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Introduction

Spinors have played an important role in both physics and mathematics ever since they were
discovered by É. Cartan in 1913. To have a picture of their importance we refer the reader to
Hitchin's seminal paper [13], the textbooks [9, 16], as well as to [21, 31] for the more recent
development of Seiberg-Witten theory and its notorious results on 4-manifold geometry and
topology.

Cartan de�ned pure spinors [2, 3, 5] in order to characterize (almost) complex structures and,
one hundred years later, they are still central in tackling geometrical problems. Furthermore,
spinor �elds have also been related to the notion of calibrations on a Spin manifold by Harvey
and Lawson [10, 6], since distinguished di�erential forms are naturally associated to a spinor
�eld. Pure spinors are also present in the Penrose formalism in General Relativity as they are
implicit in Penrose's notion of ��ag planes� [26, 27, 28].

The main subject of this work is the study of CR manifolds via twisted spin geometry. Our
main motivation is the aformentioned relationship between classical pure spinors and orthog-
onal almost complex structures. More precisely, a classical pure spinor φ ∈ ∆2m is a spinor
such that the (isotropic) subspace of complexi�ed vectors X − iY ∈ R2m ⊗ C, X,Y ∈ R2m,
which annihilate φ under Cli�ord multiplication

(X − iY ) · φ = 0

is of maximal dimension, where m ∈ N and ∆2m is the standard complex representation of the
Spin group Spin(2m) (cf. [16]). This means that for every X ∈ R2m there exists a Y ∈ R2m

satisfying
X · φ = iY · φ.

By setting Y = J(X), one can see that a pure spinor determines a complex structure on R2m.
Geometrically, the two subspaces TM · φ and iTM · φ of ∆2m coincide, which means TM · φ
is a complex subspace of ∆2m, and the e�ect of multiplication by the number i =

√
−1 is

transferred to the tangent space TM in the form of J .

In [14] the space of spinors ∆n, n ≤ 12, is decomposed into classes of orbits under the action
of the Spin group. The authors of [4, 30] investigated (the classi�cation of) non-pure classi-
cal spinors by means of their isotropic subspaces. In [30], the authors noted that there may
be many spinors (in di�erent orbits under the action of the Spin group) admitting isotropic
subspaces of the same dimension, and that there is a gap in the possible dimensions of such
isotropic subspaces.

Following these geometrical considerations, we investigated how to de�ne twisted partially
pure spinors in order to spinorially characterize subspaces of Euclidean space endowed with

xi



xii Introduction

a complex structure. We characterize subspaces of Euclidean space Rn, n ≥ 2m, endowed
with an orthogonal complex structure by means of twisted spinors. Thus, we de�ne twisted
partially pure spinors (cf. De�nition 2.2.1) in order to establish a one-to-one correspondence
between subspaces of Euclidean space (of �xed codimension and endowed with a orthogonal
complex structures and oriented orthogonal complements), and orbits of such spinors under a
particular subgroup of the twisted Spin group (cf. Theorem 2.2.1). By using spinorial twists
we avoid having di�erent orbits under the full twisted Spin group and also the aforementioned
gap in the dimensions.

The need to establish such a correspondence arises from our interest in developing a spino-
rial setup to study the geometry of manifolds admitting (almost) CR structures (of arbitrary
codimension). Since such manifolds are not necessarily Spin nor Spinc, we are led to consider
spinorially twisted Spin groups, representations, structures, etc. Thus, we develop a spino-
rial description of CR structures of arbitrary codimension. More precisely, we characterize
almost CR structures of arbitrary codimension on (Riemannian) manifolds by the existence
of a Spinc,r structure carrying a partially pure spinor �eld.

The notion of abstract CR structures in odd dimensions generalizes that of complex structure
in even dimensions. This notion aims to describe intrinsically the property of being a hyper-
surface of a complex space form. This is done by distinguishing a distribution whose sections
play the role of the holomorphic vector �elds tangent to the hypersurface. There exists also
the notion of almost CR structure of arbitrary codimension, in which a �xed codimension
subbundle of the tangent bundle carries a complex structure. It has been proved that every
codimension one, strictly pseudoconvex CR manifold has a canonical Spinc structure [29].
Naturally, this led us to ask if it is possible to characterize almost CR structures of arbitrary
codimension (and a choice of compatible metric) by means of a twisted Spin structure carrying
a special spinor �eld.

The spinorially twisted Spin group is de�ned as follows

Spinc,r(n) =
Spin(n)× Spinc(r)

{±(1, 1)}
.

It will be the structure group for the twisted Spin structures (cf. De�nition 3.2.1). One of
its representations will contain the partially pure spinors we need and the parameter r will
eventually play the role of the codimension of an almost CR structure. Such twisted Spin
structures involve not only the principal bundle of orthonormal frames, but also two auxiliary
principal bundles.

The existence of a partially pure spinor �eld φ on a Riemannian Spinc,r manifold M implies
the splitting of the tangent bundle TM into two orthogonal distributions V φ and (V φ)⊥,
where the former is endowed with an automorphism Jφ satisfying (Jφ)2 = −IdV φ , i.e. M
has an almost CR hermitian structure. In fact, the converse is also true (cf. Theorem 4.1.1).
Furthermore, we characterize the integrability condition of a CR structure (with metric) by
an equation involving covariant derivatives of the partially pure spinor (cf. Theorem 4.1.2).
We proceed to study other natural �integrability conditions� of the partially pure spinor �eld,
such as being parallel in the V φ directions (cf. Theorem 4.1.3), or being Killing in the (V φ)⊥

directions (cf. Theorem 4.1.5), etc. We present a family of homogeneous spaces as examples
for the di�erent theorems. Finally, we study various integrability conditions of the almost CR
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structure in our spinorial setup, including the classical integrability of a CR structure as well
as those implied by Killing-type conditions on the partially pure spinor �eld.

The thesis is organized as follows:

• In chapter one we recall some results related to Cli�ord algebras, Spin groups and almost
complex structures. These results are introductory material for the subject and are used
in the subsequent chapters.

• In chapter two we de�ne the twisted Spin groups and representations that will be used.
We present the space of anti-symmetric 2-forms and endomorphims associated to twisted
spinors and show some results on subgroups and branching of representations. In Section
2.2, we de�ne partially pure spinors, deduce their basic properties and prove Theorem
2.2.1, which establishes the aforementioned one-to-one correspondence.

• In chapter three we use the background material from the de�nition of partially pure
spinors and describe the isotropy representation of a family of homogeneous spaces (par-
tial �ag manifolds) that will be used to produce examples of some results throughout
the thesis. In Section 3.2, we de�ne Spinc,r structures, study their existence, de�ne
twisted Dirac and Laplace operators, prove some curvature identities and a Schrödinger-
Lichnerowicz-type formula, and derive some Bochner-type results.

• In chapter four we develop a spinorial description of CR structures of arbitrary codimen-
sion. We characterize almost CR structures of arbitrary codimension on (Riemannian)
manifolds by the existence of a Spinc,r structure carrying a partially pure spinor �eld.
We study various integrability conditions of the almost CR structure in our spinorial
setup, including the classical integrability of a CR structure as well as those implied by
Killing-type conditions on the partially pure spinor �eld.

Summarizing, this work lays the foundations for the geometrical study of CR structures of
arbitrary codimension by means of spinorially twsited spin geometry, some of which has been
published in [12]. Our future work will focus on generalizing codimension CR constructions,
such as the Fe�erman space and metric.





Chapter 1

Preliminaries

In this chapter we study some results needed for the next chapters. Most of the results of
Cli�ord algebras, Spin groups and Spin structures were taken from [9] and [16]. These results
will help clarify notation appearing in the next chapters and make the material more self
contained.

1.1 Cli�ord Algebras

To introduce the concept of spinor we need to recall some results about Cli�ord algebras and
the Spin group. Consider a �nite dimensional vector space V together with a quadratic form
q over the �eld K = C or K = R. The Cli�ord algebra of (V, q), that we denote by Cl(V, q), is
the quotient space T (V )/I where T (V ) is the tensor algebra of V and I is the two sided ideal
generated by all elements of the form

{v ⊗ v − q(v) · 1 : v ∈ V }.

The algebra Cl(V, q) can be charaterized as follows. We say that (C(q), j) is a Cli�ord algebra
for (V, q) if

i) C(q) is an associative K−algebra with 1;

ii) j : V → C(q) is a linear map and j(v)2 = q(v) · 1 for all v ∈ V ;

iii) if A is another algebra with 1 and u : V → A a linear map satisfying u(v)2 = q(v) · 1,
then there exists one and only one algebra homomorphism Ũ : C(q) → A such that
u = Ũ ◦ j.

With these de�ning properties it can be proved that (Cl(V, q), j), j being the inclusion of V in
T (V ) followed by projection to Cl(V, q), is a Cli�ord algebra for (V, q) and also if there exists
another Cli�ord algebra (C ′(q), j′) for (V, q) then there exists an isomorphism of algebras,
f : Cl(V, q)→ C ′(q), satisfying f ◦ j = j′, i.e. the diagram

V

j
��

j′

%%
Cl(V, q)

f
// C ′(q)

1



2 Preliminaries

commutes.

The map j : V → Cl(V, q) is injective and the set j(V ) generates Cl(V, q) multiplicatively. If
dim(V ) = n then dim(Cl(V, q)) = 2n; so, an orthogonal basis, v1, . . . , vn, for V with respect
to B(u, v) = 1

2(q(u+ v)− q(u)− q(v)) also generates the algebra Cl(V, q) and since v2
i = q(v)2

we have (vi + vj)
2 = q(vi + vj) = q(vi) + q(vj) = v2

i + v2
j which implies the relations

vivj + vjvi = 0, i 6= j.

Consider Cln, the Cli�ord algebra of Rn with q(v) = −|v|2. According to the previous dis-
cussion this Cli�ord algebra is generated by the usual orthonormal vectors e1, e2, . . . , en ∈ Rn
subject to the relations

ejek + ekej = −2 〈ej , ek〉 ,

where
〈
,
〉
denotes the standard inner product in Rn.

For n = 1, the Cli�ord algebra Cl1 is generated by 1 and by the basic element e1 with the
single relation e2

1 = −1. Thus Cl1 = C. If n = 2 then the set {e1, e2} generates R2 and
in consequence the elements 1, i = e1, j = e2, k = e1e2 generate Cl2. Since e2

i = −1 and
e1e2 + e2e1 = 0, these elements satisfy the relations i2 = j2 = k2 = −1 and ij = k, jk = i,
ki = j. These are the relations of the algebra of quaternions. So, Cl2 = H.

Here is a table with the �rst eight Cli�ord algebras Cln

n Cln
1 C
2 H
3 H⊕H
4 M2(H)

5 M4(C)

6 M8(R)

7 M8(R)⊕M8(R)

8 M16(R)

For n ≥ 9, the algebras Cln are isomorphic to tensor products of these (see [16] p. 27).

We will concentrate on the algebras

Cln = Cln ⊗R C,

the complexi�cation of Cln. These algebras satisfy

Cln+2
∼= Cln ⊗C Cl2.

The algebra Cl2 is generated by the elements e1, e2 satisfying the relations e2
i = −1 and

e1e2 + e2e1 = 0. Now, in the basis

Id =

(
1 0
0 1

)
, g1 =

(
i 0
0 −i

)
, g2 =

(
0 i
i 0

)
, T =

(
0 −i
i 0

)
,
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of M2(C), the elements g1 and g2 satisfy the same relations: g2
i = −1 and g1g2 + g2g1 = 0.

This implies Cl2 = M2(C) and

Cln+2
∼= Cln ⊗C M2(C). (1.1)

We can describe now Cln explicitly: we start with Cl1 = Cl1 ⊗R C = C ⊗R C = C ⊕ C and
Cl2 = M2(C). For n ≥ 3, we use (1.1) and obtain

Cln ∼=
{

End(∆n), if n = 2k,
End(∆n)⊕ End(∆n), if n = 2k + 1.

Where the complex space
∆n := (C2)⊗k = C2 ⊗ . . .⊗ C2︸ ︷︷ ︸

k times

,

is the tensor product of k = [n/2] copies of C2. From now on we refer to ∆n as the space of
spinors.

The map
κ : Cln −→ End(∆n)

is de�ned to be either the above mentioned isomorphism if n is even, or the isomorphism
followed by the projection onto the �rst summand if n is odd.

In terms of the generators e1, . . . , en, κ can be described explicitly as follows,

e1 7→ Id⊗ Id⊗ . . .⊗ Id⊗ Id⊗ g1,

e2 7→ Id⊗ Id⊗ . . .⊗ Id⊗ Id⊗ g2,

e3 7→ Id⊗ Id⊗ . . .⊗ Id⊗ g1 ⊗ T,
e4 7→ Id⊗ Id⊗ . . .⊗ Id⊗ g2 ⊗ T,
... . . .

e2k−1 7→ g1 ⊗ T ⊗ . . .⊗ T ⊗ T ⊗ T,
e2k 7→ g2 ⊗ T ⊗ . . .⊗ T ⊗ T ⊗ T,

and, if n = 2k + 1,
e2k+1 7→ i T ⊗ T ⊗ . . .⊗ T ⊗ T ⊗ T.

With this explicit isomorphism the Cli�ord algebras Cln are

n Cln
1 C⊕ C
2 M2(C)

3 M2(C)⊕M2(C)

4 M4(C)

5 M4(C)⊕M4(C)

6 M8(C)
...

...

Now, the vectors

u+1 =
1√
2

(1,−i) and u−1 =
1√
2

(1, i),



4 Preliminaries

form a unitary basis of C2 with respect to the standard Hermitian product 〈z, w〉 = z1w̄1+z2w̄2.
Thus,

{uε1,...,εk = uε1 ⊗ . . .⊗ uεk | εj = ±1, j = 1, . . . , k},

is a unitary basis for the space of spinors ∆n with respect to the naturally induced Hermitian
product. From now on we will denote inner and Hermitian products by the same symbol 〈·, ·〉
trusting that the context will make clear which product is being used.

The explicit description of κ and the basis for ∆n allows us to compute the action of any
element a ∈ Cln on the space ∆n. In particular the Cli�ord multiplication, of a vector with a
spinor, is de�ned by

µn : Rn ⊗∆n −→ ∆n

x⊗ ψ 7→ µn(x⊗ ψ) := κ(x)(ψ).

We use the notation x · ψ for Cli�ord multiplication.

Example 1.1.1. Let ψ = u+1⊗ u+1 ∈ ∆4. The elements of the standard basis {e1, e2, e3, e4}
of R4 act on ψ as follows

e1 · ψ = u+1 ⊗ g1(u+1) = iu+1 ⊗ u−1,

e2 · ψ = u+1 ⊗ g2(u+1) = u+1 ⊗ u−1,

e3 · ψ = g1(u+1)⊗ T (u+1) = −iu−1 ⊗ u+1,

e4 · ψ = g2(u+1)⊗ T (u+1) = −u−1 ⊗ u+1.

Observe that e1 · ψ = ie2 · ψ and e3 · ψ = ie4 · ψ, these equations imply that ψ is an example
of spinor, called pure spinor, which we de�ne later.

1.2 The Spin Group and its Standard Representation

We will focus now on the Spin group, Spin(n) ⊂ Cln is the subset

Spin(n) = {x1x2 · · ·x2l−1x2l ∈ Cln | xj ∈ Rn, |xj | = 1, l ∈ N},

endowed with the product of the Cli�ord algebra. If x ∈ Rn ⊂ Cln then x · x = −|x|2, thus if
g = x1 · x2 · · ·x2l ∈ Spin(n) then its inverse is g−1 = x2l · · ·x2 · x1.

Let {e1, . . . , en} be the standard basis of Rn. For n = 1 there are just two elements for
which |λe1| = 1, this implies Spin(1) = Z2. For n = 2 the product g of an even number
of elements xi is of the form g = a + be1e2, a, b ∈ R, and its inverse is g−1 = a − be1e2

from where we have that a2 + b2 = 1, i.e. Spin(2) = U(1). For n = 3, the product men-
tioned must be of the form g = a + be1e2 + ce1e3 + de2e3, a, b, c, d ∈ R, and its inverse
must be g−1 = a − be1e2 − ce1e3 − de2e3, multiplying out we obtain gg−1 = 1 if and only if
a2 + b2 + c2 + d2 = 1. So, Spin(3) = S3 ∼= SU(2).
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The �rst Spin groups are
n Spin (n)

1 Z2

2 U(1)

3 SU(2)

4 SU(2)× SU(2)

5 Sp(2)

6 SU(4)

The group Spin(n) is the double cover of SO(n). The covering map

λn : Spin(n)→ SO(n)

acts on v ∈ Rn as follows
λn(g)(v) = g · v · g−1.

This product is always an element of Rn, the copy inside Cln, if g ∈ Spin(n). It is clear that
g and −g give the same transformation under λn for all n.

For x ∈ Rn ⊂ Cln such that |x| = 1 and v ∈ Rn

Rx(v) = x · v · x = x · (−x · v − 2 〈x, v〉) = |x|2v − 2 〈x, v〉x = v − 2 〈x, v〉x

is the re�ection of v with respect to the plane x⊥ = {y ∈ Rn : 〈y, x〉 = 0}. According to the
Cartan-Dieudonné Theorem, A ∈ O(n) is obtained composing a �nite number of re�ections
Rx. For a �nite composition of re�ections R1 ◦R2 ◦ · · · ◦Rk ∈ SO(n) if and only if k is even.
So, λn(g) ∈ SO(n) for all g ∈ Spin(n) and λn is onto.

Now we prove ker(λn) = Z2. The map λn is a group homomorphism. If there exists
g ∈ Spin(n) such that λ(g) = 1 then g · v = v · g for all v ∈ Rn. This implies g commutes
with every element of Cln and, in particular, with every element of the Cli�ord subalgebra
generated by {e1, . . . , en−1} ⊂ Rn, i.e. g is in the intersection of the centers of these algebras
which can be proved (see [9], p. 9) to be just R. So, g ∈ R and from |g| = 1 it follows that
g = ±1.

The group Spin(n) is connected for n ≥ 2 and simply connected for n ≥ 3. For the connec-
tedness it is enough to connect the elements of the form v1 · v2, |v1| = |v2| = 1, by a path γ(t)
to 1. If v2 = λv1 then λ = ±1 and v1 · v2 = ∓1. The path

γ(t) = − cos(πt)− sin(πt)e1e2

= (cos(πt/2)e1 + sin(πt/2)e2) · (cos(πt/2)e1 − sin(πt/2)e2)

is in Spin(n) for all 0 ≤ t ≤ 1 and connects −1 with 1.

Asume v1 and v2 linearly independent. Let W be the plane spanned by v1 and v2 and w ∈
v⊥1 ∩W such that |w| = 1. Rotating the plane W we get a path α(t) connecting v2 and w,
this path satis�es |α(t)| = 1. The path β(t) = v1 · α(t) connects v1 · v2 with v1 · w and is in
Spin(n). Finally connect 1 to v1 · w with

γ(t) = cos(πt/2) + sin(πt/2)v1w
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= (cos(πt/4)v1 + sin(πt/4)w) · (sin(πt/4)w − cos(πt/4)v1)

From the previous description of the �rst Spin groups we have π1(Spin(3)) = 0, so, as λ3 is a
covering map, we have π1(SO(3)) = Z2. Recalling that π2(Sn) = 0 for n ≥ 3 and considering
the �bration SO(n) ↪→ SO(n + 1) → Sn, for n ≥ 3, we have π1(SO(n)) = π1(SO(3)) = Z2,
n ≥ 4. Finally, using the map λn, this implies that π1(Spin(n)) is a subgroup of index two of
Z2, which gives us π1(Spin(n)) = 0 for n ≥ 3.

Example 1.2.1. To see explicitly the covering map λn we make a computation. For n = 2,
let v = xe1 + ye2 and g = a+ be1e2 as described earlier. Multiplying one obtains

g · v · g−1 = (a+ be1e2) · (xe1 + ye2) · (a− be1e2)

= ((a2 − b2)x− 2aby)e1 + ((a2 − b2)y + 2abx)e2.

As Spin(2) = U(1) we can put a = cos(θ) and b = sin(θ) to obtain

g · v · g−1 = (x cos(2θ)− y sin(2θ))e1 + (y cos(2θ) + x sin(2θ))e2

which is equal to Av where

A =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
.

Thus λ2 : Spin(2) = U(1)→ U(1) is just the map z 7→ z2.

The Lie algebra of Spin(n) is

spin(n) = span{eiej | 1 ≤ i < j ≤ n},

with commutator [x, y] = x · y − y · x. The di�erential of λn is given by λn∗(eiej) = 2Eij ,
where Eij , i < j, is the standard basis of the skew-symmetric matrices.

For i 6= j, the path cos(t) + sin(t)ei · ej is in Spin(n) and passes trough 1 at t = 0. As in
example 1.2.1 we have

λn(γ(t))(xei + yej) = (x cos(2t)− y sin(2t))ei + (y cos(2t) + x sin(2t))ej

and
λn(γ(t))(ek) = ek, k 6= i, k 6= j.

On the other hand
exp(tei · ej) = cos(t) + sin(t)eiej = γ(t).

Deriving and evaluating at t = 0 we get λn∗(ei · ej)(ei) = 2ej , λn∗(ei · ej)(ej) = −2ei and
λn∗(ei · ej)(ek) = 0. Hence we have an isomorphism between spin(n) and the linear span of
ei · ej , i < j, which we showed is isomorphic to so(n).

To end this section we describe the usual representation of Spin(n). There exists a positive
Hermitian product on ∆n such that the Cli�ord multiplication satis�es

〈x · ψ1, ψ2〉 = −〈ψ1, x · ψ2〉 . (1.2)
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The restriction of κ to Spin(n) de�nes the Lie group representation

Spin(n) −→ GL(∆n).

This is a faithful and a special unitary representation with respect to the product in (1.2) with
corresponding Lie algebra representation

spin(n) −→ gl(∆n).

Finally, the multiplication µn can be extended to an homomorphism

µn :
∧∗

(Rn)⊗∆n −→ ∆n

ω ⊗ ψ 7→ ω · ψ

as follows. Each element ωk ∈
∧∗

(Rn) can be written, with respect to the orthonormal basis
{e1, . . . , en}, as

ωk =
∑

i1<···ik

wi1...ik e
∗
i1 ∧ · · · ∧ e

∗
ik
.

We de�ne

ωk · ψ =
∑

i1<···ik

wi1...ik ei1 · . . . · eik · ψ.

Furthermore, if we abuse notation and also denote by λn the induced representation of λn on∧∗Rn, it can be proved that µn is a homomorphism of Spin(n)-representations. Which means
that for every g ∈ Spin(n)

κ(g)(ωk · ψ) = (λn(g)ωk) · (κ(g)ψ).

