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Abstract

It is the aim of this paper to give the first steps to establish a gen-
eralization of functional analysis for dialgebras. In particular we have
described families of dialgebras each endowed with a norm and/or an in-
volution. Such an extention could be very desirable, since as we can see
in this paper it could shed light on the manner in which one can construct
a lot of families of dialgebras with a bar-unit.

1 Introduction
Lately the study of algebraic and geometric structures on dialgebras have re-
ceived much attention. The introduction and the first systematic investigation
of the dialgebras was made by Loday in his related work with Leibniz alge-
bras. Howewer, to date the dialgebras have been studied outside the scope of
functional analysis.
As it is well known the functional analysis becomes the study of (infinite-

dimensional) vector space with some kind of metric or other structure, including
ring structures (Banach Algebras and C∗−algebra for example). Appropriate
generalizations of adjoint element, ideal and unit also belong to this area.
Throughout this paper, we defined an analogous of some of the basic struc-

tures of the functional analysis on dialgebras and we show that even in its ele-
mentary aspects, some of the known concepts and results acquire in dialgebras
a diferent aspect.
We recall some definitions due to Loday
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Definition 1 A dialgebra is a vector space V together with two bilinear opera-
tors, `, a, satisfying the following relations

x a (y a z) = x a (y ` z) ,
(x ` y) a z = x ` (y a z) ,
(x a y) ` z = (x ` y) ` z,

for all x, y and z of V . These operators are called respectively, right and left
products.

It is well known that if a dialgebra is given then it gives rise to a Leibniz
algebra which is obtained by defining the bracket as

[x, y] = x a y − y ` x

see [4] for more detail. The Leibniz algebras are a generalization of Lie algebras,
for which the antisymmetry condition of the bracket is dropped and only the
Jacobi identity is retained.
At this point it seems proper to observe that the study of “deformations”

of a Leibniz algebra structure has been considered in [2] where the notion of
R−matrices and Yang-Baxter equations on Liebniz algebras were introduced
and studied and was the initial motivation for the present paper.
We shall express that perhaps this paper establishes more problems that

solutions, howover we expect that apart from it,s intrinsic interest, these con-
structions can be relevant in mathematical physics (in particular for the con-
struction of R-matrices on Liebniz algebras) and that in this context they lead
to interesting generalizetions.
This paper is dedicated to I.M.Gelfand in occasion of his 90 th birthday.

2 Normed and Banach Dialgebras
Let us begin by a definition

Definition 2 A normed dialgebra is a dialgebra (U ,`,a) over the field C to-
gether with a norm x→ kxk, such that,

kx ` yk ≤ kxk kyk , kx a yk ≤ kxk kyk ∀ x, y ∈ U (1)

Note first that from (1) we conclude the continuity of these products with
respect to both arguments. We recall that a bar-unit of a normed dialgebra U ,
is an element e ∈ U , such that e ` x = x = x a e. From (1) it follows that if
U 6= {θ} and e is a bar-unit in U then kek ≥ 1.
Just as a normed algebra is defined by means of only one inequality that

compares the norm of the product of two elements with the product of the
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norms of these, a normed dialgebra may be equivalently defined as a dialgebra
U for which kα(x ` y) + (1− α) (x a y)k ≤ kxk kyk for any α ∈ [0, 1] and all
x, y ∈ U .
The following is an example of an important type of Banach dialgebra with

which we shall be more concerned. Next we associate to each Hilbert space a
structure of normed dialgebra.

Example 3 Let H be a Hilbert space and e ∈ H with kek = 1. We define the
following two bilinear operators

a ` b = ha, ei b, a a b = hb, ei a,
it is clear that in general a ` b 6= a a b. In fact, if a and b are linearly
independent vectors and moreover a, b /∈ {e}⊥ we have a ` b 6= a a b. Then
(H,`,a) is a normed dialgebra. First, we check that (H,`,a) is a dialgebra.
Let a, b and c be elements of H

a a (b a c) = a a (hc, ei b) = hhc, ei b, ei a = hc, ei hb, ei a,
on the other hand

a a (b ` c) = a a (hb, ei c) = hhb, ei c, ei a = hb, ei hc, ei a,
from the two last equations it now follows that a a (b a c) = a a (b ` c). Next
we must prove that (a ` b) a c = a ` (b a c)

(a ` b) a c = (ha, ei b) a c = hc, ei ha, ei b
and

a ` (b a c) = a ` (hc, ei b) = ha, ei hc, ei b
then, as was claimed, the equality holds. Finally we have

