CIMAT

Centro de Investigación en Matemáticas, A.C.

CHAOS AND PERIOD FORCING OF A FAMILY OF PIECEWISE MONOTONIC REAL-VALUED FUNCTIONS

T H E S I S

As a requirement to obtain the degree of Master of Science in Mathematics

With speciality in
Pure Mathematics
Thesis presented by Sophea Sin

Under the advise of
Dra. Mónica Moreno Rocha

CHAOS AND PERIOD FORCING OF A FAMILY OF PIECEWISE MONOTONIC REAL-VALUED FUNCTIONS

T H E S I S
As a requirement to obtain the degree of Master of Science in Mathematics

With speciality in
Pure Mathematics
Thesis presented by Sophea Sin

Under the advise of
Dra. Mónica Moreno Rocha

[^0]
Contents

Acknowledgments ii
Introduction iii
1 Preliminaries 1
1.1 Discrete dynamical systems 1
1.1.1 Bifurcations 4
1.1.2 Invariant set Λ_{c} 5
1.2 Symbolic and chaotic dynamics 7
1.2.1 Symbolic dynamics 7
1.2.2 Chaotic dynamics 8
1.3 The Weierstrass \wp function 14
1.3.1 Elliptic functions 14
1.3.2 The Weierstrass \wp function 18
1.3.3 Modular character of elliptic functions and Eisenstein series 21
2 Sharkovskii's theorem 27
2.1 Preparatory Lemmas 27
2.2 Proof 29
3 Results 38
3.1 Introduction 38
3.2 The central lattice 39
3.3 Weierstrass \wp function restricted on \mathbb{R} 41
3.4 Period forcing for Weierstrass \wp function 42
3.5 Chaotic behavior of Weierstrass \wp function 47

Acknowledgments

First of all, I would like to thank my thesis advisor, Dra. Mónica Moreno Rocha of the Centro de Investigación en Matemáticas, A.C.(CIMAT), without whom this thesis could not have been successfully written. She has patiently provided me rigorous explanation, useful feedbacks and comments throughout the thesis process.

I would like to extend my gratitude to professors, staffs of CIMAT who gave us nice lectures and good advice, and also CONACyT for the generous scholarship during the academic years between 2015 and 2017. The special thank goes to CIMAT for providing me additionally financial support for the last two months to complete my thesis process.

I also would like to express my heartfelt thanks to all my friends who helped me to make this possible.

Finally, I must express my very profound gratitude to my parents and all members of my family for providing me with unfailing support and continuous encouragement throughout my years of study and during process of researching and writing this thesis. This accomplishment would not have been possible without them.

Introduction

In this work we consider a family of one-real parameter of piecewise monotone realvalued functions given by $f_{b}(x)=\wp_{\Lambda}(x)+b$, where b is a real parameter and \wp_{Λ} denotes the Weierstrass \wp function defined over a real square lattice Λ, and restricted over the real line.

Each element in the family f_{b} defines a periodic function over the real line with singularities at the integer multiples of its real period. When restricted to a fundamental interval, the family f_{b} exhibits some dynamical similarities to the quadratic family $Q_{c}(x)=x^{2}+c$. One of the main problems addressed in this thesis is to show that under certain conditions on the parameter b and the lattice Λ, f_{b} acts over the real line as a chaotic dynamical system.

The second problem considered in this work is related to Sharkovskii's Theorem, one of the most celebrated theorems in real dynamics. This theorem states a period forcing result: if f is a continuous function over the real line that has a periodic point of period n, then it must also have a periodic point of period k, with k smaller than n in the Sharkovskii ordering. Taking into account that each f_{b} is no longer continuous in the whole real line, we provide a partial period forcing result for the family f_{b} following Sharkovskii's ordering.

Chapter 1 presents fundamental concepts in real discrete dynamical systems. We start by considering the family of quadratic functions defined by

$$
Q_{c}(x)=x^{2}+c
$$

with c is a real parameter. This family serves as a model example that will allow us to understand the dynamical behavior of one-parameter family f_{b} in Chapter 3. As the parameter c changes, the dynamics of Q_{c} also changes remarkably for certain values of c. The noticeable dynamics happens when $c<-2$. But for simplicity, we are interested in studying the family only with the case $c<-\frac{5+2 \sqrt{5}}{4}$. Our aim is to define and understand the properties of a chaotic dynamical system. According to R. L. Devaney in [3] and [4], a dynamical system (X, f) is said to be chaotic if the following three conditions are satisfied: density of periodic points, transitivity and sensitivity to initial conditions. To achieve our purpose, the concept of symbolic dynamics is introduced, which plays a very important role in order to prove a system is chaotic. For this task, we construct an itinerary map that defines a conjugacy between the action of Q_{c} restricted to the invariant set Λ and the symbolic system $\left(\Sigma_{2}, \sigma\right)$. The main result in this section is that each element of the quadratic family is chaotic whenever
$c<-\frac{5+2 \sqrt{5}}{4}$.
Chapter 1 ends with an introduction to elliptic functions and properties of the Weierstrass \wp function, defined by

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda-\{0\}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]
$$

where $\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}$ is a lattice over the complex plane \mathbb{C}. Two straightforward properties of the Weierstrass \wp elliptic function are that λ_{1} and λ_{2} are its periods and has double poles at its lattice points.

In Chapter 2, we provide a complete proof of Sharkovskii's theorem which plays an important role in real dynamics. The Sharkovskii's ordering is an ordering of all natural numbers in a little bit strange way as follows:

$$
3 \triangleright 5 \triangleright 7 \triangleright \cdots \triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright \cdots 2^{p} \triangleright 2^{p-1} \triangleright \cdots 2^{2} \triangleright 2 \triangleright 1 .
$$

The proof is based on the idea of P. Stefan given in [11] and also described in [9]. This technique is based on the action of the function f restricted to a given interval whose image may contain another interval. For an n-cycle with n odd, the transition graph of a function f over a partition of intervals determined by the n-cycle contains a special subgraph called Stefan's transition graph. This allows us to prove the period forcing for a real-valued continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$.

In Chapter 3, we study the dynamics of the family $f_{b}(x)=\wp_{\Lambda}(x)+b$, where Λ is the central real square lattice. This lattice has been introduced in [7] and has the property that the real critical point $\lambda / 2$ is fixed under \wp_{Λ}. Here we provide the main results of our thesis. First, we study the period forcing properties of each element of the family f_{b} for any $b \in \mathbb{R}$. Under this assumption and the restriction of \wp_{Λ} to the real line, we obtain a complete directed graph, whose vertices are fundamental intervals and the arrows represent when the image of one interval under f_{b} contains another interval. Ultimately, we end up that regardless of parameter b, each member f_{b} has the property that for any periodic point of odd period n, then there exists a point of period k with k smaller that n in the Sharkovskii's ordering.

On the other hand, for the second result, we just consider the case $b=0$. It is shown that on each fundamental interval $I_{j}=(j \lambda,(j+1) \lambda)$ for any integer j, the function $\left.\wp\right|_{I_{j}}$ is piecewise monotone and unicritical, thus, dynamically similar to the quadratic family studied in Chapter 1. The results presented in Chapter 1 inspire the
proof that f_{b} exhibits a chaotic behavior when restricted to an invariant subset of the real line. Unlike the quadratic case, each element f_{b} family is piecewise continuous with discontinuities at λ and its integer multiples. However, as Theorem 3.21 shows, on each fundamental interval I_{j} there exists an invariant set Γ_{j} on which $f_{b}: \Gamma_{j} \rightarrow \Gamma_{j}$ is chaotic, for each $j \geqslant 1$.

Chapter 1

Preliminaries

In this section we gather the fundamental concepts of dynamical systems and several necessary results of a particular complex-valued function called Weierstrass \wp function which is an elliptic function with poles on the associated lattice. Here we also mainly discuss the meaning of chaotic dynamical system. The basis of the material that we present in this chapter come principally from [12] and [9].

1.1 Discrete dynamical systems

Through out this work we are only interested in a real-valued function of one variable as encountered in elementary calculus. We will start our work by discussing the quadratic family $Q_{c}(x)=x^{2}+c$ where $c \in \mathbb{R}$ is constant. One of the important questions we will address in this chapter is how the dynamics of the function changes as the parameter changes.

The \mathbf{n}-iteration of a function f is a composition of the function f with itself n times.

Example 1.1. For $Q_{c}(x)=x^{2}+c$, the second iteration of Q_{c} is $Q_{c}^{2}(x)=Q_{c}\left(Q_{c}(x)\right)=$ $\left(x^{2}+c\right)^{2}+c=x^{4}+2 c x^{2}+c^{2}+c$ and so forth.

Let $f: \mathrm{D}(f) \rightarrow \mathbb{R}$ be a real-valued function with domain $\mathrm{D}(f) \subset \mathbb{R}$ an open and non-empty set. Given $x_{0} \in \mathrm{D}(f)$, the orbit of x_{0} under f, denoted by $\mathcal{O}_{f}\left(x_{0}\right)$, is the set

$$
\mathcal{O}_{f}\left(x_{0}\right)=\left\{x_{0}, f\left(x_{0}\right), f^{2}\left(x_{0}\right), \cdots\right\}
$$

whenever the iterate $f^{n}\left(x_{0}\right)$ is defined for all $n>0$. A point x_{0} is called a fixed point if $f\left(x_{0}\right)=x_{0}$. Since the fixed points are roots of the algebraic equation $f(x)=x$, thus geometrically we could examine the fixed points of a function by finding the intersection points between the graph of function and the diagonal line $y=x$.

Another important type of orbit is a periodic orbit or a cycle. A point x_{0} is called periodic point of period $n \in \mathbb{N}$ if $f^{n}\left(x_{0}\right)=x_{0}$ for some n. The minimum n that satisfied this equation is called least period of x_{0}.

A point x_{0} is called eventually fixed and eventually peroidic point if it is not fixed nor periodic but for some point in the orbit of x_{0} it becomes fixed or periodic. In addition, let us look at the following example to see other types of orbit.

Example 1.2. Let f and g be real-valued functions on the real line defined by

$$
f(x)=3 x \text { and } g(x)=x / 3
$$

f and g has a single fixed point at $x=0$. But for any point $x \neq 0$, we have

$$
\begin{aligned}
\left|f^{n}(x)\right| & =\left|3^{n} x\right| \rightarrow \infty \text { as } n \rightarrow \infty \\
\left|g^{n}(x)\right| & =\left|x / 3^{n}\right| \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

We have discussed several types of orbit such as fixed, periodic, eventually fixed, eventually periodic, tending to infinity and tending to a specific value. Still, there are some more complicated orbits as we will see in Section 1.2.2.

Theorem 1.3 (Fixed Point Theorem). Let $f:[a, b] \rightarrow[a, b]$ be continuous. Then there is a fixed point for f in $[a, b]$.

Proof. Let $g(x)=f(x)-x$. Since f is continuous, then g is continuous. Also we have $g(a)=f(a)-a \geqslant 0$ and $g(b)=f(b)-b \leqslant 0$. Then it follows by the Intermediate Value Theorem that there exists a point c with $a<c<b$ such that $g(c)=0$, that is, $f(c)=c$. Hence there is a fixed point for f in $[a, b]$.

Definition 1.4. Let x_{0} be a fixed point for f. There are three remarkable types of fixed points. The point x_{0} is an attracting, repelling or neutral fixed point if $\left|f^{\prime}\left(x_{0}\right)\right|<1$, $\left|f^{\prime}\left(x_{0}\right)\right|>1$ or $\left|f^{\prime}\left(x_{0}\right)\right|=1$, respectively.

We say that the point x_{0} is super-attracting fixed point if $\left|f^{\prime}\left(x_{0}\right)\right|=0$, that is, x_{0} is attracting and also a critical point of f.

Theorem 1.5 (Mean Value Theorem). Suppose that f is real-valued function which a continuous function on the closed interval $[a, b]$ and differentiable at any point on the open interval (a, b). Then there exists c such that $a<c<b$ and

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

This theorem simply says that the slope of line connecting the endpoints of the closed interval is the same as the derivative of the function at some interior point of the interval.

Theorem 1.6 (Attracting Fixed Point Theorem). Let x_{0} be an attracting fixed point for a function f. Then there exists a neighborhood I of x_{0} such that for every $x \in I$ then $f^{n}(x) \in I$ for all $n \in \mathbb{N}$ and moreover $f^{n}(x) \rightarrow x_{0}$ as $n \rightarrow \infty$.

Theorem 1.7 (Repelling Fixed Point Theorem). Let x_{0} be a repelling fixed point for a function f. Then there exists a neighborhood I of x_{0} such that for every $x \in$ $I-\left\{x_{0}\right\}$, there exists $N=N(x) \in \mathbb{N}$ such that $f^{N}(x) \notin I$.

This theorem tells us that for any point in the deleted neighborhood of x_{0}, the iteration will leave that interval for some large enough iteration.

Theorem 1.8 (Chain Rule). Let $x_{0}, x_{1}, \cdots, x_{n-1}$ be a cycle of period n for a function f with $x_{j}:=f^{j}\left(x_{0}\right)$. Then

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=\prod_{j=0}^{n-1} f^{\prime}\left(x_{j}\right)
$$

This theorem allow us to classify a periodic point x_{0} of period n as either attracting, repelling, or neutral by considering absolute value of $\left(f^{n}\right)^{\prime}$ evaluated at any point in the cycle.

Corollary 1.9. Let $x_{0}, x_{1}, \cdots x_{n-1}$ lie on a cycle of period n for a function f. Then

$$
\left(f^{n}\right)^{\prime}\left(x_{0}\right)=\left(f^{n}\right)^{\prime}\left(x_{1}\right)=\cdots=\left(f^{n}\right)^{\prime}\left(x_{n-1}\right) .
$$

Example 1.10. For the quadratic family Q_{c}, we have two fixed points: the solutions of the equation $Q_{c}(x)=x$ are given by $p_{-}=\frac{1}{2}(1-\sqrt{1-4 c})$ and $p_{+}=\frac{1}{2}(1+\sqrt{1-4 c})$. In order to classify these fixed points, observed that $Q_{c}^{\prime}(x)=2 x$. Then

$$
Q_{c}^{\prime}\left(p_{-}\right)=1-\sqrt{1-4 c}, Q_{c}^{\prime}\left(p_{+}\right)=1+\sqrt{1-4 c}
$$

Analyzing the expression of these derivatives, we can conclude the following:

- If $c>1 / 4$, there is no fixed point and all orbits tend to infinity.
- If $c<1 / 4, Q_{c}$ has two fixed points at p_{-}and p_{+}.
- If $c=1 / 4, Q_{c}$ has a single fixed point at $p_{+}=p_{-}=\frac{1}{2}$ that is neutral.

The fixed point p_{+}is always repelling. If $c<-1 / 4$ we can classify p_{-}in terms of c as:

- If $-3 / 4<c<1 / 4, p_{-}$is attracting.
- If $c<-3 / 4, p_{-}$is repelling.
- If $c=-3 / 4, p_{-}$is neutral.

For further discussion see [4].

1.1.1 Bifurcations

Definition 1.11. A one-parameter family of functions F_{c} goes through a saddle-node bifurcation at the parameter value c_{0} if there is an open interval I and an $\epsilon>0$ such that:

1. For $c_{0}<c<c_{0}+\epsilon, F_{c}$ has no fixed points in the interval I.
2. For $c=c_{0}, F_{c}$ has one fixed point in I and this fixed point is neutral.
3. For $c_{0}-\epsilon<c<c_{0}, F_{c}$ has two fixed points in I, one attracting and one repelling.

From the previous analysis of the quadratic family $Q_{c}(x)=x^{2}+c$, we see that Q_{c} goes through a saddle-node bifurcation at $c=1 / 4$ choosing $\epsilon=1 / 2$.

Periodic points of period 2 are the solutions to the equation $Q_{c}^{2}(x)=x$. A quick computation shows the existence of two periodic points of least period 2 given by

$$
q_{-}=\frac{1}{2}(-1-\sqrt{-4 c-3}) \text { and } q_{+}=\frac{1}{2}(-1+\sqrt{-4 c-3}) .
$$

For the family $Q_{c}(x)=x^{2}+c$:

- For $-3 / 4<c<1 / 4, Q_{c}$ has an attracting fixed point at p_{-}and no 2-cycle.
- For $c=-3 / 4, Q_{c}$ has a neutral fixed point at $p_{-}=q_{ \pm}$and no 2-cycle.
- For $-5 / 4<c<-3 / 4, Q_{c}$ has repelling fixed point at p_{-}and attracting 2-cycle at $q_{ \pm}$.

Definition 1.12. A one-parameter family of functions F_{c} goes through a perioddoubling bifurcation at the parameter value $c=c_{0}$ if there is an open interval I and an $\epsilon>0$ such that:

1. For each c in the interval $\left[c_{0}-\epsilon, c_{0}+\epsilon\right]$, there is a unique fixed point p_{c} for F_{c} in I.
2. For $c_{0}<c<c_{0}+\epsilon, p_{c}$ is attracting and F_{c} has no cycles of period 2 in I.
3. For $c_{0}-\epsilon<c<c_{0}$, there is a unique 2-cycle q_{c}^{1}, q_{c}^{2} in I with $F_{c}\left(q_{c}^{1}\right)=q_{c}^{2}$. This 2 -cycle is attracting. Meanwhile, the fixed point p_{c} becomes repelling.
4. As $c \searrow c_{0}$, we have $q_{c}^{i} \rightarrow p_{c_{0}}$.

Thus the quadratic family $Q_{c}(x)=x^{2}+c$ goes through period-doubling bifurcation at $c=-3 / 4$ choosing $\epsilon=1 / 2$.

