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Abstract

The point process = {(Tk, Xk) : k ≥ 1} we deal here with is assumed
Bernoulli point process with independent random vectors Xk in [0,∞)d

and with random time points Tk in [0,∞), independent of X. For
normalizing we use a regular sequence ξn(t, x) = (τn(t), un(x)) of time-
space changes of [0,∞)1+d. We consider the sequence of the associated
extremal processes

Ỹn(t) = {∨u−1
n (Xk) : Tk ≤ τn(t), }

where the max-operation ” ∨ ” is defined in Rd componentwise. We
assume further that there exist a stochastically continuous time process
θ = {θ(t) : t ≥ 0}, strictly increasing and independent of {Xk} and an
integer-valued deterministic counting function k on [0,∞), so that the
counting process N of N has the form N(s) = k(θ(s)) a.s.

In this framework we prove a Functional Transfer Theorem which
claims in general that if τ−1

n ◦θ◦τn =⇒ Λ, where Λ is strictly increasing
and stochastically continuous and if

∨k(τn(.))
k=1 u−1

n (Xk) =⇒ Y (.), then
Ỹn =⇒ Ỹ = Y ◦ Λ where Y is a self-similar extremal process. We
call such limit processes random time-changed or compound. They are
stochastically continuous and self-similar with respect to the same one-
parameter norming group as Y . We show that the compound process is
an extremal process (i.e. a process with independent max-increments)
if and only if Λ has independent increments and Y has homogeneous
max-increments. At the end we apply random time-changed extremal
processes to find a lower bound for the ruin probability in an associated
with N insurance model. We give also a upper bound using an α-stable
Levy motion.

Key words: Extremal processes; Weak limit theorems; Ruin probability.
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1 Introduction

In this Section we recall some definitions and basic facts used in the paper.
Time-space Bernoulli point processes N = {(Tk, Xk) : k ≥ 1} were in-

troduced in [2], Section 7. They are point processes defined on a locally
compact metric space S and satisfying the conditions :

i) their mean measure µ is a Radon measure on S (i.e. finite on compact
subsets of S);

ii) they are simple in time: Tk 6= Tj a.s. for k 6= j;
iii) restrictions of N to slices over disjoint time intervals are independent.
Such point processes are important in Extreme Value Theory: In fact,

any extremal process Y : [0,∞) → [0,∞)d is generated by an increasing
right continuous curve C, the lower curve of Y (see [2] for details), and a
Bernoulli point process N on S = [0, C]c by

Y (t) = C(t) ∨ {∨Xk : Tk ≤ t} (1.1)

Here {Tk} are distinct random time points and {Xk} are independent ran-
dom vectors in [0,∞)d. The operation maximum ∨ as well as equalities
and inequalities in Rd we understand componentwise, and Ac denotes the
complement of the set A in [0,∞)d+1.

An extremal process Y : [0,∞)→ [0,∞)d is max-id (cf. [1]) if and only
if the associated Bernoulli point process is Poisson. In this case there is a
simple connection between the df f of Y , where f(t, x) = P (Y (t) < x), and
the mean measure µ of N , where µ(A) = EN (A), A ⊂ S, namely

f(t, x) = exp{−µ([0, t]×Acx)}, x > C(t), t > 0

with Ax = {y ∈ [0,∞)d : y < x}. Note, µ(A) < ∞ for all A of the form
[0, t]×Acx as long as x > C(t), whereas [0, C] is the explosion area of µ.

Let M∗([0,∞)) be the space of all right continuous increasing func-
tions y : [0,∞) → [0,∞)d, y(t) < ∞, y(t) → ~∞ for t → ∞, ~∞ =
(∞, ...,∞). So, the sample paths of any extremal process belong toM∗ a.s.
Given a sequence of extremal processes {Yn}, Yn : [0,∞) → [0,∞)d, we
denote the df of {Yn} and the probability distribution (pd) of {Yn} onM∗ by
fn and πn, respectively. For fixed t > 0, let Fn,t(.) := fn(t, .). We say the se-
quence {Yn} is weakly convergent to an extremal process Y : [0,∞)→ [0,∞)d

with df f and pd π, briefly Yn =⇒ Y , if one of the following equivalent state-
ments are met ([2], Th.6.1.):

1) fn → f at all continuity points of f ;
2) Fn,t → Ft := f(t, .) weakly for each t in a dense subset of (0,∞);
3)
∫
φdπn →

∫
φdπ for bounded φ :M∗([0,∞))→ R which are continu-

ous in the weak topology of M∗.
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Recall that the univariate marginals of an extremal process determine its
finite dimensional distributions. If additionally to Yn

fdd−→ Y we assume that
the limit extremal process Y is stochastically continuous, then Yn =⇒ Y
also in the Skorohod topology of M∗ (e.g.[3], Th.3).

A mapping ξ(t, x) = (τ(t), u(x)), t ∈ [0,∞), x ∈ [0,∞)d, strictly in-
creasing and continuous in each coordinate is called time-space change of
[0,∞)1+d. An increasing in n sequence of time-space changes {ξn} is refered
to as regular if for any s > 0 there exists a time-space change ηs(t, x) =
(σs(t), Us(x)) so that

τ−1
n ◦ τ[ns](t) → σs(t)

u−1
n ◦ u[ns](x) → Us(x)

pointwise and the correspondence s ↔ ηs is one-to-one. Then the family
L = {ηs : s > 0} forms a continuous one-parameter group w.r.t. composition
(cf. [9] and also [10] for details).

