be any positive number. Then again we
can find a natural number n such that 1

2n
ă ε. Let t P Σ2 such that dps, tq ă 1

2n
with

s ‰ t. Again, by Lemma 1.21, we have sj “ tj for j “ 0, 1, ¨ ¨ ¨ , n. Since s ‰ t, then
there exists a natural number k with k ą n such that sk ‰ tk so that |sk´ tk| “ 1. Now
let us find the distance between σkpxq and σkpyq:

dpσkpxq, σkpyqq “
8
ÿ

j“0

|sj`k ´ tj`k|

2j
“ 1`

8
ÿ

j“1

|sj`k ´ tj`k|

2j
ě 1.

This proves that the shift map σ depends sensitively on initial conditions.

From Propositions 1.35, 1.36 and 1.37 we can conclude the following result.

Theorem 1.38. The shift map σ : Σ2 Ñ Σ2 is a chaotic dynamical system.

Lemma 1.39. Let X and Y be two topological spaces. Assume that f : X Ñ Y is
continuous and onto. If the subset D Ă X is dense, the image of D under f is also
dense in Y .

Now we arrive to the main result of this section.

Theorem 1.40. Suppose c ă ´
5` 2

?
5

4
, then the quadratic map Qc is chaotic on the

invariant set Λc.

Proof. Density: Σ2 has a dense periodic subset D by Proposition 1.35. Since S is a
homeomorphism, then in particular we have S´1 is onto and continuous from Σ2 to Λ.
It follows by Lemma 1.39 that S´1pDq Ă Λc is a dense subset. By Corollary 1.28, we
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have S´1pDq is the set of periodic points of Qc and it is a dense subset of Λc. Thus Qc

satisfies the density property.

Transitivity: Since Σ2 has a point s˚ whose orbit Oσps˚q forms a dense subset of
Σ2. By Lemma 1.39, we have that S´1pOσps˚qq “ OQcpS´1ps˚qq which is dense in Λc

and S´1ps˚q P Λc. Thus, Λc contains the point S´1ps˚q whose orbit is dense in Λc. This
proves Qc is transitive.

Sensitivity: Let us choose β “ px1
` ´ x1

´q{2 ą 0 where x1
´ and x1

` are the end
points of A1 and are given in Equation 1.1. Now given a point x P Λc and ε ą 0. Then
there is y P Λc different from x and is within ε of x, since Λc has no isolated point.
Since the itinerary map S is injective, then

s “ ps0s1s2...q “ Spxq ‰ Spyq “ pt0t1t2...q “ t.

Then there is a natural number k such that sk ‰ tk. This says that Qk
c pxq and Qk

c pyq
lie in different intervals. Thus the distance between Qk

c pxq and Qk
c pyq is greater than β,

that is, |Qk
c pxq´Q

k
c pyq| ą β. This shows that the quadratic map Qc depends sensitively

on initial conditions.

1.3 The Weierstrass ℘ function

1.3.1 Elliptic functions

Definition 1.41. Let Ω be an open set in C and f be a complex-valued function on
Ω. The function f is holomorphic at the point z0 P C if the quotient

fpz0 ` hq ´ fpz0q

h

converges to a limit as hÑ 0. Notice that h P C with h ‰ 0 and z0` h P Ω. When the
limit exists we denote it by f 1pz0q and call it the derivative of f at z0:

f 1pz0q “ lim
hÑ0

fpz0 ` hq ´ fpz0q

h
.

The function f is said to be holomorphic on Ω if f is holomorphic at every point
of Ω. If C is a closed subset of C, we say that f is holomorphic on C if f is holomorphic
on some open set containing C. Last, if f is holomorphic in the whole complex plane
C, we say that f is an entire function.
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A singularity of a complex function f is a complex number z0 P C for which f
is defined in a deleted neighborhood of z0 but not at the point z0 itself. We say that
f defined on a deleted neighborhood of z0 has a pole at z0 if the function 1{f is well
defined and is holomorphic in the whole neighborhood.

Definition 1.42. A function f on an open set Ω is meromorphic if there exists a
sequence of points (not necessarily distinct) tziuiPN Ă C that has no limit points in Ω,
and such that
(i) the function f is holomorphic on Ω´ tz1, z2, ¨ ¨ ¨ u and
(ii) f has poles at the tz1, z2, ¨ ¨ ¨ u.

A nonzero number ω P C is called a period of f if fpz ` ωq “ fpzq for all z P C.
A function f is called doubly periodic if f has two distinct periods, ω1 and ω2. If ω1

and ω2 are linearly dependent over R, that is ω2{ω1 P R, is uninteresting. On one hand,
if ω2{ω1 P Q, f has a simple period. On the other hand, ω2{ω1 R Q, f is constant. Now
we only consider the case when ω1 and ω2 are linearly independent over R. We will do
a normalization. Let τ “ ω2{ω1 P C. Since Im(ω1) and Im(ω2) have opposite sign and
τ P C, we could assume that Im(τ) ą 0. Now let F pzq “ fpω1zq. Observe that f has
two periods ω1 and ω2 if and only if F has two periods 1 and τ . f is a meromorphic
function if and only if F is a meromorphic function. Thus we may assume without loss
of generality that f is a meromorphic function on C with periods 1 and τ with Im(τ)
ą 0.

Definition 1.43. Let λ1 and λ2 be R-linearly independent. A lattice Λ in the complex
plane C is a set of points of the form

Λ “ tmλ1 ` nλ2 | m,n P Zu.

We say that λ1 and λ2 are generators of the lattice Λ and let us denote Λ˚ “ Λ´t0u.

Example 1.44. The lattice generated by λ1 “ 1 and λ2 “ i coincides with Zris, the
Gaussian integers.

Definition 1.45. Let Λ and Γ be two lattices. We say that lattices Λ and Γ are similar
if there is a nonzero complex number a such that Γ “ aΛ where aΛ “ taλ | λ P Λu.

Notice that similarity of lattices is an equivalence relation.

Proposition 1.46. Let λ1, λ2 P C ´ t0u so that Impλ2{λ1q ą 0. Consider the lattice
Λ “ tmλ1`nλ2 |m,n P Zu. If τ “ λ2{λ1, then Λ is similar to the lattice tm`nτ |m,n P
Zu.
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Proof. Let us choose λ1 P Λ so that λ1 ‰ 0. Now,

λ1Γ “ tλ1γ | γ P Γu “ tλ1pm` nτq | m,n P Zu “ tmλ1 ` nλ2 | m,n P Zu “ Λ.

Remark 1.47. By Proposition 1.46, it will be indistinguishable to consider tλ1, λ2u or
t1, τu as the set of generators of Λ.

Figure 1.2: The lattice generated by 1 and τ

Definition 1.48. We say Λ is a real lattice if Λ̄ “ Λ, that is, the complex conjugate of
every element in Λ belongs again to Λ. The lattice Λ is square if iΛ “ Λ. Equivalently,
there exist generators λ1, λ2 of Λ so that λ1 ą 0 and λ2 “ iλ1.

Definition 1.49. A closed, connected subset Q of the complex plane is said a funda-
mental region for Λ if

1. for each z P C, Λ contains at least one point in the same Λ-orbit as z;

2. no two points in the interior of Λ are in the same orbit.

If Q is any fundamental region for Λ, then for any s P C, the set

Q` s “ tz ` s | z P Qu

is also a fundamental region. Usually, we choose Q to be a polygon with finite number
of parallel sides. In this case we call Q a period parallelogram for Λ.

Example 1.50. Given the lattice Λ “ tm ` nτ | m,n P Zu with Impτq ą 0, then the
period parallelogram is given by P0 “ tz P C | z “ a` bτ, 0 ď a ă 1, 0 ď b ă 1u.

Let us denote the upper-half plane H in the complex plane as below:

H “ tz P C | Impzq ą 0u.
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Lemma 1.51. The two series

paq
ÿ

pm,nq‰p0,0q

1

p|m| ` |n|qr
and pbq

ÿ

m`nτPΛ˚

1

|m` nτ |r

converge whenever r ą 2.

Proof. (a) We will sum in m first and then in n. For any n ‰ 0, we have

ÿ

mPZ

1

p|m| ` |n|qr
“

1

|n|r
` 2

ÿ

mě1

1

p|m| ` |n|qr

“
1

|n|r
` 2

ÿ

kě|n|`1

1

kr

ď
1

|n|r
` 2

ż 8

|n|

dx

xr

ď
1

|n|r
` C

1

|n|r´1
.

Thus, for any r ą 2, we have

ÿ

pm,nq‰p0,0q

1

p|m| ` |n|qr
“

ÿ

m‰0

1

|m|r
`

ÿ

n‰0

ÿ

mPZ

1

p|m| ` |n|qr

ď
ÿ

m‰0

1

|m|r
`

ÿ

n‰0

ˆ

1

|n|r
` C

1

|n|r´1

˙

ă 8.

We used the fact that each series converges since the p-series converges whenever p ą 1.

(b) To prove this part, it is enough to show that there exists a positive constant c
for which

|n| ` |m| ď c|n`mτ |

for all m,n P Z. For any two real numbers x and y, we write that x ĺ y if there is a
positive constant α such that x ď αy. We also write x « y if x ĺ y and y ĺ x. Notice
that for any two positive numbers A and B, we have

pA2
`B2

q
1{2
« A`B.

Indeed, we have A ď pA2 ` B2q1{2 and B ď pA2 ` B2q1{2, so A ` B ď 2pA2 ` B2q1{2.
On the other hand, we have A2 `B2 ď pA`Bq2. Then pA2 `B2q1{2 ď A`B.
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We get the following observation:

|n| ` |m| « |n`mτ | whenever τ P H.