1.1.2 Invariant set Λ_{c}

In this section we consider only the case when $c<-2$. Form Example $1.10 Q_{c}$ has two fixed points, p_{-}and p_{+}. Let $I=\left[-p_{+}, p_{+}\right]$and let us consider the square formed by vertices $\left(p_{+}, p_{+}\right),\left(-p_{+}, p_{+}\right),\left(p_{+},-p_{+}\right)$and $\left(-p_{+},-p_{+}\right)$. It follows that p_{-}is in the square since $\left|p_{-}\right|<p_{+}$. The intersection points of the graph of quadratic function Q_{c} and the bottom edge of the square are roots of the equation

$$
x^{2}+c=-p_{+} .
$$

Solving this equation we obtain

$$
\begin{equation*}
x_{-}^{1}=-\sqrt{\frac{-2 c-1+\sqrt{1-4 c}}{2}} \text { and } x_{+}^{1}=\sqrt{\frac{-2 c-1+\sqrt{1-4 c}}{2}} . \tag{1.1}
\end{equation*}
$$

Since the quadratic map is even, then $Q_{c}\left(x_{-}^{1}\right)=Q_{c}\left(x_{+}^{1}\right)=\frac{-1+\sqrt{1-4 c}}{2}$, that is, $Q_{c}\left(x_{-}^{1}\right)=$ $Q_{c}\left(x_{+}^{1}\right)=-p_{+}$. Observe that $-p_{+}=-\frac{1}{2}(1+\sqrt{1-4 c})>c$ for $c<-2$. This inequality is equivalent to $4 c(c+2)<0$ whenever $c<-2$. Thus, the points x_{-}^{1} and x_{+}^{1} lie outside the interval $I=\left[-p_{+}, p_{+}\right]$.

Let us denote $A_{1}=\left(x_{-}^{1}, x_{+}^{1}\right)$ the set of points that escape from interval I just after one iteration of Q_{c}. For each $n \geqslant 1$ let

$$
A_{n}=\left\{x \in I \mid Q_{c}^{k}(x) \in I, k=1,2, \cdots, n-1, Q_{c}^{n}(x) \notin I\right\} .
$$

Denote by Λ_{c} the set of points in I that never leave the interval I, that is,

$$
\Lambda_{c}=\left\{x \in I \mid Q_{c}^{n}(x) \in I, \forall n \in \mathbb{N}\right\} .
$$

Notice that p_{-}and p_{+}lie in Λ_{c}.

Definition 1.13. A set C is a Cantor Set if it is nonempty, closed, totally disconnected and perfect. A set is totally disconnected if it contains no interval. A set is perfect if every point in it is an accumulation point or a limit point of other points in the set. Equivalently, a set is perfect if it is closed and contains no isolated points.

Example 1.14. The Cantor Middle-Thirds set is a Cantor set. And any other Cantor set is homeomorphic to the Cantor Middle-Thirds set as the one below.

Theorem 1.15. For $c<-2, \Lambda_{c}$ is nonempty, closed, totally disconnected and perfect.
Proof. First, we have p_{-}and p_{+}are fixed points inside I_{0}. So p_{-}and p_{+}lie in Λ_{c}. Now, notice that $\Lambda_{c}=I-\bigcup_{n=1}^{\infty} A_{n}$ and since A_{n} is open for every $n \in \mathbb{N}$, it follows that Λ_{c} is closed.

Suppose that Λ_{c} contains an interval J with $l=\operatorname{length}(J)>0$ (when $l=0$, the interval J reduces to a point). By Mean Value Theorem, for any two points $x, y \in J$ such that $x \neq \pm y$, then there exists a point z in an open interval with endpoints x and y such that

$$
\left|Q_{c}^{\prime}(z)\right|=\frac{\left|Q_{c}(x)-Q_{c}(y)\right|}{|x-y|} .
$$

For simplicity, let us assume that $c<-\frac{5+2 \sqrt{5}}{4}$. Then for any x lies in I_{0} or I_{1}, we have $\left|Q_{c}^{\prime}(x)\right|>1$. Now we can choose $\lambda>1$ such that $\left|Q_{c}^{\prime}(x)\right|>\lambda$. Then it follows that $\left|Q_{c}(x)-Q_{c}(y)\right|>\lambda|x-y|$. By definition of Λ_{c} and $J \subset \Lambda_{c}$, we have $Q_{c}(J) \subset \Lambda_{c}$. Then $Q_{c}(x)$ and $Q_{c}(y)$ lie in Λ_{c} with $Q_{c}(x) \neq \pm Q_{c}(y)$ since Q_{c} is even. Applying Mean Value Theorem again, we have

$$
\frac{\left|Q_{c}^{2}(x)-Q_{c}^{2}(y)\right|}{\left|Q_{c}(x)-Q_{c}(y)\right|}>\lambda .
$$

Then $\left|Q_{C}^{2}(x)-Q_{C}^{2}(y)\right|>\lambda\left|Q_{c}(x)-Q_{c}(y)\right|>\lambda^{2}|x-y|$. For n iteration, we have

$$
\left|Q_{c}^{n}(x)-Q_{c}^{n}(y)\right|>\lambda^{n}|x-y| .
$$

Then

$$
\lim _{n \rightarrow \infty}\left|Q_{c}^{n}(x)-Q_{c}^{n}(y)\right|>\lim _{n \rightarrow \infty} \lambda^{n}|x-y| .
$$

Since $|x-y|>0$ and $\lambda>1$, then $\lambda^{n}|x-y| \rightarrow \infty$. But $\lim _{n \rightarrow \infty}\left|Q_{c}^{n}(x)-Q_{c}^{n}(y)\right|<l$ and l is finite. This gives us a contradiction and thus Λ_{c} contains no interval.

Finally, we will prove that Λ_{c} is perfect. We have seen that it is closed, so it remains to see that it does not contain an isolated point. First notice that Q_{c} has a single critical point at $x=0$ and the critical value $Q_{c}(0)=c$ lies outside the interval $I=\left[-p_{+}, p_{+}\right]$. Also, the endpoints of the intervals A_{n} belong to Λ_{c} for all $n \geqslant 1$. Moreover, if x is an endpoint of A_{n}, then $Q_{c}^{n}(x)=-p_{+}$and $Q_{c}^{n+1}(x)=p_{+}$. Indeed, if $n=1$ we have $A_{1}=\left(x_{-}^{1}, x_{+}^{1}\right)$ where x_{-}^{1} and x_{+}^{1} given in Equation 1.1. We then have $Q_{c}\left(x_{-}^{1}\right)=Q_{c}\left(x_{-}^{1}\right)=-p_{+}$so that $Q_{c}^{2}\left(x_{-}^{1}\right)=Q_{c}^{2}\left(x_{-}^{1}\right)=p_{+}$. Assume that it is true for case n. To prove the case $n+1$, assume that x is the endpoint of A_{n+1}. Then $x=Q_{c}^{-1}(y)$ for some y which is the endpoint of A_{n}. Now $Q_{c}^{n+1}(x)=Q_{c}^{n+1}\left(Q_{c}^{-1}(y)\right)=Q_{c}^{n}(y)=-p_{+}$ and so $Q_{c}^{n+2}(x)=p_{+}$.
Now, assume $p \in \Lambda_{c}$ is an isolated point. We have two cases as follows. First, if p is not an endpoint of any interval A_{n}, then there exists a sequence of endpoints a_{j} that converges to p. This implies that p is a limit point of elements in Λ_{c}, which is a contradiction. Second, assume p is an endpoint of A_{k} for some $k \geqslant 1$. Then, there exists a neighborhood $N(p)$ of p such that $N(p) \cap A_{k} \neq \varnothing$. Then for every $x \in N(p)$, $Q_{c}^{k}(x)<Q_{c}^{k}(p)=-p_{+}$. This says that p is a local maximum of $Q_{c}^{k} \mid N(p)$. That is, $\left(Q_{c}^{k}\right)^{\prime}(p)=0$ and by the chain rule,

$$
\left(Q_{c}^{k}\right)^{\prime}(p)=\prod_{j=0}^{k-1} Q_{c}^{\prime}\left(Q_{c}^{j}(p)\right)=0
$$

so there must exist at least one $j \in\{0, \ldots, k-1\}$ such that $Q_{c}^{\prime}\left(Q_{c}^{j}(p)\right)=0$. In other words, $Q_{c}^{j}(p)=0$. But then, $Q_{c}^{j+1}(p)=c \notin I$, a contradiction as $p \in \Lambda_{c}$ and hence all its iterates remain in Λ_{c}. We completed the second case and thus the theorem is proved.

Theorem 1.16. Let $c<-2$. The invariant set Λ_{c} for a quadratic map Q_{c} is a Cantor set.

1.2 Symbolic and chaotic dynamics

1.2.1 Symbolic dynamics

Let I_{0} and I_{1} be two closed intervals lying respectively the left and the right of A_{1}, so that $I_{0} \cup A_{1} \cup I_{1}=I$.
Definition 1.17. Let $x \in \Lambda_{c}$. The itinerary of x is the infinite sequence given by

$$
S(x)=\left(s_{0} s_{1} s_{2} \cdots\right)
$$

where $s_{j}=0$ if $Q_{c}^{j}(x) \in I_{0}$ and $s_{j}=1$ if $Q_{c}^{j}(x) \in I_{1}$.

Example 1.18. $S\left(p_{+}\right)=(111 \cdots), S\left(-p_{+}\right)=(011 \cdots)$.
Definition 1.19. The sequence space on two symbols is the set

$$
\Sigma_{2}=\left\{\left(s_{0} s_{1} s_{2} \cdots\right) \mid s_{j}=0 \text { or } 1\right\} .
$$

Let $s=\left(s_{0} s_{1} s_{2} \cdots\right)$ and $t=\left(t_{0} t_{1} t_{2} \cdots\right)$ be two points in Σ_{2}. The distance between s and t is given by

$$
d(s, t)=\sum_{j=0}^{\infty} \frac{\left|s_{j}-t_{j}\right|}{2^{j}}
$$

Proposition 1.20. $\left(\Sigma_{2}, d\right)$ is a metric space, and it is homeomorphic to the Cantor set.

Lemma 1.21. Let $s=\left(s_{j}\right)$ and $t=\left(t_{j}\right)$ be two points in Σ_{2}. If $s_{j}=t_{j}$ for $j=$ $0,1, \cdots, n$, then $d(s, t) \leqslant \frac{1}{2^{n}}$. Conversely, if $d(s, t)<\frac{1}{2^{n}}$, then $s_{j}=t_{j}$ for $j=0,1, \cdots, n$.

Definition 1.22. The shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is defined by

$$
\sigma\left(s_{0} s_{1} s_{2} \cdots\right)=\left(s_{1} s_{2} s_{3} \cdots\right)
$$

Proposition 1.23. The shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is continuous.
Proof. Let $\epsilon>0$ and $s \in \Sigma_{2}$. There is a natural number n such that $\frac{1}{2^{n}}<\epsilon$. We take $\delta=\frac{1}{2^{n+1}}$. Then for any point t in Σ_{2} such that $d(s, t)<\delta$, by Lemma 1.21, we have $s_{j}=t_{j}$ for $j=0,1, \cdots, n+1$. In other words, $t=\left(s_{0} \cdots s_{n+1} t_{n+2} \cdots\right)$. Applying the shift σ on t, we get $\sigma(t)=\left(s_{1} \cdots s_{n+1} t_{n+2} t_{n+3} \cdots\right)$. But $\sigma(s)=\left(s_{1} \cdots s_{n+1} s_{n+2} s_{n+3} \cdots\right)$. Since $\sigma(s)$ and $\sigma(t)$ coincide in the first $n+1$ terms, by Lemma 1.21, we obtain

$$
d(\sigma(s), \sigma(t)) \leqslant \frac{1}{2^{n}}<\epsilon
$$

Hence, this completes the proof.

1.2.2 Chaotic dynamics

Definition 1.24. Let X and Y be topological spaces. Suppose that $F: X \rightarrow X$ and $G: Y \rightarrow Y$ are two continuous functions. We say that F and G are conjugate if there is a homeomorphism $h: X \rightarrow Y$ such that $h \circ F=G \circ h$. The map h is called a conjugacy.

Theorem 1.25. Considering a family of nonempty, closed and bounded intervals $I_{n}=$ $\left[a_{n}, b_{n}\right]$, where $n \in \mathbb{N}$. If for every n, we have $a_{n}<a_{n+1}<b_{n+1}<b_{n}$, then

$$
\bigcap_{n=0}^{\infty} I_{n} \neq \varnothing .
$$

The main goal of this section is to prove the following results.
Theorem 1.26. Suppose $c<-\frac{5+2 \sqrt{5}}{4}$. Then the itinerary map $S: \Lambda_{c} \rightarrow \Sigma_{2}$ is a homeomorphism.

Proof. We will prove that S is one-to-one, onto and continuous together with a continuous inverse S^{-1}.

One-to-one: Let $x, y \in \Lambda_{c}$ with $x \neq y$. Suppose that $S(x)=S(y)$. This means that $Q_{c}^{n}(x)$ and $Q_{c}^{n}(y)$ always lie in the same subinterval I_{0} or I_{1} for every $n \in \mathbb{N}$. We know that Q_{c} is one-to-one on each of these intervals and condition $c<-\frac{5+2 \sqrt{5}}{4}$ implies that $\left|Q_{c}^{\prime}(x)\right|>\lambda>1$ for all $x \in I_{0} \cup I_{1}$ and some λ. Let us assume that the interval $[x, y] \subset I_{0}$. For each $n \in \mathbb{N}, Q_{c}^{n}$ maps interval $[x, y]$ onto interval $\left[Q_{c}^{n}(x), Q_{c}^{n}(y)\right]$. Mean Value Theorem implies that

$$
\left|Q_{c}^{n}(x)-Q_{c}^{n}(y)\right| \geqslant \lambda^{n}|x-y|
$$

Since $\lambda>1$ and thus $\lambda^{n} \rightarrow \infty$, we have a contradiction unless $x=y$. Similarly, we prove the case where $[x, y] \subset I_{1}$. Thus Q_{c} is one-to-one.

Onto: We first introduce the following notation. Let $J \subset I$ be a closed interval. Let

$$
Q_{c}^{-n}(J)=\left\{x \in I \mid Q_{c}^{n}(x) \in J\right\} .
$$

In particular, $Q_{c}^{-1}(J)$ denotes the preimage of J inside I. Notice that if $J \subset I$ is a closed interval, then $Q_{c}^{-1}(J)$ consists of two closed subintervals, one in I_{0} and one in I_{1}. Now let $s=\left(s_{0} s_{1} s_{2} \cdots\right) \in \Sigma_{2}$ be arbitrary. To find $x \in \Lambda_{c}$ with $S(x)=s=\left(s_{0} s_{1} s_{2} \cdots\right)$, we define

$$
I_{s_{0} s_{1} \cdots s_{n}}=\left\{x \in I \mid x \in I_{s_{0}}, Q_{c}(x) \in I_{s_{1}}, \cdots, Q_{c}^{n}(x) \in I_{s_{n}}\right\} .
$$

Since $s_{j}=0$ or 1 for each j, the set $I_{s_{j}}$ is equal to either one of I_{0} or I_{1} depending on the digit s_{j}. We may rewrite $I_{s_{0} s_{1} \cdots s_{n}}$ as follows

$$
\begin{aligned}
I_{s_{0} s_{1} \cdots s_{n}} & =I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1}}\right) \cap \cdots \cap Q_{c}^{-n}\left(I_{s_{n}}\right) \\
& =I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1}} \cap \cdots \cap Q_{c}^{-(n-1)}\left(I_{s_{n}}\right)\right) \\
& =I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1} \cdots s_{n}}\right) .
\end{aligned}
$$

We claim that the $I_{s_{0} s_{1} \cdots s_{n}}$ are closed intervals that are nested. Clearly $I_{s_{0}}$ is a closed interval. By induction we assume that $I_{s_{1} \cdots s_{n}}$ is a closed interval. Then $Q_{c}^{-1}\left(I_{s_{1} \cdots s_{n}}\right)$ consists of a pair of intervals, one in I_{0} and one in I_{1}. In either event, $I_{s_{0}} \cap Q_{c}^{-1}\left(I_{s_{1} \cdots s_{n}}\right)=$ $I_{s_{0} s_{1} \cdots s_{n}}$ is a single closed interval.
These intervals are nested because

$$
I_{s_{0} \cdots s_{n}}=I_{s_{0} \cdots s_{n-1}} \cap Q_{c}^{-n}\left(I_{s_{n}}\right) \subset I_{s_{0} \cdots s_{n-1}} .
$$

Therefore we conclude that

$$
\bigcap_{n=0}^{\infty} I_{s_{0} s_{1} \cdots s_{n}}
$$

is nonempty by Theorem 1.25. Let us choose $x \in \bigcap_{n=0}^{\infty} I_{s_{0} s_{1} \cdots s_{n}}$, then $x \in I_{s_{0}}, Q_{c}(x) \in I_{s_{1}}$, and so forth. Hence $S(x)=\left(s_{0} s_{1} \cdots\right)$. This prove that S is onto.

Note that $\bigcap_{n=0}^{\infty} I_{s_{0} s_{1} \cdots s_{n}}$ consists of a unique point. This follows immediately from the fact that S is one-to-one. In particular, from the hypothesis $c<-\frac{5+2 \sqrt{5}}{4}$, it follows that Q_{c}^{-1} is a strict contraction in I. Then diam $I_{s_{0} s_{1} \cdots s_{n}} \rightarrow 0$ as $n \rightarrow \infty$.

