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Given a general linear model of full or less than full rank, we find the distributions of normalised,
standardised and studentised (internally and externally studentised) residuals, in univariate and
multivariate cases, assuming normal and elliptical distributions. Also, we propose an alternative
approach to the results by Ellenberg (1973) and Beckman and Trusell (1974).
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1. INTRODUCTION

Consider the multivariate general linear model

Y = Xβ + ε, (1)

where Y and ε are n× p random matrices, X is a known n× q matrix, and β is an unknown q × p matrix
of parameters called regression coefficients. We shall assume throughout this work that X has rank α ≤ q,
n ≥ p+α. First, we shall assume that ε has a matrix-variate normal distribution, that is ε ∼ Nn×p(0, In⊗Σ)
such that Y ∼ Nn×p(Xβ, In ⊗Σ) where Σ is an unknown p× p positive definite matrix, Σ > 0. Thus the
maximum likelihood estimates of Xβ and Σ are

X̃β = Xβ̃ = X(XT X)−XT Y = XX+Y (2)

and
Σ̃ =

1
n

(Y −Xβ̃)T (Y −Xβ̃) (3)

where A− is the generalised inverse (also termed c-inverse) such that AA−A = A and A+ denote the
Moore-Penrose inverse of A. Thus, the estimator Xβ̃ is invariant under any generalised inverse (XT X)− of
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XT X, see Graybill (1985), Srivastava and Khatri (1979, p. 171) and Muirhead (1982, p. 430). Moreover,
Xβ̃ and Σ̃ are independently distributed; Xβ̃ ∼ Nn×p(Xβ,X(XT X)−XT ⊗Σ) and nΣ̃ ∼ Wp(n−α,Σ), see
Srivastava and Khatri (1979, p. 171) and Muirhead (1982, p. 431). Finally, we shall denote by Xβ̂ = Xβ̃

and Σ̂ = nΣ̃/(n− α), the unbiased estimators of Xβ and Σ, respectively.
The residual matrix is defined as ε̂ = Y− Ŷ = Y−Xβ̂ = (In−XX+)Y = (In−H)Y, where H = XX+

is the orthogonal projector on the image of X. Then ε̂ has a singular matrix-variate normal distribution of
rank p(n−α), i.e. ε̂ ∼ N (n−α),p

n×p (0, (In−H)⊗Σ), with cov(vec(ε̂ T )) = ((In−H)⊗Σ), see Khatri (1968) and
Dı́az-Garćıa et al. (1997). Also, observe that the i-th row of ε̂, denoted as ε̂i, has a nonsingular p-variate
normal distribution, i.e., ε̂i ∼ Np(0, (1−hii)Σ), H = (hij), for all i = 1, · · · , n. Given that the ε̂i are linearly
dependent, we define the index I = {i1, · · · , ik}, with is = 1, · · · , n; s = 1, · · · , k and k ≤ (n− α), such that
the vectors ε̂i1 , · · · , ε̂ik

are linearly independent. Thus we define the matrix

ε̂I =




ε̂ T
i1
...

ε̂ T
ik


 (4)

and observe that ε̂I has a matrix-variate normal nonsingular distribution, moreover ε̂I ∼ Nk×p(0, (Ik −
HI)⊗Σ). HI is obtained from the matrix H by deleting the row and the column associated to the index I.

For a univariate model, i.e. when p = 1, different classes of residuals have been proposed, see Chatterjee
and Hadi (1988):

ai =
ε̂i

‖ε̂‖ normalised residual

bi =
ε̂i

σ̂
standardised residual

ri =
ε̂i

σ̂
√

1− hii

internally studentised residual

ui =
ε̂i

σ̂(i)

√
1− hii

externally studentised residual

where ‖y‖ is the Euclidean norm of the vector y; σ̂2 = ‖ε‖2/(n − α); and σ̂(i) is the estimated standard
deviation. Here, σ̂(i) is obtained by removing the i-th observation from the sample.

Analogously to the definition of ε̂I , establish

rτ
I =




ri1
...

rik


 =




ε̂i1

σ̂
√

1− hi1i1
...

ε̂ik

σ̂
√

1− hikik




=
1
σ̂
D−1/2ε̂I , (5)

where D−1/2 is a diagonal matrix with elements (1− hi1i1)
−1/2, · · · , (1− hikik

)−1/2.
Moreover, note that rτ

I can be defined as (see Chatterjee and Hadi (1988, p. 190)),

rI =
1
σ̂

(Ik −HI)−1/2ε̂I (6)
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and when I = {i}
rI = ri = rτ

I (7)

The joint externally studentised residuals uτ
I and uI can be defined similarly. But in this case,

uτ
I =




ui1
...

uik


 =




ε̂i1

σ̂(i1)

√
1− hi1i1
...

