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Abstract

Stochastic Frontier Analysis (SFA) models have been using skewness as an intrinsic

characteristic to measure technical ine¢ ciency. We extend the use of skew normality

and elliptical errors in SFA as a �exible tool to model, for example, panel data. We

consider stochastic frontier analysis in the common setting Normal + Truncated Nor-

mal with uncorrelated errors, as well as the case with correlated errors, in a matrix

representation. The connection between the SFA model and the Closed Skew-Normal

has been discussed in Domínguez-Molina, et al (2004). We provide a matrix repre-

sentation for the skew-normal distribution and skew-elliptical distributions through a

general setting and obtain conditional and marginal representations. Also, we obtain a

useful submodel through an additive representation to be used with SFA models. We

work the moment generating function and some quadratic forms of interest that allows

several applications and in particular help to understand some properties in the SFA

models.

Key Words: Stochastic frontier analysis, correlated error, random matrix, linear transforma-

tion, Wishart distribution, quadratic forms.

ABSTRACT

Stochastic Frontier Analysis (SFA) models have been using skewness as an intrinsic char-

acteristic to measure technical ine¢ ciency. We extend the use of skew normality and elliptical

errors in SFA as a �exible tool to model, for example, panel data. We consider stochastic

frontier analysis in the common setting Normal + Truncated Normal with uncorrelated er-

rors, as well as the case with correlated errors, in a matrix representation. The connection

between the SFA model and the Closed Skew-Normal has been discussed in Domínguez-

Molina, et al (2004). We provide a matrix representation for the skew-normal distribution

and skew-elliptical distributions through a general setting and obtain conditional and mar-

ginal representations. Also, we obtain a useful submodel through an additive representation

to be used with SFA models. We work the moment generating function and some quadratic

forms of interest that allow several applications and in particular help to understand some

properties of the SFA models.
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1. INTRODUCTION

The modeling of production functions to estimate productive e¢ ciency of companies, had

a breakthrough with the works of Aigner, Lovell and Schmidt (1977) and Meeusen and van

den Broeck (1977); in these works, the concept of a stochastic frontier was introduced by

letting

y = f (x;�) + " (1)

where the error term, " = v � u, is composed by a symmetric disturbance term, v, repre-
senting measurement error, and by the nonnegative technical ine¢ ciency component u. This

formulation of the error structure recognizes that companies with the same technical ability

to manage their resources might end up with di¤erent output levels (due to unobservable

shocks v); the term u would be �rm-speci�c and captures technical ine¢ ciencies to reach the

maximum theoretical output.

Assuming a cross-sectional data structure, Domínguez-Molina et al (2004) provide a sto-

chastic frontier model based on the Closed Skew-Normal (CSN ) distribution as given in

González-Farías et al (2004a). Their proposal encompass nested submodels with increas-

ing degree of complexity for the covariance structure, but within the framework of normal

measurement errors and truncated normals for ine¢ ciencies:

y = f (X;�) + v +Gu; (2)

where y is the vector of value added observations on n �rms, f is the production function

commonly based on the Cobb-Douglas model with logged input variables; v � Nn (0;�)

models measurement error, and u � Nc
m (�;�), m � n, (Nc

m (�;�) denotes the truncated

Nm (�;�) at c). This random vector u models shared technological ine¢ ciencies in groups of

�rms, weighted by the n�m full row rank matrixG. Also, it is assumed that v is independent
of u, f (x;�) = (f (x1;�) ; :::; f (xn;�))

0, X = (x1; � � � ;xn)0 is a known matrix of covariates
and � is unknown. The matrix G gives �exibility to the model: If it is left unspeci�ed,

it can be estimated and used to validate model assumptions, on the other hand, it can be

de�ned as G = In or G = �In for �rm-speci�c cost e¢ ciencies or technical ine¢ ciencies,
respectively.

In this article we present an extension of the CSN distribution to the matrix-variate case

having in mind panel data structures for the analysis of stochastic frontier model. The CSN

distribution is closed under operations of marginalization and conditioning which are basic
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for statistical modeling. This class of distributions includes the normal distribution and has

some properties like the normal family and yet they are skewed. In particular the expressions

for the marginal and conditional densities are similar to those in the normal case. Several

proposals of multivariate skew-normal distributions are special cases of the CSN distribution,

thus, taking this distribution from the vector to the matrix case seems a useful and natural

generalization. The matrix-variate CSN distribution that we propose, implicitly de�nes

matrix-variate generalizations of several other multivariate skew-normal in the literature.

The relationship between the closed skew normal and SFA models will be extended for the

matrix case in the same way as it was done for the vector case in Domínguez-Molina et al

(2004). A good account on skew distributions, either for vector or matrix representations on

normal or elliptical distributions, theory and applications, can be found in Genton (2004).