Continuity: Let $x \in \Lambda_{c}$ and suppose that $S(x)=\left(s_{0} s_{1} s_{2} \cdots\right)$. Let $\epsilon>0$ and then pick $n \in \mathbb{N}$ so that $\frac{1}{2^{n}}<\epsilon$. Let J_{n} be closed subinterval $J_{n} \subset I_{s_{n}}$ such that $Q_{c}^{n}(x) \in J_{n}$. Then $Q_{c}^{-1}(x)$ consists of two closed intervals, one in I_{0} and one in I_{1}. Let J_{n-1} be closed subinterval of $I_{s_{n-1}}$ such that $Q_{c}^{n-1}(x) \in J_{n-1}$. We apply this for $0 \leqslant j \leqslant n$ so that we obtain

$$
J_{j} \subset I_{s_{j}} \quad \text { with } \quad Q_{c}^{j}(x) \in J_{j} .
$$

Then for $x, y \in J_{0}$ we have $Q_{c}^{j}(x), Q_{c}^{j}(x) \in J_{j}$ for $j=1,2, \cdots, n$. It follows that $S(y)$ agrees with $S(x)$ in the first $n+1$ terms. By Lemma 1.21, we have

$$
d(S(x), S(y)) \leqslant \frac{1}{2^{n}}<\epsilon
$$

This proves the continuity of S.
Continuity of S^{-1} : Since S is a bijection, then there exists S^{-1}, inverse function of S, defined from Σ_{2} to Λ_{c}. Let $s \in \Sigma_{2}$ and $\epsilon>0$. Then there is $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<\epsilon$. Since S is a bijection, so there is $x \in \Lambda$ such that $s=S(x)$. Take $\delta=\frac{1}{2^{n}}>0$. Suppose $t=S(y) \in \Sigma_{2}$ for some $y \in \Lambda$ such that $d(s, t)<\frac{1}{2^{n}}$. This says that for
$0 \leqslant j \leqslant n, Q_{c}^{j}(x)$ and $Q_{c}^{j}(y)$ always lie on the same interval I_{0} or I_{1}. Let us suppose it is I_{0}. For $c<-\frac{5+2 \sqrt{5}}{4}$, there is $\lambda>1$ such that $\left|Q_{c}^{k}(x)-Q_{c}^{k}(y)\right|>\lambda^{k}|x-y|$ for any k. Equivalently,

$$
|x-y|<\frac{\left|Q_{c}^{k}(x)-Q_{c}^{k}(y)\right|}{\lambda^{k}} .
$$

But $\left|Q_{c}^{k}(x)-Q_{c}^{k}(y)\right|<l=$ length $\left(I_{0}\right)<1$. Then $|x-y|<\frac{l}{\lambda^{k}}<\frac{1}{\lambda^{k}}$. Now choose $k \in \mathbb{N}$ such that

$$
\frac{1}{\lambda^{k}}<\frac{1}{2^{n}}
$$

Then $|x-y|<\frac{1}{2^{n}}<\epsilon$. Equivalently, $\left|S^{-1}(S(x))-S^{-1}(S(y))\right|<\epsilon$. Then,

$$
\left|S^{-1}(s)-S^{-1}(t)\right|<\epsilon
$$

Thus, $S^{-1}: \Sigma_{2} \rightarrow \Lambda_{c}$ is continuous. Hence, S is a homeomorphism.
Theorem 1.27. For any $x \in \Lambda_{c}$, we have $S \circ Q_{c}(x)=\sigma \circ S(x)$.
Proof. Let $x \in \Lambda_{c}$ and let the itinerary of x be given by $S(x)=\left(s_{0} s_{1} s_{2} \cdots\right)$. This means that $Q_{c}^{j}(x) \in I_{s_{j}}$ for $j \geqslant 0$. Then, $\sigma(S(x))=\left(s_{1} s_{2} s_{3} \cdots\right)$. Now, $S\left(Q_{c}(x)\right)=$ $\left(s_{1} s_{2} s_{3} \cdots\right)$.

Corollary 1.28. For any $x \in \Lambda_{c}$ and $n \in \mathbb{N}$, we have $S \circ Q_{c}^{n}(x)=\sigma^{n} \circ S(x)$.

Figure 1.1

From Theorem 1.26 and Theorem 1.27, we can conclude that the itinerary map $S: \Lambda_{c} \rightarrow \Sigma_{2}$ is the conjugacy for σ and Q_{c}.

Theorem 1.29. The shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is conjugate to the quadratic map Q_{c} : $\Lambda_{c} \rightarrow \Lambda_{c}$ whenever $c<-\frac{5+2 \sqrt{5}}{4}$.

Definition 1.30. A dynamical system is transitive if for any pair of points x and y and any $\epsilon>0$ there is a third point z within ϵ of x whose orbit comes within ϵ of y.

Definition 1.31. A dynamical system (X, F) depends sensitively on initial conditions if there is a $\beta>0$ such that for any $x \in X$ and any $\epsilon>0$ there is a $y \in X$ within ϵ of x and an integer k such that the distance between $F^{k}(x)$ and $F^{k}(y)$ is at least β.

Definition 1.32. Let X be a topological space and $F: X \rightarrow X$ be a continuous map. We say that a dynamical system (X, F) is chaotic if:

1. Periodic points for F are dense in X. [Density Property]
2. F is transitive. [Transitivity Property]
3. F depends sensitively on initial conditions. [Sensitivity Property]

The following theorems show the equivalence between being chaotic and the existence of a dense F-orbit when some properties of the space X is added.

Theorem 1.33. If X has no isolated points and it has a dense F-orbit, then the dynamical system (X, F) is transitive.

Theorem 1.34. If X is a separable space, of second category and (X, F) is transitive, then X has a dense F-orbit.

Proposition 1.35. Periodic points under the shift map σ form a dense subset of Σ_{2}.
Proof. Let $s=\left(s_{j}\right) \in \Sigma_{2}$ and $\epsilon>0$. Then there is $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<\epsilon$. Let us consider the sequence of periodic points $\left(t_{j}\right)_{j \geqslant 0}$ with $t_{j}=\left(\overline{s_{0} s_{1} \cdots s_{j}}\right)$. Then for any $j \geqslant n$, we have $d\left(t_{j}, s\right) \leqslant \frac{1}{2^{n}}<\epsilon$. Hence, the set of periodic points of the shift map σ forms a dense subset of Σ_{2}.

Proposition 1.36. The shift map σ is transitive.
Proof. We observe that Σ_{2} has no isolated points. By Theorem 1.33, we need to find a point whose orbit form a dense subset of Σ_{2}. Let us consider

$$
s^{*}=(\underbrace{01}_{1 \text { blocks }} \underbrace{00011011}_{2 \text { blocks }} \underbrace{000001010011100101110111}_{3 \text { blocks }} \cdots) \in \Sigma_{2} .
$$

In words, s^{*} is constructed successively listing all block of 0 's and 1 's of length n and then $n+1$ and so forth. We claim that the orbit of this point forms a dense subset for
the sequence space Σ_{2}. Indeed, let $s=\left(s_{j}\right) \in \Sigma_{2}$ be arbitrary and $\epsilon>0$. Then there exists $n \in \mathbb{N}$ such that $\frac{1}{2^{n}}<\epsilon$. By the expression of s^{*}, we have that there is a block of length $n+1$ consisting $s_{0} s_{1} \cdots s_{n}$. Then there exists some integer k so that

$$
\sigma^{k}\left(s^{*}\right)=\left(s_{0} s_{1} \cdots s_{n} \cdots\right)
$$

Now we see that the first $n+1$ terms of s and $\sigma^{k}\left(s^{*}\right)$ coincide, it follows from Lemma 1.21 that

$$
d\left(\sigma^{k}\left(s^{*}\right), s\right) \leqslant \frac{1}{2^{n}}<\epsilon
$$

Thus, we proved that there is a dense orbit for σ on Σ_{2}.
Proposition 1.37. The shift map σ depends sensitively on initial conditions.
Proof. Let us choose $\beta=1$. Let $s \in \Sigma_{2}$ and ϵ be any positive number. Then again we can find a natural number n such that $\frac{1}{2^{n}}<\epsilon$. Let $t \in \Sigma_{2}$ such that $d(s, t)<\frac{1}{2^{n}}$ with $s \neq t$. Again, by Lemma 1.21, we have $s_{j}=t_{j}$ for $j=0,1, \cdots, n$. Since $s \neq t$, then there exists a natural number k with $k>n$ such that $s_{k} \neq t_{k}$ so that $\left|s_{k}-t_{k}\right|=1$. Now let us find the distance between $\sigma^{k}(x)$ and $\sigma^{k}(y)$:

$$
d\left(\sigma^{k}(x), \sigma^{k}(y)\right)=\sum_{j=0}^{\infty} \frac{\left|s_{j+k}-t_{j+k}\right|}{2^{j}}=1+\sum_{j=1}^{\infty} \frac{\left|s_{j+k}-t_{j+k}\right|}{2^{j}} \geqslant 1 .
$$

This proves that the shift map σ depends sensitively on initial conditions.
From Propositions 1.35, 1.36 and 1.37 we can conclude the following result.
Theorem 1.38. The shift map $\sigma: \Sigma_{2} \rightarrow \Sigma_{2}$ is a chaotic dynamical system.
Lemma 1.39. Let X and Y be two topological spaces. Assume that $f: X \rightarrow Y$ is continuous and onto. If the subset $D \subset X$ is dense, the image of D under f is also dense in Y.

Now we arrive to the main result of this section.
Theorem 1.40. Suppose $c<-\frac{5+2 \sqrt{5}}{4}$, then the quadratic map Q_{c} is chaotic on the invariant set Λ_{c}.

Proof. Density: Σ_{2} has a dense periodic subset D by Proposition 1.35. Since S is a homeomorphism, then in particular we have S^{-1} is onto and continuous from Σ_{2} to Λ. It follows by Lemma 1.39 that $S^{-1}(D) \subset \Lambda_{c}$ is a dense subset. By Corollary 1.28, we
have $S^{-1}(D)$ is the set of periodic points of Q_{c} and it is a dense subset of Λ_{c}. Thus Q_{c} satisfies the density property.

Transitivity: Since Σ_{2} has a point s^{*} whose orbit $\mathcal{O}_{\sigma}\left(s^{*}\right)$ forms a dense subset of Σ_{2}. By Lemma 1.39, we have that $S^{-1}\left(\mathcal{O}_{\sigma}\left(s^{*}\right)\right)=\mathcal{O}_{Q_{c}}\left(S^{-1}\left(s^{*}\right)\right)$ which is dense in Λ_{c} and $S^{-1}\left(s^{*}\right) \in \Lambda_{c}$. Thus, Λ_{c} contains the point $S^{-1}\left(s^{*}\right)$ whose orbit is dense in Λ_{c}. This proves Q_{c} is transitive.

Sensitivity: Let us choose $\beta=\left(x_{+}^{1}-x_{-}^{1}\right) / 2>0$ where x_{-}^{1} and x_{+}^{1} are the end points of A_{1} and are given in Equation 1.1. Now given a point $x \in \Lambda_{c}$ and $\epsilon>0$. Then there is $y \in \Lambda_{c}$ different from x and is within ϵ of x, since Λ_{c} has no isolated point. Since the itinerary map S is injective, then

$$
s=\left(s_{0} s_{1} s_{2} \ldots\right)=S(x) \neq S(y)=\left(t_{0} t_{1} t_{2} \ldots\right)=t
$$

Then there is a natural number k such that $s_{k} \neq t_{k}$. This says that $Q_{c}^{k}(x)$ and $Q_{c}^{k}(y)$ lie in different intervals. Thus the distance between $Q_{c}^{k}(x)$ and $Q_{c}^{k}(y)$ is greater than β, that is, $\left|Q_{c}^{k}(x)-Q_{c}^{k}(y)\right|>\beta$. This shows that the quadratic map Q_{c} depends sensitively on initial conditions.

1.3 The Weierstrass \wp function

1.3.1 Elliptic functions

Definition 1.41. Let Ω be an open set in \mathbb{C} and f be a complex-valued function on Ω. The function f is holomorphic at the point $z_{0} \in \mathbb{C}$ if the quotient

$$
\frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h}
$$

converges to a limit as $h \rightarrow 0$. Notice that $h \in \mathbb{C}$ with $h \neq 0$ and $z_{0}+h \in \Omega$. When the limit exists we denote it by $f^{\prime}\left(z_{0}\right)$ and call it the derivative of f at z_{0} :

$$
f^{\prime}\left(z_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(z_{0}+h\right)-f\left(z_{0}\right)}{h} .
$$

The function f is said to be holomorphic on Ω if f is holomorphic at every point of Ω. If C is a closed subset of \mathbb{C}, we say that f is holomorphic on C if f is holomorphic on some open set containing C. Last, if f is holomorphic in the whole complex plane \mathbb{C}, we say that f is an entire function.

A singularity of a complex function f is a complex number $z_{0} \in \mathbb{C}$ for which f is defined in a deleted neighborhood of z_{0} but not at the point z_{0} itself. We say that f defined on a deleted neighborhood of z_{0} has a pole at z_{0} if the function $1 / f$ is well defined and is holomorphic in the whole neighborhood.

Definition 1.42. A function f on an open set Ω is meromorphic if there exists a sequence of points (not necessarily distinct) $\left\{z_{i}\right\}_{i \in \mathbb{N}} \subset \mathbb{C}$ that has no limit points in Ω, and such that
(i) the function f is holomorphic on $\Omega-\left\{z_{1}, z_{2}, \cdots\right\}$ and
(ii) f has poles at the $\left\{z_{1}, z_{2}, \cdots\right\}$.

A nonzero number $\omega \in \mathbb{C}$ is called a period of f if $f(z+\omega)=f(z)$ for all $z \in \mathbb{C}$. A function f is called doubly periodic if f has two distinct periods, ω_{1} and ω_{2}. If ω_{1} and ω_{2} are linearly dependent over \mathbb{R}, that is $\omega_{2} / \omega_{1} \in \mathbb{R}$, is uninteresting. On one hand, if $\omega_{2} / \omega_{1} \in \mathbb{Q}, f$ has a simple period. On the other hand, $\omega_{2} / \omega_{1} \notin \mathbb{Q}, f$ is constant. Now we only consider the case when ω_{1} and ω_{2} are linearly independent over \mathbb{R}. We will do a normalization. Let $\tau=\omega_{2} / \omega_{1} \in \mathbb{C}$. Since $\operatorname{Im}\left(\omega_{1}\right)$ and $\operatorname{Im}\left(\omega_{2}\right)$ have opposite sign and $\tau \in \mathbb{C}$, we could assume that $\operatorname{Im}(\tau)>0$. Now let $F(z)=f\left(\omega_{1} z\right)$. Observe that f has two periods ω_{1} and ω_{2} if and only if F has two periods 1 and τ. f is a meromorphic function if and only if F is a meromorphic function. Thus we may assume without loss of generality that f is a meromorphic function on \mathbb{C} with periods 1 and τ with $\operatorname{Im}(\tau)$ >0.

Definition 1.43. Let λ_{1} and λ_{2} be \mathbb{R}-linearly independent. A lattice Λ in the complex plane \mathbb{C} is a set of points of the form

$$
\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}
$$

We say that λ_{1} and λ_{2} are generators of the lattice Λ and let us denote $\Lambda^{*}=\Lambda-\{0\}$.
Example 1.44. The lattice generated by $\lambda_{1}=1$ and $\lambda_{2}=i$ coincides with $\mathbb{Z}[i]$, the Gaussian integers.

Definition 1.45. Let Λ and Γ be two lattices. We say that lattices Λ and Γ are similar if there is a nonzero complex number a such that $\Gamma=a \Lambda$ where $a \Lambda=\{a \lambda \mid \lambda \in \Lambda\}$.

Notice that similarity of lattices is an equivalence relation.
Proposition 1.46. Let $\lambda_{1}, \lambda_{2} \in \mathbb{C}-\{0\}$ so that $\operatorname{Im}\left(\lambda_{2} / \lambda_{1}\right)>0$. Consider the lattice $\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}$. If $\tau=\lambda_{2} / \lambda_{1}$, then Λ is similar to the lattice $\{m+n \tau \mid m, n \in$ $\mathbb{Z}\}$.

Proof. Let us choose $\lambda_{1} \in \Lambda$ so that $\lambda_{1} \neq 0$. Now,

$$
\lambda_{1} \Gamma=\left\{\lambda_{1} \gamma \mid \gamma \in \Gamma\right\}=\left\{\lambda_{1}(m+n \tau) \mid m, n \in \mathbb{Z}\right\}=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}=\Lambda
$$

Remark 1.47. By Proposition 1.46, it will be indistinguishable to consider $\left\{\lambda_{1}, \lambda_{2}\right\}$ or $\{1, \tau\}$ as the set of generators of Λ.

Figure 1.2: The lattice generated by 1 and τ

Definition 1.48. We say Λ is a real lattice if $\bar{\Lambda}=\Lambda$, that is, the complex conjugate of every element in Λ belongs again to Λ. The lattice Λ is square if $i \Lambda=\Lambda$. Equivalently, there exist generators λ_{1}, λ_{2} of Λ so that $\lambda_{1}>0$ and $\lambda_{2}=i \lambda_{1}$.

Definition 1.49. A closed, connected subset Q of the complex plane is said a fundamental region for Λ if

1. for each $z \in \mathbb{C}, \Lambda$ contains at least one point in the same Λ-orbit as z;
2. no two points in the interior of Λ are in the same orbit.

If Q is any fundamental region for Λ, then for any $s \in \mathbb{C}$, the set

$$
Q+s=\{z+s \mid z \in Q\}
$$

is also a fundamental region. Usually, we choose Q to be a polygon with finite number of parallel sides. In this case we call Q a period parallelogram for Λ.

Example 1.50. Given the lattice $\Lambda=\{m+n \tau \mid m, n \in \mathbb{Z}\}$ with $\operatorname{Im}(\tau)>0$, then the period parallelogram is given by $P_{0}=\{z \in \mathbb{C} \mid z=a+b \tau, 0 \leqslant a<1,0 \leqslant b<1\}$.

Let us denote the upper-half plane \mathbb{H} in the complex plane as below:

$$
\mathbb{H}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\} .
$$

Lemma 1.51. The two series

$$
\text { (a) } \sum_{(m, n) \neq(0,0)} \frac{1}{(|m|+|n|)^{r}} \text { and (b) } \sum_{m+n \tau \in \Lambda^{*}} \frac{1}{|m+n \tau|^{r}}
$$

converge whenever $r>2$.
Proof. (a) We will sum in m first and then in n. For any $n \neq 0$, we have

$$
\begin{aligned}
\sum_{m \in \mathbb{Z}} \frac{1}{| | m|+|n|)^{r}} & =\frac{1}{|n|^{r}}+2 \sum_{m \geqslant 1} \frac{1}{(|m|+|n|)^{r}} \\
& =\frac{1}{|n|^{r}}+2 \sum_{k \geqslant|n|+1} \frac{1}{k^{r}} \\
& \leqslant \frac{1}{|n|^{r}}+2 \int_{|n|}^{\infty} \frac{d x}{x^{r}} \\
& \leqslant \frac{1}{|n|^{r}}+C \frac{1}{|n|^{r-1}} .
\end{aligned}
$$

Thus, for any $r>2$, we have

$$
\begin{aligned}
\sum_{(m, n) \neq(0,0)} \frac{1}{(|m|+|n|)^{r}} & =\sum_{m \neq 0} \frac{1}{|m|^{r}}+\sum_{n \neq 0} \sum_{m \in \mathbb{Z}} \frac{1}{|m|+|n|)^{r}} \\
& \leqslant \sum_{m \neq 0} \frac{1}{|m|^{r}}+\sum_{n \neq 0}\left(\frac{1}{|n|^{r}}+C \frac{1}{|n|^{r-1}}\right) \\
& <\infty
\end{aligned}
$$

We used the fact that each series converges since the p-series converges whenever $p>1$.
(b) To prove this part, it is enough to show that there exists a positive constant c for which

$$
|n|+|m| \leqslant c|n+m \tau|
$$

for all $m, n \in \mathbb{Z}$. For any two real numbers x and y, we write that $x \leq y$ if there is a positive constant α such that $x \leqslant \alpha y$. We also write $x \approx y$ if $x \leq y$ and $y \leq x$. Notice that for any two positive numbers A and B, we have

$$
\left(A^{2}+B^{2}\right)^{1 / 2} \approx A+B
$$

Indeed, we have $A \leqslant\left(A^{2}+B^{2}\right)^{1 / 2}$ and $B \leqslant\left(A^{2}+B^{2}\right)^{1 / 2}$, so $A+B \leqslant 2\left(A^{2}+B^{2}\right)^{1 / 2}$. On the other hand, we have $A^{2}+B^{2} \leqslant(A+B)^{2}$. Then $\left(A^{2}+B^{2}\right)^{1 / 2} \leqslant A+B$.