Consider the following model (A): let X : [0,∞) → [0,∞)d be an ex-
tremal process with lower curve C and associated Bernoulli point process
N = {(tk, Xk) : k ≥ 1}, tk distinct and non-random, Xk independent with
df which does not have defect at +∞. We assume that there is a regular
norming sequence ξn(t, x) = (τn(t), un(x)) of time-space changes of [0,∞)1+d

so that the sequence of extremal processes

Yn(t) := u−1
n ◦X ◦ τn(t)

= Cn(t) ∨ {∨u−1
n (Xk) : tk ≤ τn(t)}

is weakly convergent to a non-degenerate extremal process Y with df f and
Y (0) = 0 a.s. Then the limit extremal process is stochastically continuous
for all t ≥ 0 and self-similar w.r.t. L, i.e. Y satisfies

Us ◦ Y (t) d= Y ◦ σs(t), ∀s > 0 (1.2)

or equivalently

f(t, x) = f(σs(t), Us(x)), ∀s > 0.

The paper [9] is devoted to studying the properties of self-similar ex-
tremal processes. One of them is the fact that the univariate marginals of Y
are max-selfdecomposable. If additionally the initial extremal process X has
homogeneous max-increments, then the limit process Y is max-stable. An-
other important property of a self-similar extremal process is that its lower
curve is continuous.

As known, the self-similar extremal processes form a special subclass of
the semi-selfsimilar extremal processes studied in [10]. The latter processes
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satisfy characteristic equation (1.2) for only one fixed s0 ∈ (0,∞) rather
than for all s > 0.

In the present paper we change the previous model (A) by the model (B)
where we assume that the time points Tk of a given Bernoulli point process
Ñ = {(Tk, Xk) : k ≥ 1} are random variables in [0,∞) and the space points
Xk are iid random vectors in [0,∞)d. Note, since Xk are iid, the lower curve
C(t) of the associated with Ñ extremal process

X(t) = C(t) ∨ {∨Xk : Tk ≤ t}

is constant. Hence we may and do assume C(t) ≡ 0. Consequently, ∀n ≥ 1
the lower curve Cn of Ỹn(t) = u−1

n ◦ X ◦ τn(t) is zero too. In Section 2 we
are concerned with the questions:

1. Under which conditions on the Bernoulli point process Ñ is the se-
quence of the associated extremal processes

Ỹn(t) = {∨u−1
n (Xk) : Tk ≤ τn(t)}

weakly convergent to a non-degenerate process Ỹ ?
2. Which class does Ỹ belong to ?
We assume further that there exists a stochastically continuous time

process θ(t), t ≥ 0, independent of {Xk}, such that the counting process N
of Ñ , N(t) =

∑
k I[0,t](Tk), is of the form k(θ(t)). Here IA is the indicator

of the set A and k(t) is a deterministic counting function. In this framework
our main result in Section 2 is the Functional Transfer Theorem. It claims
in general that if Yn =⇒ Y and τ−1

n ◦ θ ◦ τn =⇒ Λ in M([0,∞)), then the
limit process Ỹ is of the form Ỹ = Y ◦ Λ. Here Y is a self-similar extremal
process and Λ : [0,∞) → [0,∞) is a stochastically continuous time process
independent of Y and with a.s. strictly increasing sample paths. We call
such processes Ỹ random time-changed or compound self-similar extremal
processes. We study their properties in Section 3. In Section 4 we use the
compound extremal process to find a lower bound for the ruin probability
in a particular insurance model. Furthermore, using a similar technics as in
Furrer H., Michna Zb. and Weron A. (1997), we find an upper bound too.

Another aspects of random time-changed extremal processes can be found
in S.Satheesh (2002).

2 Compound Extremal Process as Limiting

Let us denote byM([0,∞)) the set of all strictly increasing right-continuous
functions τ : [0,∞)→ [0,∞), τ(0) = 0, τ(u)→∞ for u→∞.

In this section we consider the following model (B): The point process
Ñ = {(Tk, Xk) : k ≥ 1} we deal with is assumed to be Bernoulli with iid r.v’s
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Xk in [0,∞)d and with random time points Tk in [0,∞), independent of
X. We suppose the latter to be ordered, T1 < T2 < ..., Tk → ∞ a.s., and
defined on the same probability space [Ω,A,P] as X. Denote by N(t) the
counting function of Ñ . We assume further that there exist a stochastically
continuous time process θ : [0,∞)→ [0,∞) with sample paths inM([0,∞))
and a deterministic counting function k on [0,∞) such that for s > 0 and
a.a. ω ∈ Ω it holds

N(ω, s) = k(θ(ω, s)) (2.1)

Let {tk : k ≥ 1}, t1 < t2 < ..., be the non-random time point process
whose counting function k(t) =

∑
k I[0,t](tk) coincides with the function k(.)

of (2.1). Then

N(t) =
∑
k

I[0,t](Tk)
a.s.=
∑
k

I[0,θ(t)](tk) = k(θ(t)) (2.2)

and
P (N(t) ≥ k) = P (Tk ≤ t) = P (tk ≤ θ(t)).

Example 1. Assume that {Tk} is a simple Poisson point process on
[0,∞) with mean measure E(N(t)) = λt , λ > 0. One can interpret Tk as
the arrival time of the kth claim Xk in a certain insurance model. Assume
further that there is a deterministic counting process k(t) such that the
accumulated claim process S(t) =

∑k(t)
k=1Xk, properly normalized, has a non-

degenerate weak limit. Let {t0 = 0, t1, t2, ...}, tk →∞, be the point process
associated with k(t). We show that there exists a stochastically continuous
time process θ(t) with sample paths in M such that N(t) = k(θ(t)). Let us
denote Qt(s) = P (θ(t) < s).

Indeed, since for every t > 0

P (k(θ(t)) = n) =
∞∑

k=0

P(k(θ(t)) = n, tk ≤ θ(t) < tk+1 )

= P (tn ≤ θ(t) < tn+1) = Qt(tn+1)−Qt(tn),

we obtain the values of Qt(s) for s ∈ {t0, t1, t2, ...} by the iteration formula

Qt(tn+1)−Qt(tn) =
(λt)n

n!
e−λt.

