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Abstract

We prove that a positive self-similar Markov process (X, IP) that hits 0 in a �nite

time admits a self-similar recurrent extension that leaves 0 continuously if and only if the

underlying Lévy process satis�es Cramér's condition.
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1 Introduction and main result

Let IP = (IPx, x ≥ 0) be a family of probability measures on Skorohod's space D+, the space of
càdlàg paths de�ned on [0,∞[ with values in IR+. The space D+ is endowed with the Skohorod
topology and its Borel σ-�eld. We will denote by X the canonical process of the coordinates and
(Gt, t ≥ 0) will be the natural �ltration generated by X. Assume that under IP the canonical
process X is a positive self-similar Markov process (pssMp), that is to say that (X, IP) is a
[0,∞[-valued strong Markov process and that it has the scaling property: there exists an α > 0
such that for every c > 0,

({cXtc−1/α , t ≥ 0}, IPx)
Law
= ({Xt, t ≥ 0}, IPcx) ∀x ≥ 0.

We will assume furthermore that (X, IP) is a pssMp that hits 0 in a IP-a.s. �nite time T0 =
inf{t > 0 : Xt = 0}, and dies. So IP0 is the law of the degenerated path equal to 0. According
to Lamperti's transformation [16] the family of laws IP can be obtained as the image law of the
exponential of a R∪{−∞}-valued Lévy process ξ with law P, time changed by the inverse of
the additive functional

t→
∫ t

0

exp{ξs/α}ds, t ≥ 0. (1)
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As usual, any function f : R → R is extended to R∪{−∞} by tacking f(−∞) = 0. Thus,
the state {−∞} will be taken as a cemetery state for ξ and denote by ζ its lifetime, viz
ζ := inf{t > 0 : ξt = −∞}, and by {Ft, t ≥ 0}, the �ltration of ξ. A consequence of Lamperti's
transformation is that the law of T0 under IPx is equal to that x1/αI under P, where I denotes
the exponential functional associated to ξ

I :=

∫ ζ

0

exp{ξs/α}ds.

Lamperti proved the following characterization for pssMp that hit 0 in a �nite time: either
(X, IP) hits 0 by a jump and in a �nite time

IPx(T0 <∞, XT0− > 0, XT0+t = 0, ∀ t ≥ 0) = 1, ∀x > 0,

which happens if and only if P(ζ <∞) = 1; or (X, IP) hits 0 continuously and in a �nite time

IPx(T0 <∞, XT0− = 0, XT0+t = 0, ∀ t ≥ 0) = 1, ∀x > 0,

and this is equivalent to P(ζ = ∞, limt→∞ ξt = −∞) = 1. Reciprocally, the image law of
the exponential of any R∪{−∞} valued Lévy processes time changed by the inverse of the
functional de�ned in (1) is the law of a pssMp that dies at its �rst hitting time of 0. For more
details, see [16] or [18].

The main purpose of this note is continue our study initiated in [18] on the existence and

characterization of positive valued self-similar Markov processes, X̃, that behave like (X, IP)
before its �rst hitting time of 0 and for which the state 0 is a regular and recurrent state. A
such process X̃ will be called a recurrent extension of (X, IP). We refer to [18],[21] and the
references therein for an introduction to this problem and for background on excursion theory
for positive self-similar Markov processes.

We say that a σ-�nite measure n on (D+,G∞) having in�nite mass is an excursion measure
compatible with (X, IP) if the following are satis�ed:

(i) n is carried by
{ω ∈ D+ | T0(ω) > 0 and Xt(ω) = 0,∀t ≥ T0};

(ii) for every bounded G∞�measurable H and each t > 0 and Λ ∈ Gt

n(H ◦ ιt,Λ ∩ {t < T0}) = n(IEXt(H),Λ ∩ {t < T0}),

where ιt denotes the shift operator.

(iii) n(1− e−T0) <∞;

Moreover, we will say that n is self-similar if it has the scaling property: there exists a 0 < γ < 1,
s.t. for all a > 0, the measure Ha n, which is the image of n under the mapping Ha : D+ → D+,
de�ned by

Ha(ω)(t) = aω(a−1/αt), t ≥ 0,
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is such that
Ha n = aγ/α n .

The parameter γ will be called the index of self-similarity of n . See Section 2 in [18] for
equivalent de�nitions of self-similar excursion measure.

The entrance law associated to n is the family of �nite measures (nt, t > 0), de�ned by

n(Xt ∈ dy, t < T0) = nt(dy), t > 0.

It is known that there exists a one to one correspondence between recurrent extensions of
(X, IP) and self-similar excursion measures compatible with (X, IP), see e.g. [21] and [18]. So
determining the existence of the recurrent extensions of (X, IP) is equivalent to doing so it
for self-similar excursion measures. We recall that the index of self-similarity of a self-similar
excursion measure coincides with that of the stable subordinator which is the inverse of the
local time at 0 of the associated recurrent extension of (X, IP).

We say that a positive self-similar Markov process for which 0 is a regular and recurrent state
leaves 0 continuously (respectively, by a jump) whenever its excursion measure, n, is carried by
the paths that leave 0 continuously (respectively, that leave 0 by a jump)

n (X0+ > 0) = 0; (respectively, n(X0+ = 0) = 0.)

Vuolle-Apiala [21] proved, under some hypotheses, that any positive self-similar Markov process
for which 0 is a regular and recurrent state either leaves 0 continuously or by jumps. In fact
his result still holds true in the general setting as it is proved in the following Lemma.

Lemma 1. Let n be a self-similar excursion measure compatible with (X, IP), and with index
of self-similarity γ ∈]0, 1[. Then

either n(X0+ > 0) = 0 or n(X0+ = 0) = 0.

Proof. Assume that the claim of the Lemma does not hold. Let nc = c(c) n |{X0+=0} and
nj = c(j) n |{X0+>0}, be the restrictions of n to the set of paths {X0+ = 0}, and {X0+ > 0},
respectively, and c(c) and c(j) are normalizing constants such that

nc(1− e−T0) = 1 = nj(1− e−T0).

