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Abstract

A path decomposition at the in�mum for positive self-similar Markov processes (pssMp)

is obtained. Next, several aspects of the conditioning to hit 0 of a pssMp are studied.

Associated to a given a pssMp X, that never hits 0, we construct a pssMp X↓ that hits 0
in a �nite time. The latter can be viewed as X conditioned to hit 0 in a �nite time and

we prove that this conditioning is determined by the pre-minimum part of X. Finally, we
provide a method for conditioning a pssMp that hits 0 by a jump to do it continuously.

Key words: Self-similar Markov processes, Lévy processes, weak convergence, decomposition at
the minimum, conditioning, h-transforms.

MSC: 60 G 18 (60 G 17).

1 Introduction

This work concerns positive self�similar Markov processes (pssMp), that is [0,∞[-valued strong
Markov processes that have the scaling property: there exists an α > 0 such that for any
0 < c < ∞,

{(cXtc−1/α , t ≥ 0) , IPx}
(d)
= {(Xt, t ≥ 0) , IPcx} , x > 0.

This class of processes has been introduced by Lamperti [22] and since then studied by several
authors, see e.g. [4, 6, 7, 10, 11]. We will make systematic use of a result due to Lamperti
that establishes that any pssMp is the exponential of a Lévy process time changed, this will be
recalled at Section 2.

Some of the motivations of this work are some path decompositions and conditionings that
can be deduced from [9, 10] and that we will recall below, in the particular case where the
positive self�similar Markov process is a stable Lévy process conditioned to stay positive.
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Let ĨP be a law on the the space of càdlàg paths under which the canonical process X, is an
α-stable Lévy process, 0 < α ≤ 2, i.e. a process with independent and stationary increments
that is 1/α-self�similar. Associated to this process we can construct a pssMp, say (X, IP),

that can be viewed as (X, ĨP) conditioned to stay positive. The construction can be performed
either via the Tanaka�Doney [15] path transform of Y or as an h-transform of the law of Y as
in [9, 13] or also, in the spectrally one sided case, via Bertoin's transformation [2].

Another interesting process related to (X, ĨP) is (X, IP↓· ), which was introduced in [9], can

be viewed as (X, ĨP) conditioned to hit 0 continuously and is constructed via an h-transform

of (X, ĨP) killed at its �rst hitting time of ]−∞, 0].

Using the results of Millar [24], in [9] it has been proved the following results for (X, IP),
relating (X, IP↓) and (X, IP) started at 0, with the pre and post minimum parts of (X, IP).

Fact 1. Let IX = inf{Xs, s > 0} and m = sup{t > 0 : Xt− ∧ Xt = IX}. Under IP, the pre-
minimum part of X, i.e. {Xt, 0 ≤ t < m}, and the post minimum part of X, i.e. {Xm+t, t > 0}
are conditionally independent given the value of IX . For any x > 0, under IPx, conditionally on
IX = y, 0 < y ≤ x, the law of the former is (X +y, IP↓x−y) and that of the later is (X +y, IP0+),

where IP0+ is the limiting law of (X, IP·) as the starting point tends to 0, IPx
w−→ IP0+ as x → 0+.

Furthermore, it can be veri�ed using the previous result, and it is intuitively clear, that
under IPx the law of the pre-minimum (respectively, post-minimum) of X, conditionally on the
event {IX < ε}, converges as ε → 0, to the law IP↓x, respectively IP0+, in the sense that,

Fact 2. lim
ε→0+

IPx(F ∩{t < m}, G◦ θm|IX < ε) = IP↓x(F ∩{t < T0}) IP0+(G), F ∈ Gt, G ∈ G∞,

where {Gt, t ≥ 0} is the natural �ltration generated by X.

Our �rst purpose is to extend Facts 1 & 2, to a larger class of positive self-similar Markov
processes. That is the content of sections 3 & 4, respectively.

Here is another interpretation of the law IP↓. Let IP0 be the law of the process (X, ĨP) killed
at its �rst hitting time of ]−∞, 0]. The process (X, IP0) still has the strong Markov property

and inherits the scaling property from (X, ĨP), so it is a pssMp and it hits 0 in a �nite time.