We get the following observation:

$$
|n|+|m| \approx|n+m \tau| \text { whenever } \tau \in \mathbb{H} .
$$

Indeed, if $\tau=s+i t$ with $s, t \in \mathbb{R}$ and $t>0$, then

$$
|n+m \tau|=\left[(n+m s)^{2}+(m t)^{2}\right]^{1 / 2} \approx|n+m s|+|m t| \approx|n+m s|+|m| \approx|n|+|m| .
$$

Theorem 1.52. An entire doubly periodic function is constant.
By the result of the Theorem 1.52, we are only interested in doubly periodic meromorphic functions.

Definition 1.53. An elliptic function is a non-constant doubly-periodic meromorphic function.

Given an elliptic function f with periods 1 and τ, we could consider the associated lattice $\Lambda=\{m+n \tau \mid m, n \in \mathbb{Z}\}$. Then we obtain the following properties of an elliptic function.

Theorem 1.54. The total number of poles of an elliptic function on a period parallelogram P_{0} is greater than or equal to 2 , counting multiplicity.

Such a number is called order of the elliptic function.
Theorem 1.55. Every elliptic function of order m has m zeros in P_{0}.
For the proofs of Theorem 1.54 and Theorem 1.55 can be found in [12].

1.3.2 The Weierstrass \wp function

Definition 1.56. Let $\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}$ be a lattice where λ_{1} and λ_{2} are \mathbb{R}-linearly independent. The Weierstrass \wp function over the lattice Λ is defined by

$$
\wp(z)=\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

Notice that \wp is an even function. Indeed,

$$
\wp(-z)=\frac{1}{(-z)^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(-z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z+\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]=\wp(z) .
$$

Proposition 1.57. \wp is a meromorphic function with double poles at its lattice points.
Proof. To prove that \wp is a meromorphic function on \mathbb{C} with poles at its lattice points, let us suppose $|z|<R$ for R any positive real number. Then we the expression of \wp can be written as

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{|\lambda| \leqslant 2 R}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]+\sum_{|\lambda|>2 R}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] .
$$

First, notice that the first term exhibits poles at the lattice points in the disc $|z|<R$. For the second term, for any $|z|<R$ and for any $|\lambda|>2 R$, we have

$$
\left|\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right|=\left|\frac{2 \lambda z-z^{2}}{\lambda^{2}(\lambda-z)^{2}}\right|=\left|\frac{z\left(2-\frac{z}{\lambda}\right)}{\lambda^{3}\left(1-\frac{z}{\lambda}\right)^{2}}\right| \leqslant \frac{10 R}{|\lambda|^{3}}
$$

By Lemma 1.51, taking $r=3$, we obtain $\sum_{\lambda \in \Lambda^{*}} \frac{10 R}{|\lambda|^{3}}$ converges on $|z|<R$. So the second sum defines a holomorphic function on $|z|<R$. Since R is arbitrary, we conclude that the Weierstrass \wp function is meromorphic with poles at its lattice points.

Proposition 1.58. The Weierstrass \wp function is doubly periodic with periods determined by the generators of lattice Λ.

Proof. Without lost of generality, assume Λ has generators 1 and τ. By differentiating term by term the series defining \wp, we can obtain a series for \wp^{\prime} :

$$
\begin{equation*}
\wp^{\prime}(z)=-2 \sum_{\lambda \in \Lambda} \frac{1}{(z-\lambda)^{3}} . \tag{1.2}
\end{equation*}
$$

By Lemma 1.51, taking $r=3$, the differentiated series converges absolutely on $\mathbb{C}-\Lambda$. It can be seen clearly that the derivative of \wp has two periods, 1 and τ. Then it follows that there exist real numbers a and b such that

$$
\wp(z+1)=\wp(z)+a \text { and } \wp(z+\tau)=\wp(z)+b \text {. }
$$

Plugging $z=-1 / 2$ and $z=-\tau / 2$ into above equations respectively, we obtain

$$
\wp(1 / 2)=\wp(-1 / 2)+a \text { and } \wp(\tau / 2)=\wp(-\tau / 2)+b \text {. }
$$

Since \wp is even, we have $\wp(1 / 2)=\wp(-1 / 2)$ and $\wp(\tau / 2)=\wp(-\tau / 2)$. Then it follows immediately that $a=b=0$. Thus we obtain $\wp(z+1)=\wp(z)$ and $\wp(z+\tau)=\wp(z)$. Hence, \wp is doubly periodic with periods 1 and τ.

By Propositions 1.57 and 1.58, we conclude that $\wp=\wp_{\Lambda}$ is an elliptic function with periods given by the generators of Λ and has double poles at the lattice points.

Let $\operatorname{Crit}(f)$ denote the set of critical points of f, that is,

$$
\operatorname{Crit}(f)=\left\{z \in D(f) \mid f^{\prime}(z)=0\right\}
$$

If z_{0} is a critical point then $f\left(z_{0}\right)$ is called a critical value of f.
Proposition 1.59. In the period parallelogram P_{0},

$$
\operatorname{Crit}\left(\left.\wp\right|_{P_{0}}\right)=\{1 / 2, \tau / 2,(1+\tau) / 2\} .
$$

Proof. By expression given in Equation 1.2, it is clear that \wp^{\prime} is odd. Since \wp^{\prime} is doubly periodic with periods 1 and τ, we have

$$
\wp^{\prime}(1 / 2)=\wp^{\prime}(\tau / 2)=\wp^{\prime}((1+\tau) / 2)=0 \text {. }
$$

Indeed, for example, $\wp^{\prime}(1 / 2)=-\wp^{\prime}(-1 / 2)=-\wp^{\prime}(-1 / 2+1)=-\wp(1 / 2)$. From the expression in Equation 1.2, we see that \wp^{\prime} has triple poles in the period parallelogram at zero. In other words, we say that \wp^{\prime} is of order 3 . So the three points $1 / 2, \tau / 2$ and $(1+\tau) / 2$ are only three roots of \wp^{\prime} in the period parallelogram. Moreover, each of them has multiplicity 1 .

Let us denote

$$
\begin{aligned}
\omega_{1} & =1 / 2, \quad \omega_{2}=\tau / 2, \quad \omega_{3}=(1+\tau) / 2 . \\
\wp(1 / 2) & =e_{1}, \quad \wp(\tau / 2)=e_{2}, \quad \wp((1+\tau) / 2)=e_{3} .
\end{aligned}
$$

Remark 1.60. In the whole complex plane, the equation $\wp(z)=e_{j}$ has double roots $z=\omega_{j}+\Lambda$, for any $\lambda \in \Lambda$, since \wp is Λ-periodic. In particular, the three numbers e_{1}, e_{2} and e_{3} are distinct. Indeed, if some two of these are equal, then \wp has at least four roots in the fundamental parallelogram which is a contradiction since \wp is of order 2 .

The derivative \wp^{\prime} squared can be written as a polynomial in \wp in the following theorem.

Theorem 1.61. The function $\left(\wp^{\prime}\right)^{2}$ can be written as a cubic polynomial in term of \wp, namely

$$
\left(\wp^{\prime}\right)^{2}=4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right) .
$$

Proof. Let $F(z)=\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right)$. In the fundamental parallelogram $P_{0}, F(z)=0$ if and only if $\wp(z)=e_{1}, \wp(z)=e_{2}$ or $\wp(z)=e_{3}$. By Remark 1.60, we have $z \in\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ and each root has multiplicity 2. By Proposition 1.59, \wp^{\prime} has roots at these half periods with multiplicity 1 . It follows that $\left(\wp^{\prime}\right)^{2}$ has double roots at ω_{1}, ω_{2} and ω_{3}. We also observe that F has poles of order 6 at the lattice points since \wp has poles of order 2 there. And since \wp^{\prime} has poles of order 3 at half periods, then $\left(\wp^{\prime}\right)^{2}$ also has poles of order 6 . We conclude that $\frac{\left(\wp^{\prime}\right)^{2}}{F}$ is holomorphic. Furthermore, we have

$$
\begin{aligned}
\frac{\left(\wp^{\prime}\right)^{2}}{F}(z+1) & =\frac{\left(\wp^{\prime}\right)^{2}(z+1)}{F(z+1)} \\
& =\frac{\left(\wp^{\prime}\right)^{2}(z)}{\left(\wp(z+1)-e_{1}\right)\left(\wp(z+1)-e_{2}\right)\left(\wp(z+1)-e_{3}\right)} \\
& =\frac{\left(\wp^{\prime}\right)^{2}(z)}{F(z)} \\
& =\frac{\left(\wp^{\prime}\right)^{2}}{F}(z) .
\end{aligned}
$$

and we do similarly for period τ. Then $\frac{\left(\wp^{\prime}\right)^{2}}{F}$ is constant by Theorem 1.52. We have $\wp(z)=\frac{1}{z^{2}}+O\left(z^{2}\right)$ and $\wp^{\prime}(z)=-\frac{2}{z^{3}}+O(z)$, then near the origin, we have $\frac{\wp^{\prime}(z)^{2}}{F(z)}=4$. Therefore, $\left(\wp^{\prime}(z)\right)^{2}=4 F=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right)$.

The elliptic function \wp_{Λ} satisfies the following homogeneity condition: for any $z \in \Lambda$ and any $k \in \mathbb{C}-\{0\}$,

$$
\begin{equation*}
\wp_{k \Lambda}(k z)=\frac{1}{k^{2}} \wp_{\Lambda}(z) . \tag{1.3}
\end{equation*}
$$

1.3.3 Modular character of elliptic functions and Eisenstein series

Let us consider the lattice $\Lambda=\{m+n \tau \mid m, n \in \mathbb{Z}\}$ with $\operatorname{Im}(\tau)>0$.
Proposition 1.62. We have two properties as follow:

$$
\text { (a) } \wp_{\tau}(z)=\wp_{\tau+1}(z) \text { and (b) } \wp_{-1 / \tau}=\tau^{2} \wp_{\tau}(\tau z) \text {. }
$$

Proof. (a) By definition of \wp_{τ}, we have

$$
\begin{aligned}
\wp_{\tau}(z) & =\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] \\
& =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{(z-(m+n \tau))^{2}}-\frac{1}{(m+n \tau)^{2}}\right] .
\end{aligned}
$$

Then

$$
\begin{aligned}
\wp_{\tau+1} & =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{(z-m-n-n \tau)^{2}}-\frac{1}{(m+n+n \tau)^{2}}\right] \\
& =\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{(z-m-n \tau)^{2}}-\frac{1}{(m++n \tau)^{2}}\right] \\
& =\wp_{\tau}(z) .
\end{aligned}
$$

(b) We have

$$
\begin{aligned}
\wp_{\tau}(\tau z) & =\frac{1}{\tau^{2} z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(\tau z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] . \\
\tau^{2} \wp_{\tau}(\tau z) & =\frac{1}{z^{2}}+\tau^{2} \sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(\tau z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right] \\
& =\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{\left(z-\frac{\lambda}{\tau}\right)^{2}}-\left(\frac{\tau}{\lambda}\right)^{2}\right] \\
& =\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{\left(z-\frac{\lambda}{\tau}\right)^{2}}-\left(\frac{1}{\frac{\lambda}{\tau}}\right)^{2}\right] .
\end{aligned}
$$

Since $\lambda=m+n \tau$, then $\frac{\lambda}{\tau}=\frac{m}{\tau}+n$ and $\frac{\tau}{\lambda}=\frac{\tau}{m+n \tau}=\frac{1}{\frac{m}{\tau}+n}$. Then we have

$$
\tau^{2} \wp_{\tau}(\tau z)=\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{\left(z-\frac{m}{\tau}-n\right)^{2}}-\frac{1}{\left(\frac{m}{\tau}+n\right)^{2}}\right]
$$

On the other hand,

$$
\wp_{-\frac{1}{\tau}}(z)=\frac{1}{z^{2}}+\sum_{(m, n) \neq(0,0)}\left[\frac{1}{\left(z-m+\frac{n}{\tau}\right)^{2}}-\frac{1}{\left(-m+\frac{n}{\tau}\right)^{2}}\right] .
$$

Hence we have $\wp_{1 / \tau}(z)=\tau^{2} \wp(\tau z)$.

Definition 1.63. The Eisenstein series of order k is defined by

$$
E_{k}=E_{k}(\tau)=\sum_{\lambda \in \Lambda^{*}} \frac{1}{\lambda^{k}}=\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{k}}
$$

where $k \geqslant 3$ and $\tau \in \mathbb{C}$ with $\operatorname{Im}(\tau)>0$.
Now we provide some properties of the Eisenstein series as follow.
Proposition 1.64. Each Eisenstein series satisfies the following:

1) $E_{k}(\tau)$ converge if $k \geqslant 3$ and is holomorphic in $\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$.
2) $E_{k}(\tau)=0$ if k is odd.
3) $E_{k}(\tau+1)=E_{k}(\tau)$ and $E_{k}\left(-\frac{1}{\tau}\right)=\tau^{k} E_{k}(\tau)$.

Proof. 1) This is the consequence of Lemma 1.51 taking $k \geqslant 3$.
2) For k odd, we have

$$
\begin{aligned}
E_{k}(\tau) & =\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{1}{(-m-n \tau)^{k}} \\
& =-\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{k}} \\
& =-E_{k}(\tau) .
\end{aligned}
$$

Hence, $E_{k}(\tau)=0$ whenever k is odd.
3)

$$
\begin{aligned}
E_{k}(\tau+1) & =\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau+n)^{k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n+n \tau)^{k}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{k}} \\
& =E_{k}(\tau) .
\end{aligned}
$$

$$
\begin{aligned}
E_{k}\left(-\frac{1}{\tau}\right) & =\sum_{(m, n) \neq(0,0)} \frac{1}{\left[m+n\left(-\frac{1}{\tau}\right)\right]^{k}} \\
& =\tau^{-k} \sum_{(m, n) \neq(0,0)} \frac{1}{(m \tau-n)^{k}} \\
& =\tau^{-k} \sum_{(m, n) \neq(0,0)} \frac{1}{(m+n \tau)^{k}} \\
& =\tau^{-k} E_{k}(\tau) .
\end{aligned}
$$

Proposition 1.65. The numbers $E_{k}(\tau)$ for k even appear as coefficients in the power series expansion of \wp_{Λ} around the origin, namely

$$
\begin{equation*}
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{k=1}^{\infty}(2 k+1) E_{2 k+2} z^{2 k}(\tau) . \tag{1.4}
\end{equation*}
$$

Proof. We have by definition, $\wp(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]$. The geometric series of $\frac{1}{1-\lambda}$ is given by

$$
\frac{1}{1-\lambda}=1+\lambda+\lambda^{2}+\cdots
$$

for $|\lambda|<1$. Then $\frac{1}{(1-\lambda)^{2}}=1+2 \lambda+3 \lambda^{2}+\cdots=\sum_{0 \leqslant \ell \leqslant \infty}(\ell+1) \lambda^{\ell}$ for $|\lambda|<1$. For $|z|<|\lambda|$, then $\frac{|z|}{|\lambda|}<1$. It follows that

$$
\frac{1}{\left(1-\frac{z}{\lambda}\right)^{2}}=\sum_{0 \leqslant \ell \leqslant \infty}(\ell+1)\left(\frac{z}{\lambda}\right)^{\ell} .
$$

Then $\frac{1}{(z-\lambda)^{2}}=\frac{1}{(\lambda-z)^{2}}=\frac{1}{\lambda^{2}} \sum_{0 \leqslant \ell \leqslant \infty}(\ell+1)\left(\frac{z}{\lambda}\right)^{\ell}=\frac{1}{\lambda^{2}}+\frac{1}{\lambda^{2}} \sum_{1 \leqslant \ell \leqslant \infty}(\ell+1)\left(\frac{z}{\lambda}\right)^{\ell}$. We can
now write

$$
\begin{aligned}
\wp(z) & =\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}} \sum_{1 \leqslant \ell \leqslant \infty}(\ell+1) \frac{z^{\ell}}{\lambda^{\ell+2}} \\
& =\frac{1}{z^{2}}+\sum_{1 \leqslant \ell \leqslant \infty}(\ell+1)\left(\sum_{\omega \in \Lambda^{*}} \frac{1}{\omega^{\ell+2}}\right) z^{\ell} \\
& =\frac{1}{z^{2}}+\sum_{1 \leqslant \ell \leqslant \infty}(\ell+1) E_{\ell+2} z^{\ell} .
\end{aligned}
$$

Hence, $\wp(z)=\frac{1}{z^{2}}+\sum_{1 \leqslant k \leqslant \infty}(2 k+1) E_{2 k+2} z^{2 k}=\frac{1}{z^{2}}+3 E_{4} z^{2}+5 E_{6} z^{4}+\cdots$ near 0 .