(a a b) ` c = (hb, ei a) ` c = hhb, ei a, ei c = hb, ei ha, ei c,
also we have

(a ` b) ` c = (ha, ei b) ` c = hha, ei b, ei c = ha, ei hb, ei c,
so (a a b) ` c = (a ` b) ` c and we see that (H,`,a) is a dialgebra. Now,
because of the Cauchy-Schwartz inequality we have
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ka ` bk = kha, ei bk = |ha, ei| kbk ≤ kak kbk ,
and

ka a bk = khb, ei ak = |hb, ei| kak ≤ kbk kak ,
that is H is a normed dialgebra. Notice that e is a bar-unit of (H,`,a). From
now on we will denote this normed dialgebra by H (e).
In many areas of classic mathematics, an “algebra” is understood to have a

unit. This is not so in functional analysis, where examples of algebras include
space of continous functions vanishing at infinity such as C0 (R), group algebras
such as L1 (R) and various other normed algebras without units, howover there
exist a method for “adding units”.
In our case, we suspect that in general the study of normed dialgebras does

not reduce to study normed dialgebras with bar-unit. In fact, let (U ,`,a, k.k) a
normed dialgebra, and UI = U ×C. In UI we define the following two operators:

(x,α) ` (y,β) = (αy + βx+ (x ` y) ,αβ) (2)

and

(x,α) a (y,β) = (αy + βx+ (x a y) ,αβ) (3)

Now define the usual norm in UI , i.e.

k(x,α)k = kxk+ |α| , (4)

it is clear that (θ, 1) will be a bar-unit of UI . We wish to show that UI is a
normed dialgebra, howewer we have.
Calculation 1

(x,α) a ((y,β) a (z, γ)) = (x,α) a (βz + γy + (y a z) ,βγ) (5)

= (α (βz + γy + (y a z)) + βγx+ (x a (βz + γy + (y a z))) ,αβγ)
= = (αβz + αγy + α (y a z) + βγx+ β (x a z) + γ (x a y) +

(x a (y a z)) ,αβγ),
Calculation 2

(x,α) a ((y,β) ` (z, γ)) = (x,α) a (βz + γy + (y ` z) ,βγ) (6)

= (α (βz + γy + (y ` z)) + βγx+ (x a (βz + γy + (y ` z))) ,αβγ)
= (αβz + αγy + α (y ` z) + βγx+ β (x a z) + γ (x a y) +

(x a (y ` z)) ,αβγ),
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thus

(x,α) a ((y,β) a (z, γ)) = (x,α) a ((y,β) ` (z, γ))

if, and only if

(y a z) = (y ` z)

hence, we have arrived to the classic associative case.
Alternatively we try to introduce operators of circle type ¯ and } in U by

defining

x¯ y = x+ y − (x ` y) ,

and

x} y = x+ y − (x a y) ,

Due to the following two results

θ ¯ x = θ + x− (θ ` x) = x,
θ } x = θ + x− (θ a x) = x,

one could hope that (U ,},¯) was a normed dialgebras, but again the answer
in negative in general. Since,
Calculation 1

x} (y } z) = x} (y + z − (y a z)) (7)

= x+ y + z − (y a z)− (x a (y + z − (y a z)))
= x+ y + z − (y a z)− (x a y)− (x a z)

+ (x a (y a z)) ,

and also we have
Calculation 2

x} (y ¯ z) = x} (y + z − (y ` z)) (8)

= x+ y + z − (y ` z)− (x a (y + z − (y ` z)))
= x+ y + z − (y ` z)− (x a y)− (x a z)

+ (x a (y ` z)) ,
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then, from (7) and (8) we conclude that the circle type oprators don,t in general
generate normed dialgebras with a bar-unit unless y a z = y ` z.
Thus, we postpone a general discussion of “adding bar-unit” for another

time. Howover, we shall find throughout that the presence of a bar-identity in
a dialgebra makes the theory simpler and more interesting than is possible in
its absence.

3 Inverse element in normed dialgebras
The definition of inverse element is very important in many areas of mathemat-
ics. In this section we formulate what we wish to call the inverse for an element
in a normed dialgebra. We will prove some results related with this concept.

Definition 4 An element x in a dialgebra (U ,`,a) is said to be (`)−regular
((a)− regular) with respect to a bar-unit e provided there exists y ∈ U , such
that x ` y = (e− x) + (x ` e) (y a x = (e− x) + (e a x)) . The element y is
called a (`)-inverse ((a) -inverse) for x with respect to e. An element which is
both (`)−regular and (a)−regular with respect to e, is called regular if it has a
(`)−inverse that is also a (a)−inverse, both with respect to e.
It is interesting to note that if ` is equal to a then these definitions coincide

with the usual ones. On the other hand, any bar-unit of a dialgebra is a regular
element, whereas θ is neither (`)−regular or (a)−regular.
The next Theorem enables us to characterize the regular elements in H (e)

Theorem 5 Let x be an element of H (e) such that hx, ei 6= 0 then x is regular
Proof. According to Definition 4 we must prove that x is (`)−regular

and (a)−regular and that it has a (`)−inverse that is also a (a)−inverse with
respect to e. To begin, let y be a (`)−inverse of x then we must have

x ` y = hx, ei y = (e− x) + (x ` e) = (e− x) + hx, ei e
it follows that

y =
(e− x)
hx, ei + e.