Indeed, if τ “ s` it with s, t P R and t ą 0, then

|n`mτ | “ rpn`msq2 ` pmtq2s1{2 « |n`ms| ` |mt| « |n`ms| ` |m| « |n| ` |m|.

Theorem 1.52. An entire doubly periodic function is constant.

By the result of the Theorem 1.52, we are only interested in doubly periodic mero-
morphic functions.

Definition 1.53. An elliptic function is a non-constant doubly-periodic meromorphic
function.

Given an elliptic function f with periods 1 and τ , we could consider the associated
lattice Λ “ tm` nτ | m,n P Zu. Then we obtain the following properties of an elliptic
function.

Theorem 1.54. The total number of poles of an elliptic function on a period parallel-
ogram P0 is greater than or equal to 2, counting multiplicity.

Such a number is called order of the elliptic function.

Theorem 1.55. Every elliptic function of order m has m zeros in P0.

For the proofs of Theorem 1.54 and Theorem 1.55 can be found in [12].

1.3.2 The Weierstrass ℘ function

Definition 1.56. Let Λ “ tmλ1 ` nλ2 | m,n P Zu be a lattice where λ1 and λ2 are
R-linearly independent. The Weierstrass ℘ function over the lattice Λ is defined by

℘pzq “ ℘Λpzq “
1

z2
`

ÿ

λPΛ˚

„

1

pz ´ λq2
´

1

λ2



.

Notice that ℘ is an even function. Indeed,

℘p´zq “
1

p´zq2
`

ÿ

λPΛ˚

„

1

p´z ´ λq2
´

1

λ2



“
1

z2
`

ÿ

λPΛ˚

„

1

pz ` λq2
´

1

λ2



“ ℘pzq.
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Proposition 1.57. ℘ is a meromorphic function with double poles at its lattice points.

Proof. To prove that ℘ is a meromorphic function on C with poles at its lattice points,
let us suppose |z| ă R for R any positive real number. Then we the expression of ℘
can be written as

℘pzq “
1

z2
`

ÿ

|λ|ď2R

„

1

pz ´ λq2
´

1

λ2



`
ÿ

|λ|ą2R

„

1

pz ´ λq2
´

1

λ2



.

First, notice that the first term exhibits poles at the lattice points in the disc |z| ă R.
For the second term, for any |z| ă R and for any |λ| ą 2R, we have

ˇ

ˇ

ˇ

ˇ

1

pz ´ λq2
´

1

λ2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2λz ´ z2

λ2pλ´ zq2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

z
`

2´ z
λ

˘

λ3
`

1´ z
λ

˘2

ˇ

ˇ

ˇ

ˇ

ď
10R

|λ|3
.

By Lemma 1.51, taking r “ 3, we obtain
ř

λPΛ˚

10R

|λ|3
converges on |z| ă R. So the second

sum defines a holomorphic function on |z| ă R. Since R is arbitrary, we conclude that
the Weierstrass ℘ function is meromorphic with poles at its lattice points.

Proposition 1.58. The Weierstrass ℘ function is doubly periodic with periods deter-
mined by the generators of lattice Λ.

Proof. Without lost of generality, assume Λ has generators 1 and τ . By differentiating
term by term the series defining ℘, we can obtain a series for ℘1:

℘1pzq “ ´2
ÿ

λPΛ

1

pz ´ λq3
. (1.2)

By Lemma 1.51, taking r “ 3, the differentiated series converges absolutely on C´ Λ.
It can be seen clearly that the derivative of ℘ has two periods, 1 and τ . Then it follows
that there exist real numbers a and b such that

℘pz ` 1q “ ℘pzq ` a and ℘pz ` τq “ ℘pzq ` b.

Plugging z “ ´1{2 and z “ ´τ{2 into above equations respectively, we obtain

℘p1{2q “ ℘p´1{2q ` a and ℘pτ{2q “ ℘p´τ{2q ` b.

Since ℘ is even, we have ℘p1{2q “ ℘p´1{2q and ℘pτ{2q “ ℘p´τ{2q. Then it follows
immediately that a “ b “ 0. Thus we obtain ℘pz ` 1q “ ℘pzq and ℘pz ` τq “ ℘pzq.
Hence, ℘ is doubly periodic with periods 1 and τ .
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By Propositions 1.57 and 1.58, we conclude that ℘ “ ℘Λ is an elliptic function with
periods given by the generators of Λ and has double poles at the lattice points.

Let Critpfq denote the set of critical points of f , that is,

Critpfq “ tz P Dpfq | f 1pzq “ 0u.

If z0 is a critical point then fpz0q is called a critical value of f .

Proposition 1.59. In the period parallelogram P0,

Critp℘|P0q “ t1{2, τ{2, p1` τq{2u.

Proof. By expression given in Equation 1.2, it is clear that ℘1 is odd. Since ℘1 is doubly
periodic with periods 1 and τ , we have

℘1p1{2q “ ℘1pτ{2q “ ℘1pp1` τq{2q “ 0.

Indeed, for example, ℘1p1{2q “ ´℘1p´1{2q “ ´℘1p´1{2 ` 1q “ ´℘p1{2q. From the
expression in Equation 1.2, we see that ℘1 has triple poles in the period parallelogram
at zero. In other words, we say that ℘1 is of order 3. So the three points 1{2, τ{2 and
p1`τq{2 are only three roots of ℘1 in the period parallelogram. Moreover, each of them
has multiplicity 1.

Let us denote
ω1 “ 1{2, ω2 “ τ{2, ω3 “ p1` τq{2.

℘p1{2q “ e1, ℘pτ{2q “ e2, ℘
`

p1` τq{2
˘

“ e3.

Remark 1.60. In the whole complex plane, the equation ℘pzq “ ej has double roots
z “ ωj ` Λ, for any λ P Λ, since ℘ is Λ-periodic. In particular, the three numbers e1,
e2 and e3 are distinct. Indeed, if some two of these are equal, then ℘ has at least four
roots in the fundamental parallelogram which is a contradiction since ℘ is of order 2.

The derivative ℘1 squared can be written as a polynomial in ℘ in the following
theorem.

Theorem 1.61. The function p℘1q2 can be written as a cubic polynomial in term of ℘,
namely

p℘1q2 “ 4p℘´ e1qp℘´ e2qp℘´ e3q.
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Proof. Let F pzq “ p℘pzq ´ e1qp℘pzq ´ e2qp℘pzq ´ e3q. In the fundamental parallelogram
P0, F pzq “ 0 if and only if ℘pzq “ e1, ℘pzq “ e2 or ℘pzq “ e3. By Remark 1.60, we have
z P tω1, ω2, ω3u and each root has multiplicity 2. By Proposition 1.59, ℘1 has roots at
these half periods with multiplicity 1. It follows that p℘1q2 has double roots at ω1, ω2

and ω3. We also observe that F has poles of order 6 at the lattice points since ℘ has
poles of order 2 there. And since ℘1 has poles of order 3 at half periods, then p℘1q2 also

has poles of order 6. We conclude that
p℘1q2

F
is holomorphic. Furthermore, we have

p℘1q2

F
pz ` 1q “

p℘1q2pz ` 1q

F pz ` 1q

“
p℘1q2pzq

p℘pz ` 1q ´ e1qp℘pz ` 1q ´ e2qp℘pz ` 1q ´ e3q

“
p℘1q2pzq

F pzq

“
p℘1q2

F
pzq.

and we do similarly for period τ . Then
p℘1q2

F
is constant by Theorem 1.52. We have

℘pzq “ 1
z2
` Opz2q and ℘1pzq “ ´ 2

z3
` Opzq, then near the origin, we have

℘1pzq2

F pzq
“ 4.

Therefore, p℘1pzqq2 “ 4F “ 4p℘pzq ´ e1qp℘pzq ´ e2qp℘pzq ´ e3q.

The elliptic function ℘Λ satisfies the following homogeneity condition: for any
z P Λ and any k P C´ t0u,

℘kΛpkzq “
1

k2
℘Λpzq. (1.3)

1.3.3 Modular character of elliptic functions and Eisenstein
series

Let us consider the lattice Λ “ tm` nτ | m,n P Zu with Impτq ą 0.

Proposition 1.62. We have two properties as follow:

paq ℘τ pzq “ ℘τ`1pzq and pbq ℘´1{τ “ τ 2℘τ pτzq.



CHAPTER 1. PRELIMINARIES 22

Proof. (a) By definition of ℘τ , we have

℘τ pzq “
1

z2
`

ÿ

λPΛ˚

„

1

pz ´ λq2
´

1

λ2



“
1

z2
`

ÿ

pm,nq‰p0,0q

„

1

pz ´ pm` nτqq2
´

1

pm` nτq2



.

Then

℘τ`1 “
1

z2
`

ÿ

pm,nq‰p0,0q

„

1

pz ´m´ n´ nτq2
´

1

pm` n` nτq2



“
1

z2
`

ÿ

pm,nq‰p0,0q

„

1

pz ´m´ nτq2
´

1

pm``nτq2



“ ℘τ pzq.

(b) We have

℘τ pτzq “
1

τ 2z2
`

ÿ

λPΛ˚

„

1

pτz ´ λq2
´

1

λ2



.

τ 2℘τ pτzq “
1

z2
` τ 2

ÿ

λPΛ˚

„

1

pτz ´ λq2
´

1

λ2



“
1

z2
`

ÿ

λPΛ˚

„

1

pz ´ λ
τ
q2
´
`τ

λ

˘2



“
1

z2
`

ÿ

λPΛ˚

„

1

pz ´ λ
τ
q2
´

ˆ

1
λ
τ

˙2

.

Since λ “ m` nτ , then λ
τ
“ m

τ
` n and τ

λ
“ τ

m`nτ
“ 1

m
τ
`n

. Then we have

τ 2℘τ pτzq “
1

z2
`

ÿ

pm,nq‰p0,0q

„

1

pz ´ m
τ
´ nq2

´
1

pm
τ
` nq2



.