1.3 Twisted Spin Groups

Consider the following groups:

1. By using the unit complex numbers U(1), the Spin group can be twisted [9]

Spinc(n) = (Spin(n)× U(1))/{±(1, 1)} = Spin(n)×Z2 U(1),

with Lie algebra

spinc(n) = spin(n)⊕ iR.

2. In [8] the twisted Spin groups Spinr(n), r ∈ N, have been considered and are de�ned as
follows

Spinr(n) = (Spin(n)× Spin(r))/{±(1, 1)} = Spin(n)×Z2 Spin(r).

The Lie algebra of Spinr(n) is

spinr(n) = spin(n)⊕ spin(r).
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3. Here, we will also consider the group

Spinc,r(n) = (Spin(n)× Spinc(r))/{±(1, 1)}
= Spin(n)×Z2 Spin

c(r),

where r ∈ N, whose Lie algebra is

spinc,r(n) = spin(n)⊕ spin(r)⊕ iR.

This group �ts into the exact sequence

1 −→ Z2 −→ Spinc,r(n)
λn×λr×λ2−−−−−−−→ SO(n)× SO(r)× U(1) −→ 1,

where

(λn × λr × λ2)([g, [h, z]]) = (λn(g), λr(h), z2).

Note that for r = 0, 1, Spinc,r(n) = Spinc(n).

These groups have the following twisted representations

1. The Spin representation ∆n extends to a representation of Spinc(n) by letting

Spinc(n) −→ GL(∆n)

[g, z] 7→ zκn(g) =: zg.

2. The twisted Spinc,r(n) representation

Spinc,r(n) −→ GL(∆r ⊗∆n)

[g, [h, z]] 7→ zκr(h)⊗ κn(g) =: zh⊗ g.

which is also unitary with respect to the natural Hermitian metric. Sometimes we will
refer to this representation as κc,rn .

3. For r = 0, 1, the twisted spin representation is simply the Spinc(n) representation ∆n.

For the sake of future notation we will set

SO(0) = {1}, SO(1) = {1},

Spin(0) = {±1}, Spin(1) = {±1},

and

∆0 = ∆1 = C

a trivial 1-dimensional representation.
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1.4 Spin Structures

We introduce now the concept of Spin structure. Let M be a Riemannian connected oriented
smooth manifold of dimension n and (Q, πQ, M ; SO(n)) the bundle of oriented orthonormal
frames over M . A Spin structure on the principal bundle Q is a pair (P, Λ) where

i) P is a Spin(n) principal bundle over M ,

ii) Λ : P → Q is a two fold covering for which the diagram

P × Spin(n)

Λ×λn

��

// P

Λ

��

πP

��
M

Q× SO(n) // Q

πQ

??

commutes. Here an horizontal arrow represents the action of the corresponding group
on the respective principal bundle.

For an oriented manifold M , with n = dim(M) ≥ 3, the bundle of orthonormal frames has
�ber F di�eomorphic to SO(n), this implies π1(F ) = Z2. The embedding i : F → Q induces
a homomorphism of fundamental groups i# : π1(F ) → π1(Q). Thus for αF , the nontrivial
element of π1(F ), i#(αF ) ∈ π1(Q).

Let (P,Λ) be a Spin structure on Q. From covering theory H = Λ#(π1P ) ⊂ π1(Q) is a
subgroup of index two that does not contain the element i#(αF ). For if i#(αF ) ∈ H implies
that there exist a lift I : F → P such that the diagram

P

Λ
��

F

I

??

i // Q

commutes. This implies that I(F ) ⊂ F1, with F1 the �bre of P di�eomorphic to Spin(n),
from where Λ# ◦ I# = Idπ1(F ). This gives a contradiction since π1(F ) = Z2 and π1(F1) = 0.

With the same kind of arguments one can show that the equivalence classes of Spin structures
on the orthonormal frame bundle Q of a connected manifold M are in bijective correspondence
with those subgroups H ⊂ π1(Q) of index two which do not contain αF .

Another characterization of the Spin structures can be given using this result. The �bration
F ↪→ Q→M induce the long exact sequence of homotopy groups

· · · // π2(M)
∂ // π1(F )

i# // π1(Q)
π# // π1(M) // 0. (1.3)

Now, a subgroup H ⊂ π1(Q) of index two gives us a nontrivial homomorphism

f : π1(Q) −→ π1(Q)/H = Z2
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and vice versa. This, together with αF /∈ H, implies that the composition

f ◦ i# : π1(F ) = Z2 −→ π1(Q) −→ π1(Q)/H = Z2

is the identity. Thus the Spin structures on Q over a connected manifold M are in one-to-one
correspondence with the homomorphisms splitting the sequence (1.3), i.e. the homomorphisms
f : π1(Q)→ π1(F ) satisfying f ◦ i# = Idπ1(F ).

We have the following consequences of the previous observations

Proposition 1.4.1. Let Q be the frame of orthonormal bundles over M .

i) If Q has a Spin structure then

a) π1(Q) = π1(F )⊕ π1(X)

b) π2(Q) = π2(M)

ii) If M is simply connected then Q has a Spin structure if and only if π1(Q) = Z2.

Example 1.4.1. The bundle of orthonormal frames of the sphere Sn, n ≥ 2, is SO(n+ 1)
which can be seen from the �bration

SO(n) ↪→ SO(n+ 1)→ Sn.

Since π1(SO(n + 1)) = Z2 and Sn is simply connected, the sphere Sn, n ≥ 2, has a Spin
structure.

We can reformulate the description of the Spin structures in terms of the second Stiefel-
Whitney class. Since

H1(Q;Z2) = Hom(H1(Q);Z2)

= Hom(π1(Q)/[π1(Q), π1(Q)];Z2) = Hom(π1(Q);Z2),

every map f : π1(Q)→ π1(F ) = Z2 de�nes an element f ∈ H1(Q;Z2). Note that H1(F ;Z2) =
Hom(Z2;Z2) = Z2, so the condition f◦i# = Idπ1(F ) is equivalent to say that f ∈ H1(Q;Z2) re-
mains nontrivial when we apply the restriction map i∗ : H1(Q;Z2)→ H1(F ;Z2) = Z2. Thus,
the Spin structures over a connected manifold M are in one-to-one correspondence with those
f ∈ H1(Q;Z2) for which i∗(f) ∈ H1(F ;Z2) = Z2 is nonzero.

Now, the �bration F ↪→ Q→M induces the long exact sequence of cohomology groups

0 // H1(M ;Z2) // H1(Q;Z2)
i∗ // H1(F ;Z2)

∂ // H2(M ;Z2) // · · · (1.4)

Let α ∈ H1(F ;Z2) be the nontrivial element. The image

w2(Q) := ∂(α) ∈ H2(M ;Z2)

is called the second Stiefel-Whitney class of Q. If w2(Q) = 0 then, by the exactness of (1.4),
there exists f ∈ H1(Q;Z2) such that i∗(f) = α ∈ H1(F ;Z2). Conversely, if there exists such
an element in H1(Q;Z2) then, by exactness, ∂(α) = 0. Aditionally if ∂(α) = 0 then, from the
sequence (1.4), we deduce that

H1(Q;Z2)

H1(M ;Z2)
∼= Z2.

Hence,
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Proposition 1.4.2. The bundle of orthonormal frames Q over M has a Spin structure if and
only if the second Stiefel-Whitney class w2(Q) vanishes. If w2(Q) = 0 then, using the sequence
(1.4), the Spin structures are clasi�ed by H1(M ;Z2).

Example 1.4.2. It is well known that the tangent space of the real projective space satis�es
T (RPn)⊕ ε1 ∼= (γ1 ∗)n+1 where γ1 is the tautological line bundle on RPn and ε1 is the trivial
line bundle.

Using properties of the Stiefel-Whitney classes one obtains the total Stiefel-Whitney class of
RPn:

w(RPn) = (1 + x)n+1

where x ∈ H1(RPn;Z2) is the generator and the �rst Stiefel-Whitney class of γ1 ∗.

Developing the last expression we obtain

w1(RPn) = (n+ 1)x, w2(RPn) =
n(n+ 1)

2
x2.

So, RPn is orientable if and only if n = 2k+ 1 and, in this case, it has a Spin structure if and
only if (k + 1)(2k + 1) ≡ 0 mod 2 which means that RPn has a Spin structure if and only if
n ≡ 3 mod 4.

Let us analize the case M = CPn. We have T (CPn)⊕ ε1 ∼= (γ1 ∗)n+1 where γ1 is the complex
tautological line bundle on CPn and ε1 is the complex trivial line bundle. So the total Chern
class of CPn is

c(CPn) = (1 + x)1+n

where x ∈ H2(CPn;Z) is the generator and the �rst Chern class of γ1 ∗.

Developing we have

c1(CP1) = (n+ 1)x.

Using w2(CPn) = c1(CPn) mod 2 (see [16] p. 82, and [20]), one has that w2(CPn) = 0 if and
only if n ≡ 1 mod 2, i.e. CPn has a Spin structure if and only if n ≡ 1 mod 2.

It is now clear that not every manifold has a Spin structure. Now we introduce Spinc structures.

De�nition 1.4.1. [16, p. 391] Let Q be the bundle of oriented orthonormal frames over a
Riemannian oriented manifold M . A Spinc structure on Q consist of a principal U(1)-bundle
PU(1) over M and a principal Spinc(n)-bundle PSpinc(n) with a Spinc(n)-equivariant bundle
map

Λ : PSpinc(n) −→ Q×̃PU(1),

which is a 2-fold covering.

A U(1)-bundle overM is often called a circle bundle. The set of all circle bundles has structure
of abelian group, in fact



12 Preliminaries

Proposition 1.4.3. [1, p. 15-19] If P(M,S1) is the set of classes of circle bundles over a
smooth manifold M then

P(M,S1) ∼= H2(M ;Z).

There exists a relation between the class of a circle bundle, c ∈ H2(M ;Z), giving a Spinc

structure and the class w2(Q) ∈ H2(M ;Z2) giving the existence of a Spin structure on Q.
This relation will be clear in the next section.

1.5 Spin Structures on G Principal Bundles

In the third chapter of this work we will introduce the concept of Spinc,r structure. It is
a concept related to principal �ber bundles with �ber the twisted Spin group Spinc,r. The
existence of such a structure can be characterized by the existence of a Spin structure.

Let G ⊂ SO(n) be a connected compact subgroup for which the map

i# : π1(G)→ π1(SO(n))

is onto, so the homogeneous space SO(n)/G is simply connected.

Example 1.5.1. The inclusion i : SO(n)→ SO(n+ 1) given by

i(A) =

(
A 0
0 1

)
induces a surjective map i# : π1(SO(n)) → π1(SO(n + 1)) which is the unique nontrivial
homomorphism of groups f : Z→ Z2 when n = 2 and f : Z2 → Z2 for n ≥ 3.

The �bration SO(n) ↪→ SO(n+ 1)→ Sn induces the long exact sequence of homotopy groups

· · · // π2(Sn)
∂ // π1(SO(n))

i# // π1(SO(n+ 1))
π# // π1(Sn) // 0.

This sequence is

· · · // 0 // Z ∂ // Z
i# // Z2

π# // 0 // 0

for n = 2 and

· · · // 0 // 0
∂ // Z2

i# // Z2
π# // 0 // 0

for n ≥ 3. Thus, the generator

αt =

(
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

)
, 0 ≤ t ≤ 1,

of π1(SO(2)) = Z, gives the generator (
αt 0
0 Idn−2

)
of π1(SO(n)) = Z2 for n ≥ 3.
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De�nition 1.5.1. Suppose Q is a G-principal bundle over M , we say that Q has a Spin
structure if the associated bundle Q∗ = Q×G SO(n) has a Spin structure.

Proposition 1.5.1. [9, p. 47] Let G ⊂ SO(n) be a connected compact subgroup such that the
group π1(SO(n)/G) is trivial. A G-principal bundle P over M has a Spin structure if and
only if there exists a homomorphism f : π1(P )→ π1(SO(n)) for which the diagram

π1(G)

��

i# // π1(SO(n))

π1(P )

f

88

commutes.

In the preceding diagram the vertical arrow is part of the long exact sequence of homotopy
groups induced by the �bration G ↪→ P → M . The homomorphism f de�nes an element
f ∈ H1(P ;Z2) = Hom(π1(P );Z2) whose restriction to the �bre, i∗(f) ∈ H1(G;Z2), has to
coincide with i# : π1(G)→ π1(SO(n)) = Z2.

Proposition 1.5.2. For n ≥ 3

a) π1(Spinc(n)) = Z. The map l# : π1(Spinc(n))→ π1(SO(2)), induced by

l([g, z]) = z2,

is an isomorphism.

b) If

α ∈ π1(Spinc(n)), β ∈ π1SO(n), γ ∈ π1(SO(2))

are the generators of these groups with l#(α) = γ then

(λn × λ2)#(α) = β + γ.

Corollary 1.5.1. Let n ≥ 3. For the inclusion i : SO(n)× SO(2)→ SO(n+ 2) the following
holds

i# ◦ (λn × λ2)# = 0.

Proof. It follows from Proposition 1.5.2 and Example 1.5.1.

Proposition 1.5.3. Let Q be the bundle of orthonormal frames over an oriented smooth
manifold M . Q admits a Spinc structure if and only if there exists an U(1)-principal bundle
PU(1) over M such that the �bre product Q×̃PU(1) has a Spin structure.

Proof. If Q has a Spinc structure then there exists a U(1)-bundle PU(1) such that P = Q×̃PU(1)

is an SO(n)× SO(2) bundle over M together with a 2 fold cover P ′ of P which is a Spinc(n)-
bundle over M .
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There exists an injective homomorphism ι̃ which makes the diagram

Spinc(n)
ι̃ //

λn×λ2
��

Spin(n+ 2)

λn+2

��
SO(n)× SO(2)

i
// SO(n+ 2)

commute. We describe this homomorphism. Spin(n) is a subgroup of Spin(n+ 2) generated
by elements x ∈ Rn ⊂ Rn+2 as described in section 1.1 and there is also a copy of S1 inside
Spin(n + 2) given by the elements cos(t) + sin(t)en+1 · en+2. The intersection of this groups
inside Spin(n+ 2) is {1,−1} = Z2. We de�ne ι̃([g, z]) = g · z where the right side is a product
in Spin(n+ 2) after the identi�cation described earlier has been made.

This map is well de�ned since ι̃([g, z]) = g · z = (−g) · (−z). If g · z = 1 then z is the
inverse of g ∈ Spin(n) ⊂ Spin(n + 2) and g is the inverse of z in S1 ⊂ Spin(n+ 2) thus
g, z ∈ Spin(n) ∩ S1 which implies z = g = 1 or g = z = −1. Hence ker ι̃ is trivial.

Back to the proof, let α ∈ π1(SO(n)× SO(2)) be an element of the fundamental group of the
�bre of P . There exists a lift α′ ∈ Spinc(n) via λn × λ2. Now

(λn+2 ◦ ι̃)(α′) ∈ π1(SO(n+ 2)).

Using the previous commutative diagram, the composition described is just i#. This implies,
according to proposition 1.5.1, that P has a Spin structure in the sense of de�nition 1.5.1.

Conversely, let P = Q×̃PU(1), λ = λn × λ2 and F = SO(n)× U(1). According to proposition
1.5.1, due to the existence of f , H = ker(f) ⊂ π1(P ) is a subroup of index 2. Therefore, there
exists a double covering space Λ : PSpinc(n) → P corresponding to H. Let µ : P × F → P be
the action of F in P and consider the composition of induced maps on fundamental groups

π1(PSpinc(n) × Spinc(n))
(Λ×λ)#// π1(P × F )

µ# // π1(P ).

If (σ, τ) ∈ π1(PSpinc(n))× π1(Spinc(n)), by means of the inclusion h : π1(F )→ π1(P ), then

µ# ◦ (Λ× λ)#(σ, τ) = Λ#(σ)h(λ#(τ)).

We know that
Λ#(σ) ∈ H and f(h(λ#(τ))) = i#(λ#(τ)) = 0

by Corollary 1.5.1 and Proposition 1.5.1. Thus, h(λ#(τ)) ∈ H and Λ#(σ)h(λ#(τ)) ∈ H.
Hence, there exists a lift µ̃ : PSpinc,r(n)×Spinc,r(n)→ PSpinc,r(n) which gives the equivariance
in de�nition 1.4.1.

Corollary 1.5.2. Let Q be the bundle of orthonormal frames over M , the following are equiv-
alent

a) Q has a Spinc structure.

b) There exists a circle bundle PU(1) such that w2(Q×̃PU(1)) = 0.

c) There exists a circle bundle PU(1) such that w2(Q) ≡ c1(PU(1)) mod 2.
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d) There exists a cohomology class z ∈ H2(M ;Z) such that w2(Q) ≡ z mod 2

Proof. a) ⇔ b) follows from propositions 1.4.2 and 1.5.3. b) ⇔ c) follows from the properties
of Stiefel-Whitney classes and the fact that w2(PU(1)) = c1(PU(1)) mod 2 where c1 is the �rst
Chern class of PU(1). c)⇔ d) is due to Proposition 1.4.3.

Note. We have used w2(Q) to denote an element inH2(M ;Z2), we would replace this notation
by w2(M) when Q is the bundle of oriented orthonormal frames ofM and in this case we won't
distinguish between saying that there exists a Spin (Spinc) structure �on Q� or �on M � but we
will keep the notation w2(Q) since Q is not necessarily this bundle.

Example 1.5.2. If M has a Spin structure then it has a Spinc structure.

Proof. Take PU(1) as the trivial bundle and use the Corollary 1.5.2.

Now we know what is the role of the U(1)-bundles overM on the existence of Spinc structures.
In terms of characteristic classes, we know from Corollary 1.5.2 which manifolds have a Spinc

structure that does not come from a Spin structure on the bundle of orthonormal frames of
M . Next, we give a characterization of the Spinc structures which do not come from a Spin
structure on a simply connected manifold in terms of homotopy groups.

Proposition 1.5.4. Let M be simply connected and Q the bundle of orthonormal frames over
M . The following are equivalent

1. There exists a U(1) bundle P1 over M such that in the long exact sequence

· · · // π2(X)
∂ // π1(SO(n)× SO(2))

h // π1(Q×̃P1) // π1(X) = 0,

Im(∂) ∼= 〈(1, p)〉 for p ∈ N odd.

2. Q has a Spinc but not a Spin structure.

Proof. If P is a Spinc structure on Q then there exists a PU(1) bundle over M such that, by
Proposition 1.5.3, the �bre product Q×̃P1 has a Spin structure. According to Proposition 1.5.1
this means that there exists a map f : π1(Q×̃P1)→ π1(SO(n+ 2)), such that the diagram

π1(SO(n)× SO(2)) = Z2 ⊕ Z

h
��

i# // π1(SO(n+ 2)) = Z2

π1(Q×̃P1)

f

33

commutes.

The existence of f implies than h : Z2⊕Z→ π1(Q×̃P1) maps the generators, (α, 0) and (0, β),
of each summand nontrivially and satis�es 2h(α, 0) = 0.

Since π1(M) is trivial h is onto. In consequence π1(Q×̃P1) = h(Z2 ⊕ Z), with h(α, 0) a non
trivial element satisfying 2h(α, 0) = 0. This happens if π1(Q×̃P1) contains Z2p, p ∈ N, as a
subgroup. These observations imply that π1(Q×̃P1) is isomorphic to Z2 ⊕ Z or Z2p.
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If Q does not have a Spin structure then, by Proposition 1.4.1, π1(Q) = 0. This implies that
the map k is onto in the commutative diagram

...

��
π2(M)

∂
��

Z2 ⊕ Z

h
��

Z = π1(U(1))
k //

j#
66

π1(Q×̃P1) //

��

π1(Q) // 0

π1(M) = 0

In consequnce π1(Q×̃P1) must be cyclic.

So π1(Q×̃P1) = Z2p and h(α, 0) = [p] with p odd and h(0, β) = [c] with gcd(c, 2p) = 1.
Observe that h(a, b) ≡ 0 mod 2p if and only if (ap+ bc) ≡ 0 mod 2p with a ∈ Z2 and b ∈ Z.
This equation is satis�ed if and only if the equations

bc ≡ 0 mod 2p, p+ bc ≡ 0 mod 2p,

are satis�ed.

The condition gcd(c, 2p) = 1 implies (a, b) satis�es these equations if and only if (a, b) ∈
〈(1, p)〉, the cyclic group generated by the element (1, p) ∈ Z2⊕Z. So Im(∂) = 〈(1, p)〉 = ker(h).

If Im(∂) = 〈(1, p)〉 for some p ∈ N odd then, since h is onto, π1(Q×̃P1) ∼= (Z2 ⊕ Z)/〈(1, p)〉 ∼=
Z2p. If H is the cyclic group 〈(1, p)〉 then the quotient group is given by the classes

(0, r) +H, r = 1, . . . , 2p,

so h is de�ned by h(α, 0) = (0, p) + H since h is a homomorphism and h(0, β) = (0, c) + H
with gcd(c, 2p) = 1 since h is onto. This shows that h(0, β) also generates π1(Q×PU(1)) so the
map k = h ◦ j# is onto and this implies that π1(Q) = 0, i.e. Q does not have a Spin structure
according to Proposition 1.4.1.

Let f : (Z2 ⊕ Z)/H → Z2 be given by (0, r) + H 7→ r mod 2. For the generators of Z2 ⊕ Z
one has

f ◦ h(α, 0) = p mod 2 = 1 = i#(α, 0), f ◦ h(0, β) = c mod 2 = 1 = i#(0, β)

so f ◦ h = i# and Q has a spinc structure.

Similar results can be proved for other twisted structures de�ned using twisted Spin groups.
For example in [8] the Spinr structures are de�ned using the group Spin(r) instead of S1 used
to de�ne Spinc structures. In this work we are interested in Spinc,r structures but we introduce
them in chapter 3.
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1.6 Almost Complex Structures

De�nition 1.6.1. Let M be a smooth manifold. If there exists J ∈ End(TM), an endo-
morphism of the tangent bundle, such that J2 = −IdTM we say that J is an almost complex
structure and M is an almost complex manifold.

Example 1.6.1. For M = R2n we have TM ∼= R2n × R2n, i.e. for every p ∈ Rn we
have that Tp(M) ∼= R2n. This latter space has its standard basis {(p, e1), . . . , (p, e2n)}, let
Jp((p, e2i−1)) = (p, e2i) and Jp((p, e2i)) = (p,−e2i−1). We will refer to this particular J as the
standard almost complex structure.

If M is a complex manifold (a manifold having a cover by charts to Cn such that the tran-
sition functions are holomorphic), with local complex coordinates zj = xj + iyj then the map
J(∂/∂xi) = ∂/∂yi and J(∂/∂yi) = −∂/∂xi can be glued to de�ne a global almost complex
structure.