The measures nc and nj are self-similar excursion measures compatible with (X, IP), and with
the same self-similarity index γ. According to Lemma 3 in [18] the potential measure of nc and
that of nj is given by the same purely excessive measure

nc
(∫ T0

0

1{Xt∈dy}dt

)
= Cα,γy

(1−α−γ)/αdy = nj
(∫ T0

0

1{Xt∈dy}dt

)
, y > 0, (2)

where Cα,γ ∈]0,∞[ is a constant. So by Theorem 5.25 in [13], on the uniqueness of purely
excessive measures, the entrance laws associated to nc and nj are equal. So, by Theorem 4.7
in [7] the measures nc and nj are equal. Which lead to a contradiction to the fact that the
supports of the measures nc and nj are disjoint.
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If nβ is a self-similar excursion measure with index γ = βα ∈]0, 1[ and that is carried by the
paths that leave 0 by a jump then the self-similarity implies that nβ has the form nβ = cα,β IPηβ

,
where 0 < cα,β <∞ is a normalizing constant and the starting measure or jumping-in measure
ηβ is given by

ηβ(dx) = βx−1−βdx, x > 0.

The choice of the constant cα,β depends on the normalization of the local time at 0 of the
recurrent extension of (X, IP).

In the work [18] we provided necessary and su�cient conditions on the underlying Lévy
process for the existence of recurrent extensions of (X, IP) that leave 0 by a jump. For sake of
completeness we include an improved version of that result.

Theorem 1. Let (X, IP) be an α-self-similar Markov process that hits the cemetery point 0 in
a �nite time a.s. and (ξ,P) the Lévy process associated to it via Lamperti's transformation.
For 0 < β < 1/α, the following are equivalent

(i) E(eβξ1 , 1 < ζ) < 1,

(ii) E(Iαβ) <∞,

(iii) There exists a recurrent extension of (X, IP), say X(β), that leaves 0 by a jump and its
associated excursion measure nβ is such that

nβ(X0+ ∈ dx) = cα,ββx
−1−βdx, x > 0,

where cα,β is a constant.

In this case, the process X(β) is the unique recurrent extension of (X, IP) that leaves 0 by a
jump distributed as cα,βηβ.

The equivalence between (ii) and (iii) in Theorem 1 is the content of Proposition 1 in [18]
and the equivalence between (i) and (ii) is a consequence of Lemma 2 below.

Thus only the existence of recurrent extensions that leave 0 continuously remains to be
established. In this vein, we proved in [18] that under the hypotheses:

(H2a) (ξ,P) is not-arithmetic, i.e. its state space is not a subgroup of rZ, for any r ∈ R .

(H2b) Cramér's condition is satis�ed, that is to say that there exists a θ > 0 s.t.

E(eθξ1 , 1 < ζ) = 1,

(H2c) for θ as in the hypothesis (H2b), E(ξ+
1 e

θξ1 , 1 < ζ) <∞.

and provided 0 < αθ < 1, there exists a recurrent extension of (X, IP) that leaves 0 continuously.
In a previous work, Vuolle-Apiala [21] provided a su�cient condition on the resolvent of (X, IP)
for the existence of recurrent extensions of (X, IP) that leave 0 continuously. Actually, in [18]
we proved that in the case where the underlying Lévy process is not-arithmetic the conditions
of Vuolle-Apiala are equivalent to the conditions (H2b-c) above. So, it is natural to ask if the
conditions of Vuolle-Apiala and ours are also necessary for the existence of recurrent extensions
of (X, IP) that leave 0 continuously? The following counterexample answers this question
negatively.
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Counterexample 1. Let σ be a subordinator with law P such that its law is not arithmetic
and has some exponential moments of positive order, i.e.

E := {λ > 0, 1 < E(eλσ1) <∞} 6= ∅.

Assume that the upper bound of E , say q, belongs to E∩]0, 1[ and that the function

m(x) := E
(
1{σ1>x}e

qσ1
)
, x > 0,

is regularly varying at in�nity with index −β, for some β ∈]1/2, 1[. Let (ξ,P) be the Lévy
process with �nite lifetime ζ, obtained by killing σ at an independent exponential time of
parameter κ = log (E(eqσ1)) . By construction, it follows that Cramér's condition is satis�ed

E(eqξ1 , 1 < ζ) = 1,

and by Karamata's Theorem the function

m\(x) :=

∫ x

0

E(1{ξ1>u}e
qξ1 , 1 < ζ)du, x ≥ 0,

is regularly varying at in�nity with index 1−β. As a consequence, the integral E(ξ1e
qξ1 , 1 < ζ)

is not �nite. We will denote by P\, the Girsanov type transformation of P via the martingale
(eqξs , s ≥ 0), viz. P\ is the unique measure s.t.

P\ = eqξt P, on Ft, t ≥ 0.

Let (X, IP) be the 1-pssMp associated to (ξ, IP) via Lamperti's transformation and let Vλ denote
its λ-resolvent, λ > 0. We claim that the following assertions are satis�ed:

(P1) For any λ > 0,

lim
x→0+

m\(log(1/x))
Vλf(x)

xq
=

1

Γ(β)Γ(1− β)

∫ ∞

0

f(y)E\

(
exp

{
−λy

∫ ∞

0

e−ξsds

})
y−qdy,

for every f :]0,∞[→ R, continuous and with compact support;

(P2) the limit

lim
x→0+

m\(log(1/x))
IEx(1− e−T0)

xq
:= Cq,

exists and Cq ∈]0,∞[;

(P3) there exists a recurrent extension of (X, IP) that leaves 0 continuously.

That the properties (P1-3) are satis�ed in the framework of Counterexample 1 will be proved
in Section 3.
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In the previous counterexample we have constructed a pssMp that does not satisfy the
hypotheses of Vuolle-Apiala [21] nor all the hypotheses in [18], and that nonetheless admits a
recurrent extension that leaves 0 continuously. This allowed us to realize that only Cramér's
condition is relevant for the existence of recurrent extensions of pssMp. That is the content of
the main theorem of this paper. To state the result we need further notation.

First, observe that if Cramér's condition is satis�ed with index θ, then the process M :=
(eθξt , t ≥ 0) is a martingale under P . In this case, we will denote by P\ the Girsanov type
transform of P via the martingale M, as we did in the Counterexample 1. Under the law P\

the process ξ is a R-valued Lévy process with in�nite lifetime and that drift to ∞. We will
denote by J, the exponential functional

J :=

∫ ∞

0

exp{−ξs/α}ds.

A straight consequence of Theorem 1 in [5] and the fact that (ξ,P\) is a Lévy process that
drift to ∞, is that J <∞, P\-a.s. More details on the construction of the probability measure
P\ and its properties can be found in Section (2.3) in [18]. This being said we have all the
elements to state our main result.

Theorem 2. Let (X, IP) be an α-self-similar Markov process that hits its cemetery state 0
in a �nite time IP-a.s. and (ξ,P) be the Lévy process associated to (X, IP) via Lamperti's
transformation. The following are equivalent:

(i) There exists a 0 < θ < 1/α, such that E(eθξ1 , 1 < ζ) = 1.