As we will show this vector is also a (a)−inverse of x, in fact

y a x =

µ
(e− x)
hx, ei + e

¶
a x

= hx, ei
µ
(e− x)
hx, ei + e

¶
= (e− x) + hx, ei e
= (e− x) + (e a x) ,
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notice that in this example the inverse is unique. This proves the Theorem.
Now, we consider the dialgebra M2 (U) of matrices of 2 × 2 (see [2]). It

is easy to see that be = µ
e θ
θ e

¶
is a bar-unit of M2 (U) and if a and b are

(`)−regular elements of U then A =
µ
a θ
θ b

¶
is (`)−regular in M2 (U).

The spaceM2 (U) will play an outstanding role in the building of R−matrices
on dialgebras, for instance let Q =

µ
θ e
−e θ

¶
be the symplectic type matrix

of 2× 2, then we have the two well known embeddings M2 (U)→M3 (U), that
is

Q12 =

 θ e θ
−e θ θ
θ θ θ

 ; Q23 =

 θ θ θ
θ θ e
θ −e θ

 ,
it is now a simple computation to see that Q satisfies the nonassociative Artin
type identity

Q23 ` Q12 a Q23 = Q12 ` Q23 a Q12,

beginning from this equation we can define the quantum and classical Yang-
Baxter equations and finally R−matrices (see [2] for more detail).

Definition 6 A Banach dialgebra is a normed dialgebra (U ,`,a, k.k) such that
(U , k.k) is a Banach space.

Example 7 H (e) is a Banach dialgebra.

A fact of fundamental importance is the following: an incomplete normed
dialgebra can always be regarded as a dense subset in a Banach dialgebra.
The precise statement is as follows:

Theorem 8 Let (U ,`,a, k.k) be an incomplete normed dialgebra. There exists
a Banach dialgebra

³bU ,`,a, k.k´ and a normed sub- dialgebra bV dense in bU
such that bV and U are isometric.
Proof. As in the usual Cantor-Meray completion we consider the set bU of

all the equivalent classes of fundamental sequences of elements in U with the
following standard identifications:
(a)We consider two fundamental sequences of elements of U identical if and

only if, the norm of their difference tends towards 0.
(b) A sequence consisting of identical elements we identify with that element.

It is easy to show that each equivalent class will contain only one
sequence of this type. The set of all classes which contain a sequence
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consisting of identical elements, is the set bV.
(c) The norm of a fundamental sequence of elements in U is defined as the

limit of the norms of the elements in that sequence. The norm of a class
is the norm of any sequence in that class.

It is well known that bU is complete, bV is dense in bU and U is isometric tobV. To complete our proof it is sufficient to show that in bU can be defined two
operators ` and a such that bU is a normed dialgebra. With this purpose we
define

{xn} ` {yn} = {xn ` yn} ,
{xn} a {yn} = {xn a yn} ,

for any two Cauchy sequences {xn} and {yn}. This definition makes sense since
the sequences {xn ` yn} and {xn a yn} are Cauchy sequences. In fact there are
then two positive constants Cx and Cy such that for any n kxnk ≤ Cx and
kynk ≤ Cy, so we have

k(xn ` yn)− (xm ` ym)k ≤ k(xn ` yn)− (xm ` ym)± (xm ` yn)k
≤ k(xn − xm) ` yn + xm ` (yn − ym)k
≤ k(xn − xm) ` ynk+ kxm ` (yn − ym)k
≤ kxn − xmk kynk+ kxmk kyn − ymk
≤ kxn − xmkCy + Cx kyn − ymk

from this estimation it follows that {xn ` yn} is a fundamental sequence. This
argument also just works to see that the sequence {xn a yn} is fundamental.
The next step is to define these operators on bU . For bx and by elements of bU and
if {xn} ∈ bx and {yn} ∈ by we define

bx ` by = bz, bx a by = bw,
where z = {xn ` yn} and w = {xn a yn}, now, it is a simple matter to prove
that these operators become bU in a dialgebra. On the other hand

kbx ` byk = lim
n→∞ kxn ` ynk ≤ lim

n→∞ (kxnk kynk)

=
³
lim
n→∞ kxnk

´³
lim
n→∞ kynk

´
= kbxk kbyk ,

we further have that kbx a byk ≤ kbxk kbyk. This proves that bU is a Banach dialge-
bra and finishes the proof of the theorem.