On an overlapping chart V , let wj = uj+ivj be local complex coordinates and de�ne J̃(∂/∂ui) =
∂/∂vi and J̃(∂/∂vi) = −∂/∂ui. On a point of the intersection we have

∂

∂xj
=

n∑
k=1

∂uk
∂xj

∂

∂uk
+
∂vk
∂xj

∂

∂vk
,

∂

∂yj
=

n∑
k=1

∂uk
∂yj

∂

∂uk
+
∂vk
∂yj

∂

∂vk
.

Since the transition functions are holomorphic, the change of coordinates satis�es

∂uk
∂xj

=
∂vk
∂yj

,

∂vk
∂xj

= −∂uk
∂yj

.

Thus

J̃
∂

∂xj
=

n∑
k=1

∂uk
∂xj

∂

∂vk
− ∂vk
∂xj

∂

∂uk
=

n∑
k=1

∂vk
∂yj

∂

∂vk
+
∂uk
∂yj

∂

∂uk
=

∂

∂yj
,

J̃
∂

∂yj
=

n∑
k=1

∂uk
∂yj

∂

∂vk
− ∂vk
∂yj

∂

∂uk
= −

n∑
k=1

∂vk
∂xj

∂

∂vk
+
∂uk
∂xj

∂

∂uk
= − ∂

∂xj
.

Hence J and J̃ coincide.

The existence of an almost complex structure implies thatM is even dimensional and naturally
orientable as follows. On every �ber TxM of TM , Jx is an isomorphism such that J2

x =
−IdTxM . If dim(M) = n then

(−1)n = det(Jx)2 > 0.

For the orientability take a local basis {e1, . . . , e2n} on U ⊂ M . Let V ⊂ M such that
U ∩ V 6= ∅ with local basis e′i = Aei. If p ∈ U ∩ V then, assuming Jp is the standard almost
complex structure,

JpAe2i−1 = Jpe
′
2i−1 = e′2i = Ae2i = AJpe2i−1.
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Similarly JpAe2i = AJpe2i, which means that AJp = JpA. Writing the product explicitly, the
components of the matrix A satisfy

a2i+1,2j+1 = a2i−1,2j−1, a2i+1,2j = −a2i,2j−1.

Thus A is the image of a complex matrix under the inclusion i : Gln(C) → Gl2n(R), which
implies det(A) > 01. Hence the structure group of M is reduced from Gl2n(R) to Gln(C) and
ifM is a Riemannian manifold then, taking ortogonal bases, the structure group reduces from
SO(2n) to U(n).

Not all the even dimensional orientable manifolds have an almost complex structure.

Example 1.6.2. The sphere Sn has an almost complex structure if and only if n = 2 or n = 6.
This can be proved using characteristic classes. We refer to [18, p.211] for the proof and de-
scribe the usual almost complex structure (see [19, p.119] for more details of this example).

For p ∈ S2 = {x ∈ R3 : |x| = 1} and v ∈ TpS2 = {y ∈ R3 : 〈p, y〉 = 0} de�ne Jp(v) = p × v.
Using the properties of the the cross product one has

Jp(Jp(v)) = p× (p× v) = 〈p, v〉 p− 〈p, p〉 v = −v.

The octonions O is a normed division algebra. Every p ∈ O can be written as p = a+ b1e1 +
· · · + b7e7 = a + b where a, bi ∈ R and 1, ei are the generators of the algebra; b is called the
imaginary part of p. We can identify R7 = {p ∈ O : a = 0} and S6 = {p ∈ O : a = 0, |b| = 1}.

With the product of the octonios a cross product in R7 can be given: p × v = Im(p · v) =
1
2(p · v − v · p). This product satis�es the following identities involving the standard inner
product of R7:

〈u× v, w〉 = 〈u, v × w〉

and

(u× v)× w + u× (v × w) = 2 〈u,w〉 v − 〈v, w〉u− 〈v, u〉w.

For p ∈ S6 and v ∈ TpS6 = {y ∈ R7 : 〈p, y〉 = 0} de�ne Jp(v) = p× v. From the de�nition of
the cross product and the �rst identity p × v is orthogonal to p, i.e. Jp(v) ∈ TpS6. Using the
second

Jp(Jp(v)) = 2 〈p, v〉 p− 〈p, v〉 p− 〈p, p〉 v = −v.

The natural question of an almost complex manifold having a complex structure has some
equivalences.

For the complexi�cation of the tangent bundle we have

T ⊗R C = T (1,0) ⊕ T (0,1)

where
T (1,0) = {X − iJX : X ∈ TM}

1This can be proved as follows. Let A ∈ Gln(C), as Gln(C) is path connected and the composition of the

inclusion with det is continuous then det(A) must be in the connected component of det(I) = 1.
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is the eigenspace of J corresponding to the eigenvalue i and T (0,1) = T (1,0) is the eigenspace
corresponding to the eigenvalue −i.

We say that the distribution T (1,0) is integrable if it is closed under the Lie bracket:

[T (1,0), T (1,0)] ⊂ T (1,0). (1.5)

Let X − iJX, Y − iJY ∈ T (1,0), the bracket

[X − iJX, Y − iJY ] = [X,Y ]− [JX, JY ]− i([X, JY ] + [JX, Y ])

belongs to T (1,0) if and only if

[X,Y ]− [JX, JY ] + J([X, JY ] + [JX, Y ]) = 0.

Thus T (1,0) is integrable if and only if the tensor

NJ(X,Y ) = [X,Y ]− [JX, JY ] + J([X, JY ] + [JX, Y ]) (1.6)

vanishes for all X,Y ∈ Γ(TM). We also call the structure J integrable if this tensor vanishes.

Theorem 1.6.1 (Newlander-Nirenberg). Let (M,J) be an almost complex manifold. The
almost complex structure J is induced by a complex structure on M if and only if the Nijenhuis
tensor (1.6) vanishes.

If M is complex it is immediate that NJ ≡ 0 with J the almost complex structure of Example
1.6.1. The other direction is nontrivial.

If the components of J are real analytic functions then the theorem is less di�cult to prove,
the proof in this case is given in [15, vol II p. 321]. B. Malgrange reduced the smooth case
to the analytic case in [17], i.e. assuming that the almost complex structure J has smooth
components and the integrability condition (1.5) holds, Malgrange proved that the there exist
a change of coordinates in which the components of J are real analytic functions.

We prove that the Newlander-Nirenberg Theorem is a local result, i.e. if for every point p ∈M
there exist local complex coordinates f = (f1, f2, . . . , fn) such that the forms dfj , j = 1 . . . , n,
are (1, 0) forms then the transition functions of these local coordinates is holomorphic.

We explain the last paragraph. A complex valued form ω : TM → C is of type (1, 0) if
ω(Z) = 0 for all Z ∈ T (0,1). Now, with the description of the complex space T (0,1) that we
have made, dfj = duj + idvj being of type (1, 0) means that

0 = Zfj

= dfj(Z)

= dfj(X + iJX)

= (duj(X + iJX) + idvj(X + iJX)

= duj(X)− dvj(JX) + i(dvj(X) + duj(JX)),

for all X ∈ TM .
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Thus, dfj is of type (1, 0) if and only if

duj(X) = dvj(JX), (1.7)

for all X ∈ TM .

On the other hand a map f : M →M ′ between almost complex manifolds (M,J) and (M ′, J ′)
is said to be pseudo-holomorphic if df ◦J = J ′ ◦df . WithM ′ = Cn and J ′ the standard almost
complex structure (which, in this case, is just multiplication by the complex number i), we
have that f : M → Cn is pseudo-holomorphic if and only if the components of f satisfy

dfj(JX) = i(dfj(X)), X ∈ TM.

Putting fj = uj + ivj , the last equation is equivalent to

duj(JX) + dvj(X) + i(dvj(JX)− duj(X)) = 0

which gives us the equation (1.7). Hence f : M → Cn is pseudo-holomorphic if and only if the
forms dfj are of type (1, 0).

Now, if f : M →M ′ is pseudo-holomorphic then df−1 : M ′ →M is pseudo-holomorphic: from
w = df(v) ∈ TM ′ we have v = df−1(w) and

df−1(J ′w) = df−1(J ′df(v)) = df−1(df(Jv)) = Jdf−1(w).

Also, the composition of pseudo-holomorphic maps is pseudo-holomorphic

d(g ◦ f) ◦ J = dg ◦ (df ◦ J) = dg ◦ (J ′ ◦ df) = J ′′ ◦ dg ◦ df = J ′′ ◦ d(g ◦ f).

Let us summarize the last lines: if U, V are open sets with corresponding local complex
coordinates f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn), such that the dfj and dgj are of type
(1, 0), then, on the overlapping, the transition function h = f ◦ g−1 : Cn → Cn is pseudo-
holomorphic. This in turn means that the components hj = uj + ivj , j = 1 . . . , n, satisfy the
equation (1.7) with J the usual almost complex structure, i.e:

∂uj
∂xk

=
∂vj
∂yk

,

∂vj
∂xk

= −∂uj
∂yk

.

These are the Cauchy-Riemman equations that we have already presented in Example 1.6.1.
Hence the transition function is holomorphic, proving that the Newlander-Nirenberg Theorem
is a local result. For the rest of the details of the proof see [17, 23, 25].

1.7 Pure Spinors

We end this chapter giving a relation between spinors and almost complex structures.

De�nition 1.7.1. Let M be a Spin manifold. A nonzero spinor ψ ∈ Γ(S) is pure if for every
p ∈M and X ∈ TpM there exists Y ∈ TpM such that

X · ψ = iY · ψ. (1.8)
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Proposition 1.7.1. If the Riemannian manifold (M, g) has a Spin structure with a pure
spinor ψ then M has an orthogonal almost complex structure.

Proof. Let Y = J(X) be the unique vector corresponding to X in the equation (1.8). The
corresponding vector for J(X) is J(J(X)) = −X.

From (1.8)
(X − iJψ(X)) · ψ = 0, X ∈ TM.

Thus
(X − iJψ(X)) · (X − iJψ(X)) · ψ = 0

if and only if

g(X,X) = g(J(X), J(X)) and X · J(X) + J(X) ·X = 2g(X, J(X)) = 0.

Example 1.7.1. The spinor ψ = u+ ⊗ u+ ⊗ · · · ⊗ u+ ∈ ∆2n is a pure spinor. With Cli�ord
multiplication we can verify explicitly than e2i−1 · ψ = ie2i · ψ. Thus, this spinor ψ gives
the standard almost complex structure in R2n which is orthogonal with respect to the standard
inner product. Recall that for n = 2 we did the explicit calculation in example 1.1.1.

An orthogonal almost complex structure J is called almost Hermitian. If it is integrable then
we call it Hermitian.

Let ∇ be the Levi-Civita connection associated to g and ∇S the conection induced by ∇ on
the bundle of spinors S = PSpin(n) ×κn ∆n. The connection ∇S is compatible with Cli�ord
product.

Proposition 1.7.2. Let J be an almost Hermitian structure coming from a pure spinor ψ.
The structure J is Hermitian if and only if

W · ∇SZψ = 0, Z, W ∈ T (1,0).

Proof. Taking covariant derivative of g(JY, Z) + g(Y, JZ) = 0 we have

g((∇XJ)Y, Z) + g(Y, (∇XJ)Z) = 0. (1.9)

Observe that NJ = 0 if and only if

(∇JXJ)Y = J((∇XJ)Y ) (1.10)

If (1.10) holds then

NJ(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]

= J(∇XJ)Y − J(∇Y J)X − (∇JXJ)Y + (∇JY J)X

= 0.

If NJ = 0 then
A(X,Y, Z) = g(J(∇XJ)Y − (∇JXJ)Y, Z)

satis�es A(X,Y, Z) = A(Y,X,Z). Using (∇XJ)(JY ) = −J((∇XJ)Y ) and (1.9) we de-
duce A(X,Y, Z) = −A(X,Z, Y ). Thus A(X,Y, Z) = −A(X,Z, Y ) = −A(Z,X, Y ) and



22 Preliminaries

A(X,Y, Z) = −A(Y,Z,X) = A(Z,X, Y ) = −A(X,Y, Z). Hence A = 0.

Now, put (∇XJ)Y instead of X in (1.8) and use (1.10) to obtain

0 =((∇XJ)Y − i(∇JXJ)Y ) · ψ
=(∇XJY − J∇XY − i∇JXJY + iJ∇JXY ) · ψ
=(∇XJY + i∇XY − i∇JXJY +∇JXY ) · ψ
=i(∇X−iJX(Y − iJY ) · ψ.

Hence integrability of J is equivalent to (∇WZ) · ψ = 0 for all Z, W ∈ T (1,0).

Taking covariant derivative of Z · ψ = 0 and using the compatibility of ∇S with Cli�ord
product we get

0 = ∇SW (Z · ψ) = Z · ∇SWψ + (∇WZ) · ψ.

Concluding Z · ∇Wψ = 0 if and only if (∇WZ) · ψ = 0, for all Z, W ∈ T (1,0)



Chapter 2

Twisted Partially Pure Spinors

2.1 Characterization of Almost Complex Structures

Motivated by the relationship between orthogonal complex structures and pure spinors, showed
in Proposition 1.7.1, we de�ne twisted partially pure spinors in order to characterize spinorially
subspaces of Euclidean space endowed with a complex structure.

Recall that a classical pure spinor φ ∈ ∆2m is a spinor such that the (isotropic) subspace
of complexi�ed vectors X − iY ∈ R2m ⊗ C, X,Y ∈ R2m, which annihilate φ under Cli�ord
multiplication

(X − iY ) · φ = 0

is of maximal dimension, where m ∈ N and ∆2m is the standard complex representation of the
Spin group Spin(2m) (cf. [16]). This means that for every X ∈ R2m there exists a Y ∈ R2m

satisfying

X · φ = iY · φ.

By setting Y = J(X), one can see that a pure spinor determines a complex structure on R2m.
Geometrically, the two subspaces TM · φ and iTM · φ of ∆2m coincide, which means TM · φ
is a complex subspace of ∆2m, and the e�ect of multiplication by the number i =

√
−1 is

transferred to the tangent space TM in the form of J .

The authors of [4, 30] investigated (the classi�cation of) non-pure classical spinors by means
of their isotropic subspaces. In [30], the authors noted that there may be many spinors (in
di�erent orbits under the action of the Spin group) admitting isotropic subspaces of the same
dimension, and that there is a gap in the possible dimensions of such isotropic subspaces.

In our Euclidean/Riemannian context, such isotropic subspaces correspond to subspaces of
Euclidean space endowed with orthogonal complex structures. We de�ne twisted partially
pure spinors (cf. De�nition 2.2.1) in order to establish a one-to-one correspondence between
subspaces of Euclidean space (of a �xed codimension) endowed with orthogonal complex struc-
tures (and oriented orthogonal complements), and orbits of such spinors under a particular
subgroup of the twisted Spin group (cf. Theorem 2.2.1). By using spinorial twists we avoid
having di�erent orbits under the full twisted Spin group and also the aforementioned gap in
the dimensions.

23
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The need to establish such a correspondence arises from our interest in developing a spinorial
setup to study the geometry of manifolds admitting (almost) CR structures (of arbitrary codi-
mension) and elliptic structures. Since such manifolds are not necessarily Spin nor Spinc, we
are led to consider spinorially twisted Spin groups, representations, structures, etc. Geometric
and topological considerations regarding such manifolds will be presented in the next chapter.

This chapter is organized as follows. First we de�ne the anti-symmetric 2-forms and en-
domorphims associated to twisted spinors; we also present some results on subgroups and
branching of representations. In Section 2.2, we de�ne partially pure spinors, deduce their
basic properties and prove the main theorem, Theorem 2.2.1, which establishes the aforemen-
tioned one-to-one correspondence.

2.1.1 Skew-symmetric 2-Forms and Endomorphisms Associated to Twisted
Spinors

In this section, we de�ne the antisymmetric 2-forms and endomorphisms associated to a twisted
spinor, and describe various inclusions of groups into (twisted) Spin groups.

Recall from chapter 1 that ∆n = (C2)⊗[n/2], the space of spinors, is a complex representation
of Spin(n).

We will make the following convention. Consider the involution

F2m : ∆2m −→ ∆2m

φ 7→ (−i)me1e2 · · · e2m · φ,

and let
∆±2m = {φ |F2m(φ) = ±φ}.

This de�nition, of positive and negative Weyl spinors, di�ers from the one in [9] by a factor
(−1)m. Nevertheless, we have chosen this convention so that the spinor

u1,...,1 = u+ ⊗ u+ ⊗ · · · ⊗ u+,

of example 1.7.1, is always positive and corresponds to the standard complex structure on R2m.

On the twisted representation ∆r ⊗∆n, we extend Cli�ord multiplication by

µr ⊗ µn :
(∧∗Rr ⊗R

∧∗Rn)⊗R (∆r ⊗∆n) −→ ∆r ⊗∆n

(w1 ⊗ w2)⊗ (ψ ⊗ ϕ) 7→ (w1 ⊗ w2) · (ψ ⊗ ϕ) = (w1 · ψ)⊗ (w2 · ϕ).

As in the untwisted case, µr ⊗ µn is an equivariant homomorphism of Spinc,r(n) representa-
tions.

From now on, we will often write fkl for the Cli�ord product fk · fl.

De�nition 2.1.1. [8] Let r ≥ 2, φ ∈ ∆r ⊗∆n, X,Y ∈ Rn, (f1 . . . , fr) an orthonormal basis
of Rr and 1 ≤ k, l ≤ r.
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• De�ne the real 2-forms associated to the spinor φ by

ηφkl(X,Y ) = Re 〈X ∧ Y · fkfl · φ, φ〉 .

• De�ne the antisymmetric endomorphisms η̂φkl ∈ End−(Rn) by

X 7→ η̂φkl(X) := (Xyηφkl)
],

where X ∈ Rn, y denotes contraction and ] denotes metric dualization from 1-forms to
vectors.

An explicit expression of these forms and endomorphisms can be given. Let {e1, . . . , e2m+r}
be an orthonormal basis with respect to the inner product 〈·, ·〉 in Rn and let wj be the 1-form
wj(X) = 〈ej , X〉 so that w]j = ej .

Contracting

ηφkl =
∑
i<j

ηφkl(ei, ej)wi ∧ wj ,

we obtain
Xyηφkl =

∑
i<j

ηφkl(ei, ej)(wi(X)wj − wj(X)wi).

Thus

η̂φkl(X) = (Xyηφkl)
]

=
∑
i<j

ηφkl(ei, ej)(wi(X)ej − wj(X)ei)

=
∑
i<j

ηφkl(ei, ej)(〈ei, X〉 ej − 〈ej , X〉 ei).

From where

(η̂φkl)ij =
〈
ei, η̂

φ
kl(ej)

〉
=

∑
r<s

ηφkl(er, es)(δjrδsi − δjsδri)

= ηφkl(ej , ei).

Now it is clear that η̂φkl is an antisymmetric endomorphisms.

Lemma 2.1.1. Let r ≥ 2, φ ∈ ∆r ⊗∆n, X,Y ∈ Rn, (f1 . . . , fr) an orthonormal basis of Rr
and 1 ≤ k, l ≤ r. Then

Re 〈fkfl · φ, φ〉 = 0,

Re 〈X ∧ Y · φ, φ〉 = 0, (2.1)

Im 〈X ∧ Y · fkfl · φ, φ〉 = 0, (2.2)

Re 〈X · φ, Y · φ〉 = 〈X,Y 〉 |φ|2, (2.3)
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Proof. By using (1.2) twice

〈fkfl · φ, φ〉 = −〈fkflφ, φ〉.

For identity (2.1), recall that for X,Y ∈ Rn

X ∧ Y = X · Y + 〈X,Y 〉 .

Thus

〈X ∧ Y · φ, φ〉 = −〈X ∧ Y · φ, φ〉.

Identities (2.2) and (2.3) follow similarly. 2

Note that
ηφkl = (δkl − 1)ηφlk

and by (2.2), if k 6= l,
ηφkl(X,Y ) = 〈X ∧ Y · fkfl · φ, φ〉 .

Lemma 2.1.2. [8] Any spinor φ ∈ ∆r ⊗∆n, r ≥ 2, de�nes two maps (extended by linearity)∧2Rr −→
∧2Rn

fkl 7→ ηφkl

and ∧2Rr −→ End(Rn)

fkl 7→ η̂φkl,

2

2.1.2 Subgroups, Isomorphisms and Decompositions

In this section we will describe various inclusions of groups into (twisted) Spin groups.

Lemma 2.1.3. There exists a monomorphism h : Spin(2m) ×Z2 Spin(r) → Spin(2m + r)
such that the following diagram commutes

Spin(2m)×Z2 Spin(r)
h //

λn×λr
��

Spin(2m+ r)

λ2m+r

��
SO(2m)× SO(r) �

� i // SO(2m+ r)

Proof. Consider the decomposition

R2m+r = R2m ⊕ Rr,

and let

Spin(2m) =

{
2s∏
i=1

xi ∈ Cl2m+r | xi ∈ R2m, |xi| = 1, s ∈ N

}
⊂ Spin(2m+ r),
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Spin(r) =


2t∏
j=1

yj ∈ Cl2m+r | yj ∈ Rr, |yj | = 1, t ∈ N

 ⊂ Spin(2m+ r).

It is easy to prove that
Spin(2m) ∩ Spin(r) = {1,−1}.

De�ne the homomorphism

h : Spin(2m)×Z2 Spin(r) −→ Spin(2m+ r)

[g, g′] 7→ gg′.

If [g, g′] ∈ Spin(2m)×Z2 Spin(r) is such that

gg′ = 1 ∈ Spin(2m+ r),

then
g′ = g−1 ∈ Spin(2m) ⊂ Spin(2m+ r),

so that
g, g′ ∈ Spin(2m) ∩ Spin(r) = {1,−1}.

Hence [g, g′] = [1, 1] and h is injective. 2

Lemma 2.1.4. Let r ∈ N. There exists a monomorphism h : U(m)×SO(r) ↪→ Spinc,r(2m+r)
such that the following diagram commutes

Spinc,r(2m+ r)

��
U(m)× SO(r)

44

// SO(2m+ r)× SO(r)× U(1)

Proof. Suppose we have an orthogonal complex structure on R2m ⊂ R2m+r

J : R2m −→ R2m, J2 = −Id2m, 〈·, ·〉 = 〈J ·, J ·〉.

The subgroup of SO(2m + r) that respects both the orthogonal decomposition R2m+r =
R2m ⊕ Rr and J is

U(m)× SO(r) ⊂ SO(2m)× SO(r) ⊂ SO(2m+ r).

There exists a lift [9]

Spinc(2m)

��
U(m) //

77

SO(2m)× U(1)

where the bottom arrow is A 7→ (AR, detC(A)).