ε̂ik

σ̂(ik)

√
1− hikik




= D−1/2bσ ε̂I , (8)

and the diagonal matrix D−1/2bσ has dependent elements
(1− hi1i1)

−1/2

σ̂(i1)
, . . . ,

(1− hikik
)−1/2

σ̂(ik
)

; σ̂(is), s =

1, 2, . . . , k. Then, problems arise when we try to find their distributions. A similar situation occurs when uI

is defined. Alternative definitions, as a way to avoid such problems, have been proposed for uI and uτ
I , as

follows:
uτ

I =
1

σ̂(I)
D−1/2ε̂I and uI =

1
σ̂(I)

(Ik −HI)−1/2ε̂I , (9)

where σ̂(I) is the standard deviation computed by removing, from the sample, the corresponding observations
associated to the indexes in I.

Once again, note that under any of the possible definitions of the internally studentised residuals,

uI = ui = uτ
I , I = {i}. (10)

Analogously, the normalised and standardised residuals can be defined as aI = ε̂I/‖ε̂‖ and bI = ε̂I/σ̂,
respectively.

Multivariate versions (p > 1) for the internally and externally studentised residuals are

ri =
1√

1− hii

Σ̂
−1/2

ε̂i and ui =
1√

1− hii

Σ̂
−1/2

(i) ε̂i,

respectively, where ε̂i : p×1 and A1/2 is the definite non-negative squared root of A, such that (A1/2)2 = A.
Given the index I, the following definitions are established

rτ
I = D−1/2ε̂IΣ̂

−1/2
uτ

I = D−1/2ε̂IΣ̂
−1/2

(I)

rI = (Ik −HI)−1/2ε̂IΣ̂
−1/2

uI = (Ik −HI)−1/2ε̂IΣ̂
−1/2

(I) .

The multivariate versions of expressions (7) and (10) are also true in such cases.
The study of all kinds of residual distributions is very important in different fields of statistics, especially

in sensibility analysis (or regression diagnostics) and in linear models. The effect of a variable on a regression
model is usually studied by different kinds of graphic representations of residuals, Chatterjee and Hadi (1988,
Section 3.8). Similarly, the effect of one or more observations on the parameters of a regression model is
evaluated or measured by different measures or distances such as: Cook, Welsch or modified Cook distances,
among many others. These measures can be expressed as functions of internally and externally studentised
residuals. In the same way, other diagnostic measures based on volumes of ellipsoids of confidence or
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quotient of variances can also be expressed as a function of internally and externally studentised residuals,
see Chatterjee and Hadi (1988, chapters 4 and 5) or Besley et al. (1980, Chapter 2). Unfortunately, the
distributions of many of these measures are unknown, which means that decisions must be taken on the
basis of a graphic representation and/or a list of values derived by computing the above-cited metrics.

Many researchers have avoided the problem of finding the joint distributions of different classes of residuals
because they are singular, i.e. singular distributions do not exist with respect to the Lebesgue measure in
Rn. The problem is overcome by observing that singular distributions exist with respect to the Hausdorff
measure defined over an affine subspace, see Dı́az-Garćıa et al. (1997) and Dı́az-Garćıa and González-
Faŕıas (2004). However, when other kinds of residuals are obtained under transformations of the singular
distribution, then the Jacobians with respect to the Hausdorff measure shall be required; such problems are
currently being investigated, Dı́az-Garćıa and González-Faŕıas (2004).An alternative approach was adopted
by Ellenberg (1973), who proposed studying the distribution ε̂I defined by (4) and which already has a
non-singular distribution, i. e. the distribution exists with respect to the Lebesgue measure in Rk. Now it is
possible to define the remaining classes of residuals, for the univariate and multivariate cases: we start with
ε̂I , and then determine their densities, which are non-singular under the hypothesis of the model (1).

The distribution of rτ
I was studied by Ellenberg (1973) (where the distribution of ri is a particular

case), and Beckman and Trusell (1974) studied the distribution of ui. These two results were found for the
univariate general linear model of full rank (α = q) and the three results are summarised in Chatterjee and
Hadi (1988, see theorems 4.1 and 4.2, pp. 76-79).

The diagnostic problem for one observation in the multivariate case was studied by Caroni (1987), who
determined the distributions of proportional amount to the Euclidean norm of ri and ui. For more than
one observation, the problem was addressed in Dı́az-Garćıa and González-Faŕıas (2004) by determining the
distribution of matrices proportional to the rT

I rI and uT
I uI matrices.