From the power expansion in (1.4) we can infer the following result.
Proposition 1.66. There exist values $g_{2}=60 E_{4}$ and $g_{3}=140 E_{6}$ that satisfy the equation

$$
\begin{equation*}
\left(\wp_{\Lambda}^{\prime}(z)\right)^{2}=4\left(\wp_{\Lambda}(z)\right)^{3}-g_{2} \wp_{\Lambda}(z)-g_{3}, \tag{1.5}
\end{equation*}
$$

for all $z \in \mathbb{C}$.
Proof. By Equation (1.3) we have

$$
\wp^{\prime}(z)=-\frac{2}{z^{3}}+6 E_{4} z+20 E_{6} z^{3}+\cdots .
$$

Then

$$
\begin{aligned}
& \left(\wp^{\prime}(z)\right)^{2}=\frac{4}{z^{6}}-\frac{24 E_{4}}{z^{2}}-80 E_{6}+\cdots, \text { and } \\
& \left(\wp^{\prime}(z)\right)^{3}=\frac{1}{z^{6}}+\frac{9 E_{4}}{z^{2}}+15 E_{6}+\cdots .
\end{aligned}
$$

We now have

$$
\begin{aligned}
& \left(\wp^{\prime}(z)\right)^{2}-4(\wp(z))^{3}+60 E_{4} \wp(z)+140 E_{6} \\
& =\frac{4}{z^{6}}-\frac{24 E_{4}}{z^{2}}-80 E_{6}-\frac{4}{z^{6}}-\frac{36 E_{4}}{z^{2}}-60 E_{6}+\frac{60 E_{4}}{z^{2}}+180 E_{4}^{2} z^{2}+300 E_{4} E_{6} z^{4}+140 E_{6} \\
& =300 E_{4} E_{6} z^{4}+180 E_{4}^{2} z^{2},
\end{aligned}
$$

which is a polynomial, so it is holomorphic on a neighborhood of the origin. In fact, it is entire. Notice that the difference is also doubly periodic. By Theorem 1.52 we conclude
that it is constant. Also at the origin, $\left(\wp^{\prime}(0)\right)^{2}-4(\wp(0))^{3}+60 E_{4} \wp(0)+140 E_{6}=0$. Thus it follows that it is identically zero. Denote

$$
g_{2}=60 E_{4}=60 \sum_{\lambda \in \Lambda^{*}} \frac{1}{\lambda^{4}} \text { and } g_{3}=140 E_{6}=140 \sum_{\lambda \in \Lambda^{*}} \frac{1}{\lambda^{6}} .
$$

Hence,

$$
\left(\wp^{\prime}(z)\right)^{2}=4(\wp(z))^{3}-g_{2} \wp(z)-g_{3} .
$$

Chapter 2

Sharkovskii's theorem

The aim of this chapter is to provide a complete proof of the Sharkovskii's Theorem which was published in [10]. We will consider a real continuous function acting over the real line and examine the enforcement of its periods. The proof presented here is based on P. Stefan's work in [11] where he introduced the study of graphs that encode admissible transitions. All intervals in this chapter are supposed to be non-trivial.

2.1 Preparatory Lemmas

Definition 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous real-valued function on the real line. Let $I, J \subset \mathbb{R}$ be intervals. The interval I f-covers interval J if $f(I) \supset J$. We write $I \rightarrow J$.

Lemma 2.2. Let I and J be closed intervals. If I f-covers J, then there exists a closed subinterval $K \subset I$ such that $f(K)=J, f(\operatorname{int}(K))=\operatorname{int}(J)$ and $f(\partial K)=\partial J$.

Proof. Let $J=\left[b_{1}, b_{2}\right]$ with $b_{1}<b_{2}$. Then $b_{1}=f\left(a_{1}\right)$ and $b_{2}=f\left(a_{2}\right)$ for some a_{1} and a_{2} in I with $a_{1} \neq a_{2}$. Assume first that $a_{1}<a_{2}$.
Let $x_{1}=\sup \left\{x \mid a_{1} \leqslant x \leqslant a_{2}, f(x)=b_{1}\right\}$. Since x_{1} is the supremum, there is a sequence (possibly constant) of x_{n} with $a_{1} \leqslant x_{n} \leqslant a_{2}$ and $f\left(x_{n}\right)=b_{1}$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{1} .
$$

By continuity of $f, f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} b_{1}=b_{1}$. Thus $f\left(x_{1}\right)=b_{1}$. It follows that $x_{1}<a_{2}$ for if $x_{1}=a_{2}$ then $f\left(a_{2}\right)=b_{1}$ contradicting $f\left(a_{2}\right)=b_{2}$ and $b_{2} \neq b_{1}$. Let $x_{2}=\inf \left\{x \mid x_{1} \leqslant x \leqslant a_{2}, f(x)=b_{2}\right\}$. Similarly, it follows that $f\left(x_{2}\right)=b_{2}$. Now assume that $a_{2}<a_{1}$. Let $x_{1}=\inf \left\{a_{2} \leqslant x \leqslant a_{1}, f(x)=b_{1}\right\}$ and $x_{2}=\sup \left\{a_{2} \leqslant x \leqslant\right.$
$\left.x_{1}, f(x)=b_{2}\right\}$. Thus $f\left(\left\{x_{1}, x_{2}\right\}\right)=\left\{b_{1}, b_{2}\right\}$. Let $K=\left[x_{1}, x_{2}\right]$. We get $f(\partial K)=\partial J$. And $f(\operatorname{int}(K)) \cap \partial(J)=f\left(\left(x_{1}, x_{2}\right)\right) \cap\left\{b_{1}, b_{2}\right\}=\varnothing$. It follows that $f(\operatorname{int}(K))=\operatorname{int}(J)$ and therefore $f(K)=J$.

Lemma 2.3. (i) Let $a, b \in \mathbb{R}$ such that $a \neq b, f(a)>a, f(b)<b$ and $[a, b] \subset D(f)$, domain of f. Then there exists a fixed point between a and b.
(ii) If I, J are closed intervals with $I \subset J$ and $I \rightarrow J$, then f has a fixed point in I.

Proof. (i) Let $g(x)=f(x)-x$. Then $g(a)=f(a)-a>0$ and $g(b)=f(b)-b<0$. By Intermediate Value Theorem, there exists a point c between a and b such that $g(c)=0$, so $f(c)=c$. Therefore there is a fixed point between a and b.
(ii) Since $I \rightarrow J$, by Lemma 2.2, there is $K=\left[x_{1}, x_{2}\right] \subset I$ (with $x_{1}<x_{2}$) such that $f(K)=J=[a, b]$. We have now two possibilities.
a. $f\left(x_{1}\right)=a \leqslant x_{1}$ and $f\left(x_{2}\right)=b \geqslant x_{2}$, or b. $f\left(x_{1}\right)=b>x_{1}$ and $f\left(x_{2}\right)=a<x_{2}$.

If $f\left(x_{1}\right)=x_{1}$ or $f\left(x_{2}\right)=x_{2}$ we are done. The remaining cases $f\left(x_{1}\right)<x_{1}, f\left(x_{2}\right)>x_{2}$ and $f\left(x_{1}\right)>x_{1}, f\left(x_{2}\right)<x_{2}$ follow from part (i). Therefore, f has a fixed point in I.

Corollary 2.4. If $I \rightarrow I$, then f has a fixed point in I.
Lemma 2.5. Let $I_{0} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{n}=I_{0}$ be a loop with $I_{j} \rightarrow I_{j+1}$ for all $j=$ $0,1, \cdots, n-1$.
(i) Then there exists a fixed point x_{0} of f^{n} with $f^{j}\left(x_{0}\right) \in I_{j}$ for all $j=0,1, \cdots, n$.
(ii) Suppose further that: (1) this loop is not a product loop formed by going p times around a shorter loop of length m where $m p=n$, and $(2) \operatorname{int}\left(I_{j}\right) \cap \operatorname{int}\left(I_{k}\right)=\varnothing$ unless $I_{j}=I_{k}$.

If the periodic point $x_{0} \in \operatorname{int}\left(I_{0}\right)$, then it has a least period n.
Proof. First we will prove the following statement:
There exists a subinterval $K_{l} \subset I_{0}$ such that for $i=1,2, \cdots, l$,

$$
f^{i}\left(K_{l}\right) \subset I_{i}, f^{i}\left(\operatorname{int}\left(K_{l}\right)\right) \subset \operatorname{int}\left(I_{i}\right) \text { and } f^{l}\left(K_{l}\right)=I_{l} .
$$

We will give a proof by induction on l. Now for the case $l=1$, it is true by Lemma 2.2 , that is, there exists $K_{1} \subset I_{0}$ such that $f\left(\operatorname{int}\left(K_{1}\right)\right) \subset \operatorname{int}\left(I_{1}\right)$ and $f\left(K_{1}\right)=I_{1}$. Suppose that the statement is true for $l-1$. That is, there exists such a $K_{l-1} \subset I_{0}$. Then $f^{l}\left(K_{l-1}\right)=f\left(f^{l-1}\left(K_{l-1}\right)\right)=f\left(I_{l-1}\right) \supset I_{l}$. By Lemma 2.2, there exists a subinterval $K_{l} \subset K_{l-1}$ such that $f^{l}\left(K_{l}\right)=I_{l}$ and $f^{l}\left(\operatorname{int}\left(K_{l}\right)\right)=\operatorname{int}\left(I_{l}\right)$. Adding the induction assumption, there exists $K_{l} \subset K_{l-1} \subset I_{0}$ such that for all $i=1,2, \cdots, l-1, l$ we get

$$
f^{i}\left(K_{l}\right) \subset f^{i}\left(K_{l-1}\right) \subset I_{i}, f^{i}\left(\operatorname{int}\left(K_{l}\right)\right) \subset f^{i}\left(\operatorname{int}\left(K_{l-1}\right)\right) \subset \operatorname{int}\left(I_{i}\right) \text { and } f^{l}\left(K_{l}\right)=I_{l} .
$$

Therefore, the statement is proved.
Now for the case $l=n$ we obtain $f^{n}\left(K_{n}\right)=I_{n}=I_{0}$. By Corollary 2.4, there is a fixed point $x_{0} \in K_{n}$ for f^{n}. Since $x_{0} \in K_{n} \subset I_{0}$, it follows that for each $j=0,1, \ldots, n$, $f^{j}\left(x_{0}\right) \in I_{j}$. This proves part (i).

For part (ii), if $x_{0} \in \operatorname{int}\left(I_{0}\right)$ and since $f^{n}\left(\operatorname{int}\left(K_{n}\right)\right)=\operatorname{int}\left(I_{0}\right)$, then $x_{0} \in \operatorname{int}\left(K_{n}\right)$ and $f^{j}\left(x_{0}\right) \in \operatorname{int}\left(I_{j}\right)$ for $j=1,2, \cdots, n$. Since the loop is not a product one, it implies that x_{0} must have period n.

Definition 2.6. The Sharkovskii's ordering is the ordering of the natural numbers in the following form:

3	\triangleright	5	\triangleright	7	\triangleright	\ldots			
$2 \cdot 3$	\triangleright	$2 \cdot 5$	\triangleright	$2 \cdot 7$	\triangleright	\ldots			
$2^{2} \cdot 3$	\triangleright	$2^{2} \cdot 5$	\triangleright	$2^{2} \cdot 7$	\triangleright	\ldots			
\vdots	\triangleright	\vdots	\triangleright	\vdots	\triangleright	\vdots			
$2^{m} \cdot 3$	\triangleright	$2^{m} \cdot 5$	\triangleright	$2^{m} \cdot 7$	\triangleright	\ldots			
$2^{m+1} \cdot 3$	\triangleright	$2^{m+1} \cdot 5$	\triangleright	$2^{m+1} \cdot 7$	\triangleright	\ldots			
\vdots	\triangleright	\vdots	\triangleright	\vdots	\triangleright	\vdots			
2^{m+1}	\triangleright	2^{m}	\triangleright	\cdots	\triangleright	2^{2}	\triangleright	2	\triangleright

Remark 2.7. In the Sharkovskii's ordering, all odd integers greater than 1 are positioned in backward order by the symbol \triangleright. Then, all integers which are two times an odd integer follow. Next, all odd integers times increasing powers of two follow. Finally, all the integers that are the power of two are added. It turns out that this ordering seem strange but it expresses the forcing of period in the Sharkovskii's Theorem.

Definition 2.8. If n and k are two positive integers such that $n \triangleright k$ in Sharkovskii's ordering, we say that period n forces period k.

2.2 Proof

Theorem 2.9. (Sharkovskii's Theorem) Let $I \subset \mathbb{R}$ be an interval. Let $f: I \rightarrow \mathbb{R}$ be a continuous function. If f has a periodic point of least period n and $n \triangleright k$ in the above ordering, then f has a periodic point of least period k.

Remark 2.10. The requirement for period in the statement of the theorem is necessarily least. For example, if f has a fixed point at x_{0}, then x_{0} is trivially a periodic point of period 5 , so f should also have a point of period 7 which is not necessarily true.

Definition 2.11. For a given closed subinterval $I \subset \mathbb{R}$, let $\mathcal{A}=\left\{I_{1}, I_{2}, \cdots, I_{r}\right\}$ be a finite partition of I into closed intervals I_{j} with disjoint interiors, $j=1,2, \cdots, r$. A transition graph of f for the partition \mathcal{A} is a directed graph with vertices representing I_{j} and directed edges defined from I_{j} to I_{k} if $I_{j} \rightarrow I_{k}$.

We shall prove the theorem by using Stefan's technique found in [11]. He had the idea to prove the existence of an orbit on the real line with a special pattern. Let $x \in I$ be a periodic point of f of least period $n>1$ such that
$f^{n-1}(x)<f^{n-3}(x)<\cdots<f^{4}(x)<f^{2}(x)<x<f(x)<f^{3}(x)<\cdots<f^{n-4}(x)<f^{n-2}(x)$.
A periodic point with such an ordering of its orbit on the real line is called Stefan cycle. Lemma 2.12 will prove its existence. Now let us denote $I_{1}=[x, f(x)], I_{2}=\left[f^{2}(x), x\right]$ and

$$
\begin{aligned}
I_{2 j-1} & =\left[f^{2 j-3}(x), f^{2 j-1}(x)\right], \\
I_{2 j} & =\left[f^{2 j}(x), f^{2 j-2}(x)\right]
\end{aligned}
$$

for $j=2,3, \cdots, \frac{n-1}{2}$. By continuity of the function f, we will have (i) I_{1} covers I_{1} and I_{2}, (ii) I_{j} covers I_{j+1} for $j=2, \cdots, n-2$ and (iii) I_{n-1} covers I_{j} for j odd. The existence of Stefan cycle proves that the transition graph of f for the partition \mathcal{A} contains a special subgraph called Stefan transition graph as given in Figure 2.2. Lemma 2.5 and Stefan transition graph will prove the period forcing in the Sharkovskii's ordering.

Figure 2.1: Stefan Cycle

Figure 2.2: Stefan Transition Graph

Lemma 2.12. Let n be an odd integer and $n>1$. Suppose that f has a point x of least period n and suppose that for any odd value $1<k<n, f$ has no periodic points of period k. Let $J=[\min (\mathcal{O}(x)), \max (\mathcal{O}(x))]$. Let \mathcal{A} be the partition of J by the elements of $\mathcal{O}(x)$.

Then the transition graph of f for \mathcal{A} contains a transition subgraph of the following form:
(i) I_{1} covers I_{1} and I_{2}
(ii) I_{j} covers I_{j+1} for $2 \leqslant j \leqslant n-2$, and
(iii) I_{n-1} covers I_{j} for j odd.

Proof. First, we label the elements in the orbit of x in increasing order, so that $\mathcal{O}(x)=$ $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ with $x_{1}<x_{2}<\cdots<x_{n}$. Since $f\left(x_{n}\right)=x_{j}$ for some $j=1,2, \cdots, n-1$, then $f\left(x_{n}\right)<x_{n}$. Similarly, we have $f\left(x_{1}\right)>x_{1}$ since $f\left(x_{1}\right)=x_{j}$ for some $j=$ $2,3, \cdots, n$.
Let $a=\max \{y \in \mathcal{O}(x) \mid f(y)>y\}$. Clearly, $a \neq x_{n}$. Let b be the next point in the orbit larger than a. Let $I_{1}=[a, b]$. Notice that $I_{1} \in \mathcal{A}$ and is the candidate for the Lemma 2.12.

We divide the proof into several claims as follow.
Claim 2.12.1. The image of I_{1} covers itself, that is, $I_{1} \rightarrow I_{1}$.

Proof. We have $f(a)>a$, so $f(a) \geqslant b$. Also, $f(b)<b$, so $f(b) \leqslant a$. Then $f\left(I_{1}\right) \supset I_{1}$. This means that $I_{1} \rightarrow I_{1}$.

Claim 2.12.2. The $(n-2)$-image of I_{1} covers J, that is, $f^{n-2}\left(I_{1}\right) \supset J$.
Proof. Since $f\left(I_{1}\right) \supset I_{1}$, then $f^{k+1}\left(I_{1}\right) \supset f^{k}\left(I_{1}\right)$ for $k \in \mathbb{N}$, so the iterates are nested. Since the number of points in $\mathcal{O}(x)-\{a, b\}$ is $n-2$, then $x_{n} \in f^{k}\left(I_{1}\right)$ for some $0 \leqslant k \leqslant$ $n-2$. By the nested property, $x_{n} \in f^{n-2}\left(I_{1}\right)$. Similarly, we get $x_{1} \in f^{n-2}\left(I_{1}\right)$. Since $I_{1}=[a, b]$ and it is connected, then $f^{n-2}\left(I_{1}\right) \supset J$.

Claim 2.12.3. There exists $K_{0} \in \mathcal{A}$ such that $K_{0} \neq I_{1}$ and $K_{0} \rightarrow I_{1}$.
Proof. Since n is odd, there are more elements of $\mathcal{O}(x)$ on one side of $\operatorname{int}\left(I_{1}\right)$ than the other. Let

$$
\mathcal{P}=\left\{x_{i} \in \mathcal{O}(x) \mid x_{i} \text { is on the side of } \operatorname{Int}\left(I_{1}\right) \text { with more elements }\right\} .
$$

There exist y_{1} and $y_{2} \in \mathcal{P}$ such that $f\left(y_{1}\right) \in \mathcal{P}$ and $f\left(y_{2}\right) \in \mathcal{O}(x)-\mathcal{P}$. Let $K_{0}=\left[y_{1}, y_{2}\right]$ by assuming that $y_{1}<y_{2}$. Then $f\left(K_{0}\right) \supset I_{1}$ and $K_{0} \neq I_{1}$.

Claim 2.12.4. There exists a loop

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}
$$

with $I_{2} \neq I_{1}$. The shortest such loop with $k \geqslant 2$ has $k=n-1$.
Proof. Let K_{0} be as in Claim 2.12.3. So we get $f\left(K_{0}\right) \supset I_{1}$ by Claim 2.12 .3 and $f^{n-2}\left(I_{1}\right) \supset K_{0}$ by Claim 2.12.2. There are only $n-1$ distinct intervals in \mathcal{A}, so there exists such a loop with $2 \leqslant k \leqslant n-1$. Now suppose that $2 \leqslant k<n-1$. Since the loop is the shortest, none of intervals can be repeated and it cannot be shortened. Then k or $k+1$ is odd. Let m be this odd integer so $3 \leqslant m \leqslant n-3$.
Consider the loop with m intervals

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}
$$

or

$$
I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1} \rightarrow I_{1}
$$

depending on $m=k$ or $m=k+1$. Then $f^{m}(z)=z$. By Lemma 2.5 (i), there is a point z such that $f^{m}(z)=z$. Suppose $z \in \partial I_{1}$. Then this point has period $n>m$ which is a contradiction. Thus $z \in \operatorname{int}\left(I_{1}\right)$. By Lemma 2.5 (ii), so z has least period m. Since m is odd, this contradicts the fact that n is maximal. Therefore, $k=n-1$.