(ii) There exists a recurrent extension of (X, IP) that leaves 0 continuously and such that its
associated excursion measure from 0, say n, is such that

n(1− e−T0) = 1.

In this case, the recurrent extension in (ii) is unique and the entrance law associated to the
excursion measure n is given by, for any f positive and measurable

n(f(Xt), t < T0) =
1

tαθΓ(1− αθ)E\(Jαθ−1)
E\

(
f

(
tα

Jα

)
Jαθ−1

)
, t > 0, (3)

with θ as in the condition (i).

Observe that the condition (ii) in Theorem 2 implies that the inverse of the local time at
0 for the recurrent extension of (X, IP) is a stable subordinator of parameter αθ for some
0 < θ < 1/α. It is implicit in the Theorem 2 that this is the unique θ > 0 that ful�lls the
condition (i), and viceversa. Moreover, the expression of the entrance law associated to n
should be compared with the entrance law of Bertoin and Caballero [2] and Bertoin and Yor [4]
for positive self-similar Markov processes that drift to ∞.

Besides, we can ask whether the recurrent extension in Theorem 2 is of the type obtained in
Theorem 2 in [18].
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Corollary 1. Assume that there exists a recurrent extension of (X, IP) that leaves 0 contin-

uously and let ĨP and n denote its law and excursion measure at 0, respectively. For θ as in
Theorem 2 the integrability condition

E(ξ+
1 e

θξ1 , 1 < ζ) <∞, (4)

is satis�ed if and only if
n(Xθ

1 , 1 < T0) <∞. (5)

Furthermore, the latter holds if and only if

ĨEx(X
θ
t ) <∞, ∀ x ≥ 0, ∀ t ≥ 0. (6)

During the elaboration of this work we learned that in [12] P. Fitzsimmons essentially proved
the equivalence between (i) and (ii) in Theorem 2. He proved that Cramér's condition and a
moment condition for the exponential functional I are necessary and su�cient for the existence
of a recurrent extension of (X, IP) that leaves 0 continuously. Actually, the moment condition
of Fitzsimmons is a consequence of Cramér's condition, as it is proved in Lemma 2 below.
Besides, Fitzsimmons' arguments and ours are completely di�erent. He used arguments based
on the theory of Kusnetzov measures and time change of processes with random birth and
death, while our proof uses some general results on the excursions of pssMp obtained in our
previous work [18] and some facts from the �uctuation theory of Lévy processes.

The rest of this note is organized as follows: Section 2 is mainly devoted to the proof of
Theorem 2 and in Section 3 we establish the facts claimed in Counterexample 1.

2 Proofs

To tackle our task we need some notation. The Laplace exponent of (ξ,P) is the function
ψ : [0, θ] → R∪{∞} de�ned by

E(eλξ1 , 1 < ζ) := eψ(λ), λ ∈ R .

Holder's inequality implies that ψ is a strictly convex function on the set E := {λ ∈ R : ψ(λ) <
∞}. So, if Cramer's condition is satis�ed then the equation ψ(λ) = 0, λ > 0, has a unique root
that we will denote hereafter by θ. Observe that [0, θ] ⊆ E , and that ψ is derivable from the
right at 0 and from the left at θ and

E(ξ1, 1 < ζ) = ψ′+(0) ∈ [−∞, 0[, E(ξ1e
θξ1 , 1 < ζ) = ψ′−(θ) ∈]0,∞].

Our �rst purpose is to prove that (i) and (ii) in Theorem 1 are equivalent and that in
Theorem 2, (i) implies (ii). To reach our end we will need the following Lemma.

Lemma 2. Let (ξ,P) be a Lévy process and let β > 0 be such that

E(eβξ1 , 1 < ζ) ≤ 1,
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and assume that β < 1/α. Then
E
(
Iαβ−1

)
<∞.

Furthermore,
E(eβξ1 , 1 < ζ) < 1, if and only if E

(
Iαβ
)
<∞.

Proof of Lemma 2. For t > 0, let Qt denote the random variable

Qt :=

∫ t

0

exp{ξu/α}1{u<ζ}du.

The main argument of the proof uses that E(Qαβ
t ) <∞, for all t > 0. Indeed, the strict convexity

of the mapping λ→ E(eλξ1 , 1 < ζ) implies that for any p > 1, E
(
e(β/p)ξt , t < ζ

)
= etψ(β/p) < 1,

t > 0. Thus,

E(Qαβ
t ) ≤ tαβ E

[
sup

0<u≤t

{
eβξu1{u<ζ}

}]
= tαβ E

[(
sup

0<u≤t

{
e(β/p)ξu1{u<ζ}

})p]
≤ tαβ E

[(
sup

0<u≤t

{
e(β/p)ξue−uψ(β/p)1{u<ζ}

})p]
≤ tαβ

(
p

p− 1

)p
E
[{
e(β/p)ξte−tψ(β/p)1{t<ζ}

}p]
≤ tαβ

(
p

p− 1

)p
e−tpψ(β/p),

owing that the process e(β/c)ξu−uψ(β/c), u ≥ 0, is a positive martingale and Doob's Lp inequality.
We now prove the �rst claim in Lemma 2. On the one hand, using the well known inequality∣∣|x|αβ − |y|αβ

∣∣ ≤ |x− y|αβ, x, y ∈ R,

we get that

E

[(∫ ∞

0

exp{ξs/α}1{s<ζ}ds
)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ}ds
)αβ]

≤ E
(
Qαβ
t

)
<∞.

On the other hand, we have a.s.(∫ ∞

0

exp{ξs/α}1{s<ζ}ds
)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ}ds
)αβ

= αβ

∫ t

0

exp{ξu/α}1{u<ζ}
(∫ ∞

u

exp{ξs/α}1{s<ζ}ds
)αβ−1

du

= αβ

∫ t

0

exp{βξu}1{u<ζ}
(∫ ∞

0

exp{ξ̃r/α}1{r<eζ}dr
)αβ−1

du,
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where ξ̃r = ξr+u − ξu, r ≥ 0, and ζ̃ = ζ − u. Thus, by taking expectations, using Fubini's
Theorem and the independence of the increments of ξ we get the identity

E

((∫ ∞

0

exp{ξs/α}1{s<ζ}ds
)αβ

−
(∫ ∞

t

exp{ξs/α}1{s<ζ}ds
)αβ)

= αβ

∫ t

0

E

(
exp{βξu}1{u<ζ}

(∫ ∞

0

exp{ξ̃r/α}1{r<eζ}dr
)αβ−1

)
du

= αβ E(Iαβ−1)

∫ t

0

E
(
exp{βξu}1{u<ζ}

)
du.