On the other hand,

℘´ 1
τ
pzq “

1

z2
`

ÿ

pm,nq‰p0,0q

„

1

pz ´m` n
τ
q2
´

1

p´m` n
τ
q2



.

Hence we have ℘1{τ pzq “ τ 2℘pτzq.
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Definition 1.63. The Eisenstein series of order k is defined by

Ek “ Ekpτq “
ÿ

λPΛ˚

1

λk
“

ÿ

pm,nq‰p0,0q

1

pm` nτqk

where k ě 3 and τ P C with Impτq ą 0.

Now we provide some properties of the Eisenstein series as follow.

Proposition 1.64. Each Eisenstein series satisfies the following:

1) Ekpτq converge if k ě 3 and is holomorphic in H “ tτ P C | Impτq ą 0u.

2) Ekpτq “ 0 if k is odd.

3) Ekpτ ` 1q “ Ekpτq and Ekp´
1
τ
q “ τ kEkpτq.

Proof. 1) This is the consequence of Lemma 1.51 taking k ě 3.
2) For k odd, we have

Ekpτq “
ÿ

pm,nq‰p0,0q

1

pm` nτqk

“
ÿ

pm,nq‰p0,0q

1

p´m´ nτqk

“ ´
ÿ

pm,nq‰p0,0q

1

pm` nτqk

“ ´Ekpτq.

Hence, Ekpτq “ 0 whenever k is odd.
3)

Ekpτ ` 1q “
ÿ

pm,nq‰p0,0q

1

pm` nτ ` nqk

“
ÿ

pm,nq‰p0,0q

1

pm` n` nτqk

“
ÿ

pm,nq‰p0,0q

1

pm` nτqk

“ Ekpτq.
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Ekp´
1

τ
q “

ÿ

pm,nq‰p0,0q

1

rm` np´ 1
τ
qsk

“ τ´k
ÿ

pm,nq‰p0,0q

1

pmτ ´ nqk

“ τ´k
ÿ

pm,nq‰p0,0q

1

pm` nτqk

“ τ´kEkpτq.

Proposition 1.65. The numbers Ekpτq for k even appear as coefficients in the power
series expansion of ℘Λ around the origin, namely

℘Λpzq “
1

z2
`

8
ÿ

k“1

p2k ` 1qE2k`2z
2k
pτq. (1.4)

Proof. We have by definition, ℘pzq “
1

z2
`

ř

λPΛ˚

„

1

pz ´ λq2
´

1

λ2



. The geometric series

of
1

1´ λ
is given by

1

1´ λ
“ 1` λ` λ2

` ¨ ¨ ¨

for | λ |ă 1. Then
1

p1´ λq2
“ 1 ` 2λ ` 3λ2 ` ¨ ¨ ¨ “

ř

0ď`ď8

p` ` 1qλ` for | λ |ă 1. For

| z |ă| λ |, then
| z |

| λ |
ă 1. It follows that

1

p1´
z

λ
q2
“

ÿ

0ď`ď8

p`` 1qp
z

λ
q
`.

Then
1

pz ´ λq2
“

1

pλ´ zq2
“

1

λ2

ř

0ď`ď8

p`` 1qp
z

λ
q` “

1

λ2
`

1

λ2

ř

1ď`ď8

p`` 1qp
z

λ
q`. We can
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now write

℘pzq “
1

z2
`

ÿ

λPΛ˚

ÿ

1ď`ď8

p`` 1q
z`

λ``2

“
1

z2
`

ÿ

1ď`ď8

p`` 1qp
ÿ

ωPΛ˚

1

ω``2
qz`

“
1

z2
`

ÿ

1ď`ď8

p`` 1qE``2z
`.

Hence, ℘pzq “ 1
z2
`

ř

1ďkď8

p2k ` 1qE2k`2z
2k “ 1

z2
` 3E4z

2 ` 5E6z
4 ` ¨ ¨ ¨ near 0.

From the power expansion in (1.4) we can infer the following result.

Proposition 1.66. There exist values g2 “ 60E4 and g3 “ 140E6 that satisfy the
equation

p℘1Λpzqq
2
“ 4p℘Λpzqq

3
´ g2℘Λpzq ´ g3, (1.5)

for all z P C.

Proof. By Equation (1.3) we have

℘1pzq “ ´
2

z3
` 6E4z ` 20E6z

3
` ¨ ¨ ¨ .

Then

p℘1pzqq2 “
4

z6
´

24E4

z2
´ 80E6 ` ¨ ¨ ¨ , and

p℘1pzqq3 “
1

z6
`

9E4

z2
` 15E6 ` ¨ ¨ ¨ .

We now have

p℘1pzqq2 ´ 4p℘pzqq3 ` 60E4℘pzq ` 140E6

“
4

z6
´

24E4

z2
´ 80E6 ´

4

z6
´

36E4

z2
´ 60E6 `

60E4

z2
` 180E2

4z
2
` 300E4E6z

4
` 140E6

“ 300E4E6z
4
` 180E2

4z
2,

which is a polynomial, so it is holomorphic on a neighborhood of the origin. In fact, it is
entire. Notice that the difference is also doubly periodic. By Theorem 1.52 we conclude
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that it is constant. Also at the origin, p℘1p0qq2 ´ 4p℘p0qq3 ` 60E4℘p0q ` 140E6 “ 0.
Thus it follows that it is identically zero. Denote

g2 “ 60E4 “ 60
ÿ

λPΛ˚

1

λ4
and g3 “ 140E6 “ 140

ÿ

λPΛ˚

1

λ6
.

Hence,
p℘1pzqq2 “ 4p℘pzqq3 ´ g2℘pzq ´ g3.



Chapter 2

Sharkovskii’s theorem

The aim of this chapter is to provide a complete proof of the Sharkovskii’s Theorem
which was published in [10]. We will consider a real continuous function acting over
the real line and examine the enforcement of its periods. The proof presented here is
based on P. Stefan’s work in [11] where he introduced the study of graphs that encode
admissible transitions. All intervals in this chapter are supposed to be non-trivial.

2.1 Preparatory Lemmas

Definition 2.1. Let f : R Ñ R be a continuous real-valued function on the real line.
Let I, J Ă R be intervals. The interval I f-covers interval J if fpIq Ą J . We write
I Ñ J .

Lemma 2.2. Let I and J be closed intervals. If I f-covers J , then there exists a closed
subinterval K Ă I such that fpKq “ J , fpintpKqq “ intpJq and fpBKq “ BJ .

Proof. Let J “ rb1, b2s with b1 ă b2. Then b1 “ fpa1q and b2 “ fpa2q for some a1 and
a2 in I with a1 ‰ a2. Assume first that a1 ă a2.
Let x1 “ suptx | a1 ď x ď a2, fpxq “ b1u. Since x1 is the supremum, there is a sequence
(possibly constant) of xn with a1 ď xn ď a2 and fpxnq “ b1 such that

lim
nÑ8

xn “ x1.

By continuity of f , fp lim
nÑ8

xnq “ lim
nÑ8

fpxnq “ lim
nÑ8

b1 “ b1. Thus fpx1q “ b1. It follows

that x1 ă a2 for if x1 “ a2 then fpa2q “ b1 contradicting fpa2q “ b2 and b2 ‰ b1.
Let x2 “ inftx | x1 ď x ď a2, fpxq “ b2u. Similarly, it follows that fpx2q “ b2. Now
assume that a2 ă a1. Let x1 “ infta2 ď x ď a1, fpxq “ b1u and x2 “ supta2 ď x ď

27
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x1, fpxq “ b2u. Thus fptx1, x2uq “ tb1, b2u. Let K “ rx1, x2s. We get fpBKq “ BJ .
And fpintpKqq X BpJq “ fppx1, x2qq X tb1, b2u “ H. It follows that fpintpKqq “ intpJq
and therefore fpKq “ J .

Lemma 2.3. (i) Let a, b P R such that a ‰ b, fpaq ą a, fpbq ă b and ra, bs Ă Dpfq,
domain of f . Then there exists a fixed point between a and b.
(ii) If I, J are closed intervals with I Ă J and I Ñ J , then f has a fixed point in I.

Proof. (i) Let gpxq “ fpxq ´ x. Then gpaq “ fpaq ´ a ą 0 and gpbq “ fpbq ´ b ă 0. By
Intermediate Value Theorem, there exists a point c between a and b such that gpcq “ 0,
so fpcq “ c. Therefore there is a fixed point between a and b.
(ii) Since I Ñ J , by Lemma 2.2, there is K “ rx1, x2s Ă I (with x1 ă x2) such that
fpKq “ J “ ra, bs. We have now two possibilities.
a. fpx1q “ a ď x1 and fpx2q “ b ě x2, or b. fpx1q “ b ą x1 and fpx2q “ a ă x2.

If fpx1q “ x1 or fpx2q “ x2 we are done. The remaining cases fpx1q ă x1, fpx2q ą x2

and fpx1q ą x1, fpx2q ă x2 follow from part (i). Therefore, f has a fixed point in I.

Corollary 2.4. If I Ñ I, then f has a fixed point in I.

Lemma 2.5. Let I0 Ñ I1 Ñ ¨ ¨ ¨ Ñ In “ I0 be a loop with Ij Ñ Ij`1 for all j “
0, 1, ¨ ¨ ¨ , n´ 1.

(i) Then there exists a fixed point x0 of fn with f jpx0q P Ij for all j “ 0, 1, ¨ ¨ ¨ , n.

(ii) Suppose further that: (1) this loop is not a product loop formed by going p times
around a shorter loop of length m where mp “ n, and (2) intpIjqX intpIkq “ H unless
Ij “ Ik.