The organization of this paper is as follows: In Section 2 we give the general setting for SFA

models and its relationship with skew normal distributions. Section 3 provides the technical

results that justify the matrix representation. Section 4 provides the basic properties for

the matrix-variate skew normal and a proposal for a skew elliptical matrix representation of

the error structure in our models. Some additional general results, in the context of matrix-

variate skew distributions are also given. In Section 5, we discuss the results in terms of the

SFA model, their advantages and limitations as well as future research. The proofs of the

results obtained in the paper are given in the Appendix.

2. THE STOCHASTIC FRONTIER MODEL AND SKEW DISTRIBUTIONS

Econometricians have been interested in the speci�cation and estimation of a frontier

production function for over 30 years. Recently this problem has taken a new face with the

integrated new economies, like the European Economic Community, bringing new and more

complex data to analyze and for which we need to think in new and more �exible models to

capture, as much as possible, the complex structure of the information on hand.

The original formulation, (1), of Aigner et al (1977) for the stochastic frontier model is

y = f (x;�) + v � u

the error term " = v � u, when v is assumed N(0; �2) distributed independently of u �
N0(0; � 2), can be seen to have Azzalini�s skew-normal distribution with density

g (") = 2
1

&
�

�
"

&

�
�

�
��
&
"

�
;
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where & =
p
� 2 + �2; � = �=�; and � (�) and � (�) denote the density function and the

distribution function of a standard normal random variable, respectively.

If the setting under consideration involves minimal cost frontiers, then the usual device is to

switch the sign of u: " = v + u: By doing this we have that the cost observations would be

above the minimum cost frontier. A direct generalization, given by Domínguez-Molina et al

(2004), is to consider

" = v + �u(c);

where � is �xed, and u(c) is a random variable truncated below at a positive constant c.

This idea led to the proposal of model (2)

y = f (X;�) + v +Gu:

Under the assumptions stated in the introduction, it is shown (see Domínguez-Molina et al

(2004)) that the density of the compound error " = v +Gu is

g (") = ��1m (0; c� �;�)�n (";G�;�)�m
�
�G0��1 ("�G�) ; c� �;�

�
;

where

� = �+G�G0 and � = �� �G0��1G�;

thus " has a closed skew-normal distribution

" � CSNn;m
�
G�;�;�G0��1; c� �;�

�
:

Model (2) includes the following cases as submodels

� Model I: Homoscedastic and uncorrelated errors

G = �In; � = �2In; � = � 2In:

� Model II: Heteroscedastic and uncorrelated errors. G;� and � diagonal matrices, any
of them of the form

G = diag (�1; : : : ; �n) ; � = diag
�
�21; : : : ; �

2
n

�
; � = diag

�
� 21; : : : ; �

2
n

�
:

� Model III: Correlated errors. If any of the matrices G;� or � are non-diagonal we
would have the case of correlated errors.
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� Model IV: Multiple output model of Kumbhakar & Lovell (2000, eq. 5.3.7).
v � Nn (0;�) and u � N0 (0; �2), G = 1n
, 
 < 0, 1n is a n� 1 vector of ones.

The data structure for y = (y1; y2; : : : ; yn)0 in model (2) is assumed that of a cross sectional

sample of n �rms. We now consider panel data structures of the form

Yn�m = (y1; : : : ;ym) ;

where n �rms are followed through times t = 1; � � � ;m. We are interested in the proposal of
a multivariate stochastic frontier model that, in principle, can be described with the same

type of error structure and with the ability to accommodate, in a simple way, as many as

correlation patterns described before. Thus, we need a multivariate stochastic model of the

form

Y = f (X;�) + �;

where

� = V +DUE 0:

In order to characterize this model, we need to develop the matrix variate closed skew normal

representation and study its basic properties.

3. THE MULTIVARIATE AND MATRIX VARIATE CLOSED SKEW NORMAL DISTRI-

BUTIONS

The use of matrix theory is now extensive in both physical and social sciences. In order to

have a more plausible stochastic frontier model we described the need of developing a matrix

variate theory when we have truncation or, equivalently, a mechanism that induces a bias in

the distribution.

Let X be an p�m matrix. We express it in terms of elements, columns, and rows as

X = (x1; :::;xm) =
�
x�1; :::;x

�
p

�0
:

Here x1; :::;xm can be thought of as a sample of size m from a p�dimensional population,
but it is not necessary that x1; � � � ;xm be independent. The study of random matrices is

the base of sampling theory in multivariate analysis.

There are several works in which authors have de�ned and studied many classes of mul-

tivariate skew-normal distributions (MSN ), see Genton (2004), just to mention one. It is
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important to develop the sample theory based on MSN random vectors. In order to do this,

we need to extend the concepts of MSN from the vector case to the matrix case. In this

section we de�ne a class of matrix variate closed skew normal (MVCSN ) distribution. To

do so, we need to reestablish some properties of the vector closed skew normal distribution

that will give us more �exibility to generalize it for the matrix case.

