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ABSTRACT

In this paper we have given a method of constructing generalized Loday alge-
bras with bar-unit. It turns out that it is very intimately related with functional
analysis. In order to make progress in the search for an analogous concept of Lie
groups for Liebniz algebras we introduce the notion of digroup. The basic results
of the digroups are proved and some open problems are enunciated.
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1. Introduction

The Leibniz algebras and Loday algebras (dialgebras) first arose in K-
theory and are objects of current interest. They were introduced by J.L.
Loday and these constitute an extension of the concepts of Lie algebra and
associative algebra respectively. More exactly, the Leibniz algebras are a
generalization of Lie algebras, for which the antisymmetry condition of the
bracket is dropped and only the Jacobi identity is retained. On the other
hand the definition of Loday algebra is the following:
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Definition 1.1. A Loday algebra is a vector space V together with
two associative and bilinear operators, `, a, satisfying the following re-
quirements

x a (y a z) = x a (y ` z) ,
(x ` y) a z = x ` (y a z) ,
(x a y) ` z = (x ` y) ` z,

for all x, y and z of V . These operators are called respectively, right and left
products. In our paper we will modify this notion in the following way: a
generalized Loday algebra is a vector space V together with two associative
operators, `, a, that satisfy the above properties but these operators are
not necessarily bilinear.

Clearly all Loday algebra is also a generalized Loday algebra. We say
that e is a bar-unit of a generalized Loday algebra (V,`,a) if e ` v = v =
v a e for any v ∈ V .
It is well known that if a Loday algebra is given then it gives rise to a

Leibniz algebra which is obtained by defining the bracket as

[x, y] = x a y − y ` x
see [7] and [8] for more detail.
A basic problem in this context is the construction of Loday algebras

with bar-unit which are not associative algebras. A few very special exam-
ples of Loday algebras with bar-identity were given in [7]. In this paper,
we present a huge number of Loday algebras by means of the dual space
of a vector space, more exactly we consider a certain natural construction
that associates a Loday algebra structure on this vector space with a given
nonzero linear functional on this vector space . Thus, the Loday algebra
structure is really very rich and from our point of view it ’s principal fea-
ture, as will be seen below, is that this leads us to extend the group theory
in a certain direction. Another very important problem is the construction
of an analogous of Lie group for Liebniz algebras. The apparent difficulty is
the absence of a similar concept of group for sets with two special products.
In the present paper we attempt to prepare the way to solve this problem.
We introduce the notion of digroup. Many questions arise around this con-
cept that it should be considered in forthcoming papers. Some of them
are:

i) Sets which are both a digroup and a manifold.

ii) Abstract harmonic analysis on topology digroup and construction of
new Loday algebras.
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iii) Cohomology of digroups.

iv) To construct Hopf dialgebras and quantum digroups.

2. New Loday algebras with bar-unit

The main object of this section is the construction of new examples of
Loday algebras. As we will see below, associated to all nonzero elements
belonging to the dual of a vector space, are given a structure of Loday
algebras on this vector space. Starting this construction other very inter-
esting structures are defined on Loday algebras possibility related with a
new trend in the functional analysis and that has its origins in the paper
by the author [3].
Throughout this section any vector space will always be finite dimen-

sional. However, most of the definitions and results can be extended with-
out this restriction.
Let V be a finite dimensional vector space over C and V ∗ its dual

space. If ϕ is a nonzero element of V ∗ then we define the following bilinear
operators:

x ` y = ϕ (x) y, w a z = ϕ (z)w

where x, y, z and w are elements of V . We start this section with the
following

Theorem 2.1. The operators ` and a obey the properties of definition
1.1.

Proof. Let x, y and z be elements of V

x a (y a z) = x a (ϕ (z) y) = ϕ (ϕ (z) y)x = ϕ (z)ϕ (y)x,

on the other hand

x a (y ` z) = x a (ϕ (y) z) = ϕ (ϕ (y) z)x = ϕ (y)ϕ (z)x,

from the two last equations it now follows that x a (y a z) = x a (y ` z).
Next we must prove that (x ` y) a z = x ` (y a z)

(x ` y) a z = (ϕ (x) y) a z = ϕ (z)ϕ (x) y

and

x ` (y a z) = x ` (ϕ (z) y) = ϕ (x)ϕ (z) y
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then, as was claimed, the equality holds. Finally we have

(x a y) ` z = (ϕ (y)x) ` z = ϕ (ϕ (y)x) z = ϕ (y)ϕ (x) z,

also we have

(x ` y) ` z = (ϕ (x) y) ` z = ϕ (ϕ (x) y) z = ϕ (x)ϕ (y) z,

so (x a y) ` z = (x ` y) ` z.

Corollary 2.1. (V,`,a) is a Loday algebra.

Proof. Since it is readily verified that the operators ` and a are both
associative.
From now on, we will denote this Loday algebra by Vϕ. Let x ∈ Vϕ such

that ϕ (x) 6= 0 then e = x
ϕ(x) is a bar-unit in Vϕ, In fact, for any z ∈ Vϕ

we have e ` z = ϕ
³

x
ϕ(x)

´
z = z a e = z. Thus, in this Loday algebra the

bar-unit is not unique.

Definition 2.1. An element x in a generalized Loday algebra (L,`,a)
is said to be (`)−regular ((a)− regular) with respect to a bar-unit e pro-
vided there exists x` ∈ L (xa ∈ L), such that x ` x` = (e− x) + (x ` e)
(xa a x = (e− x) + (e a x)) . The element x` (xa)is called a (`)-inverse
((a) -inverse) for x with respect to e. An element which is both (`)−regular
and (a)−regular with respect to e, is called regular if it has a (`)−inverse
that is also a (a)−inverse, both with respect to e.

Observe that if a Loday algebra has a bar-unit e which satisfies also
that e a x = x = x ` e for any x, then ` = a and L is an associative
algebra with unit. In this case the definition 4 coincides with the usual one.
On the other hand e is regular while the null element θ of V is not regular
with respect to e.

Proposition 2.1. In Vϕ the regular elements are those vectors x such
that x /∈ V 0, where V 0 = {z ∈ V | ϕ (z) = 0}.