For s /∈ {t0, t1, t2, ...} one can interpolate Qt(s) by preserving the properties
required above.
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Let us use a regular sequence ξn(t, x) = (τn(t), un(x)) of time-space
changes of [0,∞)1+d for normalizing, so that the sequence of the associated
with Ñ extremal processes

Ỹn(t) = {∨u−1
n (Xk) : Tk ≤ τn(t)} (2.3)

is weakly convergent to a non-degenerate increasing process Ỹ . We ask here
which class does Ỹ belong to ?

Consider the point process N = {(tk, Xk) : k ≥ 1} associated with Ñ by
(2.1). Using the same norming sequence as in (2.3), we form the sequence
of point processes

Nn = {(τ−1
n (tk), u−1

n (Xk)) : k ≥ 1},

with counting function

kn(t) =
∑
k

I[0,t](τ
−1
n (tk)),

and

Ñn = {(τ−1
n (Tk), u−1

n (Xk)) : k ≥ 1}

with a random counting function

Nn(t) =
∑
k

I[0,t](τ
−1
n (Tk)).

Since P (τ−1
n (Tk) ≤ t) = P (τ−1

n (tk) ≤ τ−1
n ◦ θ ◦ τn(t)) we see that Nn(t) d=

kn(θn(t)) with θn(t) = τ−1
n ◦ θ ◦ τn(t)).

The extremal process

Yn(t) = {∨ku−1
n (Xk) : τ−1

n (tk) ≤ t}, (2.4)

associated with Nn, and the extremal process Ỹn associated with Ñn, are
connected by the relation Ỹn(t) d= Yn(θn(t)). In this way we have reduced the
convergence problem of Ỹn to both the convergence of Yn , considered in the
previous section, and the convergence of θn. To solve it we use the continuity
of the composition in the weak topology in D([0,∞)). (See D.Silvestrov and
J.Teugels (1998), Theorem 3 and the comments following the theorem; also
consult W.Whitt (1980)).

Proposition 2.1 Let {Yn, n ≥ 1} be a sequence of extremal processes weakly
convergent to a stochastically continuous extremal process Y . Let {θn, n ≥ 1}
and Λ be processes with sample paths in M([0,∞)) such that θn =⇒ Λ.
Assume that Yn is independent of θn for all n. Then

Yn ◦ θn =⇒ Y ◦ Λ .
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Proof :
For y ∈ M([0,∞)) let D(y) := {t ≥ 0 : y(t − 0) 6= y(t)}. Since Λ is

strictly increasing and Y is stochastically continuous, D(Y )∩D(Λ) = ∅ a.s.
Hence by Theorem 3 in Silvestrov and Teugels (1998),

{Ỹn(t) = Yn(θn(t)) : t > 0} =⇒ {Ỹ (t) = Y (Λ(t)) : t > 0} .

At the end of this Section we consider the iid case and give a Functional
Transfer Theorem (FTT) in analogy to the famous Gnedenko’s Transfer
Theorem (cf. B. V. Gnedenko and Kh. Fakhim (1969), B. V. Gnedenko
and D. B. Gnedenko (1982) ). But let us first see the meaning of weak
convergence θn = τ−1

n ◦ θ ◦ τn =⇒ Λ by considering three examples.

Example 2. Let τn(t) = nt and θ(t) = cta, 0 < a < 1. Then θn =
cta/n1−a → 0, n→∞.

Example 3. Let τn(t) = nt and θ(t) = et. Then θn(t) = ent/n →
∞, n→∞.

Example 4. Let θ possess the scaling property: for all t > 0 there exists
a subsequence mn = [nt] such that for n→∞

θ ◦ τn(t) ∼ τ[nt] ◦ θ(1) . (2.5)

Then, using the regularity of {τn} ( i.e. τ−1
n ◦ τ[nt] converges pointwise

to a continuous strictly increasing mapping σt : [0,∞)→ [0,∞) ) we get

τ−1
n ◦ θ ◦ τn(t) ∼ τ−1

n ◦ τ[nt] ◦ θ(1) =⇒ σt ◦ θ(1) = Λ(t) . (2.6)

Obviously in this case Λ(t) is continuous and increasing in t but does not
have independent increments.

Thus, we see that τn and θ must have ”comparable” behaviour at infinity
in order for Λ to be finite and non-degenerate.

Theorem 2.1 (FTT) Let Ñ = {(Tk, Xk)} and N = {(tk, Xk)} be Bernoulli
point processes with counting functions N(t) and k(t), resp. Let {Xk} be iid
r.v.’s and ξn(t, x) = (τn(t), un(x)) be a regular norming sequence. Suppose
there is a stochastically continuous time process θ inM([0,∞)), independent
of {Xk}, satisfying (2.5) and such that N(t) = k(θ(t)). Denote the d.f. of
θ(1) by Q, and set N(τn(t)) = Nn(t) and k(τn(t)) = kn(t). Assume further
the weak convergence as n→∞

P (
kn(t)∨
k=1

u−1
n (Xk) < x) −→ f(t, x) := P (Y (t) < x) .

7



Then there exists a time change τ(s) such that

P (
Nn(t)∨
k=1

u−1
n (Xk) < x) −→

∫ ∞
0

f τ(s)(1, x)dQ(σ−1
t (s))

weakly as n→∞. Here σt is the time change from (2.6).

Proof: Let Yn be the extremal process associated with

Nn = {(τ−1
n (tk), u−1

n (Xk)) : k ≥ 1}

and let F be the d.f. of X1. By assumption

fn(t, x) := P (Yn(t) < x) = P (
kn(t)∨
k=1

Xk < un(x)) = F kn(t)(un(x)) −→ f(t, x).

On the other hand, since

fn(t, x) =
[
F kn(1)(un(x))

] kn(t)
kn(1)

and since f(1, x) ∈ (0, 1), we conclude that for all t > 0 there exists (perhaps
up to a subsequence)

lim
n

kn(t)
kn(1)

=: τ(t) ; (2.7)

hence f(t, x) = f τ(t)(1, x). The limit extremal process Y is stochastically
continuous and one can see that the conditions of Proposition 2.1 are satis-
fied. Applying Proposition 2.1 and (2.5) we have

P (Yn(θn(t)) < x) −→ P (Y (Λ(t)) < x) =∫ ∞
0

f(s, x)dP (Λ(t) < s) =
∫ ∞

0
f τ(s)(1, x)dQ(σ−1

t (s)).