The �rst claim in Lemma 2 follows. To prove the second assertion, we assume �rst that
E
(
eβξ1 , 1 < ζ

)
< 1. Thus, by making t tend to in�nity and integrating in the latter equation

we get the identity

E
(
Iαβ
)

=
αβ

ψ(β)
E
(
Iαβ−1

)
. (7)

This relation is well known, see e.g. [5] and [17]. Which together with the �rst assertion of the
Lemma implies that E(Iαβ) <∞. We now prove the reciprocal. If E(Iαβ) <∞, then we have
that

∞ > E

((∫ ζ

0

exp{ξs/α}ds
)αβ)

> E

((∫ ζ

1

exp{ξs/α}ds
)αβ

1{1<ζ}

)

= E

(
eβξ1 E

((∫ ∞

0

exp{(ξ1+s − ξ1)/α}1{1+s<ζ}ds
)αβ)

1{1<ζ}

)

= E
(
eβξ11{1<ζ}

)
E

((∫ ζ

0

exp{ξs/α}ds
)αβ)

,

(8)

owing to the fact that ξ is a Lévy process. So, we get that in this case E
(
eβξ1 , 1 < ζ

)
< 1.

Theorem 2, (i) implies (ii). The proof of this result is based on Theorem 3 in [18], but to use
that result we �rst need to establish some weak-duality relations.

By assumption (i) and Lemma 2 we have that E(Iαθ−1) < ∞. Moreover, let (ξ, P̂\) :=

(−ξ,P\) denote the dual of (ξ,P\). Then (ξ, P̂\) drift to −∞, because (ξ,P\) drift to ∞, and

as a consequence I < ∞, P̂\�a.s. Furthermore, (ξ, P̂\) satis�es the hypotheses of Lemma 2
with β = θ due to the identity

Ê\
(
eθξ1
)

= E\
(
e−θξ1

)
= E

(
e−θξ1eθξ1 , 1 < ζ

)
≤ 1.

Thus we can also ensure that Ê\
(
Iαθ−1

)
<∞. Now, let ÎP

\
be the law of the α-pssMp associated

to (ξ, P̂\) via Lamperti's transformation. Then (X, ÎP
\
) is an α-pssMp that hits 0 continuously
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and in a �nite time ÎP
\
-a.s. and according to Lemma 2 in [4], (X, IP\) and (X, ÎP

\
) are in

weak duality with respect to the measure α−1x1/α−1dx, x > 0, and given that the law IP\ is the
h-transform of the law IP via the invariant function h(x) = xθ for the semigroup of (X, IP) (see

Proposition 5 in [18]) it then follows that (X, IP) and (X, ÎP
\
) are in weak duality w.r.t. the

measure α−1x1/α−1−θdx, x > 0. Furthermore, we have that for any λ > 0,

α−1

∫ ∞

0

dxx1/α−1−θ IEx(e
−λT0) <∞, α−1

∫ ∞

0

dxx1/α−1−θ ÎE
\

x(e
−λT0) <∞. (9)

Indeed, for λ > 0

α−1

∫ ∞

0

dxx1/α−1−θ IEx
(
e−λT0

)
= α−1

∫ ∞

0

dxx1/α−1−θ E
(
e−λx

1/αI
)

= E

(
α−1

∫ ∞

0

dxx1/α−1−θe−λx
1/αI

)
= λαθ−1 E(Iαθ−1)Γ(1− αθ) <∞.

The same calculation applies to verify the �niteness of the second integral in equation (9). This
being said, Theorem 3 in [18] ensures that there exists a unique recurrent extension of (X, IP),
such that the λ-resolvent of its excursion measure, say n, is given by

n

(∫ T0

0

e−λtf(Xt)dt

)
=

1

αΓ(1− αθ) Ê\(Iαθ−1)

∫ ∞

0

f(x)x1/α−1−θ ÎE
\

x(e
−λT0)dx, (10)

for λ ≥ 0, and any function f, positive and measurable on [0,∞[. An easy calculation proves
that the λ-resolvent of n satis�es the self-similarity property in Lemma 2 in [18] and therefore
the excursion measure n is self-similar. In particular, n(1 − e−T0) = 1, and the potential of n
is given by

n

(∫ T0

0

f(Xt)dt

)
=

1

αΓ(1− αθ) Ê\(Iαθ−1)

∫ ∞

0

f(x)x1/α−1−θdx.

Which compared with the result in Lemma 3 in [18] implies that

Ê\
(
Iαθ−1

)
= E

(
Iαθ−1

)
. (11)

Actually, Theorem 3 cited above establishes also that there exists a recurrent extension of

(X, ÎP
\
) with excursion measure n̂ such that

n̂

(∫ T0

0

e−λtf(Xt)dt

)
=

1

αΓ(1− αθ)E(Iαθ−1)

∫ ∞

0

f(x)x1/α−1−θ IEx(e
−λT0)dx.

Moreover, the recurrent extensions of (X, IP) and (X, ÎP
\
) associated to n and n̂, respectively,

still are in weak duality. To verify that n is carried by the paths that leave 0 continuously,
we claim that the image under time reversal at time T0 of n is n̂ . This follows from the fact
that n and n̂ both have the same potential and an application of a result for time reversal
of Kusnetzov measures established in Dellacherie et al. [10] Section XIX.23. Thus, using the
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Markov property and that (X, ÎP
\
) is a pssMp that hits 0 continuously and in a �nite time

ÎP
\
-a.s., given that the underlying Lévy process (ξ, P̂\) drifts to −∞, we get that n̂ is carried

by the paths that hit 0 continuously and therefore

0 = n̂(XT0− > 0) = n(X0+ > 0).

We will next prove that in Theorem 2, (ii) implies (i). The proof is long so we will give
it in two main steps: with the �rst we will prove that if it is possible to construct recurrent
extensions of (X, IP) that leave 0 by a jump then the condition in (i) in Theorem 2 is satis�ed;
and with the second step, we will prove that if (ii) holds then it is indeed possible to construct
recurrent extensions of (X, IP) that leaves 0 by a jump.

2.1 Step 1

The Step 1 of the proof that in Theorem 2, (ii) implies (i) relies on the following Proposition.

Proposition 1. Assume that there exists a recurrent extension, X̃, of (X, IP) that leaves 0
continuously and let αϑ ∈]0, 1[ be the index of self-similarity of the subordinator inverse of the

local time at 0 of X̃. We have that for any 0 < β < ϑ there exists a recurrent extension X(β) of
(X, IP) with associated excursion measure nβ = cα,β IPηβ

, where ηβ is the jumping-in measure
de�ned in the Introduction and cα,β is a normalizing constant.