De�nition 1 Consider p � 1; q � 1; � 2 Rp; � 2 Rq, D an arbitrary q � p matrix, � and
� positive de�nite matrices of dimensions p � p and q � q; respectively. Then the density
function of the CSN distribution is given by:

gp;q (y) = C�p (y;�;�)�q [D (y � �) ;�;�] ; y 2 Rp; (3)

with:

C�1 = �q (0;�;�+D�D
0) ; (4)

where �p (�;�;	) and �p (�;�;	) are the pdf and the cdf of a p-dimensional normal distrib-
ution, repeatedly. Here � 2 Rp denotes the mean and 	 is a p� p covariance matrix.

We will denote a p-dimensional random vector distributed according to a CSN distribution

with parameters q;�;�; D;�;� by y � CSNp;q(�;�; D;�;�):

We introduce here a useful result that allows us to �nd moments and to prove other propo-

sitions, the Moment Generating Function, given in Gonzalez-Farías et al (2004b)

My (s) =
�q (D�s;�;�+D�D

0)

�q (0;�; � +D�D0)
es

0�+ 1
2
s0�s; s 2 Rp:

3.1. SOME PROPERTIES OF THE CSN DISTRIBUTION

Proposition 2 Marginal Representation. Let v � Np (0; Ip), u � N�
q (0;� + D�D

0); u

independent of v. Then the distribution of

y = �+
�
��1 +D0��1D

��1=2
v + �D0 (� +D�D0)

�1
u;

is CSNp;q (�;�; D;�;�) :

Another way to motivate the closed skew density is through a hidden truncation process, in

many applications this would be the reason why we �nish with an asymmetric distribution
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of this kind. On the other hand, it also gives a useful way to establish some of its properties

providing a better insight on the behavior for these skew distributions.

For completeness we include it here. Conditional Representation: Let e1 � Np (0;�) and

e2 � Nq (0;�) be independent random vectors. Consider the transformed variables

w0 = �+ e1

z = �� +De1 + e2;
(5)

where D (q � p) is an arbitrary matrix, � 2 Rp; � 2 Rq and �(q � q) > 0:
Then the distribution of w d

= w0j fz � 0g is CSNp;q (�;�; D;�;�), where
d
= means equal

in distribution.

Proposition 3 The distribution function of a CSN random vector y, with parameters �;�;

D;�;� is given by

Fp;q (y0;�;�; D;�;�) = C�p+q

��y0
0

�
;
��
�

�
;

�
�

�D�
��D0

�+D�D0

��
;

where C is given in (4).

A conditional argument that allows the use of some basic properties of the multivariate

normal distribution ( instead of having to show most of the results from its de�nition or

through the mgf ) is based on the following reasoning: Let w and z be two random vectors

and consider the random vector y constructed as

y = wj fz 2 Bg ;

then

h (y)
d
= h (w) j fz 2 Bg :

for any Borel function h. If we consider a collection of pairs of random vectors wi and zi
and construct the collection y1; � � � ;yn, through yi = wij fzi 2 Big, i = 1; 2; � � � ; n: Then it
follows that

h (y1; � � � ;yn)
d
= h (w1; � � � ;wn) j

(
n\
i=1

fzi 2 Big
)
;

where h is any measurable function. For example if w1; � � � ;wn are of the same dimension

then

x1 + � � �+ xn
d
= (w1 + � � �+wn) j

(
n\
i=1

fzi 2 Big
)
:
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Díaz-García and González-Farías (2005) obtain the expression for the distribution of a linear

transformation of a skew-normal random vector without any rank restrictions, showing that

it is a closed operation. Full row rank and full column rank linear transformations were

studied in González Farías et al (2004). That is, if A is an n� p matrix, then

Ay � CSNn;q (�A; �A; DA; �; �A) ; (6)

for an appropriate set of parameters �A; �A; DA and �A, according to the rank of A.

As a further example, lets prove the result: Let y � CSNp;q (�;�; D;�;�) and A be an

r � p (r � p) constant matrix, such that AA0 is a nonsingular matrix and let b 2 Rr: Then

Ay + b � CSNr;q (A�+ b; �A; DA; �; �A) ;

where

�A = A�A
0; DA = D�A

0 (A�A0)
�1
;

and

�A = �+D�D
0 �D�A0 (A�A0)�1A�D0;

by applying the conditional argument as follows:

Given that y � CSNp;q (�;�; D;�;�) ; we get that y
d
= wj fz � 0g ; where the joint distri-

bution of w and z is given by (5). Thus Ay + b d
= (Aw + b) j fz � 0g and�

Aw + b

z

�
� Nq+p

"�
A�+ b

��

�
;

 
A�A0 A�D0

D�A0 �+D�D0

!#
;

given that  
� A�D0

D�A0 �+D�D0

!
=

 
�A �AD

0
A

DA� �A +DA�AD
0
A

!
;

and the result follows. �

Remark 4 If A is nonsingular DA = DA
�1, which implies that �A = �: That is, if jAj 6= 0

the parameter � is not a¤ected by the linear transformation. Also notice that � is not a¤ected

by any matrix A:

The following proposition provides some common results for quadratic forms that could be

useful for hypothesis testing.

