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Abstract

The present article describes how the Jacobian is found for certain functions of

a singular random matrix, both in the general case and in that of a non-negative

definite random matrix. In particular, we find the Jacobian of the V = S
2 transfor-

mation when S is non-negative definite, and in general, the Jacobian of the Y = X
+

transformation, in which X
+ is the generalised, or Moore-Penrose, inverse of X.

Expressions for the densities of the generalised inverse of the central Beta and F

singular random matrices are proposed. Finally, two applications in the field of

Bayesian inference are presented.
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1 Introduction

Although inverse distributions appear in various areas of statistical analysis,
there can be no doubt that it is in the field of Bayesian inference that such
distributions play a key role. In particular, inverse Wishart, Beta and
Dirichlet distributions have been used as a priori distributions; they also
appear as a posteriori distributions in different Bayesian applications, see
for example Press [Sections 8.6.1 and 8.6.2] [19], Box and Tiao [p.460] [2]
and Xu [23].

One problem that has not been addressed previously is the one that
arises when these distributions are singular, as their inverse does not ini-
tially exist. Nevertheless, this obstacle can be overcome by considering the
generalised inverse. Unfortunately, little research has been carried out in
this respect, and not even a general study of singular distributions has been
attempted, except for some ideas proposed by Khatri, see Rao [p. 527] [20]
and Cramér [p. 297] [5]. Some coordinated work has recently been done in
this field, see Uhlig [22], Dı́az-Garćıa et al. [8], Dı́az-Garćıa and Gutiérrez-
Jáimez [9], Dı́az-Garćıa et al. [11] and Dı́az-Garćıa and Gutiérrez-Jáimez
[10].

For a given distribution of Y and in order to determine the distribution
of X = Y +, where Y + denotes the generalised, or Moore-Penrose inverse,
the first step is to determine the Jacobian of this transformation, together
with the corresponding measure with respect to which this distribution
exists.

This article examines various results previously obtained for the non-
singular case and extends them to the singular case. In particular, Section
2 establishes some necessary notation and compiles the results essential
for the development of the rest of the study. The results referring to the
calculation of Jacobians are presented in Section 3, which also provides a
general result and, as particular cases, the Jacobians of the transformations
X = Y + and X = Y 2 in which Y is a non-negative definite matrix. This
section ends by extending the general result and providing an example for
the generalised inverse case, in which Y is any matrix of incomplete rank.
As an application of these Jacobians, Section 4 proposes explicit expressions
for the generalised inverse Wishart, Pseudo-Wishart, Beta and F densities
and their corresponding measures. Finally, Section 5 establishes two ap-
plications of generalised inverse distributions in the context of Bayesian
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inference.

2 Notation and Preliminary Results

Let us use L+
m,N (q) to denote the linear space of all the real matrices N ×m

of rank q ≤ min(N, m) with q different singular values. The matrix set H1 ∈
Lm,N such that H ′

1H1 = Im is a manifold denoted by Vm,N , known as the
Stiefel manifold. In particular, Vm,m is the group of orthogonal matrices,
denoted by O(m). Sm then denotes the homogeneous space of symmetric
positive definite matrices m × m; then, Smdenotes the (mq − q(q − 1)/2)-
dimensional manifold of positive semidefinite symmetric matrices of rank
q, with q different positive eigenvalues and in which D(m) denotes the set
of diagonal matrices with di elements, such that d1 > d2 > · · · > dm > 0.

A singular random matrix X ∈ L+
m,N (q) (or X ∈ S+

m(q)) has no a density

with respect to the Lebesgue measure in IRN×m, but it does possess density
on a subspace M ⊂ IRN×m, see Rao [p. 527][20], Dı́az-Garćıa et al. [8],
Uhlig [22] and Cramér [p. 297] [5]. Formally, X has density with respect to
the Hausdorff measure, which coincides with the Lebesgue measure, when
the latter is defined on the subspace M, see Billingley [p. 247] [1], Uhlig
[22], Dı́az-Garćıa et al. [8], Dı́az-Garćıa et al. [11] and Dı́az-Garćıa and
Gutiérrez-Jáimez [10].