If the periodic point x0 P intpI0q, then it has a least period n.

Proof. First we will prove the following statement:
There exists a subinterval Kl Ă I0 such that for i “ 1, 2, ¨ ¨ ¨ , l,

f ipKlq Ă Ii, f
ipintpKlqq Ă intpIiq and f lpKlq “ Il.

We will give a proof by induction on l. Now for the case l “ 1, it is true by Lemma
2.2, that is, there exists K1 Ă I0 such that fpintpK1qq Ă intpI1q and fpK1q “ I1.
Suppose that the statement is true for l´1. That is, there exists such a Kl´1 Ă I0. Then
f lpKl´1q “ fpf l´1pKl´1qq “ fpIl´1q Ą Il. By Lemma 2.2, there exists a subinterval
Kl Ă Kl´1 such that f lpKlq “ Il and f lpintpKlqq “ intpIlq. Adding the induction
assumption, there exists Kl Ă Kl´1 Ă I0 such that for all i “ 1, 2, ¨ ¨ ¨ , l ´ 1, l we get
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f ipKlq Ă f ipKl´1q Ă Ii, f
ipintpKlqq Ă f ipintpKl´1qq Ă intpIiq and f lpKlq “ Il.

Therefore, the statement is proved.
Now for the case l “ n we obtain fnpKnq “ In “ I0. By Corollary 2.4, there is a

fixed point x0 P Kn for fn. Since x0 P Kn Ă I0, it follows that for each j “ 0, 1, ..., n,
f jpx0q P Ij. This proves part (i).

For part (ii), if x0 P intpI0q and since fnpintpKnqq “ intpI0q, then x0 P intpKnq and
f jpx0q P intpIjq for j “ 1, 2, ¨ ¨ ¨ , n. Since the loop is not a product one, it implies that
x0 must have period n.

Definition 2.6. The Sharkovskii’s ordering is the ordering of the natural numbers in
the following form:

3 Ź 5 Ź 7 Ź ¨ ¨ ¨

2 ¨ 3 Ź 2 ¨ 5 Ź 2 ¨ 7 Ź ¨ ¨ ¨

22
¨ 3 Ź 22

¨ 5 Ź 22
¨ 7 Ź ¨ ¨ ¨

... Ź
... Ź

... Ź
...

2m ¨ 3 Ź 2m ¨ 5 Ź 2m ¨ 7 Ź ¨ ¨ ¨

2m`1
¨ 3 Ź 2m`1

¨ 5 Ź 2m`1
¨ 7 Ź ¨ ¨ ¨

... Ź
... Ź

... Ź
...

2m`1
Ź 2m Ź ¨ ¨ ¨ Ź 22

Ź 2 Ź 1

Remark 2.7. In the Sharkovskii’s ordering, all odd integers greater than 1 are posi-
tioned in backward order by the symbol Ź. Then, all integers which are two times an
odd integer follow. Next, all odd integers times increasing powers of two follow. Finally,
all the integers that are the power of two are added. It turns out that this ordering
seem strange but it expresses the forcing of period in the Sharkovskii’s Theorem.

Definition 2.8. If n and k are two positive integers such that n Ź k in Sharkovskii’s
ordering, we say that period n forces period k.

2.2 Proof

Theorem 2.9. (Sharkovskii’s Theorem) Let I Ă R be an interval. Let f : I Ñ R
be a continuous function. If f has a periodic point of least period n and n Ź k in the
above ordering, then f has a periodic point of least period k.
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Remark 2.10. The requirement for period in the statement of the theorem is neces-
sarily least. For example, if f has a fixed point at x0, then x0 is trivially a periodic
point of period 5, so f should also have a point of period 7 which is not necessarily
true.

Definition 2.11. For a given closed subinterval I Ă R, let A “ tI1, I2, ¨ ¨ ¨ , Iru be a
finite partition of I into closed intervals Ij with disjoint interiors, j “ 1, 2, ¨ ¨ ¨ , r. A
transition graph of f for the partition A is a directed graph with vertices representing
Ij and directed edges defined from Ij to Ik if Ij Ñ Ik.

We shall prove the theorem by using Stefan’s technique found in [11]. He had the
idea to prove the existence of an orbit on the real line with a special pattern. Let x P I
be a periodic point of f of least period n ą 1 such that

fn´1
pxq ă fn´3

pxq ă ¨ ¨ ¨ ă f 4
pxq ă f 2

pxq ă x ă fpxq ă f 3
pxq ă ¨ ¨ ¨ ă fn´4

pxq ă fn´2
pxq.

A periodic point with such an ordering of its orbit on the real line is called Stefan cycle.
Lemma 2.12 will prove its existence. Now let us denote I1 “ rx, fpxqs, I2 “ rf

2pxq, xs
and

I2j´1 “ rf
2j´3

pxq, f 2j´1
pxqs,

I2j “ rf
2j
pxq, f 2j´2

pxqs

for j “ 2, 3, ¨ ¨ ¨ , n´1
2

. By continuity of the function f , we will have (i) I1 covers I1 and I2,
(ii) Ij covers Ij`1 for j “ 2, ¨ ¨ ¨ , n´ 2 and (iii) In´1 covers Ij for j odd. The existence
of Stefan cycle proves that the transition graph of f for the partition A contains a
special subgraph called Stefan transition graph as given in Figure 2.2. Lemma 2.5
and Stefan transition graph will prove the period forcing in the Sharkovskii’s ordering.

Figure 2.1: Stefan Cycle
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Figure 2.2: Stefan Transition Graph

Lemma 2.12. Let n be an odd integer and n ą 1. Suppose that f has a point x of
least period n and suppose that for any odd value 1 ă k ă n, f has no periodic points
of period k. Let J “ rminpOpxqq,maxpOpxqqs. Let A be the partition of J by the
elements of Opxq.

Then the transition graph of f for A contains a transition subgraph of the following
form:

(i) I1 covers I1 and I2

(ii) Ij covers Ij`1 for 2 ď j ď n´ 2, and

(iii) In´1 covers Ij for j odd.

Proof. First, we label the elements in the orbit of x in increasing order, so that Opxq “
tx1, x2, ¨ ¨ ¨ , xnu with x1 ă x2 ă ¨ ¨ ¨ ă xn. Since fpxnq “ xj for some j “ 1, 2, ¨ ¨ ¨ , n´1,
then fpxnq ă xn. Similarly, we have fpx1q ą x1 since fpx1q “ xj for some j “
2, 3, ¨ ¨ ¨ , n.
Let a “ maxty P Opxq | fpyq ą yu. Clearly, a ‰ xn. Let b be the next point in the
orbit larger than a. Let I1 “ ra, bs. Notice that I1 P A and is the candidate for the
Lemma 2.12.

We divide the proof into several claims as follow.

Claim 2.12.1. The image of I1 covers itself, that is, I1 Ñ I1.
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Proof. We have fpaq ą a, so fpaq ě b. Also, fpbq ă b, so fpbq ď a. Then fpI1q Ą I1.
This means that I1 Ñ I1.

Claim 2.12.2. The pn´ 2q-image of I1 covers J , that is, fn´2pI1q Ą J .

Proof. Since fpI1q Ą I1, then fk`1pI1q Ą fkpI1q for k P N, so the iterates are nested.
Since the number of points in Opxq ´ ta, bu is n´ 2, then xn P f

kpI1q for some 0 ď k ď
n ´ 2. By the nested property, xn P f

n´2pI1q. Similarly, we get x1 P f
n´2pI1q. Since

I1 “ ra, bs and it is connected, then fn´2pI1q Ą J .

Claim 2.12.3. There exists K0 P A such that K0 ‰ I1 and K0 Ñ I1.

Proof. Since n is odd, there are more elements of Opxq on one side of intpI1q than the
other. Let

P “ txi P Opxq | xi is on the side of IntpI1q with more elementsu.

There exist y1 and y2 P P such that fpy1q P P and fpy2q P Opxq´P . Let K0 “ ry1, y2s

by assuming that y1 ă y2. Then fpK0q Ą I1 and K0 ‰ I1.

Claim 2.12.4. There exists a loop

I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ Ik Ñ I1

with I2 ‰ I1. The shortest such loop with k ě 2 has k “ n´ 1.

Proof. Let K0 be as in Claim 2.12.3. So we get fpK0q Ą I1 by Claim 2.12.3 and
fn´2pI1q Ą K0 by Claim 2.12.2. There are only n ´ 1 distinct intervals in A, so there
exists such a loop with 2 ď k ď n´ 1. Now suppose that 2 ď k ă n´ 1. Since the loop
is the shortest, none of intervals can be repeated and it cannot be shortened. Then k
or k ` 1 is odd. Let m be this odd integer so 3 ď m ď n´ 3.
Consider the loop with m intervals

I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ Ik Ñ I1

or

I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ Ik Ñ I1 Ñ I1

depending on m “ k or m “ k`1. Then fmpzq “ z. By Lemma 2.5 (i), there is a point
z such that fmpzq “ z. Suppose z P BI1. Then this point has period n ą m which is a
contradiction. Thus z P intpI1q. By Lemma 2.5 (ii), so z has least period m. Since m
is odd, this contradicts the fact that n is maximal. Therefore, k “ n´ 1.

For the remaining proof, we fix I1, I2, ¨ ¨ ¨ , In´1 as in Claim 2.12.4.
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Claim 2.12.5. (i) If fpIjq Ą I1, then j “ 1 or n´ 1.
(ii) For j ą i` 1, there is no directed edge from Ii to Ij in a transition graph.
(iii) The interval I1 covers only I1 and I2.

Proof. For part (i), if j “ 1, then fpI1q Ą I1 by Claim 2.12.1.
If j ‰ 1, then j “ n ´ 1 by Claim 2.12.4. (ii) and (iii) follows from the fact that the
loop is the shortest one.