9



Proposition 5 Let y be a CSNp;q (�;�; D;�;�) random vector. Then for an arbitrary

constant symmetric matrix A (p� p) the mgf of y0Ay is

My0Ay (t) =
�q
�
D
�
(I � 2A�t)�1 � I

�
�;�;�+D (I � 2A�t)�1D0	

�q (0;�;�+D�D0) exp
�
�1
2
�0
�
(I � 2A�t)�1 � I

�
��1�

	
� jI � 2A�tj�1=2 ;

where t 2 R:

Remark 6 Let � = ���0 be the spectral decomposition of �, where � is a diagonal matrix

of eigenvalues of � and � is an orthogonal matrix whose columns are normalized eigenvectors

of �: Then, for D = �, � = 0, � = 0 and � diagonal,from Proposition 5 we get

My0��1y (t) =
�q

h
0;0;�+ � (Ip � 2��1�t)�1 �0

i
�q (0;0;�+ ���0)

��Ip � 2t���1���1=2
=
�q
�
0;0;�+ (��0 � 2��0t)�1

�
�q (0;0;�+ �)

jIp � 2tIpj�1=2

= jIp � 2tIpj�1=2

= (1� 2t)�p=2 :

Thus

y0��1y � �2p;

where �2p denotes the chi-square distribution with p degrees of freedom.

In fact, if D�D0 is an arbitrary diagonal matrix under the same restrictions for �;� and �

we get the same result.

Remark 7 The joint mgf of y0A1y and y0A2y for any two arbitrary p� p matrices A1 and
A2 is obtained by noting that

My0A1y;y0A2y (t1; t2) = Ee
t1y0A1y+t2y0A2y

= Eey
0(t1A1+t2A2)y

=My0(t1A1+t2A2)y (1) :
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Some of the most important properties of the CSN distributions are their closure properties.

For example, the joint distribution of independent CSN variables belongs to the same family

as well as the sum of independent CSN random variables. This closure property makes the

study of distributional properties of random samples more tractable, and will be very useful

for the extension to the matrix variate case under certain types of dependencies. We give

the following two results and establish a quick proof for the sum, based on the conditional

argument.

The symbols \ 
 � and \ � � are the Kronecker matrix-product and the matrix direct sum
operator (see Horn & Johnson, 1985, page 24): For any two matrices A and B; A 
 B =

(aijB) ; A�B gives as a result a block diagonal matrix. Read
mL
i=1

Ai as A1�� � ��Am, for any

matrices A1; � � � ; Am. Here Im is the m�m identity matrix. We denote by 1m the (m� 1)
vector of ones, that is 10m = (1; � � � ; 1) =

Pm
i=1 e

0
m;i, where em;i = (0; � � � ; 0; 1; 0; � � � ; 0)0 is

the m� 1 vector with 1 at the i-th position.

Let yi (pi � 1) and

ui =
�
y0i; x

0
iqi

�0 � Npi+qi
"�

�i
��i

�
;

 
�i �iD

0
i

Di�i �i +Di�D
0

!#
:

Let u = (u01; � � � ;u0n)
0 ; and consider Q =

�
Q1
Q2

�
such that

Qu =
�
y01;y

0
2; � � � ;y0n;x01q1 ; � � � ;x

0
nqn

�0
;

where Q1 and Q2 are

Q1 = (Q
0
11; � � � ; Q01n)

0
; Q2 = (Q

0
21; � � � ; Q02n)

0
;

and

Q1i =
�
0pi�ri�1 Ipi 0pi�(rn�ri�1�pi)

�
; Q2i =

�
0qi�(ri�qi) Iqi 0qi�(rn�ri)

�
;

ri =

iX
k=1

(pk + qk) ; i = 1; 2; :::; n:

Observe that

y = (y01; � � � ;y0n)
0
= Q1u;
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and

x =
�
x01q1 ; � � � ;x

0
nqn

�
= Q2u:

Thus, the distribution of yj fx � 0g is given by the following theorem.

Proposition 8 If y1; � � � ;yn are independent random vectors from the CSNpi;qi(�i;�i; Di;

�i;�i) distribution, then the joint distribution of y1; � � � ;yn is

y = (y01; :::;y
0
n)
0 � CSNpy;qy

�
�y;�y; Dy;�y;�y� ;

where py =
Pn

i=1 pi; qy =
Pn

i=1 qi; �y = (�01; � � � ;�0n)
0 ; �y =

nL
i=1

�i; D
y =

nL
i=1

Di; �y =

(� 01; � � � ;� 0n)
0 ; �y =

nL
i=1

�i:

In order to obtain the distribution of the sum of independent CSN random vectors we must

take pi = p; i = 1; � � � ; n:

For A =
�
10n 
 Ip 0p�(rn�np)

�
Q1, we have

nX
i=1

yi = Au;

and by computing the conditional density of

(Au) j fx � 0g ;

we obtain the following Proposition.