Recall the commutative diagram [8]
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Spin(r)×Z2 Spin(r)

��
SO(r)

diagonal //

66

SO(r)× SO(r).

We can put them together

Spinc(2m)×Z2 Spin
r(r)

��
U(m)× SO(r) //

33

SO(2m)× U(1)× SO(r)× SO(r).

The nautural isomorphism

Spinc(2m)×Z2 Spin
r(r) ∼= Spinr(2m)×Z2 Spin

c(r)

and the inclusion

Spinr(2m)×Z2 Spin
c(r) ↪→ Spin(2m+ r)×Z2 Spin

c(r)

given by Lemma 2.1.3, gives the inclusion

Spinc(2m)×Z2 Spin
r(r) ↪→ Spin(2m+ r)×Z2 Spin

c(r)

that completes the diagram

Spinc(2m)×Z2 Spinr(r)

��

� � // Spin(2m+ r)×Z2 Spinc(r)

��
U(m)× SO(r) //

44

SO(2m)× U(1)× SO(r)× SO(r) // SO(2m+ r)× SO(r)× U(1).

2

Lemma 2.1.5. Let r ∈ N. The standard representation ∆2m+r of Spin(2m + r) decomposes
as follows

∆2m+r = ∆r ⊗∆+
2m ⊕ ∆r ⊗∆−2m,

with respect to the subgroup Spin(2m)×Z2 Spin(r) ⊂ Spin(2m+ r).

Proof. Consider the restriction of the standard representation of Spin(2m+ r) to

Spin(2m)×Z2 Spin(r) ⊂ Spin(2m+ r) −→ Gl(∆2m+r).

By using the explicit description of a unitary basis of ∆2m+r, described in Section 1.1, we see
that the elements of Spin(2m) act on the last m factors of

∆2m+r = C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
[r/2] times

⊗C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
m times

,

as they do on ∆2m = ∆+
2m ⊕ ∆−2m. The elements of Spin(r) act as usual on the �rst [r/2]

factors of ∆r, act trivially on ∆+
2m, and act by multiplication by (−1) on the factor ∆−2m. 2



2.2 Twisted Partially Pure Spinors 29

2.2 Twisted Partially Pure Spinors

In order to simplify the statements, we will consider the twisted spin representation

Σr ⊗∆n ⊆ ∆r ⊗∆n.

where

Σr =

{
∆r if r is odd,
∆+
r if r is even,

n, r ∈ N.

Now we de�ne our special type of spinor.

De�nition 2.2.1. Let (f1, . . . , fr) be an orthonormal frame of Rr. A unit-length spinor φ ∈
Σr ⊗∆n, r < n, is called a twisted partially pure spinor if

• there exists a (n− r)-dimensional subspace V φ ⊂ Rn such that for every X ∈ V φ, there
exists a Y ∈ V φ such that

X · φ = i Y · φ.

• it satis�es the equations

(ηφkl + fkfl) · φ = 0,

〈fkfl · φ, φ〉 = 0,

for all 1 ≤ k < l ≤ r.

• If r = 4, it also satis�es the condition

〈f1f2f3f4 · φ, φ〉 = 0.

Remarks.

1. The requirement |φ| = 1 is made in order to avoid renormalizations later on.

2. The extra condition for the case r = 4 is ful�lled for all other ranks.

3. From now on we will drop the adjective twisted since it will be clear from the context.

2.2.1 Example of Partially Pure Spinor

We will write an example of a partially pure spinor using real or quaternionic structures. A real
structure on a complex vector space V is an R-linear map α : V → V satisfying α2(v) = IdV
and α(iv) = −iα(v). A quaternionic structure on a complex vector space V is an R-linear
map α : V → V satisfying α2(v) = −IdV and α(iv) = −iα(v).

The maps

α

(
z1

z2

)
=

(
−z2

z1

)
, β

(
z1

z2

)
=

(
z1

z2

)
,
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de�ne quaternionic and real structures, respectively, on C2. Using α and β, real or quaternionic
structures γn are built on ∆n, for n ≥ 2, as follows

γn = (α⊗ β)⊗2k if n = 8k, 8k + 1 (real),
γn = α⊗ (β ⊗ α)⊗2k if n = 8k + 2, 8k + 3 (quaternionic),
γn = (α⊗ β)⊗2k+1 if n = 8k + 4, 8k + 5 (quaternionic),
γn = α⊗ (β ⊗ α)⊗2k+1 if n = 8k + 6, 8k + 7 (real).

Lemma 2.2.1. Given r,m ∈ N, there exists a partially pure spinor in Σr ⊗∆2m+r.

Proof. Let (e1, . . . , e2m, e2m+1, . . . , e2m+r) and (f1, . . . , fr) be orthonormal frames of R2m+r

and Rr respectively. Consider the decomposition of Lemma 2.1.5

∆2m+r = ∆r ⊗∆+
2m ⊕ ∆r ⊗∆−2m,

corresponding to the decomposition

R2m+r = span{e1, . . . , e2m} ⊕ span{e2m+1, . . . , e2m+r}.

Let
ϕ0 = u1,...,1 ∈ ∆+

2m,

and
{vε1,...,ε[r/2] |(ε1, . . . , ε[r/2]) ∈ {±1}[r/2]}

be the unitary basis of the twisting factor ∆r = ∆(span(f1, . . . , fr)) which contains Σr. Let
us de�ne the standard twisted partially pure spinor φ0 ∈ Σr ⊗∆r ⊗∆+

2m by

φ0 =


1√

2[r/2]

(∑
I∈{±1}×[r/2] vI ⊗ γr(uI)

)
⊗ ϕ0 if r is odd,

1√
2[r/2]−1

(∑
I∈[{±1}×[r/2]]

+

vI ⊗ γr(uI)
)
⊗ ϕ0 if r is even,

(2.4)

where the elements of
[
{±1}×[r/2]

]
+
contain an even number of (−1).

Checking the conditions in the de�nition of partially pure spinor for φ0 is done by a direct
calculation as in [8].

Example 2.2.1. For instance, taking n = 7, r = 3, we have

φ0 =
1√
2

(v1 ⊗ γ3(u1)⊗ u1 ⊗ u1 + v−1 ⊗ γ3(u−1)⊗ u1 ⊗ u1)

where γ3 is a quaternionic structure. We check that this φ0 is a partially pure spinor. Remem-
bering that γ3(uε) = −iεu−ε, we get

φ0 = i
1√
2

(v−1 ⊗ u1 ⊗ u1 ⊗ u1 − v1 ⊗ u−1 ⊗ u1 ⊗ u1),

which has unit length. Let {ei} be the standard basis of R7, so that

e1 · φ0 = i
1√
2

(v−1 ⊗ u1 ⊗ u1 ⊗ g1(u1)− v1 ⊗ u−1 ⊗ u1 ⊗ g1(u1))

= ie2 · φ0,
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and, similarly,

e3 · φ0 = ie4 · φ0.

So, φ0 induces the standard complex structure on V φ0 = 〈e1, e2, e3, e4〉. Let {fi} be the
standard basis of R3. Similar calculations give

ηφ0kl = e4+k ∧ e4+l,

(ηφ0kl + fkl) · φ0 = 0,

and

〈fkl · φ0, φ0〉 = 0.

2

2.2.2 Properties of Partially Pure Spinors

Lemma 2.2.2. The de�nition of partially pure spinor does not depend on the choice of or-
thonormal basis of Rr.

Proof. If r = 0, 1, a partially pure spinor is a classical pure spinor for n even or the straight-
forward generalization of pure spinor for n odd [16, p. 336]. Suppose (f ′1, . . . , f

′
r) is another

orthonormal frame of Rr, then

f ′i = αi1f1 + · · ·+ αirfr,

so that the matrix A = (αij) ∈ SO(r). Let us denote

η′φkl(X,Y ) := Re
〈
X ∧ Y · f ′kf ′l · φ, φ

〉
Thus,

η′φkl · φ =
∑

1≤a<b≤n
η′φkl(ea, eb)eaeb · φ

=
∑

1≤a<b≤n

r∑
s=1

r∑
t=1

αksαltRe 〈eaeb · fsft · φ, φ〉 eaeb · φ

=
∑

1≤a<b≤n

r∑
s=1

r∑
t=1

αksαltη
φ
st(ea, eb)eaeb · φ

=
r∑
s=1

r∑
t=1

αksαltη
φ
st · φ

= −
r∑
s=1

r∑
t=1

αksαltfsft · φ

= −

(
r∑
s=1

αksfs

)(
r∑
t=1

αltft

)
· φ

= −f ′kf ′l · φ.
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For the third part of the de�nition, note that

〈
f ′kf

′
l · φ, φ

〉
=

〈(
r∑
s=1

αksfs

)(
r∑
t=1

αltft

)
· φ, φ

〉

=

r∑
s=1

r∑
t=1

αksαlt 〈fsft · φ, φ〉

= 0.

For r = 4, the volume form is invariant under SO(4), f ′1f
′
2f
′
3f
′
4 = f1f2f3f4, and〈

f ′1f
′
2f
′
3f
′
4 · φ, φ

〉
= 〈f1f2f3f4 · φ, φ〉 = 0.

2

Lemma 2.2.3. Given a partially pure spinor φ ∈ Σr⊗∆n, there exists an orthogonal complex
structure on V φ and n− r ≡ 0 (mod 2) .

Proof. By de�nition, for every X ∈ V φ, there exists Y ∈ V φ such that

X · φ = iY · φ,

and
Y · φ = i(−X) · φ.

If we set
Jφ(X) := Y,

we get a linear transformation Jφ : V φ → V φ, such that (Jφ)2 = −IdV φ , i.e. J
φ is a complex

structure on the vector space V φ and dimR(V φ) is even. Furthermore, this complex structure
is orthogonal. Indeed, for every X ∈ V φ,

X · JX · φ = −i|X|2φ,
JX ·X · φ = i|JX|2φ,

and
(−2 〈X, JX〉+ i(|JX|2 − |X|2)) φ = 0,

i.e.

〈X,JX〉 = 0

|X| = |JX|.

2

Lemma 2.2.4. Let r ≥ 2 and φ ∈ Σr ⊗ ∆n be a partially pure spinor. The forms ηφkl are
non-zero, 1 ≤ k < l ≤ r.

Proof. Since (fkfl)
2 = −1, the equation

ηφkl · φ = −fkfl · φ (2.5)
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implies
ηφkl · fkfl · φ = φ. (2.6)

By taking an orthonormal frame (e1, . . . , en) of Rn we can write

ηφkl =
∑

1≤i<j≤n
ηφkl(ei, ej)eiej .

By (2.6), and taking hermitian product with φ

1 = |φ|2

=
〈
ηφkl · fkfl · φ, φ

〉
=

〈 ∑
1≤i<j≤n

ηφkl(ei, ej)eiej · fkfl · φ, φ

〉
=

∑
1≤i<j≤n

ηφkl(ei, ej) 〈eiej · fkfl · φ, φ〉

=
∑

1≤i<j≤n
ηφkl(ei, ej)

2.

2

Lemma 2.2.5. Let r ≥ 2. The image of the map associated to a partially pure spinor φ ∈
Σr ⊗∆n, ∧2Rr −→ End(Rn)

fkl 7→ η̂φkl,

forms a Lie algebra of endomorphisms isomorphic to so(r).

Proof. Let (e1, . . . , en) be an orthonormal frame of Rn. First, let us consider the following
calculation for i 6= j, k 6= l, s 6= t:

Re
〈
eset · ηφij · fkfl · φ, φ

〉
= Re

〈
eset ·

(∑
a<b

ηφij(ea, eb)eaeb

)
· fkfl · φ, φ

〉
= −

∑
b

ηφij(es, eb)η
φ
kl(eb, et) +

∑
b

ηφkl(es, eb)η
φ
ij(eb, et)

= −
∑
b

[η̂φkl]tb[η̂
φ
ij ]bs +

∑
b

[η̂φij ]tb[η̂
φ
kl]bs

= [η̂φij , η̂
φ
kl]ts (2.7)

is the entry in row t and column s of the matrix [η̂φij , η̂
φ
kl].

Secondly, we prove that the endomorphisms η̂φkl satisfy the commutation relations of so(r):

1. If 1 ≤ i, j, k, l ≤ r are all di�erent,

[η̂φkl, η̂
φ
ij ] = 0. (2.8)
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2. If 1 ≤ i, j, k ≤ r are all di�erent,

[η̂φij , η̂
φ
jk] = −η̂φik. (2.9)

To prove (2.8), use (2.5) to obtain

ηφij · fkfl · φ = ηφkl · fifj · φ. (2.10)

Now, using (2.7) we get

Re
〈
eset · ηφij · fkfl · φ, φ

〉
= [η̂φij , η̂

φ
kl]ts,

Re
〈
eset · ηφkl · fifj · φ, φ

〉
= [η̂φkl, η̂

φ
ij ]ts,

and by (2.10) and the anticommutativity of the bracket,

[η̂φij , η̂
φ
kl] = 0.

To prove (2.9), note that by (2.5)

fifj · ηφjk · φ = fifk · φ

and

fjfk · ηφij · φ = −fifk · φ

so that

fjfk · ηφij · φ = fifj · ηφjk · φ− 2fifk · φ.

Thus,

Re
〈
eset · ηφij · fjfk · φ, φ

〉
= Re

〈
eset · ηφjk · fifj · φ, φ

〉
− 2ηφik(es, et)

and by (2.7)

[η̂φij , η̂
φ
jk] = [η̂φjk, η̂

φ
ij ]− 2η̂φik,

i.e.

[η̂φij , η̂
φ
jk] = −η̂φik.

Thirdly, we will prove, in �ve separate cases, that the set of endomorphisms {η̂φkl} is linearly
independent. For r = 0, 1 there are no endomorphisms. For r = 2 it is obvious since there is
only one non-zero endomorphism. For r = 3, suppose

0 = α12η̂
φ
12 + α13η̂

φ
13 + α23η̂

φ
23,

where α12 6= 0. Take the Lie bracket with η̂φ13 to get

0 = α12η̂
φ
23 − α23η̂

φ
12,
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i.e.
η̂φ23 =

α23

α12
η̂φ12.

We can also consider the bracket with η̂φ23,

0 = −α12η̂
φ
13 + α13η̂

φ
12,

so that
η̂φ13 =

α13

α12
η̂φ12.

By substituting in the original equation we get

0 = (α2
12 + α2

13 + α2
23)η̂φ12,

which gives a contradiction.

Now suppose r ≥ 5 and that there is a linear combination

0 =
∑
k<l

αklη̂
φ
kl.

Taking succesive brackets with η̂φ13, η̂
φ
12, η̂

φ
34 and η̂φ45 we get the identity

α12η̂
φ
15 = 0,

i.e. α12 = 0. Similar arguments give the vanishing of every αkl.

For r = 4, suppose there is a linear combination

0 = α12η
φ
12 + α13η

φ
13 + α14η

φ
14 + α23η

φ
23 + α24η

φ
24 + α34η

φ
34.

Multiply by −φ

0 = (α12f12 + α13f13 + α14f14 + α23f23 + α24f24 + α34f34) · φ.

Multiply by −f12

0 = (α12 − α13f23 − α14f24 + α23f13 + α24f14 − α34f1234) · φ.

Now, take hermitian product with φ

0 = 〈(α12 − α13f23 − α14f24 + α23f13 + α24f14 − α34f1234) · φ, φ〉
= α12|φ|2 − α34 〈f1234 · φ, φ〉
= α12.

Similar arguments give the vanishing of the other coe�cients. 2

Lemma 2.2.6. Let r ≥ 2 and φ ∈ Σr ⊗ ∆n be a partially pure spinor. Then, u ∈ (V φ)⊥ if
and only if for every X ∈ V φ

X · u · φ = iJ(X) · u · φ.
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Proof. If u ∈ (V φ)⊥ then

X · u · φ = −u ·X · φ
= −iu · J(X) · φ
= iJ(X) · u · φ,

since X and u are orthogonal to each other.

Conversely, assume that
X · u · φ = iJX · u · φ

for every X ∈ V φ. But
X · φ = iJX · φ,

implies
u ·X · φ = iu · JX · φ,

so that
(−2 〈u,X〉+ 2i 〈u, JX〉)φ = 0.

2

Lemma 2.2.7. Let r ≥ 2 and φ ∈ Σr ⊗∆n be a partially pure spinor. Then

V φ ⊆
⋂

1≤k<l≤r
ker η̂φkl.

Proof. Let 1 ≤ k < l ≤ r be �xed and X ∈ V φ. Since Rn = V φ ⊕ (V φ)⊥ and Jφ is a complex
structure on V φ, there exists a basis {e1, e2, . . . , e2m−1, e2m} ∪ {e2m+1, . . . , e2m+r} such that

V φ = span(e1, e2, . . . , e2m−1, e2m),

(V φ)⊥ = span(e2m+1, . . . , e2m+r),

Jφ(e2j−1) = e2j ,

Jφ(e2j) = −e2j−1,

where m = (n− r)/2 and 1 ≤ j ≤ m. Note that

η̂φkl(e2j−1) =
n∑
a=1

Re 〈e2j−1 ∧ ea · fkl · φ, φ〉 ea

= −
n∑

a6=2j−1

Re 〈fkl · eae2j−1 · φ, φ〉 ea

= −
n∑

a6=2j−1

Re
〈
fkl · ea(iJφ(e2j−1)) · φ, φ

〉
ea

=

n∑
a6=2j−1

Im 〈eae2j · fkl · φ, φ〉 ea

= −Im 〈fkl · φ, φ〉 e2j

= 0.

2
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Lemma 2.2.8. Let r ≥ 2 and φ ∈ Σr ⊗∆n be a partially pure spinor. Then (V φ)⊥ carries a
standard representation of so(r), and an orientation.

Proof. By Lemma 2.2.5, so(r) is represented non-trivially on Rn = V φ⊕(V φ)⊥ and, by Lemma
2.2.7, it acts trivially on V φ. Thus (V φ)⊥ is a nontrivial representation of so(r) of dimension
r. 2

Remark. The existence of a partially pure spinor implies r ≡ n (mod 2). In this case, let
(e1, . . . , en) and (f1, . . . , fr) be orthonormal frames for Rn and Rr respectively,

voln = e1 · · · en, volr = f1 · · · fr,

and

F : Σr ⊗∆n −→ Σr ⊗∆n

φ 7→ (−i)n/2ir/2voln · volr · φ.

Note that ir/2volr acts as (−1)r/2IdΣr on Σr and that (−i)n/2voln determines the decomposi-
tion ∆n = ∆+

n ⊕∆−n . Thus we have that

Σr ⊗∆n = (Σr ⊗∆n)+ ⊕ (Σr ⊗∆n)−,

and we will call elements in (Σr⊗∆n)+ and (Σr⊗∆n)− positive and negative twisted spinors
respectively.

De�nition 2.2.2. Let n be even, Rn be endowed with the standard inner product and ori-
entation, and voln denote the volume form. Let V , W be two orthogonal oriented subspaces
such that Rn = V ⊕ W . Furthermore, assume V admits a complex structure inducing the
given orientation on V . The oriented triple (V, J,W ) will be called positive if given (oriented)
orthonormal frames (v1, J(v1), . . . , vm, J(vm)) and (w1, . . . , wr) of V and W respectively,

v1 ∧ J(v1) ∧ . . . ∧ vm ∧ J(vm) ∧ w1 ∧ . . . ∧ wr = voln,

and negative if

v1 ∧ J(v1) ∧ . . . ∧ vm ∧ J(vm) ∧ w1 ∧ . . . ∧ wr = −voln.

Lemma 2.2.9. If r is even, a partially pure spinor φ is either positive or negative. Further-
more, a partialy pure spinor φ is positive (resp. negative) if and only if the corresponding
oriented triple (V φ, Jφ, (V φ)⊥) is positive (resp. negative).

Proof. We must prove that either φ ∈ (Σr⊗∆n)+ or φ ∈ (Σr⊗∆n)−. Since φ is a partially pure
spinor, there exist frames (e′1, . . . , e

′
2m) and (e′2m+1, . . . , e

′
2m+r) of V

φ and (V φ)⊥ respectively
such that

e′2j = J(e′2j−1) and ηφkl = e′2m+k ∧ e′2m+l,

where 1 ≤ j ≤ m and 1 ≤ k < l ≤ r. Now, if

e′1 ∧ e′2 ∧ . . . ∧ e′2m ∧ e′2m+1 ∧ . . . ∧ e′2m+r = ±voln,

then

(−i)n/2ir/2voln · volr · φ = ±(−i)n/2ir/2e′1e′2 · · · e′2me′2m+1 · · · e′2m+r · f1 · · · fr · φ.
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Using (2.6), the last terms simplify to

e′2m+1 · · · e′2m+r · f1 · · · fr · φ = ηφ12 · · · η
φ
r−1,rf1 · · · frφ

= ηφ12f1,2 · · · ηr−1,rfr−1,r · φ
= φ.

In the terms left

e′1e
′
2 · · · e′2m−1e

′
2mφ = e′1e

′
2 · · · e′2m−1(−ie′2m−1)φ

= ie′1e
′
2 · · · e′2m−3e

′
2m−2φ

= imφ.

Thus
(−i)n/2ir/2voln · volr · φ = ±(−i)n/2ir/2imφ = ±φ

i.e. φ ∈ (Σr ⊗∆n)±. 2

2.2.3 Orbit of a Partially Pure Spinor

Lemma 2.2.10. Let φ ∈ Σr ⊗∆n be a partially pure spinor. If g ∈ Spinc,r(n), then g(φ) is
also a partially pure spinor.

Proof. Let g ∈ Spinc,r(n) and λc,rn (g) = (g1, g2, g3) ∈ SO(n)× SO(r)× U(1).
First, suppose X,Y ∈ V φ,

X · φ = i Y · φ.

Applying g on both sides and using equivariance of Cli�ord multiplication

g1(X) · g(φ) = i g1(Y ) · g(φ). (2.11)

This means that g1(V φ) ⊂ V g(φ), and g1 maps V φ into V g(φ) injectively. On the other hand,
any pair of vectors X̃, Ỹ ∈ V g(φ) such that

X̃ · g(φ) = i Ỹ · g(φ),

are the image under g1 of some vectors X,Y ∈ Rn, i.e.

g1(X) · g(φ) = i g1(Y ) · g(φ).

Apply g−1 on both sides to get
X · φ = i Y · φ,

so that X,Y ∈ V φ, i.e. V g(φ) = g1(V φ).