The present paper starts by proposing a straightforward way for finding the distribution of ri. The
theory presented here avoids the usual methods: first, the general distribution given in Ellenberg (1973) is
computed; second, a particular distribution is derived from the general one; third, the particular distribution
is extended to a less than full rank model. Here, the distributions of ri are used for deriving the densities of
ai and bi. At the end of Section 2 we give a different proof to that of Beckman and Trusell (1974) for the
density of ui under models of full and less than full rank. The distributions of rτ

I , rI , uτ
I and uI are found

for full and less than full rank models in the univariate case. The extensions to the multivariate case are
treated in Section 4. An important application in econometric theory is presented in Section 5. In Section
6, we extend all the preceding results under the assumption that the distributions of the errors are elliptical.
The paper ends with a list of conclusions in Section 7.

2. UNIVARIATE RESIDUAL

In the classical procedure for finding the distribution of ri, we first need to determine the distribution of
rτ

I , see Ellenberg (1973). In this section, we present a straightforward method for finding the distribution of
ri by considering a parallel approach to that of Cramér (1999, pp. 240-241). The result is established for the
case of a less than full rank model; for the full rank model, the same result is easily obtained by taking α = q
below. First, let us consider the following definition, Gupta and Varga (see 1993, p. 76), Dickey (1967) and
Press (1982, pp. 138-141):

Definition 1. The p× n random matrix X
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i) is said to have a matrix variate symmetric Pearson type II distribution (also called inverted matrix variate
t−distribution) with parameters q ∈ R, M : p×n, Σ : p× p, Φ : n×n, with q > −1, Σ > 0, and Φ > 0
if its probability density function is

fX(X) =
Γ

[pn

2
+ q + 1

]

πpn/2Γ[q + 1]|Σ|n/2|Φ|p/2

(
1− tr

(
(X−M)T Σ−1(X−M)Φ−1

))q

where tr
(
(X−M)T Σ−1(X−M)Φ−1

) ≤ 1, and it is denoted by X ∼ PIIp×n(q,M,Σ⊗ Φ).

ii) is said to have a matrix variate t−distribution with parameters r ∈ R, M : p × n, Σ : p × p, Φ : n × n,
with r > 0, Σ > 0, and Φ > 0 if its probability density function is

fX(X) =
Γ[(pn + r)/2]

(πr)pn/2Γ[r/2]|Σ|n/2|Φ|p/2

(
1 +

tr
(
(X−M)T Σ−1(X−M)Φ−1

)

r

)−(pn+r)/2

and it is denoted by X ∼Mtp×n(r,M,Σ⊗ Φ) or by X ∼ tp(r,M,Σ) when n = 1.

iii) is said to have a matric-variate symmetric Pearson type II distribution (also called inverted matrix
T−distribution) with parameters q ∈ R, M : p × n, Σ : p × p, Φ : n × n, with q > −1, Σ > 0, and
Φ > 0 if its probability density function is

fX(X) =
Γn[q/2]

πpn/2Γn[(q − p)/2]|Σ|n/2|Φ|p/2

∣∣ In − (X−M)T Σ−1(X−M)Φ−1
∣∣−(q−p−n−1)/2

where
(
In − (X−M)T Σ−1(X−M)Φ−1

)
> 0, and it is denoted by X ∼MPIIp×n(q,M,Σ⊗ Φ).

iv) is said to have a matric-variate T−distribution with parameters r ∈ R, M : p× n, Σ : p× p, Φ : n× n,
with r > 0, Σ > 0, and Φ > 0 if its probability density function is

fX(X) =
Γn[r/2]

πpn/2Γn[(r − p)/2]|Σ|n/2|Φ|p/2

∣∣ In + (X−M)T Σ−1(X−M)Φ−1
∣∣−r/2

and it is denoted by X ∼MT p×n(r,M,Σ⊗ Φ).

where Γn[a] denoted the multivariate gamma function, Γn[a] = πn(n−1)/4

n∏

i=1

Γ(a − (1 − i)/2), see Muirhead

(1982, p. 61).

Theorem 1 (Internally studentised residual). Under the model (1) with p = 1 (univariate case), ri

has a Pearson Type II distribution, ri ∼ PII((n− α− 3)/2, 0, n− α). Thus, its density function is given by

gri(ri) =
Γ[(n− α)/2]√

π(n− α) Γ[(n− α− 1)/2]

(
1− r2

i

(n− α)

)(n−α−3)/2

, |ri| ≤
√

(n− α).