In order to obtain explicit expressions for the densities with respect to
the Hausdorff measure, we require a set of base coordinates to enable us to
define the volume elements (dX) in an explicit way. For this purpose, the
spectral decomposition and the singular values decomposition of the matrix
X (according to X ∈ S+

m(q) or X ∈ L+
m,N (q), respectively), enables us to

propose an explicit form of the Hausdorff measure (dX), in both cases.
As can be seen in the following two results, another instrument that has
been found highly useful is the exterior product of differential forms, from
which it is possible to determine the Jacobians of singular transformations,
together with the explicit form of the Hausdorff measure, see James [16],
Farrell [13], Muirhead [Chapter 2, 1982], Uhlig [22], Dı́az-Garćıa et al. [8]
and Dı́az-Garćıa and Gutiérrez [9] and Dı́az-Garćıa et al. [11].

Proposition 2.1 (Expectral decomposition). Let S ∈ S+
m(q), then

there are W1 ∈ Vq,m and L = diag(l1, . . . , lq) ∈ D(q), such that S =
W1LW ′

1, is called the non-singular part of the spectral decomposition. Let
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W2 ∈ Vm−q,m (a function of W1), such that W = (W1|W2) ∈ O(m). In
columns, W1 = (w1 · · ·wq) and W2 = (wq+1 · · ·wm), and so

(dS) = 2−q|L|m−q
q
∏

i<j

(li − lj)(dL)(W ′
1dW1) (2.1)

where

(W ′
1dW1) ≡

q
∧

i=1

N
∧

j=i+1

w′
jdwi

defines an invariate measure on Vq,m, James [16], Farrell [13] and (dL) ≡
q
∧

i=1

dli, Uhlig [22] and Dı́az-Garćıa and Gutiérrez [9].

Proposition 2.2 (Singular values decomposition). Let X ∈ L+
m,N (q),

then X = H1DP ′
1, is called the non-singular part of the singular values

decomposition, where H1 ∈ Vq,N , P1 ∈ Vq,m and D = diag(D1, . . . , Dq) ∈
D(q). Then

(dX) = 2−q|D|N+m−2q
q
∏

i<j

(D2
i − D2

j )(dD)(H ′
1dH1)(P

′
1dP1), (2.2)

where (dD) =

q
∧

i=1

dDi, Dı́az-Garćıa et al. [8].

Proposition 2.3 (Central Wishart and Pseudo-Wishart singular

distributions). Assume Y ∼ N k,r
N×m(µ, Σ, Ξ), with r(Σ) = r ≤ m, r(Ξ) =

k ≤ N and let q =min(r, k), then the density of S = Y ′Ξ−Y ∈ S+
m(q) is

given by

dF
S
(S) =

πk(q−r)/2
(

∏q
i=1 l

(k−m−1)/2
i

)

2kr/2Γq

[

1
2k
]

(

∏r
i=1 λ

k/2
i

) etr
(

−1
2Σ−S

)

(dS) (2.3)

where S = W1LW ′
1, is the non-singular part of the spectral decomposition,

with W1 ∈ Vq,m and L = diag(l1, . . . , lq) ∈ D(q), Σ− is a symmetric gener-
alised inverse of Σ, Ξ− is a symmetric generalised inverse of Ξ = Q′Q with
Q k × N matrix, r(Q) = k, λi, i = 1, . . . r are the non-null eigenvalues of
Σ and (dS) is given by (2.1), Dı́az-Garćıa et al. [8].
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Remark 2.1. If S has a density (2.3), this fact is described by S ∼
Wm(q, k, Σ) if k ≥ r (N ≥ m) for the case of the Wishart singular dis-
tribution and by S ∼ PW m(q, k, Σ) if k < r (N < m) for the case of the
Pseudo-Wishart singular distribution.

Proposition 2.4 (Central matrix-variate Beta singular distribu-
tion). Assume that U ∈ S+

m(q) is a random matrix. U is said to have an
m-dimensional central matrix-variate Beta singular distribution of rank q
and parameters n/2 and p/2, denoting U ∼ Bm(q, n/2, p/2), if its density
function is given by

dF
U
(U) = π(−mn+nq)/2 Γm

[

1
2(n + p)

]

Γq

[

1
2n
]

Γm

[

1
2p
]

q
∏

i=1

l
(n−m−1)/2
i |Im−U |(p−m−1)/2(dU)

where U = H1LH ′
1 is the non-singular part of the spectral decomposition,

with H1 ∈ Vq,m and L = diag(l1, . . . , lq), 1 > l1 > · · · > lq > 0, and (dU) is
given by (2.1), see Dı́az-Garćıa and Gutiérrez [9].