Proof. First according to Definition 2.1 we must prove that if x
satisfies the condition ϕ (x) 6= 0 then it is (`)−regular and also (a)−regular
and has a (`)−inverse that is also a (a)−inverse with respect to e. To
begin, let x` be a (`)−inverse of x then we must have

ϕ (x)x` = x ` x` = (e− x) + (x ` e) = (e− x) + ϕ (x) e (1)

since ϕ (x) 6= 0, it follows that x` is necessarily of the following form:
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x` =
(e− x)
ϕ (x)

+ e.

As we will show this vector x` is also a (a)−inverse of x that is xa = x`;
in fact

x` a x =
µ
(e− x)
ϕ (x)

+ e

¶
a x

= ϕ (x)

µ
(e− x)
ϕ (x)

+ e

¶
= (e− x) + ϕ (x) e

= (e− x) + (e a x) .
Reciprocally, let x be a regular element with respect to e in Vϕ. If

x = e then ϕ (e) = 1 6= 0. If x 6= e is regular then from (1) it follows
that ϕ (x) 6= 0 since in the other case we will have ϕ (e) = 0 but it is
impossible. Thus, we have proved that the set of the regular elements of
Vϕ with respect to e consists of all the vectors don’t belong to V 0.
Next we introduce the concept of ideals in a generalized Loday algebra

with a bar-unit e.

Definition 2.2. A subset I of a generalized Loday algebra L, is said
to be a (`)− ideal provided it is a linear subspace of L and x ` y, y ` x ∈ I
for all x ∈ I and all y ∈ L. It is a (a)− ideal if the latter condition is
replaced by y a x, x a y ∈ I for all x ∈ I and all y ∈ L. If I is both a (`)−
ideal and a (a)− ideal, then it is called a two-sided ideal of L. Any ideal
of some type, different from L is called proper.

We note that if e is a bar-unit and I is an ideal of some type such that
e ∈ I then I = L.
Lemma 2.1. Let (L,`,a) a Loday algebra with a bar-unit e, let x ∈ L

be a (`)−regular element with respect to e, then for all z ∈ L

(x ` x`) ` z = z (2)

where x` is a (`)−inverse of x. Also in the same context, if x ∈ L is
(a)−regular with respect to e then we have

z a (xa a x) = z (3)

for any z ∈ L. In (3), xa is some (a)−inverse of x.
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Proof. Let x ∈ L be (`)−regular with respect to a bar-unit e, as we
have already seen this means, that

x ` x` = (e− x) + (x ` e) ,

for some x` ∈ L and hence, for all z ∈ L

(x ` x`) ` z = ((e− x) + (x ` e)) ` z
= (e− x) ` z + (x ` e) ` z
= (e ` z)− (x ` z) + (x a e) ` z
= z,

hence the equality (2) holds. The proof of (3) is very similar.

Corollary 2.2. Let (L,`,a) be a Loday algebra. If x is (`)−regular
with respect to a bar-unit e, then it can’t belong to a proper (`)−ideal.

Proof. Since, if x is an element (`)−regular with respect to a bar-
unit e and I a (`)−ideal, such that x ∈ I, we have that for all z ∈ L,
z = (x ` x`) ` z = x ` (x` ` z) ∈ I, where x` is a (`)−inverse of x with
respect to the bar-unit e.
A similar statement holds for (a)−regular elements of a Loday algebra

L and proper (a)−ideals, to be more precise: if x is (a)−regular with
respect to a bar-unit e, then it can’t belong to a proper (a)−ideal.

Example 2.1. Having in mind that V ∗ = Mor (V,C) is also a finite
dimensional vector space and its dual (V ∗)∗ can be identified with V , then
we can choose a nonzero element x ∈ V and define the following Loday
algebra structure in V ∗

ϕ1 ` ϕ2 = Φx (ϕ1)ϕ2, ϕ3 a ϕ4 = Φx (ϕ4)ϕ3 (4)

where ϕ1, ϕ2, ϕ3 and ϕ4 are in V
∗, moreover Φx is defined in the following

form: Φx (ϕ) = ϕ (x) for any ϕ ∈ V ∗. This Loday algebra will be denoted
by V ∗x . Notice that if x 6= θ there exits ϕ ∈ V ∗ such that ϕ (x) 6= 0, then
e (.) = ϕ(.)

ϕ(x) is a bar-unit of V
∗
x . Let V

∗
0 = {ϕ ∈ V ∗ | ϕ (x) = 0} ⊂ V ∗ the

annihilator of the set {x} ⊂ V . It is easy to show that ϕ ∈ V ∗x is regular if
and only if ϕ /∈ V ∗0
We have

Theorem 2.2. If x 6= θ then V ∗0 is a two-sided proper ideal in V ∗x .
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Proof. It is clear that V ∗0 is a subspace of V ∗x . Now let ϕ ∈ V ∗0 and
γ ∈ V ∗x then (ϕ ` γ) (.) = Φx (ϕ) γ (.) = ϕ (x) γ (.) = 0 that is (ϕ ` γ) (.) =
O (.) is the null functional. On the other hand (γ ` ϕ) (.) = Φx (γ)ϕ (.) =
γ (x)ϕ (.) but ϕ ∈ V ∗0 hence γ ` ϕ is zero in x and γ ` ϕ ∈ V ∗0 . The
following step is to see that ϕ a γ and γ a ϕ belong to V ∗0 . Indeed
(ϕ a γ) (.) = Φx (γ)ϕ (.) that as we already have seen belong to V ∗0 , finally
observe that (γ a ϕ) (.) = O (.). It remains to be proved that V ∗0 is a proper
subspace, but this assertion is trivial.

Definition 2.3. Let (L1,`,a) and (L2,B,C) be two generalized Lo-
day algebras over C; a linear mapping T : L1 → L2 is called a homomor-
phism of generalized Loday algebras if

T (x ` y) = Tx B Ty, T (w a z) = Tw C Tz, (5)

for all x, y, w, z ∈ L1. In this case, one can say that L1 and L2 are homo-
morphic; if T is invertible, T is said to be an isomorphism of generalized
Loday algebras moreover we say that L1 and L2 are isomorphic.