Proof: Define θi =
√

1− hiiri, note that

θi =
√

1− hii
ε̂i

σ̂
√

1− hii

=
ε̂i

σ̂
=
√

n− α
ε̂i

‖ε̂‖ (11)

5



and observe that θ2
i = (n− α)ε̂ 2

i /‖ε̂‖2 with ε̂ 2
i > 0 and ‖ε̂‖2 > 0. Besides, ‖ε̂‖2 ≥ ε̂ 2

i . Then

0 ≤ ε̂ 2
i

‖ε̂‖2 ≤ 1

Thus θ2
i ≤ (n− α) or equivalently |θi| ≤

√
n− α. This means that the density function of θi is zero outside

the interval [−√n− α,
√

n− α ]. Now define

vi =

√
n− α− 1

(n− α)(1− hii)
θi√

1− θ2
i

n− α

so, by (11)

vi =
ε̂i√√√√ (1− hii)

(n− α− 1)

n∑

j 6=i

ε̂ 2
j

. (12)

Now, note that ε̂i/
√

σ2(1− hii) ∼ N (0, 1) is independent of
n∑

j 6=i

ε̂ 2
j /σ2 ∼ χ2(n−α−1), where χ2(m) denotes

the central chi-squared distribution with m degrees of freedom. Then

ε̂i

σ
√

(1− hii)√√√√ 1
σ2(n− α− 1)

n∑

j 6=i

ε̂ 2
j

=
ε̂i√√√√ (1− hii)

(n− α− 1)

n∑

j 6=i

ε̂ 2
j

= vi ∼ t(n− α− 1) (13)

Here, t(m) denotes the one-dimensional central distribution t with m degrees of freedom. Also, note that if
θi varies in the interval [−√n− α,

√
n− α ], vi then it takes values in the interval (−∞,∞). Thus

vi ≤
√

n− α− 1
(n− α)(1− hii)

x√
1− x2

n− α

is equivalent to, θi ≤ x. So

P (θi ≤ x) = P


vi ≤

√
n− α− 1

(n− α)(1− hii)
x√

1− x2

n− α


 =

q
n−α−1

(n−α)(1−hii)
xr

1− x2
n−α∫

−∞
t(vi; n− α− 1)dvi

where t(y; m) denotes the density function of a random variable x with t distribution and m degrees of
freedom. But θi =

√
1− hiiri, thus

P

(
ri ≤ x√

1− hii

)
= P


vi ≤ 1√

1− hii

√
n− α− 1

(n− α)(1− hii)
x√

1− x2

n− α



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Taking the derivative with respect to x gives

ri ∼
√

n− α− 1
n− α

(
1− r2

i

n− α

)−3/2

t




√
n− α− 1

(n− α)(1− hii)
ri√

1− r2
i

n− α

;n− α− 1


 , |ri| ≤

√
n− α.

And then the desired result is obtained.

Note that the distributions of the normalised and studentised residuals, ai and bi, respectively, are easily
found; both residuals can be expressed as a function of ri, in the following way;

ai =

√
(1− hii)
(n− α)

ri and bi =
√

1− hii ri.

Thus, from Gupta and Varga (1993, Theorem 2.1.2, p. 20);

Corollary 1 (Normalised and standardised residuals). The distributions of the normalised and
studentised residuals are given by

i) ai ∼ PII((n− α− 3)/2, 0, (1− hii)), |ai| ≤
√

(1− hii)

ii) bi ∼ PII((n− α− 3)/2, 0, (n− α)(1− hii)), |bi| ≤
√

(n− α)(1− hii),

respectively.

Finally, an alternative proof to Beckman and Trusell (1974) and Chatterjee and Hadi (1988, p. 78) is
given to determine the distribution of the externally studentised residuals under a full and less than full
rank.

Theorem 2 (Externally studentised residual). Under the model (1) with p = 1 univariate case), ui

has a t distribution with (n− α− 1) degrees of freedom.

Proof : The demonstration follows from (13), noting that (n− α− 1)σ̂2
(i) =

n∑

j 6=i

ε̂ 2
j , thus

vi =
ε̂i√√√√ (1− hii)

(n− α− 1)

n∑

j 6=i

ε̂ 2
j

=
ε̂i√

(1− hii)σ̂2
(i)

= ui.

3. JOINT UNIVARIATE RESIDUAL

In this section, the joint distributions of the externally and internally studentised residuals shall be
studied under different definitions. The first theorem gives the less than full rank model version for the
result of Ellenberg (1973).
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Theorem 3 (Internally studentised residual, I). If we consider the univariate model (1), then,

rτ
I ∼ PIIk

(
(n− α− k)

2
− 1,0, (n− α)V

)
, with V = D−1/2(Ik −HI)D−1/2, i.e.

frτ
I
(rτ

I ) =
Γ[(n− α)/2]

Γ[(n− α− k)/2][π(n− α)]k/2|V|1/2

(
1− rτ

I
T V−1rτ

I

(n− α)

)(n−α−k)/2−1

, rτ
I

T V−1rτ
I ≤ (n− α).

Proof : The demonstration reduces to that given in Ellenberg (1973), taking α instead of k (use Ellenberg’s
notation).

