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Abstract — The matching approach to solve the so-called
correspondence problem in static, binocular stereo vision
has intrinsic limitations. Specifically, matching is of no
use in occluded areas because there is nothing to match in
those regions. Other kinds of problems, like large regions
of the image with a very homogeneous texture result in
erroneous matching in almost every case. Disparity in such
regions can be determined with a different approach, based
on well known facts and principles of stereo vision. One
such method is proposed in this paper and its performance
is compared to state of the art stereo algorithms. The
proposed methodology is based upon diffusion of the most
likely disparity hypotheses for pathological regions. This
diffusion approach is founded upon well known principles
of stereo vision.

I. INTRODUCTION

Binocular stereo vision with fixed non-color cameras
with planar retinas is a standard problem in many ap-
plications, mainly in robot navigation and passive range-
finding applications. There are quite a few solutions avail-
able in the market and new algorithms are proposed reg-
ularly. Yet, in spite of more than 20 years of research, the
results attainable with available methods tend to show
some defects. Such are becoming more important as more
applications of stereo-vision to computer graphics and vir-
tual reality are developed. Moreover, these defects reveal
basic mechanisms that have not been well understood in
the process of stereoscopic vision. It still is difficult to ob-
tain detailed and smooth disparity maps with good edge
definition, although some reported methods approach this
ideal under certain circumstances.

Some of the problems in matching show up as
o “disparity spills” (objects in the foreground appear fat-
ter as they get closer to the cameras), and
o incorrect disparity edges.

The existence of these problems suggests that the
matching (or correspondence) problem has not been ap-
propriately approached. Matching is impossible in oc-
cluded areas because occluded points are inexistent in
either image of a stereoscopic pair. Most existing algo-
rithms come up with some disparity value assigned to
those areas, while a few algorithms locate occluded areas
and leave them blank. Whatever way these disparities are
assigned it involves a guess, which in some algorithms is
not even consciously made, although many use heuristics
(justified to different degrees) to fill the gaps.

Matching large homogeneous areas is also an ill-posed
problem, since all points of these regions would match al-
most all points of the corresponding region in the other
image of the stereoscopic pair. These facts imply that
stereo algorithms should provide disparity values for these
regions, which are not found by a matching process. We
propose an approach to fill those gaps with the most likely
hypothesis based on a novel framework for Bayesian esti-
mation and diffusion of disparity values.

Estimated disparity functions have a domain that cor-
responds to either image of a stereoscopic pair, so we
should always get two disparity images, one referred to
the left image and one to the right. Because of the defi-
nition of disparity, as the difference in relative position of
the projections of a point on the left and right cameras,
knowledge of the disparity assigned to one point in either
camera allows finding the correspondent point on the op-
posite camera. Thus, if we go from one point in a camera
to its corresponding point in the other camera and back,
we should reach the same point from which we started
this process. This is not always the case for three basic
reasons:

e occluded points can not be mapped to the other side,
e it is very likely that there are mismatches, specially in
areas of very homogeneous intensity, or where correspond-
ing images are greatly distorted,

« disparities are only estimated to a certain precision.

We use these facts to evaluate the consistency of the
two disparity images output by the algorithm, specially
for pathological regions (occluded, homogeneous, and very
distorted areas). The proposed approach locates patho-
logical areas, assigns them disparity values which are the
most likely according to the context, and evaluates the
consistency of these assignements with respect to the basic
relation between left and right images, given the dispari-
ties. When there are inconsistent points, the correspond-
ing estimates are revised in accordance to the context and
consistency is again assessed. If the stereoscopic pair of
images is not greatly pathological, this process can be
made to converge until an arbitrarily consistent estimate
is obtained.

A brief review of the state of the art in static stereo
algorithms is given in section II. The basic principles of
stereo matching are reviewed in section III. Section IV
describes the novel technique used to compute disparity



values, stating it within the framework of Bayesian esti-
mation. Section V explains the concept of disparity con-
sistency, which is later used to assess quality in the patho-
logical regions reconstruction process. Then in section VI
we describe the proposed methodology to find implicit oc-
clusions and homogeneous areas, measuring consistency of
disparity estimates and restoration of disparity in those
regions. The results obtained from this method’s applica-
tion can be seen in section VII, where a comparison with
some state of the art algorithms is shown.

II. STATE OF THE ART

Here we provide a brief review of the state of the art
in stereo vision. An exhaustive survey of the literature is
beyond the scope of this document. Some books cover the
basics of the subject: [1], [2], [3], [4], [5], [6]-

Bela Julesz was using computer synthesized stereo-
scopic pairs to elucidate binocular depth perception in the
1960’s [7]. Some of the first computer algorithms to find
depth from an arbitrary stereoscopic pair were devised in
the 1970’s [8], [9], [10], when researchers developed coop-
erative algorithms to investigate stereopsis.

The correspondence problem (stereo matching), has had
a more or less continuous evolution with its ups and
downs. From the beginning, the difficulty of the matching
problem was recognized and a set of constraints and rules
were proposed to limit the number of possible matchings
[10]. Since good quality matchings occur only sparsely
along a stereo pair many algorithms have concentrated
on producing a sparse disparity map, [5]. Also, many al-
gorithms have been devised to produce a dense disparity
map. A review of the vast literature that has been pub-
lished on stereo matching will not be attempted in this
document but readers may refer to [11], and [12].

The many different approaches that have been devel-
oped differ in the kind of features or tokens used for
matching, or in their conception of matching space, or
in the nature of matching algorithms, or in the metrics
used to judge similarity, their scope and of course, in the
multitude of implementation details.

A variety of features have been used for matching by a
number of authors including;:

o Pixel to pixel stereo: Regardless of any interpolation
procedure or any mode of interaction with neighboring
pixels, or any support aggregation scheme, algorithms use
intensity values of individual pixels to estimate disparity
[13], [14].

o Window based (fixed 2D window): The basis for com-
parison of positions on different images is the result of a
computation on the elements of a neighborhood of fixed
size. Windows have been very popular and are traditional
within the correlation approaches [5]. This approach has
been made more robust by methods that work on a rank-
ing of intensities of the window elements and use spe-

cial metrics to compare candidate matchings [15]. An
approach using more than one fixed window for each po-
sition is described by [16]. Other window-based features
can involve the output of filters [17], or edge detectors
[18].
o Variable 2D window: Some approaches adaptively in-
crease the size of an initial window, depending on a thresh-
old on a variance measure [19], [20], being more robust
in large homogeneous areas of stereoscopic pairs. An ad-
vanced variable window method was proposed by [21] that
finds the affine transformation that deforms the window
in one of the images in such a way that a correlation mea-
sure is optimized.
o Arbitrary feature vector: A feature vector for each po-
sition is constructed with results of computations such as
the output (magnitude and phase) of a bank of Gabor fil-
ters that sample all possible orientations, frequencies and
scales, (as reported in [22]. Another example is a feature
vector with three components: grey-level intensity in the
first component, and derivatives along the z and y direc-
tions in the second and third components.
« Variable support aggregating region: Some support
aggregation schemes using nonlinear diffusion implicitly
work with 2D or 3D variable regions with sizes depending
on the number of times the process is iterated [23], [24],
[25].

All of the above choices may use color information for
matching purposes increasing reliability significantly.