For the remaining proof, we fix $I_{1}, I_{2}, \cdots, I_{n-1}$ as in Claim 2.12.4.

Claim 2.12.5. (i) If $f\left(I_{j}\right) \supset I_{1}$, then $j=1$ or $n-1$.
(ii) For $j>i+1$, there is no directed edge from I_{i} to I_{j} in a transition graph.
(iii) The interval I_{1} covers only I_{1} and I_{2}.

Proof. For part (i), if $j=1$, then $f\left(I_{1}\right) \supset I_{1}$ by Claim 2.12.1.
If $j \neq 1$, then $j=n-1$ by Claim 2.12.4. (ii) and (iii) follows from the fact that the loop is the shortest one.

Claim 2.12.6. Either (i) the ordering (in the sense of the real line) of the intervals I_{j} in the loop of Claim 2.12.4 is

$$
I_{n-1} \leqslant I_{n-3} \leqslant \cdots \leqslant I_{2} \leqslant I_{1} \leqslant I_{3} \leqslant \cdots \leqslant I_{n-2}
$$

and the order of the orbit is

$$
f^{n-1}(a)<f^{n-3}(a)<\cdots<f^{2}(a)<a<f(a)<f^{3}(a)<\cdots<f^{n-4}(a)<f^{n-2}(a) \text { or }
$$

(ii) Both of these orderings are exactly reversed.

Proof. I_{1} covers only I_{1} and I_{2} by Claim 2.12 .5 (iii). So I_{1} and I_{2} are next to each other. Otherwise I_{1} covers other intervals.
Assume $I_{2} \leqslant I_{1}$ (the other possibility gives the reverse order). From here it follows that $f(a)=b$ and $f(b)$ is the left endpoint of I_{2}. Next, $f\left(\partial I_{2}\right)=\partial I_{3}$. Since one of the endpoints is $f(a)=b$ which is above the $\operatorname{int}\left(I_{1}\right)$, then the other endpoint is above the $\operatorname{int}\left(I_{1}\right)$. By claim 2.12.5 (i), we have $I_{2} \rightarrow I_{1}$ and (ii), we have $I_{2} \rightarrow I_{j}$ for $j>3$. Then I_{3} must be adjacent to I_{1}. Continuing the argument by induction. For $k<n-1$, $I_{k} \rightarrow I_{1}$ and $I_{k} \rightarrow I_{j}$ for $j>k+1$. Then I_{k+1} must be adjacent to I_{k-1}. And therefore the claim is proved

Claim 2.12.7. I_{n-1} covers all I_{j} for all j odd.
Proof. Let $I_{n-1}=\left[f^{n-1}(a), f^{n-3}(a)\right]$. Then $f\left(f^{n-1}(a)\right)=f^{n}(a)=a$ and $f^{n-3}(a) \in$ I_{n-3}. So $f\left(f^{n-3}(a)\right)=f^{n-2}(a) \in I_{n-2}$. Therefore $f\left(I_{n-1}\right) \supset\left[a, f^{n-2}(a)\right]=I_{1} \cup I_{3} \cup$ $\cdots \cup I_{n-2}$. Therefore, $I_{n-1} \rightarrow I_{j}$ for j odd.

Now we begin the proof of Sharkovskii's Theorem.
Proof. Case 1: Assume $n>1$ is odd and maximal in the Sharkovskii's ordering. If $n \triangleright k$, then f has a periodic point of period k.

Case 1.1: $k<n$ and k is even.
Consider $I_{n-1} \rightarrow I_{n-k} \rightarrow I_{n-k+1} \rightarrow \cdots \rightarrow I_{n-1}$ of length k. By Lemma 2.5 (i), there exists $x_{0} \in I_{n-1}$ such that $f^{k}\left(x_{0}\right)=x_{0}$.

If $x_{0} \in \partial I_{n-1}$, then x_{0} has period n contradicting that $k<n$. Then $x_{0} \in \operatorname{int}\left(I_{n-1}\right)$. Therefore x_{0} has period k by Lemma 2.5 (ii).

Case 1.2: $k>n$ and k is either even or odd.
Consider $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}$ of length k. There exists $x_{0} \in I_{1}$ such that $f^{k}\left(x_{0}\right)=x_{0}$. If $x_{0} \in \partial I_{1}$, then x_{0} has period n. By Lemma 2.5, $n \mid k$ and this implies $k \geqslant 2 n \geqslant n+3$. Since $f^{n}\left(x_{0}\right) \in I_{1}$ then $f^{n+1}\left(x_{0}\right) \notin I_{1}$ which contradicts Lemma 2.5 (i). So $x_{0} \notin \partial I_{1}$. Therefore, x_{0} has period k by Lemma 2.5 (ii).

Case 2: $n=2^{m}$ and $n \triangleright k$ with $k=2^{s}, 0 \leqslant s<m$.
Case 2.1: $s=0$, that is, f has a fixed point.
We have $f(a) \geqslant b$ and $f(b)<b$. Then $f(b) \leqslant a$. Thus $f\left(I_{1}\right) \supset I_{1}$ where $I_{1}=[a, b]$. By Corollary 2.4, it follows that f has a fixed point in I_{1}. Since endpoints of I_{1} have period $n>1$, the fixed point lies in the interior of I_{1}.

Case 2.2: $s=1$, that is, f has a point of period 2. First we shall prove the following lemma.

Lemma 2.13. If f has a point of even period, then it has a point of period 2 .
Proof. Let $J=[\min \mathcal{O}(x), \max \mathcal{O}(x)]=\left[x_{1}, x_{n}\right]$ and let $I_{1}=[a, b]$. First suppose there exists $K_{0} \in \mathcal{A}$ such that $K_{0} \neq I_{1}$ and $K_{0} \rightarrow I_{1}$. Then the loop in Claim 2.12.4 contains a shorter loop with $2 \leqslant k \leqslant n-1$. I_{k} covers all I_{j} on the other sides. Thus $I_{n-1} \rightarrow I_{n-2} \rightarrow I_{n-1}$ is a loop of length 2 and f has a point of period 2.
Now suppose that there does not exist $K_{0} \in \mathcal{A}$ with $K_{0} \neq I_{1}$ such that $K_{0} \rightarrow I_{1}$. Notice first that $a \neq x_{1}$. For otherwise suppose that $a=x_{1}$. Recall by definition that $a=\max \{y \in \mathcal{O}(x) \mid f(y)>y\}$. So $f\left(x_{1}\right)>x_{1}$. Then $f\left(x_{1}\right) \geqslant b$ and $f\left(x_{j}\right)<x_{j}$ for all $j=2,3, \cdots, n$. Then $f(b)=f\left(x_{2}\right)=x_{1}=a$. There exists $\left[b, x_{3}\right] \in \mathcal{A}$ such that $\left[b, x_{3}\right] \neq I_{1}$ and $\left[b, x_{3}\right] \rightarrow I_{1}$. It contradicts to the above assumption. But b could be either $b=x_{n}$ or $b<x_{n}$.

Case (a): $a \neq x_{1}$ and $b<x_{n}$. We first claim the following two facts.
(i) $\forall x_{j} \in \mathcal{O}(x), x_{j} \leqslant a$ we have $f\left(x_{j}\right) \geqslant b$. (ii) $\forall x_{j} \in \mathcal{O}(x), x_{j} \geqslant b$ we have $f\left(x_{j}\right) \leqslant b$.

For part (i), if $x_{j}=a$, then $f\left(x_{j}\right)>a$, that is, $f\left(x_{j}\right) \geqslant b$ as b is the next point in the n-orbit larger than a. If $x_{j}<a$, suppose $f\left(x_{j}\right) \leqslant a$. By definition of $a, f(a) \geqslant b$. Then there exists an interval $K_{0}=\left[x_{j}, a\right]$ distinct from I_{1} and such that $K_{0} \rightarrow I_{1}$, which contradicts the previous assumption. Thus part (i) is proved. For part (ii), if $x_{j}=b$, then $f\left(x_{j}\right) \leqslant b$. If $x_{j}>b$, suppose that $f\left(x_{j}\right)>b$. Thus there exists $K_{0}=\left[b, x_{j}\right]$ such
that $K_{0} \neq I_{1}$ but $K_{0} \rightarrow I_{1}$. This again contradicts the above assumption. Thus we proved the second part.

Now we claim that $\left[x_{1}, a\right] \rightarrow\left[b, x_{n}\right] \rightarrow\left[x_{1}, a\right]$. First suppose that $f\left(\left[x_{1}, a\right]\right) \ngtr\left[b, x_{n}\right]$. Then there exists $x_{j} \in\left[b, x_{n}\right]$ such that $x_{j} \notin f\left(\left[x_{1}, a\right]\right)$. For x_{j}, there exists $\hat{x}_{j} \in \mathcal{O}(x)$ such that $f\left(\hat{x}_{j}\right)=x_{j}$. By item (i), $\hat{x}_{j} \in\left[x_{1}, a\right]$ and so $x_{j}=f\left(\hat{x}_{j}\right) \in f\left(\left[x_{1}, a\right]\right)$ which is a contradiction. Thus, $f\left(\left[x_{1}, a\right]\right) \supset\left[b, x_{n}\right]$. Similarly, suppose that $f\left(\left[b, x_{n}\right]\right) \ngtr\left[x_{1}, a\right]$. Then there exists $x_{k} \in\left[x_{1}, a\right]$ such that $x_{k} \notin f\left(\left[b, x_{n}\right]\right)$. For x_{k}, there exists $\tilde{x}_{k} \in \mathcal{O}(x)$ such that $f\left(\tilde{x}_{k}\right)=x_{k}$. By item (ii), $\tilde{x}_{k} \in\left[b, x_{n}\right]$ and so $x_{k}=f\left(\tilde{x}_{k}\right) \in f\left(\left[b, x_{n}\right]\right)$ which is a contradiction. Thus $f\left(\left[b, x_{n}\right]\right) \supset\left[x_{1}, a\right]$. Therefore, f has a point of period 2 .

Case (b) : $x_{1}<a<b=x_{n}$.
First let us notice that $f(a)=x_{n}$. Indeed, by definition of $a, f(a)>a$. So $f(a) \geqslant b$, that is, $f(a) \geqslant x_{n}$ but $f(a) \leqslant x_{n}$, then $f(a)=x_{n}$. Furthermore, since $b=x_{n}$, then $a=x_{n-1}$. If $f\left(x_{n-1}\right)=a$, then a is a fixed point which impossible. If $f\left(x_{n}\right)=a$, that is, $f(b)=a$, then $f^{2}(b)=f(f(b))=f(a)=b$. This shows that b is a point of period 2 which again impossible. Thus $f\left(x_{k}\right)=a$ for some $k=1,2, \cdots, n-2$. Let x_{j} be the image of b under f, that is, $f(b)=x_{j}$. Under the action of f, we have $x_{k} \rightarrow a \rightarrow b \rightarrow x_{j}$.

Now we get three possibilities for x_{j}.
(a) For $x_{j}=x_{k}$, then a lies in a 3-cycle. Thus we get 2-loop $\left[x_{j}, a\right] \rightarrow I_{1} \rightarrow\left[x_{j}, a\right]$. Therefore, f has a point of period two in $\operatorname{int}\left(I_{1}\right)$ since these intervals has empty intersection of their interiors.
(b) For $x_{j}<x_{k}$, let us consider $I_{2}=\left[x_{k}, a\right]$. It follows that $I_{2} \rightarrow I_{1} \rightarrow I_{2}$. Therefore, f has a point of period two in $\operatorname{int}\left(I_{1}\right)$.
(c) For $x_{j}>x_{k}$, let us consider $I_{3}=\left[x_{j}, a\right]$. It follows that $I_{3} \rightarrow I_{1} \rightarrow I_{3}$. Thus, f has a point of period two in $\operatorname{int}\left(I_{1}\right)$. therefore the lemma is proved.

The proof of the Case 2.2 just follows immediately from Lemma 2.13 as 2^{m} is even.
Case 2.3: $n=2^{m}, k=2^{s}, 1<s<m$.
Let $g=f^{k / 2}=f^{2^{s-1}}$. Since f has a point \hat{x} of period 2^{m}, so $f^{2^{m}}(\hat{x})=\hat{x}$. Then we have $g^{2^{m-s+1}}(\hat{x})=\left(f^{2^{s-1}}\right)^{2^{m-s+1}}(\hat{x})=f^{2^{m}}(\hat{x})=\hat{x}$. Then g has a point of period 2^{m-s+1} which is even with $m-s+1 \geqslant 2$. By Lemma 2.13, g has a point x_{0} of period 2. So $g^{2}\left(x_{0}\right)=\left(f^{2^{s-1}}\right)^{2}\left(x_{0}\right)=f^{2^{s}}\left(x_{0}\right)=x_{0}$ and $g\left(x_{0}\right)=f^{k / 2}\left(x_{0}\right)=f^{2^{s-1}}\left(x_{0}\right) \neq x_{0}$. Thus f has a point x_{0} of period 2^{t} for some $t \leqslant s$. For now suppose $t<s$. Then x_{0} is fixed by g which is impossible. So we obtain $t=s$. Therefore, f has point x_{0} of period $2^{s}=k$.

Case 3: $n=2^{m} \cdot p, p>1, p$ odd, $m \geqslant 1, n$ maximal in the Sharkovskii ordering and $n \triangleright k$.

Case 3.1: $k=2^{s} \cdot q, s \geqslant m+1, q \geqslant 1, q$ odd.

Figure 2.3: In Case 3.1: $k=2^{s} \cdot q, s \geqslant m+1, q \geqslant 1, q$ odd.
Let $g=f^{2^{m}}$. Since f has a periodic point x_{0} of period $2^{m} \cdot p$, then $f^{2^{m} \cdot p}\left(x_{0}\right)=x_{0}$. So $\left(f^{2^{m}}\right)^{p}\left(x_{0}\right)=x_{0}$. Thus, g has a periodic point of period p. Since p is odd, by Case $1, g$ has a point of period $2^{s-m} \cdot q$, where $s-m \geqslant 1$. Therefore f has a point of period $2^{s} \cdot q$ with $s \geqslant m+1, q \geqslant 1, q$ odd.

Case 3.2: $k=2^{s}, s \leqslant m$.
Let $g=f^{p}$. Since f has a periodic point x_{0} of period $2^{m} \cdot p$, then $f^{2^{m} \cdot p}\left(x_{0}\right)=x_{0}$. So $\left(f^{p}\right)^{2^{m}}\left(x_{0}\right)=x_{0}$. Then g has a periodic point of period 2^{m}. By Case $2, g$ has a point of period $2^{s}, 0 \leqslant s<m$. Thus f has a point of period $2^{s} \cdot p$ with $p>1, p$ odd. By Case 3.1, f has a point of period $2^{t} \cdot q$ with $t \geqslant s+1$ and $q \geqslant 1, q$ odd. Choosing $t_{0} \geqslant m+1$ and choosing $q=1$, we obtain f has a point of period $2^{t_{0}}$ with $s \leqslant m<t_{0}$. By Case 2, f has a point of period 2^{s} with $s \leqslant m$.

Case 3.3: $k=2^{m} \cdot q, q$ odd, $q>p$.
Let $g=f^{2^{m}}$. Since f has a periodic point x_{0} of period $2^{m} \cdot p$, then $f^{2^{m} \cdot p}\left(x_{0}\right)=x_{0}$. So $\left(f^{2^{m}}\right)^{p}\left(x_{0}\right)=x_{0}$. Thus, g has a periodic point of period p. By Case 1.2, then g has a periodic point of period q odd since $q>p$. Therefore, f has a periodic point of period $2^{m} \cdot q$ with q odd, $q>p$.

Figure 2.4: In Case 3.2: $k=2^{s}, s \leqslant m$.

Figure 2.5: In Case 3.3: $k=2^{m} \cdot q, q$ odd, $q>p$.

Chapter 3

Results

3.1 Introduction

My thesis project has its origin from the article [7] where the authors study parameter space and dynamics of the family of complex valued functions

$$
F_{b}(z)=\wp_{\Lambda}(z)+b, z, b \in \mathbb{C},
$$

where \wp_{Λ} represents the Weierstrass \wp function defined over a lattice Λ. When Λ is fixed and the parameter b is restricted to real values, the authors showed that the orbits of the critical values of F_{b} lie in the real line, thus in order to understand the dynamics of F_{b}, it is enough to study the dynamics of the family of real-valued functions

$$
f_{b}(t)=\wp_{\Lambda}(t)+b, t, b \in \mathbb{R}
$$

The global dynamics of $\left.F_{b}\right|_{\mathbb{R}}$ for real parameters b (and hence of $f_{b}: \mathbb{R} \rightarrow \mathbb{R}$) can be determined.

Here we will study the dynamics of the Weierstrass \wp_{Λ} function restricted to the real line under the assumption that Λ is the central lattice.

Recall that Weierstrass \wp function, $\wp_{\Lambda}: \mathbb{C} \rightarrow \mathbb{C}$, is given by the expression

$$
\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\lambda \in \Lambda^{*}}\left[\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right]
$$

where the sum ranges over all nonzero lattice points $\lambda \in \Lambda$, where

$$
\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid \operatorname{Im}\left(\lambda_{2} / \lambda_{1}\right)>0, m, n \in \mathbb{Z}\right\}
$$

We denote by g_{2} and g_{3} the two invariants of the lattice Λ. If $g_{2}>0$ and $g_{3}=0$, then the lattice Λ is called a real square lattice. We recall some of the main properties of the Weierstrass \wp function that have been previously discussed in Chapter 1, Section 2. First, \wp_{Λ} is a meromorphic function with double poles at the points of Λ. Second, \wp_{Λ} is doubly periodic with periods λ_{1} and λ_{2}, the generators of the lattice Λ. Finally, $\wp_{\Lambda}^{\prime}(z)$ is odd, double periodic and has zeros at $\frac{\lambda_{1}}{2}, \frac{\lambda_{2}}{2}, \frac{\lambda_{1}+\lambda_{2}}{2}$ and all its translation by Λ.