Theorem 4 (Internally studentised residual, II). Consider model (1) with p = 1. Then, rI ∼
PIIk

(
(n− α− k)

2
− 1,0, (n− α)Ik

)
, i.e.

frI
(rτ

I ) =
Γ[(n− α)/2]

Γ[(n− α− k)/2][π(n− α)]k/2

(
1− ||rI ||2

(n− α)

)(n−α−k)/2−1

, ||rI ||2 ≤ (n− α).

Proof : The technique used is analogous to the given in 3. Alternatively, note that

rτ
I =

D−1/2ε̂I

σ̂
=

D−1/2(Ik −HI)1/2(Ik −HI)−1/2ε̂I

σ̂
= D−1/2(Ik −HI)1/2rI ,

with (drτ
I ) = |D−1(Ik−HI)|1/2(drI); where (dX) denotes the exterior product of the elements of the vector

(or matrix) of differentials dX, Muirhead (1982, p. 57). Thus, by applying this transformation to the density
in Theorem 3, the desired result is obtained.

With the aim of determining the joint distribution of the normalised and standardised residuals aI and
bI , respectively, note that for the first of these

aI =
ε̂I

‖ε̂‖ =





D1/2

√
n− α

rτ
I with (drτ

I ) = (n− α)k/2|D|−1/2(daI)

(Ik −HI)1/2

√
n− α

rI with (drI) = (n− α)k/2|Ik −HI |−1/2(daI).
(14)

Similarly, observe that

bI =
ε̂I

σ̂
=

{
D1/2 rτ

I with (drτ
I ) = |D|−1/2(dbI)

(Ik −HI)1/2 rI with (drI) = |Ik −HI |−1/2(dbI).
(15)

Then, considering transformations (14) and (15) and their corresponding Jacobians, the distributions of aI

and bI are straightforwardly derived from Theorems 3 and 4. In summary:

Theorem 5 (Normalised and standardised residuals). For the univariate model (1), we have,

i). aI ∼ PIIk

(
(n− α− k)

2
− 1, 0, (Ik −HI)

)

ii). bI ∼ PIIk

(
(n− α− k)

2
− 1, 0, (n− α)(Ik −HI)

)
.
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For the case of externally studentised residuals, observe that, see Ellenberg (1973, Lemma 2)

ε̂I ∼ Nk(0, σ2(Ik −HI)) independently of
(n− α− k)σ2

(I)

σ2
∼ χ2(n− α− k)

where σ2
(I) is given in (9). Then,

(I −HI)−1/2ε̂I

σ√
(n− α− k)σ̂2

(I)

(n− α− k)σ2

=
(I −HI)−1/2ε̂I

σ̂(I)
= uI ∼ tk((n− α− k),0, Ik).

by equation (1.2) in Kotz and Nadarajah (2004, p. 2).
Also, observe that

uI =
(Ik −HI)−1/2ε̂I

σ̂(I)
=

(Ik −HI)−1/2D1/2D−1/2ε̂I

σ̂(I)
= (I −HI)−1/2D1/2uτ

I ,

from which, the following result can be established

Theorem 6 (Externally studentised residual). Under the general univariate linear model (1) we
have

i) uI ∼ tk((n− α− k),0, Ik)

ii) uτ
I ∼ tk((n− α− k),0,V), with V = D−1/2(I −HI)D−1/2.

4. JOINT MULTIVARIATE RESIDUAL

In the multivariate case, the distributions of ri and ui are difficult to find. For example, for the externally

studentised residual ui =
1√

(1− hii)
Σ̂
−1/2

(i) ε̂i with
ε̂i√

(1− hii)
∼ Np(0,Σ) independent (n − α − 1)Σ̂(i) ∼

Wp(n − α − 1,Σ), note that the distributions of ui cannot be found unless, as Ellenberg (1973) assumes,

Σ = Ip is taken in the two above distributions, by which we obtain ui ∼ tp

(
(n− p− α),0,

(n− p− α)
(n− α− 1)

Ip

)
.

For applying the general definition of the multidimensional t distribution, it is required that Σ be proportional
to Ip in the distribution of ui, see Kotz and Nadarajah (2004, p. 7).

Instead, we find the distributions of rI and uI . Then, as corollaries, I = {i}, the distributions of ri and
ui are found.

For extending Theorem 3 to its multivariate version, consider the following result.

Lemma 1. If <e(a) > (p− 1)/2 and Θ is a symmetric p× p matrix with <e(Θ) > 0 then
∫

R>0

etr
(

1
2Θ

−1R2
) |R|2a−p

∏

i<j

(λi + λj)(dR) = Γp[a]|Θ|a2p(a−1)

where λi, i = 1, . . . , p are the eigenvalues of the matrix R : p× p.