The matching space is the geometrical disposition of in-
formation useful for matching. It may be imagined as a
continuous space, but algorithms work with sampled, dis-
crete versions of it. For most matching procedures work-
ing with epipolar lines it is a 2D space with its axes corre-
sponding to epipolar lines from the left and right images.
For 3D approaches it usually is a 3D space where two
of its coordinate axes are just the horizontal and verti-
cal axes of one of the images, the third axis representing
disparity or depth. Some approaches define and use a
more sophisticated matching space where it is a projec-
tive 3D space, allowing conversion between disparity and
depth, and transformation of information between differ-
ent points of view [26]. Sometimes adding extra dimen-
sions on top of this, which aids in decision making for
disparity, color and transparency retrieval [25].

The nature of the matching algorithm can be very dif-
ferent from one approach to another:

o Dynamic programming which minimizes some sort of
cost function is a popular choice because it allows natural
statements of some constraints such as occlusions, conti-
nuity and monotonicity [16], ordering, exclusion of double
occlusions [14], etc. See also [27], [28], [13], [29], [14].

o Graph theoretical algorithms play a role in approaches
that state the matching problem as a problem in a graph
[30]. When stating it particularly as a maximum flow



problem there is no need for explicit use of epipolar ge-
ometry, allowing use of multiple cameras with arbitrary
geometries. The solution gives a minimum-cut that cor-
responds to disparity [26].

o The Bayesian approach allows a probabilistic statement
of the matching problem, involving an imaging model that
takes into account a priori information necessary to add
constraints to possible solutions, and a prior model that
reflects statistical properties of scenes where the theory
is supposed to work. Bayes’ Theorem combines these
models giving a posterior distribution. Minimization of
the expected value of a cost function computed with re-
spect to the posterior distribution gives the MAP (Maz-
imum a Posteriori) or the MPM (Mazimizer of Poste-
rior Marginals) estimator, depending on the cost func-
tion definition. The optimization problem may be solved
using dynamic programming [28], [16] or when working
with paradigms like Gauss-Markov-Measure-Fields [31],
[32] the problem will be solvable using some other stan-
dard optimization techniques.

o 3D support region: Using this kind of support region al-
lows direct expression of conditions or constraints such as
limited disparity gradient [33], or the coherence principle
[34].

o Phase-Based Methods: Images are convolved with
quadrature filters (v.g.; Gabor filters) and disparity is
computed from the measured phase difference [35], [36].
The simplicity of these approaches is appealing and they
automatically provide subpixel precision, however, the
disparity range in which these methods are reliable is usu-
ally small (about one half the filter’s wavelength) and it
is difficult to obtain precise disparity edges. For these
reasons they were not implemented for comparison and
discussion in this document. This approach can be com-
bined with motion cues to improve performance [35].

o A geometric approach using a partial differential equa-
tions (PDE) framework is described in [37]. It defines
a variational principle that must be satisfied by the sur-
faces of the objects in the scene and their images (more
than two). The derived Euler-Lagrange equations pro-
vide a set of PDE’s which govern evolution of an initial
surface towards the observed scene objects. When im-
plemented with level sets surface evolution it can manage
multiple objects. It assumes that scene objects are graphs
of smooth functions and that they are perfectly lamber-
tian. It can handle multiple views. It has been applied to
simple synthetical objects.

o Cooperative algorithms were developed which operate
on many “input” elements and reach global organization
through local interaction constraints[10]. Two constraints
were identified: C1, where ach point has a unique po-
sition in space at any time; and C2, where matter is
cohesive. These constraints lead to two rules: R1, on
uniqueness (each point from each image can be assigned

at most one disparity value); R2, on continuity (disparity
varies smoothly almost everywhere). These constraints
and rules have been applied to random dot stereograms.
Recently, Zitnick and Kanade have proposed a coopera-
tive algorithm that works with 3D support to enforce or
inhibit match values in a 3D disparity space ([38]).

o Multi-frame procedures use more than two images to
strengthen the certainty of matches or simply provide a
natural way to include information from more than two
images [39], [40], [41], [42], [43], [37], [25].

o Multi-resolution approaches estimate disparity on a hi-
erarchy of scales, processing large scales first and us-
ing these estimates to initialize matching procedures on
smaller scales [44], [45], [46].

o Neural Networks have been used to infer dense dispar-
ity maps without iterative calculations through a special
training method [47], and also sparse disparity maps [48].
e The stereo matching problem has been stated as a
nearest-neighbor problem through the use of intrinsic
curves, which are paths that a set of image descriptors
trace as an image scanline is traversed from left to right
[49] (reminding space phase trajectories in dynamical sys-
tems).

Metrics are those procedures used by matching algo-
rithms to judge similarity between features. If features
are pointlike, such as single pixel grey-scale values they
may be compared using the absolute value of the differ-
ence of candidate points, as in [50]. Alternatively, squared
differences can also be used [40]. If 1D, 2D or 3D features
are used, the Ly, L, or L, norms may be used, or alterna-
tively a correlation measure [51], [15]. Some probabilistic
approaches using Bayesian estimation employ likelihoods
as metrics [52], [31], where greater likelihood values cor-
respond to greater similarity.

The scope of most matching algorithms extends to a dis-
parity map, though there has been some recent interest in
reconstructing realistic 3D scenes mapping textures on a
depth map (with applications to virtual reality in mind).
These algorithms require interaction with graphics which
poses new problems, since the quality of the output of
most matching algorithms is not enough to meet the de-
mands of these new applications [53], [54], [50], [55]. Some
matching algorithms are now designed to retrieve dispar-
ity, color and transparency simultaneously [25].

Matching algorithms can be found in software or hard-
ware implementations, sequential or parallel. Some gen-
eral purpose stereo systems include two, three or more
cameras, and allow video rate computation of disparities.

III. CONSTRAINTS IN MATCHING

A number of constraints have been mentioned in the lit-
erature to reduce the number of mismatches and increase
the confidence of given matches. Since they are of very
different nature from each other, it is not easy to imple-
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Fig. 1.
Matching space.

ment them all in a single algorithm. Although a posteriori
checking for each constraint can always be done.

A. Uniqueness

Any valid matching should assign each point in the ref-
erence image to only one point in the search image, and
viceversa. Most matching algorithms ensure uniqueness
in the assignement from one image to the other, but not
in the opposite direction [45].

B. Monotonicity and Ordering

The monotonicity constraint can be formulated in a
right or left matching space, as defined above in section
1. A matching defines a curve in this space. Each point
of a matching curve indicates that a feature from the left
image is matched to a feature on the right image.This
function should be monotonically increasing, otherwise
the uniqueness constraint would be violated. When the
monotonicity constraint is required to avoid simultaneous
occlusion it is called the ordering constraint (see [16].

C. Disparity Gradient

When following a surface with a slope with respect to
the image plane (in rectified images), the change in dis-
parity with respect to the displacement of the projected
point in the corresponding epipolar line is bounded. There
is psychophysical evidence that this constraint is enforced
by the human visual system [5].

D. Coherence

Disparity change within a small enough neighborhood
should be limited. Most of the disparity values should be
alike within the neighborhood. In other words, disparity
surfaces should be piecewise continuous [34].

E. Disparity Consistency

In any two perfect disparity maps obtained from plain
binocular stereo vision, corresponding points of each dis-
parity map (left and right referred) have the same dispar-
ity values assigned, with opposite signs.

IV. ESTIMATING DISPARITY

The target for reconstruction is a disparity map (re-
ferred to either the right or left image) which is modelled
as a random scalar field fr, fr € Q C R (where Q is
the set of all possible disparity values), defined over a dis-
crete base space S (usually a 2D lattice coinciding with
the pixel structure of an image). When not distinguishing
between left and right referred disparity fields they will be
denoted by f.