Apparently this definition for Loday algebras was first introduced in [4]
and [5].
Let T be a homomorphism of L1 into L2 where (L1,`,a) and (L2,B,C)

are two generalized Loday algebras over C. It is called unital if the image of
any bar-unit is a bar-unit. Note that if e is a bar-unit of L1 and TL1 = L2,
then Te is a bar-unit in L2. On the other hand, if T is unital and if x ∈ L1
is (`)−regular with respect to the bar-unit e, then Tx is (B)−regular with
respect to Te. In fact, since x is (`)−regular with respect to e, there is x`
in L1 such that x ` x` = (e−x)+ (x ` e) hence T (x ` x`) = Tx B Tx` =
T ((e−x)+ (x ` e)) = T (e−x)+T (x ` e) = (Te−Tx)+ (Tx B Te). Also
it is easy to see that if x is (a)−regular with respect to e, the vector Tx is
(C)−regular with respect to Te. It shows that if x is a regular vector with
respect to the bar-unit e then Tx is regular with respect to Te.
We recall that if u ∈ L (E, V ), that is, if u is a linear mapping of E into

V , where E and V are finite dimensional vector spaces then the adjoint
mapping ut associated to u is defined in the following form ut: V ∗ → E∗

and ut (f) = f ◦ u for any f ∈ V ∗. We have
Theorem 2.3. Let E and V be finite dimensional vector spaces. Let

u ∈ L (E, V ) and x ∈ E nonzero such that u (x) 6= θ. Then the mapping
T defined as Tf = ut (f) for all f ∈ V ∗u(x) is a homomorphism of Loday
algebras between V ∗u(x) and E

∗
x.

Proof. It is obvious that T is a linear mapping. Let f , g ∈ V ∗u(x) then
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T (f ` g) = T ¡Φu(x) (f) g (.)¢
= T (f (u (x)) g (.))

= f (u (x))Tg

= (f ◦ u) (x) (g ◦ u) (.)
= ut (f) (x)ut (g) (.)

= Tf ` Tg,
on the other hand for h, l ∈ V ∗u(x)

T (h a l) = T ¡Φu(x) (l)h (.)¢
= T (l (u (x))h (.))

= l (u (x))Th

= (l ◦ u) (x) (h ◦ u) (.)
= ut (l) (x)ut (h) (.)

= Th a T l.

Example 2.2. Let V be a vector space of dimension n over C and let
{e1,···,en} be an ordered basis of V ; the corresponding dual ordered basis
will be denoted by

©
e∗1,···,e

∗
n

ª
that is if x ∈ V and x = x1e1 + · · · + xnen

then e∗i (x) = xi for i = i, . . . , n. It is well known that

hx, yi =
nX
i=1

e∗i (x) e∗i (y) (6)

for any x, y ∈ V defines a scalar product in V , let e be an element of V
such that he, ei = kek = 1. It follows that the operators ` and a defined in
the following way: x ` y = hx, ei y, z a w = hw, ei z convert V in a Loday
algebra that will be denoted by V (e).

This particular example of Loday algebra gives rise to the following

Definition 2.4. A normed Loday algebra is a Loday algebra (L,`,a)
over the field C together with a norm x→ kxk, such that,

kx ` yk ≤ kxk kyk , kx a yk ≤ kxk kyk ∀ x, y ∈ L (7)
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Hence we have

Proposition 2.2. V (e) a normed Loday algebra

Proof. Obviously it remains to be proved (7) but it follows of Cauchy-
Schwarz inequality.
Observe that V (e) is complete, hence it is a Banach-Loday algebra

in the sense introduced by the author in [3]. Thus, now it is justified to
introduce the following definition

Definition 2.5. Let (L,`,a) be a complex Loday algebra. A mapping
x→ x∗ of L onto itself is called an involution of classic type provided the
following conditions are satisfied:

(i) (x∗)∗ = x,
(ii) (x+ y)

∗
= x∗ + y∗,

(iii) (x ` y)∗ = y∗ a x∗,
(iv) . (αx)∗ = αx∗,

note that from (iii) it follows the following equality

(x a y)∗ = y∗ ` x∗,

A complex Loday algebra with an involution of classic type is called a
Loday ∗−algebra of classic type.
We shall write L (V (e)) for the space of bounded linear transformations

from V (e) to V (e); with each linear transformation T of this space is
associated a linear transformation T ∗ ∈ L (V (e)) called the adjoint.

Definition 2.6. The adjoint of T ∈ L (V (e)) is the bounded linear
transformation T ∗:V (e)→ V (e) defined by the equation

hTx, yi = hx, T ∗yi (8)

It is well known that this definition makes sense and

Theorem 2.4. L (V (e)) is a Loday ∗−algebra of classic type.
Proof. In the first place observe that L (V (e)) can be converted in a

Loday algebra in the following way, we introduce in L (V (e)) the following
associative operators
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(A ` B) (x) = (Ae) ` (Bx) , (C a D) (y) = (Cy) a (De) (9)

for allA, B, C andD in L (V (e)) and any x, y ∈ V (e). Then (L (V (e)) ,`,a)
is a Loday algebra. Let us see it in detail, first of all note that A ` B and
C a D are linear operators. On the other hand, since V (e) is a normed Lo-
day algebra it follows that A ` B ∈ L (V (e)) for any A and B in L (V (e))
and moreover C a D ∈ L (V (e)) for all C and D also in L (V (e)).
By (9), we have that for A, B and C in L (V (e))

(A a (B a C)) (x) = Ax a (B a C) (e)
= Ax a (Be a Ce) ,

on the other hand

(A a (B ` C)) (x) = Ax a (B ` C) (e)
= Ax a (Be ` Ce) ,

since V (e) is a Loday algebra then Ax a (Be a Ce) = Ax a (Be ` Ce).
Therefore we have A a (B a C) = (A a (B ` C)).
In a similar way one can show that (A ` B) a C = A ` (B a C). In

fact

((A ` B) a C) (x) = (A ` B) (x) a Ce
= (Ae ` Bx) a Ce,

and we check

(A ` (B a C)) (x) = Ae ` (B a C) (x)
= Ae ` (Bx a Ce) ,

using now the fact that V (e) is a Loday algebra we have ((A ` B) a C) =
(A ` (B a C)). The reader easily examines that also (A a B) ` C =
(A ` B) ` C.
Finally let A and B be two bounded linear transformations of L (V (e))

and x, y ∈ V (e) then we have

h(A ` B)x, yi = h(Ae ` Bx) , yi
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= hhAe, eiBx, yi
= hAe, ei hBx, yi
= he,A∗ei hx,B∗yi
=
D
x, he,A∗eiB∗y

E
= hx, hA∗e, eiB∗yi
= hx,B∗y a A∗ei
= hx, (B∗ a A∗) yi

from this it follows that (A ` B)∗ = B∗ a A∗. The rest of the conditions for
a Loday ∗−algebra of classic type clearly hold. This proves the Theorem.