Proposition 9 If y1; � � � ;yn are independent random vectors with yi � CSNp;qi(�i;�i; Di;

�i;�i); i = 1; 2; � � � ; n, then
nX
i=1

yi � CSNp;q? (�?;�?; D?;�?;�?) ;

where q? =
Pn

i=1qi; �? =
Pn

i=1�i; �? =
Pn

i=1�i;

D? = (�1D
0
1; :::;�nD

0
n)
0

 
nX
i=1

�i

!�1
; �? = (� 01; :::;�

0
n)
0
;

and

�? = �y +Dy�yDy0 �D?

 
nX
i=1

�i

!
D?0:
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3.2. THE EXTENDED SKEW ELLIPTICAL DISTRIBUTION

González-Farías, et al (2004) obtained a multivariate extended skew-elliptical (ESE) distri-

bution in a similar way as the CSN distribution.

We consider elliptical random vectors whose density function exists and P (y = 0) = 0.

Suppose that a p�dimensional random vector y has a density of the form:

fp (y;�;�;h) = j�j�1=2 h
�
(y � �)0��1 (y � �)

�
; (7)

where � 2 Rp; � is a p � p positive de�nite matrix and h (�) is a nonnegative function of a
scalar variable such that

�
p
2

Z 1

0

t
p
2
�1h (t) dt = �

�
p
2

�
:

If y has density function given by (7) we say that y has an elliptically contoured distribution

and it will be denoted by y � ECp (�;�; h); and h (�) is called the pdf generator of the
elliptic distribution. This is a rich family that contains, for example, heavy tail distributions

as the t, Cauchy and so forth.

Let �
w0

z

�
� ECq+p

"�
�

��

�
;

 
� �D0

D� �+D�D0

!
;h

#
: (8)

where w0 is a random p�vector, z is a random q�vector, � 2 Rp;� 2 Rq; D is an arbitrary

q � p matrix, and � and � are p� p and q � q positive de�nite matrices, respectively.

Let h2 be the pdf generator of the marginal distribution of z: From Theorem 2.18 of Fang

et al (1990) the conditional density of z given w0 = w is given by

zj fw0 = wg � ECq
�
� �+D (w � �) ;�;hs(w)

�
;

where

ha (u) =
h (a+ u)

h2 (a)
; a; u > 0: (9)

It follows that if w d
= w0j fz � 0g then the pdf of w is:

f (w) =
fp (w;�;�;h1)Fq

�
D (w � �) ;�;�;hs(w)

�
Fq (0;�;�+D�D0;h2)

; (10)

where fp (�; �; �;h1) is as in (7); hs(w) is given in (9) and Fq
�
�; �; �;hy

�
is the distribution

function of a random vector with pdf generator hy.
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We will denote a random p-vector, y; distributed according to an ESE distribution with

parameters �;�; D;�;� and pdf generator h by y � ESEp;q(�;�; D;�;�;h):
Using the closure properties of elliptical distributions for linear transformations in (8) it is

easy to prove that the ESE distributions are closed under full row rank linear transforma-

tions.

3.3. THE MATRIX VARIATE CSN DISTRIBUTION

In the previous sections we de�ned and studied the properties of a CSN random vector that

can be easily extended to an ESE random vector. The issue of how to extend the concept

of a CSN or an ESE distribution from the vector case to the matrix case, is an attractive

and important problem.

De�ne the observation random matrix as

X =

0BB@
x11 � � � x1m
...

. . .
...

xp1 � � � xpm

1CCA = (x1; � � � ;xm) =

0BB@
x�01
...

x�0p

1CCA ;
where xi (p� 1) ; i = 1; � � � ;m is the ith column of X and x�0i is the i

th row of the matrix X:

Here x1; � � � ;xm can be thought as a sample of size m from a p-dimensional population, but

it is not necessary that x1; � � � ;xm are independent.

The randommatrix X (p�m) is said to have a matrix variate normal distribution with mean
matrix M (p�m) and covariance matrix �
	 where � (p� p) > 0 and 	(m�m) > 0; if
vec (X 0) � Npm (vec (M 0) ;�
	) :
For a matrix X (p�m) ; vec (X) is the pm� 1 vector de�ned as

vec (X) =

0BB@
x1
...

xn

1CCA :
We will use the notation X � Np;n (M;�
	) and denote the cdf of X as

�p;m (X;�;
) = �pm (vec (X
0) ; vec (�0) ;
) :

De�nition 10 A random matrix Y (p�m) is said to have a matrix variate closed skew
normal distribution with parameters

M (p�m) ; S (pm� pm) ; B (pm� qn) ; L (q � n) ; Q (qn� qn) ;

14



S > 0 and Q > 0; if

vec (Y 0) � CSNpm;qn [vec (M 0) ; S; B; vec (L0) ; Q] : (11)

We will use the notation

Y � CSNp;m;q;n (M;S;B; L;Q) : (12)

For most of the cases the matrices S and B will have a speci�c structure. Most of the

properties for the parametrization (12) are immediately obtained from González-Farías et al

(2004).