Equation (2.11) implies that for every X ∈ V φ

Jg1(φ)(g1X) = g1(JX)

i.e.
Jg(φ) = g1|V φ ◦ Jφ ◦ (g1|V φ)−1. (2.12)
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Now, let e′a = g−1
1 (ea) and f ′k = g−1

2 (fk), so that

η
g(φ)
kl · g(φ) =

∑
1≤a<b≤n

η
g(φ)
kl (ea, eb)eaeb · g(φ)

=
∑

1≤a<b≤n

〈
g1(e′a)g1(e′b) · g2(f ′k)g2(f ′l ) · g(φ), g(φ)

〉
g1(e′a)g1(e′b) · g(φ)

=
∑

1≤a<b≤n

〈
e′ae
′
b · f ′kf ′l · φ, φ

〉
g(e′ae

′
b · φ)

= g

 ∑
1≤a<b≤n

η′φkl(e
′
a, e
′
b)e
′
ae
′
b · φ


= g

(
η′φkl · φ

)
= g

(
−f ′kf ′l · φ

)
= −fkfl · g(φ),

and

〈fkfl · g(φ), g(φ)〉 =
〈
g(f ′kf

′
l · φ), g(φ)

〉
=

〈
f ′kf

′
l · φ, φ

〉
= 0.

For r = 4, note that the volume form is invariant under SO(4)

〈f1f2f3f4 · g(φ), g(φ)〉 = 〈f1f2f3f4 · φ, φ〉 = 0.

2

Lemma 2.2.11. Let φ ∈ Σr⊗∆n be a partially pure spinor. The stabilizer of φ is isomorphic
to U(m)× SO(r).

Proof. Let g ∈ Spinc,r(n) be such that g(φ) = φ and

λc,rn (g) = (g1, g2, g3) ∈ SO(n)× SO(r)× U(1).

First, let us see that g1 = λ1(g) ∈ SO(n) preserves V φ and (V φ)⊥.

If X ∈ V φ then from X · φ = iJ(X) · φ we obtain

X · g(φ) = iJ(X) · g(φ),

which implies V φ ⊂ V g(φ). Applying g to the equation X · φ = iJ(X) · φ we have

g1(X) · φ = ig1(J(X)) · φ,

thus g1(V φ) = V g(φ) ⊂ V φ and in consequence g1(V φ) = V g(φ) = V φ.

This shows that g1 ∈ SO(n) preserves V φ, the same happens with g−1
1 (which can be proved

changing g by g−1 in the previous lines). Moreover, from (2.12) we have

g1(J(X)) = J(g1(X)),
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so g1|V φ ∈ U(V φ, Jφ) ∼= U(m).

Now, by Lemma 2.2.6, u ∈ (V φ)⊥ if and only if

X · u · φ = iJφ(X) · u · φ, X ∈ V φ,

thus
X · g1(u) · φ = g(g−1

1 (X) · u · φ) = g(iJ(g−1
1 (X)) · u · φ) = iJ(X) · g1(u) · φ.

Hence g1 preserves (V φ)⊥ also. The subgroup of SO(n) that preserves the splitting Rn =
V φ ⊕ (V φ)⊥ and the orthogonal complex structure on V φ is U(m)× SO(r), i.e.

g1 ∈ U(V φ, Jφ)× SO((V φ)⊥) ∼= U(m)× SO(r).

Now, let g1 = (h1, h2) ∈ U(m)×SO(r). We will show that g2 = h2. First, as in Lemma 2.2.7,
one can prove ηφkl ∈

∧2
(V φ)⊥. Form this we have g1(ηφkl) = h2(ηφkl).

Applying g to (ηφkl + fkfl) · φ = 0 and using equivariance of Cli�ord multiplication we get

0 = (g1(ηφkl) + g2(fkfl)) · g(φ) = (h2(ηφkl) + g2(fkfl)) · φ = h2(ηφkl) · φ− g2(ηφkl) · φ.

But the action of SO(r) on
∧2

(V φ)⊥, the adjoint action, is faithful. Thus h2 = g2.

Finally we will prove g3 = detC(h1). Since h1 is unitary with respect to J , there is a frame
(e1, . . . , e2m) of V φ such that

e2j = J(e2j−1)

and h1 is diagonal with respect to the unitary basis {e2j−1 − ie2j |j = 1, . . . ,m}, i.e.

h1(e2j−1 − ie2j) = eiθj (e2j−1 − ie2j)

where 0 ≤ θj < 2π. On the other hand, there is a frame (f1, . . . , fr) of Rr such that

g2 = Rϕ1 ◦ · · · ◦Rϕ[r/2]

where Rϕk is a rotation by an angle ϕk on the plane generated by f2k−1 and f2k, 1 ≤ k ≤
[r/2]. Now, since the endomorphisms η̂φkl span an isomorphic copy of so(r), there is a frame
(e2m+1, . . . , e2m+r) of (V φ)⊥ such that

ηφkl = e2m+k ∧ e2m+l,

1 ≤ k < l ≤ r. Since the adjoint representation of SO(r) is faithful

h2 = R′ϕ1
◦ · · · ◦R′ϕ[r/2]

where R′ϕk is a rotation by an angle ϕk on the plane generated by e2m+2k−1 and e2m+2k,
1 ≤ k ≤ [r/2]. Thus,

g = ±[g̃1, h̃, e
iθ/2]

where

g̃1 =

m∏
j=1

(cos(θj/2)− sin(θj/2)e2j−1e2j) ·
[r/2]∏
k=1

(cos(ϕk/2)− sin(ϕk/2)ηφ2k−1,2k),
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h̃ =

[r/2]∏
k=1

(cos(ϕk/2)− sin(ϕk/2)f2k−1f2k).

Let us compute g(φ). First, note that for every k

(cos(ϕk/2)− sin(ϕk/2)f2k−1f2k) · (cos(ϕk/2)− sin(ϕk/2)ηφ2k−1,2k) · φ
= (cos(ϕk/2)− sin(ϕk/2)f2k−1f2k) · (cos(ϕk/2) + sin(ϕk/2)f2k−1f2k) · φ
= φ.

Thus

φ = g(φ)

= ±eiθ/2
m∏
j=1

(cos(θj/2)− sin(θj/2)e2j−1e2j) · φ

= ±eiθ/2
m∏
j=1

(cos(θj/2) + i sin(θj/2)e2j−1e2j−1)φ

= ±eiθ/2
m∏
j=1

(cos(θj/2)− i sin(θj/2))φ

= ±eiθ/2
m∏
j=1

e−iθj/2φ

= ±e
i
2

(θ−
∑m
j=1 θj)φ.

This means

e
i
2

(θ−
∑m
j=1 θj) = ±1

i.e.
m∑
j=1

θj ≡ θ (mod 2π).

Hence

detC(h1) = ei
∑m
j=1 θj = eiθ = g3.

We conclude

λc,rn (g) = ((h1, h2), h2,detC(h1)),

which is in the image of the horizontal row in the diagram of Lemma 2.1.4

Spinc,r(2m+ r)

��
U(m)× SO(r)

44

// SO(2m+ r)× SO(r)× U(1)

2
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Remark. Note that for any spinor φ ∈ Σr ⊗∆n, g ∈ Spinc,r(n), λc,rn (g) ∈ SO(n)× SO(r)×
U(1),

η
g(φ)
kl (X,Y ) = 〈X ∧ Y · fkfl · g(φ), g(φ)〉

=
〈
g1(X ′) ∧ g1(Y ′) · g2(f ′k)g2(f ′l ) · g(φ), g(φ)

〉
=

〈
g(X ′ ∧ Y ′ · f ′kf ′l · φ), g(φ)

〉
=

〈
X ′ ∧ Y ′ · f ′kf ′l · φ, φ

〉
=: η′φkl(X

′, Y ′),

for X ′ = g−1
1 (X), Y ′ = g−1

1 (Y ) ∈ Rn, f ′k = g−1
2 (fk). Thus, the matrices representing ηg(φ)

kl

(with respect to some basis) are conjugate to the matrices representing η′φkl .

Lemma 2.2.12. Let φ, ψ ∈ Σr ⊗∆n be partially pure spinors and Spinc(r) the standard copy
of this group in Spinc,r(n). Then, ψ ∈ Spinc(r) · φ if and only if they generate the same
oriented tiple (V φ, Jφ, (V φ)⊥) = (V ψ, Jψ, (V ψ)⊥).

Proof. Suppose ψ = g(φ) for some g ∈ Spinc(r) ⊂ Spinc,r(n), and let λc,rn (g) = (1, g2, e
iθ).

With such an element

〈X ∧ Y · fkfl · g(φ), g(φ)〉 =
〈
X ∧ Y · f ′kf ′l · φ, φ

〉
for f ′k = g−1

2 (fk). This implies

η
g(φ)
kl (X,Y ) = η′φkl(X,Y ).

So that φ and g(φ) span the same copy of so(r) in End−(Rn),

span(η
g(φ)
kl ) = span(η′φkl)

∼= so(r) ⊂ End−(Rn).

Thus (V g(φ))⊥ = (V φ)⊥ and, under such a g, we have as in Lemma 2.2.10: V g(φ) = V φ and
Jg(φ) = Jφ.

Conversely, assume (V φ, Jφ, (V φ)⊥) = (V ψ, Jψ, (V ψ)⊥) and consider the subalgebras

so(r)φ = span(ηφkl + fkl),

so(r)ψ = span(ηψkl + fkl).

We will show that there exist g ∈ Spinc(r) such that g(ψ) and φ share the same stabilizer, for
this we will seek g for which so(r)ψ = so(r)g(φ)

There exist frames (e2m+1, . . . , e2m+r) and (e′2m+1, . . . , e
′
2m+r) of (V φ)⊥ and (V ψ)⊥ respec-

tively, such that

ηφkl = e2m+k ∧ e2m+l,

ηψkl = e′2m+k ∧ e′2m+l.

Let A = (akl) ∈ SO(r) the matrix such that

A : e′2m+k 7→ ak1e
′
2m+1 + · · ·+ akre

′
2m+r = e2m+k, 1 ≤ k ≤ r.
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The induced transformation on A :
∧2

(V ψ)⊥ →
∧2

(V φ)⊥ is given by

A : e′2m+k ∧ e′2m+l 7→ e2m+k ∧ e2m+l.

Set
AT : fk 7→ a1kf1 + · · ·+ arkfr = f ′k,

and
AT : fk ∧ fl 7→ f ′k ∧ f ′l .

Putting e2m+p =
∑r

s=1 apse
′
2m+s and e2m+q =

∑r
t=1 aqte

′
2m+t we get

η′ψkl (e2m+p, e2m+q)

=
〈
e2m+p ∧ e2m+q · f ′kf ′l · ψ,ψ

〉
=

〈(
r∑
s=1

apse
′
2m+s

)
∧

(
r∑
t=1

aqte
′
2m+t

)
· f ′kf ′l · ψ,ψ

〉

=

〈(∑
s<t

(apsaqt − aptaqs)e′2m+s ∧ e′2m+t

)
· f ′kf ′l · ψ,ψ

〉
=

∑
s<t

(apsaqt − aptaqs)
〈
e′2m+s ∧ e′2m+t · f ′kf ′l · ψ,ψ

〉
=

∑
s<t

(apsaqt − aptaqs)

〈
e′2m+s ∧ e′2m+t ·

(
r∑
i=1

aikfi

) r∑
j=1

ajlfj

 · ψ,ψ〉

=
∑
s<t

(apsaqt − aptaqs)

〈
e′2m+s ∧ e′2m+t ·

∑
i<j

(aikajl − ailajk)fifj

 · ψ,ψ〉

=
∑
s<t

∑
i<j

(apsaqt − aptaqs)(aikajl − ailajk)
〈
e′2m+s ∧ e′2m+t · fifj · ψ,ψ

〉
=

∑
s<t

∑
i<j

(apsaqt − aptaqs)(aikajl − ailajk)δsiδtj

=
∑
s<t

(apsaqt − aptaqs)(askatl − aslatk)

= δpkδql,

since the induced tranformation by A on
∧2Rr is orthogonal. This means

η′ψkl = ηφkl = e2m+k ∧ e2m+l.

Now if g ∈ Spinc(r) ⊂ Spinc,r(n) is such that λc,rn (g) = (1, A, 1) then

δpkδql =
〈
e2m+p ∧ e2m+q · f ′kf ′l · ψ,ψ

〉
=

〈
g(e2m+p ∧ e2m+q · f ′kf ′l · ψ), g(ψ)

〉
=

〈
e2m+p ∧ e2m+q ·A(f ′k)A(f ′l ) · g(ψ), g(ψ)

〉
= 〈e2m+p ∧ e2m+q · fkfl · g(ψ), g(ψ)〉 ,

i.e.
η
g(ψ)
kl = e2m+k ∧ e2m+l = ηφkl,
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so that
so(r)g(ψ) = span(η

g(ψ)
kl + fkl) = span(ηφkl + fkl) = so(r)φ.

This implies that g(ψ) and φ share the same stabilizer

U(V φ, Jφ)× exp(so(r)φ) = U(V g(ψ), Jg(ψ))× exp(so(r)g(ψ)) ∼= U(m)× SO(r).

But there is only a 1-dimensional summand in the decomposition of Σr ⊗ ∆n under this
subgroup. More precisely, under this subgroup

Σr ⊗∆n = Σr ⊗∆r ⊗∆2m,

where ∆2m decomposes under U(m) and contains only a 1-dimensional trivial summand [9],
while Σr ⊗∆r is isomorphic to a subspace of the complexi�ed space of alternating forms on
Rr which also contains only a 1-dimensional trivial summand. Thus, g(ψ) = eiθφ for some
θ ∈ [0, 2π) ⊂ R. 2

Lemma 2.2.13.

• If r is odd, the group Spinc,r(n) acts transtitively on the set of partially pure spinors in
Σr ⊗∆n.

• If r is even, the group Spinc,r(n) acts transtitively on the set of positive partially pure
spinors in (Σr ⊗∆n)+.

Proof. Suppose that r is odd. Note that the standard partially pure spinor φ0 satis�es the
conditions 

e2j−1e2j · φ0 = iφ0,
e2m+ke2m+l · φ0 = −fkl · φ0,
〈fkl · φ0, φ0〉 = 0,

(2.13)

where (e1, . . . , en) and (f1, . . . , fr) are the standard oriented frames of Rn and Rr respectively.

Let φ be a partially pure spinor. There exist frames (e′1, . . . , e
′
2m) and (e′2m+1, . . . , e

′
2m+r) of

V φ and (V φ)⊥ respectively such that

e′2j = J(e′2j−1) and ηφkl = e′2m+k ∧ e′2m+l, 1 ≤ k < l ≤ r, 1 ≤ j ≤ m.

Call g′1 ∈ O(n) the transformation of Rn taking the new frame to the standard one. De�ne
g1 ∈ SO(n) as follows {

g1 = g′1, if e′1 ∧ . . . ∧ e′2m+r = voln,
g1 = −g′1, if e′1 ∧ . . . ∧ e′2m+r = −voln.

Then (g1, 1, 1) ∈ SO(n) × SO(r) × U(1) has two preimages ±g̃ ∈ Spinc,r(n). By Lemma
2.2.10, g̃(φ) is a partially pure spinor. We will check that g̃(φ) satis�es (2.13) as φ0 does.
Indeed,

e2j−1e2j · g̃(φ) = g′1(e′2j−1)g′1(e′2j) · g̃(φ)

= (±g1(e′2j−1))(±g1(e′2j)) · g̃(φ)

= g1(e′2j−1)g1(e′2j) · g̃(φ)

= g̃(e′2j−1e
′
2j · φ)
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= g̃(iφ)

= ig̃(φ),

and

e2m+ke2m+l · g̃(φ) = g′1(e′2m+k)g
′
1(e′2m+l) · g̃(φ)

= (±g1(e′2m+k))(±g1(e′2m+l)) · g̃(φ)

= g1(e′2m+k)g1(e′2m+l) · g̃(φ)

= g̃(e′2m+ke
′
2m+l · φ)

= g̃(−fkfl · φ)

= −λr(g̃)(fk)λr(g̃)(fl) · g̃(φ)

= −fkfl · g̃(φ),

since λr(g̃) = 1. Similarly,

〈fkfl · g̃(φ), g̃(φ)〉 = 〈λr(g̃)(fk)λr(g̃)(fl) · g̃(φ), g̃(φ)〉
= 〈g̃(fkfl · φ), g̃(φ)〉
= 〈fkfl · φ, φ〉
= 0.

Thus, g̃(φ) generates the same oriented triple (V g̃(φ), J g̃(φ), (V g̃(φ))⊥) = (V φ0 , Jφ0 , (V φ0)⊥) as
φ0 which, by Lemma 2.2.12, concludes the proof for r odd. The case for r even is similar. 2

Theorem 2.2.1. Let Rn be endowed with the standard inner product and orientation. Given
r ∈ N such that r < n, the following objects are equivalent:

1. A (positive) triple consisting of a codimension r vector subspace endowed with an orthog-
onal complex structure and an oriented orthogonal complement.

2. An orbit Spinc(r) · φ for some (positive) twisted partially pure spinor φ ∈ Σr ⊗∆n.

Proof. Given a codimension r vector subspace D endowed with an orthogonal complex struc-
ture, dimR(D) = 2m, n = 2m+ r. By Lemma 2.1.5

∆n
∼= ∆(D⊥)⊗∆(D).

Let us de�ne

Σr
∼=

{
∆(D⊥) if r is odd,
∆(D⊥)+ if r is even,

so that

Σr ⊗∆n

contains the standard twisted partially pure spinor φ0 of Lemma 2.2.1. The proof of the
converse is the content of Subsection 2.2.2. 2
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Let S̃ denote the set of all partially pure spinors of rank r

S̃ =
Spinc,r(n)

U(m)× SO(r)
.

Consider

S =
S̃

Spinc(r)

where Spinc(r) is the canonical copy of such a group in Spinc,r(n). Thus we have the following
expected result.

Corollary 2.2.1. The space parametrizing subspaces with orthogonal complex structures of
codimension r in Rn with oriented orthogonal complements is

S ∼=
SO(n)

U(m)× SO(r)
.

2



Chapter 3

Spinc,r Structures

In this chapter we introduce doubly twisted Spin structures, which we call Spinc,r structures,
by means of the twisted Spin group Spinc,r(n). We characterize the existence of such struc-
tures with the existence of a Spin structure. On a simply connected manifold we give a result
concerning the existence of Spinc,r structures which do not restrict to Spin, Spinc or Spinr

structures in terms of homotopy groups.

We also write the corresponding covariant derivatives on spinor �elds associated to these
structures and the corresponding twisted di�erential operators, as the Dirac operator and the
twisted Laplacian operator. We deduce the corresponding Schrödinger-Lichnerowicz formula
and deduce some corollaries of this result using Bochner type arguments.

3.1 Preliminaries

3.1.1 The Group Spinc,r(n)

Remember that Spinc,r(n) is the group

Spinc,r(n) = (Spin(n)× Spinc(r))/{±(1, 1)}
= Spin(n)×Z2 Spin

c(r),

where r ∈ N and whose Lie algebra is

spinc(n) = spin(n)⊕ spin(r)⊕ iR.

It �ts into the exact sequence

1 −→ Z2 −→ Spinc,r(n)
λn,r,2−−−→ SO(n)× SO(r)× U(1) −→ 1,

where

(λn,r,2)[g, [h, z]] = (λn(g), λr(h), z2).

In what follows we will use additive notation for subgroups which contain a copy of Z2 = {0, 1},
where 0 denotes the trivial element and 1 is the element whose square is trivial. We also use
the notation 〈g1, . . . , gk〉 to denote the subgroup generated by the elements g1, . . . , gk.

47
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Lemma 3.1.1. For n ≥ 3 the following holds: π1(Spinc,r(n)) = Z2 ⊕ Z, for r ≥ 3, and
π1(Spinc,2(n)) = Z⊕ Z. Moreover

ker(i#) = (λn × λr × λ2)#(π1(Spinc,r(n))),

where i is the inclusion of SO(n)× SO(r)× U(1) in SO(n+ r + 2).

Proof. As Spinc,r(n) is a 2:1 cover of SO(n)× SO(r)× U(1), we have that π1(Spinc,r(n)) is
isomorphic to an index 2 subgroup of π1(SO(n)×SO(r)×U(1)). Using additive notation, we
see that the image of λr,2n# contains the elements (1, 1, 0) and (1, 0, 1).

The subgroup H = 〈(1, 1, 0), (1, 0, 1)〉 is an index 2 subgroup of π1(SO(n) × SO(r) × U(1)),
thus π1(Spinc,r(n)) ∼= H. If r = 2 then H ∼= Z ⊕ Z and if r ≥ 3 then H ∼= Z2 ⊕ Z. Finally,
using Example 1.5.1, we have H = ker(i#).

3.1.2 Certain Homogeneous Spaces

In this subsection, we present certain homogeneous spaces which will provide examples for
various results in the following sections.

Consider the partial �ag manifold

Gm,s,r =
SO(2m+ s+ r)

U(m)× SO(s)× SO(r)

We will decompose the Lie algebra so(2m+ s+ r) according to the natural inclusions

U(m)× SO(s)× SO(r) ⊂ SO(2m)× SO(s)× SO(r) ⊂ SO(2m+ s+ r).

Note that

so(2m+ s+ r) =
∧2R2m+s+r

=
∧2

(R2m ⊕ Rs ⊕ Rr)
=

∧2R2m ⊕
∧2Rs ⊕

∧2Rr ⊕ R2m ⊗ Rs ⊕ R2m ⊗ Rr ⊕ Rs ⊗ Rs

= so(2m)⊕ so(s)⊕ so(r)⊕ R2m ⊗ Rs ⊕ R2m ⊗ Rr ⊕ Rs ⊗ Rs

so(2m)⊗ C =
∧2

(Cm ⊕ Cm)

=
∧2Cm ⊕ Cm ⊗ Cm ⊕

∧2Cm

= [[
∧2Cm]]⊗ C⊕ u(m)⊗ C,

R2m = [[Cm]],

where the symbol [[Cm]] denotes the underlying real vector space R2m of Cm carrying a complex
structure. Thus

so(2m+ s+ r) = u(m)⊕ so(s)⊕ so(r)⊕
(

[[
∧2Cm]]⊕ [[Cm]]⊗ Rs ⊕ [[Cm]]⊗ Rr ⊕ Rs ⊗ Rr

)
and the tangent space of Gm,s,r decomposes as follows

TIdGm,s,r ∼= [[
∧2Cm]]⊕ [[Cm]]⊗ Rs ⊕ [[Cm]]⊗ Rr ⊕ Rs ⊗ Rr.
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This gives the isotropy representation

U(m)× SO(s)× SO(r) −→ SO(TIdGm,s,r)

(A,B,C) 7→


[[
∧2
A]]

[[A]]⊗B
[[A]]⊗ C

B ⊗ C

 ,

where
∧2
A denotes the linear transformation induced by A on

∧2Cm, [[A]] the transformation
A viewed as a real linear transformation on [[Cm]] = R2m, and B ⊗ C the induced transfor-
mation on Rs ⊗ Rr (i.e. the Kronecker product of B and C).