Corollary 9 If e is a bar-unit for an incomplete normed dialgebra U , then be is
a bar-unit in it,s completion bU .
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Proposition 10 Let (U ,`,a, k.k) be a Banach dialgebra with a bar-unit e, we
define

(e− x)(`,n) = (e− x) ` (e− x) ` · · · ` (e− x) ,
(e− x)(a,n) = (e− x) a (e− x) a · · · a (e− x) , (9)

where in each product of the right side of (9) we have n factors. Then

°°°(e− x)(`,n)°°° ≤ k(e− x)kn , (10)

and

°°°(e− x)(a,n)°°° ≤ k(e− x)kn , (11)

hence, if for x ∈ U , holds that k(e− x)k < 1, the infinite series e + (e− x) +
(e− x)(`,2) + · · · + (e− x)(`,n) + · · · and e + (e− x) + (e− x)(a,2) + · · · +
(e− x)(a,n) + · · · converges absolutely to elements of U .
We have

Proposition 11 Let (U ,`,a, k.k) be a Banach dialgebra and e a bar-unit. If
k(e− x)k < 1, then x is (`)−regular and (a)−regular with respect to e. In this
case, it,s inverses are given by the series

y` = e+ (e− x) + (e− x)(`,2) + · · ·+ (e− x)(`,n) + · · · ,
ya = e+ (e− x) + (e− x)(a,2) + · · ·+ (e− x)(a,n) + · · · .

Proof. Since k(e− x)k < 1 and (U , k.k) is complete, the above series con-
verges to an elements of U . Have in mind the continuity of the two products of
U with respect to both arguments and properties of absolutely convergent series
in a Banach space

(e− (e− x)) `
³
e+ (e− x) + (e− x)(`,2) + · · ·+ (e− x)(`,n) + · · ·

´
= e+ (e− x)− ((e− x) ` e)
= (e− x) + (x ` e) ,

in the same way, we have

³
e+ (e− x) + (e− x)(a,2) + · · ·+ (e− x)(a,n) + · · ·

´
a (e− (e− x))
= 2e− x− e+ (e a x)
= (e− x) + (x a e) .
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Remark 12 The above series for the (`)−inverse and the (a)−inverse are
generalizations of the classical Neuman series.

Lemma 13 If x is regular with respect to a bar-unit e, then

x ` (e− x) = (e− x) a x (12)

Proof. Let x be regular, then there exists y, such that

x ` y = (e− x) + (x ` e) ,
and

y a x = (e− x) + (e a x) ,
from the first equation it follows that

(x ` y) a x = x ` (y a x) = ((e− x) + (x ` e)) a x, (13)

making use now of the second equation to replace (y a x) in (13) we obtain

x ` ((e− x) + (e a x)) = ((e− x) + (x ` e)) a x,
thus,

(x ` (e− x)) + (x ` (e a x)) = ((e− x) a x) + ((x ` e) a x) ,
the last term in both sides of this equation is the same. This proves the Lemma.

Proposition 14 If x satisfies (12) where e is a bar-unit, then for all n

(e− x)(`,n) = (e− x)(a,n) (14)

Proof. We proceed for induction. For n = 2 we have

(e− x)(`,2) = (e− x) ` (e− x)
= e ` (e− x)− x ` (e− x)
= (e− x)− (e− x) a x
= (e− x) a (e− x)
= (e− x)(a,2) ,
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we assume now that

(e− x)(`,k) = (e− x)(a,k) ,

where k ≥ 3 then

(e− x)(`,k+1) = (e− x)(`,k) ` (e− x)
= (e− x)(a,k) ` (e− x)
=

³
(e− x)(a,k−1) a (e− x)

´
` (e− x)

= (e− x)(a,k−1) a ((e− x) ` (e− x))
= (e− x)(a,k−1) a ((e− x) a (e− x))
=

³
(e− x)(a,k−1) a (e− x)

´
a (e− x)

= (e− x)(a,k) .

Theorem 15 If x satisfies (12), where e is a bar-unit and ke− xk < 1, then x
is regular with respect to e.

Proof. The Theorem is immediate from Propositions 5 and 7.

4 Ideals in normed dialgebras
Below we will assume that U is a normed dialgebra with at least a bar-unit.

Definition 16 A subset E of a normed dialgebra U , is said to be a (`)− ideal
provided it is a linear subspace such that x ` y, y ` x ∈ E for all x ∈ E and
y ∈ U . It is a (a)− ideal if the latter condition is replaced by y a x, x a y ∈ E
for all x ∈ E and y ∈ U . If E is both a (`)− ideal and a (a)− ideal, then it
is called a two-sided ideal of U . Any ideal of the same type, different from U is
called proper.

we have

Lemma 17 Let x ∈ U be (`)−regular with respect to a bar-unit e, then for all
z ∈ U

(x ` y) ` z = z (15)

where y is the (`)−inverse of x.
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Proof. Let x ∈ U be (`)−regular with respect to a bar-unit e, as we have
already known this means, that

x ` y = (e− x) + (x ` e) ,

and hence, for all z ∈ U

(x ` y) ` z = ((e− x) + (x ` e)) ` z
= (e− x) ` z + (x ` e) ` z
= (e ` z)− (x ` z) + (x a e) ` z
= z.