Example. (The distribution of the transpose of a CSN sample):

Let Y = (y1; � � � ;yn) be a sample of independent and identically distributed random vectors
from the CSNp;q (�;�; D;�;�) distribution. From González-Farías, et al (2004) we get that

the distribution of

vec (Y ) = (y01; :::;y
0
n)
0
;

is

CSNnp;nq (1n 
 �;In 
 �; In 
D;1n 
 �;In 
�) ;

and hence we obtain that

Y 0 � CSNp;n;q;n (10n 
 �; In 
 �; In 
D;10n 
 �;In 
�) :

The joint distribution of the CSN sample Y is given in Corollary 13.

3.3.1. A MATRIX MODEL

Let U1 � Np;m (0; S) and U2 � Nq;n (0; Q) be independent normal random matrices.

Consider the model

W =M + U1

Z = �L+DU1E 0 + U2;

D (q � p) ; E (m� n) then the joint distribution of W and Z is�
W

Z

�
� Nqn+pm

��
M

�L

�
;


�
;

with


 =

 
S S (D0 
 E 0)

(D 
 E)S Q+ (D 
 E)S (D0 
 E 0)

!
:
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Now, if

Y
d
= W j fZ � 0g ;

we get that

f (Y ) = K�p;m (Y ;M;S) �q;n [E (Y �M)D0;L;Q] ;

where

K�1 = �q;n [0;L;Q+ (D 
 E)S (D0 
 E 0)] ;

hence

Y � CSNp;m;q;n (M;S;D 
 E;L;Q) :

Which is a particular case of (12).

4. PROPERTIES OF THE MVCSN DISTRIBUTION

4.1. DISTRIBUTION OF THE TRANSPOSE

In order to compute the distribution of the transpose of Y we need to de�ne the commuta-

tion matrix which transforms vec (A) into vec (A0) : The commutation matrixKmp (mp�mp)
is de�ned as

Kmp =
mX
i=1

pX
j=1

�
Hij �H 0

ij

�
;

where Hij (m� p) has a unit element at the (i; j)th place and zero elsewhere. Thus if Y �
CSNp;m;q;n (M;S;B; L;Q) the distribution of Y 0 can be obtained, from the fact that

vec (Y ) = Kmpvec (Y
0) ;

and then, by using (6), we get the following result

Proposition 11 Let Y � CSNp;m;q;n (M;S;B; L;Q) then

Y 0 � CSNm;p;n;q (M 0; KmpSKpm; KpmB
0; L;Q) :

Corollary 12 If in Proposition (11) S = �
	 then

Y 0 � CSNm;p;n;q (M 0;	
 �; KpmB
0; L;Q) :

Corollary 13 If y1; � � � ;yn are independent and identically distributed random vectors from
the CSNp;q (�;�; D;�;�) distribution, then the joint distribution of Y = (y1; � � � ;yn) is:

Y � CSNn;p;n;q (1n 
 �0;�
 In; (D0 
 In)Knq;1
0
n 
 �;In 
�) :
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4.2. LINEAR TRANSFORMATIONS

Proposition 14 Consider Y � CSNp;m;q;n (M;S;B; L;Q) and let A1 (n1 � p), A2 (m� n2)
matrices such that A = A1 
 A02 has full row rank. If W = A1Y A2 then

W � CSNp;m;q;n (MA; SA; BA; L; QA) ;

where

MA = A1MA2; SA = ASA
0; BA = BSA

0S�1A ;

and

QA = Q+BSB
0 �BSA0S�1A ASB0:

4.3. MOMENT GENERATING FUNCTION

Lemma 15 Let W � Np;m (M;S) ; where M (p�m) and � (p� p) > 0, 	(m�m) > 0.

Then

EW [�q;n (A+BWC;L;Q)] = �q;n [A+BMC;L;Q+ (C
0 
B)S (C 
B0)] ;

where A (q � n) ; B (q � p) ; C (m� n) ; L (q � n) ; � (q � q) ; �(n� n) ; � > 0; � > 0:

Proposition 16 Let Y � CSNp;m;q;n (M;�
	; D 
 E;L;Q). Then the mgf of Y is given

by

MY (T ) = Eetr (Y
0T )

=
�q;n (E	T

0�D0;L;Q+ (D�D0)
 (E	E 0))
�q;n [0;L;Q+ (D�D0)
 (E	E 0)]

� etr
�
M 0T + 1

2
T 0�T	

�
:

4.4. QUADRATIC FORMS

Proposition 17 Let A (r �m) ; B (p� p) ; C (m� s) ; r � m; s � m, and

Y � CSNp;m;q;n (0;�
	; D 
 E;L;Q) :

Then the mgf of

Z = AY 0BY C

17



is

MZ (T ) =
�qn [0; L;Q+ (D 
 E)� (D0 
 E 0)]
�qn [0; L;Q+ (D�D0)
 (E	E 0)] jIpm � 2 (�B)
 (	CT

0A)j�1=2 ; (13)

where � = [I � 2 (B�)
 (CT 0A	)]�1 :

Corollary 18 Let Y � CSNp;m;1;1 (0;�
	; D 
 E; 0; #) ; A = C = Im; then Y 0��1Y has