9



Proof : From Theorem 2.1.11 in Muirhead (1982, p. 61) we know that for <e(a) > (p− 1)/2 and Θ is a
symmetric p× p matrix with <e(Θ) > 0

∫

B>0

etr
(

1
2Θ

−1B
) |B|a−(p+1)/2(dB) = Γp[a]|Θ|a2ap

the result follows taking R such that (R)2 = B with (dB) = 2p|R|∏i<j(λi+λj)(dR), where λi, i = 1, . . . , p
are the eigenvalues of the matrix R, see Dı́az-Garćıa and González-Faŕıas (2004), Olkin and Rubin (1964)
or Magnus (1988, p. 128).

Theorem 7 (Internally studentised residual, II). Under model (1), rI has a matric-variate sym-
metric Pearson Type II distribution, rI ∼ MPIIk×p((n − α),0, (n − α)(Ik ⊗ Ip)), moreover, its density
function is

grI
(rI) =

Γp[(n− α)/2]
(π(n− α))kp/2 Γp[(n− α− k)/2]

∣∣∣∣ Ip − 1
(n− α)

rT
I rI

∣∣∣∣
(n−α−k−p−1)/2

,

∣∣∣∣ Ip − 1
(n− α)

rT
I rI

∣∣∣∣ > 0

Proof : Suppose (n − α)Σ̂ = A = ε̂T ε̂, Then, generalising Lemma 1 in Ellenberg (1973), (n − α)Σ̂ =
(n−α− k)Σ̂(I) + ε̂I(Ik−HI)−1ε̂I , where AI = (n−α− k)Σ̂(I) = ε̂I ε̂I ∼ Wp((n−α− k),Σ) independently
of ε̂I , see Lemma 2 in Ellenberg (1973), then, denoting m = n− α− k

fbεI ,AI
(ε̂I ,AI) =

|AI |(m−p−1)/2

(2π)kp/22pm/2Γp[m/2]|Ik −HI |p/2|Σ|(n−α)/2
etr

(
−1

2
Σ−1(AI + ε̂I(Ik −HI)−1ε̂I)

)

(16)

Now define rI = (Ik −HI)−1/2ε̂IΣ̂
−1/2

and note that (n− α)Σ̂ = AI + ε̂I(Ik −HI)−1ε̂I , so

ε̂I = (Ik −HI)1/2rIΣ̂
1/2

and AI = (n− α)Σ̂ + ε̂I(Ik −HI)−1ε̂I

which implies
(dε̂I)(dAI) = (n− α)p(p+1)/2|Ik −HI |p/2|Σ̂|k/2(drI)(dΣ̂).

Besides, observe that for S : p × p, such that S = R2 > 0, (dS) = 2p|R|
p∏

i 6=j

(λi − λj)(dR), with λi the

eigenvalues of R. Thus

(dε̂I)(dAI) = 2p(n− α)p(p+1)/2|Ik −HI |p/2

∣∣∣∣Σ̂
1/2

∣∣∣∣
k+1 p∏

i6=j

(λi − λj)(drI)
(

dΣ̂
1/2

)
. (17)

Substituting (17) in (16) and simplifying, we obtain

f
rI ,
cΣ1/2(rI , Σ̂

1/2
) =

∣∣∣∣ Ip − r̂T
I r̂I

(n− α)

∣∣∣∣
(m−p−1)/2 ∣∣∣∣ Σ̂

1/2
∣∣∣∣
n−α−p

etr

(
− (n− α)

2
Σ−1

(
Σ̂

1/2
)2

)
p∏

i6=j

(λi − λj)

(2π)kp/22pm/2−pΓp[m/2]|Σ|(n−α)/2(n− α)−pm/2

10



Because

AI = (n− α)Σ̂− ε̂I(Ik −HI)−1ε̂T
I

= (n− α)Σ̂− Σ̂
1/2

r̂I(Ik −HI)1/2(Ik −HI)−1(Ik −HI)1/2r̂I

= (n− α)Σ̂
1/2

(
Ip − 1

(n− α)
r̂T

I r̂I

)
Σ̂

1/2
,

with |AI | =
∣∣∣∣ Ip − 1

(n− α)
r̂T

I r̂I

∣∣∣∣ |(n − α)Σ̂|. Integrating with respect to Σ̂
1/2

using Lemma 1 the desired

result is obtained.

We saw how Theorem 4 in the univariate case was derived from Theorem 7, just taking p = 1. Similarly,
we straightforwardly obtain the marginal distribution of ri, starting from Theorem 7.

Corollary 2. Setting k = 1 in Theorem 7, we have the marginal distribution of ri, and, the density of
ri is

gri(rI) =
Γ[(n− α)/2]

(π(n− α))p/2 Γ[(n− α− p)/2]

(
1− 1

(n− α)
||ri||2

)(n−α−p−2)/2

, ||ri||2 < (n− α)

this is, ri ∼ PIIp

(
(n− α− p− 2)

2
,0, (n− α)Ip

)
.

