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Abstract

This work solves the partial differential equation for the Jack polynomials of second
order. When the parameter α of the solution takes the values 1/2, 1 and 2 we get
explicit formulas for the quaternionic, complex and real zonal polynomials of second
order, respectively.
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1 Introduction

The theory of Jack functions (and Jack polynomials) has been a vertiginous
development on the computations of coefficients and combinatorial conjec-
tures about them, see Goulden and Jackson (1996), Sawyer (1997), Koev
(2004), Koev and Demmel (2004) and Dimitriu et al. (2005), among many
others. Before Jack polynomials, the real and complex zonal polynomials have
been studied extensively in statistical literature. They have important open
problems to solve which could be handled with Jack polynomials theory, us-
ing the fact that the zonal polynomials of a symmetric matrix and the zonal
polynomials of a hermitian matrix are Jack polynomials for α = 2 and α = 1,
respectively, see James (1964), James (1968), Khatri (1970), Muirhead (1982),
Dı́az-Garćıa and Caro (2004) and Dı́az-Garćıa and Caro (2005), among many
other.

It is known that the real and complex zonal polynomials are eigenfunctions of
the Laplace-Beltrami operator. From the resulting partial differential equation
a recurrence relation among the coefficients is obtained and then the polynomi-
als can be computed. Few explicit formulae to calculate the Jack polynomials
appear in literature; specifically, in the real case, i.e. when α = 2, James (1964,
Section 9) proposes some expressions. For the same value of α, but only for
the second order, James (1968) solves the partial differential equation for real
zonal polynomials.

In general, Jack polynomials are also eigenfunctions of a Laplace-Beltrami
operator type (see Dimitriu et al. (2005, Definition 2.10)), and as before, a
general recurrence relation can be derived from a partial differential equation
to compute the coefficients of the polynomials.

Following the idea of James (1968), this work finds an explicit formula for
the Jack polynomials of second order. This is carried out by solving the gen-
eral partial differential equation of parameter α when two eigenvalues are
considered. Taking α = 1/2, 1, formulae for cuaternionic and complex zonal
polynomials of second order are obtained, respectively (for definitions of the
quaternionic zonal polynomials see Gross and Richards (1987)). Also, the re-
sults derived in James (1968) for the real zonal polynomials of second order
are ratified when α = 2 is replaced in the Jack polynomial formula.

2 A Formula for Jack Polynomials of Second order

Let us characterize the Jack symmetric function J (α)
κ (y1, . . . , ym) of param-

eter α, see Sawyer (1997). A decreasing sequence of nonnegative integers
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κ = (k1, k2, . . .) with only finitely many nonzero terms is said to be a par-
tition of k =

∑
ki. Let κ and λ = (l1, l2, . . .) be two partitions of k, we write

λ ≤ κ if
∑t

i=1 li ≤ ∑t
i=1 ki for each t. The conjugate of κ is κ′ = (k′1, k

′
2, . . .)

where k′i = card{j : kj ≥ i}. The length of κ is l(k) = max{i : k1 6= 0} = k′1.
If l(κ) ≤ m, one often writes κ = (k1, k2, . . . , km). The partition (1, . . . , 1) of
length m will be denoted by 1m.
The monomial symmetric function Mκ(·) indexed by the partition κ can be
seen as a function on an arbitrary number of variables such that all but a
finite number are equal to 0: if yi = 0 for i > m ≥ l(κ) then Mκ(y1, . . . , ym) =∑

yσ1
1 · · · yσm

m , where the sum is over all the distinct permutation {σ1, . . . , σm}
of {k1, . . . , km}, and if l(κ) > m then Mκ(y1, . . . , ym) = 0. A symmetric func-
tion f is a linear combination of monomial symmetric functions. If f is a
symmetric function then f(y1, . . . , ym, 0) = f(y1, . . . , ym). For each m ≥ 1,
f(y1, . . . , ym) is a symmetric polynomial in m variables.

Thus the Jack symmetric function J (α)
κ (y1, . . . , ym) of parameter α, satisfy the

following conditions:

J (α)
κ (y1, . . . , ym) =

∑

λ≤κ

jκ,λMλ(y1, . . . , ym), (1)

J (α)
κ (1, . . . , 1) = αk

m∏

i=1

(
m− i + 1

α

)

ki

, (2)

m∑

i=1

y2
i

∂2J (α)
κ (y1, . . . , ym)

∂y2
i

+
2

α

m∑

i=1

y2
i

∑

j 6=i

1

yi − yj

∂J (α)
κ (y1, . . . , ym)

∂yi

=

m∑

i=1

ki(ki − 1 +
2

α
(m− i))J (α)

κ (y1, . . . , ym). (3)