Reconstruction of the disparity field under these cir-
cumstances is an ill-posed problem (in the sense of
Hadamard), because it does not have a unique solution.
Tychonov’s regularization theory allows introduction of a
priori information necessary to solve this problem. The
problem can be stated under the framework of Bayesian
estimation.

If observed intensity values (images of the stereoscopic
pair) are denoted by gr,gr € R C R an expression for
the posterior probability of the reconstructed image given
the observed image is

P, P
_ gr.grlf 4 f (1)

P =
floz.gn PQL:QR

by the Bayesian relation. When the necessary terms for
this expression are found, those values of f maximizing
this expression will provide an estimator for the recon-
structed image (in fact, this would be the Maximum A
Posteriori estimator). This and other estimators can be
obtained by computing the expected value of suitable cost
functionals with respect to this distribution.

The term Py, denoted as the prior distribution, can be
computed from the fact that f is a random scalar field
that is defined over a lattice (as described above).

Hammersley-Clifford’s theorem says that the state of
the Markov Random Field can be described by a Gibbsian
distribution

2)

1
Py = 7; P l—v%: Ve (f)

where Z; is a normalizing constant, vy is a constant, Ve (f)
is a potential function that is evaluated and summed over



the cliques of the lattice. The specific potential function
used in this case will be the Ising potential.

-Lif fro = fs
Vi , # s ®)

where f, represents the value of field f in position r € S,
in this case v is a parameter controlling the granularity
of the reconstructed field and (r,s) represents a clique
consisting of nodes r and s.

The term P, ,.;; can be computed from the prior
knowledge that noise is additive and has a contaminated
gaussian distribution ® (z,0,¢), (see equation 4).

2”‘22) +a] 4)

Virsy (f) = {

B (z,0,¢) = zig [(1—6)exp<

Then for each node (4, 7) in the field

PgL,gR‘f (7'7.7) = Q(ARLa(T:E)

where

Agrr = gr (74,9;) — 9. (zi + [ (zi,95) ,95)

is the basic relationship between the left and right images
of a 3D-point given by the disparity function f (z;,y;).
Since noise is identically, independently distributed we
have

P

9r.9R|f wgrlf (67)

- 1Un
= H‘I) ARL,O',EJ) (5)

2]

Note that P,, . in the denominator of (eq. 1), can
be regarded as a normalization constant Z7, hence the
posterior distribution can be written as

Phigean = 70 (~U (1) ©)

where (after renaming and simplifying constants)

Zp ARL,O'E +)\Z Z V frafs (7)

T seN(r)
where
N (r) = {s € S|s is neighbor of r} (8)
and
p(Z,O’,E) = —ln('l) (Z7075))' (9)

The functional U (f) is termed the energy functional.
Maximizing Pf|y, 45 is equivalent to minimizing U (f) .

A. Cost Functionals and Estimators
A cost functional ¢ ( 7 f) measures how different an

estimated configuration f is from the true one f. The es-
timation problem can be stated as finding f such that the

expected value of a cost functional ¢ < f, f) is minimized.

Ifc (f, f) is such that

e (r.4)={

then minimizing the expected value of ¢ ( 1, f) with re-

0iff f, = fr, Vres

1 otherwise (10)

spect to Py, 4, 18 equivalent to maximizing Py, ..
itself. Indeed, if the most probable configuration of f

given gz and gg is chosen as f then E (C (fa f))

will have the highest value
FXé Pf\gL gr Will h P*‘g o he high 1

of Pye, ,gR) multiplied by a 0 coefficient, whereas choos-
ing any other configuration will have this value multiplied
by a coefficient of 1 and the 0 coefficient will multiply
another Pyg, o, < Pf, . (note that all expressions for

E (c ( 7 f)) for all possible choices of f will have the

same probability terms, one of them with coefficient 0 and
all others with coefficient 1), this means that the expected
cost for the most likely configuration will be less than or
equal to the others. The corresponding maximizer is called
the mazimum a posteriori (or MAP) estimator[56]. When
seen from this point of view the MAP estimator looks too
conservative since the penalty for one mistake or for any
number of mistakes is the same. Better estimators can be
obtained in this way by using different cost functionals,

for example, taking
6 (- 1))

(1) =X (-
reES
will lead to another optimal estimator by applying the
general result stating that, if the posterior marginal dis-
tributions for every element of the field are known, then
the optimal Bayesian estimator with respect to any addi-
tive, positive definite cost functional ¢ may be found by
independently minimizing the marginal expected cost for
each element [57], [56]. Thus, in this case, knowledge of

the marginals
Z Pf|9L,gR (f
fifr=q

(11)

;9L,9R)

(where P, (q) represents the probability that a certain
node r € S has the disparity value ¢ for all possible con-
figurations of f, given g, and gg), allows expressing the
marginal expected cost for an arbitrary element r € S

E(CQLﬂ))=)§%(1—6<ﬂ~—ﬂ))34ﬂ)

g



By an argument similar to that one given for cost func-
tional 10, it can be seen that minimizing the expected
value is equivalent to maximizing the marginals. So, the
optimal Bayesian estimator in this case is ff = ¢ € Q
such that P, (q¢) > P, (z) for all  # ¢. This estimator is
called the mazimizer of the posterior marginals (MPM).

To compute optimal estimators of this kind (using cost
functionals of the form of eqn. 11), the marginal distribu-
tions must be computed, or approximated. However, tra-
ditional approaches based on algorithms like the Gibbs
Sampler (see [58]) may require a very large number of
steps to get a good estimator of the true marginal distri-
butions.

B. Gauss-Markov Measure Fields

Calculation of the estimators mentioned in the last sec-
tion (particularly the MPM), can be approached by using
Gauss-Markov Measure Fields (from now on they will be
referred to as GMMF’s, see [31], [32], [59]).

The marginal probability distributions mentioned in
section IV-A can be seen as random variables that
are to be estimated. In their discrete version they
may be seen as vector valued random variables p, =
(0r (@1) - pr (gm)) ", m = |Q|, (Q is the set of dispar-
ity values considered for matching), defined on the nodes
r € § of an MRF (called F), with the property that
> hey pr (gr) = 1 (from which they may be also referred to
as discrete measures), where p, (¢;) represents the prob-
ability that the field F' has the value ¢; € Q in node r.
Marroquin has shown that the neighborhood structure of
such a vector valued MRF has the same neighborhood
structure as the single valued MRF used in section IV-A,
(see [32]).

The GMMF approach tries to model the marginals from
the posterior distribution (see eqn. 6). The proposed

model is 1
P(p) =5 exp (U (p)

with
Up)=> lpr) =@ +A)_ Ip(r)—p)° (12)
T (r,8)

where (r, s) are cliques of lattice S. Here the likelihood
p (r) is given by
p(r) =@ ((9r (i, y;) — 9z (i + ar,y5)) ,0,6)  (13)

Of course, there could be sites in the lattice S where
there are no observations, or it is known a priori that
the observations have a low confidence. In this case, the
corresponding measure is a uniform measure

(14)

see [59] for details.

- w

Fig. 2.
Cross section of a GMMF. Darker regions correspond to
disparities with higher probabilities.