Proposition 2.5 (Central matrix-variate F singular distribution).
The matrix F ∈ S+

m(q), is said to have an m-dimensional central matrix-
variate matrix F singular distribution of rank q and parameters n/2 and
p/2, denoting F ∼ Fm(q, n/2, /2), if its density function is given by

dT
F
(F ) = π(−mn+nq)/2 Γm

[

1
2(n + p)

]

Γq

[

1
2n
]

Γm

[

1
2p
]

q
∏

i=1

γ
(n−m−1)/2
i |Im +F |−(p+n)/2(dF )

where F = H1DγH ′
1 is the non-singular part of the spectral decomposition,

with H1 ∈ Vq,m and Dγ = diag(γ1, . . . , γq) ∈ D(q), and (dF ) is given by
(2.1), see Dı́az-Garćıa and Gutiérrez [9].

Finally, if A is any matrix, A+ denotes the generalised, or the Moore-
Penrose inverse of A, see Campbell and Meyer [pp. 8-9] [4].

3 Jacobians of Matrix Transformations

Theorem 3.1. Assume S ∈ S+
m(q). Then S = H1DλH ′

1 denotes the non-
singular part of the spectral decomposition of S, with H1 ∈ Vq,m and Dλ =
diag(λ1, . . . , λq) ∈ D(q). Moreover, assume that g(x) is a differentiable
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function in x and that G(Dλ) = diag(g(λ1), . . . , g(λq)). Thus we define
G(S) = H1G(Dλ)H ′

1. Then

(dG(S)) =

q
∏

i=1

(

g(λi)

λi

)m−q q
∏

i<j

g(λi) − g(λj)

λi − λj

q
∏

i=1

dg(λi)

dλi
(dS) (3.1)

Proof. From proposition 2.1,

(dS) = 2−m
q
∏

i=1

λm−q
i

q
∏

i<j

(λi − λj)(H
′
1dH1) ∧ (dDλ). (3.2)

Similarly

(dG(S)) = 2−m
q
∏

i=1

g(λi)
m−q

q
∏

i<j

(g(λi) − g(λj))(H
′
1dH1) ∧ (dG(Dλ)),

and moreover

(dG(Dλ)) = (diag(dg(λ1), . . . , dg(λq)))

=

(

diag

(

dg(λ1)

dλ1
dλ1, . . . ,

dg(λq)

dλq
dλq

))

=

q
∏

i=1

dg(λi)

dλi

q
∧

i=1

dλi

=

q
∏

i=1

dg(λi)

dλi
(dDλi

),

and so

(dG(S)) = 2−m
q
∏

i=1

g(λi)
m−q

q
∏

i<j

(g(λi) − g(λj))

q
∏

i=1

dg(λi)

dλi
(H ′

1dH1) ∧ (dDλ),

from which

(H ′
1dH1) ∧ (dDλ)

= 2m





q
∏

i=1

g(λi)
m−q

q
∏

i<j

(g(λi) − g(λj))

q
∏

i=1

dg(λi)

dλi





−1

(dG(S)). (3.3)

By substituting (3.3) into (3.2), the desired result is obtained.
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For the case in which S ∈ Sm, the result in Theorem 1 was proposed as
a problem by Srivastava and Khatri [problem 1.35(i), p.39][21].

Remark 3.1. Note that many results in the literature are obtained as a
particular case of Theorem 3.1. Thus, for example, we have the positive
semidefinite square root of a matrix, V = S1/2, in which g(x) = x1/2, the
result of which is of great interest when the polar decomposition of a matrix
is considered. For the case in which S ∈ Sm, this result was examined by
Hertz [15] and Cadet [3]. This result can also be expressed in its inverse
form, as S = V 2, such as when S ∈ Sm was studied, among others, by
Olkin and Rubin [18]. The singular case S ∈ S+

m(q) has been studied by
Dı́az-Garćıa and González-Faŕıas [7].

Another particular case of Theorem 3.1 occurs when g(x) = x−1 and
S ∈ Sm, in which case we obtain the Jacobian of the transformation V =
S−1, a result that has been obtained by many authors, including Deemer
and Olkin [6], Press [p. 47] [19] and Muirhead [p. 59] [17]. Assuming
that S ∈ S+

m(q) and g(x) = x−1, we obtain the transformation S = V +,
the Jacobian of which has been determined by Dı́az-Garćıa et al. [11] and
which, to serve as an example of Theorem 3.1, is established below.

Corollary 3.1. Assume V = S+ with S ∈ S+
m(q). Then

(dV ) =

q
∏

i=1

λ−2m+q−1
i (dS) (3.4)

where λi, i = 1, . . . , q, are the no-null eigenvalues of S.