The proof of this Proposition will be given in Subsection 2.2. Roughly, the process X(β) will
be obtained by erasing randomly the debut of all the excursions out from 0 of X̃. Formally,
this will be done using a time change associated to a �uctuating additive functional.

If we take for granted the existence of X(β), for all β ∈]0, ϑ[, the rest of the proof is rather
elementary as we shall next explain. Owing to the Theorem 1 this has as a consequence that
for any 0 < β < ϑ the Lévy process ξ has positive exponential moments of order β,

E(eβξ1 , 1 < ζ) < 1, ∀β ∈]0, ϑ[.

So we have that
lim
β→ϑ−

E
(
eβξ1 , 1 < ζ

)
= E

(
eϑξ1 , 1 < ζ

)
≤ 1.

Nevertheless, it does not happens that E
(
eϑξ1 , 1 < ζ

)
< 1. Because, if this were indeed the case

Theorem 1 would imply that (X, IP) admits a recurrent extension that leaves 0 by a jump and
with jumping-in measure proportional to ηϑ. Thus, that the measure m = 2−1n + 2−1cα,ϑ IPηϑ

,
is a self-similar excursion measure compatible with (X, IP), and with index of self-similarity αϑ;
as before cα,ϑ is a normalizing constant. Therefore, there exists a recurrent extension of (X, IP)
with excursion measure m and that may leave 0 by a jump and continuously, which leads to a
contradiction to the fact that any recurrent extension of (X, IP) either leaves 0 by a jump or
continuously. Therefore, Cramér's condition is satis�ed.

11



2.2 Step 2. Construction of the auxiliary processes

The main purpose of this section is to prove the Proposition 1.

Our �rst concern will be ensure that there exists a measure ĨP
∗
on Skorohod's space D of

càdlàg real valued paths de�ned on [0,∞), such that under ĨP
∗
the canonical process Y is a

strong Markov self-similar process that has the following properties:

• (Y, ĨP
∗
) is a real valued α�self-similar Markov process that leaves 0 continuously,

• 0 is a recurrent and regular state for (Y, ĨP
∗
),

• (Y, ĨP
∗
) is symmetric,

• (Y, ĨP
∗
) killed at its �rst hitting time of ]−∞, 0] has the same law as (X, IP),

• the measure of the excursions from 0 of (Y, ĨP
∗
), say W, is supported by

{ω ∈ D : T0(ω) > 0, ω(t) = 0,∀ t ≥ T0(ω)} ∩
(
D+ ∪ D−)

where

D+ = { ω ∈ D : ω(t) > 0, ∀ t ∈]0, T0(ω)[ } ,
D− = { ω ∈ D : ω(t) < 0, ∀ t ∈]0, T0(ω)[ } ,

• the restriction of W to the set of positive càdlàg paths D+ is equal to n.

This implies that there exists a local time L = (Lt, t ≥ 0) at 0 for (Y, ĨP
∗
) and that the inverse

of L, say L−1, is a stable subordinator of parameter αϑ.

The spaces D+,D− are endowed with the σ-algebras G+
∞,G−∞, generated by the coordinate

maps, respectively.

Proof. We �rst introduce some notations. Let IP− be the law on (D−,G−∞) which is the image
of (−X, IP). Under IP− the canonical process of coordinates X− is a self-similar Markov process
taking values in ]−∞, 0], that dies at its �rst hitting time of 0.We will denote by

(
P+
t , t ≥ 0

)
and(

P−
t , t ≥ 0

)
the semigroups of (X, IP) and (X−, IP−), respectively. We de�ne a sub-Markovian

semigroup on R \{0} as follows, for any f : R → R+ measurable

P ∗
t f(x) = P+

t f(x)1{x>0} + P−
t f(x)1{x<0} + f(0)1{x=0}, t ≥ 0, x ∈ R .

The semigroup {P ∗
t , t ≥ 0} is Fellerian on R \{0} and satis�es the hypothesis in [7] Chapter 5,

since the semigroups (P+
t , t ≥ 0) and (P−

t , t ≥ 0) have those properties on ]0,∞[ and ]−∞, 0[,
respectively. Thus, there exists a unique strong Markov process on R whose law will be denoted
by IP∗, having (P ∗

t , t ≥ 0) as semi-group and for which 0 is a cemetery state. Observe that when
started at some x > 0 the process (Y, IP∗) has the same law as (X, IP). Besides, let ň be the
image of n under the measurable mapping Φ : D+ → D− de�ned by Φ(ω) = −ω. The measure ň
is an excursion measure compatible with the semigroup (P−

t , t ≥ 0). Then there exists a unique

12



measure W on D+ ∪ D− endowed with the σ-algebra G̃ = G+
∞
∨
G−∞, such that W1D+ = n

and W1D− = ň, and is an excursion measure compatible with the semigroup (P ∗
t , t ≥ 0) . The

version of the Itô extension Theorem of Blumenthal [7] Chapter 5, implies that there exists a

unique recurrent extension of (Y, IP∗), with law, say ĨP
∗
, and with excursion measure W. By

construction the process (Y, ĨP
∗
) has the required properties.

Next, we introduce other ingredients that will be useful to prove the Proposition 1.

For q > 0, let A+, A−,q be the additive functionals of Y de�ned by

A+
t =

∫ t

0

1{Ys>0}ds, A−,qt =

∫ t

0

q1/αϑ1{Ys<0}ds, t ≥ 0,

and we introduce the time change τ (q), which is the generalized inverse of the �uctuating additive
functional A+ − A−,q, that is

τ (q)(t) = inf{s > 0 : A+
s − A−,qs > t}, t ≥ 0, inf ∅ = ∞.

Now, let Y (+,q) be the process Y time changed by τ (q),

Y
(+,q)
t =

{
Yτ (q)(t) if τ (q)(t) <∞
∆ if τ (q)(t) = ∞

;

where ∆ is a cemetery or absorbing state. The proof of Proposition 1 is a straightforward
consequence of the following Lemma.

Lemma 3. Under ĨP
∗
the process Y (+,q), is a positive α-self-similar Markov process for which 0

is a regular and recurrent state and that leaves 0 by a jump according to the jumping-in measure
cα,ρϑηρϑ, with

ηρϑ(dx) = ρϑx−1−ρϑdx, x > 0,

where ρ is given by

ρ =
1

2
+

1

παϑ
arctan

(
1− q

1 + q
tan

(
παϑ

2

))
∈]0, 1[,

and 0 < cα,ρϑ = n(Xϑρ
1 , 1 < T0) <∞, is a constant.