Corollary 18 If x is (`)−regular with respect to a bar-unit e, then it can’t
belong to a proper (`)−ideal.

Proof. Since, x is an element (`)−regular with respect to a bar-unit e and
E a (`)−ideal, such that x ∈ E, we have that for all z ∈ U , z = (x ` y) ` z =
x ` (y ` z) ∈ E, where y is a (`)−inverse of x with respect to a bar-unit e.
Two similar statements hold for (a)−regular elements of U and proper

(a)−ideals, more exactly

Lemma 19 If x ∈ U is (a)−regular with respect to a bar-unit e, then for all
z ∈ U

z a (y a x) = z (16)

where y is the (a)−inverse of x. In this case, x can’t belong to a proper
(a)−ideal.

Note also that if x is not a (`)−regular element with respect to a bar-unit
e, then Ex̀ = {x ` z, z ` x | z ∈ U} is a proper (`)− ideal, in fact the element
(e− x)+(x ` e) cannot be in E`x . Thus, for that x ∈ U to be (`)−regular with
respect to all bar-units of U , it is necessary and sufficient that this element does
not belong to any proper (`)−ideal. It must be remarked that if we replace
(`)−regular elements by (a)−regular elements the statement is the following:
for that x ∈ U to be (a)−regular with respect to all bar-units of U it is necessary
and sufficient that this element does not belong to any proper (a)−ideal.

Theorem 20 Let (U ,`,a, k.k) be a complex normed dialgebra and E a proper
ideal then U 0 E is a normed dialgebra.
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Proof. The operations of vector space and the norm (the infimum norm) in
U0E are defined as in the classic associative case. We introduce two products `
and a in U 0 E and check that with respect to these products it is a dialgebra.
For an element z of U we denote it,s equivalence class by means of [z], then we
define [x] ` [y] = [x ` y] and [x] a [y] = [x a y]. It is not difficult to see that

[x] a ([y] a [z]) = [x] a ([y] ` [z]) ,

([x] ` [y]) a [z] = [x] ` ([y] a [z]) ,

([x] a [y]) ` [z] = ([x] ` [y]) ` [z],
for instance

[x] a ([y] a [z]) = [x] a [(y a z)]

= [x a (y a z)]

= [x a (y ` z)]

= [x] a [(y ` z)]

= [x] a ([y] ` [z]) .
The rest of the axioms are proved in similar form. Now, U 0 I is also a

normed dialgebra, in fact

k([x] ` [y])k = inf
h∈I

k(x ` y) + hk
≤ inf

g∈I, f∈I
k(x+ g) ` (y + f)k

≤ inf
g∈I, f∈I

kx+ gk ky + fk

≤
µ
inf
g∈I

kx+ gk
¶µ

inf
f∈I

ky + fk
¶

= k[x]k k[y]k .

one can also prove that k([x] a [y])k ≤ k[x]k k[y]k .
Note that if e is a bar-unit of U then [e] is a bar-unit of U 0 E.

Definition 21 Let (U ,`,a, k.k) be a Banach dialgebra. A complex linear func-
tional ϕ on U which is not identically 0 is said to be multiplicative if:

(1) ϕ (x ` y) = ϕ (x)ϕ (y)

(2) ϕ (x a y) = ϕ (x)ϕ (y)
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The set of all multiplicative linear functionals on U will be denoted by M .
Let ϕ be a multiplicative linear functional then ϕ (e) = 1 for any bar-unit e
in U , in fact for some z ∈ U , ϕ (z) 6= 0, since ϕ (z) = ϕ (e ` z) = ϕ (e)ϕ (z)
it follows that ϕ (e) = 1. If x is a (`)−regular element of U with respect to
the bar-unit e and y is a (`)−inverse of x then for any ϕ in M we have that
ϕ (x) 6= 0 and ϕ (y) 6= 0. In fact, we know that x ` y = (e− x) + (x ` e)
hence ϕ (x)ϕ (y) = ϕ (x ` y) = ϕ ((e− x) + (x ` e)) = ϕ (e− x) + ϕ (x ` e) =
ϕ (e) − ϕ (x) + ϕ (x)ϕ (e) = 1, which implies ϕ (x) 6= 0 and ϕ (y) 6= 0. It can
be also easily verified that if x is a (a)−regular element of U with respect to
the bar-unit e and y is a (a)−inverse of x then for any ϕ in M we have that
ϕ (x) 6= 0 and ϕ (y) 6= 0.
We will show that the elements of M are bounded.