The last property describes the critical points of \wp_{Λ} which are typically denoted as

$$
\omega_{1}=\frac{\lambda_{1}}{2}, \quad \omega_{2}=\frac{\lambda_{2}}{2}, \quad \omega_{3}=\frac{\lambda_{1}+\lambda_{2}}{2}=\omega_{1}+\omega_{2}
$$

The constant $\kappa=\frac{\Gamma(1 / 4)^{2}}{4 \sqrt{\pi}} \approx 1.85407467$ appears in the solution of the elliptic integral

$$
\omega_{1}=\int_{\frac{\sqrt{g 2}}{2}}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t}}=\frac{\kappa}{\sqrt{g_{2}}}
$$

and implies that $\wp_{\Lambda}\left(\omega_{1}\right)=\frac{\sqrt{g_{2}}}{2}$ [1]. If $g_{2}=(2 \kappa)^{\frac{4}{3}}$, we will see in Proposition 3.2 that $\wp_{\Lambda}\left(\omega_{1}\right)=\omega_{1}$, that is, the real critical point ω_{1} is fixed under \wp_{Λ} where Λ is the central lattice.

Consider the real square central lattice Λ with invariants $g_{2}=(2 \kappa)^{\frac{4}{3}} \approx 5.73953$ and $g_{3}=0$. The aim of the thesis is see whether or not and how far the Sharkovskii's theorem applies to the family of $f_{b}(x)=\wp_{\Lambda}(x)+b$, with $b \in \mathbb{R}$. Also, in the last part, we prove that for the case $f(x)=\wp(x)$, this function is chaotic on a certain invariant set on each fundamental interval of definition.

3.2 The central lattice

We begin by establishing some basic properties of real square lattices.
Proposition 3.1. If Λ is a real square lattice, then the critical values of \wp_{Λ} are all real numbers and are given by $e_{1}=\frac{\sqrt{g_{2}}}{2}, e_{2}=-e_{1}$ and $e_{3}=0$.
Proof. Since any real square lattice is similar to the lattice generated by $\{1, i\}$, we assume without lost in generality that $\Lambda=\{m+n i \mid m, n \in \mathbb{Z}\}$. First, we note that $g_{2}>0$ and $g_{3}=0$. Indeed, by Proposition 1.63, Eisenstein series of order k satisfy $E_{k}(\tau)=\tau^{-k} E_{k}(-1 / \tau)$. If $\tau=i$, then

$$
E_{6}(i)=i^{-6} E_{6}(i)=-E_{6}(i)
$$

Then $E_{6}(i)=0$ and so $g_{3}=140 E_{6}(i)=0$. We have

$$
\begin{aligned}
g_{2}=E_{4}(i) & =\sum_{(m, n) \neq(0,0)} \frac{1}{(m+n i)^{4}} \\
& =\sum_{(m, n) \neq(0,0)} \frac{m^{4}+n^{4}-6 m^{2} n^{2}}{|m+i n|^{8}}+i \sum_{(m, n) \neq(0,0)} \frac{m n\left(m^{2}-n^{2}\right)}{|m+i n|^{8}} .
\end{aligned}
$$

Using symmetry argument for the imaginary part of $E_{4}(i)$ we get $\operatorname{Im}\left(E_{4}\right)=0$ and a rearrangement of terms in its real part we obtain $\operatorname{Re}\left(E_{4}\right)>0$. Thus g_{2} is positive.

The critical values of \wp_{Λ} are given by the expressions

$$
\wp_{\Lambda}\left(\frac{1}{2}\right)=e_{1}, \quad \wp_{\Lambda}\left(\frac{i}{2}\right)=e_{2} \quad \text { and } \quad \wp_{\Lambda}\left(\frac{1+i}{2}\right)=e_{3} .
$$

The homogeneity condition in (1.3) for $k=i$, combined with the fact that Λ is square (so $i \Lambda=\Lambda$), we obtain that, for any $z \in \mathbb{C}$,

$$
\wp_{\Lambda}(i z)=\wp_{i \Lambda}(i z)=-\wp_{\Lambda}(z) .
$$

This implies that $\wp_{\Lambda}(i / 2)=-\wp_{\Lambda}(1 / 2)$, in other words, $e_{2}=-e_{1}$.
By Theorem 1.61, the differential equation that appears in Proposition 1.66 can be written in terms of the (distinct) critical values e_{1}, e_{2} and e_{3} as

$$
\begin{equation*}
\left(\wp_{\Lambda}^{\prime}(z)\right)^{2}=\left(\wp_{\Lambda}(z)-e_{1}\right)\left(\wp_{\Lambda}(z)-e_{2}\right)\left(\wp_{\Lambda}(z)-e_{3}\right) . \tag{3.1}
\end{equation*}
$$

Expanding the right-hand side of (3.1) and comparing coefficients with the right-hand side of (1.5), combined with the fact $g_{3}=0, g_{2}>0$, we obtain the relations

$$
e_{1}+e_{2}+e_{3}=0, \quad e_{1} e_{2}+e_{1} e_{3}+e_{2} e_{3}=-\frac{g_{2}}{4}, \quad e_{1} e_{2} e_{3}=0
$$

The last relation implies that one (and only one) of the critical values is zero. Since $e_{2}=-e_{1}$, we conclude $e_{3}=0$. Finally, from the second relation, we obtain

$$
-e_{1}^{2}=-\frac{g_{2}}{4}, \quad \text { hence } \quad e_{1}=\frac{\sqrt{g_{2}}}{2}>0
$$

and all three critical values are real numbers.
If Λ is a real square lattice with generators $\{\lambda, i \lambda\}$ for some $\lambda>0$, then \wp_{Λ} has a real critical point at $\lambda / 2$ so that $\wp_{\Lambda}(\lambda / 2)=e_{1}$. Moreover, $\lambda / 2$ can be expressed in terms of the integral

$$
\frac{\lambda}{2}:=\int_{e_{1}}^{\infty} \frac{d t}{\sqrt{4 t^{3}-g_{2} t}}=\frac{\Gamma(1 / 4)^{2}}{4 \sqrt{\pi}\left(g_{2}\right)^{1 / 4}}
$$

Proposition 3.2. Given Λ real square lattice generated by $\{\lambda, i \lambda\}, \lambda>0$, there exists a unique value $g_{2}>0$ for which the equation $\wp_{\Lambda}(\lambda / 2)=\lambda / 2$ is satisfied.

Proof. Let $\kappa=\Gamma(1 / 4)^{2} /(4 \sqrt{\pi})$ so $\lambda / 2=\kappa /\left(g_{2}\right)^{1 / 4}$. Since $e_{1}=\wp_{\Lambda}(\lambda / 2)$ and Λ is real square, then solving $\wp_{\Lambda}(\lambda / 2)=\lambda / 2$ is equivalent to solve

$$
e_{1}=\frac{\sqrt{g_{2}}}{2}=\frac{\kappa}{\left(g_{2}\right)^{1 / 4}}=\frac{\lambda}{2}
$$

in terms of g_{2}. A quick computation shows that $g_{2}=(2 \kappa)^{4 / 3} \approx 5.739529$.

Definition 3.3. The center lattice is the real square lattice Λ with generators $\{\lambda, i \lambda\}$ and $\left(g_{2}, g_{3}\right)$ as given in Proposition 3.2. That is $\lambda=2 \kappa /\left(g_{2}\right)^{1 / 4}$ for $g_{2} \approx 5.739529$.

3.3 Weierstrass \wp function restricted on \mathbb{R}

In this section, we gather properties of the Weierstrass \wp function restricted on the real line. In fact, we will study its behavior on each fundamental interval $I_{j}=(j \lambda,(j+1) \lambda)$ for each $j \in \mathbb{Z}$.

Theorem 3.4. The following are equivalent:

1) \wp_{Λ} is a real function, that is, $\wp_{\Lambda}(\bar{z})=\overline{\wp_{\Lambda}(z)}$ for all $z \in \mathbb{C}$.
2) Λ is a real lattice.
3) g_{2}, g_{3} are real numbers.

The proof of this theorem can be found in [8]. If Λ is a real lattice (for example, if Λ is the central lattice) then it follows from Theorem 3.4 that $\left.\wp_{\Lambda}\right|_{\mathbb{R}}$ is a real-valued function.

The following lemma is based on Lemma 4.7 in [6]. This lemma describes the crucial properties of \wp when restricted over the real line. We provide its proof for completeness.

Lemma 3.5. If \wp_{Λ} is real, then it is periodic as a map on \mathbb{R} and has infinitely many critical points and at least one real critical value. There is at least one nonnegative critical value that is the minimum of \wp on \mathbb{R}. In particular, if e_{r} denotes the real critical value, then $\left.\wp\right|_{\mathbb{R}}: \mathbb{R} \rightarrow\left[e_{r}, \infty\right]$ is piecewise monotonic and onto.

Proof. Since \wp_{Λ} is real, then by Theorem 3.4, the lattice Λ is real rectangular. It follows then that $\Lambda=\left\{m \lambda_{1}+n \lambda_{2} \mid m, n \in \mathbb{Z}\right\}$ with $\lambda_{1} \in \mathbb{R}$ and $\lambda_{2} \in i \mathbb{R}$. Then it is clear that the real period of \wp_{Λ} is λ_{1}.

Since the critical points are half lattice points, and the sums of the half lattice points, then we have $\lambda / 2$ is the only half period in the fundamental interval. Thus, all points of the form $\lambda / 2+m \lambda$ are critical points on the real line where m is an integer.

Since there are infinitely many critical points, one in each fundamental interval, then their common value is a real critical value. Since \wp^{\prime} is strictly increasing, and is negative to the left of a critical point and positive to the right (in each fundamental interval), then e_{r} is the minimum on \mathbb{R}. In particular, if λ is the real period of \wp_{Λ} and m is any integer, then $\wp_{\Lambda}:(m \lambda, m \lambda+\lambda / 2] \rightarrow\left[e_{r}, \infty\right)$ is monotonic and onto, as is $\wp:[m \lambda+\lambda / 2,(m+1) \lambda) \rightarrow\left[e_{r}, \infty\right)$.

Theorem 3.6. Fix a lattice Λ. Then for any $z \in \mathbb{C}-\Lambda$, we have

$$
\wp\left(z \pm \omega_{i}\right)=\frac{\left(e_{i}-e_{j}\right)\left(e_{i}-e_{k}\right)}{\wp(z)-e_{i}}+e_{i} .
$$

Remark 3.7. It implies from Theorem 3.6 that for each $j \in \mathbb{Z}$, the Weierstrass \wp function is even on each I_{j} and symmetric with respect to the vertical line passing through critical point $(j+1) \lambda / 2$.

From the result of Theorem 3.4 and Theorem 3.6, we can conclude the following theorem.

Theorem 3.8. For the central lattice Λ, the Weierstrass function $\wp_{\Lambda}: \mathbb{R} \rightarrow \mathbb{R}$ has following properties.
(i) \wp_{Λ} is continuous, even, strictly monotone, λ-periodic function on each fundamental interval $I_{j}=(j \lambda,(j+1) \lambda)$ for $j \in \mathbb{Z}$.
(ii) On each fundamental interval $I_{j},\left.\wp_{\Lambda}\right|_{I_{j}}$ attains the minimum value $\lambda / 2$ at $\lambda / 2+j \lambda$ for each $j \in \mathbb{Z}$.

3.4 Period forcing for Weierstrass \wp function

In this section, we will consider the family of functions f_{b} defined by

$$
f_{b}(x)=\wp(x)+b
$$

Figure 3.1: Graph of Weierstrass \wp function restricted to the real line and defined over the central lattice.
with x, b are real numbers. By Lemma 3.5, if b is given, then we have $f_{b}(\mathbb{R})=$ $\left.(\wp+b)\right|_{\mathbb{R}}(\mathbb{R})=[\lambda / 2+b, \infty]$. The smallest integer j that satisfies $j \lambda>\lambda / 2+b$ or equivalently $j>b / \lambda+1 / 2$ specifies the index of the fundamental interval I_{j-1} where b lies in.

We aim to provide an extension of Sharkovskii's period forcing theorem even when the function f_{b} is no longer continuous on its domain.

Notice that for any real number x, we denote the smallest integer greater that x by $\lceil x\rceil$ and the greatest integer part of x by $\lfloor x\rfloor$.

Lemma 3.9. The action of $f_{b}, b \in \mathbb{R}$, on each interval $I_{j}=(j \lambda,(j+1) \lambda), j \in \mathbb{Z}$ determines the following transitions.
(i) For all $j \geqslant\lceil b / \lambda+1 / 2\rceil, I_{j} f_{b}$-covers itself and I_{k} for all $k \geqslant\lceil b / \lambda+1 / 2\rceil$.
(ii) For $j \leqslant\lfloor b / \lambda+1 / 2\rfloor$, I_{j} does not f_{b}-covers itself, while for every $k \geqslant\lceil b / \lambda+1 / 2\rceil, I_{j}$ f_{b}-covers I_{k}.

For convenience, we just consider the case $b=0$. For the other values of b, the graph of f_{b} is merely a translation of the graph of \wp up or down b units.

Lemma 3.10. The transition graph of \wp contains a subgraph with the following conditions.
(i) For all $j, k \geqslant 1, I_{j} \wp$-covers I_{j} itself and I_{k}; and $I_{k} \wp$-covers I_{j} and itself.

Figure 3.2: Graph of the derivative of Weierstrass \wp function same as above.

(ii) For $j \leqslant 0, k \geqslant 1$, we have $I_{j} \wp$-cover I_{k}.

Proof. (i) It follows form Lemma 3.5 that for each $j \geqslant 1$ we have $\wp\left(I_{j}\right)=[\lambda / 2, \infty)$ and each $I_{j} \subset[\lambda / 2, \infty)$ for $j \geqslant 1$.
(ii) Also, for $j \leqslant 0$, we have $\wp\left(I_{j}\right)=[\lambda / 2, \infty)$ which covers any I_{k} for $k \geqslant 1$.

In Chapter 2, we proved the very important Lemma 2.5 which ensure the existence of n-cycle for a continuous function on its domain. Likewise, the following Lemma guarantees the existence of an n-cycle for the Weierstrass \wp function, which is continuous over the real line except at $j \lambda$ for any $j \in \mathbb{Z}$. This Lemma will allow us to find a periodic point of least period n for the Weierstrass \wp function. We denote the fundamental interval J_{i} for $i \geqslant 1$ so that $J_{i}=I_{j}$ for some $j \geqslant 1$.

Lemma 3.11. Let J_{i} be a fundamental interval for $i=0,1, \cdots, n$ and let $J_{0} \rightarrow J_{1} \rightarrow$ $\cdots \rightarrow J_{n}=J_{0}$ be a loop with $J_{i} \rightarrow J_{i+1}$ for all $i=0,1, \cdots, n-1$.
(i) Then there exists a fixed point x_{0} in J_{0} such that $\wp^{m}\left(x_{0}\right)=x_{0}$ with $m \mid n$ and m is the least period.
(ii) Suppose further that this loop is not a product loop formed by going p times around a shorter loop of length m where $m p=n$.
If the periodic point $x_{0} \in J_{0}$, then \wp has a least period n.

Proof. Let us first prove the following statement by induction. There exists a closed interval $K_{l} \subset J_{0}$ such that for each $i=1,2, \cdots, l$,

$$
\wp^{i}\left(K_{l}\right) \subset J_{i}, \wp^{i}\left(\operatorname{Int}\left(K_{l}\right)\right) \subset J_{i} \text { and } \wp^{l}\left(K_{l}\right)=\bar{J}_{l} .
$$

Here, we have $J_{i}=I_{j}=(j \lambda,(j+1) \lambda)$ for some j.
Case $l=1$: There exists $K_{1}=\left[a_{1}, b_{1}\right] \subset J_{1}$ with $a_{1}<\frac{(j+1) \lambda}{2}<b_{1}$ and $\wp\left(a_{1}\right)=$ $\wp\left(b_{1}\right)=(j+1) \lambda$. It follows that $\wp\left(K_{1}\right) \supset \bar{J}_{1}$ and $K_{1} \subset \bar{J}_{1}$. By Lemma 2.5, it implies that there is a closed subset $L_{1} \subset K_{1} \subset J_{1}$ such that $\wp\left(L_{1}\right)=\bar{J}_{1}, \wp\left(\operatorname{Int}\left(L_{1}\right)\right) \subset \operatorname{Int}\left(\bar{J}_{1}\right)=J_{1}$ and $\wp\left(\partial L_{1}\right)=\partial \bar{J}_{1}=\{j \lambda,(j+1) \lambda\}$.
Case $l-1$: There exists a closed subset $K_{l-1} \subset J_{0}$ such that for every $i=1,2, \cdots, l-1$, $\wp^{i}\left(K_{l-1}\right) \subset J_{i}, \wp^{j}\left(\operatorname{Int}\left(K_{l-1}\right)\right) \subset J_{i}$ and $\wp^{l}\left(K_{l-1}\right)=\bar{J}_{l}$.

For Case l : we have $\wp^{l}\left(K_{l-1}\right)=\wp\left(\wp^{l-1}\left(K_{l-1}\right)\right)=\wp\left(\bar{J}_{l-1}\right) \supset \bar{I}_{l}$ by Lemma 3.10. So by Lemma 2.5, there exists a closed subset $K_{l} \subset K_{l-1} \subset J_{0}$ such that $\wp^{l}\left(K_{l}\right)=$ $\bar{J}_{l}, \wp^{l}\left(\operatorname{int}\left(K_{l}\right)\right)=J_{l}$ and $\wp^{l}\left(\partial K_{l}\right)=\{l \lambda,(l+1) \lambda\}$. Now combining this result with hypothesis from the Case $l-1$, we proved the statement.