A GMMF then, models disparity as a multilayered ar-
ray on top of the image lattice S, where the modes of the
measures define the disparity surfaces that correspond to
the 3D scene (see Fig. 2). An optimal estimator can be
found by maximizing the posterior probability or equiva-
lently, minimizing the energy functional.

A discrete GMMTF can be regarded as a set W™~ ! of m-
dimensional vectors with real, positive components that
add up to unity. In other words, W™! is the simplex de-
fined by the intersection of the (m — 1)-dimensional sub-
space 1 + Z2 + ... + T, = 1 with the region of points
with positive coordinates. Its vertices are the m points
(1,0,...,0), (0,1,...,0),...,(0,0,...,1). Thus, taking the Eu-
clidean metric, the maximum possible distance between
any couple of measures is /2. The most even distribution
is represented by the barycenter of this simplex, and the
most uneven distributions lie in the vertices. Unimodal
distributions are points close to the vertices, multimodal
distributions lie close to some of the barycenters of the
faces and sides of 9W™~! the boundary of W™~!(see
Fig. 3). Discrete measures may be gradually flattened or
sharpened to control coupling between layers, though this
should be done with care, since convolving blindly with a
smoothing kernel would destroy the normalization prop-
erty. Nevertheless, it is easy to see that the points of the
rectilinear segment passing through the barycenter and
the point corresponding to a measure, extended until it
intersects one of the faces of the simplex, represent a fam-
ily of discrete measures having the same modal structure
but ranging from the sharpest (in one side) to the flattest
in the center. This family will be referred to as the “scale
space” of a discrete measure.

To compute the optimal estimators mentioned in sec-
tion IV-A, the energy functionals (q.v., eqn. 7) are mini-
mized with a simple iterative method obtained by equat-
ing the gradient to zero (VU = 0) and solving for the
components of the measure vector. This process can be
interpreted as a discrete-time dynamical system whose up-
dating formula is

t+1 _ pr+ A Ese/\fr Pl
T 14+ AN

where N, is the set of neighbors of r.

(15)
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Fig. 3.
The simplex W™, the space where discrete measures
live.

Since the sum of the coefficients of the measures in the
right is 1, the updated vector will lie within the convex
hull of those measures and therefore will lie on the same
plane. This means that if the initial vectors are measures
(their components are non-negative and add up to unity),
then the updated vectors in this process will keep being
measures.

Since U (p,; pr) is convex its unique minimum will be
the fixed point of this dynamical system. It has thus been
shown that estimators based on posterior marginal prob-
ability distributions exist and can be computed by solving
a simple optimization problem.

Parameter A in the GMMF energy functional (see
eq. 12) is generally not known, but it may be noted that
when the observations term is eliminated from this for-
mula, then the regularization parameter becomes equiva-
lent to time and proportional to the number of iterations
(see [60], [61]). The corresponding updating formula turns
out to be an ordinary average

pt+1 — ZSENT pg (16)
" N

This dynamical system is the foundation of the cellular
automata used to implement regularization in this pro-
posal although of course, there are many efficient meth-
ods that can find the regularized estimator, such as con-
jugate gradient or using the cosine transform. In any
case, GMMF’s are a much more efficient methodology
for obtaining optimal estimators than the use of Monte
Carlo techniques and provide a simple way to incorpo-
rate any a priori information. For example, Dynamic
Programming matching algorithms naturally facilitate en-
forcement of the ordering constraint, which is important
a priori knowledge, difficult to implement in other con-
texts. To illustrate this point, a solution from a Dynamic
Programming matching algorithm (run on the Matiushka

Fig. 4.
Matiushka stereoscopic pair. Left image (a), right image

(b).

Fig. 5.
Incorporating information from different sources using
GMMF’s.

stereoscopic pair, see Fig. 4) was used to reinforce the en-
tries in each measure of a GMMF that resulted from a
matching algorithm that ignored the ordering constraint.
In each measure the entry corresponding to a (order con-
straint compliant) match was multiplied by a constant fac-
tor 1 4+ £, and measures were subsequently renormalized.
In Fig. 5(left) the MLE after reinforcement looks exactly
like the output of the DP algorithm, showing the typical
artifacts of those algorithms (flat surfaces and horizontal
lines). After a few regularization iterations most of them
have disappeared while the ordering constraint prevails on
the disparity surfaces, see Fig. 5 (center). The frame on
the right of Fig. 5 shows the disparity results superposed
to one of the original images of the stereo-pair.

V. DISPARITY CONSISTENCY

The epipolar constraint (see [5]), states that the two
possible projections of a point of the 3D scene (one on
each camera), lie on corresponding linear segments of the
cameras, so matching corresponding points is an inher-
ently 1-dimensional problem.

The basic relation for disparity in stereo using coplanar
cameras has a simple expression when stated for corre-



sponding segments:

_

d=x;— z,
where z; and z, are the 1D-coordinates corresponding to
each segment, f is the focal length, b is the baseline and
Z is the depth coordinate.

After any matching process for binocular stereo, two
disparity functions can be obtained, one referred to the
left camera and another to the right one. Discrete dis-
parity functions d; (z), € {l,r} assign a real disparity
value to each discrete position of corresponding segments
Si, i€ {l,r} in either camera, i.e.;

dz’ (xz) € [dmin; dmax] g R, i€ {la T} . (18)

Then, a basic model for matching can be written as

follows

Ir (mT) =a1q (wT + dT ('737‘)) +n (wﬁ 0, 5) + az, (19)

gt (21) = a1gr (v + dy (1)) + 1 (21,0,€) + az,

where g, and g; are the intensity functions for each corre-
sponding segment, a; models difference in contrast be-
tween cameras, as represents a difference in bias and
n(z;,0,¢),i € {l,r} stands for noise, modelled with a
random variable having a normal distribution contami-
nated with a constant, (see eqn. 4).
Assumption of the following ideal conditions:

« perfect matching,

« absence of noise,

« 1o photometric variation and

« no projective distortion,
simplifies the statement of the relations between corre-
sponding camera points. If z,, € S, and z; € S; are corre-
sponding points in segments S, and &;, respectively, then
under these ideal conditions their intensity values should
be the same, i.e.,

gr (xr) =g (ml) >

where
r = zp+d(z), (20)
z, = z+d(z),
So we may state that
dr () = —dy () - (21)

Relations (20) show that if d; and d,. are known, then it
is possible to map points from one camera of the stereo-
pair onto points of the opposite camera. Let correspond-
ing points be called “conjugates”. Notice that the con-
jugation mapping T, : =, — x, + d, (z,) is defined only
for those points that are visible in the right camera of the

stereo-pair, and similarly Z; : z; — x; + d; (z;) is only
defined for those points visible in the left camera. The
image of the left camera on the right camera under this
mapping is S;. The complement of its intersection with
the points of the right camera are the left occlusions, and
the right occlusions are defined in a similar way, i.e.:

O=(Sns),

— !
0,=(5nS) . (22)
For all points z in either camera but not in the occluded
areas, the conjugate mapping is involutive, i.e., if O =
0O, U O, we have
T=1z, Vx¢O. (23)
In practice, the assumptions mentioned above will be
violated to some degree, resulting in inconsistent disparity
assignements, i.e., equality will not hold in eqn. (23). So
it is possible to use the SSD metric to assess the degree of
inconsistency between left and right disparity functions:

To(d) =Y (z-7)°, ief{lr}, z¢0.

TES;

(24)

When a process, such as that proposed in the next sec-
tion, assigns disparity values to the occluded regions O,
the inconsistency of the assignement can be evaluated
with essentially the same metric, though applied to all
points or to specific regions in either image:

Z(d;) = Z (z-7)°, ie{,r}.