Proposition 22 If (U ,`,a, k.k) is a Banach dialgebra with a bar-unit e and
ϕ ∈M , then kϕk = 1.
Proof. Since ϕ (x− ϕ (x) e) = 0, all elements x in U can be written in the

form x = z + λe where z ∈ U such that ϕ (z) = 0 and λ ∈ C, Thus

sup
x6=θ

|ϕ (x)|
kxk = sup

z∈kerϕ,
λ6=0

|ϕ (z + λe)|
kz + λek = sup

z∈kerϕ,
λ6=0

|λ|
kz + λek = sup

w∈kerϕ
1

ke+ wk = 1.

because ke+ wk < 1 implies that w is for instance (`)−regular by Proposition
5, which implies in turn that w is not in kerϕ. Therefore kϕk = 1 and the proof
is complete.

Definition 23 For the Banach dialgebra (U ,`,a, k.k) we define the Gelfand
transform as the function b. : U → C (M) given by bx (ϕ) = ϕ (x) for ϕ ∈M .
If (U ,`,a, k.k) is a Banach dialgebra and b. is the Gelfand transform on U ,

then it is immediate that the following properties are hold: \(x ` y) = c(x).c(y),
\(x a y) = c(x).c(y) and b. is a contractive mappings.
5 Dialgebras with an involution
We start this section whit a definition of involution in dialgebras.

Definition 24 Let (U ,`,a) be a complex dialgebra. A mapping x → x∗ of U
onto itself is called an involution of type I provided the following conditions are
satisfied:

(i) (x∗)∗ = x,
(ii) (x+ y)∗ = x∗ + y∗,
(iii) (x ` y)∗ = y∗ a x∗,
(iv) . (αx)

∗
= αx∗,

14



note that from (iii) it follows the following equality

(x a y)∗ = y∗ ` x∗,
on the other hand, the mapping x → x∗ is said to be an involution of type II
if it satisfies all the properties (i)− (iv) except (iii) which is substituted by the
following condition:

(iii), (x ` y)∗ = y∗ ` x∗;
finally when the condition (iii) is substituted for the following one

(iii)
,,

(x a y)∗ = y∗ a x∗.
we may say that x→ x∗ is an involution of type III.

A complex dialgebra with an involution of type I (respectively of type II
or type III) is called a ∗−dialgebra of type I (respectively of type II or type
III).
Let e be a bar-unit of U and ∗ an involution of type I in U , then e∗ ` x =

(x∗ a e)∗ = (x∗)∗ = x and x a e∗ = (e ` x∗)∗ = (x∗)∗ = x, thus e∗ is also a
bar-unit of U . In this case we remark that in contrast to the usual case x ` x∗,
x a x∗, x∗ ` x and x∗ a x are not in general selfadjoint. Howover, the elements
((x ` x∗)± (x a x∗)) and ((x∗ ` x)± (x∗ a x)) are selfadjoint for all x ∈ U .
We have

Proposition 25 Let e be a bar-unit of U and ∗ an involution of type I defined
on U . If x is (`)-regular for e, then x∗ is (a)-regular for e∗.
Proof. since x is (`)-regular, there exists y ∈ U such that

x ` y = (e− x) + (x ` e)
then

(x ` y)∗ = (e− x)∗ + (x ` e)∗

therefore

y∗ a x∗ = (e∗ − x∗) + (e∗ a x∗) .

A similar statement can, of course, be made for (a)-regular elements, that is
x→ x∗ transforms (a)-regular elements of U with respect to e into (`)-regular
with respect to e∗.

15



Example 26 Let e ∈ Rn such that kek = 1. Let us consider the normed dial-
gebra Cn (e) (see Example 3) then it is a ∗−dialgebra of type I with the usual
involution z → z. We only examine that the condition (iii) of the Definition 19
holds, since the rest of the conditions are evident. If x, y ∈ Cn then

(x ` y)∗ = hx, eiy = he, xi y,
and

y∗ a x∗ = hx, ei y
have in mind that e ∈ Rn we conclude that (x ` y)∗ = y∗ a x∗.
Example 27 Assume that (U ,`,a) is a dialgebra with an involution ∗ of type I,
then in the dialgebra Mn (U) of matrices of n×n (see [2]) is given an involution
of the same type defined in the following way: if A = (aij)

(A∗)ij = a
∗
ji,

we only check the properties (iii), if X = (xij) and Y = (yij) we have

¡
(X ` Y )∗¢

ij
=

³
(X ` Y )ji

´∗
=

ÃX
k

(xjk ` yki)
!∗

=
X
k

(xjk ` yki)∗

=
X
k

¡
(yki)