Proof. Let S = H1DλH ′
1. Then by application of Theorem 3.1, V =

H1G(Dλ)H ′
1, with

G(Dλ) = diag(λ−1
1 , . . . , λ−1

q ).

Now
q
∏

i=1

dg(λi)

dλi
=

q
∏

i=1

dλ−1
i

λi
=

q
∏

i=1

(−1)
1

λ2
i

,
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From where, ignoring the sign,

(dV ) =

q
∏

i=1

(

1
λi

λi

)m−q q
∏

i<j

1
λi

− 1
λj

λi − λj

q
∏

i=1

1

λ2
i

(dS)

=

q
∏

i=1

(

1

λ2
i

)m−q+1 q
∏

i<j

1

λiλj
(dS)

=

q
∏

i=1

(

1

λ2
i

)2(m−q+1) q
∏

i=1

(

1

λ2
i

)q−1

(dS)

Corollary 3.2. Assume that V = S2 with S ∈ S+
m(q). Then

(dV ) = 2q
q
∏

i=1

λm−q+1
i

q
∏

i<j

(λi + λj)(dS) (3.5)

where λi, i = 1, . . . , q, are the non-null eigenvalues of S.

Proof. The proof follows from Theorem 3.1.

Remark 3.2. Observe that in Corollaries 3.1 and 3.2, when S ∈ Sm,
q = m, we obtain the following results, respectively,

1.

(dV ) =
m
∏

i=1

λ
−(m+1)
i (dS) = |S|−(m+1)(dS)

see Deemer and Olkin [6], Press[p. 47] [19] or Muirhead [p. 59] [17].

2.

(dV ) = 2m
m
∏

i=1

λi

m
∏

i<j

(λi + λj)(dS) =
m
∏

i≤j

(λi + λj)(dS),

see Olkin and Rubin [18].

According to the case, we can take any differentiable function and apply
Theorem 3.1 to it. In particular, it would be of interest to determine the
distribution of the logarithm of a matrix, V = log S. In the unidimensional
case, this function has been applied in order to determine, among other



Functions of singular random matrices 9

objects, the Log-Normal, Log-Gamma and Log-Elliptic distributions. For
the Normal and Elliptic distributions, it was also extended to the vector and
matrix cases, such that if X is a random vector or matrix, we are interested
in the distribution of log X. Assuming X to be an m-dimensional random
vector, the transformation has been defined as log X = (log x1, . . . , log xm)′,
see for example Press [p. 149] [19]. Alternatively, we could consider defining
log X, in an analogous way to the definition given in Theorem 3.1. To
extend this idea to any matrix, the following result is required.

Theorem 3.2. Assume that X ∈ L+
m,n(q). Then X = H1DαP ′

1 de-
notes the non-singular part of the singular values decomposition of X,
with H1 ∈ Vq,n, P1 ∈ Vq,m and Dα = diag(α1, . . . , αq) ∈ D(q). Addi-
tionally, assume that g(x) is a function that can be differentiated in x and
G(Dα) = diag(g(α1), . . . , g(αq)). We thus define G(X) = H1G(Dλ)P ′

1.
Then

(dG(X)) =

q
∏

i=1

(

g(αi)

αi

)n+m−2q q
∏

i<j

g2(αi) − g2(αj)

α2
i − α2

j

q
∏

i=1

dg(αi)

dαi
(dX). (3.6)

Proof. The proof is analogous to that of Theorem 3.1, but now taking
Proposition 2.2 into consideration.

In Theorem 3.2, once again, we could consider any differentiable g(·)
function. As an example of Theorem 2, we now examine the case in which
g(x) = x−1, thus obtaining the transformation Y = X+ ∈ L+

m,n(q).

Corollary 3.3. Let Y = X+ with X ∈ L+
m,n(q). Then

(dY ) =

q
∏

i=1

α
−2(n+m−q)
i (dX) (3.7)

where αi, i = 1, . . . , q, are the non-null singular values of X.

Proof. The proof follows from Theorem 3.2 and is analogous to that given
for Corollary 3.1, see also Dı́az-Garćıa et al. [11].