3.2 Doubly Twisted Spin Structures

In this section, we introduce the (doubly) twisted Spin structures we need to carry out our
spinorial characterization of CR structures, and the corresponding twisted Dirac operator and
Laplacian. We deduce some topological conditions on manifolds that support such structures,
a Schrödinger-Lichnerowicz type formula, and give some Bochner-type arguments.

De�nition 3.2.1. Let M be an oriented n-dimensional Riemannian manifold, PSO(M) be its
principal bundle of orthonormal frames and r ∈ N. A Spinc,r(n) structure on M consists of
an auxiliary principal SO(r) bundle PSO(r), an auxiliary principal U(1) bundle PU(1) and a
principal Spinc,r(n) bundle PSpinc,r(n) together with an equivariant 2 : 1 covering map

Λ : PSpinc,r(n) −→ PSO(M)×̃PSO(r)×̃PU(1),

where ×̃ denotes the �bered product, such that Λ(pg) = Λ(p)(λn,r,2)(g) for all p ∈ PSpinc,r(n)

and g ∈ Spinc,r(n).

A n-dimensional Riemannian manifold M admitting a Spinc,r(n) structure will be called a
Spinc,r manifold.

Remark. A Spinc,r manifold with trivial PSO(r) and PU(1) auxiliary bundles is a Spin manifold.
On the other hand, we have the following:

• Any Spin manifold admits a Spinc,r structure with trivial PSO(r) and PU(1) auxiliary
bundles via the inclusion Spin(n) ⊂ Spinc,r(n).

• Any Spinc manifold admits a Spinc,r structure with trivial PSO(r) auxiliary bundle via
the inclusion Spinc(n) ⊂ Spinc,r(n).

• Any Spinr manifold (cf. [8]) admits a Spinc,r structure with trivial PU(1) auxiliary bundle
via the inclusion Spinr(n) ⊂ Spinc,r(n).

3.2.1 Existence of Spinc,r Structures

We will characterize the existence of a Spinc,r structure in terms of a Spin structure. By setting
N = n+ r + 2, G = SO(n)× SO(r)× U(1), Q = PSO(M)×̃PSO(r)×̃PU(1) and considering the
natural inclusion of SO(n)× SO(r)× U(1) ⊂ SO(n+ r + 2) we have that

π1

(
SO(n+ r + 2)

SO(n)× SO(r)× U(1)

)
= 0.
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Using proposition 1.5.1 we obtain

Corollary 3.2.1. The bundle Q = PSO(M)×̃PSO(r)×̃PU(1) over M has a Spin structure if and
only if there exists a homomorphism f : π1(Q)→ π1(SO(n+ r + 2)) for which the diagram

π1(SO(n)× SO(r)× U(1))

h
��

i# // π1(SO(n+ r + 2))

π1(Q)

f

44

commutes. 2

Proposition 3.2.1. M admits an SO(r)×SO(2)-principal bundle PSO(r)×SO(2) such that the
�bre product Q = PSO(n)×̃PSO(r)×SO(2) has a Spin structure if and only if M has a Spinc,r

structure.

Proof. If M has a Spinc,r structure then there exist PSO(2) and PSO(r), SO(2) and SO(r)
principal bundles respectively, such that the bundle PSO(r)×SO(2) := PSO(r)×̃PSO(2) is an
SO(r) × SO(2) principal bundle over M . Now, there exists an injective homomorphism ι̃
which makes the diagram

Spinc,r(n)
ι̃ //

λc,rn
��

Spin(n+ r + 2)

λn+r+2

��
SO(n)× SO(r)× SO(2)

i
// SO(n+ r + 2)

commute. From this we obtain a Spin structure for Q in the sense of Corollary 3.2.1 (analo-
gously to Proposition 1.5.3).

Conversely, let λ = λn × λr × λ2 and F = SO(n) × SO(r) × U(1). According to Corollary
3.2.1, due to the existence of f , H = ker(f) ⊂ π1(Q) is a subroup of index 2. Therefore, there
exists a double covering space Λ : PSpinc,r(n) → Q corresponding to H. Let µ : Q×F → Q be
the action of F in Q and consider the composition of induced maps on fundamental groups

π1(PSpinc,r(n) × Spinc,r(n))
(Λ×λ)#// π1(Q× F )

µ# // π1(Q).

If (σ, τ) ∈ π1(PSpinc,r(n))× π1(Spinc,r(n)), by means of the inclusion h,

µ# ◦ (Λ× λ)#(σ, τ) = Λ#(σ)λ#(τ)

= Λ#(σ) ∗ h(λ#(τ))

where ∗ denotes product in the relevant fundamental group. We know that

Λ#(σ) ∈ H and f(h(λ#(τ))) = i#(λ#(τ)) = 0

by Lemma 3.1.1 and Corollary 3.2.1. Thus, h(λ#(τ)) ∈ H and Λ#(σ)∗h(λ#(τ)) ∈ H. Hence,
there exists a lift µ̃ : PSpinc,r(n) × Spinc,r(n) → PSpinc,r(n) which gives the equivariance in
De�nition 3.2.1. 2
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Now, we will derive a condition for a simply connected manifold to have a �non-reducible�
Spinc,r structure, i.e. a Spinc,r structure which does not come from a Spin, nor a Spinc, nor
Spinr structure.

Proposition 3.2.2. LetM be simply connected and Q its SO(n)-principal bundle of orthonor-
mal frames. The following are equivalent

1. Q has a Spinc,r structure but does not have a Spin, nor a Spinc, nor a Spinr structure.

2. There exists a SO(r)× SO(2) bundle P1 over M such that in the long exact sequence

· · · // π2(M)
∂ // π1(SO(n)× SO(r)× SO(2))

h // π1(Q×̃P1) // π1(M) = 0,

Im(∂) ∼= 〈(1, 0, p), (0, 1, p)〉 ⊂ Z2 ⊕ Z2 ⊕ Z with p odd.

Proof. If (P,Λ) is a Spinc,r structure onQ then there exist PSO(2) and PSO(r), SO(2) and SO(r)
principal bundles respectively, so that the bundle P1 := PSO(r)×̃PSO(2) is a SO(r) × SO(2)
principal bundle over M . Now, by Proposition 3.2.1, the �bre product Q×̃P1 has a Spin
structure. By Corollary 3.2.1, this means that there exists a map f : π1(Q×̃P1)→ π1(SO(n+
r + 2)) such that the diagram

π1(SO(n)× SO(r)× SO(2)) = Z2 ⊕ Z2 ⊕ Z

h
��

i# // π1(SO(n+ r + 2)) = Z2

π1(Q×̃P1)

f

22

commutes. Now, if Q does not have a Spin structure then we have π1(Q) = 0 in the following
commutative diagram

...

��
π2(M)

∂
��

Z2 ⊕ Z2 ⊕ Z

h
��

Z2 ⊕ Z = π1(SO(r)× SO(2))
k //

j#
44

π1(Q×̃P1) //

��

π1(Q) // 0

π1(M) = 0.

(3.1)

Thus, k is onto and

(Z2 ⊕ Z2 ⊕ Z)/Im(∂) ∼= π1(Q×̃P1) = h(Z2 ⊕ Z2 ⊕ Z) = k(Z2 ⊕ Z).

Now, we will describe the group K = π1(Q×̃P1). It depends on the nontrivial elements
h(1, 0, 0) = α, h(0, 1, 0) = β and h(0, 0, 1) = γ. First, we have K = 〈β, γ〉, so that α = aβ+bγ
for some integers a, b. Since α and β have order two in K

0 = 2α = 2aβ + 2bγ = 2bγ,
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and K is a �nite group. Now,

(i) If β ∈ 〈γ〉 then γ has order 2p, K ∼= Z2p and α = β = pγ. Since there is only one
nontrivial map f : Z2p → Z2, f ◦ h = i# if and only if p is odd.

(ii) If β /∈ 〈γ〉 thenK ∼= Z2⊕Zd. If d is odd, f : Zd → Z2 must be trivial and (f ◦h)(0, 0, 1) =
0 which gives us no Spinc,r structure. If d = 2p, then

α = β, or α = pγ or α = β + pγ.

In order to have i# = f ◦ h and, therefore, the existence of the Spinc,r structure, if
α = pγ then p must be odd, and if α = β + pγ then p must be even.

Now, we are going to rule out the three options in (ii). Note that

K ′ = π1(Q×̃PSO(r)×̃PSO(2))

and the SO(2) �bre bundle Q×̃PSO(r)×̃PSO(2) → Q×̃PSO(r) gives the commutative diagram

...

��

...

��
π2(M)

��

π2(M)

��
· · · // Z = π1(SO(2)) // Z2 ⊕ Z2 ⊕ Z //

��

Z2 ⊕ Z2

��

// 0

· · · // Z = π1(SO(2)) //

55

π1(Q×̃PSO(r)×̃PSO(2)) //

��

π1(Q×̃PSO(r)) //

��

0

π1(M) = 0 π1(M) = 0

(3.2)

• IfK ′ = Z2⊕Z2p = 〈β, γ〉 with α = β then, by exactness of the diagram, π1(Q×̃PSO(r)) =
(Z2 ⊕ Z2p)/〈γ〉 = Z2

∼= 〈β〉, which gives us a Spinr structure.

• The same happens if α = β + pγ. The quotient is isomorphic to Z2, whose equivalence
classes are

{(0, 0), (0, 1), . . . , (0, 2p− 1)} and {(1, 0), . . . , (1, 2p− 1)},

where γ = (0, 1) belongs to the �rst one, and α = (1, p) and β = (1, 0) belong to the
second one. In other words, α and β are mapped to the nontrivial class and we have a
Spinr structure.

• Now if we have the group K ′ = Z2⊕Z2p with p odd and α = pγ, the SO(r) �bre bundle



3.2 Doubly Twisted Spin Structures 53

Q×̃PSO(r)×̃PSO(2) → Q×̃PSO(2) gives the commutative diagram

...

��

...

��
π2(M)

��

π2(M)

��
· · · // Z2 = π1(SO(r)) // Z2 ⊕ Z2 ⊕ Z //

��

Z2 ⊕ Z

��

// 0

· · · // Z2 = π1(SO(r)) //

55

π1(Q×̃PSO(r)×̃PSO(2)) //

��

π1(Q×̃PSO(2)) //

��

0

π1(M) = 0 π1(M) = 0

so that π1(Q×̃PSO(2)) = Z2 ⊕ Z2p/〈β〉 = Z2p with p odd, which implies the existence of
a Spinc structure.

Now we know that K = Z2p = 〈γ〉 with p odd and α = β = pγ. This should be the same as the
quotient (Z2⊕Z2⊕Z)/Im(∂) where, by extacness, Im(∂) = ker(h). We see that the map h is
given by h(a, b, c) = ((a+b)p+c)γ. The kernel of this map is given by the (a, b, c) ∈ Z2⊕Z2⊕Z
such that (a+ b)p+ c ≡ 0 (mod 2p), i.e. (a, b, c) ∈ 〈(0, 1, p), (1, 0, p)〉 where p is odd.

Conversely, assume Im(∂) = 〈(1, 0, p), (0, 1, p)〉, p odd, and put this in the diagram (3.1). By
exactness of the column, π1(Q×̃P1) ∼= Z2p. This group is generated by the non trivial element
γ = h(0, 0, 1), and we have h(1, 0, 0) = h(0, 1, 0) = pγ.

Thus, k = h ◦ j# is onto, we have no Spin structure and the only nonzero homomorphism
f : Z2p → Z2 gives us i# = f ◦ h, i.e. the existence of a Spinc,r structure.

The SO(r) bundle PSO(r) = P1/SO(2) �ts into a commutative diagram similar to (3.2). By
exactness, we have π1(Q×̃PSO(r)) = {0} and we cannot have a Spinr structure. Similarly, the
SO(2) bundle PSO(2) = P1/SO(r) �ts into a similar diagram so that π1(Q×̃PSO(2)) = Zp, and
there is not map f as in Corollary 3.2.1 to have a Spinc structure. Note that in the case p = 1
this last group is zero. 2

Example 3.2.1. Now we will give an example of a manifold satisfying the conditions of the
previous proposition. Let M = G/H with G = SO(2m+2+r) and H = U(m)×U(1)×SO(r),
r ≥ 3. Since H is a compact connected subgroup of G and the inclusion map induces a map
of fundamental groups which is onto, π1(M) = {0}.

Consider the bundle of orthonormal frames Q = G×ρSO(n) where n = m2 +2mr+3m+2r =
dim(M) and

ρ : H ↪→ G× SO(n)

is given by the inclusion of H into the �rst factor and the isotropy representation in the second
which is given by

ξ : H −→ SO(n)
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(A, eiθ, B) 7→ [[Λ2A]]⊕ ([[A]]⊗Rθ)⊕ ([[A]]⊗B)⊕ (Rθ ⊗B),

where Rθ is the rotation in R2 by an angle of θ. This gives a �bration

H ↪→ G× SO(n)
↓
Q

which induces the long exact sequence of homotopy groups

· · · // π1(H) = Z⊕ Z⊕ Z2
ρ# // π1(G× SO(n)) = Z2 ⊕ Z2

// π1(Q) // 0.

First note that the isotropy representation induces the map

π1(H) −→ π1(SO(n))

(a, b, c) 7→ (m− 1 + 2 + r)a+ (2m+ r)b+ (2m+ 2)c (mod 2)

= (m− 1 + r)a+ rb (mod 2).

Thus,
ρ#(a, b, c) = ((a+ b+ c) (mod 2), ((m− 1 + r)a+ br) (mod 2)).

Note that (m−1+r)a+br ≡ 0 (mod 2) if and only if r is even and m is odd. So, by exactness,
π1(Q) = Z2 (Q has a Spin structure) if and only if r is even and m is odd.

Let m and r be even and consider

σ : H −→ (G× SO(n))× U(1)× SO(r)

(A, eiθ, B) 7→ (ρ(A, eiθ, B), eiθ, B)

We have the �bration H ↪→ G × SO(n) × U(1) × SO(r)
ν−→ G ×σ SO(n) × U(1) × SO(r) =

Q×̃PU(1)×̃PSO(r) which gives

· · · // Z⊕ Z⊕ Z2
σ# // Z2 ⊕ Z2 ⊕ Z⊕ Z2

ν# // π1(Q×̃PU(1)×̃PSO(r)) // 0,

where
σ#(a, b, c) = ((a+ b+ c) (mod 2), a (mod 2), b, c (mod 2)).

We see that Im(σ#) = 〈(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)〉 = L is a subgroup of index two because
(1, 0, 0, 0) /∈ L and ((1, 0, 0, 0)+L)∪L = Z2⊕Z2⊕Z⊕Z2. By exactness, π1(Q×̃PU(1)×̃PSO(r)) ∼=
Z2.

Consider f : π1(Q×̃PU(1)×̃PSO(r)) → π1(SO(n + 2 + r)) to be the only nontrivial homomor-
phism between these groups. Now, the inclusion of the �ber SO(n) × Un(1) × SO(r) into
the �ber bundle Q×̃PU(1)×̃PSO(r) is given by the inclusion j into the last three factors of
G×SO(n)×U(1)×SO(r), followed by the projection ν. Thus, the map h in Proposition 3.2.2
is given by h = ν# ◦ j#.
Consider, for simplicity, π1(Q×̃PU(1)×̃PSO(r)) = {0, 1}. From the explicit description of L,
we can see

h(a, b, c) =

{
0 if a+ b+ c ≡ 0 (mod 2),
1 if a+ b+ c ≡ 1 (mod 2).

This means that f ◦ h is the same map as the inclusion of π1(SO(n) × U(1) × SO(r)) ↪→
π1(SO(n+ 2 + r)). By Proposition 3.2.2, M has a Spinc,r structure which does not come from
either a Spin, nor a Spinc, nor a Spinr structure.
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3.2.2 Covariant Derivatives and Twisted Di�erential Operators

Let M be a Spinc,r n-dimensional manifold, ω the Levi-Civita connection 1-form on its princi-
pal bundle of orthonormal frames PSO(n), θ and iA chosen connection 1-forms on the auxiliary
bundles PSO(r) and PU(1) respectively. These connections forms give rise to covariant deriva-
tives ∇, ∇θ and ∇A on the associated vector bundles

TM = PSpinc,r(n) ×λn,r,2 (Rn × {0} × {0}),
F = PSpinc,r(n) ×λn,r,2 ({0} × Rr)× {0}),
L = PSpinc,r(n) ×λn,r,2 ({0} × {0} × C),

Furthermore, the three connections help de�ne a connection on the twisted spinor bundle

S = PSpinc,r(n) ×κc,rn (Σr ⊗∆n)

given (locally) as follows

∇θ,A : Γ(S) −→ Γ(T ∗M ⊗ S)

∇θ,A(ϕ⊗ ψ) = d(ϕ⊗ ψ) + ϕ⊗

1

2

∑
1≤i<j≤n

ωij ⊗ eiej · ψ


+

1

2

∑
1≤k<l≤r

θkl ⊗ κr∗(fkfl) · ϕ

⊗ ψ +
i

2
ϕ⊗ (A · ψ),

where ϕ⊗ ψ ∈ Γ(S), (e1, . . . , en) and (f1, . . . , fr) are local orthonormal frames of TM and F
respectively. ωij , θkl and A are the corresponding local connection 1-forms for TM , F and L
respectively.

From now on, we will omit the upper and lower bounds on the indices, by declaring i and j
to be the indices for the frame vectors of TM , and k and l to be the indices for the frame
sections of F .

Now, for any tangent vectors X,Y ∈ TxM , the spinorial curvature is de�ned by

Rθ,A(X,Y )(ϕ⊗ ψ) = ϕ⊗

1

2

∑
i<j

Ωij(X,Y )eiej · ψ


+

[
1

2

∑
k<l

Θkl(X,Y )κr∗(fkfl) · ϕ

]
⊗ ψ

+
i

2
ϕ⊗ (dA(X,Y )ψ), (3.3)

where

Ωij(X,Y ) =
〈
RM (X,Y )(ei), ej

〉
and Θkl(X,Y ) =

〈
RF (X,Y )(fk), fl

〉
.

Here RM (resp. RF ) denotes the curvature tensor of M (resp. of F ).

For X,Y vector �elds and φ ∈ Γ(S) a spinor �eld, we have compatibility of the covariant
derivative with Cli�ord multiplication,

∇θ,AX (Y · φ) = (∇XY ) · φ+ Y · ∇θ,AX φ.
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De�nition 3.2.2. The twisted Dirac operator is the �rst order di�erential operator /∂θ,A :
Γ(S) −→ Γ(S) de�ned by

/∂θ,A(φ) =
n∑
i=1

ei · ∇θ,Aei (φ).

Remark. The twisted Dirac operator /∂θ,A is well-de�ned and formally self-adjoint on compact
manifolds. Moreover, if h ∈ C∞(M), φ ∈ Γ(S), we have

/∂θ,A(hφ) = grad(h) · φ+ h/∂θ,A(φ).

The proofs of these facts are analogous to the ones for the Spinc Dirac operator [9].

De�nition 3.2.3. The twisted Spin connection Laplacian is the second order di�erential
operator ∆θ,A : Γ(S)→ Γ(S) de�ned as

∆θ,A(φ) = −
n∑
i=1

∇θ,Aei ∇
θ,A
ei (φ)−

n∑
i=1

div(ei)∇θ,Aei (φ).

3.2.3 A Schrödinger-Lichnerowicz-type Formula

Just as in [8, 9], we have the following

Proposition 3.2.3. For X ∈ Γ(TM) and φ ∈ Γ(S), we have

n∑
i=1

ei ·Rθ,A(X, ei)(φ) = −1

2
Ric(X) · φ+

1

2

∑
k<l

(XyΘkl) · κr∗(fkfl) · φ

+
i

2
XydA · φ, (3.4)

where Ric denotes the Ricci tensor ofM and Rθ,A the curvature operator of the twisted spinorial
connection.

Proof. For φ = ϕ⊗ ψ, by (3.3),

Rθ,A(X, eα)(ϕ⊗ ψ) = ϕ⊗

1

2

∑
i<j

Ωij(X, eα)eiej · ψ


+

[
1

2

∑
k<l

Θkl(X, eα)κr∗(fkfl) · ϕ

]
⊗ ψ +

i

2
ϕ⊗ (dA(X, eα)ψ).

Multiply by eα and sum over α

∑
α

eα ·Rθ,A(X, eα)(ϕ⊗ ψ) = ϕ⊗

1

2

∑
α

∑
i<j

Ωij(X, eα)eαeiej · ψ


+

1

2
[κr∗(fkfl) · ϕ]⊗

∑
k<l

[∑
α

Θkl(X, eα)eα · ψ

]

+
i

2
ϕ⊗

[∑
α

dA(X, eα)eα · ψ

]
.
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Now,

1

2

∑
α

∑
i<j

Ωij(X, eα)eαeiej = −1

2
Ric(X),

κr∗(fkfl) · ϕ⊗
1

2

∑
k<l

[∑
α

Θkl(X, eα)eα · ψ

]
, =

1

2

∑
k<l

(XyΘkl) · κr∗(fkfl) · (ϕ⊗ ψ),

i

2
ϕ⊗

[∑
α

dA(X, eα)eα · ψ

]
=

i

2
ϕ⊗XydA · ψ.

2

Proposition 3.2.4. Let φ ∈ Γ(S). Then∑
i,j

eiej ·Rθ,A(ei, ej)(φ) =
R

2
φ+

∑
k<l

Θkl · κr∗(fkfl) · φ+ idA · φ,

where Θkl =
∑

i<j Θkl(ei, ej)ei ∧ ej and R is the scalar curvature of M .

Proof. By (3.4),

n∑
j=1

ej ·Rθ,A(ei, ej)(φ) = −1

2
Ric(ei) · φ+

1

2

∑
j

∑
k<l

Θkl(ei, ej)ej · κr∗(fkfl) · φ+
i

2
eiydA · φ.

Multiplying with ei and summing over i, we get∑
i,j

eiej ·Rθ,A(ei, ej)(φ) = −1

2

∑
i

ei · Ric(ei) · φ

+
1

2

∑
k<l

∑
i,j

Θkl(ei, ej)eiej

 · κr∗(fkfl) · φ
+
i

2

∑
i

ei · eiydA · φ.

Now,

−
∑
i

ei · Ric(ei) = R,

where R denotes the scalar curvature of M . For k and l �xed,∑
i,j

Θkl(ei, ej)eiej = 2
∑
i<j

Θkl(ei, ej)eiej

= 2Θkl,
i

2

∑
i

ei · eiydA · ψ =
i

2

∑
i,α

dA(ei, eα)ei · eα · ψ

= i
∑
i<α

dA(ei, eα)ei · eα · ψ

= idA · ψ.