Remark 1. Note that (2.7) is a consequence of the weak convergence
Yn =⇒ Y . If we do suppose (2.7), then we need only assume Yn(1) d−→ Y (1)
instead of Yn =⇒ Y in order to get Ỹn =⇒ Ỹ .

Remark 2. From the proof one can see that FTT remains true if con-
dition (2.5) is replaced by the more general convergence condition θn =⇒ Λ
of Proposition 2.1. In this case

P (
Nn(t)∨

1

u−1
n (Xk) < x) −→

∫ ∞
0

f τ(s)(1, x)dQt(s) , (2.8)
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where Qt(s) := P (Λ(t) < s).
Remark 3. One can see also that the FTT remains true if Xk are

assumed independent but not identically distributed. Then

P (
Nn(t)∨

1

u−1
n (Xk) < x) −→

∫ ∞
0

f(s, x)dQt(s).

Corollary 1. Let τ−1
n ◦ θ ◦ τn =⇒ Λ. Then the time process Λ satisfies

σs ◦ Λ ◦ σ−1
s (t) d= Λ(t), ∀s > 0; hence Λ is stochastically continuous.

Proof:
Let us assume that there is a t0 > 0 with Λ(t0 − 0) < Λ(t0). We can choose
s > 0 so that σ−1

s (t0) is a continuity point of Λ. Hence

Λ(t0) d= σs ◦ Λ ◦ σ−1
s (t0) a.s.= σs ◦ Λ ◦ σ−1

s (t0 − 0) d= Λ(t0 − 0) ,

which contradicts the above assumption.

Corollary 2. The limit process Ỹ in (2.8) has the properties :
i) it is stochastically continuous;
ii) it is self-similar wrt L = {(σs, Us) : s > 0};
iii) it does not have stationary increments;
iv) it is not max-stable.

Proof:
i) Ỹ is composition of two stochastically continuous processes.
ii) We have to show that Ỹ (σs(t))

d= Us ◦ Ỹ (t) ∀s > 0. For a fixed s >
0, N[ns](t) = N(τ[ns](t)) = Nn(τ−1

n ◦τ[ns](t)) and by the FTT and continuity
of the composition we conclude the weak convergence

N[ns](t)∨
k=1

u−1
n (Xk) =⇒ Ỹ (σs(t)).

On the other hand
N[ns](t)∨
k=1

u−1
n (Xk) = u−1

n ◦ u[ns](
N[ns](t)∨
k=1

u−1
[ns](Xk)) =⇒ Us ◦ Ỹ (t)

which entails the self-similarity of Ỹ .
iii) and iv) are easily seen from the RHS of (2.8).

In Pancheva (1998), Propositions 2.1 and 2.3 , it is shown that the limit
extremal process Y (resp. d.f. f ) is self-similar. So we refer to the process
Ỹ (t) = Y (Λ(t)) as random time-changed or compound self-similar extremal
process. In the next section we study its properties.
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3 Properties of a Compound Extremal
Process

In this section we consider the composition Ỹ = Y ◦ Λ, Ỹ : [0,∞) →
[0,∞)d, of an extremal process Y : [0,∞) → [0,∞)d, Y (0) = C(0) = 0
a.s., and a stochastically continuous time-process Λ : [0,∞) → [0,∞) inde-
pendent of Y and with a.a. sample paths in the functional spaceM([0,∞)).

In general, the compound extremal process Y ◦ Λ may have dependent
max-increments, cf. Example 4 of the previous section.

Property 3.1 Let Y be self-similar extremal process w.r.t. the norming
group {ηs(t, x) = (σs(t), Us(x)) : s > 0}, i.e. Ls ◦ Y (t) = Y ◦ σs(t) and let
the random time-change be of the form Λ(t) = σt(θ), where θ is a positive
r.v. Then the compound extremal process is self-similar w.r.t. the group
{η∗s(t, x) = (ts, Us(x)) : s > 0}.

Proof. Indeed

Us ◦ Ỹ (t) = Us ◦ Y (Λ(t)) = Y ◦ σs(Λ(t)) =
Y ◦ σs(σt(θ)) = Y ◦ σst(θ) = Y ◦ Λ(st) = Ỹ (st) .

The first question naturally arising in our framework is: ”under what
conditions on Λ and Y is the composition Y ◦ Λ an extremal process in the
sense of (1.1).”

Denote by N0 = {(Γk, Zk) : k ≥ 1} the Bernoulli point process associated
with Y . Let UY (s, t] (resp. UỸ (s, t]) be the max-increment of Y (resp. of
Ỹ ) over a time interval (s, t]. Then

UỸ (0, s] = {∨Zk : 0 < Γk ≤ Λ(s)}
UỸ (s, t] = {∨Zk : Λ(s) < Γk ≤ Λ(t)} .

The intervals (0,Λ(s)] and (Λ(s),Λ(t)] are a.s. disjoint since the time-process
Λ has a.s. strictly increasing sample paths.

Theorem 3.1 Assume that Y is an extremal process and Λ is a time-process
independent of Y and with a.a. sample paths in M([0,∞)). In this frame-
work the compound process Y ◦ Λ is an extremal process iff

i) Λ has independent additive increments,
ii) Y has homogeneous max-increments.
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Proof.
1. Sufficiency . In view of (1.1) we have to check that Ỹ

a) has right continuous increasing sample paths,
b) for arbitrary s > 0, t > s, the random vectors UỸ (0, s] and UỸ (s, t] are
independent.