Observe also that L (V (e)) is a normed Loday algebra.

3. Generalized Loday algebras and digroups.

We begin this section with a very interesting result

Theorem 3.1. All vector space can be equipped with a generalized Loday
algebra structure.

Proof. Let X be a vector space. We define x ` y = y for any x,
y ∈ X and z a w = z for all z, w ∈ X. Observe that in general y = x ` y
6= x a y = x. Then

x ` (y ` z) = x ` z = z,
(x ` y) ` z = y ` z = z,
(x a y) ` z = x ` z = z,
x a (y a z) = x a y = x,
(x a y) a z = x a z = x,
x a (y ` z) = x a z = x,
(x ` y) a z = y a z = y,
x ` (y a z) = x ` y = y,

these equalities show that X is a generalized Loday algebra. The Theorem
is proved.
Let us denote this generalized Loday algebra by Xl.

Theorem 3.2. Let V be a finite dimensional vector space and Π : V →
V a linear operator such that Π2 = Π and

x ` y = Πx+ y, w a z = w +Πz
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where x, y, z and w are elements in V . Then (V,`,a) is a generalized
Loday algebra.

Proof. It must be shown that x a (y a z) = x a (y ` z). We have

x a (y a z) = x a (y +Πz)
= x+Π (y +Πz)

= x+Πy +Π2z = x+Πy +Πz,

now

x a (y ` z) = x a (Πy + z)
= x+Π (Πy + z)

= x+Π2y +Πz = x+Πy +Πz,

this proves the equality required. On the other hand we have that (x ` y) a
z = Πx+ y +Πz and x ` (y a z) = Πx+ y +Πz, that is (x ` y) a z = x `
(y a z). The last property of these operators is (x a y) ` z = (x ` y) ` z.
Let us prove it

(x a y) ` z = (x+Πy) ` z
= Π (x+Πy) + z

= Πx+Π2y + z

= Πx+Πy + z,

and

(x ` y) ` z = (Πx+ y) ` z
= Π (Πx+ y) + z

= Π2x+Πy + z

= Πx+Πy + z,

the last two equalities show that (x a y) ` z = (x ` y) ` z as required. The
proof the that each operator is an associative mapping is straightforward.

This generalized Loday algebra will be denoted by V (Π). Observe that
θ is a bar-unit of V (Π) and if moreover x ∈ V (Π) such that x 6= θ then x
is a regular element of V (Π) for which x` = xa = −x.
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Historically the groups have been one of concepts more studied and it
is one of the most fundamental concepts of contemporary mathematics,
however after almost two century of development this theory has not been
extended to sets with two special operators. A deeper analysis of the
spaces Xl, Vϕ and V (Π) lead us to extend the group theory to sets with
two particular products. We hope that this concept helps to construct an
analogous of Lie group for Liebniz algebras.

Definition 3.1. A digroup is a pair (G, e) where G is a nonempty set
and e ∈ G, such that, the set G is equipped with two associative maps
called respectively right product and left product:

`: G×G→ G,
a: G×G→ G,

satisfying the following requirements:
a) For all x, y, z ∈ G

x a (y a z) = x a (y ` z) ,
(x ` y) a z = x ` (y a z) ,
(x a y) ` z = (x ` y) ` z.

b) For any g ∈ G it holds that

e ` g = g = g a e,
the element e is called the bar-unit of G.
c) For all g ∈ G there exists an unique element g−1 ∈ G such that with

respect to e we have

g ` g−1 = e = g−1 a g,
we say that g−1 is the inverse of g.

It must be noted that from this definition it does not follow that e is
the unique identity in G; in fact in general the digroup can have many
identities (that is several elements ee such that ee ` g = g = g a ee for all
g ∈ G). The notation (G, e) only suggests that between all the identities
we have chosen e as the bar-unit of (G, e) with respect to which have means
the point c) of the Definition 3.1.
The Theorem 3.1 allows us construct finite digroups, for instance: Let

G = {x, y} be an arbitrary set of two elements. We can introduce a 2× 2
(`)−multiplication table and a 2× 2 (a)−multiplication table in G of the
following form:



14

` x y

x x y

y x y

a x y

x x x

y y y

,

it is easy to show that (G,x) is a digroup.
Below we establish the basic properties of a digroup.

Example 3.1. Let X be an arbitrary vector space and x0 an element
in X. Then (Xl, x0) is a digroup. In fact x0 ` z = z = z a x0 for all
z ∈ Xl, moreover z ` x0 = x0 = x0 a z for any z ∈ Xl.

Example 3.2. The set V (Π) is a digroup. Here e = θ and g−1 = −Πg
for all g ∈ G.

Example 3.3. Let V be a finite dimensional vector space and let ϕ
be a nonzero element of V ∗ then the set cVϕ = {x ∈ V | ϕ (x) 6= 0} ⊂ Vϕ
is a digroup with bar-unit e = x0

ϕ(x0)
for some x0 ∈ cVϕ. If z ∈ cVϕ then

z−1 = 1
ϕ(z)e.

Remark 3.1. Let (G, e) be a digroup and f ∈ G some unit of G then
f−1 = e.

Remark 3.2. It is easy to show that if (G, e) is a digroup and g = e a g
for any g ∈ G then `=a and G is a group, thus all groups are digroups.

A digroup (G, e) is called abelian if x a y = y ` x for all x, y ∈ G. A
nonempty subset H ⊂ G is said to be a subdigroup of (G, e), provided that
(H, e) is a digroup for the same products that (G, e).

Lemma 3.1. Let (G, e) be a digroup then for all g ∈ G we have ¡g−1¢−1 =
g ` e = e a g.
Proof. Let g ∈ G then g−1 ` (g ` e) = ¡g−1 ` g¢ ` e = ¡g−1 a g¢ `

e = e. On the other hand (e a g) a g−1 = e a ¡g a g−1¢ = e a ¡g ` g−1¢ =
e. Now since the inverse of any element is unique it follows that g ` e =
e a g moreover ¡g−1¢−1 = g ` e = e a g.
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Theorem 3.3. In order that (H, e) can be a subdigroup of a digroup
(G, e) it is necessary and sufficient that for all f , g, l, m, n ∈ H the
elements f ` e, g−1 ` l and m a n−1 belong to H.