4 Inverse Singular Distributions

In this section, we determine the distributions of the generalised inverse of
the Wishart and Pseudo-Wishart, the Beta and the F matrices.
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Theorem 4.1 (Generalised Inverse Wishart and Pseudo-Wishart
Distributions). Let S ∼ Wm(q, k, Σ) (or ∼ PW m(q, k, Σ)) and define
Z = S+. Then, the density function Z is given by

dF
Z
(Z) =

πk(q−r)/2
(

∏q
i=1 t

−(k+3m−2q+1)/2
i

)

2kr/2Γq

[

1
2k
]

(

∏r
i=1 λ

k/2
i

) etr
(

−1
2Σ−Z+

)

(dZ), (4.1)

where Z = H1TH1 is the non-singular part of the spectral decomposition
of Z, with T = diag(t1, . . . , tq) ∈ D(q), H1 ∈ Vq,m, λi, i = 1, . . . r are the
non-null eigenvalues of Σ and where the measure (dU) is explicitly given
by

(dU) = 2−m
q
∏

i=1

tm−q
i

∏

i<j

(ti − tj)(H
′
1dH1) ∧

q
∧

i=1

dti. (4.2)

Proof. The proof is immediate from Proposition 2.3 and from Corollary
3.1.

Remark 4.1. Following the notation in Press [p. 117] [19], we have, after
defining Σ− = G and k = k − m − 1, the distribution of Z is called the
Central Generalised Inverse Wishart (or Pseudo-Wishart) of rank q, with
k degrees of freedom and a matrix of scale G, this fact being denoted by
Z ∼ W+

m(q, k, G) (or by Z ∼ PW+
m(q, k, G)). This distribution and some of

its properties have been studied by various authors considering the Wishart
central non-singular case (m ≤ N = k, q = r = m), see example Press
[Section 5.2] [19], Box and Tiao [p.460] [2] or Gupta and Nagar [Section
3.4] [14]. It has been studied in every case by Dı́az-Garćıa et al. [11].

Theorem 4.2 (Generalised Inverse Beta Distribution). Assume that
U ∼ Bm(q, n/2, p/2) and define W = U+. Then, W is said to have an m-
dimensional generalised inverse Beta distribution of rank q and parameters
n/2 and p/2, this fact being denoted by W ∼ B+

m(q, n/2, p/2). Moreover,
its density function is given by

dF
W

(W ) = π(−mn+nq)/2 Γm

[

1
2(n + p)

]

Γq

[

1
2n
]

Γm

[

1
2p
]

(

q
∏

i=1

κ
−(n+3m−2q+1)/2
i

)

|Im − W+|(p−m−1)/2(dW )

where W = H1DκH ′
1 is the non-singular part of the spectral decomposition,

with H1 ∈ Vq,m, Dκ = diag(κ1, . . . , κq) ∈ D(q), κ1 > · · · > κq > 1 and
(dW ) is given in a way analogous to that of (4.2).
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Proof. The proof follows from Proposition 2.4 and from Corollary 3.1, not-
ing that κ−1

i = li, i = 1, . . . , q.

The distribution in Theorem 4.2 generalizes various results that have
been studied in the literature, for the case in which W ∈ Sm, see for example
Fang and Zhang [p. 115] [12] and Xu [23], among others.

The generalised inverse F distribution is obtained in an analogous way
to that of the generalised inverse Beta distribution.

Theorem 4.3 (Generalised Inverse F Distribution). Define ∆ = F +

such that F ∼ Fm(q, n/2, p/2). Then, ∆ is said to have an m-dimensional
generalised inverse F distribution of rank q and parameters n/2 and p/2,
this fact being denoted by ∆ ∼ F+

m(q, n/2, p/2). Moreover, its density func-
tion is given by

dT
∆
(∆) = π(−mn+nq)/2 Γm

[

1
2(n + p)

]

Γq

[

1
2n
]

Γm

[

1
2p
]

(

q
∏

i=1

ρ
−(n+3m−2q+1)/2
i

)

|Im+∆+|(p−n)/2(d∆)

where ∆ = H1DρH
′
1 is the non-singular part of the spectral decomposition,

with H1 ∈ Vq,m, Dρ = diag(ρ1, . . . , ρq) ∈ D(q) and (dW ) is given in a way
analogous to that of (4.2).

Proof. The proof is immediate from Proposition 2.5 and from Corollary
3.1.

Finally, note that the distributions of the eigenvalues of the matrices Z
and ∆ in Theorems 4.2 and 4.3, respectively, are found in analogous form
in the proof of Theorem 4 in Dı́az-Garćıa and Gutiérrez [9].