In our framework condition a) is obviously satisfied. Recall that the lower
curve of an extremal process with homogeneous increments is constant. Thus
we may assume for the lower curve C of Y that C(t) ≡ 0.

Let us consider in detail the probability P (UỸ (0, s] < x,UỸ (s, t] < y)
for 0 < s < t and arbitrary x, y ∈ [0,∞)d. Using step by step the assump-
tions: Y and Λ are independent, Y has independent max-increments, Λ has
independent increments and Y has homogeneous increments, we get :

P (UỸ (0, s] < x,UỸ (s, t] < y)

=
∫∫

{(p,q):0<p<q}

P (UY (0,Λ(s)] < x,UY (Λ(s),Λ(t)] < y|Λ(s) = p,Λ(t) = q)

. dP (Λ(s) < p,Λ(t) < q)

=
∫∫

{(p,q):0<p<q}

P (UY (0, p] < x)P (UY (p, q] < y).dP (Λ(s) < p,Λ(t) < q)

=
∫ ∞

0

∫ ∞
0

P (UY (0, p] < x)P (UY (p, p+ h] < y)

. dP (Λ(s) < p)dP (Λ(t)− Λ(s) < h)

=
∫ ∞

0
P (UY (0, p] < x)dP (Λ(s) < p)

∫ ∞
0
P (UY (0, h] < y)dP (Λ(t)− Λ(s) < h)

= P (UỸ (0, s] < x)P (UY (0,Λ(t)− Λ(s)] < y)
= P (UỸ (0, s] < x)P (UY (Λ(s),Λ(t)] < y)
= P (UỸ (0, s] < x)P (UỸ (s, t] < y)

2. Necessity. Now we assume that the composition Ỹ = Y ◦ Λ is an
extremal process. Then, necessarily, Λ has independent increments, i.e.
Λ(s) ⊥ Λ(t) − Λ(s) ∀0 ≤ s < t. We have to show only that Y has ho-
mogeneous increments, or equivalently that the counting measure N of the
associated Bernoulli point process N0 is homogeneous.

Indeed, the independence UỸ (0, s] ⊥ UỸ (s, t] implies

N(Λ(s))∨
0

Zk ⊥
N(Λ(t))∨

N(Λ(s))+1

Zk

11



implies

N(0,Λ(s)] ⊥ N(Λ(s),Λ(s)− (Λ(t)− Λ(s))].

This is possible only if N(Λ(s),Λ(t)] does not depend on Λ(s) but on Λ(t)−
Λ(s) only. For the counting measure N this means that N is homogeneous
in the sense that N(s, t] d= N(0, t− s].

Let us now simplify the model and assume additionally that Y is a self-
similar extremal process with homogeneous max-increments. Then the uni-
variate marginal d.f. ft(x) = P (Y (t) < x) is max-stable and satisfies

ft(x) = f t1(x) = f1(U−1
t (x)), ∀t > 0

(cf. Pancheva (1998)). Without loss of generality we may, and do assume,
that f1(x) has Frechet marginals, i.e. f1(xi) = e−x

−α
i , α > 0, i = 1, ..., d.

So ft(x) = exp{−tνα(Acx)}. Here να is the exponent measure of Y (1) and
Acx = {y ∈ Rd+ : y < x}c. The exponent measure να bears the dependence
structure of Y (1), see e.g. S.Resnick (1987). Now observe that

sHY (t) = Y (st), ∀t > 0, s > 0, H = 1/α,

i.e. Y (t) is self-similar w.r.t. the multiplicative group {ηs(t, x) = (st, sHx) :
s > 0}.

Property 3.2 Denote the Laplace transform of the time process Λ(t) by
lt(r) = E exp{−Λ(t)r}, r > 0 and its d.f. by P (Λ(t) < s) = Gt(s). The
compound extremal process is then distributed by P (Ỹ (t) < x) = lt(να(Acx)).

Indeed,

P (Ỹ (t) < x) =
∫ ∞

0
P (Y (s) < x|Λ(t) = s)dGt(s)

=
∫ ∞

0
fs1 (x)dGt(s)

= E exp{−Λ(t).να(Acx)} = lt(να(Acx)) .

Property 3.3 Assume Λ(t) has independent increments. Then the com-
pound process Ỹ is max-id with mean measure

µ̃([0, t]×Acx) =
∫ ∞

0

(
1− e−uνα(Acx)

)
dLt(u) x > 0 ,

where Lt is the Levy measure of Λ(t).

12



Proof. As a stochastically continuous process with independent incre-
ments the time process Λ is infinitely divisible. Since Λ(t) is positive and
increasing, its characteristic function φt has the form

φt(s) = exp{
∫ ∞

0
(eisu − 1)dLt(u)}

By Property 3.2, and since lt(s) = φt(is), we can further write:

− logP (Ỹ (t) < x) = − log lt(να(Acx)) =

= − log φt(−i log f1(x)) =
∫ ∞

0

(
1− e−uνα(Acx)

)
dLt(u) .

The measure µ̃ defined by

µ̃([0, t]×Acx) :=
∫ ∞

0

(
1− e−uνα(Acx)

)
dLt(u)

has all the properties of an exponent measure on [0,∞)1+d (cf Balkema and
Resnick (1977), also Resnick (1987)). Since P (Ỹ (t) < x) = exp{−µ̃([0, t] ×
Acx)}, the compound extremal process is max-id.

In the case when Λ has homogeneous increments, i.e.

µ̃([0, t]×Acx) = t

∫ ∞
0

(
1− e−uνα(Acx)

)
dL1(u) ,

one gets the following asymptotic for t → 0 and for x far away from 0 as a
by-product of the proof:

lim
t→0

1
t
P (Ỹ (t) ∈ Acx) ∼

∫ ∞
0

(
1− e−uνα(Acx)

)
dL1(u) x→∞.