That the process Y (+,q) is a pssMp follows from standard arguments. We should prove that
the measure n+,q of the excursions from 0 of Y (+,q), is such that n+,q(Y0 ∈ dy) = cα,ρϑηρϑ(dy).
This will be a consequence of the following auxiliary Lemma.

Lemma 4. (i) The processes Z+, Z−,q de�ned by

Z+ ≡ (Z+
t = A+

L−1
t

, t ≥ 0); Z−,q ≡ (Z−,qt = A−,q
L−1

t

, t ≥ 0)

are independent stable subordinators of parameter αϑ, and their respective Lévy measures
are given by π+(dx) = cx−1−αϑdx, and π−,q(dx) = qcx−1−αϑdx, on ]0,∞[, and c ∈]0,∞[
is a constant.
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(ii) The process Z = Z+−Z−,q is a stable process with parameter αϑ and positivity parameter
ρ = P(Z1 > 0), with ρ as de�ned in Lemma 3

(iii) The upward and downward ladder height processes H and Ĥ associated to Z are stable
subordinators of parameter αϑρ and αϑ(1− ρ), respectively.

The proof of Lemmas 3 and 4 uses arguments from the �uctuation theory of Lévy processes,
we refer to [1] for background on this topic.

Proof. That the processes Z+, Z−,q are independent subordinators is a standard result in the
theory of excursions of Markov processes and follows from the fact that they are de�ned in terms

of the positive and negative excursions of (Y, ĨP
∗
), respectively. The self-similarity property for

(Z+, Z−,q) follows from that of (Y, ĨP
∗
). The jump measure π+ of Z+ is given by

π+(dt) = n(T0 ∈ dt),

while that of Z−,q is
π−,q(dt) = qn(T0 ∈ dt).

And given that the jumps of the stable subordinator L−1 are given by the measure n(T0 ∈ dt),
it follows that n(T0 ∈ dt) = ct−1−αϑdt, t > 0, for some constant 0 < c < ∞. The proof of the
assertion in (ii) is straightforward. It is well known in the �uctuation theory of Lévy processes
that the upward and downward ladder height subordinators associated to a stable Lévy process
have the form claimed in (iii).

Proof of Lemma 3. By construction, the closure of set of times at which the process Y (+,q)

visits 0 is the regenerative set which is the closure of the image of the supremum of the stable
Lévy process Z. So 0 is a regular and recurrent state for Y (+,q). The length of any excursion
out of 0 for Y (+,q) is distributed as a jump of Z to reach a new supremum or equivalently as
a jump of the upward ladder height process H associated to Z. Let N denotes the measure of
the excursions from 0 of Z − Z, the process Z re�ected at its current supremum, viz.

(Z − Z)t := sup
0≤s≤t

{0 ∨ Zs} − Zt, t ≥ 0;

and let R denote the lifetime of the generic excursion from 0 of Z − Z. Let ΠZ be the Lévy
measure of Z and V̂ be the renewal measure of the downward ladder height subordinator Ĥ,
that is

V̂ (dy) = E

(∫ ∞

0

1{ bHs∈dy}ds

)
.

It is known in the �uctuation theory for Lévy processes that under N the joint law of ZR− and
ZR − ZR− is given by

N(ZR− ∈ dx,−(ZR − ZR−) ∈ dy) = V̂ (dx)ΠZ(dy)1{0<x<y}.

Moreover, the Lévy measure of H, say po(dx), is such that

po]x,∞[=

∫ ∫
{0≤s≤u}

V̂ (ds)ΠZ(du)1]x,∞[(u− s), x > 0.

14



cf. [20]. In our framework, −(ZR − ZR−) denotes the length of the generic positive excursion

from 0 for (Y, ĨP
∗
) and ZR− is the length of the portion of the generic positive excursion

from 0 of (Y, ĨP
∗
) that is not observed while observing a generic excursion from 0 of Y (+,q).

Furthermore, −(ZR − ZR−) − ZR− is the length of the generic excursion from 0 for Y (+,q), so
n+,q(T0 ∈ dt) = po(dt).

Let n(·|T0 = ·) denote a version of the regular conditional law of the generic excursion under
n given the lifetime T0. Similarly, the notation n+,q(·|T0 = ·) will be used for the analogous
conditional law under n+,q. These laws can be constructed using the method in [9].

Finally, it follows from the verbal description above, that for any positive and measurable
function f : R → R+

n+,q(f(Y0)) =

∫ ∞

0

n+,q(T0 ∈ du)n+,q (f(Y0)|T0 = u)

=

∫
t∈]0,∞[

∫
s∈]t,∞[

N(ZR− ∈ dt,−(ZR − ZR−) ∈ ds)n(f(Yt)|T0 = s)

=

∫
t∈]0,∞[

V̂ (dt)

∫
s∈]t,∞[

ΠZ(ds)n(f(Yt)|T0 = s)

=

∫
t∈]0,∞[

V̂ (dt)

∫
s∈]t,∞[

n(T0 ∈ ds)n(f(Yt)|T0 = s)

=

∫
t∈]0,∞[

V̂ (dt)n(f(Yt), t < T0).

Given that the downward ladder height subordinator Ĥ is a stable process with index αϑ(1−ρ),
it follows that

n+,q(f(Y0)) = αϑ(1− ρ)k̂

∫
t∈]0,∞[

dttαϑ(1−ρ)−1n(f(Yt), t < T0)

= αϑ(1− ρ)k̂

∫
t∈]0,∞[

dttαϑ(1−ρ)−1t−αϑn(f(tαY1), 1 < T0)

= αϑ(1− ρ)k̂

∫
]0,∞[

n(Y1 ∈ dx, 1 < T0)

∫
t∈]0,∞[

dtt−αϑρ−1f(tαx)

= ϑ(1− ρ)k̂n
(
Y ϑρ

1 , 1 < T0

)∫
u∈]0,∞[

duu−ϑρ−1f(u)

= cα,ρϑηρf,

where k̂ is a constant that depends on the normalization of the local time at zero for the re�ected
process Z − Z; which without loss of generality can be and is supposed to be k̂ = 1.

Remark 1. The previous proof is inspired by the work of Rogers [19].

We �nally have all the elements to prove the Proposition 1.