Proof. The conditions are clearly necessary. Let x ∈ H then
¡
x−1 ` x¢ `

e =
¡
x−1 a x¢ ` e = e ∈ H. Since now we know that e is an element of

H, x−1 ` e = x−1 ` ¡x ` x−1¢ = ¡
x−1 ` x¢ ` x−1 = ¡

x−1 a x¢ ` x−1 =
e ` x−1 = x−1 ∈ H, thus for all x ∈ H also x−1 ∈ H. It follows from the
Lemma 3.1 that f ` g = (f a e) ` g = (f ` e) ` g = ¡

f−1
¢−1 ` g ∈ H

for all f , g ∈ H. Finally, also using the referred Lemma 3.1 we have
m a l = m a (e ` l) = m a (e a l) = m a ¡l−1¢−1 ∈ H for any m, l ∈ H.
Hence H is closed under the products ` and a. Consequently the theorem
is proved.
The intersection of two subdigroups (H, e) and (K, e) of a group (G, e)

is not an empty set, since all subdigroups contain the element e. The
intersection is really a subdigroup of G: if D = H ∩K and if the elements
f , g, l, m, n belong to D then the elements f ` e, g−1 ` l and m a n−1
belong to H as well as to K and hence to D, that is (D, e) is a subdigroup.
Let (H1, e), (H2, e), · · ·, (Hn, e),· · · be subdigroups of a digroup (G, e)

which form an ascending sequence, that is, Hn ⊂ Hn+1, n = 1, 2, · · ·. We
show that (∪Hn, e) is a subdigroup of (G, e). It is clear that e ∈ ∪Hn.
Each g ∈ ∪Hn lies in some subdigroup Hs then also g−1 ∈ Hs and hence
g−1 ∈ ∪Hn. Now if f , g, l, m, n belonging to ∪Hn are chosen lying in Hk1 ,
Hk2 , Hk3 , Hk4 and Hk5 respectively, then if k ≥ ki i = 1, · · ·, 5 we have
that f , g, l, m, n ∈ Hk hence the elements f ` e, g−1 ` l and m a n−1
belong to Hk and also to ∪Hn.
From now on all operators in any digroup will be denoted by ` and a,

this should cause no confusion.

Definition 3.2. A mapping γ of a digroup (G, e) into a digroup
(G0, e0) is called a digroup-homomorphism (or homomorphism) if γ (a ` b) =
γ (a) ` γ (b) and also γ (c a d) = γ (c) a γ (d) for all a, b, c, d ∈ G. A homo-
morphism one-to-one correspondence is called a digroup-isomorphism (or
isomorphism).

Let γ be a digroup-homomorphism of (G, e) into (G0, e0), if γ (G) =
G0, then γ (e) is a unit of G0. Observe that γ (e) 6= e0 can happen. We
now assume that γ (e) = e0, we shall show that (γ (x))−1 = γ

¡
x−1

¢
for

all x ∈ G, in fact e0 = γ (e) = γ
¡
x ` x−1¢ = γ (x) ` γ

¡
x−1

¢
, on the

other hand we have e0 = γ (e) = γ
¡
x−1 a x¢ = γ

¡
x−1

¢ a γ (x). Hence,
(γ (x))

−1
= γ

¡
x−1

¢
.
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Example 3.4. If (G, e) and (G0, e0) are digroups, the direct product of
G with G0, denoted G×G0 is the set of all ordered pairs (g, g0) , where g ∈ G
and g0 ∈ G, with the two operators (g, g0) ` (f, f 0) = (g ` f, g0 ` f 0) and
(g, g0) a (f, f 0) = (g a f, g0 a f 0). It is easy to check that (G×G0, (e, e0))
is a digroup containing homomorphic copies of G and G0 namely, G×{e0}
and {e} ×G0.

Now we have

Theorem 3.4. Let γ be a digroup-homomorphism of (G, e) into (G0, e0)
such that γ (e) = e0. Then, if we define N = {g ∈ G | γ (g) = e0}, (N, e) is
a subdigroup of (G, e) and is called the kernel of γ.

Proof. Note that e ∈ N . Let us assume that x ∈ N then e0 =
γ
¡
x−1 a x¢ = γ

¡
x−1

¢ a e0 = γ
¡
x−1

¢
. Thus, x−1 ∈ N . It is now obvious

that if a, b, c, d and f are arbitrary elements of N then a ` e, b−1 ` c and
d a f−1 belong to N . The Theorem is proved.

Theorem 3.5. Let γ be a digroup-homomorphism of (G, e) into (G0, e0)
such that γ (e) = e0. We define I 0 = {γ (g) | g ∈ G} ⊂ G0, then (I 0, e0) is a
subdigroup of (G0, e0).

Proof. First let us note that e0 ∈ I 0. Suppose that h0 ∈ I 0 then
h0 = γ (h) for some h ∈ G. Hence, we have (h0)−1 = (γ (h))−1 = γ

¡
h−1

¢
.

It is then clear that (h0)−1 ∈ I 0. Finally, it is a simple matter to verify that
if a0, b0, c0, d0 and f 0 are arbitrary elements of I 0 then a0 ` e0, (b0)−1 ` c0
and d0 a (f 0)−1 are also elements of I 0.
A subdigroup (H, e) of the digroup (G, e) is called invariant or normal

if
¡
a−1 ` x¢ a a = a−1 ` (x a a) ∈ H for all a ∈ G and any x ∈ H. Then

we have

Proposition 3.1. Under the conditions of the Theorem 3.4, (N, e) is
an invariant or normal subdigroup.

Proof. Let z =
¡
a−1 ` x¢ a a where x ∈ N and a ∈ G then from

Lemma 3.1 it follows that

γ(z) = γ
¡¡
a−1 ` x¢ a a¢

= γ
¡
a−1 ` x¢ a γ (a)

=
¡
γ
¡
a−1

¢ ` γ (x)
¢ a γ (a)

=
¡
γ
¡
a−1

¢ ` e0¢ a γ (a)

= (γ (a))
−1 ` (e0 a γ (a))

= e0,
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this establishes that z ∈ N . Hence N is a normal subdigroup.