Wishart distribution with parameters m; q and 	; that is

Y 0��1Y � Wm (p;	) :

Corollary 19 Let Y � CSNp;1;p;n (0;�;�
 E; 0; Q), where � is part of the spectral decom-
position of �; � = ���0 and Q is diagonal. Then

Y 0��1Y � �2p:

4.5. THE MATRIX VARIATE EXTENDED SKEW-ELLIPTICAL DISTRIBUTION

A random matrix Y (p�m) is said to have a matrix variate extended skew-elliptical
distribution with parameters

M (p�m) ; S (pm� pm) ; B (pm� qn) ; L (q � n) ; Q (qn� qn)

S > 0 and Q > 0 with pdf generator h: If

vec (Y 0) � ESEpm;qn [vec (M 0) ; S; B; vec (L0) ; Q; h] :

We will use the notation

Y � ESEp;m;q;n (M;S;B; L;Q; h) :

5. A MULTIVARIATE STOCHASTIC FRONTIER MODEL

We will use the notation U � Nc
m;n (M;S) to denote a truncated Nm;n (M;S) random

matrix below at C, that is, the truncation is of the type U � C; where W � C means

Wij � Cij, i = 1; � � � ;m; j = 1; � � � ; n. Observe that U � C ) vec (U 0) � vec (C 0).
Consider production data on m �rms at time t. Let us assume a stochastic frontier model

for time t of the form

yt = f(Xt;�t) + "t;

18



where "t = ("1t; � � � ; "mt)0 is the random vector of compound errors

"t = vt +Dut;

with vt = (v1t; � � � ; vmt)0, ut = (u1t; � � � ; uqt)0 and D a m� q weighting matrix. Let Y be the
m� n matrix of all the value added observations on the m �rms at times t = 1; � � � ; n,

Y =

0BB@
y11 � � � y1n
...

. . .
...

ym1 � � � ymn

1CCA = (y1; � � � ;yn) :

A joint model for the production data can be written as

Y = F + �;

where F = (f(X1;�1); � � � ; f(Xn;�n)), � = V+DU , V = (v1; � � � ;vn) and U = (u1; � � � ;un).
We can consider a slightly more general model for the compound error

� = V +DUE 0;

where V � Nm;n (0; S) , U � Nc
p;q (L;Q), D (m� p) ; E (n� q), and V independent of U .

Given that

vec (Y 0) = vec (V 0) + (D 
 E) vec (U 0)

from Domínguez-Molina, et al (2004) we get that the density of the compound error � =

V +DUE 0 is:

g (�) = ��1p;q (0;C � L;Q)�m;n (�; (D 
 E)L;�)

� �m;n
�
Q (D0 
 E 0)��1 (�� (D 
 E)L) ;C � L;�

�
;

where

� = S + (D 
 E)Q (D0 
 E 0) and

� = Q�Q (D0 
 E 0)��1 (D 
 E)Q:

Thus � has a matrix variate closed skew-normal distribution, i.e.,

� � CSNp;m;n;q
�
(D 
 E)L;�; QD0��1; C � L;�

�
:

as de�ned in Section 3.3. Notice that the matrix V , of measurement errors, no longer

is constrained to re�ect measurement error, but also, depending on the structure of its
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variance matrix S, it can incorporate random e¤ects such as random intercepts and time

induced correlations among the columns of Y . The matrix of technical ine¢ ciencies, U , by

being pre-multiplied by D can incorporate common ine¢ ciencies inside groups of similar

companies and, by being post-multiplied by E 0 it can consider time related ine¢ ciencies

e¤ects.

In this paper we have emphasized the close relationship that Stochastic Frontier Analysis has

with the skew distributions; in particular with the CSN distribution and its matrix extension

theMVCSN. The computational issues related to maximum likelihood estimation will always

be present in applications and, of course, the consideration of parsimonious models is always

a safe recommendation.
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6. APPENDIX

Proof of Proposition 2. In order to obtain distribution of y we will use the mgf technique:

My (s) = e
s0�Mv

h�
��1 +D0��1D

��1=2
s
i
Mu

h
(� +D�D0)

�1
D�s

i
= es

0�e
1
2
s0(��1+D0��1D)

�1
se

1
2
s0�D0(�+D�D0)�1(�+D�D0)(�+D�D0)�1D�s

� �q (D�s;�;�+D�D
0)

�q (0;�;�+D�D0)

= es
0�e

1
2
s0
h
(��1+D0��1D)

�1
+�D0(�+D�D0)�1D�

i
s

� �q (D�s;�;�+D�D
0)

�q (0;�;�+D�D0)
:

Using the Sherman-Morrison-Woodbury formula, we get�
��1 +D0��1D

��1
+ �D0 (� +D�D0)

�1
D� = �

Thus

My (s) =
�q (D�s;�;�+D�D

0)

�q (0;�;�+D�D0)
es

0�+ 1
2
s0�s;

which is the mgf of a CSNp;q (�;�; D;�;�) random vector. �
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Proof of Proposition 3 We know that