5 Some Applications

In this section, we apply some of the results described in previous sections
in the context of Bayesian inference. These results were presented by Xu
[23] for the non-singular case.
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Theorem 5.1. Assume that A ∼ W+
m(r, n, V ), V > Im and that the a

priori distribution of V is B+
m(r, a, b), such that a+b−m+r = (n−m−1)/2

and n ≥ 3m + 1. Then the a posteriori density of V |A is

dP (V |A) =

∏r
i=1(κi − 1)b−(m+1)/2

2brΓr[b]
∏r

i=1 lbi
etr
(

−1
2(V − Im)A+

)

(dV )

where V = R1DκR′
1 is the non-singular part of the spectral decomposition

with R1 ∈ Vr,m and Dκ = diag(κ1, . . . , κr) ∈ D(r), κ1 > · · · > κr > 1;
A = H1LH ′

1 is the non-singular part of the spectral decomposition with
H1 ∈ Vr,m, L = diag(l1, . . . lr) ∈ D(r) and (dV ) is defined in an analogous
way to (4.2).

Proof. Assume that p(A|V ) denotes the conditional density of A|V and
that π(V ) is the a priori density of V . Then the density of A is given by

dP (A) =

∫

V >I
p(A|V )π(V )(dV )(dA)

= C

∫

V >I

r
∏

i=1

κ
(n−m−1)/2−a−(3m−2r+1)/2
i |Im − V +|b−(m+1)/2

etr
(

1
2V A+

)

(dV )(dA)

where

C =
π(−ma+ar)/2Γm [a + b]

2(n−m−1)/2Γm

[

1
2(n − m − 1)

]

Γr [a] Γm [b]
∏r

i=1 l
(n+2m−2r)/2
i

.

Now, note that

|Im − V +| = |Im − R1D
−1
κ

R′
1| = |Ir − D−1

κ
| = |V − Im|

r
∏

i=1

κ
−1
i ,

from which, given that a + b − m + r = (n − m − 1)/2,

dP (A) = C

∫

V >I
|V − Im|b−(m+1)/2 etr

(

1
2V A+

)

(dV )(dA).

Let us now define W = V − I. Note that this transformation is one-to-one
on the S+

m(r) manifold, even when V − Im ∈ Sm. Then (dW ) = (dV ),
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restricting W to the S+
m(r) manifold. Thus

dP (A) = C

∫

W∈S
+
m(q)

r
∏

i=1

α
b−(m+1)/2
i etr

(

1
2(Im + W )A+

)

(dW )(dA)

= C etr
(

1
2A+

)

∫

W∈S
+
m(q)

r
∏

i=1

α
b−(m+1)/2
i etr

(

1
2WA+

)

(dW )(dA)

= C 2brΓr[b]
r
∏

i=1

lbi etr
(

1
2A+

)

.

From which, finally, the a posteriori distribution of V |A is

dP (V |A) =
p(A|V )π(V )

p(A)
(dV )

=

∏r
i=1(κi − 1)b−(m+1)/2

2brΓr[b]
∏r

i=1 lbi
etr
(

−1
2(V − Im)A+

)

(dV )

Remark 5.1. Note that the conclusion in Theorem 5.1 can be expressed,
alternatively, as

(V − Im)|A ∼ Wm(r, 2b, A)

But note, too, that even when W = (V − Im) > 0, this transformation is
one-to-one on the S+

m(r) manifold.

Theorem 5.2. If A ∼ Wm(r, n, B+), n ≥ 2m, B > Im, such that the a
priori distribution for B is B+

m(r, a, b), with a + b−m− r = n/2. Then the
a posteriori distribution for B given A is

dP (B|A) =
πb(m−r)|B − Im|b−(m+1)/2

2brΓm[b]
∏r

i=1 l−b
i

etr
(

−1
2(B − Im)A

)

(dB).

That is
(B − Im)|A ∼ Wm(r, 2b, A+) for (B − I)|

S
+
m(r)

where A = H1LH ′
1 is the non-singular part of the spectral decomposition

with H1 ∈ Vr,m, L = diag(l1, . . . lr) ∈ D(r) and (dB) is defined in an
analogous way to (4.2).

Proof. The proof is analogous to that given for Theorem 5.1.
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Similar results can be expected from assuming the generalised inverse
F distribution represented in Theorems 5.1 and 5.2 to correspond to the a
priori distributions of V and B, respectively.
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SV and Polar Decomposition and the Elliptically Contoured
Distributions. Comunicación Técnica No. I-99-22(PE/CIMAT),
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