Proof of Proposition 1. By construction the process Y (+,q) is a recurrent extension of (X, IP)
that leaves 0 by a jump according to the jumping-in measure cα,ϑρηϑρ. Thus, for any β < ϑ the
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process X(β) in Proposition 1 is the process Y (+,q) with q > 0 such that ρϑ = β, recall that
ρ and q are related by the formula in Lemma 3. Which �nishes the proof of the Proposition
because if q ranges in ]0,∞[, then ρ ranges in ]0, 1[.

We have so �nished the proof of the equivalence between the assertions (i) and (ii) in The-
orem 2. Observe that the θ in the proof of the implication (i) =⇒ (ii) is equal to the ϑ in the
implication (ii) =⇒ (i).

We next prove the uniqueness and characterization of the entrance law associated to the
excursion measure claimed in Theorem 2.

2.3 Uniqueness and characterization

Assume that there exist two recurrent extensions of (X, IP) that satisfy the conditions in (ii) in
Theorem 2 and let n and n′, be its associated excursions measures. Then there exist θ1 and θ2

such that Cramér's condition is satis�ed. The strict convexity of the mapping λ→ IE(eλξ1 , 1 <
ζ) implies that θ2 = θ = θ1. As a consequence, the potential of both excursion measures is
given by equation (2) with γ replaced by αθ. Therefore, arguing as in the proof of Lemma 1 we
show that n = n′. Which �nishes the proof of the unicity.

The characterization of the entrance law follows from our proof of the fact that (i) implies
(ii) in Theorem 2. On the one hand, by construction the resolvent of the excursion measure n
is given by equation (10). On the other hand,

n

(∫ T0

0

e−λtf(Xt)dt

)
=

∫ ∞

0

e−λtt−αθn(f(tαX1), 1 < T0)dt

= n

(∫ ∞

0

duα−1u1/α−1−θf(u)X
θ−1/α
1 e−λu

1/αX
−1/α
1 1{1<T0}

)
=

∫ ∞

0

duα−1u1/α−1−θf(u)n
(
X
θ−1/α
1 e−λu

1/αX
−1/α
1 1{1<T0}

)
,

(12)

where we used thee times Fubini's Theorem combined with the scaling property of n and a
change of variables. Comparing the results in equations (10) and (12) we get the identity

n
(
X
θ−1/α
1 exp

{
−λu1/αX

−1/α
1

}
1{1<T0}

)
=

1

Γ(1− αθ) Ê\ (Iαθ−1)
ÎE
\

u

(
e−λT0

)
,

for all λ ≥ 0 and a.e. u > 0. As a consequence,

n(X
θ−1/α
1 1{1<T0}) <∞.

By the dominated convergence theorem, the latter identity holds for all λ ≥ 0 and all u > 0.

Recall that by Lamperti's transformation, T0 under ÎP
\

u has the same law as u1/αI under P̂\ .
So by the uniqueness of Laplace transforms it follows that

n
(
X
θ−1/α
1 f

(
X
−1/α
1

)
1{1<T0}

)
=

1

Γ(1− αθ) Ê\ (Iαθ−1)
Ê\ (f (I)) ,
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The claim in Theorem 2 follows from this identity using the scaling property of n, and that the
law of I under P̂\ is equal to that of J under P\ .

We have �nished the proof of Theorem 2 and we next prove the Corollary 1.

2.4 Proof of Corollary 1

Owing that the left derivative of ψ at θ exists, it follows from Proposition 3.1 in [8] that

E\
(
J−1
)

= Ê\
(
I−1
)

= − Ê\(ξ1) = E(ξ1e
θξ1 , 1 < ζ),

and the leftmost quantity is �nite if and only if E(ξ+
1 e

θξ1 , 1 < ζ) < ∞. So, that (4) and (5)
are equivalent is an easy consequence of the representation of the entrance law obtained in
Theorem 2. We will next prove that (5) is equivalent to (6). Let Vλ denote the λ-resolvent
of (X, IP) and Uλ be the λ-resolvent of the unique recurrent extension of (X, IP) that leaves 0
continuously. The invariance of h(x) = xθ, x > 0 implies that

n(Xθ
1 , 1 < T0) = n(Xθ

t , t < T0), t > 0.

Using a well known decomposition formula and Fubini's theorem we get

λUλh(x) = λVλh(x) + IEx(e
−λT0)λUλh(0)

= h(x) + IEx(e
−λT0)

λn
(∫ T0

0
e−λth(Xt)dt

)
n(1− e−λT0)

= h(x) + IEx(e
−λT0)λ−αθ

∫ ∞

0

λe−λtn (h(Xt), t < T0)

= h(x) + IEx(e
−λT0)λ−αθn (h(X1), 1 < T0) .

Thus λUλh(x) < ∞ for all x if and only if n(Xθ
1 , 1 < T0) < ∞. From where we get that if (5)

holds then ĨEx
(
Xθ
t

)
< ∞ for all x > 0, and a.e. t > 0. The self-similarity implies that in this

case the latter holds for all x > 0, and all t > 0. Which �nishes the proof of Corollary 1.

3 Proof of Counterexample 1

A key tool in the establishment of (P1) and (P2) is the following version of Erickson's renewal
theorem [11].

Lemma 5 (Erickson's renewal theorem [11]). Let G be a non-arithmetic probability distribution
function on R+ such that 1−G is a regularly varying function at in�nity with index γ ∈]1/2, 1],
U the renewal measure associated to G, and m(x) :=

∫ x
0

(1−G(u)) du, x ≥ 0. Then

(i) for any directly Riemann integrable function g : R+ → R+,

lim
t→∞

m(t)

∫ t

0

g(t− y)U(dy) =
1

Γ(γ)Γ(1− γ)

∫ ∞

0

g(y)dy;
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(ii) For any directly Riemann integrable function g : R → R+,

lim
t→∞

m(t)

∫ ∞

−∞
g(y − t)U(dy) =

1

Γ(γ)Γ(1− γ)

∫ ∞

−∞
g(y)dy.

The statement in (i) in Lemma 5 is the content of Erickson's renewal theorem 3 and so only
(ii) requires a proof, which is postponed to the end of this Section. Next, we proceed to prove
the claims in Counterexample 1. To that end, observe that the law P\ is that of a subordinator
with in�nite lifetime such that the tail probability P\(ξ1 > x) is a regularly varying function
with index β ∈]1/2, 1[. Let U \ be the renewal measure of the subordinator with law P\, that is
to say

U \(dy) =

∫ ∞
P\(ξt ∈ dy)dt, y ≥ 0.

According to Bertoin and Doney [3], the measure U \ is the renewal measure associated to the
probability distribution function given by F (·) = P\(ξe ≤ ·), where e is a standard exponential
r.v. independent of ξ under P\ . Let IP\ be the law of the 1-pssMp associated to (ξ,P\) via
Lamperti's transformation. The measure IP\ is such that

IP\ = Xq
t IP on Gt, t ≥ 0.