Claim 2.12.6. Either (i) the ordering (in the sense of the real line) of the intervals Ij
in the loop of Claim 2.12.4 is

In´1 ď In´3 ď ¨ ¨ ¨ ď I2 ď I1 ď I3 ď ¨ ¨ ¨ ď In´2

and the order of the orbit is

fn´1paq ă fn´3paq ă ¨ ¨ ¨ ă f 2paq ă a ă fpaq ă f 3paq ă ¨ ¨ ¨ ă fn´4paq ă fn´2paq or

(ii) Both of these orderings are exactly reversed.

Proof. I1 covers only I1 and I2 by Claim 2.12.5 (iii). So I1 and I2 are next to each
other. Otherwise I1 covers other intervals.
Assume I2 ď I1 (the other possibility gives the reverse order). From here it follows
that fpaq “ b and fpbq is the left endpoint of I2. Next, fpBI2q “ BI3. Since one of the
endpoints is fpaq “ b which is above the int(I1), then the other endpoint is above the
int(I1). By claim 2.12.5 (i), we have I2 Û I1 and (ii), we have I2 Û Ij for j ą 3. Then
I3 must be adjacent to I1. Continuing the argument by induction. For k ă n ´ 1 ,
Ik Û I1 and Ik Û Ij for j ą k ` 1. Then Ik`1 must be adjacent to Ik´1. And therefore
the claim is proved

Claim 2.12.7. In´1 covers all Ij for all j odd.

Proof. Let In´1 “ rfn´1paq, fn´3paqs. Then fpfn´1paqq “ fnpaq “ a and fn´3paq P
In´3. So fpfn´3paqq “ fn´2paq P In´2. Therefore fpIn´1q Ą ra, f

n´2paqs “ I1 Y I3 Y

¨ ¨ ¨ Y In´2. Therefore, In´1 Ñ Ij for j odd.

Now we begin the proof of Sharkovskii’s Theorem.

Proof. Case 1 : Assume n ą 1 is odd and maximal in the Sharkovskii’s ordering. If
nŹ k, then f has a periodic point of period k.

Case 1.1 : k ă n and k is even.
Consider In´1 Ñ In´k Ñ In´k`1 Ñ ¨ ¨ ¨ Ñ In´1 of length k. By Lemma 2.5 (i), there
exists x0 P In´1 such that fkpx0q “ x0.
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If x0 P BIn´1, then x0 has period n contradicting that k ă n. Then x0 P int(In´1).
Therefore x0 has period k by Lemma 2.5 (ii).

Case 1.2 : k ą n and k is either even or odd.
Consider I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ In´1 Ñ I1 Ñ I1 Ñ ¨ ¨ ¨ Ñ I1 of length k. There exists x0 P I1

such that fkpx0q “ x0. If x0 P BI1, then x0 has period n. By Lemma 2.5, n|k and this
implies k ě 2n ě n` 3. Since fnpx0q P I1 then fn`1px0q R I1 which contradicts Lemma
2.5 (i). So x0 R BI1. Therefore, x0 has period k by Lemma 2.5 (ii).

Case 2 : n “ 2m and nŹ k with k “ 2s, 0 ď s ă m.

Case 2.1 : s “ 0, that is, f has a fixed point.
We have fpaq ě b and fpbq ă b. Then fpbq ď a. Thus fpI1q Ą I1 where I1 “ ra, bs.
By Corollary 2.4, it follows that f has a fixed point in I1. Since endpoints of I1 have
period n ą 1, the fixed point lies in the interior of I1.

Case 2.2 : s “ 1, that is, f has a point of period 2. First we shall prove the following
lemma.

Lemma 2.13. If f has a point of even period, then it has a point of period 2.

Proof. Let J “ rminOpxq,maxOpxqs “ rx1, xns and let I1 “ ra, bs. First suppose
there exists K0 P A such that K0 ‰ I1 and K0 Ñ I1. Then the loop in Claim 2.12.4
contains a shorter loop with 2 ď k ď n ´ 1. Ik covers all Ij on the other sides. Thus
In´1 Ñ In´2 Ñ In´1 is a loop of length 2 and f has a point of period 2.
Now suppose that there does not exist K0 P A with K0 ‰ I1 such that K0 Ñ I1.
Notice first that a ‰ x1. For otherwise suppose that a “ x1. Recall by definition that
a “ maxty P Opxq | fpyq ą yu. So fpx1q ą x1. Then fpx1q ě b and fpxjq ă xj for
all j “ 2, 3, ¨ ¨ ¨ , n. Then fpbq “ fpx2q “ x1 “ a. There exists rb, x3s P A such that
rb, x3s ‰ I1 and rb, x3s Ñ I1. It contradicts to the above assumption. But b could be
either b “ xn or b ă xn.

Case (a) : a ‰ x1 and b ă xn. We first claim the following two facts.
(i) @xj P Opxq, xj ď a we have fpxjq ě b. (ii) @xj P Opxq, xj ě b we have fpxjq ď b.

For part (i), if xj “ a, then fpxjq ą a, that is, fpxjq ě b as b is the next point in the
n-orbit larger than a. If xj ă a, suppose fpxjq ď a. By definition of a, fpaq ě b. Then
there exists an interval K0 “ rxj, as distinct from I1 and such that K0 Ñ I1, which
contradicts the previous assumption. Thus part (i) is proved. For part (ii), if xj “ b,
then fpxjq ď b. If xj ą b, suppose that fpxjq ą b. Thus there exists K0 “ rb, xjs such
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that K0 ‰ I1 but K0 Ñ I1. This again contradicts the above assumption. Thus we
proved the second part.

Now we claim that rx1, as Ñ rb, xns Ñ rx1, as. First suppose that fprx1, asq Č rb, xns.
Then there exists xj P rb, xns such that xj R fprx1, asq. For xj, there exists x̂j P Opxq
such that fpx̂jq “ xj. By item (i), x̂j P rx1, as and so xj “ fpx̂jq P fprx1, asq which is
a contradiction. Thus, fprx1, asq Ą rb, xns. Similarly, suppose that fprb, xnsq Č rx1, as.
Then there exists xk P rx1, as such that xk R fprb, xnsq. For xk, there exists x̃k P Opxq
such that fpx̃kq “ xk. By item (ii), x̃k P rb, xns and so xk “ fpx̃kq P fprb, xnsq which is
a contradiction. Thus fprb, xnsq Ą rx1, as. Therefore, f has a point of period 2.

Case (b) : x1 ă a ă b “ xn.
First let us notice that fpaq “ xn. Indeed, by definition of a, fpaq ą a. So fpaq ě b,
that is, fpaq ě xn but fpaq ď xn, then fpaq “ xn. Furthermore, since b “ xn, then
a “ xn´1. If fpxn´1q “ a, then a is a fixed point which impossible. If fpxnq “ a, that
is, fpbq “ a, then f 2pbq “ fpfpbqq “ fpaq “ b. This shows that b is a point of period
2 which again impossible. Thus fpxkq “ a for some k “ 1, 2, ¨ ¨ ¨ , n ´ 2. Let xj be the
image of b under f , that is, fpbq “ xj. Under the action of f , we have xk Ñ aÑ bÑ xj.

Now we get three possibilities for xj.
(a) For xj “ xk, then a lies in a 3-cycle. Thus we get 2-loop rxj, as Ñ I1 Ñ rxj, as.
Therefore, f has a point of period two in intpI1q since these intervals has empty inter-
section of their interiors.
(b) For xj ă xk, let us consider I2 “ rxk, as. It follows that I2 Ñ I1 Ñ I2. Therefore, f
has a point of period two in intpI1q.
(c) For xj ą xk, let us consider I3 “ rxj, as. It follows that I3 Ñ I1 Ñ I3. Thus, f has
a point of period two in intpI1q. therefore the lemma is proved.

The proof of the Case 2.2 just follows immediately from Lemma 2.13 as 2m is even.

Case 2.3 : n “ 2m, k “ 2s, 1 ă s ă m.
Let g “ fk{2 “ f 2s´1

. Since f has a point x̂ of period 2m, so f 2mpx̂q “ x̂. Then we
have g2m´s`1

px̂q “ pf 2s´1
q2
m´s`1

px̂q “ f 2mpx̂q “ x̂. Then g has a point of period 2m´s`1

which is even with m ´ s ` 1 ě 2 . By Lemma 2.13, g has a point x0 of period 2. So
g2px0q “ pf

2s´1
q2px0q “ f 2spx0q “ x0 and gpx0q “ fk{2px0q “ f 2s´1

px0q ‰ x0. Thus f
has a point x0 of period 2t for some t ď s. For now suppose t ă s. Then x0 is fixed
by g which is impossible. So we obtain t “ s. Therefore, f has point x0 of period 2s “ k.
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Case 3 : n “ 2m ¨ p , p ą 1, p odd, m ě 1, n maximal in the Sharkovskii ordering
and nŹ k.

Case 3.1 : k “ 2s ¨ q, s ě m` 1, q ě 1, q odd.

Figure 2.3: In Case 3.1: k “ 2s ¨ q, s ě m` 1, q ě 1, q odd.

Let g “ f 2m . Since f has a periodic point x0 of period 2m ¨ p, then f 2m¨ppx0q “ x0.
So pf 2mqppx0q “ x0. Thus, g has a periodic point of period p. Since p is odd, by Case
1, g has a point of period 2s´m ¨ q, where s´m ě 1. Therefore f has a point of period
2s ¨ q with s ě m` 1, q ě 1, q odd.

Case 3.2 : k “ 2s, s ď m.