TES;

(25)

VI. PROPOSED APPROACH

The proposed general strategy consists in finding those
regions of each map whose values cannot be reliably de-
termined with an ordinary matching process, and to fill
them by propagating the best disparity hypotheses based
on known, sound principles of stereoscopic vision, for ex-
ample, the coherence principle (see section IIT). These ar-
eas are occlusions, regions with very homogeneous texture
and points where matching is suspected to be unreliable
because some matching quality criterion is not met, such
as those having a very flat marginal probability distribu-
tion of disparity or having its maximum in either end of
the searching interval considered.

After this process, left and right disparity consistency
can be checked and inconsistent regions filled with the
same hypotheses propagation processes.

Large unreliable regions are not desirable because they
take longer to fill and because reliability of the substi-
tute values decreases as those areas increase (coherence is
valid only in small neighborhoods, unless available a pri-
ori information determines large coherent regions). The



Fig. 6.
Pineapple stereoscopic pair. Left image (a), right image

(b).

straightforward approach would be to find all pathological
regions first (occlusions, homogeneous, unreliable and in-
consistent areas) , and then to propagate hypotheses in a
second stage, tends to produce large unreliable areas. So,
it is wiser not to deal with all these regions at the same
time. The following general steps lead to good results
(they are later discussed in detail):
1. Compute initial MLE of disparity referred to the tar-
get view.
2. Detect homogeneous areas on the target view, where
matching is known to be deficient.
3. Regularize non-homogeneous regions.
4. Define unreliable regions from homogeneous areas.
5. Propagate hypotheses in unreliable regions
6. Detect occlusions determined by the obtained dispar-
ity maps.
7. Define unreliable regions from occlusions
8. Propagate hypotheses in unreliable regions.
9. Repeat
10. Define unreliable regions from areas with inconsis-
tent left-right disparity.
11. Propagate hypotheses in unreliable regions.
12. Until convergence

The strategy was applied to the Pineapple stereoscopic
pair (see Fig. 6) to illustrate the results.

A. Step 1: Computing Initial MLE of Disparity

The MLE of disparity is found by computing the likeli-
hood field p and choosing the value of disparity gmax that
maximizes the likelihood defined on that position; i.e.,
gmax = argmax, P, (¢). An example of such an estimator
can be seen in Figure 7.

B. Step 2: Detecting Homogeneous Areas

Homogeneous areas are detected with a threshold on
gradient magnitude. The gradient is computed using con-
volution with gaussian derivatives. The parameter values
used are ¢ = 0.33 for the gaussians and the threshold

Fig. 7.

Fig. 8.
Homogeneous regions.

6 = 0.015. Then, a point (¢, j) is considered to be in a ho-
mogeneous area if the gradient magnitude ||V, (2, 5)|| < 6.
An example of these areas can be seen in Figure 8.

Homogeneous regions are filled propagating the best
disparity hypotheses with a three step diffusion process
described below in section VI-E.

C. Step 8: Regularizing Non-homogeneous Regions

Those areas complementing the homogeneous regions
found in the previous step are regularized with a diffusion
process implemented with a cellular automaton updating
layers of the disparity GMMF only on those positions out-
side the marked homogeneous regions.

Algorithm 1: Cellular Automaton for Diffusion in a Se-
lected Area

Input:

o A GMMF F consisting of the marginal probability dis-
tributions of disparity p. (qx), gxr € Q, k € {1,...,m},
over a lattice S corresponding to either the left or right
image of a stereoscopic pair, r € S.

e A mask (2D array) H, having a value of 1 on those
positions r € S lying on a homogeneous region and 0



elsewhere.

Description: This algorithm processes each layer of the
GMMF by substituting the value in each position marked
as non-homogeneous with the average of its neighbors (if
they exist). Values in homogeneous areas are left without
change. It implements the updating formula shown in
eqn. (16).

After all layers of the disparity GMMF have been pro-
cessed, a new estimate of disparity can be obtained by
choosing for each position r the disparity value that max-
imizes the measure P, defined on that position (see section
IV). This process should be applied for as many iterations
as necessary to clean the treated areas from noise without
excessive blurring of contours. The results of this step are
shown in Figure 9 (a).

D. Step 4: Defining Unreliable Regions from Homoge-
neous Areas

The homogeneous regions found in Step 2 must be ini-
tialized before diffusion with boundary conditions is per-
formed. These conditions are determined by the following
Algorithm 2:

Algorithm 2: Determination of Boundary Conditions

Input: A disparity map D;; where ¢ = 1,...,n, j =
1,...,m, taking values from a known range [dinf, dsup]. A
mask array Z;; where Z;; = 1 iff (4, j) is included in an
unreliable region, and Z;; = 0 elsewhere.

Description: The algorithm scans each line of the mask
Z;;. When it enters an interval marked with 1's, it records
the corresponding disparity value from D;; at the begin-
ning of the interval, and records the disparity value at
the other end. It then compares both disparity values
and marks the end corresponding to the smaller value as
initial condition for diffusion by setting Z;; = —1. This
leaves mask Z;; with value 1 on unreliable regions, 0 out-
side unreliable regions and —1 on positions whose dispar-
ity value should be taken into account, but not updated,
by the diffusion process.

E. Step 5: Propagating Hypotheses in Unreliable Regions

Unreliable regions coming from occlusion or homoge-
neous regions should be assigned disparity values on prin-
ciples other than matching, such as coherence [34], conti-
nuity [10], and adjacency).

Propagation of disparity hypotheses on unreliable re-
gions is carried out with non-homogeneous diffusion with
boundary conditions. This step can be implemented with
the following cellular automata that updates the disparity
map, using information from map Z;; as left by the just
described Algorithm 2.

Algorithm 8: Cellular Automaton for Diffusion with
Boundary Conditions

Input:

Fig. 9.
Left: Regularizing the complement of homogeneous
areas. Right: Regularization of homogeneous regions.

o A disparity map D,., where r € S, the pixel lattice of
either view (left or right).

e An array Z,, where r = (z',j)T € S, and Z, is the
output of Algorithm 2, indicating boundary conditions
for diffusion.

Description: This algorithm performs diffusion with
boundary conditions along an unreliable region. It does
so by iteratively updating the value of the disparity map
with the average of those neighbors that are either bound-
ary conditions or points inside the unreliable region. It is
based on formula (16), modified to diffuse with boundary
conditions.

Updating is done until convergence.

The results of this step are illustrated in Figure 9 (b).

F. Step 6: Detecting Occlusions Determined by the Ob-
tained Disparity Maps

Right and left occlusions determined by the so far esti-
mated disparities are detected as described in section V.
The results of this process are illustrated in Figure 10

(b).
G. Step 7: Defining Unreliable Regions from Occlusions

Occlusions obtained in Step 6 are usually too irregular
since they contain lattice induced occlusions, which are
produced by discrete changes in disparity. A regularized
unreliable region is obtained by the following method:

1. Construct a single layer GMMF with p(r) = 1 if r is
in the occluded region O, as determined by Step 7 (see
VI-G), and p(r) = 0 otherwise. Apply Algorithm 1 (see
VI-C) to GMMF p (r) for as many iterations as necessary
to achieve a regular region.