Proof : The demonstration is straightforward from Theorem 7, just noting that

Γp[(m + 1)/2]
Γp[m/2]

=
Γ[(m + 1)/2]

Γ[(m + 1− p)/2]
(18)

with m = n− α− 1.

Now, observing that

rτ
I = D−1/2ε̂IΣ̂

−1/2
= D−1/2(Ik −HI)1/2rI

with (drI) = |V|p/2(drτ
i ) y V = D−1/2(Ik −HI)D−1/2, we get that

Theorem 8 (Internally studentised residual, I). Under model (1), rτ
I has a matric-variate symmet-

ric Pearson Type II distribution, rτ
I ∼MPIIk×p((n−α),0, (n−α)(V⊗Ip)), con V = D−1/2(Ik−HI)D−1/2.

Theorem 9 (Externally studentised residual). Under the general multivariate linear model (1) we
have that

i) uI ∼MT k×p((n− α),0, (n− α− k)(Ik ⊗ Ip)),

ii) uτ
I ∼MT k×p((n− α),0, (n− α− k)(V ⊗ Ip)), with V = D−1/2(Ik −HI)D−1/2.

Proof : The demonstration is parallel to the proof of Dickey (1967, Theorem 3.1), just note that (Ik −
HI)−1/2ε̂I ∼ Nk×p(0, I ⊗Σ) and that (n− α− k)Σ̂(I) ∼ Wp((n− α− k),Σ).

By (10), and taking k = 1 in Theorem 9 we have:

11



Corollary 3. Under the general multivariate linear model (1),

ui ∼ tp

(
(n− p− α),0,

(n− p− α)
(n− α− 1)

Ip

)
.

Remark 1. Generally, when the residuals are used for a sensibility analysis, it is traditional to take
proportional amounts to ||ri||2 and ||ui||2 because their distributions are known, see Caroni (1987). In the
multivariate case those results were extended: the distributions of proportional matrices to the matrices
r̂ T

I r̂I û T
I ûI were found and several metrics associated to those matrices were determined, see Dı́az-Garćıa

and González-Faŕıas (2004).

5. JOINT MULTIVARIATE RESIDUAL: SPECIAL CASE

In this section we consider the general multivariate linear model

Y = Xβ + ε, (19)

but assuming that ε ∼ Nn×p(0, In ⊗ σ2W), with W > 0 known. This model is very interesting for different
fields of statistics, but especially in econometric methods, see Johnston (1972, Chapter 7).

For this model, the normal equations are given by XT W−1Xβ̃ = XT W−1Y so,

Xβ̂ = X(XT W−1X)−XT W−1Y and ε̂ = (In −H)Y

where in this case H = X(XT W−1X)−XT W−1. Moreover, ε̂ ∼ N (n−α),p
n×p (0, (In − H) ⊗ σ2W) and in

particular, εi ∼ Np(0, σ2(1− hii)W). By vectorising model (1), see Muirhead (1982, p. 74), we find that

p(n− α)σ̂2 =
∥∥∥
(
W−1/2 ⊗ In

)
vec ε̂

∥∥∥
2

= vecT Y
(
W−1 ⊗ In −W−1 ⊗H

)
vecY,

such that
p(n− α)σ̂2

σ2
∼ χ2

p(n−α). For this model we obtain that:

rτ
I =

1
σ̂
D−1/2ε̂IW−1/2 uτ

I =
1

σ̂(I)
D−1/2ε̂IW−1/2

rI =
1
σ̂

(Ik −HI)−1/2ε̂IW−1/2 uI =
1

σ̂(I)
(Ik −HI)−1/2ε̂IW−1/2.

Theorem 10 (Internally studentised residual). Under model (19) it is obtained

i) rI ∼ PIIk×p

(
p(n− α)− k

2
− 1,0, p(n− α)(Ik ⊗ Ip)

)

ii) rτ
I ∼ PIIk×p

(
p(n− α)

2
− 1,0, p(n− α)(V ⊗ Ip)

)
, con V = D−1/2(I −HI)D−1/2

12



Proof : i)The proof is similar to that of Theorem 3, but considering the distribution of vec ε̂I instead of
that of the distribution of ε̂I .

ii) It is analogous to the proof of the Theorem 4.