Fp;q (y0;�;�; D;�;�) = Pr (Y � y0) ;

now, from the model (5) we get that

Pr (y � y0) = Pr (w0 � y0jz � 0)

=
Pr (w0 � y0; z � 0)

Pr (z � 0)

=
Pr (w0 � y0;�z � 0)

Pr (�z � 0)
= C Pr (w0 � y0;�z � 0) ;

the result follows by noting that�
w0

�z

�
� �p+q

���
�

�
;

�
�

�D�
��D0

�+D�D0

��
:

�

Proof of Proposition 5. It follows by �rst using the identity

ey
0Ay�p (y;�;�) = jIp � 2A�tj

�1=2 exp
�
�1
2
�0��1

�
Ip � (Ip � 2�At)�1

�
�
	

� �p
�
y; (Ip � 2A�t)�1�;� (Ip � 2A�t)�1

�
;

hence

Eey
0Ay = jIp � 2A�tj�1=2 exp

�
�1
2
�0��1

�
Ip � (Ip � 2�At)�1

�
�
	

� C
Z
�p
�
y; (Ip � 2A�t)�1�;� (Ip � 2A�t)�1

�
�q [D (y � �) ;�;�] dy

= C jIp � 2A�tj�1=2 exp
�
�1
2
�0��1

�
Ip � (Ip � 2�At)�1

�
�
	

� E�q [D (Y � �) ;�;�] ;

where Y � Np
�
(Ip � 2A�t)�1�;� (Ip � 2A�t)�1

�
; thus the result follows applying Lemma

15 with m = n = 1. �

Proof of Proposition 11. The result follows by equation (6) and Theorem 1.2.22 of Gupta

and Nagar (2000). �
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Proof of Corollary 12. From equations (1.2.3) and (1.2.5) of Gupta and Nagar (2000) we get

that K�1
mp = Kpm and Kpm (	
 �)Kmp = � 
 	: The assertion follows from Proposition

11. �

Proof of Corollary 13. From Theorem 1.2.21 (iv) and equations (1.2.3) and (1.2.5) of Gupta

and Nagar (2000) we get that (A
B)0 = A0 
 B0; K�1
qn = Knq and Kpn (In 
D0)Kqn =

D0 
 In; thus Kpn (In 
D0) = Kpn (In 
D0)KqnKnq = (D
0 
 In)Knq: What it lacks of the

proof is continued from Proposition 11. �

Proof of Proposition 14. From Theorem 1.2.22 of Gupta and Nagar (2000) we get that

vec (W 0) = (A1 
 A02) vec (Y 0) ; the result follows from (6).

Proof of Lemma 15. Let U � Nq;n (L;Q) a random matrix independent of W: Then

EW [�q;n (A+BWC;L;Q)] = EW Pr (U � A+BWCjW )

= Pr (U �BWC � A)

= �q;n (A;L�BMC;Q+ (B 
 C 0)S (B0 
 C))

= �q;n (A+BMC;L;Q+ (B 
 C 0)S (B0 
 C))

The last part of the proof is due to

U �BWC � Nq;n [L�BMC;Q+ (B 
 C 0)S (B0 
 C)] :

�

For related results see Zacks (1981), pp. 53-54.

Proof of Proposition 16. From equation (1.2.6) of Gupta and Nagar (2000) we get that

tr (Y 0T ) = (vec (T 0))0 vec (Y 0) and due to vec (Y 0) � CSNpm;qn(vec (M
0) ;� 
 	; D 
 E;

vec (L0) ; Q) the rest of the proof follows from Lemma 1 of González-Farías et al (2004b).

Proof of Proposition 17. From equation (1.2.6) of Gupta and Nagar (2000) we get that

tr (AY 0BY CT ) = (vec (Y 0))0 (B 
 (CT 0A)) vec (Y 0) the result follows from Proposition 5.

Proof of Corollary 18. Using the speci�ed values of the parameters of the distribution of Y

in (13) we get

MZ (T ) =
�1 [0; 0; #+ (D 
 E)� (D0 
 E 0)]
�1 [0; 0; #+ (D�D0)
 (E	E 0)]

� jIpm � 2Ip 
 (	T 0)j�1=2 ;
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which simpli�es to

MZ (T ) = jIq � 2	T 0j�p=2 :

�

Proof of Corollary 19.. Given that T is a real number we deduce that � = [Iq � 2 (��1�)

(T 0	)]�1 = [Iq � 2Iq 
 T ]�1 = [Iq � 2IqT ]�1 = (1� 2T )�1 Iq: Now

MZ (T ) =
�qn

�
0; 0; Q+ (D 
 E) (1� 2T	)�1 Iq (D0 
 E 0)

�
�qn [0; 0; Q+ (D�D0)
 (EE 0)]

�
��I � 2 ����1�
 T ���1=2

=
�qn

�
0; 0; Q+ (1� 2T )�1 ((DD0)
 (EE 0))

�
�qn [0; 0; Q+ (D�D0)
 (EE 0)]

� jIq � 2IqT j�1=2

= (1� 2T )�q=2 :

�
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