∗ a (xjk)∗
¢
,

on the other hand

(Y ∗ a X∗)ij =
X
k

¡
y∗ik a x∗kj

¢
=

X
k

¡
(yki)

∗ a (xjk)∗
¢
,

therefore (X ` Y )∗ = Y ∗ a X∗.
Definition 28 A normed involutive dialgebra of type I (respectively of type II
or type III) is a normed ∗−dialgebra U of type I (respectively of type II or
type III) such that kx∗k = kxk for each x ∈ U . If in addition, U is complete
then U is called an involutive Banach dialgebra of type I (respectively of type II
or type III). A C∗−dialgebra of type I (respectively of type II or type III) is
an involutive Banach dialgebra U of type I (respectively of type II or type III)
such that kx∗ ` xk = kxk2 = kx a x∗k.
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Example 29 Let e ∈ Rn such that kek = 1, then Cn (e) is an involutive Banach
dialgebra of type I, but it will not be a C∗−dialgebra.
It is clear that in a normed involutive dialgebra of type I (respectively of

type II or type III) the involution is continuous.
Since (x∗ a x)∗ = (x∗ ` x), from this definition we see that in a normed

involutive dialgebra of type I

kxk2 = k(x∗ ` x)k = °°(x∗ a x)∗°° = k(x∗ a x)k ,
and also because (x∗ ` x)∗ = (x∗ a x) then it may be seen that kxk2 = kx ` x∗k.
Let U an involutive Banach dialgebra of type I such that

kxk2 ≤ kx∗ ` xk , kxk2 ≤ kx a x∗k ,

it follows of the first inequality that kxk2 ≤ kx∗k kxk , hence that kxk ≤ kx∗k
and interchanging x and x∗ we see that kx∗k = kxk. The above suppositions
then imply that

kxk2 ≤ kx∗ ` xk ≤ kx∗k kxk = kxk2

and

kxk2 ≤ kx a x∗k ≤ kxk kx∗k = kxk2

so that U is a C∗−dialgebra of type I.
Let U be a C∗−dialgebra of type I, then for each x in U

kxk = sup
kyk≤1

kx a yk = sup
kyk≤1

ky ` xk .

In fact, let y be such that kyk ≤ 1 we have kx a yk ≤ kxk and also ky ` xk ≤
kxk. To prove the inequalities kxk ≤ supkyk≤1 kx a yk and kxk ≤ supkyk≤1 ky ` xk
we can assume that kxk = 1, then kx∗k = 1, therefore

sup
kyk≤1

kx a yk ≥ kx a x∗k = kxk2 = 1

and also

sup
kyk≤1

ky ` xk ≥ kx∗ ` xk = kxk2 = 1.
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Let U be a C∗−dialgebra of type I with a bar-unit e, since e∗ is also a
bar-unit and we have

kek2 = ke∗ ` ek = kek
so that kek = 1 or 0. Thus, we see that unless U = {θ} kek = 1. Therefore any
bar-unit in U has norm one.
We proceed now to study ideals in a ∗−dialgebra of type I.

Theorem 30 If E is a (`)−ideal ((a)−ideal) in a ∗−dialgebra U of type I.
the set E∗ of all adjoints z∗ of elements z of E is a (a)−ideal ((`)−ideal).
Proof. Since E∗ is evidently a subspace, it is necessary only to prove-when

E is a (`)−ideal-that E∗ contains x∗ a y and y a x∗ for all x ∈ E and all
y ∈ U . But this follows at once the following relations x∗ a y = (y∗ ` x)∗,
y a x∗ = (x ` y∗)∗ and the fact that (y∗ ` x) and (x ` y∗) belong to E. When
E is a (a)−ideal a similar argument is valid.
Corollary 31 A sufficient condition that a (`)−ideal ((a)−ideal) E be two-
sided ideal is that E = E∗.

6 Operator theory in a normed dialgebra
Most of linear algebra involves the study of mapping between linear spaces
which preserve the linear structure, that is, linear mapping, such should also be
the case in the study of normed dialgebras. In this section some properties of
operators defined in a normed dialgebra U 6= {θ} are studied. In particular, a
dialgebra of bounded mapping which are defined on the whole U , is constructed.
Let U be a normed dialgebra with a bar-unit e. Let L (U) denote the set of

all bounded linear mapping acting on U that are defined on the whole U , that
is, A : U → U and D (A) = U for all A ∈ L (U). Let A and B be elements of
L (U). Then we define A ` B and A a B in the following form

(A ` B) (u) = Ae ` Bu, (A a B) (u) = Au a Be, (17)

clearly A ` B and A a B are linear mapping. Observe that the definition (17)
depends on e. We denote to the space L (U) with the operators ` and a defined
by means of (17) as L (U , e)
Proposition 32 The operators A ` B and A a B are elements of L (U , e) .
Proof. Is obvious that these operators are defined on the whole U . Thus,

it remains to see that they are bounded. Indeed

k(A ` B) (u)k = kAe ` Buk ≤ kAek kBuk ≤ kAk kBk kuk , (18)
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in the same way may be proved that A a B is bounded and that

k(A a B) (u)k ≤ kAk kBk kuk . (19)

Theorem 33 (L (U , e) ,`,a) is a normed dialgebra.