Lemma 3.2. Let (G, e) be a digroup and let (H, e) be a normal subdi-
group of it. Then

¡
a−1 ` H¢ a a = H for any a ∈ G.

Proof. Since (H, e) is an invariant subdigroup we have that¡
a−1 ` H¢ a a ⊂ H (10)

for all a ∈ G. Let b ∈ G arbitrary then taking a = b−1 in (10) we have
((b ` e) ` H) a b−1 ⊂ H, now multiplying this inequality by b to the left
and by b−1 to the right we obtain that

b−1 ` ¡((b ` e) ` H) a b−1¢ a b ⊂ ¡b−1 ` H¢ a b, (11)

but b−1 ` ¡((b ` e) ` H) a b−1¢ = H, Hence from (11) it follows that

H ⊂ ¡b−1 ` H¢ a b (12)

for all b ∈ G. Thus (10) and (12) show that ¡c−1 ` H¢ a c = H for any
c ∈ G.
Corollary 3.1. If (H, e) is a normal subdigroup of (G, e), then also

we have (b ` H) a b−1 = H for all b ∈ H.
Proof. By the preceding Lemma

¡
a−1 ` H¢ a a = H for any a ∈ G.

Let b ∈ G and a = b−1 then we have
³¡
b−1
¢−1 ` H´ a b−1 = H hence

((b ` e) ` H) a b−1 = H that is (b ` (e ` H)) a b−1 = H.
The notion of equivalence plays an important role in almost all branches

of mathematics, since it is related to the partitioning of a set, that is, to
its representation in the form of a union of mutually disjoint subsets. Let
(H, e) be a subdigroup of (G, e). We say that a and b in G are right
relationed and we write a v b if a−1 ` b ∈ H. Let us see that v is an
equivalent relation in (G, e) under appropriate conditions. It will be called
the right equivalent relation determined by H, but first we prove some
results.

Lemma 3.3. The following two results: (a ` b)−1 = b−1 ` a−1 and
(a a b)−1 = b−1 a a−1hold for any a, b ∈ G.
Proof. In fact, let a, b ∈ G then

(a ` b) ` (b−1 ` a−1) = a ` ¡b ` (b−1 ` a−1)¢
= a ` ¡¡b ` b−1¢ ` a−1¢
= a ` ¡e ` a−1¢
= e
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on the other hand from Lemma 3.1 it follows that

(b−1 ` a−1) a (a ` b) = (b−1 ` a−1) a (a a b)
=
¡
(b−1 ` a−1) a a¢ a b

=
¡
b−1 ` ¡a−1 a a¢¢ a b

=
¡
b−1 ` e¢ a b = b−1 ` (e a b)

= e,

thus, it shows that (a ` b)−1 = b−1 ` a−1. We complete the proof by
noting that

¡
b−1 a a−1¢ a (a a b) = b−1 a ¡a−1 a (a a b)¢

= b−1 a ¡¡a−1 a a¢ a b¢
= b−1 a (e a b)
= b−1 a (e ` b)
= e

and moreover using Lemma 3.1 again we have

(a a b) ` ¡b−1 a a−1¢ = (a ` b) ` ¡b−1 a a−1¢
= a ` ¡b ` ¡b−1 a a−1¢¢
= a ` ¡¡b ` b−1¢ a a−1¢
= a ` ¡e a a−1¢
= (a ` e) a a−1
= e,

hence (a a b)−1 = b−1 a a−1. The Lemma is proved.
From the Lemma proved, now holds the following

Corollary 3.2. Let (G, e) be a digroup then for all g ∈ G we have¡
g−1 ` e¢ = ¡e a g−1¢ = g−1
Proof. We recall that e−1 = e. Then from Lemma 3.3 it follows that¡

g−1 ` e¢ = (e ` g)−1 = g−1 and in the same way ¡e a g−1¢ = (g a e)−1 =
g−1.
Let (G, e) be a digroup. We now introduce the following set eG =©

x ∈ G | x−1 = eª, notice that if ee is an identity then ee ∈ eG (since ee `
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e = e = e a ee). We are going to prove that ³ eG, e´ is a subdigroup. Let x,
y ∈ eG then, clearly (x ` y)−1 = y−1 ` x−1 = e ` e = e and if z, w ∈ eG we
also have (z a w)−1 = w−1 a z−1 = e a e = e. From these considerations
it follows that eG is closed under the operations ` and a. On the other hand
observe that if x ∈ eG then x−1 ∈ eG. Lastly, it is easy to show that if x, y,
z, w ∈ eG then x ` e, x−1 ` y and z a w−1 belong to eG. Thus ³ eG, e´ is a
subdigroup.
We say that (G, e) is a reduced digroup if eG = {e}.
We turn to the proof thatv is an equivalent relation in (G, e) if eG = {e},

that is when (G, e) is a reduced digroup. Assume that (H, e) is a given
subdigroup of (G, e) with respect to which is defined the right relation
v. We begin with the proof of the reflexivity of v. Let a ∈ G then¡
a−1 ` a¢−1 = ¡a−1 ` (a ` e)¢ = ¡¡a−1 ` a¢ ` e¢ = ¡¡a−1 a a¢ ` e¢ = e `
e = e. Since eG = {e} we have a−1 ` a = e ∈ H. Hence a−1 ` a ∈ H and
a v a. The symmetry of v follows from the following facts: if a v b then
a−1 ` b ∈ H and since (H, e) is a subdigroup from Corollary 3.2 it follows
that

¡
a−1 ` b¢−1 = b−1 ` (e a a) = ¡b−1 ` e¢ a a = b−1 a a ∈ H. Hence¡

b−1 a a¢ ` e ∈ H then
¡
b−1 a a¢ ` ¡a−1 ` a¢ ∈ H, but

¡¡
b−1 a a¢ ` ¡a−1 ` a¢¢ = ¡b−1 ` a¢ ` ¡a−1 ` a¢

= b−1 ` ¡a ` ¡a−1 ` a¢¢
= b−1 ` ¡(a ` a−1) ` a¢
= b−1 ` (e ` a) = b−1 ` a

it shows that b v a.
Suppose now that a v b and b v c then a−1 ` b, b−1 ` c ∈ H. Hence

we must have
¡
a−1 ` b¢ ` ¡b−1 ` c¢ ∈ H, but

¡¡
a−1 ` b¢ ` ¡b−1 ` c¢¢ = ¡¡a−1 ` b¢ ` b−1¢ ` c

=
¡
a−1 ` (b ` b−1¢) ` c

=
¡
a−1 ` e¢ ` c = a−1 ` c

= a−1 ` c,
again by Corollary 3.2. Thus a v c and hence the relation is transitive.