It follows that the resolvents of (X, IP\) and (X, IP) are related by

V \
λf(x) =

Vλfhq(x)

hq(x)
, x ∈]0,∞[, (13)

with hq(x) := xq, x > 0. Moreover, we have that for any function f : R+ → R+, such that the
application y → f(ey)ey, is directly Riemann integrable

lim
x→0+

m\(log(1/x))V \
0 f(x) =

1

Γ(1− γ)Γ(γ)

∫ ∞

0

f(y)dy. (14)

Indeed, by applying Lamperti's representation and (ii) in Lemma 5 we get

m\(log(1/x))V \
0 f(x) = m\(log(1/x))E\

[∫ ∞

0

f(xeξt)xeξtdt

]
= m\(log(1/x))

∫
R
f(ey−log(1/x))ey−log(1/x)U \(dy)

−−−→
x→0+

1

Γ(1− γ)Γ(γ)

∫
R
f(ey)eydy.

And by making a change of variables in the rightmost quantity we obtain (14). Moreover,
repeating the arguments in [4], we prove that for every f :]0,∞[→ R, continuous and with
compact support and λ > 0,

lim
x→0+

m\(log(1/x))V \
λf(x) =

1

Γ(1− γ)Γ(γ)

∫ ∞

0

f(y)E\

[
exp

{
−λy

∫ ∞

0

e−ξsds

}]
dy. (15)

Therefore, the claim in (P1) is a straightforward consequence of (13) and (15).
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Besides, in [18] Lemma 4, we proved that in general the exponential functional I satis�es
the equation in law

I
Law
= Q+MĨ, with (Q,M) :=

(∫ 1

0

exp{ξs/α}1{s<ζ}ds, eα
−1ξ11{1<ζ}

)
, and I

Law
= Ĩ ,

and the pair (Q,M) is independent of Ĩ . Moreover, under the hypotheses (H2) in Lemma 4
in [18] we obtained, as a consequence of Goldie's Theorems 2.3 and 4.1 in [15], an estimate of
the tail probability of I. A perusal of the proofs provided by Goldie to those theorems allows
us to ensure that the arguments can be extended, using Erickson's renewal theorem instead of
the classical renewal theorem, to prove the following Lemma.

Lemma 6. Under the hypothesis of Counterexample 1 we have that

lim
t→∞

m\(log(t))tq IP1(T0 > t)

=
1

Γ(1− γ)Γ(γ)
E

((∫ ∞

0

exp{ξs}1{s<ζ}ds
)q

−
(∫ ∞

1

exp{ξs}1{s<ζ}ds
)q)

=
1

Γ(1− γ)Γ(γ)
qE(Iq−1) ∈]0,∞[.

Therefore, Lemma 6 and Karamata's Tauberian Theorem imply that the property (P2) is
satis�ed.

Remark 2. The expression of the value of the limit in Lemma 6 is a consequence of the proof
of Lemma 2.

Finally, to prove that the condition (P3) is satis�ed, we argue as in [21] page 556-557 to
ensure that there exists a family of �nite measures on ]0,∞[, say (nλ, λ > 0), such that

nλf = lim
x→0+

Vλf(x)

IEx(1− e−T0)
,

for any f, continuous and with compact support on ]0,∞[, and for λ > 0. Moreover, the family
(nλ, λ > 0) satis�es the resolvent type equation, for λ, µ > 0

nλVµf =
nµf − nλf

λ− µ
,

for any f continuous and with bounded support on ]0,∞[. Thus, Theorem 6.9 in [14] and
Theorem 4.7 in [7] imply that there exist a unique excursion measure n such that its λ-potential
is equal to nλ,

n

(∫ T0

0

e−λt1{Xt∈dy}dt

)
= nλ(dy).

for any λ > 0. In fact, all the results of Vuolle-Apiala [21] are still valid if we replace the
power function that gives the normalization in his hypotheses (Aa) and (Ab), by a regularly
varying function. Therefore, Theorem 1.2 therein ensures that n(X0+ > 0) = 0. According to
Blumenthal's [6] theorem, associated to this excursion measure n there exists a unique recurrent
extension of (X, IP) that leaves 0 continuously. Which �nishes the proof of Counterexample 1.
Now, we just have to prove that (ii) in Lemma 5 holds.
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Proof of Lemma 5. The claim in (i) is Theorem 3 of Erickson [11] and that (ii) holds is a
consequence of the latter. We next prove the result for step functions and the general case
follows by a standard argument. Let (ak, k ∈ Z) be a sequence of positive real numbers such
that

∑
k∈Z ak <∞, and h > 0 a constant. A consequence of Theorem 1 of Erickson [11] is that

for any k ∈ N,

m(t+ kh)

∫
R

1{[kh,(k+1)h[}(y − t)U(dy) −−−→
t→∞

Cγ

∫
R

1{[0,h[}(y)dy = Cγ

∫
R

1{[kh,(k+1)h[}(y)dy,

with Cγ = (Γ(γ)Γ(1− γ))−1, and uniformly in k. Thus, given that m is an increasing function,
we get that

m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy)

≤
∑
k∈N

akm(t+ kh)

∫
R

1{[kh,(k+1)h[}(y − t)U(dy).

Therefore,

lim sup
t→∞

m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy) ≤ Cγ
∑
k∈N

ak

∫
R

1{[kh,(k+1)h[}(y)dy

≤ Cγ

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y)dy.

Owing that m is regularly varying with positive index the following limit

lim
t→∞

m(t)

m(t+ kh)
= 1,

holds uniformly in k ∈ N . A standard application of Fatou's Theorem and an easy manipulation
gives that

lim inf
t→∞

m(t)

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y − t)U(dy) ≥ Cγ

∫
R

∑
k∈N

ak1{[kh,(k+1)h[}(y)dy.

Let g be the step function de�ned by

g(t) =
∑
k∈Z

ak1[kh,(k+1)h[(t), t ∈ R .

It follows from the arguments above that

lim
t→∞

m(t)

∫
R
g(y − t)1{y−t≥0}U(dy) = Cγ

∫
R
g(y)1{y≥0}dy.

Moreover, the assertion in (i) implies that

lim
t→∞

m(t)

∫
R
g(y − t)1{y−t<0}U(dy) = lim

t→∞
m(t)

∫ t

0

g(−(t− y))U(dy) = Cγ

∫ ∞

0

g(−y)dy.

From where the result follows.
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