Proof. From (18) and (19) it follows that kA ` Bk ≤ kAk kBk and also
kA a Bk ≤ kAk kBk. To prove the proposition it is sufficient to see that
(L (U) ,`,a) is a dialgebra. By (17), we have for A, B and C in L (U)

(A a (B a C)) (u) = Au a (B a C) (e)
= Au a (Be a Ce) ,

on the other hand

(A a (B ` C)) (u) = Au a (B ` C) (e)
= Au a (Be ` Ce) ,

since U is a dialgebra then Au a (Be a Ce) = Au a (Be ` Ce). Therefore we
have A a (B a C) = (A a (B ` C)).
In a similar way one can show that (A ` B) a C = A ` (B a C). In fact

((A ` B) a C) (u) = (A ` B) (u) a Ce
= (Ae ` Bu) a Ce,

and we check

(A ` (B a C)) (u) = Ae ` (B a C) (u)
= Ae ` (Bu a Ce) ,

using now the fact that U is a dialgebra we have ((A ` B) a C) = (A ` (B a C)).
The reader easily examines that (A a B) ` C = (A ` B) ` C. This concludes
our proof.
Let I be the identity operator on U , then I is a bar-unit of (L (U , e) ,`,a).

Observe that then L (U , e) is a Liebniz algebra. The bracket in (L (U , e) ,`,a)
is defined for A,B in L (U , e) as

[A,B] = (A a B)− (B ` A) (20)
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Now, we consider the space L (U) when U is C∗−dialgebra of type I. Let T
be a linear operator on U defined on a dense linear domain D (T ) . We define
the adjoint operator T ∗ in the following form

D (T ) =
©
x ∈ U | ∃ y such that ¡(Tu)∗ ` x = u∗ a y¢∀u ∈ D (T )ª

and we set T ∗x = y. One can easily check that T ∗ is a closed linear mapping.
Note that even if T is bounded there is no guarantee that D (T ∗) is dense in
U . However, if T ∈ L (U) then we can show that T ∗ is bounded. Let e be a
bar-unit of U and L0 (U , e) = {T ∈ L (U , e) | T ∗ ∈ L (U , e)}.

Theorem 34 Let U be a C∗−dialgebra of type I and e a bar-unit of U such that
e∗ = e, then L0 (U , e) is a ∗−dialgebra of type II with respect to the mapping
T → T ∗ where T ∈ L0 (U , e).

Proof. It is easy to verify that the adjoint of elements in L0 (U , e) obeys
the properties (i), (ii) and (iv) of the definition 17. Now let A, B and C be
elements of L0 (U , e) then we have for any u and x in U

((A ` B) (u))∗ ` x = (Ae ` Bu)∗ ` x
=

¡
(Bu)∗ a (Ae)∗¢ ` x

=
¡
(Bu)∗ ` (Ae)∗¢ ` x

= (Bu)
∗ ` ¡(Ae)∗ ` x¢

= (Bu)
∗ ` (e a A∗x)

=
¡
(Bu)

∗ ` e¢ a A∗x
= (u∗ a B∗e) a A∗x
= u∗ a (B∗e a A∗x)
= u∗ a (B∗e ` A∗x)
= u∗ a (B∗ ` A∗) (x)

on the other hand ((A ` B) (u))∗ ` x = u∗ a (A ` B)∗ x for any u and x in U .
Thus

(A ` B)∗ = (B∗ ` A∗) .

Therefore L0 (U , e) has all the required properties in Definition 17 for an
involution of type II.
We continue to investigate the normed dialgebra L (H (e) , e).

Theorem 35 L (H (e) , e) is an involutive Banach dialgebra of type I, with re-
spect to the usual definition of adjoint for a bounded linear operator of H into
H.
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Proof. Let A and B be two bounded linear operators of H into H and
x, y ∈ H then we have

h(A ` B)x, yi = h(Ae ` Bx) , yi
= hhAe, eiBx, yi
= hAe, ei hBx, yi
= he,A∗ei hx,B∗yi
=

D
x, he,A∗eiB∗y

E
= hx, hA∗e, eiB∗yi
= hx,B∗y a A∗ei = hx, (B∗ a A∗) yi

from this it follows that (A ` B)∗ = B∗ a A∗. The rest of conditions for a
involutive Banach dialgebra of type I clearly hold. This proves the Theorem.
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