Let g “ fp. Since f has a periodic point x0 of period 2m ¨ p, then f 2m¨ppx0q “ x0. So
pfpq2

m
px0q “ x0. Then g has a periodic point of period 2m. By Case 2, g has a point of

period 2s, 0 ď s ă m. Thus f has a point of period 2s ¨ p with p ą 1, p odd. By Case
3.1, f has a point of period 2t ¨ q with t ě s` 1 and q ě 1, q odd. Choosing t0 ě m` 1
and choosing q “ 1, we obtain f has a point of period 2t0 with s ď m ă t0. By Case 2,
f has a point of period 2s with s ď m.

Case 3.3 : k “ 2m ¨ q, q odd, q ą p.

Let g “ f 2m . Since f has a periodic point x0 of period 2m ¨ p, then f 2m¨ppx0q “ x0.
So pf 2mqppx0q “ x0. Thus, g has a periodic point of period p. By Case 1.2, then g has a
periodic point of period q odd since q ą p. Therefore, f has a periodic point of period
2m ¨ q with q odd, q ą p.
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Figure 2.4: In Case 3.2: k “ 2s, s ď m.

Figure 2.5: In Case 3.3: k “ 2m ¨ q, q odd, q ą p.



Chapter 3

Results

3.1 Introduction

My thesis project has its origin from the article [7] where the authors study parameter
space and dynamics of the family of complex valued functions

Fbpzq “ ℘Λpzq ` b, z, b P C,

where ℘Λ represents the Weierstrass ℘ function defined over a lattice Λ. When Λ is
fixed and the parameter b is restricted to real values, the authors showed that the orbits
of the critical values of Fb lie in the real line, thus in order to understand the dynamics
of Fb, it is enough to study the dynamics of the family of real-valued functions

fbptq “ ℘Λptq ` b, t, b P R.

The global dynamics of Fb|R for real parameters b (and hence of fb : R Ñ R) can be
determined.

Here we will study the dynamics of the Weierstrass ℘Λ function restricted to the
real line under the assumption that Λ is the central lattice.

Recall that Weierstrass ℘ function, ℘Λ : CÑ C, is given by the expression

℘Λpzq “
1

z2
`

ÿ

λPΛ˚

„

1

pz ´ λq2
´

1

λ2



where the sum ranges over all nonzero lattice points λ P Λ, where

Λ “ tmλ1 ` nλ2 | Impλ2{λ1q ą 0, m, n P Zu.

38
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We denote by g2 and g3 the two invariants of the lattice Λ. If g2 ą 0 and g3 “ 0,
then the lattice Λ is called a real square lattice. We recall some of the main properties
of the Weierstrass ℘ function that have been previously discussed in Chapter 1, Section
2. First, ℘Λ is a meromorphic function with double poles at the points of Λ. Second,
℘Λ is doubly periodic with periods λ1 and λ2, the generators of the lattice Λ. Finally,

℘1Λpzq is odd, double periodic and has zeros at
λ1

2
,
λ2

2
,
λ1 ` λ2

2
and all its translation

by Λ.
The last property describes the critical points of ℘Λ which are typically denoted as

ω1 “
λ1

2
, ω2 “

λ2

2
, ω3 “

λ1 ` λ2

2
“ ω1 ` ω2.

The constant κ “ Γp1{4q2

4
?
π
« 1.85407467 appears in the solution of the elliptic integral

ω1 “

ż 8

?
g2
2

dt
a

4t3 ´ g2t
“

κ
?
g2

.

and implies that ℘Λpω1q “

?
g2

2
[1]. If g2 “ p2κq

4
3 , we will see in Proposition 3.2 that

℘Λpω1q “ ω1, that is, the real critical point ω1 is fixed under ℘Λ where Λ is the central
lattice.

Consider the real square central lattice Λ with invariants g2 “ p2κq
4
3 « 5.73953

and g3 “ 0. The aim of the thesis is see whether or not and how far the Sharkovskii’s
theorem applies to the family of fbpxq “ ℘Λpxq ` b, with b P R. Also, in the last part,
we prove that for the case fpxq “ ℘pxq, this function is chaotic on a certain invariant
set on each fundamental interval of definition.

3.2 The central lattice

We begin by establishing some basic properties of real square lattices.

Proposition 3.1. If Λ is a real square lattice, then the critical values of ℘Λ are all real

numbers and are given by e1 “

?
g2

2
, e2 “ ´e1 and e3 “ 0.

Proof. Since any real square lattice is similar to the lattice generated by t1, iu, we
assume without lost in generality that Λ “ tm ` ni | m,n P Zu. First, we note that
g2 ą 0 and g3 “ 0. Indeed, by Proposition 1.63, Eisenstein series of order k satisfy
Ekpτq “ τ´kEkp´1{τq. If τ “ i, then

E6piq “ i´6E6piq “ ´E6piq.



CHAPTER 3. RESULTS 40

Then E6piq “ 0 and so g3 “ 140E6piq “ 0. We have

g2 “ E4piq “
ÿ

pm,nq‰p0,0q

1

pm` niq4

“
ÿ

pm,nq‰p0,0q

m4 ` n4 ´ 6m2n2

|m` in|8
` i

ÿ

pm,nq‰p0,0q

mnpm2 ´ n2q

|m` in|8
.

Using symmetry argument for the imaginary part of E4piq we get ImpE4q “ 0 and a
rearrangement of terms in its real part we obtain RepE4q ą 0. Thus g2 is positive.

The critical values of ℘Λ are given by the expressions

℘Λ

ˆ

1

2

˙

“ e1, ℘Λ

ˆ

i

2

˙

“ e2 and ℘Λ

ˆ

1` i

2

˙

“ e3.

The homogeneity condition in (1.3) for k “ i, combined with the fact that Λ is square
(so iΛ “ Λ), we obtain that, for any z P C,

℘Λpizq “ ℘iΛpizq “ ´℘Λpzq.

This implies that ℘Λpi{2q “ ´℘Λp1{2q, in other words, e2 “ ´e1.
By Theorem 1.61, the differential equation that appears in Proposition 1.66 can be

written in terms of the (distinct) critical values e1, e2 and e3 as

p℘1Λpzqq
2
“ p℘Λpzq ´ e1qp℘Λpzq ´ e2qp℘Λpzq ´ e3q. (3.1)

Expanding the right-hand side of (3.1) and comparing coefficients with the right-hand
side of (1.5), combined with the fact g3 “ 0, g2 ą 0, we obtain the relations

e1 ` e2 ` e3 “ 0, e1e2 ` e1e3 ` e2e3 “ ´
g2

4
, e1e2e3 “ 0.

The last relation implies that one (and only one) of the critical values is zero. Since
e2 “ ´e1, we conclude e3 “ 0. Finally, from the second relation, we obtain

´e2
1 “ ´

g2

4
, hence e1 “

?
g2

2
ą 0,

and all three critical values are real numbers.

If Λ is a real square lattice with generators tλ, iλu for some λ ą 0, then ℘Λ has
a real critical point at λ{2 so that ℘Λpλ{2q “ e1. Moreover, λ{2 can be expressed in
terms of the integral

λ

2
:“

ż 8

e1

dt
a

4t3 ´ g2t
“

Γp1{4q2

4
?
πpg2q

1{4
.
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Proposition 3.2. Given Λ real square lattice generated by tλ, iλu, λ ą 0, there exists
a unique value g2 ą 0 for which the equation ℘Λpλ{2q “ λ{2 is satisfied.

Proof. Let κ “ Γp1{4q2{p4
?
πq so λ{2 “ κ{pg2q

1{4. Since e1 “ ℘Λpλ{2q and Λ is real
square, then solving ℘Λpλ{2q “ λ{2 is equivalent to solve

e1 “

?
g2

2
“

κ

pg2q
1{4
“
λ

2

in terms of g2. A quick computation shows that g2 “ p2κq
4{3 « 5.739529.

Definition 3.3. The center lattice is the real square lattice Λ with generators tλ, iλu
and pg2, g3q as given in Proposition 3.2. That is λ “ 2κ{pg2q

1{4 for g2 « 5.739529.

3.3 Weierstrass ℘ function restricted on R
In this section, we gather properties of the Weierstrass ℘ function restricted on the real
line. In fact, we will study its behavior on each fundamental interval Ij “ pjλ, pj`1qλq
for each j P Z.

Theorem 3.4. The following are equivalent:

1) ℘Λ is a real function, that is, ℘Λpzq “ ℘Λpzq for all z P C.

2) Λ is a real lattice.

3) g2, g3 are real numbers.

The proof of this theorem can be found in [8]. If Λ is a real lattice (for example,
if Λ is the central lattice) then it follows from Theorem 3.4 that ℘Λ|R is a real-valued
function.

The following lemma is based on Lemma 4.7 in [6]. This lemma describes the crucial
properties of ℘ when restricted over the real line. We provide its proof for completeness.

Lemma 3.5. If ℘Λ is real, then it is periodic as a map on R and has infinitely many
critical points and at least one real critical value. There is at least one nonnegative
critical value that is the minimum of ℘ on R. In particular, if er denotes the real critical
value, then ℘|R : RÑ rer,8s is piecewise monotonic and onto.
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Proof. Since ℘Λ is real, then by Theorem 3.4, the lattice Λ is real rectangular. It follows
then that Λ “ tmλ1 ` nλ2 | m,n P Zu with λ1 P R and λ2 P iR. Then it is clear that
the real period of ℘Λ is λ1.

Since the critical points are half lattice points, and the sums of the half lattice
points, then we have λ{2 is the only half period in the fundamental interval. Thus, all
points of the form λ{2`mλ are critical points on the real line where m is an integer.

Since there are infinitely many critical points, one in each fundamental interval,
then their common value is a real critical value. Since ℘1 is strictly increasing, and is
negative to the left of a critical point and positive to the right (in each fundamental
interval), then er is the minimum on R. In particular, if λ is the real period of ℘Λ and
m is any integer, then ℘Λ : pmλ,mλ ` λ{2s Ñ rer,8q is monotonic and onto, as is
℘ : rmλ` λ{2, pm` 1qλq Ñ rer,8q.