Where the constant jκ,λ is not dependent of y′is but of κ and λ, and (a)n =∏n
i=1(a + i − 1). Note that if m < l(κ) then J (α)

κ (y1, . . . , ym) = 0. The condi-
tions accept the case α = 0 and then J (0)

κ (y1, . . . , ym) = eκ′
∏m

i=1(m− i + 1)ki ,

with eκ(y1, . . . , ym) =
∏l(κ)

i=1 eki
(y1, . . . , ym) are the called elementary symmet-

ric function indexed by the partition κ, and if m ≥ l(κ) then er(y1, . . . , ym) =∑
i1<i2<···<ir yi1 · · · yir , or if m < l(κ) then er(y1, . . . , ym) = 0, see Sawyer

(1997).

Now, from Koev and Demmel (2004), the Jack functions J (α)
κ (Y ) = J (α)

κ (y1,
. . . , ym), where y1, . . . , ym are the eigenvalues of the matrix Y , can be nor-
malised in such way that

∑
κ

Cα
κ (Y ) = (tr(Y ))k

where Cα
κ (Y ) denotes the Jack polynomials and they are related with the Jack
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functions by

Cα
κ (Y ) =

αkk!

jκ

Jα
κ (Y ) (4)

with
jκ =

∏

(i,j)∈κ

hκ
∗(i, j)h

∗
κ(i, j)

and hκ
∗(i, j) = kj − i + α(ki − j + 1) and h∗κ(i, j) = kj − i + 1 + α(ki − j) are

the upper and lower hook lengths at (i, j) ∈ κ, respectively.

Then by applying (4), (3) can be written as

m∑

1

y2
i

∂2C(α)
κ (Y )

∂y2
i

+
2

α

m∑

i=1

y2
i

∑

j 6=i

1

yi − yj

∂C(α)
κ (Y )

∂yi

=

m∑

i=1

ki(ki − 1 +
2

α
(m− i))C(α)

κ (Y ). (5)

3 Jack Polynomials of Second Order.

When m = 2 in (5) and denoting C(α)
κ (Y ) as C(α)

κ we get the partial differential
equation

y2
1

∂2C(α)
κ

∂y2
1

+ y2
2

∂2C(α)
κ

∂y2
2

+
2

α
y2

1(y1 − y2)
−1∂C(α)

κ

∂y1

− 2

α
y2

2(y1 − y2)
−1∂C(α)

κ

∂y2

−
[
k1

(
k1 − 1 +

2

α

)
+ k2(k2 − 1)

]
C(α)

κ = 0. (6)

Let us replace u = y1 + y2 and v = y1y2 in (6), then we find

(u2 − 2v)
∂2C(α)

κ

∂u2
+ 2v2∂2C(α)

κ

∂v2
+ 2uv

∂2C(α)
κ

∂u∂v
+

2u

α

∂C(α)
κ

∂u
+

2v

α

∂C(α)
κ

∂v

−
[
k1

(
k1 − 1 +

2

α

)
+ k2(k2 − 1)

]
C(α)

κ = 0.

Substituting z =
u

2
√

v
and t =

√
v we obtain

(1− z2)
∂2C(α)

κ

∂z2
− t2

∂2C(α)
κ

∂t2
−

(
2

α
+ 1

)
z
∂C(α)

κ

∂z
−

(
2

α
− 1

)
t
∂C(α)

κ

∂t
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+2
[
k1

(
k1 − 1 +

2

α

)
+ k2(k2 − 1)

]
C(α)

κ = 0.

It is easy to see that the last equation is homogeneous in t. Thus, by taking

C(α)
κ = t(k1+k2)f(z),

the next ordinary differential equation is obtained

(1− z2)
d2f

dz2
−

(
2

α
+ 1

)
z
df

dz
+

[
(k1 − k2)

(
k1 − k2 +

2

α

)]
f = 0.

Now, taking w = (1− z)/2 as the independent variable, the differential equa-
tion becomes

w(1− w)
d2f

dw2
+

(
1

α
+

1

2

)
(1− 2w)

df

dw
+ ρ

(
ρ +

2

α

)
f = 0, (7)

with ρ = k1 − k2, a non negative integer, according to the definition of the
partition κ.

Comparing with the general hypergeometric equation

w(1− w)
d2f

dw2
+ [c− (a + b + 1)w]

df

dw
− abf = 0, (8)

we see that the Jack polynomials are involved in the solution of an hypergeo-

metric differential equation of parameters a = −ρ, b = ρ+
2

α
and c =

(
1

α
+

1

2

)
.

Following Erdélyi et al. (1981), we know that a solution of (8) which is regular
at w = 0 is given by

f(w) =
∞∑

n=0

(a)n(b)n

(c)nn!
wn = 2F1(a, b; c; w),

where 2 F1(a, b; c; w) is the classical hypergeometric function, which we will
now denote as F (a, b; c; w).