For any Borel set B ⊂ [0,∞)d and x ∈ (0,∞)d let B
x denote the set

{s ∈ [0,∞) : sx ∈ B}. Define the measure Qt on [0,∞) corresponding
to the d.f. Gt of Λ(t) by Qt(A) :=

∫∞
0 IA(s)dGt(s), A ⊂ [0,∞) and put

THQt(A) := Qt({sH : s ∈ A}). Then the d.f. of the compound process can
be expressed as follows (cf. Maejima & Sato & Watanabe (1997)).

Property 3.4 P (Ỹ (t) < x) = E(THQt)( Ax
Y (1)).

Proof. For x ∈ (0,∞)d we have

P (Ỹ (t) < x) = P (ΛH(t).Y (1) ∈ Ax) =
∫
P (ΛH(t) ∈ Ax

y
)df1(y)

=
∫
df1(y)

∫ ∞
0

IAx/y(s
H)Gt(ds) = E(THQt(

Ax
Y (1)

)) ,

13



where the integral is taken over [0,∞)d \ {0}.

Remark. By Corollary 1 in the previous section if τ−1
n ◦ θ ◦ τn =⇒ Λ

then σs ◦ Λ ◦ σ−1
s (t) d= Λ(t), ∀s > 0. For σ−1

s (t) = st the latter equation
means

Λ(t) d= tΛ(1) . (3.1)

In this section we do not assume the above limit relation. Yet (3.1) has to
hold if both processes Ỹ and Y are assumed self-similar w.r.t. the same
multiplicative group L = {ηs(t, x) = (st, sHx) : s > 0}.

Property 3.5 a) If Ỹ and Y are self-similar w.r.t. the multiplicative group
L, then Λ has stationary increments.

b) If (3.1) holds and if Y is self-similar w.r.t. L, then Ỹ is also self-
similar w.r.t. the same L.

Proof. a) Indeed, one can check that both

Ỹ (t) d= Y (Λ(t)) d= ΛH(t).Y (1) and Ỹ (t) d= tH .Ỹ (1)

entail (3.1), or equivalently

Λ(t+ h) d= Λ(t) + Λ(h) ,

i.e. Λ has stationary increments.
b) Indeed,

Ỹ (st) = Y (Λ(st)) d= Y (sΛ(t)) d= sH .Ỹ (t).

Finally, note that the compound extremal process Ỹ considered in this
section can be decomposed in a product of two independent random pro-
cesses, namely

Ỹ (t) = Y (Λ(t)) = ΛH(t).Y (1) =
(
ΛH(t)t−H

)
.
(
tHY (1)

)
=

= M(t).Y (t) ,

where M(t) :=
(

Λ(t)
t

)H
. So, the stability character of Ỹ is governed by the

self-similar process Y (t) and the volatility of Ỹ is borne by the random time
M(t).

14



4 Application to Ruin Probability

The basic Bernoulli point process N = {(Tk, Xk) : k ≥ 1}, we are dealing
with here, can be interpreted as describing a particular insurance model with

a) claim size process: the claim sizes {Xk} are positive iid random vari-
ables which df F has a regularly varying tail, namely F̄ ∈ RV−α , α ∈ (0, 1);

b) claim times: the claims occur at times {Tk}, where T1 < T2 <
..., Tk → ∞ a.s., and the number of claims in the interval [0, t] , N(t) =∑

k I[0,t](Tk), satisfies the condition (2.1), i.e. there exists a time process
θ : [0,∞)→ [0,∞) such that N(t) = k(θ(t)), k deterministic counting func-
tion whose asymptotic property we specify below ;

c) both sequences {Xk} and {Tk} are independent.
With the point process N we associate three random processes:

• the accumulated claim process S(t) =
∑N(t)

k=1 Xk;

• the extremal claim process Y (t) =
∨N(t)
k=1 Xk;

• the risk process R(t) = c(t) − S(t), where u := c(0) ≥ 0 is the initial
capital and c(t) is the premium income up to time t (hence it is an
increasing curve ). We assume c(t) right continuous.

In order to estimate the ruin probability in our framework we follow
the idea of a stable Levy motion approximation of the risk process R(t)
developed in H. Furrer, Zb. Michna and A. Weron (1997). To this end
we transform time and space properly and get a sequence of risk processes
weakly convergent to a risk process whose accumulated claim process is an
α - stable Levy motion.

Let ξn(t, x) = (τn(t), un(x)) be a norming sequence of time-space changes
and let L(.) be a slowly varying function. We suppose that τn(t) satisfy the
following condition:

d) kn(t)
kn
→ t with kn(t) = k(τn(t)) and kn := kn(1).

The choice of un(x) = k
1/α
n L(kn)x is determined by the regularly varying tail

of the claim size df F . Denote τ−1
n (Tk) =: Tnk and u−1

n (Xk) = Xk

k
1/α
n L(kn)

=:

Xnk. Now, the sequence of point processes

Nn = {(Tnk, Xnk) : k ≥ 1}

generates associated sequences of:

• the counting functions Nn(t) = kn(θn(t)), where as before θn = τ−1
n ◦

θ ◦ τn;

• the accumulated claims
∑Nn(t)

k=1 Xnk = Sn(θn(t)). Here Sn(t) is an
abbreviation for

∑kn(t)
k=1 Xnk;
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• the extremal claims
∨Nn(t)
k=1 Xnk = Yn(θn(t)) where Yn(t) is the extremal

process
∨kn(t)
k=1 Xnk;

• the risk process Rn(t) = c(n)(t) − Sn(θn(t)), where c(n)(t) = u−1
n ◦ c ◦

τn(t).

In our insurance model described by a) - d) let us assume additionally
that

e) θn =⇒ Λ , Λ in M([0,∞)).
In fact the last two assumptions are implicit conditions on the claim

times process {Tk} ( through θ(.)), e.g. they imply that

1
kn
Nn(t) −→ Λ(t), n→∞.

The following examples illustrate the impact of d) for the time change τn(t).
Example 5. For large n

a) k(t) = [at+ b] implies τn(t) =
nt− b
a

;

b) k(t) = [log t] implies τn(t) = ent ;

c) k(t) = [at] implies τn(t) =
log nt
log a

.