Theorem 3.6. Fix a lattice Λ. Then for any z P C´ Λ, we have

℘pz ˘ ωiq “
pei ´ ejqpei ´ ekq

℘pzq ´ ei
` ei.

Remark 3.7. It implies from Theorem 3.6 that for each j P Z, the Weierstrass ℘
function is even on each Ij and symmetric with respect to the vertical line passing
through critical point pj ` 1qλ{2.

From the result of Theorem 3.4 and Theorem 3.6, we can conclude the following
theorem.

Theorem 3.8. For the central lattice Λ, the Weierstrass function ℘Λ : R Ñ R has
following properties.

(i) ℘Λ is continuous, even, strictly monotone, λ-periodic function on each fundamental
interval Ij “ pjλ, pj ` 1qλq for j P Z.

(ii) On each fundamental interval Ij, ℘Λ|Ij attains the minimum value λ{2 at λ{2 ` jλ
for each j P Z.

3.4 Period forcing for Weierstrass ℘ function

In this section, we will consider the family of functions fb defined by

fbpxq “ ℘pxq ` b
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Figure 3.1: Graph of Weierstrass ℘ function restricted to the real line and defined over
the central lattice.

with x, b are real numbers. By Lemma 3.5, if b is given, then we have fbpRq “
p℘ ` bq|RpRq “ rλ{2` b,8s. The smallest integer j that satisfies jλ ą λ{2 ` b or
equivalently j ą b{λ` 1{2 specifies the index of the fundamental interval Ij´1 where b
lies in.

We aim to provide an extension of Sharkovskii’s period forcing theorem even when
the function fb is no longer continuous on its domain.

Notice that for any real number x, we denote the smallest integer greater that x by
rxs and the greatest integer part of x by txu.

Lemma 3.9. The action of fb, b P R, on each interval Ij “ pjλ, pj ` 1qλq, j P Z
determines the following transitions.

(i) For all j ě rb{λ` 1{2s , Ij fb-covers itself and Ik for all k ě rb{λ` 1{2s.

(ii) For j ď tb{λ ` 1{2u, Ij does not fb-covers itself, while for every k ě rb{λ ` 1{2s, Ij
fb-covers Ik.

For convenience, we just consider the case b “ 0. For the other values of b, the
graph of fb is merely a translation of the graph of ℘ up or down b units.

Lemma 3.10. The transition graph of ℘ contains a subgraph with the following con-
ditions.

(i) For all j, k ě 1, Ij ℘-covers Ij itself and Ik; and Ik ℘-covers Ij and itself.
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Figure 3.2: Graph of the derivative of Weierstrass ℘ function same as above.

(ii) For j ď 0, k ě 1, we have Ij ℘-cover Ik.

Proof. (i) It follows form Lemma 3.5 that for each j ě 1 we have ℘pIjq “ rλ{2,8q and
each Ij Ă rλ{2,8q for j ě 1.
(ii) Also, for j ď 0, we have ℘pIjq “ rλ{2,8q which covers any Ik for k ě 1.

In Chapter 2, we proved the very important Lemma 2.5 which ensure the existence
of n-cycle for a continuous function on its domain. Likewise, the following Lemma
guarantees the existence of an n-cycle for the Weierstrass ℘ function, which is continuous
over the real line except at jλ for any j P Z. This Lemma will allow us to find a periodic
point of least period n for the Weierstrass ℘ function. We denote the fundamental
interval Ji for i ě 1 so that Ji “ Ij for some j ě 1.

Lemma 3.11. Let Ji be a fundamental interval for i “ 0, 1, ¨ ¨ ¨ , n and let J0 Ñ J1 Ñ

¨ ¨ ¨ Ñ Jn “ J0 be a loop with Ji Ñ Ji`1 for all i “ 0, 1, ¨ ¨ ¨ , n´ 1.

(i) Then there exists a fixed point x0 in J0 such that ℘mpx0q “ x0 with m � n and m is
the least period.

(ii) Suppose further that this loop is not a product loop formed by going p times around
a shorter loop of length m where mp “ n.

If the periodic point x0 P J0, then ℘ has a least period n.
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Proof. Let us first prove the following statement by induction. There exists a closed
interval Kl Ă J0 such that for each i “ 1, 2, ¨ ¨ ¨ , l,

℘ipKlq Ă Ji, ℘
ipIntpKlqq Ă Ji and ℘lpKlq “ J̄l.

Here, we have Ji “ Ij “ pjλ, pj ` 1qλq for some j.

Case l “ 1: There exists K1 “ ra1, b1s Ă J1 with a1 ă
pj`1qλ

2
ă b1 and ℘pa1q “

℘pb1q “ pj`1qλ. It follows that ℘pK1q Ą J̄1 and K1 Ă J̄1. By Lemma 2.5, it implies that
there is a closed subset L1 Ă K1 Ă J1 such that ℘pL1q “ J̄1, ℘pIntpL1qq Ă IntpJ̄1q “ J1

and ℘pBL1q “ BJ̄1 “ tjλ, pj ` 1qλu.
Case l´1: There exists a closed subset Kl´1 Ă J0 such that for every i “ 1, 2, ¨ ¨ ¨ , l´1,
℘ipKl´1q Ă Ji, ℘

jpIntpKl´1qq Ă Ji and ℘lpKl´1q “ J̄l.

For Case l: we have ℘lpKl´1q “ ℘p℘l´1pKl´1qq “ ℘pJ̄l´1q Ą Īl by Lemma 3.10.
So by Lemma 2.5, there exists a closed subset Kl Ă Kl´1 Ă J0 such that ℘lpKlq “

J̄l, ℘
lpintpKlqq “ Jl and ℘lpBKlq “ tlλ, pl ` 1qλu. Now combining this result with hy-

pothesis from the Case l ´ 1, we proved the statement.

Now in order to prove that ℘n has a fixed point in J0, we just consider the case
l “ n ´ 1. By the previous statement, there is a close subset Kn´1 Ă J0 such that
℘n´1pKn´1q “ J̄n´1. Moreover, ℘pJ̄n´1q “ rλ

2
,8s. Since rλ

2
,8s Ą Ī1, it implies that

℘pJ̄n´1q Ą J̄0. Again, by Lemma 2.2, there exists a closed subset K Ă J̄n´1 such
that ℘pKq “ J̄0. Then there exists a closed subset K0 Ă intpKn´1q Ă J0 such that
℘npK0q “ ℘p℘n´1pK0qq “ ℘pKq “ J̄0. By Corollary 2.4, ℘n has a fixed point in K0 Ă J0.

(ii) Now we have x0 P J0. Since ℘npIntpKnqq “ J0, then x0 P IntpKnq and
℘ipIntpKnqq P Ji for i “ 1, 2, ¨ ¨ ¨n. Also, since the loop is not a product, x0 must
have period n. This competes the proof of the lemma.

Notice that by a complete directed graph pV,Eq where V and E denote the vertice
and the edge, respectively we mean for any pair of vertices, there exists a pair of oppo-
site directed edges adjoining the two vertices.

By Lemma 3.10 (i), it is a complete directed graph. It follows then that it induce a
Stefan cycle and thus the Sharkovskii’s theorem applies to ℘ by Lemma 3.5. Moreover,
by the completeness of the transition graph, there are more properties on period forcing.
More precisely, the forcing period holds for any period.
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Theorem 3.12. Given n and k two positive integers such that nŹk in the Sharkovskii’s
ordering, that is, n forces k. If the Weierstrass ℘ function has a point of odd period n
with n ě 3, then ℘ has a point of period k with nŹ k.

Proof. Case a: k ă n and k even. Consider the loop In´1 Ñ In´k Ñ In´k`1 Ñ ¨ ¨ ¨ In´1

of length pn´1q´pn´kq`1 “ k. By Lemma 3.11 (ii), there exists x0 P In´1, ℘kpx0q “ x0.

Case b: k ą n, k is even or odd. Consider I1 Ñ I2 Ñ ¨ ¨ ¨ Ñ In´1 Ñ I1 Ñ I1 Ñ

¨ ¨ ¨ Ñ I1 of length k. By Lemma 3.11 (ii), there exists x0 P I1 such that ℘kpx0q “ x0.

This theorem provides a complete existence of any n-cycle of ℘.

Theorem 3.13. The Weierstrass ℘-function has a periodic point of period n for n ě 1
on each Ij for all j ě 1.

Proof. Consider the loop Ij Ñ Ij`1 Ñ ¨ ¨ ¨ Ñ In`1`j “ Ij of length n. By Lemma 3.11,
for all j ě 1, then there exists a point x0 P Ij of period n.

The last theorem generalizes the period forcing of ℘ in a broader sense than Sharkovskii’s
ordering.

Theorem 3.14. Any periodic point of least period n ą 1 of the Weierstrass ℘-function
forces periodic points of other least period k ě 1.

Proof. Let x0 be the periodic point of least period n. There are two possibilities for k.

• k ą n : Let us consider the loop J0 Ñ J1 Ñ ¨ ¨ ¨ Ñ Jn “ J0 Ñ J0 ¨ ¨ ¨ Ñ J0 of length
k. Then by Lemma 3.11 (ii), there exists a periodic point x0 P J0 of least period k.

• 1 ď k ă n : Let us consider the loop J0 Ñ J1 Ñ ¨ ¨ ¨ Jk´1 Ñ J0 of length k. Hence,
there also exists a periodic point x0 P J0 of least period k by Lemma 3.11 (ii).