Now in order to prove that \wp^{n} has a fixed point in J_{0}, we just consider the case $l=n-1$. By the previous statement, there is a close subset $K_{n-1} \subset J_{0}$ such that $\wp^{n-1}\left(K_{n-1}\right)=\bar{J}_{n-1}$. Moreover, $\wp\left(\bar{J}_{n-1}\right)=\left[\frac{\lambda}{2}, \infty\right]$. Since $\left[\frac{\lambda}{2}, \infty\right] \supset \bar{I}_{1}$, it implies that $\wp\left(\bar{J}_{n-1}\right) \supset \bar{J}_{0}$. Again, by Lemma 2.2, there exists a closed subset $K \subset \bar{J}_{n-1}$ such that $\wp(K)=\bar{J}_{0}$. Then there exists a closed subset $K_{0} \subset \operatorname{int}\left(K_{n-1}\right) \subset J_{0}$ such that $\wp^{n}\left(K_{0}\right)=\wp\left(\wp^{n-1}\left(K_{0}\right)\right)=\wp(K)=\bar{J}_{0}$. By Corollary 2.4, \wp^{n} has a fixed point in $K_{0} \subset J_{0}$.
(ii) Now we have $x_{0} \in J_{0}$. Since $\wp^{n}\left(\operatorname{Int}\left(K_{n}\right)\right)=J_{0}$, then $x_{0} \in \operatorname{Int}\left(K_{n}\right)$ and $\wp^{i}\left(\operatorname{Int}\left(K_{n}\right)\right) \in J_{i}$ for $i=1,2, \cdots n$. Also, since the loop is not a product, x_{0} must have period n. This competes the proof of the lemma.

Notice that by a complete directed graph (V, E) where V and E denote the vertice and the edge, respectively we mean for any pair of vertices, there exists a pair of opposite directed edges adjoining the two vertices.

By Lemma 3.10 (i), it is a complete directed graph. It follows then that it induce a Stefan cycle and thus the Sharkovskii's theorem applies to \wp by Lemma 3.5. Moreover, by the completeness of the transition graph, there are more properties on period forcing. More precisely, the forcing period holds for any period.

Theorem 3.12. Given n and k two positive integers such that $n \triangleright k$ in the Sharkovskii's ordering, that is, n forces k. If the Weierstrass \wp function has a point of odd period n with $n \geqslant 3$, then \wp has a point of period k with $n \triangleright k$.

Proof. Case a: $k<n$ and k even. Consider the loop $I_{n-1} \rightarrow I_{n-k} \rightarrow I_{n-k+1} \rightarrow \cdots I_{n-1}$ of length $(n-1)-(n-k)+1=k$. By Lemma 3.11 (ii), there exists $x_{0} \in I_{n-1}, \wp^{k}\left(x_{0}\right)=x_{0}$.

Case b: $k>n, k$ is even or odd. Consider $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_{1} \rightarrow I_{1} \rightarrow$ $\cdots \rightarrow I_{1}$ of length k. By Lemma 3.11 (ii), there exists $x_{0} \in I_{1}$ such that $\wp^{k}\left(x_{0}\right)=x_{0}$.

This theorem provides a complete existence of any n-cycle of \wp.
Theorem 3.13. The Weierstrass \wp-function has a periodic point of period n for $n \geqslant 1$ on each I_{j} for all $j \geqslant 1$.

Proof. Consider the loop $I_{j} \rightarrow I_{j+1} \rightarrow \cdots \rightarrow I_{n+1+j}=I_{j}$ of length n. By Lemma 3.11, for all $j \geqslant 1$, then there exists a point $x_{0} \in I_{j}$ of period n.

The last theorem generalizes the period forcing of \wp in a broader sense than Sharkovskii's ordering.

Theorem 3.14. Any periodic point of least period $n>1$ of the Weierstrass \wp-function forces periodic points of other least period $k \geqslant 1$.

Proof. Let x_{0} be the periodic point of least period n. There are two possibilities for k.

- $k>n$: Let us consider the loop $J_{0} \rightarrow J_{1} \rightarrow \cdots \rightarrow J_{n}=J_{0} \rightarrow J_{0} \cdots \rightarrow J_{0}$ of length k. Then by Lemma 3.11 (ii), there exists a periodic point $x_{0} \in J_{0}$ of least period k.
- $1 \leqslant k<n$: Let us consider the loop $J_{0} \rightarrow J_{1} \rightarrow \cdots J_{k-1} \rightarrow J_{0}$ of length k. Hence, there also exists a periodic point $x_{0} \in J_{0}$ of least period k by Lemma 3.11 (ii).

Conclusion: For a family $f_{b}(x)=\wp(x)+b$ where x, b are real numbers, the period forcing provided by Theorem 3.12 holds in any given parameter b. In fact, by completeness of the transition graph provide the period forcing for any period. The noticeable fact is that the fundamental interval where periodic points lie changes depending on the parameter b.

3.5 Chaotic behavior of Weierstrass \wp function

Let us recall that Theorem 1.26 in Chapter 1, we proved that the quadratic family $Q_{c}(x)=x^{2}+c$ is chaotic on the invariant set Λ under the assumption $c<-\frac{5+2 \sqrt{5}}{4}$. To understand the dynamics of the quadratic family, we constructed a sequence space of two symbols and the shift map on that new space. Also, we produced the itinerary map from Λ_{c} to Σ_{2}. This map was shown to be a homeomorphism. It is much simpler to study the dynamics on the sequence space and the itinerary serves as a conjugacy between those spaces. This leads us to understand the dynamics of the quadratic map more easily. Now we consider the Weierstrass \wp function.

Now we will first study the chaotic behavior of \wp restricted on I_{0}.
Theorem 3.15. The Weierstrass \wp-function restricted on I_{0} is not chaotic.
Proof. We observe that $\bar{I}_{0}=[0, \lambda]$ is separable and of second category. Thus, by Theorem 1.34, if the dynamical system $\left(I_{0}, \wp\right)$ is transitive then it has a dense \wp orbit. We will prove that every point in \bar{I}_{0} has no dense \wp-orbit which proves that $\left(\wp, I_{0}\right)$ is not transitive. Since \wp has a minimum at $\lambda / 2$, it follows that $\wp^{\prime}(\lambda / 2)=0$. Also, we have $\wp(\lambda / 2)=\lambda / 2$ so that $\lambda / 2$ is a fixed point of \wp. It follows that $\lambda / 2$ is a superattracting fixed point. Then there is a neighborhood V of $\lambda / 2$ such that for every $x \in V$, we have $\wp^{n}(x) \rightarrow \lambda / 2$ as $n \rightarrow \infty$. Now if there is $x_{0} \in I_{0}$ such that $\mathcal{O}_{\wp}\left(x_{0}\right)=\left\{x_{0}, \wp\left(x_{0}\right), \wp^{2}\left(x_{0}\right), \cdots\right\}$ is dense in I_{0}, then we have $x_{0} \notin V$. Accordingly, assume $x_{0} \in I_{0}-V$ and $\overline{\mathcal{O}_{\wp}\left(x_{0}\right)}=I_{0}$. Then there is $N \in \mathbb{N}$ such that $\wp^{N}\left(x_{0}\right) \in V \cap I_{0}$ (the immediate basin of $\lambda / 2$) but then $\wp^{N+m}\left(x_{0}\right) \rightarrow \lambda / 2$ as $m \rightarrow \infty$. This shows that any point in I_{0} has no dense \wp-orbit. Thus the Weierstrass \wp function restricted to I_{0}, $\left.\wp\right|_{I_{0}}:[0, \lambda] \rightarrow[0, \lambda]$ fails the transitivity condition and therefore it is not chaotic on I_{0}.

Theorem 3.16. For any $j \leqslant-1$, the Weierstrass \wp function restricted on I_{j} has no periodic cycle of any period.

Proof. Notice that for any $j \leqslant-1$, the I_{j} is an interval of negative numbers. Also, we have $\wp\left(I_{j}\right)=[\lambda / 2, \infty)$ for any $j \leqslant-1$. Thus, for each I_{j}, \wp maps the negative numbers to positive numbers. Thus, \wp has no fixed point on I_{j} for $j \leqslant-1$. Now for any $n>1$, we have $\wp^{n}([\lambda / 2, \infty))=[\lambda / 2, \infty]$. Indeed, we have

$$
\wp([\lambda / 2, \infty))=\wp([\lambda / 2, \lambda]) \bigcup_{j=1}^{\infty} \wp([j \lambda,(j+1) \lambda])=[\lambda / 2, \infty] .
$$

Thus, the image under \wp of a negative number becomes positive and subsequent iterates remains positive. Then, \wp cannot have a positive cycle over the negative axis.

For each $j \geqslant 1$, let us consider the Weierstrass \wp function on each interval I_{j}. We have seen that the Weierstrass \wp function is an even function on each fundamental interval I_{j} for $j \in \mathbb{Z}$. Also, it attains a minimum at the single critical point $(j+1) / 2$ on each interval I_{j}. Therefore, its graph on each interval is similar to the quadratic family Q_{c} that we already discuss its dynamics by the help of symbolic dynamics with two symbols, 0 and 1 . As before we are interested in finding the invariant subset of I_{j}.

By Lemma 3.5, it implies that \wp_{Λ} has two fixed points for all $j \geqslant 1$. Let $\operatorname{Fix}\left(\left.\wp_{\Lambda}\right|_{I_{j}}\right)=$ $\left\{p_{j}, q_{j}\right\}$. Since \wp attains the local minimum at $(j+1) \lambda / 2$, then $j \lambda<p_{j}<(j+1) \lambda / 2<$ $q_{j}<(j+1) \lambda$.

Lemma 3.17. For each $j \geqslant 1$, the fixed points $p_{j}, q_{j} \in I_{j}$ are repelling for \wp_{Λ}, Λ the central lattice.

Proof. Since Λ is the central lattice, then $\wp(\lambda / 2)=\wp(\lambda+j \lambda)=\lambda / 2$ for all $j \in \mathbb{Z}$. The critical points of $\left.\wp\right|_{\mathbb{R}}$ are exactly the points $\lambda / 2+j \lambda, j \in \mathbb{Z}$. Then all critical points of $\left.\wp\right|_{\mathbb{R}}$ are mapped after one iteration into $\lambda / 2$. By Theorem 4.6 in $[7],\left.\wp\right|_{\mathbb{R}}$ cannot have any other attracting or parabolic periodic point in \mathbb{R}. Hence $p_{j}, q_{j} \in I_{j}$ for $j \geqslant 1$ are repelling.

Let us consider a closed subinterval $J_{j}=\left[(j+2) \lambda-q_{j}, q_{j}\right]$ of I_{j}. Let us defined the subset A_{j}^{1} of J_{j} that leave the interval J_{j} just after one iteration, that is,

$$
A_{j}^{1}:=\left\{x \in J_{j} \mid \wp_{\Lambda}(x) \notin J_{j}\right\} .
$$

Notice that the endpoints of the interval A_{j}^{1} are p_{j}^{1} and q_{j}^{1} which are satisfied the equation of intersection between the graph of \wp_{Λ} on each interval I_{j} and the horizontal line $y=(j+2) \lambda-q_{j}$ for $j \geqslant 1$:

$$
\begin{equation*}
\wp_{\Lambda}(x)=(j+2) \lambda-q_{j} . \tag{3.2}
\end{equation*}
$$

Define A_{j}^{n} to be the subset of J_{j} that leaves the interval J_{j} after n iterations,

$$
A_{j}^{n}=\left\{x \in J_{j} \mid \wp_{\Lambda}^{i}(x) \in J_{j} \text { for } i=1,2, \cdots, n-1 \text { but } \wp_{\Lambda}^{n}(x) \notin J_{j}\right\} .
$$

Now let us define the subset of points that never leave J_{j} for any iteration, namely

$$
\Gamma_{j}=\left\{x \in J_{j} \mid \wp^{n}(x) \in J_{j} \text { for any } n \in \mathbb{N}\right\} \subset I_{j}, j \geqslant 1
$$

In other words, we can express Γ_{j} as

$$
\Gamma_{j}=J_{j}-\bigcup_{n=1}^{\infty} A_{j}^{n}
$$

It should be noticed that by definition Γ_{j} is closed and nonempty. Let us denote K_{j}^{0} and K_{j}^{1} two closed subintervals of J_{j} on the the left and the right of A_{j}^{1} so that $K_{j}^{0} \cup A_{j}^{1} \cup K_{j}^{1}=J_{j}$.

Lemma 3.18. For any point $x \in K_{j}^{0} \cup K_{j}^{1}$, we have $\left|\wp_{\Lambda}^{\prime}(x)\right|>1$ for all $j \geqslant 1$.
Theorem 3.19. For $j \geqslant 1$, we have Γ_{j} is a Cantor set.
Proof. Notice that q_{j} is a fixed point for \wp so that $q_{j} \in \Gamma_{j}$. For any $j \geqslant 2$ and $n \geqslant 2$, we have $A_{j}^{n}=\wp^{1-n}\left(A_{j}^{1}\right)$. Recall $A_{j}^{1}=\left(p_{1}^{1}, q_{1}^{1}\right)$ which is open as the subset of the real line \mathbb{R}. Also, \wp is continuous on each fundamental interval I_{j}. It follows that $A_{j}^{n}=\wp^{1-n}\left(A_{j}^{1}\right)$ is open for all $j \geqslant 2, n \geqslant 2$. Since $J_{j}=\left[(j+2) \lambda-q_{j}, q_{j}\right]$ is closed, it implies that Γ_{j} is closed.

Now suppose that Γ_{j} contains an interval J of positive length l. For any two distinct points x, y, the Mean Value Theorem implies that there exists a point z on the open interval with endpoints x and y such that

$$
\left|\wp^{\prime}(z)\right|=\frac{|\wp(x)-\wp(y)|}{|x-y|} \text {. }
$$

By Lemma 3.18, then it follows that $|\wp(x)-\wp(y)|>\lambda|x-y|$ for some $\lambda>1$. By definition of Γ_{j} and $J \subset \Gamma_{j}$, we have $\Gamma_{j}(J) \subset \Gamma_{j}$. Then $\wp(x)$ and $\wp(y) \in \Gamma_{j}$ with $\wp(x) \neq \pm \wp(y)$ since \wp is even on each interval with respect to the vertical line passing through its critical point. Applying Mean Value Theorem again, we have

$$
\frac{\left|\wp^{2}(x)-\wp^{2}(y)\right|}{|\wp(x)-\wp(y)|}>\lambda .
$$

Then $\left|\wp^{2}(x)-\wp^{2}(y)\right|>\lambda|\wp(x)-\wp(y)|>\lambda^{2}|x-y|$. For the n iteration, we have

$$
\left|\wp^{n}(x)-\wp^{n}(y)\right|>\lambda^{n}|x-y| .
$$

Then

$$
\lim _{n \rightarrow \infty}\left|\wp^{n}(x)-\wp^{n}(y)\right| \geqslant \lim _{n \rightarrow \infty} \lambda^{n}|x-y| .
$$

Since $|x-y|>0$ and $\lambda>1$, then $\lambda^{n}|x-y| \rightarrow \infty$. But $\lim _{n \rightarrow \infty}\left|\wp^{n}(x)-\wp^{n}(y)\right|<l$ and l is finite. This gives us a contradiction and thus Γ_{j} contains no interval. This shows that Γ_{j} is totally disconnected

It remains to prove that Γ_{j} is perfect. But we have seen that Γ_{j} is closed, it is enough to prove that it has an isolated point. However, the proof of this part are the same as the one for the quadratic map Q_{c} provided in Theorem 1.15. Hence, Γ_{j} is the Cantor set for any $j \geqslant 1$.

Let us define an itinerary map S from the invariant set Γ_{j} to the space of two symbols Σ_{2}. For any $x \in \Gamma_{j}$, let

$$
S(x)=\left(s_{0} s_{1} s_{2} \cdots\right)
$$

where $s_{i}=0$ if $\wp^{i}(x) \in K_{j}^{0}$ and $s_{i}=1$ if $\wp^{i}(x) \in K_{j}^{1}$.
Theorem 3.20. The itinerary map S is a homeomorphism with the property that for any natural number n,

$$
\left.S \circ \wp^{n}\right|_{\Gamma_{j}}(x)=\sigma^{n} \circ S(x)
$$

Figure 3.3: The Weierstras \wp-function on I_{1}
Recall that from Proposition 1.23 in Chapter 1, the shift map σ is continuous on Σ_{2}. Moreover, for any $j \geqslant 1, \wp$ is continuous on each J_{j}. Together with the Theorem 3.20,
we conclude that $\left.\wp\right|_{J_{j}}$ for $j \geqslant 1$ and the shift map σ are conjugate under the conjugacy S.

Theorem 3.21. Let Λ be a central lattice. Then, for any $j \geqslant 1, \wp_{\Lambda}$ is chaotic in Γ_{j}.
The proof of the theorem is similar to the proof provided for the quadratic map $\left.Q_{c}\right|_{\Lambda_{c}}$ whenever $c<-\frac{5+2 \sqrt{5}}{4}$. For our case, the central lattice guarantees sufficient expansion of $\left.\wp\right|_{\Gamma_{j}}$.

Bibliography

[1] Abramowitz, Milton and Stegun, Irene A. Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards Applied Mathematics Series, 55, Washington, D.C. 1964 xiv+1046 pp.
[2] Ahlfors, Lars V. Complex Analysis -An introduction to the theory of analytic functions of one complex variable, McGraw-Hill, 1979.
[3] Devaney, Robert L.. An Introduction to Chaotic Dynamical System. AddisonWesley. 1989.
[4] Devaney, Robert L.. A first course in chaotic dynamical systems: theory and experiment. Computers in Physics 7.4 (1993): 416-417.
[5] Du Val, Patrick. Elliptic functions and elliptic curves. Vol. 9. Cambridge University Press, 1973.
[6] Hawkins, Jane, and Lorelei Koss. Ergodic properties and Julia sets of Weierstrass elliptic functions. Monatshefte fr Mathematik 137.4 (2002): 273-300.
[7] Hawkins, Jane and Moreno Rocha, Monica. Dynamics and Julia sets of iterated elliptic functions. Preprint. 2016.
[8] Jones, Gareth A., and Singerman, David. Complex functions: an algebraic and geometric viewpoint. Cambridge university press, 1987.
[9] Robinson, Clark. Dynamical Systems-Stability, Symbolic Dynamics and Chaos. CRC Press. 1999.
[10] Sharkovskii, A. N. Coexistence of cycles of a continuous map of the line into itself. Translated from the Russian [Ukrain. Mat. Zh.16(1964), no. 1, 6171;MR0159905] by J. Tolosa. Proceedings of the Conference: Thirty Years after Sharkovski's Theorem: New Perspectives (Murcia, 1994). Internat. J. Bifur. Chaos Appl. Sci. Engrg.5(1995),no. 5,12631273.
[11] Stefan, P. A theorem of Sarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line. Comm. Math. Phys.54(1977), no. 3,237-248..
[12] Stein, Elias M., and Shakarchi, Rami. Complex analysis. Princeton Lectures in Analysis, II. (2003) xviii+379 pp.

[^0]: Authorization of the final version