Assume that
∑kn

k=1Xnk converges to an α-stable rv Zα. Using the stable
FCLT for sum and maxima of positive iid rv one can see that conditions a)
- d) imply the convergences

Sn(t) =
kn(t)∑
k=1

Xnk =⇒ Zα(t), Zα(1) = Zα, (4.1)

where Zα(t) is an one-sided α-stable Levy motion, and

Yn(t) =
kn(t)∨
k=1

Xnk =⇒ Yα(t) , (4.2)

where the univariate marginals of the limit extremal process are Frechet
distributed, i.e.

P (Yα(t) < x) = Φt
α(x) = exp{−tx−α} x ≥ 0, t ≥ 0.

Let us observe that the conditions of Proposition 2.1. are satisfied, hence
we conclude

Yn ◦ θn =⇒ Yα ◦ Λ Sn ◦ θn =⇒ Zα ◦ Λ

16



By Proposition 3.21. in Resnick (1987) convergence (4.2) is equivalent
to the weak convergence of the associated point processes. Denote the limit
Poisson point process by N0, say N0 = {(Γk, Zk) : k ≥ 1}. Its mean measure
is

µ0([0, t]× [x,∞)) = t(− log Φα(x)) = tx−α .

Moreover, since the time process Λ is independent of the space points {Zk},
Λ is independent of Yα and Zα.

Let us come back to the sequence of the risk processes Rn(t). To reach
the weak convergence

Rn(t) = c(n)(t)− Sn(θn(t)) =⇒ c0(t)− Zα(Λ(t)) =: Rα(t)

we need also the asymptotic relation :
f) c(n) w→ c0, n→∞, c0 increasing curve.
Now we are ready to obtain lower and upper bounds of the ruin prob-

ability associated with the limit risk process Rα(t). Below we make use of
the self-similarity of Zα and of the reflection principle proved in H.Furrer,
Zb.Michna and A.Weron (1997, Th. 5). Denote Qt(s) := P (Λ(t) < s),
Gα(y) := P (Zα(1) < y) u0 := c0(0). Note, the constant ρ := P (Zα(1) > 0)
from [4, Th. 5] is equal to 1 here. We have

ψ(u0, t) = P ( inf
0≤s≤t

Rα(s) < 0)

= P ( sup
0≤s≤t

{[
∑

Zk : Γk ≤ Λ(s)]− c0(s)} > 0)

≤ P ( sup
0≤s≤t

Zα(Λ(s)) > u0) ≤ P ( sup
0≤s≤Λ(t)

Zα(s) > u0)

=
∫ ∞

0
P ( sup

0≤s≤v
Zα(s) > u0)dQt(v)

≤
∫ ∞

0
P (v1/αZα(1) > u0)dQt(v) = P (Λ1/α(t)Zα(1) > u0)

=
∫ ∞

0
Q̄t(
(
u0

y

)α
)dGα(y) =: ψ̄(u0, t) .

Here Q̄t = 1−Qt. On the other hand

ψ(u0, t) ≥ P ( sup
0≤s≤t

{[
∨
Zk : Γk ≤ Λ(s)]− c0(s)} > 0)

≥ P (Yα ◦ Λ(t) > c0(t)) = P (Λ1/α(t)Yα(1) > c0(t))

=
∫ ∞

0
P (Λ(t) >

(
c0(t)
x

)α
)dΦα(x)

=
∫ ∞

0
Q̄t(
(
c0(t)
x

)α
)dΦα(x) =: ψ(u0, t) .
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Here we have used again the self-similarity of the extremal process Yα. Thus,
we get finally

ψ(u0, t) ≤ ψ(u0, t) ≤ ψ̄(u0, t) .

Remember, our initial insurance model was described by the point pro-
cessN with the associated risk processR(t). Let us denote the corresponding
ruin probability by Ψ(u, t) with u = c(0). Then

Ψ(u, t) = P ( inf
0≤s≤t

{c(s)−
N(s)∑
k=1

Xk} < 0) (4.3)

= P ( inf
0≤s≤t

{u−1
n ◦ c(s)−

N(s)∑
k=1

Xnk} < 0)

= P ( inf
0≤s≤τ−1

n (t)
{u−1

n ◦ c ◦ τn(s)−
kn(θn(s))∑
k=1

Xnk} < 0) .

Now let the initial capital u and time t increase with n→∞ in such a way
that u

k
1/α
n L(kn)

= u0, τ−1
n (t) = t0. Recall c(n)(t) = u−1

n ◦ c ◦ τn(t). Observe

that under conditions a) - f) we may approximate

Ψ(u, t) ≈ ψ(u0, t0)

and consequently for u and t ”large enough”

ψ(u0, t0) ≤ Ψ(u, t) ≤ ψ̄(u0, t0) . (4.4)

Example 6. Assume our insurance model is characterized by
a) the claim size df F ∈ NDA(S1/2(1, 1, 0)). This means that Gα(x) =

2(1 − Φ(
√

1/x)) is the Levy df. Here Φ is the standard normal df. Hence
we have to choose un(x) = n2x;

b) the claim times process is determined by k(t) = [t] and θ(t) d= t.θ(1)
with θ(1) uniformly distributed in [0, 1].

Then we have to choose τn(t) = nt and consequently Qt(x) = x
t . Fur-

thermore, since c(n)(t) = 1
n2 c(nt)→ c0(t) we take c0(t) = u0 + t2. Then

ψ(u0, t0) =
∫ ∞
u0
t20

+1
(1− 1

t0

√
u0 + t20
x

)d(e−
1√
x ) (4.5)

and

ψ̄(u0, t0) =
∫ ∞
u0
t20

(1− 1
t0

√
u0

x
)dGα(x) . (4.6)
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5 Appendix

Here we give numerical results related to the computation of (4.5) and (4.6)
in the last example. Let us consider first (4.5). For the numerical computa-
tion, it is necessary to find a sufficiently large constant K1 such that:

ψ
ε
(u0, t0) =

∫ K1(ε)

u0
t20

+1
(1− 1

t0

√
u0 + t20
x

)d(e−
1√
x )

and |ψ(u0, t0)− ψ
ε
(u0, t0)| < ε, where ε > 0 is arbitrary small. We start by

observing that

|ψ(u0, t0)− ψ
ε
(u0, t0)| <

∫ ∞
K1

d(e−
1√
x ) = 1− e−

1√
K1 .