Conclusion: For a family fbpxq “ ℘pxq ` b where x, b are real numbers, the period
forcing provided by Theorem 3.12 holds in any given parameter b. In fact, by complete-
ness of the transition graph provide the period forcing for any period. The noticeable
fact is that the fundamental interval where periodic points lie changes depending on
the parameter b.
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3.5 Chaotic behavior of Weierstrass ℘ function

Let us recall that Theorem 1.26 in Chapter 1, we proved that the quadratic family

Qcpxq “ x2 ` c is chaotic on the invariant set Λ under the assumption c ă ´
5` 2

?
5

4
.

To understand the dynamics of the quadratic family, we constructed a sequence space
of two symbols and the shift map on that new space. Also, we produced the itinerary
map from Λc to Σ2. This map was shown to be a homeomorphism. It is much simpler
to study the dynamics on the sequence space and the itinerary serves as a conjugacy
between those spaces. This leads us to understand the dynamics of the quadratic map
more easily. Now we consider the Weierstrass ℘ function.

Now we will first study the chaotic behavior of ℘ restricted on I0.

Theorem 3.15. The Weierstrass ℘-function restricted on I0 is not chaotic.

Proof. We observe that Ī0 “ r0, λs is separable and of second category. Thus, by
Theorem 1.34, if the dynamical system pI0, ℘q is transitive then it has a dense ℘-
orbit. We will prove that every point in Ī0 has no dense ℘-orbit which proves that
p℘, I0q is not transitive. Since ℘ has a minimum at λ{2, it follows that ℘1pλ{2q “ 0.
Also, we have ℘pλ{2q “ λ{2 so that λ{2 is a fixed point of ℘. It follows that λ{2 is
a superattracting fixed point. Then there is a neighborhood V of λ{2 such that for
every x P V , we have ℘npxq Ñ λ{2 as n Ñ 8. Now if there is x0 P I0 such that
O℘px0q “ tx0, ℘px0q, ℘

2px0q, ¨ ¨ ¨ u is dense in I0, then we have x0 R V . Accordingly,

assume x0 P I0 ´ V and O℘px0q “ I0. Then there is N P N such that ℘Npx0q P V X I0

(the immediate basin of λ{2) but then ℘N`mpx0q Ñ λ{2 as m Ñ 8. This shows that
any point in I0 has no dense ℘-orbit. Thus the Weierstrass ℘ function restricted to I0,
℘|I0 : r0, λs Ñ r0, λs fails the transitivity condition and therefore it is not chaotic on
I0.

Theorem 3.16. For any j ď ´1, the Weierstrass ℘ function restricted on Ij has no
periodic cycle of any period.

Proof. Notice that for any j ď ´1, the Ij is an interval of negative numbers. Also, we
have ℘pIjq “ rλ{2,8q for any j ď ´1. Thus, for each Ij, ℘ maps the negative numbers
to positive numbers. Thus, ℘ has no fixed point on Ij for j ď ´1. Now for any n ą 1,
we have ℘nprλ{2,8qq “ rλ{2,8s. Indeed, we have

℘prλ{2,8qq “ ℘prλ{2, λsq
8
ď

j“1

℘prjλ, pj ` 1qλsq “ rλ{2,8s.
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Thus, the image under ℘ of a negative number becomes positive and subsequent iterates
remains positive. Then, ℘ cannot have a positive cycle over the negative axis.

For each j ě 1, let us consider the Weierstrass ℘ function on each interval Ij. We
have seen that the Weierstrass ℘ function is an even function on each fundamental
interval Ij for j P Z. Also, it attains a minimum at the single critical point pj ` 1q{2
on each interval Ij. Therefore, its graph on each interval is similar to the quadratic
family Qc that we already discuss its dynamics by the help of symbolic dynamics with
two symbols, 0 and 1. As before we are interested in finding the invariant subset of Ij.

By Lemma 3.5, it implies that ℘Λ has two fixed points for all j ě 1. Let Fixp℘Λ|Ijq “

tpj, qju. Since ℘ attains the local minimum at pj ` 1qλ{2, then jλ ă pj ă pj ` 1qλ{2 ă
qj ă pj ` 1qλ.

Lemma 3.17. For each j ě 1, the fixed points pj, qj P Ij are repelling for ℘Λ, Λ the
central lattice.

Proof. Since Λ is the central lattice, then ℘pλ{2q “ ℘pλ` jλq “ λ{2 for all j P Z. The
critical points of ℘|R are exactly the points λ{2` jλ, j P Z. Then all critical points of
℘|R are mapped after one iteration into λ{2. By Theorem 4.6 in [7], ℘|R cannot have
any other attracting or parabolic periodic point in R. Hence pj, qj P Ij for j ě 1 are
repelling.

Let us consider a closed subinterval Jj “ rpj ` 2qλ´ qj, qjs of Ij. Let us defined the
subset A1

j of Jj that leave the interval Jj just after one iteration, that is,

A1
j – tx P Jj | ℘Λpxq R Jju.

Notice that the endpoints of the interval A1
j are p1

j and q1
j which are satisfied the

equation of intersection between the graph of ℘Λ on each interval Ij and the horizontal
line y “ pj ` 2qλ´ qj for j ě 1:

℘Λpxq “ pj ` 2qλ´ qj. (3.2)

Define Anj to be the subset of Jj that leaves the interval Jj after n iterations,

Anj “ tx P Jj | ℘
i
Λpxq P Jj for i “ 1, 2, ¨ ¨ ¨ , n´ 1 but ℘nΛpxq R Jju.

Now let us define the subset of points that never leave Jj for any iteration, namely

Γj “ tx P Jj | ℘
n
pxq P Jj for any n P Nu Ă Ij, j ě 1.
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In other words, we can express Γj as

Γj “ Jj ´
8
ď

n“1

Anj .

It should be noticed that by definition Γj is closed and nonempty. Let us denote
K0
j and K1

j two closed subintervals of Jj on the the left and the right of A1
j so that

K0
j Y A

1
j YK

1
j “ Jj.

Lemma 3.18. For any point x P K0
j YK

1
j , we have |℘1Λpxq| ą 1 for all j ě 1.

Theorem 3.19. For j ě 1, we have Γj is a Cantor set.

Proof. Notice that qj is a fixed point for ℘ so that qj P Γj. For any j ě 2 and n ě 2, we
have Anj “ ℘1´npA1

jq. Recall A1
j “ pp

1
1, q

1
1q which is open as the subset of the real line R.

Also, ℘ is continuous on each fundamental interval Ij. It follows that Anj “ ℘1´npA1
jq

is open for all j ě 2, n ě 2. Since Jj “ rpj ` 2qλ ´ qj, qjs is closed, it implies that Γj
is closed.

Now suppose that Γj contains an interval J of positive length l. For any two distinct
points x, y, the Mean Value Theorem implies that there exists a point z on the open
interval with endpoints x and y such that

ˇ

ˇ℘1pzq
ˇ

ˇ“

ˇ

ˇ℘pxq ´ ℘pyq
ˇ

ˇ

|x´ y|
.

By Lemma 3.18, then it follows that
ˇ

ˇ℘pxq ´ ℘pyq
ˇ

ˇą λ|x ´ y| for some λ ą 1. By
definition of Γj and J Ă Γj, we have ΓjpJq Ă Γj. Then ℘pxq and ℘pyq P Γj with
℘pxq ‰ ˘℘pyq since ℘ is even on each interval with respect to the vertical line passing
through its critical point. Applying Mean Value Theorem again, we have

ˇ

ˇ℘2pxq ´ ℘2pyq
ˇ

ˇ

ˇ

ˇ℘pxq ´ ℘pyq
ˇ

ˇ

ą λ.

Then
ˇ

ˇ℘2pxq ´ ℘2pyq
ˇ

ˇą λ
ˇ

ˇ℘pxq ´ ℘pyq
ˇ

ˇą λ2|x´ y|. For the n iteration, we have

ˇ

ˇ℘npxq ´ ℘npyq
ˇ

ˇą λn|x´ y|.

Then
lim
nÑ8

ˇ

ˇ℘npxq ´ ℘npyq
ˇ

ˇě lim
nÑ8

λn|x´ y|.
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Since |x ´ y| ą 0 and λ ą 1, then λn|x ´ y| Ñ 8. But lim
nÑ8

ˇ

ˇ℘npxq ´ ℘npyq
ˇ

ˇă l and l is

finite. This gives us a contradiction and thus Γj contains no interval. This shows that
Γj is totally disconnected

It remains to prove that Γj is perfect. But we have seen that Γj is closed, it is
enough to prove that it has an isolated point. However, the proof of this part are the
same as the one for the quadratic map Qc provided in Theorem 1.15. Hence, Γj is the
Cantor set for any j ě 1.

Let us define an itinerary map S from the invariant set Γj to the space of two
symbols Σ2. For any x P Γj, let

Spxq “ ps0s1s2 ¨ ¨ ¨ q

where si “ 0 if ℘ipxq P K0
j and si “ 1 if ℘ipxq P K1

j .

Theorem 3.20. The itinerary map S is a homeomorphism with the property that for
any natural number n,

S ˝ ℘n|Γjpxq “ σn ˝ Spxq.

Figure 3.3: The Weierstras ℘-function on I1

Recall that from Proposition 1.23 in Chapter 1, the shift map σ is continuous on Σ2.
Moreover, for any j ě 1, ℘ is continuous on each Jj. Together with the Theorem 3.20,
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we conclude that ℘|Jj for j ě 1 and the shift map σ are conjugate under the conjugacy
S.

Theorem 3.21. Let Λ be a central lattice. Then, for any j ě 1, ℘Λ is chaotic in Γj.

The proof of the theorem is similar to the proof provided for the quadratic map

Qc|Λc whenever c ă ´
5` 2

?
5

4
. For our case, the central lattice guarantees sufficient

expansion of ℘|Γj .
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