2. Apply a threshold 6 on the result such that O, :=1if
O, >0, O, := 0 otherwise.

3. Apply Algorithm 2 (see VI-D) to O,, to determine
boundary conditions.



Fig. 10.
Left: Right occlusions. Right: Significant occlusions are
masked and their boundaries are regularized.

Fig. 11.
Left: Disparity after propagation of the most likely
hypothesis in occluded regions. Right: Disparity
function superposed to original view.

The results of this process are illustrated in Figure 10
(b) and Figure 11.

H. Step 8: Propagating Hypotheses in Unreliable Regions

By definition occluded points can not be matched and
no disparity value can be assigned to occluded regions
solely on the basis of matching. Disparity hypotheses for
these regions must be derived from application of other
principles, like Marr and Poggio’s continuity constraint
[10], Prazdny’s coherence constraint [34], the occlusion
constraint and the adjacency principle (see [14]). This is
just what this step achieves and is executed exactly as
Step 5 , only over the output of Step 7 . Results after
hypotheses propagation in occluded areas are illustrated
in Figure 11.

Fig. 12.
Regions with inconsistent disparities.

Fig. 13.
Left: Reconstructed disparity function. Right: Disparity
values superposed to original image.

1. Step 9: Defining Unreliable Regions from Areas with
Inconsistent Left-Right Disparity

Disparity functions map points from one image to an-
other. Repeated application of this kind of mapping
should bring us map to the starting point. When this is
not true, disparity functions are inconsistent. A thresh-
old on the degree of inconsistency can be used to define
regions on the domain of disparity functions, that need
to be recalculated. See Figure 11. Consistency between
disparity functions is found as described in section V, see
Fig. 12.

J. Step 10: Propagating hypotheses in Unreliable Regions

This step propagates hypotheses exactly as in Step 5,
only over the results of Step 9. The results of this step
are shown in Figure 13.



VII. RESULTS
A. Assumptions and Limitations

The proposed approach is useful under certain circum-
stances. The stereoscopic pair images are assumed to be
rectified; i.e., their epipolar lines are horizontal and paral-
lel. The effective size of the images of the stereoscopic pair
depends on sensor characteristics, available memory and
processor speed, but the proposed method keeps being
competitive with image sizes from 256 x 256 to 512 x 512.
A non-optimized program running on a PC with a 450
MHz Pentium III typically takes 1 minute and 15 seconds
to process an ordinary stereoscopic pair of 256 x 256 im-
ages.

The effective range of disparities in this method (as in
all other considered methods) is limited by factors such as
baseline length, apparent size of objects of interest, effec-
tive size of images, and scene complexity. Nevertheless,
with present day resources it is possible to obtain good
results resolving up to 32 disparity levels requiring time
in the order of minutes. The GMMF’s memory require-
ments increase linearly with respect to disparity range.
Nevertheless, a fundamental limitation of this method (as
of any other method based in matching) is baseline length.

Big homogeneous areas represent a problem for diffu-
sion based methods because they may take a long time to
converge. Also, the larger the occluded areas, the longer
they will take to be filled.

Untextured backgrounds favor wrong hypotheses dif-
fusion and it is all too easy in this case to go past the
occluded areas found by mapping from one image to the
other. This inconvenience can be alleviated using an ero-
sion morphological operator to enlarge the occluded re-
gion so that it can reach the true edges of the foreground
object.

B. Visual and Quantitative Comparison

To aid in comparing the performance of the proposed
approach with that of well known state of the art al-
gorithms, a set of algorithms were applied to the same
stereoscopic pair. First, a visual comparison of the re-
sults on a natural scene is made and later a quantitative
comparison is made using a synthetic stereoscopic pair.

B.1 Visual Comparison

Two versions of point matching algorithms were tested
on the pineapple stereoscopic pair. The first algorithm
matches intensities and the sign of the first derivative of
the intensity function at each pixel along epipolar lines.
The results are shown in Fig. 14, where the granular na-
ture of this kind of matching is apparent. The algorithm
tested in second place matches just the values of the in-
tensity function and obtains an initial MLE which is then
regularized (see Fig. 15). It is apparent that using a token

Fig. 14.
Derivative matching tokens. Left: Reconstructed
disparity function. Right: Disparity values superposed
to original image.

Fig. 15.
Point tokens. Left: Reconstructed disparity function.
Right: Disparity values superposed to original image.

as simple as plain intensity matching can be very satisfac-
tory if it is followed by a regularization stage. However,
a certain degree of “spill” is unavoidable.

Window based methods tend to produce more conspic-
uous “spill” on occluded regions; for example, results of a
9 x 9 correlation window [5] can be seen in Fig. 16. Bhat
and Nayar’s robust window method using ranking and so-
phisticated metrics [15] can be seen in Fig. 17. Kanade’s
variable window approach [20] is shown in Fig. 19. Robert
Maas’ variable window with model based window size se-
lection [21] can be seen in Fig. 20. All of them lack defini-
tion in areas to the right of the foreground object, where
occlusions are. Also, a big homogeneous zone is still filled
to some degree with a wrong disparity hypothesis in all
these methods. Scharstein and Szeliski’s stereo matching
with non-linear diffusion [24] can be seen to have very
good definition (at the cost of a noisy disparity map) ex-
cept on right occlusions (see Fig. 18), a “spill” is also ap-
preciable over the very homogeneous area to the middle-



Fig. 16.
Correlation 929 window. Left: Reconstructed disparity
function. Right: Disparity values superposed to original
image.

Fig. 18.
Implicit support as in ref. [24]. Left: Reconstructed
disparity function. Right: Disparity values superposed
to original image.

Fig. 17. Fig. 19.
Using ranking as in ref. [15]. Left: Reconstructed Kanade variable window, as in ref. [20]. Left:
disparity function. Right: Disparity values superposed Reconstructed disparity function. Right: Disparity
to original image. values superposed to original image.

right part of the pineapple. More regularization steps for
adequate denoising necessarily blur detail.

The proposed method can give a more detailed dispar-
ity map without compromising with noise because the last
stages take care of disparity inconsistencies (see Fig. 13),
so very few initial regularization iterations are needed.
Unreliable areas that cannot be matched are filled with
the most likely hypotheses given the principles of coher-
ence [34], continuity [10], and adjacency.

Another example of application of the proposed method
can be seen in the Castle stereoscopic pair (Figs. 21 and
22).

o _ Fig. 20.
B.2 Quantitative Comparison Maas variable window, as in ref. [21]. Left:
In order to quantify the performance of different meth- Reconstructed disparity function. Right: Disparity
ods, a synthetic stereoscopic pair and a performance mea- values superposed to original image.

sure were devised. The synthetic stereo pair shown in



Fig. 21.
Castle stereoscopic pair. Cropped from the original
CMU test pair. Left hand (a), right hand (b).

Fig. 22.
Results for the Castle stereoscopic pair. The right hand
picture depicts disparity overlayed with original image.

Fig. 23.
Synthesized stereoscopic pair. a. left, b. right

Fig. 24.
a.- Ground truth, b.- Segmented output, c.-
Classification error

Fig. 25.
Results for o = 0.7 noise, a.- Proposed method, b.-
Scharstein-Szeliski

Fig. 23 was built. It consists of a single, simple geomet-
ric object in the foreground filled with a periodic pattern
with a period bigger than the range of searched disparity
values, to eliminate aliasing, and an arbitrary texture in
the background.