Thus a solution of (7) is

f(z) = F
(
−ρ, ρ +

2

α
;
(

1

α
+

1

2

)
;
1− z

2

)
,

Let us refine the above solution by applying properties of the hypergeometric
functions. From Erdélyi et al. (1981, Section 2.11, p.111), equation (2), we see
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that

F
(
2d, 2e; d + e +

1

2
; t

)
= F

(
d, e; d + e +

1

2
; 4t(1− t)

)
,

then

f(z) = F
(
−ρ, ρ +

2

α
;
(

1

α
+

1

2

)
;
1− z

2

)

= F
(
−ρ

2
,
ρ

2
+

1

α
;
(

1

α
+

1

2

)
; 1− z2

)
. (9)

By Erdélyi et al. (1981, Section 2.10, p.108), equation (1),

F (a, b; c; t) = A1F (a, b; a + b− c + 1; 1− t)

+ A2(1− t)c−a−bF (c− a, c− b; c− a− b + 1; 1− t),

where

A1 =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
and A2 =

Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
.

Then (9) can be written as follows:

F
(
−ρ

2
,
ρ

2
+

1

α
;
(

1

α
+

1

2

)
; 1− z2

)
= A1F

(
−ρ

2
,
ρ

2
+

1

α
;
1

2
; z2

)

+ A2 z F
(

1

α
+

1 + ρ

2
,
1

2
− ρ

2
;
3

2
; z2

)
,

where

A1 =
Γ

(
1
α

+ 1
2

)
Γ

(
1
2

)

Γ
(

1
α

+ 1+ρ
2

)
Γ

(
1−ρ
2

) and A2 =
Γ

(
1
α

+ 1
2

)
Γ

(
−1

2

)

Γ
(
−ρ

2
)Γ(ρ

2
+ 1

α

) .

then the Jack polynomials of second order are given by

C
(α)
(k1,k2)(Y )

C
(α)
(k1,k2)(I2)

= (y1y2)
(k1+k2)/2

Γ
(

1
α

+ 1
2

)
Γ

(
1
2

)

Γ
(

1
α

+ 1+ρ
2

)
Γ

(
1−ρ
2

)F

(
−ρ

2
,
ρ

2
+

1

α
;
1

2
;
(y1 + y2)

2

4y1y2

)

+
(y1y2)

(k1+k2−1)/2

2(y1 + y2)−1

Γ
(

1
α

+ 1
2

)
Γ

(
−1

2

)

Γ
(
−ρ

2
)Γ(ρ

2
+ 1

α

) F

(
1

α
+

1 + ρ

2
,
1

2
− ρ

2
;
3

2
;
(y1 + y2)

2

4y1y2

)
. (10)

Observe that ρ is a nonnegative integer, thus (10) can be simplified and put
it in terms of the hypergeometric functions according to ρ be even or odd.
For distinguishing the case under consideration, odd or even, we will put the
upper indexes o or e on A1 and A2. Observing that
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(1) Γ(1/2 + z)Γ(1/2− z) = π sec(πz)
(2) Γ(z)Γ(−z) = −πz−1 csc(πz)
(3) Γ(z + n) = z(z + 1)(z + 2) · · · (z + n− 1)Γ(z)

The following results are obtained

Even case. If ρ = k1 − k2 = 2n, n = 0, 1, 2, . . . then

Ae
1 =

(−1)n
n−1∏

i=0

(1 + 2i)

n−1∏

i=0

(
1 + 2

(
1

α
+ i

)) and Ae
2 = 0

Odd case. If ρ = k1 − k2 = 2n + 1, n = 0, 1, 2, . . . then

Ao
1 = 0 and Ao

2 = (2n + 1)Ae
1

Three particular cases are of interest in the literature: the quaternionic case
(α = 1/2), the complex zonal polynomials (α = 1) and the real zonal polyno-
mials (α = 2), these results are summarised in the following table:
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α ρ a b c A1 A2

1

2
even −n n + 2

1

2

(−1)n3

(2n + 1)(2n + 3)
0

odd n + 3 −n
3

2
0

(−1)n3

(2n + 3)

1 even −n n + 1
1

2

(−1)n

(2n + 1)
0

odd n + 2 −n
3

2
0 (−1)n

2 even −n n + 1/2
1

2

(−1)n(2n)!

22n(n!)2
0

odd n + 3/2 −n
3

2
0

(−1)n(2n + 1)!

22n(n!)2

Finally, given that F (a, b; c; z) = F (b, a; c; z), the above formula for the real
zonal polynomials is in agreement with the expression derived by James (1968).
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