Lemma 3.4. Let (G, e) be a reduced digroup and (H, e) a subdigroup
of it. Then, all right equivalent classes determined by H are of the form
a ` H for some a ∈ G. A set of this type is called the right dicoset of H
determined by a.
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Proof. Let A be a right equivalent class determined by H and a ∈ A
then for any x ∈ A we know that a−1 ` x ∈ H. Hence, a ` ¡a−1 ` x¢ =¡
a ` a−1¢ ` x = e ` x = x. Thus x ∈ a ` H. We now proceed to prove
that a ` H is a right equivalent class determined by H. Indeed, if x, y ∈ H,
having in mind Theorem 3.3 and Lemma 3.3, we have

(a ` x)−1 ` (a ` y) = ¡x−1 ` a−1¢ ` (a ` y)
= x−1 ` ¡a−1 ` (a ` y)¢
= x−1 ` ¡¡a−1 ` a¢ ` y¢
= x−1 ` ¡¡a−1 a a¢ ` y¢
= x−1 ` y

that is (a ` x)−1 ` (a ` y) ∈ H in other words (a ` x) v (a ` y). Since
a = a ` ¡a−1 ` a¢ ∈ a ` H then A = a ` H. Here we have made use of
the fact that a v a thus

¡
a−1 ` a¢ ∈ H.

Proposition 3.2. Let (G, e) be a reduced digroup and let (H, e) be a
normal subdigroup of it. Let a, b ∈ G arbitrary. We have (a ` H) `
(b ` H) = (a ` b) ` H and (a ` H) a (b ` H) = (a a b) ` H.
Proof. Since that (H, e) is a normal subdigroup, by Corollary 3.1 it

follows that

(a ` H) ` (b ` H) = ¡a ` ((b ` H) a b−1)¢ ` (b ` H)
=
¡
(a ` (b ` H)) a b−1¢ ` (b ` H)

= (
¡
(a ` b) ` H) a b−1¢ ` (b ` H)

= (
¡
(a ` b) ` H) ` b−1¢ ` (b ` H)

= ((a ` b) ` H) ` (b−1 ` (b ` H))
= ((a ` b) ` H) ` ((b−1 ` b) ` H)
= ((a ` b) ` H) ` ((b−1 a b) ` H)
= ((a ` b) ` H) ` H
= (a ` b) ` (H ` H)
= (a ` b) ` H,

here we have taken into account that (H ` H) = H. We now give the proof
of the second equality. Using Corollary 3.1 again , we have

(a ` H) a (b ` H) = ¡a ` ((b ` H) a b−1)¢ a (b ` H)
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= (
¡
a ` (b ` H)) a b−1¢ a (b ` H)

= (
¡
(a ` b) ` H) a b−1¢ a (b ` H)

= (
¡
(a a b) ` H) a b−1¢ a (b ` H)

= ((a a b) ` H) a ¡b−1 a (b ` H)¢
= ((a a b) ` H) a ¡b−1 a (b a H)¢
= ((a a b) ` H) a (¡b−1 a b) a H¢
= ((a a b) ` H) a (e a H)
= ((a a b) ` H) a (e ` H)
= ((a a b) ` H) a H = (a a b) ` (H a H)
= (a a b) ` H,

since (H a H) = H.
Note that this Proposition holds even when (G, e) is not reduced.
We turn attention now to the set G/H of the right dicosets determined

for the normal subdigroup H of G when (G, e) is a reduced digroup.

Theorem 3.6. Let (G, e) be a reduced digroup and let (H, e) be a nor-
mal subdigroup of (G, e). In this case G/H is a digroup.

Proof. From Proposition 3.2, to prove the Theorem, it remains to
establish the existence of the identity element in G/H and moreover we
must prove that all right dicosets admit an inverse right dicoset. It is easy to
show that H = e ` H is the unit of G/H. Now by the previous Proposition
it follows that (a ` H) ` ¡a−1 ` H¢ = ¡a ` a−1¢ ` H = e ` H = H, and¡
a−1 ` H¢ a (a ` H) = ¡

a−1 a a¢ ` H = e ` H = H. Observe that this
inverse is clearly unique.
Let (G, e) be a digroup, a homomorphism f : (G, e) → (G, e) is called

an endomorphism of (G, e); an isomorphism f : (G, e)→ (G, e) is called an
automorphism of (G, e).

Proposition 3.3. Let (G, e) be a digroup and the mapping ua:G→ G
defined by the following form uag = (a

−1 ` g) a a for a ∈ G. Then ua is
an automorphism of (G, e). It is called an inner automorphism of (G, e).

Proof. In fact, if a ∈ G then

ua (g ` f) = (a−1 ` (g ` f)) a a
= (a−1 ` (g ` ((a ` a−1) ` f))) a a
= (
¡
a−1 ` g¢ ` ((a ` a−1) ` f)) a a

=
¡
a−1 ` g¢ ` ¡((a ` a−1) ` f) a a¢
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=
¡
a−1 ` g¢ ` ¡¡a ` (a−1 ` f)¢ a a¢

=
¡
a−1 ` g¢ ` ¡a ` ¡(a−1 ` f) a a¢¢

=
¡¡
a−1 ` g¢ ` a¢ ` ¡(a−1 ` f) a a¢

=
¡¡
a−1 ` g¢ a a¢ ` ¡(a−1 ` f) a a¢ ,

hence ua (g ` f) = (uag) ` (uaf). On the other hand

ua (g a f) = (a−1 ` (g a f)) a a
= (a−1 ` ((g a ¡a ` a−1¢) a f)) a a
= (a−1 ` (g a (¡a ` a−1¢ a f))) a a
= (a−1 ` (g a (¡a ` a−1¢ ` f))) a a
= a−1 ` ¡(g a (¡a ` a−1¢ ` f)) a a¢
= a−1 ` ¡g a ¡(¡a ` a−1¢ ` f) a a¢¢
= a−1 ` ¡g a ¡¡a ` a−1¢ ` (f a a)¢¢
= a−1 ` ¡g a ¡a ` ¡a−1 ` (f a a)¢¢¢
=
¡
a−1 ` g¢ a ¡a ` ¡a−1 ` (f a a)¢¢