2
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Let us de�ne

Θ =
∑
k<l

Θkl ⊗ fkfl ∈
∧2
T ∗M ⊗

∧2
F,

Θ̂ =
∑
k<l

Θ̂kl ⊗ fkfl ∈ End−(TM)⊗
∧2
F,

ηφ =
∑
k<l

ηφkl ⊗ fkfl ∈
∧2
T ∗M ⊗

∧2
F,

η̂φ =
∑
k<l

η̂φkl ⊗ fkfl ∈ End−(TM)⊗
∧2
F,

where Θ̂kl denotes the skew-symmetric endomorphism associated to Θkl via the metric.

Denote by

Θ̃ = (µn ⊗ κr∗)(Θ),

the corresponding operator on twisted spinor �elds. In order to simplify notation, we also
de�ne 〈

Θ, ηφ
〉

0
=

∑
k<l

∑
i<j

Θkl(ei, ej)η
φ
kl(ei, ej),〈

Θ̂, η̂φ
〉

1
=

∑
k<l

tr(Θ̂kl(η̂
φ
kl)

T ).

Theorem 3.2.1 (Twisted Schrödinger-Lichnerowicz Formula). Let φ ∈ Γ(S). Then

/∂θ,A(/∂θ,A(φ)) = ∆θ,A(φ) +
R

4
φ+

1

2
Θ̃ · φ+

i

2
dA · φ (3.5)

where R is the scalar curvature of the Riemannian manifold M .

Proof. Consider the di�erence

/∂θ,A(/∂θ,A(φ))−∆θ,A(φ) =
∑
i

∑
j 6=k
〈∇eiej , ek〉 eiek · ∇θ,Aei φ+

∑
i 6=j

eiej · ∇θ,Aej ∇
θ,A
ej φ),

since ∑
j

∑
i=k

〈∇eiej , ek〉 eiek∇θ,Aej φ = −
∑
j

div(ej)∇θ,Aej φ.

Thus,

/∂θ,A(/∂θ,A(φ))−∆θ,A(φ) =
∑
j

∑
i<k

〈ej , [ek, ei]〉 eiek · ∇θ,Aei φ

+
∑
i<j

eiej · (∇θ,Aei ∇
θ,A
ej −∇

θ,A
ej ∇

θ,A
ei )φ

=
1

2

∑
i,j

eiejR
θ,A(ei, ej)φ.

The result follows from Proposition 3.2.4. 2
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3.2.4 Bochner-type Arguments

In this subsection we will prove some corollaries of the Schrödinger-Lichnerowicz-type formula
and Bochner type arguments (cf. [9]). For the rest of the section, let us assume that the n-
dimensional Riemannian Spinc,r manifold M is compact (without boundary) and connected.

Harmonic spinors

A twisted spinor �eld φ ∈ Γ(S) such that

/∂θ,Aφ = 0

will be called a harmonic spinor.

Corollary 3.2.2. If R ≥ 2|Θ̃| + 2|dA| everywhere (in pointwise operator norm), then a har-
monic spinor is parallel. Furthermore, if the inequality is strict at a point, then there are no
non-trivial harmonic spinors

ker(/∂θ,A) = {0}.

Proof. If φ 6= 0 is a solution of
/∂θ,A(φ) = 0,

by the twisted Schrödinger-Lichnerowicz formula (3.5)

0 = ∆θ,A(φ) +
R

4
φ+

1

2
Θ̃ · φ+

i

2
dA · φ.

By taking hermitian product with φ and integrating over M we get

0 ≥
∫
M
|∇θ,Aφ|2 +

1

4

∫
M

(
R− 2|Θ̃| − 2|dA|

)
|φ|2.

Since
R− 2|Θ̃| − 2|dA| ≥ 0,

then
|∇θ,Aφ| = 0,

so that φ is parallel, has non-zero constant length and no zeroes.

Now, if
R− 2|Θ̃| − 2|dA| > 0

at some point,

0 ≥ |φ|2
∫
M

(
R− 2|Θ̃| − 2|dA|

)
> 0.

2

Now notice that

〈
Θ̃ · φ, φ

〉
=

〈∑
k<l

∑
i<j

Θkl(ei, ej)eiej

 · κr∗(fkfl) · φ, φ
〉

=
∑
k<l

∑
i<j

Θkl(ei, ej)η
φ
kl(ei, ej)
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=
〈

Θ, ηφ
〉

0
,

which is a real number dependent on the curvature of the connection θ and the speci�c spinor
φ.

Corollary 3.2.3. If φ is such that

R|φ|2 + 2
〈

Θ, ηφ
〉

0
+ 2i 〈dA · φ, φ〉 ≥ 0

everywhere, and the inequality is strict at a point, then

/∂θ(φ) 6= 0.

Proof. Suppose φ 6= 0 is such that
/∂θ(φ) = 0.

Then, by (3.5)

0 =

∫
M
|∇θφ|2 +

1

4

∫
M

(
R|φ|2 + 2

〈
Θ, ηφ

〉
0

+ 2i 〈dA · φ, φ〉
)
≥ 0,

so that φ is parallel, has non-zero constant length and no zeroes. Since

R|φ|2 + 2
〈

Θ, ηφ
〉

0
+ 2i 〈dA · φ, φ〉 > 0

at some point,

0 ≥
∫
M

(
R|φ|2 + 2

〈
Θ, ηφ

〉
0

+ 2i 〈dA · φ, φ〉
)
> 0.

2

Killing spinors

A twisted spinor �eld φ ∈ Γ(S) is called a Killing spinor if

∇θ,AX φ = µX · φ

for all X ∈ Γ(TM), and µ a complex constant.

Corollary 3.2.4. Suppose φ 6= 0 is a Killing spinor with Killing constant µ. Then µ is either
real or imaginary, and

µ2 ≥ 1

4n2
min
M

(R− 2|Θ̃| − 2|dA|).

If the inequality is attained, then φ is parallel, i.e. µ = 0.

Proof. Recall that

/∂θ,A(φ) =
n∑
i=1

ei · ∇θ,Aei φ

= −nµφ.

Then, by the twisted Schrödinger-Lichnerowicz formula (3.5)

n2µ2φ = ∆θ,A(φ) +
R

4
φ+

1

2
Θ̃ · φ+

i

2
dA · φ.
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By taking hermitian product with φ and integrating over M we get

n2µ2

∫
M
|φ|2 =

∫
M
|∇θ,Aφ|2 +

∫
M

R

4
|φ|2 +

∫
M

1

2

〈
Θ̃ · φ, φ

〉
+
i

2

∫
M
〈dA · φ, φ〉

≥ 1

4
min
M

(R− 2|Θ̃| − 2|dA|)
∫
M
|φ|2,

and the inequality follows. Since the right hand side of the equality above is a real number, µ
must be either real or imaginary. Now, if the inequality is attained,∫

M
|∇θ,Aφ|2 = 0 and ∇θ,Aφ = 0.

2

Corollary 3.2.5. Suppose φ ∈ Γ(S) is a Dirac eigenspinor

/∂θ,Aφ = λφ.

Then

λ2 ≥ n

4(n− 1)

(
min
M

(R− 2|Θ̃| − 2|dA|)
)
.

If the lower bound is non-negative and is attained, the spinor φ is a real Killing spinor with
Killing constant

µ = ±1

2

√
1

n(n− 1)
min
M

(R− 2|Θ̃| − 2|dA|).

Proof. Let h : M → R be a �xed smooth function. Consider the following metric connection
on the twisted Spin bundle

∇hXφ = ∇θ,AX φ+ hX · φ.

Let

∆h(φ) = −
n∑
i=1

∇hei∇
h
eiφ−

∑
i=1

div(ei)∇heiφ,

be the Laplacian for this connection and recall that

|∇hφ|2 =
n∑
i=1

|∇θ,Aei φ+ hei · φ|2.

Then, by (3.5)

(/∂θ,A − h) ◦ (/∂θ,A − h)(φ) = /∂θ,A(/∂θ,Aφ)− 2h/∂θ,Aφ− grad(h) · φ+ h2φ

= ∆θ,A(φ) +
R

4
φ+

1

2
Θ̃ · φ+

i

2
dA · φ− 2h/∂θ,Aφ

−grad(h) · φ+ h2φ.

On the other hand,

∆hφ = ∆θ,Aφ− 2h/∂θ,Aφ− grad(h) · φ+ nh2φ.
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Thus

(/∂θ,A − h) ◦ (/∂θ,A − h)(φ) = ∆h(φ) +
R

4
φ+

1

2
Θ̃ · φ+

i

2
dA · φ+ (1− n)h2φ

By using /∂θ,Aφ = λφ, setting h = λ
n , taking hermitian product with φ and integrating over M

we get

λ2

(
n− 1

n

)2 ∫
M
|φ|2 =

∫
M
|∇λ/nφ|2 + λ2 1− n

n2

∫
M
|φ|2 +

∫
M

R

4
|φ|2

+

∫
M

1

2

〈
Θ̃ · φ, φ

〉
+
i

2

∫
M
〈dA · φ, φ〉

so that

λ2

(
n− 1

n

)∫
M
|φ|2 ≥ 1

4
min
M

(R− 2|Θ̃| − 2|dA|)
∫
M
|φ|2.

If the lower bound is attained, ∫
M
|∇λ/nφ|2 = 0,

i.e.
∇λ/nφ = 0.

2



Chapter 4

CR Structures

In this chapter we develop a spinorial description of CR structures of arbitrary codimension.
More precisely, we characterize almost CR structures of arbitrary codimension on (Rieman-
nian) manifolds by the existence of a Spinc,r structure carrying a partially pure spinor �eld.
We study various integrability conditions of the almost CR structure in our spinorial setup,
including the classical integrability of a CR structure as well as those implied by Killing-type
conditions on the partially pure spinor �eld.

4.1 CR Structures of Arbitrary Codimension

In this section we will explore the twisted spinorial geometry associated to almost CR struc-
tures. We carry out the spinorial characterization and explore some integrability conditions
of almost CR structures implied by assuming the typical conditions on spinors, such as being
parallel or Killing, but just in prescribed directions.

4.1.1 Spinorial Characterization of Almost CR (Hermitian) Structures

De�nition 4.1.1. Let M be a smooth (2m+ r)-dimensional smooth manifold.

• An almost CR structure on a manifold M consists of a sub-bundle D ⊂ TM and a
bundle automorphism J of D such that J2 = −IdD.

• An almost CR hermitian structure onM is an almost CR structure whose almost complex
structure is orthogonal with respect to the metric.

Remark. Given an almost CR structure on M we can introduce an (auxiliary) compatible
metric as follows. Take any Riemannian metric g0 on M and consider the orthogonal comple-
ment D⊥ of D with respect to this metric. Let g1 and g2 denote the restrictions of g0 to D
and D⊥ respectively. Average g1 with respect to J and call it g3. Finally, consider the metric
g = g3 ⊕ g2.

De�nition 4.1.2. Let M be an oriented Riemannian Spinc,r(n) manifold and S the associated
twisted spinor bundle. A (nowhere zero) spinor �eld φ ∈ Γ(S) is called partially pure if φx ∈ Sx
is partially pure at each point x ∈M .

Theorem 4.1.1. Let M be an oriented n-dimensional Riemannian manifold. Then the fol-
lowing two statements are equivalent:

63
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(a) M admits a twisted Spinc,r structure carrying a partially pure spinor �eld φ ∈ Γ(S),
where S denotes the associated twisted spinor bundle.

(b) M admits an almost CR hermitian structure of codimension r.

Proof. If the manifold M admits a partially pure spinor �eld φ ∈ Γ(S), the subspaces V φ
x

determine a smooth distribution of even rank n− r carrying an almost complex structure.
Conversely, if M has an orthogonal almost CR hermitian structure of codimension r, the
tangent bundle decomposes orthogonally as

TM = D ⊕D⊥,

where D has real rank 2m = n − r and admits an almost complex structure, and D⊥ is the
oriented orthogonal complement. The structure group of the Riemannian manifoldM reduces
to U(m)× SO(r) and, by Lemma 2.1.4, there is a monomorphism

U(m)× SO(r) ↪→ Spinc,r(2m+ r)

with image ̂U(m)× SO(r), which allows us to associate a Spinc,r(n) principal bundle P on
M , i.e. a Spinc,r structure similarly as we did in Propositions 1.5.3 and 3.2.1 . Note that the

corresponding twisted spinor bundle S decomposes under ̂U(m)× SO(r) as follows

S =
[
κ
−1/2
D ⊗ Σ(D⊥)

]
⊗∆(M)

=
[
κ
−1/2
D ⊗ Σ(D⊥)

]
⊗∆(D⊥)⊗∆(D)

=
[
κ
−1/2
D ⊗ Σ(D⊥)

]
⊗∆(D⊥)⊗

[
(
∧∗
D0,1)⊗ κ1/2

D

]
=

[
Σ(D⊥)⊗∆(D⊥)

]
⊗
[∧∗

D0,1
]
,

where κD =
∧m

D1,0. We see that it contains a rank 1 trivial subbundle generated by the

partially pure spinor given in (2.4) with stabilizer ̂U(m)× SO(r), i.e. M admits a global
partially pure spinor �eld. 2

Example 4.1.1. Recall from Subsection 3.1.2 that

TIdGm,1,r ∼= [[
∧2Cm]]⊕ [[Cm]]⊗ Rr ⊕ [[Cm]]⊕ Rr

For the sake of clarity, consider m = 2, r = 2 and R7 = R4⊕R2⊕R1, where the �rst summand
R4 is endowed with the standard complex structure

0 −1
1 0

0 −1
1 0

 .

The di�erent summands in the decomposition

TIdG ∼= [[
∧2C2]]⊕ [[C2]]⊗ R2 ⊕ [[C2]]⊕ R2.
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correspond to the following skew-symmetric matrices

[[
∧2C2]] =





0 0 b1 b2
0 b2 −b1

−b1 −b2 0
−b2 b1 0

0
0

0


: b1, b2 ∈ R


,

[[C2]]⊗ R2 =





0 c1 c2

0 c3 c4

0 c5 c6

0 c7 c8

−c1 −c3 −c5 −c7 0
−c2 −c4 −c6 −c8 0

0


: cj ∈ R, j = 1, . . . , 8


,

[[C2]] =





0 d1

0 d2

0 d3

0 d4

0
0

−d1 −d2 −d3 −d4 0


: dj ∈ R, j = 1, . . . , 4


,

R2 =





0
0

0
0

0 δ1

0 δ2

−δ1 −δ2 0


: δ1, δ2 ∈ R


.

The induced complex structure on [[
∧2C2]]⊕ [[C2]]⊗R2⊕ [[C2]], which respects each summand,

is

J



0 0 b1 b2 c1 c2 d1

0 b2 −b1 c3 c4 d2

0 0 c5 c6 d3

0 c7 c8 d4

0 0 0
0 0

0


=



0 0 −b2 b1 −c3 −c4 −d2

0 b1 b2 c1 c2 d1

0 0 −c7 −c8 −d4

0 c5 c6 d3

0 0 0
0 0

0


where we have only written the upper triangle part for notational simplicity.

Thus, this example gives us several candidates of distributions carrying an almost complex
structure, as well as their orthogonal complements (with respect to the natural metric):{

D1 = [[
∧2Cm]]

D⊥1 = [[Cm]]⊗ Rr ⊕ [[Cm]]⊕ Rr
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{
D2 = [[Cm]]⊗ Rr

D⊥2 = [[
∧2Cm]]⊕ [[Cm]]⊕ Rr{

D3 = [[Cm]]

D⊥3 = [[
∧2Cm]]⊕ [[Cm]]⊗ Rr ⊕ Rr{

D4 = [[
∧2Cm]]⊕ [[Cm]]⊗ Rr

D⊥4 = [[Cm]]⊕ Rr{
D5 = [[

∧2Cm]]⊕ [[Cm]]
D⊥5 = [[Cm]]⊗ Rr ⊕ Rr{
D6 = [[Cm]]⊗ Rr ⊕ [[Cm]]

D⊥6 = [[
∧2Cm]]⊕ Rr{

D7 = [[
∧2Cm]]⊕ [[Cm]]⊗ Rr ⊕ [[Cm]]

D⊥7 = Rr

By computing the Lie brackets at the Lie algebra level, we see that the distributions D1, D4, D
⊥
6

and D⊥7 are involutive with their foliations corresponding to the �bers of the following four
�brations

SO(2m)
U(m) ↪→ SO(2m+r+1)

U(m)×SO(r)

↓
SO(2m+r+1)
SO(2m)×SO(r) ,

SO(2m+r)
U(m)×SO(r) ↪→ SO(2m+r+1)

U(m)×SO(r)

↓
S2m+r,

SO(2m)
U(m) × S

r ↪→ SO(2m+r+1)
U(m)×SO(r)

↓
SO(2m+r+1)

SO(2m)×SO(r+1) ,

Sr ↪→ SO(2m+r+1)
U(m)×SO(r)

↓
SO(2m+r+1)
U(m)×SO(r+1) ,

respectively.

4.1.2 Adapted Connection for Almost CR-Hermitian Manifolds

Before we proceed with the characterizations of integrability conditions, we need to give (at
least) a choice of connection on the relevant bundles of an almost CR hermitian manifold, or
equivalently, on a Spinc,r manifold carrying a partially pure spinor.

As we mentioned earlier, we can adapt a metric on an almost CR manifoldM in order to make
it an almost CR hermitian manifold. Let us �x one such metric and its Levi-Civita connection
1-form ω and covariant derivative ∇. The metric determines the orthogonal complement D⊥

and gives us a covariant derivative as follows

∇D⊥X : Γ(D⊥) −→ Γ(D⊥)
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W 7→ projD⊥(∇XW )

for X ∈ Γ(TM), whose local connection 1-forms and curvature 2-forms will be denoted by
θD
⊥

kl and ΘD⊥
kl respectively, 1 ≤ k < l ≤ r. The analogous connection on D is given by the

covariant derivative

∇DX : Γ(D) −→ Γ(D)

W 7→ projD(∇XW )

for X ∈ Γ(TM). However, we need to induce a connection on κ−1
D . Thus, we consider the

hermitian connection for (D, 〈, 〉 , J) de�ned by

∇̃DXY = ∇DXY +
1

2
(∇DXJ)(JY ).

so that
∇̃DJ = 0.

The conection ∇̃D induces a covariant derivative ∇̃κ
−1
D on the anticanonical bundle κ−1

D of D,
whose local connection 1-form will be denoted by iÃD. More precisely, if (e1, . . . , en) is a local
orthonormal frame of TM such that

D = span(e1, . . . , e2m),

e2s = J(e2s−1),

D⊥ = span(e2m+1, . . . , e2m+r),

for 1 ≤ s ≤ m and 1 ≤ k < l ≤ r, and the matrix of connection 1-forms of ∇̃D is
0 ω̃1,2 ω̃1,2m−1 ω̃1,2m

−ω̃12 0 −ω̃1,2m ω̃1,2m−1

. . .
−ω̃1,2m−1 ω̃1,2m 0 ω̃2m−1,2m

−ω̃1,2m −ω̃1,2m−1 −ω̃2m−1,2m 0

 ,

the induced connection on κ−1
D =

∧m
D0,1 is

iÃD = −i[ω̃1,2 + · · ·+ ω̃2m−1,2m].

By using ∇, ∇D⊥ and the unitary connection iÃD, we can de�ne a connection ∇S on the glo-

bally de�ned twisted spinor vector bundle S =
[
κ
−1/2
D ⊗ Σ(D⊥)

]
⊗∆(M) which is compatible

with Cli�ord multiplication.

4.1.3 Spinorial Characterization of Integrability

De�nition 4.1.3. Let M be a smooth 2m + r dimensional smooth manifold. An almost CR
structure is called a CR structure if for every X,Y ∈ Γ(D)

• [X,Y ]− [J(X), J(Y )] ∈ Γ(D),

• [J(X), Y ] + [X, J(Y )] ∈ Γ(D),

• J([X,Y ]− [J(X), J(Y )]) = [J(X), Y ] + [X, J(Y )].
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Example. By computing the relevant combinations of brackets one can check that the distri-
butions D1, D4, D5 and D7 on Gm,1,r are CR-integrable.

Theorem 4.1.2. Let M be an oriented n-dimensional Riemannian manifold. The following
are equivalent:

(i) M is endowed with a CR hermitian structure of codimension r.

(ii) M admits a twisted Spinc,r(n) structure and a twisted spinor bundle S carrying a partially
pure spinor �eld φ ∈ Γ(S) which satis�es

(X − iJφ(X)) · ∇S(Y−iJφ(Y ))φ = (Y − iJφ(Y )) · ∇S(X−iJφ(X))φ,

for every X,Y ∈ Γ(V φ), where ∇S is the covariant drivative described in subsection
4.1.2.

Proof. First, let us assume (i), i.e. M admits a CR hermitian structure. By Theorem 4.1.1,

M admits a twisted spinor vector bundle S =
[
κ
−1/2
D ⊗ Σ(D⊥)

]
⊗∆(M) carrying a partially

pure spinor �eld φ ∈ Γ(S) such that V φ = D, Jφ = J and

(X − iJX) · φ = 0

for every X ∈ Γ(D). By di�erentiating this identity

(∇YX − i∇Y (JX)) · φ+ (X − iJX) · ∇SY φ = 0, (4.1)

and similarly
(∇XY − i∇X(JY )) · φ+ (Y − iJY ) · ∇SXφ = 0, (4.2)

By subtracting (4.1) from (4.2)

([X,Y ]− i∇X(JY ) + i∇Y (JX)) · φ = (X − iJX) · ∇SY φ− (Y − iJY ) · ∇SXφ, (4.3)

By substituting X with JX, and Y with JY in (4.3)

([JX, JY ] + i∇JX(Y )− i∇JY (X)) ·φ = − (X − iJX) ·∇S−iJY φ+ (Y − iJY ) ·∇S−iJXφ, (4.4)

Subtract (4.4) from (4.3)

([X,Y ]− [JX, JY ]− i([X, JY ] + [JX, Y ])) · φ
= (X − iJX) · ∇SY−iJY φ− (Y − iJY ) · ∇SX−iJXφ. (4.5)

Since [X,Y ]− [JX, JY ] ∈ Γ(D)

([X,Y ]− [JX, JY ]) · φ = iJ([X,Y ]− [JX, JY ]) · φ
= i([J(X), Y ] + [X, J(Y )]) · φ,

so that the left hand side of (4.5) vanishes.