The considered algorithms are compared in their abil-
ity to resolve true disparity edges, so a special metric was
devised with this purpose in mind. The performance mea-
sure takes a disparity map produced by the studied algo-
rithm as input. A binary image is obtained by threshold-
ing the disparity map (the threshold was exactly one half
the disparity range and was the same for all methods), seg-
menting foreground and background. The resulting image
is compared to the mask put in the corresponding posi-
tion and classification errors are counted and expressed
as a percentage of the total number of pixels in the im-
age (see Fig. 24). Disparity borders overriding the true
ones appear as background pixels labeled as foreground
(white in Fig. 24, c); this will be known as type I error.
Disparity borders not reaching the corresponding true one
appear as foreground pixels labeled as background (black
in Fig. 24, c); this will be type IT error.

To test the algorithms’ sensitivity to noise, the test
stereoscopic pair was altered with normally distributed
noise with 4 = 0 and three levels of 0 = {0.2,0.7,1.0}.



Fig. 26.
Results for o = 0.7 noise. a.- Bhat & Nayar, b.-
Okutomi-Kanade

TABLE I
PROPOSED METHOD:

Left Image

Error Type o06=0 0=02 =07 o=1

I 0.43 0.43 0.58 0.38

II 0.21 0.30 0.10 0.48

Total 0.64 0.73 0.68 0.86

Right Image

Error Type o= 0=02 06=07 o=1

I 0.49 0.44 0.85 043

II 0.19 0.32 0.15  0.51

Total 0.68 0.76 1.00 094

TABLE II

SCHARSTEIN-SZELISKI:

Left Image

Error Type o0=0 0=02 0=07 o=1

I 1.49 1.15 1.03 1.15

II 0.15 0.54 1.39  0.67

Total 1.64 1.69 2.42 1.82

Right Image

Error Type o= 0=02 06=07 o=

I 1.41 1.09 099 081

II 0.14 0.52 0.96 1.69

Total 1.55 1.61 1.95  2.50

TABLE III
BHAT & NAYAR:

Left Image
Error Type o¢=0 06=02 ¢=07 o=1
I 1.64 1.17 1.08 0.96
II 0.15 0.14 0.06 0.11
Total 1.79 1.31 1.14 1.07
Right Image
Error Type o= 0=02 =07 o=
I 1.97 1.31 1.13 0.97
II 0.21 0.13 0.04 0.07
Total 2.18 1.44 1.17 1.04
TABLE IV

OKUTOMI-KANADE:
Left Image
Error Type o0=0 0=02 o0=07 o=1
I 3.09 3.44 2.99 2.51
17 0.00 0.00 0.00 0.01
Total 3.09 3.44 2.99 2.52
Right Image
Error Type o¢=0 06=02 0¢=07 o=1
I 3.12 3.42 2.95 2.43
II 0.00 0.00 0.00 0.00
Total 3.12 3.42 2.95 2.43

Outputs from the algorithms were analyzed with the per-
formance measure; some results can be seen in Fig. 25
and Fig. 26, and the computed error is reported in ta-
bles I to IV.

The studied algorithms tend to show higher values for
error type I than for error type II, which essentially
means that foreground objects tend to appear fatter than
they are, although some dents into the true edges can al-
ways be found, too. Nevertheless, the proposed method
shows significantly less error levels for both types.

VIII. CONCLUSION

It has been shown that the matching approach to solve
the so called correspondence problem in stereo vision has
intrinsic limitations. Specifically, matching is of no use
in occluded areas because there is nothing to match in
those regions. Other kinds of problems, like large regions
of the image with a very homogeneous texture will result
in erroneous matching in almost every case. A method
was proposed to compute disparity in such regions us-
ing a different approach, based on well known facts and
principles of stereo vision, and its performance was com-
pared to state of the art stereo algorithms. The proposed
methodology is based upon diffusion of the most likely dis-



parity hypotheses for pathological regions. This diffusion
approach is founded upon well known principles of stereo
vision, such as Marr and Poggio’s continuity constraint
[10], Prazdny’s coherence constraint [34], the occlusion

constraint and the adjacency principle (see [14]).

The

principle of consistency of left and right disparity func-
tions is precisely stated and used to measure the good-
ness of disparity assignements on regions where matching
should not be used.

(18]

(19]

(20]

(21]

(22]

REFERENCES

B. Julesz, Foundations of Cyclopean Perception. Chicago and
London: The University of Chicago Press, 1971.

W. E. L. Grimson, From Images to Surfaces. Cambridge, Mas-
sachusetts: MIT Press, 1981.

H. L. F. V. Helmholtz, Treatise on Physiological Optics. New
York: Dover, 1925.

B. K. P. Horn, Robot Vision. Cambridge, Massachusetts: MIT
Press, 1986.

O. Faugeras, Three-Dimensional Computer Vision: A Geo-
metric Viewpoint. MIT Press, 1993.

R. N. Klaus Voss and M. Schubert, Monokulare Rekonstruktion
F1ir Robotvision. Verlag Shaker, 1996.

B. Julesz, “Binocular depth perception of computer-generated
patterns,” Bell System Tech., vol. 39, pp. 1125-1161, Septem-
ber 1960.

J. I. Nelson Journal of Theoretical Biology, vol. 49, pp. 1—xx,
1975.

P. Dev International Journal of Man-Machine Studies, vol. 7,
pp. 420—xxx, 1975.

D. Marr and T. Poggio, “Cooperative computation of stereo
disparity,” SCIENCE, pp. 283-287, 1976.

S. T. Barnard and M. A. Fischler, “Computational stereo,”
Computing Surveys, vol. 14, no. 4, pp. 553-572, 1982.

U. R. Dhond and J. K. Aggarwal, “Structure from stereo - a re-
view,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 19, no. 6, pp. 1489-1510, 1989.

I. J. Cox, S. L. Hingorani, and S. B. Rao, “A maximum like-
lihood stereo algorithm,” Computer Vision and Image Under-
standing, vol. 63, pp. 542-567, May 1996.

S. Birchfield and C. Tomasi, “Depth discontinuities by pixel-
to-pixel stereo,” International Journal of Computer Vision,
vol. 35, no. 3, pp. 269293, 1999.

D. N. Bhat and S. K. Nayar, “Ordinal measures for visual cor-
respondence,” IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’96), pp. 351—
357, 1996.

D. Geiger, B. Ladendorf, and A. Yuille, “Occlusions and binoc-
ular stereo,” IJCYV, vol. 14, pp. 211-226, April 1995.

D. G. Jones and J. Malik, “A computational framework for
determining stereo correspondences from a set of linear spatial
filters,” in Second European Conference on Computer Vision
(ECCV’92), (Santa Margherita Liguere, Italy), pp. 397-410,
Springer-Verlag, 1992.

H. H. Baker, Fdge Based Stereo Correlation, pp. 168-175. L.S.
Baumann (Ed.), 1980.

R. D. Arnold, “Automated stereo perception,” Tech. Rep.
AIM-351, Artificial Intelligence Laboratory, Stanford Univer-
sity, 1983.

T. Kanade and M. Okutomi, “A stereo matching algorithm
with an adaptive window: Theory and experiment,” IEEFE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 16, pp. 920-932, September 1994.

M. A. V. Robert Maas, Bart M. Ter Haar Romeny, “Area-
based computation of stereo disparity with model-based win-
dow size selection,” in Proceedings of the IEEE Computer So-
ciety Conferenceon Computer Vision and Pattern Recognition
(CVPR’99), pp. 106-112, IEEE, 1999.