Now, observe that

W−1/2ε̂i

σ
√

(1− hii)
∼ Np(0, Ip) independent of

(n− α− 1)σ̂2
(i)

σ2
∼ χ2(p(n− α)− 1)

then
W−1/2ε̂i

σ
√

(1− hii)
(n− α− 1)σ̂2

(i)

σ2

=
W−1/2ε̂i

σ̂
√

(1− hii)
= ui ∼ tp(p(n− α)− 1,0, Ip)

see (Kotz and Nadarajah, 2004, p. 2). Moreover
∥∥∥∥∥

W−1/2ε̂i

σ
√

(1− hii)

∥∥∥∥∥

2

∼ χ(p) independent of
(n− α− 1)σ̂2

(i)

σ2
∼ χ2(p(n− α)− 1)

thus
1
p

∥∥∥∥∥
W−1/2ε̂i

σ
√

(1− hii)

∥∥∥∥∥

2

(n− α− 1)σ̂2
(i)

(n− α− 1)σ2

=
1
p
‖ui‖2 ∼ F(p, p(n− α)− 1),

where F(p, p(n− α)− 1) denotes the central F distribution with p and p(n− α)− 1 degrees of freedom.

Theorem 11 (Externally studentised residual). Under model (19) we have that

i) uI ∼Mtk×p (p(n− α)− k,0, (Ik ⊗ Ip))

ii) uτ
I ∼Mtk×p (p(n− α),0, (V ⊗ Ip)), con V = D−1/2(Ik −HI)D−1/2

Proof : The demonstration is analogous to that given in Graybill (1985, Theorem 6.6.1, pp. 201-202 ),
but using the distribution of vec ε̂I instead of that of ε̂I .

Remark 2. The marginal distributions of ri and ui are obtained from Theorems 10 and 11 by taking
k = 1 and, for the univariate case, i.g. ε ∼ Nn(0, σ2W) by setting p = 1 in the same theorems.

6. RESIDUAL UNDER MATRIX-VARIATE ELLIPTICAL DISTRIBUTION

In this section we consider models (1) and (19) but assume that ε ∼ En×p(0, In⊗Σ, h) y ε ∼ En×p(0, In⊗
σ2W, h), respectively, see Gupta and Varga (1993, p. 26) or Fang and Zhang (1990, p. 103). Note that if
K(ε̂) denotes generically any kind of residual, then K(·) takes the form

K(ε̂) =
g(ε̂)
||ε̂|| ,

13



and it is such that for a > 0 we get

K(aε̂) =
g(aε̂)
||aε̂|| =

ag(ε̂)
a||ε̂|| =

g(ε̂)
||ε̂|| = K(ε̂)

and so, by Theorem 5.3.1 in Gupta and Varga (1993, p. 182), the distributions of all residual classes found
in the above sections are invariant under the whole family of elliptical distributions. Moreover, they coincide
with the distributions under the normality assumption. In summary, all the distributions found in this
research are true, not only under normality, but also under an elliptical model.

7. CONCLUSIONS

We have shown that the distributions of different kinds of internally studentised residuals belong to a
family of Pearson Type II distributions and that the externally studentised residuals belong to a family of t
distributions. We remark that this provides a method for finding many numbers and/or random vectors with
these distributions. Moreover, it is possible to determine the distributions of the ||ri||2 and ||ui||2 starting
from the distributions of ri and ui, respectively. Similarly, we can now easily find the distributions of the
matrices r̂ T

I r̂I and û T
I ûI (or of the matrices proportional to these) starting from the distributions of r̂I and

ûI , respectively; this goal can be reached, by just following the method described for finding the Wishart
distribution.

The reader might expect the results of Section 5 to be particular cases of the result in Section 4. However,
this is not so: from Kotz and Nadarajah (2004, p. 2, 4), we know that a random p-dimensional vector with
distribution t can be defined in two ways; namely:

t =





S−1Y + µ, with
νS2

σ2
∼ χ2(ν) and Y ∼ Np(0,Σ)

W−1/2Y + µ, with W ∼ Wp(ν + p− 1,Σ) and Y ∼ Np(0, νIp)

with (W1/2)2 = W y µ : p×1 a constant vector. Consider the sample t1, . . . , tn of a multivariate population
with t distribution, arranged in the matrix T = (t1 · · · tn) : p× n, then

T =




tT
1
...

tT
n




T

=








S−1YT
1 + µT

1
...

S−1YT
n + µT

n




T

= S−1Y+ M with





νS2

σ2
∼ χ2(ν)

and
Y ∼ Np×n(0,Σ⊗ In)

or


YT
1 W−1/2 + µT

1
...

YT
n W−1/2 + µT

n




T

= W−1/2Y+ M with





W ∼ Wp(ν + p− 1,Σ)
and

Y ∼ Np×n(0, ν(Ip ⊗ In))

where M = (µ1 · · ·µn) : p × n, and Y = (Y1 · · ·Yn). But matrix T does not have the same distribution
under the above two representations, even when their rows have the same distribution. In the representation,
T has a matric-variate t−distribution and under the second one it has a matric-variate T−distribution, see
Definition 1.
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