Conversely, let us assume (ii). Then, the subbundle V φ together with its endomorphism Jφ

provide an almost CR hermitian structure on M . By considering the equation

(X − iJφX) · φ = 0
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for all X ∈ V φ, and performing the same calculations as before, we arrive at(
[X,Y ]− [JφX, JφY ]− i([X, JφY ] + [JφX,Y ])

)
· φ

=
(
X − iJφX

)
· ∇SY−iJφY φ−

(
Y − iJφY

)
· ∇SX−iJφXφ

= 0,

i.e.
([X,Y ]− [JφX, JφY ]) · φ = i([X, JφY ] + [JφX,Y ]) · φ,

which implies

• [X,Y ]− [Jφ(X), Jφ(Y )] ∈ Γ(V φ),

• [Jφ(X), Y ] + [X, Jφ(Y )] ∈ Γ(V φ),

• Jφ([X,Y ]− [Jφ(X), Jφ(Y )]) = [Jφ(X), Y ] + [X, Jφ(Y )],

since φ is a partially pure spinor. 2

4.1.4 D-parallel Partially Pure Spinor

The following theorem is motivated by the condition

∇SXφ = 0

for all X ∈ Γ(D), i.e. φ being D-parallel.

Theorem 4.1.3. Let M be an oriented n-dimensional Riemannian manifold. The following
are equivalent:

(i) M admits a twisted Spinc,r(n) structure and a twisted spinor bundle S carrying a partially
pure spinor �eld φ ∈ Γ(S) satisfying

(Y − iJφ(Y )) · ∇SXφ = 0

for every X,Y ∈ Γ(V φ), where ∇S is the covariant derivative described in subsection
4.1.2.

(ii) M is endowed with an almost CR hermitian structure of codimension r, where D and
J are D-parallel. (In particular, J restricts to a Kähler structure on each leaf of the
integral foliation of D, and D⊥ is D-parallel.)

Proof. Let us assume (i) and D = V φ, D⊥ = (V φ)⊥, J = Jφ. Since

(Y − iJφY ) · φ = 0

for every Y ∈ Γ(V φ), if X ∈ Γ(V φ)

0 = ∇SX((Y − iJφY ) · φ)

= (∇XY − i∇X(JφY )) · φ+ (Y − iJφY ) · ∇SXφ
= (∇XY − i∇X(JφY )) · φ,
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which means

∇XY ∈ D,

∇X(JY ) = J(∇XY ).

i.e. D and J are D-parallel so that the leaves of this totally geodesic foliation are Kähler
manifolds. If u ∈ Γ(D⊥)

〈Y, u〉 = 0

for every Y ∈ Γ(D), so that for every X ∈ Γ(D)

0 = X 〈Y, u〉
= 〈Y,∇Xu〉

since D is D-parallel, thus showing that ∇Xu ∈ Γ(D⊥).

Conversely, if M admits an almost CR hermitian structure. By Theorem 4.1.1, M admits a
twisted Spin structure and a twisted spinor bundle S endowed with a connection ∇S , carrying
a partially pure spinor �eld φ ∈ Γ(S) such that V φ = D, Jφ = J and

(Y − iJY ) · φ = 0

for every Y ∈ Γ(D). Thus, for X ∈ Γ(D),

0 = ∇X((Y − iJY ) · φ)

= (∇XY − iJ(∇XY )) · φ+ (Y − iJ(Y ) · ∇SXφ
= (Y − iJ(Y )) · ∇SXφ

since J is D-parallel. As before, D⊥ is D-parallel. 2

Example 4.1.2. The space Gm,1,r admits the CR distribution D1 satisfying the hypotheses of
Theorem 4.1.3, as can be seen from the �bration:

SO(2m)
U(m) ↪→ SO(2m+r+1)

U(m)×SO(r)

↓
SO(2m+r+1)
SO(2m)×SO(r) .

When the partially pure spinor is parallel, we can actually say more about the foliation leaves'
Ricci curvature.

Theorem 4.1.4. Let M be a Spinc,r n-dimensional Riemannian manifold such that its twisted
spinor bundle S admits a partially pure spinor �eld φ ∈ Γ(S) satisfying

∇SXφ = 0

for every X ∈ Γ(V φ), where ∇S is the covariant derivative described in subsection 4.1.2. Then

1. The Ricci tensor of V φ satis�es

RicV
φ

=
[
projV φ ◦ d̂A|V φ

]
◦ Jφ, (4.6)

where d̂A denotes the skew-symmetric endomorphism determined by dA (the curvature
of the connection 1-form on the auxiliary principal U(1) bundle) and metric dualization.
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2. The scalar curvature is given by

RV φ = tr
([

projV φ ◦ d̂A|V φ
]
◦ Jφ

)
.

3. If the connection A on the auxiliary bundle L is �at along an integral leaf of V φ, then
the leaf is Calabi-Yau.

Remark. The identity (4.6) tells us that projV φ ◦ d̂A|V φ , restricted to the leaves of the cor-
responding foliation, equals their Ricci form.

Proof. Since φ is partially pure, n = 2m+ r where rank(V φ) = 2m and rank((V φ)⊥) = r. Let
(e1, . . . , en) and (f1, . . . fr) be local orthonormal frames of TM and F respectively, such that

V φ = span(e1, . . . , e2m),

e2j = Jφ(e2j−1),

(V φ)⊥ = span(e2m+1, . . . , e2m+r),

ηφkl = e2m+k ∧ e2m+l,

for 1 ≤ j ≤ m and 1 ≤ k < l ≤ r. If X ∈ Γ(V φ) and 1 ≤ α ≤ 2m then, by Theorem 4.1.3,
[X, eα] ∈ Γ(V φ) and

RM (X, eα)ei ∈ Γ(V φ) if 1 ≤ i ≤ 2m,

RM (X, eα)ei ∈ Γ((V φ)⊥) if 2m+ 1 ≤ i ≤ 2m+ r.

so that 〈
RM (X, eα)ei, ej

〉
= 0 if 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ 2m+ r,〈

RM (X, eα)ei, ej
〉

= 0 if 2m+ 1 ≤ i ≤ 2m+ r, 1 ≤ j ≤ 2m.

For φ,

0 = Rθ,A(X, eα)φ

=
1

2

∑
1≤i<j≤n

〈
RM (X, eα)ei, ej

〉
eiej · φ

+
1

2

∑
1≤k<l≤r

Θkl(X, eα)κr∗(fkfl) · φ+
i

2
dA(X, eα)φ

=
1

2

∑
1≤i<j≤2m

〈
RM (X, eα)ei, ej

〉
eiej · φ

+
1

2

∑
1≤k<l≤r

〈
RM (X, eα)e2m+k, e2m+l

〉
e2m+ke2m+l · φ

+
1

2

∑
1≤k<l≤r

Θkl(X, eα)κr∗(fkfl) · φ+
i

2
dA(X, eα)φ

=
1

2

∑
1≤i<j≤2m

〈
RM (X, eα)ei, ej

〉
eiej · φ

+
1

2

∑
1≤k<l≤r

〈
RM (X, eα)e2m+k, e2m+l

〉
κr∗(fkfl) · φ
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+
1

2

∑
1≤k<l≤r

Θkl(X, eα)κr∗(fkfl) · φ+
i

2
dA(X, eα)φ,

where Θkl denote the local curvature 2-forms of the auxiliary connection on PSO(r). Multiply
by eα and sum over α, 1 ≤ α ≤ 2m,

0 =

2m∑
α=1

∑
1≤i<j≤2m

〈
RM (X, eα)ei, ej

〉
eαeiej · φ

+
2m∑
α=1

∑
1≤k<l≤r

〈
RM (X, eα)e2m+k, e2m+l

〉
eα · κr∗(fkfl) · φ

+

2m∑
α=1

∑
1≤k<l≤r

Θkl(X, eα)eα · κr∗(fkfl) · φ+ i

2m∑
α=1

dA(X, eα)eα · φ

= −RicV
φ
(X) · φ+

2m∑
α=1

∑
1≤k<l≤r

〈
RM (X, eα)e2m+k, e2m+l

〉
eα · κr∗(fkfl) · φ

+

2m∑
α=1

∑
1≤k<l≤r

Θkl(X, eα)eα · κr∗(fkfl) · φ+ i

2m∑
α=1

dA(X, eα)eα · φ.

By taking the real part of the hermitian inner product with ei · φ, 1 ≤ i ≤ 2m,

Re
〈

RicV
φ
(ej) · φ, ei · φ

〉
=

〈
RicV

φ
(ej), ei

〉
|φ|2

= RicV
φ

ij ,

since |φ| = 1, where now 1 ≤ j ≤ 2m. On the other hand,

Re
〈

RicV
φ
(ej) · φ, ei · φ

〉
= Re

〈
2m∑
α=1

∑
1≤k<l≤r

〈
RM (ej , eα)e2m+k, e2m+l

〉
eα · κr∗(fkfl) · φ, ei · φ

〉

+Re

〈
2m∑
α=1

∑
1≤k<l≤r

Θkl(ej , eα)eα · κr∗(fkfl) · φ, ei · φ

〉

+Re

〈
i

2m∑
α=1

dA(ej , eα)eα · φ, ei · φ

〉

=
2m∑
α=1

dA(ej , eα)Re 〈ieα · φ, ei · φ〉

= −
2m∑
α=1

dA(ej , eα)Re
〈
Jφ(eα) · φ, ei · φ

〉
=

2m∑
α=1

dA(ej , eα)
〈
Jφ(eα), ei

〉
|φ|2

=

2m∑
α=1

dA(ej , eα)Jφiα.
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Thus
RicV

φ
=
[
projV φ ◦ d̂A|V φ

]
◦ Jφ,

where d̂A denotes the skew-symmetric endomorphism determined by dA and metric dualiza-
tion. 2

Remark. On each Kähler leaf, the spinor φ restricts to a parallel pure Spinc spinor �eld.

4.1.5 D⊥-parallel Partially Pure Spinor

The following theorem is motivated by the condition

∇Suφ = λu · φ

for all u ∈ Γ(D⊥), λ ∈ R, i.e. φ being a real D⊥-Killing spinor.

Theorem 4.1.5. Let M be an oriented n-dimensional Riemannian manifold. The following
are equivalent:

(i) M admits a twisted Spinc,r(n) structure and a twisted spinor bundle S carrying a partially
pure spinor �eld φ ∈ Γ(S) satisfying

(Y − iJφ(Y )) · ∇Suφ = 0

for every Y ∈ Γ(V φ) and u ∈ Γ((V φ)⊥), where ∇S is the covariant derivative described
in subsection 4.1.2.

(ii) M is endowed with an almost CR hermitian structure of codimension r, where D and J
are D⊥-parallel. (In particular, the integral foliation of D⊥ is totally geodesic.)

Proof. Let us assume (i). For X ∈ Γ(V φ),

X · φ = iJφX · φ

Di�erentiate with respect to u ∈ Γ((V φ)⊥)

∇uX · φ+X · ∇Suφ = i∇u(JφX) · φ+ iJφX · ∇Suφ,

so that
∇uX · φ = i∇u(JφX) · φ.

Since φ is a partially pure spinor

∇uX ∈ V φ

∇u(JφX) = Jφ(∇uX),

i.e. D and J are D⊥ parallel, and so is D⊥.

Conversely, ifM admits a CR hermitian structure, by Theorem 4.1.1,M admits a twisted Spin
structure, a twisted spinor bundle S endowed with a connection ∇S as described in subsection
4.1.2, and a partially pure spinor �eld φ ∈ Γ(S) such that V φ = D, Jφ = J and

(X − iJX) · φ = 0
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for every X ∈ Γ(D). Let u ∈ Γ(D⊥) and di�erentiate

X · φ = iJX · φ

so that
∇uX · φ+X · ∇Suφ = i∇u(JX) · φ+ iJX · ∇Suφ.

Since J is D⊥-parallel
∇u(JX) = J(∇uX),

and
X · ∇Suφ = iJX · ∇Suφ.

i.e.
(X − iJX) · ∇Suφ = 0.

2

Example 4.1.3. The almost CR distribution D7 on Gm,1,r gives the following example for
Theorem 4.1.5

Sr ↪→ SO(2m+r+1)
U(m)×SO(r)

↓
SO(2m+r+1)
U(m)×SO(r+1) ,

Remark. A generalized D⊥-Killing partially pure spinor �eld φ is a spinor such that

∇Suφ = E(u) · φ,

where E is a symmetric endomorphism of D⊥. Such a spinor also satis�es the hypotheses of
Theorem 4.1.5.

From Theorems 4.1.3 and 4.1.5 we obtain the following.

Corollary 4.1.1. Let M be an oriented n-dimensional Riemannian manifold. The following
are equivalent:

(i) M is locally the Riemannian product of a Kähler manifold and a Riemannian manifold.

(ii) M admits a twisted Spinc,r(n) structure and a twisted spinor bundle S carrying a partially
pure spinor �eld φ ∈ Γ(S) satisfying

(Y − iJφ(Y )) · ∇SZφ = 0

for every Y ∈ Γ(V φ) and Z ∈ Γ(TM), where ∇S is the covariant derivative described in
subsection 4.1.2.

2

In the case of a real D⊥-Killing partially pure spinor, we can say a little more about the
foliation leaves' curvature.
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Theorem 4.1.6. Let M be a Spinc,r n-dimensional Riemannian manifold such that its twisted
spinor bundle S admits a partially pure spinor �eld φ ∈ Γ(S) satisfying

∇Suφ = µu · φ

for every u ∈ Γ((V φ)⊥), where ∇S is the connection described in subsection 4.1.2 and µ ∈ R,
i.e. φ is real Killing in the directions of (V φ)⊥. Then

• The Ricci tensor decomposes as follows

Ric(V φ)⊥ = 4(r − 1)µ2Id(V φ)⊥ +
∑

1≤k<l≤r

[
proj(V φ)⊥ ◦ Θ̂kl|(V φ)⊥

]
◦ η̂φkl,

where Θkl denote the local curvature 2-forms corresponding to the auxiliary connection
on the SO(r) principal bundle.

• The scalar curvature of each leaf tangent to (V φ)⊥ is given by

R(V φ)⊥ = 4r(r − 1)µ2 +
∑

1≤k<l≤r
tr
([

proj(V φ)⊥ ◦ Θ̂kl|(V φ)⊥

]
◦ η̂φkl

)
.

• If ∑
1≤k<l≤r

[
proj(V φ)⊥ ◦ Θ̂kl|(V φ)⊥

]
◦ η̂φkl = λId(V φ)⊥

along a leaf of the foliation tangent to (V φ)⊥ for some constant λ ∈ R, then the leaf is
Einstein.

Proof. Since φ is partially pure, n = 2m+ r where rank(V φ) = 2m and rank((V φ)⊥) = r. Let
(e1, . . . , en) and (f1, . . . fr) be local orthonormal frames of TM and F respectively, such that

V φ = span(e1, . . . , e2m),

e2j = Jφ(e2j−1),

(V φ)⊥ = span(e2m+1, . . . , e2m+r),

ηφkl = e2m+k ∧ e2m+l,

for 1 ≤ j ≤ m and 1 ≤ k < l ≤ r. First, if u, v ∈ Γ((V φ)⊥),

Rθ,A(u, v)φ = µ2(v · u− u · v) · φ

Now, for 2m+ 1 ≤ i, j ≤ 2m+ r,

2m+r∑
i=2m+1

ei ·Rθ,A(ej , ei)(φ) = −2(r − 1)µ2ej · φ.

By taking the real part of the hermitian product with et · φ we get

Re
[
−2(r − 1)µ2 〈ej · φ, et · φ〉

]
= −2(r − 1)µ2δjt.

If u, v ∈ Γ((V φ)⊥) then, by Theorem 4.1.5, [u, v] ∈ Γ((V φ)⊥), and

RM (u, v)ei ∈ Γ(V φ) if 1 ≤ i ≤ 2m,
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RM (u, v)ei ∈ Γ((V φ)⊥) if 2m+ 1 ≤ i ≤ 2m+ r.

so that 〈
RM (u, v)ei, ej

〉
= 0 if 1 ≤ i ≤ 2m, 2m+ 1 ≤ j ≤ 2m+ r,〈

RM (u, v)ei, ej
〉

= 0 if 2m+ 1 ≤ i ≤ 2m+ r, 1 ≤ j ≤ 2m.

Now, if 1 ≤ α ≤ r,

Rθ,A(u, e2m+α)φ =
1

2

∑
1≤i<j≤n

〈
RM (u, e2m+α)ei, ej

〉
eiej · φ

+
1

2

∑
1≤k<l≤r

Θkl(u, e2m+α)κr∗(fkfl) · φ+
i

2
dA(u, e2m+α)φ

=
1

2

∑
1≤i<j≤2m

〈
RM (u, e2m+α)ei, ej

〉
eiej · φ

+
1

2

∑
1≤k<l≤r

〈
RM (u, e2m+α)e2m+k, e2m+l

〉
e2m+ke2m+l · φ

+
1

2

∑
1≤k<l≤r

Θkl(u, e2m+α)κr∗(fkfl) · φ+
i

2
dA(u, e2m+α)φ,

where dA denotes the curvature 2-form of the auxiliary connection on the U(1)-principal
bundle. Multiply by e2m+α and sum over α, 1 ≤ α ≤ r,

r∑
α=1

e2m+α ·Rθ,A(u, e2m+α)φ

=

r∑
α=1

∑
1≤i<j≤2m

〈
RM (u, e2m+α)ei, ej

〉
e2m+α · eiej · φ

+

r∑
α=1

∑
1≤k<l≤r

〈
RM (u, e2m+α)e2m+k, e2m+l

〉
e2m+α · e2m+ke2m+l · φ

+
r∑

α=1

∑
1≤k<l≤r

Θkl(u, e2m+α)e2m+α · κr∗(fkfl) · φ

+i

r∑
α=1

dA(u, e2m+α)e2m+α · φ.

Furthermore,

Re

〈
r∑

α=1

e2m+α ·Rθ,A(e2m+γ , e2m+α)(φ), e2m+β · φ

〉

= Re

〈
r∑

α=1

∑
1≤i<j≤2m

〈
RM (e2m+γ , e2m+α)ei, ej

〉
e2m+α · eiej · φ, e2m+β · φ

〉

+Re

〈
r∑

α=1

∑
1≤k<l≤r

〈
RM (e2m+γ , e2m+α)e2m+k, e2m+l

〉
e2m+α · e2m+ke2m+l · φ, e2m+β · φ

〉
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+Re

〈
r∑

α=1

∑
1≤k<l≤r

Θkl(e2m+γ , e2m+α)e2m+α · κr∗(fkfl) · φ, e2m+β · φ

〉

+Re

〈
i

r∑
α=1

dA(e2m+γ , e2m+α)e2m+α · φ, e2m+β · φ

〉
= −

〈
Ric(V φ)⊥(e2m+α), e2m+β

〉
|φ|2

+
r∑

α=1

∑
1≤k<l≤r

Θkl(e2m+γ , e2m+α)Re 〈e2m+α · κr∗(fkfl) · φ, e2m+β · φ〉

= −Ric
(V φ)⊥

2m+β,2m+γ +

r∑
α=1

∑
1≤k<l≤r

Θkl(e2m+γ , e2m+α)ηφkl(e2m+α, e2m+β),

i.e.
Ric(V φ)⊥ = 4(r − 1)µ2Id(V φ)⊥ +

∑
1≤k<l≤r

[
proj(V φ)⊥ ◦ Θ̂kl|(V φ)⊥

]
◦ η̂φkl.

2

4.1.6 CR Foliation with Equidistant Leaves

Theorem 4.1.7. Let M be a Spinc,r Riemannian manifold such that its twisted spinor bundle
S admits a partially pure spinor �eld φ ∈ Γ(S). Let V φ denote the almost-CR distribution and
(V φ)⊥ its orthogonal distribution. If

(X − iJφX) · ∇Suψ = 0,

(X − iJφX) · ∇SXψ = 0,

for all X ∈ Γ(V φ) and u ∈ Γ((V φ)⊥), where ∇S the covariant derivative described in subsection
4.1.2, then

• V φ, Jφ and (V φ)⊥ are (V φ)⊥-parallel;

• the totally geodesic foliation tangent to (V φ)⊥ has equidistant leaves.

Furthermore, if the complex structure J descends to the space of leaves N at regular points,
such a complex structure is nearly-Kähler structure.

Proof. The �rst statement follows from Theorem 4.1.5. Recall the condition for a foliation to
have equidistant leaves [7, Proposition 7]〈

∇Xu, Y
〉

+
〈
X,∇Y u

〉
= 0, (4.7)

for every X,Y ∈ Γ(D) and u ∈ Γ(D⊥). Since
〈
u, Y

〉
=
〈
u,X

〉
= 0,〈

∇Xu, Y
〉

+
〈
u,∇XY

〉
= 0,〈

∇Y u,X
〉

+
〈
u,∇YX

〉
= 0,

so that (4.7) becomes 〈
∇XY +∇YX,u

〉
= 0.
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We must prove ∇XY +∇YX ∈ Γ(D). Taking covariant derivative with respect to Y on

X · ψ = iJ(X) · ψ,

and with respect to X on

Y · ψ = iJ(Y ) · ψ.

we get

∇YX · ψ +X · ∇SY ψ = i∇Y (J(X)) · ψ + iJ(X) · ∇SY ψ,
∇XY · ψ + Y · ∇SXψ = i∇X(J(Y )) · ψ + iJ(Y ) · ∇SXψ.

Rearranging terms

∇YX · ψ + (X − iJ(X)) · ∇SY ψ = i∇Y (J(X)) · ψ,
∇XY · ψ + (Y − iJ(Y )) · ∇SXψ = i∇X(J(Y )) · ψ.

Adding up the last two equations and using

0 = ((X + Y )− iJ(X + Y )) · ∇SX+Y ψ

= (X − iJ(X)) · ∇Xψ + (Y − iJ(Y )) · ∇SY ψ
+(X − iJ(X)) · ∇Y ψ + (Y − iJ(Y )) · ∇SXψ

= (X − iJ(X)) · ∇Y ψ + (Y − iJ(Y )) · ∇SXψ,

we get
(∇YX +∇XY ) · ψ = i(∇Y (J(X)) +∇X(J(Y ))) · ψ.

This means that ∇YX +∇XY ∈ Γ(D), i.e. the foliation has equidistant leaves. Furthermore,
we have

∇Y (J(X)) +∇X(J(Y )) = J(∇YX +∇XY ).

By setting X = Y ,
∇X(J(X)) = J(∇XX),

i.e.
(∇XJ)(X) = 0.

Since the leaves of the foliation are equidistant, by [7, Lemma 19] the leaf space N inherits
a Riemannian metric at regular points and the quotient map π is a Riemannian submersion.
The Levi-Civita connection at a regular point of N is given by

∇∗xy = π∗(∇XY )

where π∗(X) = x and π∗(Y ) = y.

Finally, if we also have that J descends to a complex structure J on N in the form J (π∗(X)) =
π∗(JX) and

∇∗x(J (x))− J (∇∗xx) = π∗∇X(J(X))− J (π∗(∇XX))

= π∗∇X(J(X))− π∗(J(∇XX))

= π∗(∇X(J(X))− J(∇XX))

= π∗(0)

= 0.

i.e. J is a nearly-Kähler structure at regular points of N . 2
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