Hence, if K1(ε) = (1/ ln(1−ε))2, we achieve the desired accuracy. Moreover,
since

|ψ(u0, t0)− ψ
ε
(u0, t0)| > (1− 1

t0

√
u0 + t20
K1

)
∫ ∞
K1

d(e−
1√
x ) ,

we can find upper and lower bounds of the approximation error:

(1− 1
t0

√
u0 + t20
K1(ε)

)(1− e−
1√

K1(ε) ) < |ψ(u0, t0)− ψ
ε
(u0, t0)| < 1− e−

1√
K1(ε) .

Concerning (4.6), we arrive at similar results using the same reasoning and
the asymptotic behavior of the tail of α-stable rv X (see e.g. [11]):

lim
λ→∞

λαP (X > λ) = Cα
1 + β

2
σα .

The lower and upper bounds of the approximation error in the particular
case of Levy distribution Gα are the following:

(1− 1
t0

√
u0

K2(ε)
)(1−Gα(K2(ε))) < |ψ̄(u0, t0)− ψ̄ε(u0, t0)| < 1−Gα(K2(ε)) ,

where K2(ε) = (C1/2

ε )2 and

ψ̄ε(u0, t0) =
∫ K2(ε)

u0
t20

(1− 1
t0

√
u0

x
)dGα(x) .
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t0
2.3 2.8 3.3 4.8 5.8 6.8 7.8 8.8

1 0.3454 0.3522 0.3564 0.3623 0.3640 0.3651 0.3657 0.3662
1.61 0.3337 0.3436 0.3499 0.3590 0.3617 0.3634 0.3644 0.3652
2.84 0.3137 0.3283 0.3380 0.3527 0.3573 0.3601 0.3619 0.3631
4.06 0.2971 0.3151 0.3273 0.3468 0.3530 0.3568 0.3594 0.3612
5.29 0.2831 0.3034 0.3177 0.3411 0.3489 0.3537 0.3570 0.3592
6.52 0.2710 0.2931 0.3090 0.3358 0.3449 0.3507 0.3546 0.3573
7.74 0.2604 0.2838 0.3009 0.3307 0.3411 0.3477 0.3522 0.3554
8.97 0.2511 0.2754 0.2936 0.3259 0.3374 0.3449 0.3500 0.3536

u0 10.19 0.2427 0.2677 0.2867 0.3213 0.3339 0.3421 0.3477 0.3517
11.42 0.2352 0.2607 0.2804 0.3169 0.3304 0.3394 0.3455 0.3500
12.65 0.2284 0.2543 0.2745 0.3127 0.3271 0.3367 0.3434 0.3482
13.87 0.2222 0.2483 0.2690 0.3087 0.3239 0.3341 0.3413 0.3465
15.1 0.2164 0.2428 0.2638 0.3048 0.3208 0.3316 0.3393 0.3448
16.32 0.2112 0.2376 0.2589 0.3011 0.3178 0.3292 0.3372 0.3431
17.55 0.2063 0.2328 0.2544 0.2975 0.3148 0.3268 0.3353 0.3415
18.77 0.2017 0.2283 0.2500 0.2941 0.3120 0.3244 0.3333 0.3398

20 0.1975 0.2240 0.2459 0.2908 0.3092 0.3222 0.3314 0.3382

Table 1: ψε(u0, t0), ε = 10−6

t0
2.3 2.8 3.3 4.8 5.8 6.8 7.8 8.8

1 0.6563 0.7156 0.7583 0.8338 0.8624 0.8827 0.8977 0.9093
1.61 0.5748 0.6425 0.6941 0.7889 0.8253 0.8510 0.8701 0.8848
2.84 0.4735 0.5440 0.6023 0.7204 0.7683 0.8023 0.8277 0.8472
4.06 0.4115 0.4796 0.5386 0.6673 0.7231 0.7635 0.7938 0.8172
5.29 0.3687 0.4335 0.4912 0.6241 0.6851 0.7304 0.7648 0.7915
6.52 0.3370 0.3985 0.4543 0.5880 0.6523 0.7014 0.7391 0.7686
7.74 0.3122 0.3707 0.4246 0.5574 0.6237 0.6755 0.7159 0.7479
8.97 0.2922 0.3480 0.4000 0.5310 0.5984 0.6521 0.6948 0.7288

u0 10.19 0.2756 0.3291 0.3792 0.5080 0.5759 0.6310 0.6754 0.7112
11.42 0.2615 0.3129 0.3613 0.4876 0.5556 0.6117 0.6574 0.6947
12.65 0.2494 0.2988 0.3458 0.4695 0.5373 0.5940 0.6408 0.6793
13.87 0.2388 0.2866 0.3321 0.4533 0.5206 0.5776 0.6253 0.6649
15.1 0.2295 0.2757 0.3198 0.4386 0.5054 0.5626 0.6108 0.6513
16.32 0.2212 0.2659 0.3089 0.4252 0.4914 0.5486 0.5973 0.6385
17.55 0.2137 0.2572 0.2990 0.4130 0.4785 0.5356 0.5846 0.6263
18.77 0.2069 0.2492 0.2900 0.4017 0.4666 0.5234 0.5726 0.6148

20 0.2008 0.2419 0.2817 0.3914 0.4555 0.5120 0.5613 0.6039

Table 2: ψε(u0, t0), ε = 10−6
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