S. Gutiérrez, Robust Methods for Disparity Estimation in
Stereo Vision. Ph.D. thesis, Centro de Investigacién en

[29]

(30]

(31]

(32]

33]

(34]
(35]

(36]

(37]

(38]

(39]

[40]

(41]

42]

(43]

Matemadticas (CIMAT), Apdo. Postal 402, Guanajuato, Gua-
najuato, México, C.P. 36000, Mar 2001.

R. Szeliski and G. Hinton, “Solving random-dot stereograms
using the heat equation,” (San Francisco, California), pp. 284—
288, IEEE Computer Society Press, 1985.

D. Scharstein and R. Szeliski, “Stereo matching with non-
linear diffusion,” IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CPR’96), San Fran-
cisco, California, pp. 343-350, 1996.

R. Szeliski and P. Golland, “Stereo matching with trans-
parency and matting,” International Journal of Computer Vi-
ston, vol. 32, no. 1, pp. 45-61, 1999.

S. Roy, “Stereo without epipolar lines: A maximum-flow for-
mulation,” International Journal of Computer Vision, vol. 34,
no. 2/3, pp. 147-161, 1999.

Y. Ohta and T. Kanade, “Stereo by intra- and inter- scan-
line search using dynamic programming,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-7,
pp. 139-154, March 1985.

P. N. Belhumeur and D. Mumford, “A bayesian treatment
of the stereo correspondence problem using half-occluded re-
gions,” in Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition 1992 (CVPRY2), pp. 506-512,
1992.

A. F. Bobick and S. S. Intille, “Large occlusion stereo,” Inter-
national Journal of Computer Vision, vol. 33, no. 3, pp. 181-
200, 1999.

Y. Boykov, O. Veksler, and R. Zabih, “Markov random fields
with efficient approximations,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
(Santa Barbara, California), 1998.

J. L. Marroquin, “Random measure fields and the integration
of visual information,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 22, no. 4, pp. 705-716, 1992.

J. Marroquin, F. Velasco, S. Gutiérrez, and M. Rivera,
“Gauss-markov measure fields models for image processing,”
Tech. Rep. 1-97-16 (CC/CIMAT), Centro de Investigacién en
Matemadticas (CIMAT), 1997.

S. Pollard, J. Mayhew, and J. Frisby, “A stereo correspondence
algorithm using a disparity gradient limit,” Perception, vol. 14,
pp. 449-470, 1985.

K. Prazdny, “Detection of binocular disparities,” BioCyber,
vol. 52, pp. 9399, 1985.

H. V. R. Figueroa, A Filtering Approach to the Integration of
Stereo and Motion. PhD thesis, The University of Sussex, 1993.
D. J. Fleet, A. D. Jepson, and M. R. M. Jenkin, “Phase-
based disparity measurement,” CVGIP: Image Understanding,
vol. 53, pp. 198-210, March 1991.

O. Faugeras and R. Keriven, “Variational principles, surface
evolution, PDE’s, level set methods and the stereo problem,”
Tech. Rep. 3021, Institut National de Recherche en Informa-
tique et en Automatique (INRIA), 1996.

C. L. Zitnick and T. Kanade, “A cooperative algorithm for
stereo matching and occlusion detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), vol. 22,
pp. 675-684, July 2000.

R. Bolles, H. Baker, and D. Marimont, “Epipolar-plane image
analysis: An approach to determining structure from motion,”
International Journal of Computer Vision, vol. 1, pp. 7-55,
1987.

L. Matthies, R. Szeliski, and T. Kanade, “Kalman filter-based
algorithms for estimating depth from image sequences,” In-
ternational Journal of Computer Vision, vol. 3, pp. 209-236,
1989.

M. Okutomi and T. Kanade, “A multiple-baseline stereo,”
Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, pp. 353-363, April 1993.

S. B. Kang, J. Webb, L. Zitnick, and T. Kanade, “A multi-
baseline stereo system with active illumination and real-time
image acquisition,” in Proceedings of the Fifth International
Conferenceon Computer Vision (ICCV’95), (Cambridge, Mas-
sachusetts), pp. 8893, 1995.

R. T. Collins, “A space-sweep approach to true multi-image



[51]

[52]

(53]

[54]

[59]

(60]

[61]

matching,” IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’96), pp. 358-363,
1996.

H. P. Moravec, “Towards automatic visual obstacle avoidance,”
in Proceedings of the Fifth International Joint Conf. Artificial
Intelligence, (Cambridge, Massachusetts), p. 584, 1977.

D. Marr and T. Poggio, “A computational theory of human
stereo vision,” Proceedings of the Royal Society of London, Se-
ries B, vol. 204, pp. 301-328, 1979.

W. Hoff and N. Ahuja, “Surfaces from stereo: Integrating fea-
ture matching, disparity estimation, and contour detection,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence (PAMI), vol. 11, no. 2, pp. 121-136, 1989.

E. Maeda, A. Shio, and M. Okudaira, “Layered neural net-
work for stereo disparity detection,” Neural Networks, vol. 2,
pp. 141-153, 1992.

J. Cruz, G. Pajares, and J. Aranda, “A neural-network model
in stereovision matching,” NeurNet, vol. 8, no. 5, pp. 805-813,
1995.

C. Tomasi and R. Manduchi, “Stereo matching as a nearest-
neighbor problem,” PAMI, vol. 20, pp. 333-340, March 1998.
T. Kanade, A. Yoshida, K. Oda, H. Kano, and M. Nad Tanaka,
“A stereo-machine for video-rate dense depth mapping and its
new applications,” in Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition
(CVPR’96), (San Francisco, California), pp. 196-202, 1996.
T. Ryan, R. Gray, and B. Hunt, “Prediction of correlation er-
rors in stereo-pair images,” Optical Engineering, vol. 19, no. 3,
pp. 312-322, 1980.

J. L. Marroquin, “Local harmonic analysis and stereo tokens,”
tech. rep., Centro de Investigacién en Mateméticas (CIMAT),
1987.

L. McMillan and G. Bishop, “Plenoptic modeling: An
image-based rendering system,” Computer Graphics (SIC-
GRAPH’95), pp. 39-46, 1995.

R. Szeliski and S. Kang, “Direct methods for visual scene
reconstruction,” in IEEE Workshop on, (Cambridge, Mas-
sachusetts), pp. 26-33, 1995.

e. A. Blonde, L., “A virtual studio for live broadcasting: The
mona lisa project,” IEEE Multimedia, vol. 3, no. 2, pp. 18-29,
1996.

J. L. Marroquin. PhD thesis, MIT, 1985.

K. Abend, Pattern Recognition, pp. 207-249. Thompson Book
Co., 1968.

S. Geman and D. Geman, “Stochastic relaxation, gibbs distri-
butions and the bayesian restoration of images,” IEEE Trans.
Pattern Analysis and Machine Intelligence (PAMI), vol. 6,
pp. 721-741, 1984.

J. Marroquin, S. Botello, F. Calderén, and B. Vemuri, “The
MPM-MAP algorithm for image segmentation,” in Proc. 15th
Int. Conf. In Pattern Recognition ICPR-2000 (1. C. Soc., ed.),
(Barcelona, Spain), pp. 303-308, IEEE Comp. Soc., 2000.

M. Nielsen, L. Florack, and P. Deriche, “Regularization and
scale space,” Tech. Rep. 2532, INRIA, Sep. 1994.

B. M. T. H. Romeny, ed., Geometry-Driven Diffusion in Com-
puter Vision. Kluwer Academic Publishers, 1994.