=
¡
a−1 ` g¢ a ¡a a ¡a−1 ` (f a a)¢¢

=
¡¡
a−1 ` g¢ a a¢ a ¡a−1 ` (f a a)¢

=
¡¡
a−1 ` g¢ a a¢ a (¡a−1 ` f) a a¢ ,

therefore ua (g a f) = (uag) a (uaf). In order to prove that ua is an
automorphism of (G, e), we must show that ua is one-to-one. Assume that
uaf = uag then (a−1 ` f) a a = (a−1 ` g) a a, but it implies that
(a−1 ` f) = (a−1 ` g) and hence f = g.
The following Lemma will be useful.

Lemma 3.5. Let x, g ∈ G, being (G, e) a digroup, then¡¡
g−1 ` x¢ a g¢−1 = ¡g−1 ` x−1¢ a g

.

Proof. Because of Lemma 3.1 we have

¡¡
g−1 ` x¢ a g¢ ` ¡¡g−1 ` x−1¢ a g¢ = ¡¡g−1 ` x¢ ` g¢ ` ¡¡g−1 ` x−1¢ a g¢

=
¡
g−1 ` x¢ ` ¡g ` ¡¡g−1 ` x−1¢ a g¢¢

=
¡
g−1 ` x¢ ` ¡¡g ` ¡g−1 ` x−1¢¢ a g¢
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=
¡
g−1 ` x¢ ` ¡¡¡g ` g−1¢ ` x−1¢ a g¢

=
¡
g−1 ` x¢ ` ¡¡e ` x−1¢ a g¢

=
¡
g−1 ` x¢ ` ¡x−1 a g¢

=
¡¡
g−1 ` x¢ ` x−1¢ a g

=
¡
g−1 ` ¡x ` x−1¢¢ a g

= g−1 ` (e a g)
= e,

on the other hand

¡¡
g−1 ` x−1¢ a g¢ a ¡g−1 ` (x a g)¢ = ¡¡g−1 ` x−1¢ a g¢ a ¡g−1 a (x a g)¢

=
¡¡¡
g−1 ` x−1¢ a g¢ a g−1¢ a (x a g)

=
¡¡
g−1 ` x−1¢ a ¡g a g−1¢¢ a (x a g)

=
¡¡
g−1 ` x−1¢ a ¡g ` g−1¢¢ a (x a g)

=
¡¡
g−1 ` x−1¢ a e¢ a (x a g)

=
¡
g−1 ` x−1¢ a (x a g)

= g−1 ` ¡x−1 a (x a g)¢
= g−1 ` ¡¡x−1 a x¢ a g¢
= g−1 ` (e a g)
= e,

here, again we have used Lemma 3.1.
Let (G, e) be a digroup, the center Z (G) of (G, e) is the set of all x ∈ G

such that
¡
g−1 ` x¢ a g = x for all g ∈ G. It is routine to check that it

implys the equality x a g = g ` x.
Theorem 3.7. Let (G, e) be a digroup. Then (Z (G) , e) is a subdigroup

of (G, e)

Proof. It follows from Lemma 3.1 that
¡
g−1 ` e¢ a g = g−1 `

(e a g) = e, thus e ∈ Z (G). Suppose now that x ∈ Z (G) then ¡g−1 ` x¢ a
g = x for all g ∈ G, taking the inverse in the last equality we have¡¡
g−1 ` x¢ a g¢−1 = x−1 and by Lemma 3.5 it follows that ¡g−1 ` x−1¢ a

g = x−1, that is x−1 ∈ Z (G). Let x ∈ Z (G), then for all g ∈ G

¡
g−1 ` (x ` e)¢ a g = ¡g−1 ` ((x a ¡g ` g−1¢) ` e)¢ a g

= ((g−1 ` (x a ¡g ` g−1¢)) ` e) a g



24

= (((g−1 ` x) a ¡g ` g−1¢) ` e) a g
= (((g−1 ` x) a ¡g a g−1¢) ` e) a g
= (((g−1 ` x) a g) a g−1) ` e) a g
= (((g−1 ` x) a g) ` g−1) ` e) a g
= (((g−1 ` x) a g) ` (g−1 ` e)) a g
= ((g−1 ` x) a g) ` ¡(g−1 ` e) a g¢
= x ` e,

hence x ` e ∈ Z (G). On the other hand if x, y ∈ Z (G) we have

(g−1 ` (x−1 ` y)) a g = (g−1 ` ((x−1 a ¡g ` g−1)¢ ` y)) a g
= (g−1 ` ((x−1 a ¡g a g−1)¢ ` y)) a g
= (g−1 ` (((x−1 a g) a g−1) ` y)) a g
= (g−1 ` (((x−1 a g) ` g−1) ` y)) a g
= (g−1 ` ((x−1 a g) ` (g−1 ` y))) a g
= ((g−1 ` (x−1 a g)) ` (g−1 ` y)) a g
= (((g−1 ` x−1) a g) ` (g−1 ` y)) a g
= ((g−1 ` x−1) a g) ` ¡(g−1 ` y) a g¢
= x−1 ` y,

thus x−1 ` y ∈ Z (G). Finally, it is easy to show that if z, w ∈ Z (G) then
z a w−1 ∈ Z (G). This concludes the proof of the Theorem.
Theorem 3.8. Let (G, e) be a digroup. Then (Z (G) , e) is an invariant

subdigroup.

Proof. In fact, we must prove that
¡¡
a−1 ` x¢ a a¢ ∈ Z (G) for any

x ∈ Z (G) and all a ∈ G. Now if g is an arbitrary element of G we have
¡
g−1 ` ¡¡a−1 ` x¢ a a¢¢ a g = ¡g−1 ` x¢ a g

= x

=
¡
a−1 ` x¢ a a,

it implys that
¡¡
a−1 ` x¢ a a¢ ∈ Z (G).
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