Moreover, whenever (X, ĨP) has negative jumps, the process (Y, IP0) hits 0 for the �rst time
with a negative jump:

IP0
x(T0 < ∞, XT0− > 0) = 1, ∀x > 0,

where T0 = inf{t > 0 : Xt = 0}. It has been proved in [9], that IP↓ is an h transform of IP0

via the excessive function x 7→ xα(1−ρ)−1, x > 0, where ρ is the positivity parameter of (X, ĨP),

ρ = ĨP(X1 ≥ 0). Furthermore, (X, IP↓) hits 0 continuously and in a �nite time, i.e.:

IP↓x(T0 < ∞, XT0− = 0) = 1, ∀x > 0,

and Proposition 3 in [9] describes a relationship between IP↓ and IP0 that allows us to refer to
IP↓ as the law of (X, IP0) conditioned to hit 0 continuously. The latter conditioning is performed
by approximating the set {IY 0

= 0} by the sequence of sets {IY 0
< ε}, ε > 0.

In Section 5, we obtain an analogous result for a larger class of self�similar Markov processes.
Namely those associated to a Lévy process killed at an independent exponential time and which
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satisfy a Cramér's type condition. Furthermore, an alternative method for conditioning a self-
similar Markov process that hits 0 by a jump, to hit 0 continuously, is provided by making tend
to 0 the height of the jump by which the process hits the state 0.

The approach used to aboard these problems is based on Lamperti's representation between
real valued Lévy processes and pssMp which we recall in the following section.

2 Some preliminaries on pssMp

Let D be the space of càdlàg paths de�ned on [0,∞), with values in IR ∪ ∆, where ∆ is a
cemetery point. Each path ω ∈ D is such that ωt = ∆, for any t ≥ inf{t : ωt = ∆} := ζ(ω).
As usual we extend the functions f : R → R to R∪∆ by f(∆) = 0. The space D is endowed
with the Skohorod topology and its Borel σ-�eld. We will denote by X the canonical process
of the coordinates and (Ft) will be the natural �ltration generated by X. Moreover, let P be
a reference probability measure on D under which the process, ξ, is a Lévy process; we will
denote by (Dt, t ≥ 0), the complete �ltration generated by ξ.

Fix α > 0 and let (IPx, x > 0) be the laws of an α-pssMp associated to (ξ,P) via the
Lamperti representation. Formally, de�ne

At =

∫ t

0

exp{(1/α)ξs}ds, t ≥ 0,

and let τ(t) be its inverse,
τ(t) = inf{s > 0 : As > t},

with the usual convention, inf{∅} = ∞. For x > 0, we denote by IPx the law of the process

x exp{ξτ(tx−1/α)}, t > 0,

with the convention that the above quantity is ∆ if τ(tx−1/α) = ∞. The Lamperti representation
ensures that the laws (IPx, x > 0) are those of a pssMp with index of self-similarity α.

Besides, recall that any Lévy process (ξ,P) with lifetime has the same law as a Lévy process
with in�nite lifetime that has been killed at a rate q ≥ 0. It follows that T0 = inf{t > 0 : Xt = 0}
has the same law under IPx as x1/αAζ under P with

Aζ =

∫ ζ

0

exp{(1/α)ξs}ds.

So, if q > 0, then the random variable Aζ is a.s. �nite; while in the case q = 0, we have
two possibilities, either Aζ is �nite a.s. or in�nite a.s.; the former happens if and only if
limt→∞ ξt = −∞, a.s. and the latter if and only if lim supt→∞ ξt = ∞, a.s.

Lamperti proved that any pssMp can be constructed this way and obtained the following
classi�cation of pssMp's:

(LC1) q > 0, if and only if

IPx(T0 < ∞, XT0− > 0, XT0+s = 0, ∀s ≥ 0) = 1, for all x > 0. (2.1)
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(LC2) q = 0 and limt→∞ ξt = −∞ a.s. if and only if

IPx(T0 < ∞, XT0− = 0, XT0+s = 0, ∀s ≥ 0) = 1, for all x > 0, (2.2)

(LC3) q = 0 and lim supt→∞ ξt = ∞ a.s. if and only if

IPx(T0 = ∞) = 1, for all x > 0. (2.3)

Observe that without loss of generality we can and we will suppose that α = 1 in Lamperti's
construction of pssMp because all our results may trivially be extended to any α > 0 by
considering Xα which is a pssMp with index of self-similarity α.

In this work we will be mostly interested by those pssMp that belong to the class LC3;
nevertheless, in Section 5 we will prove that some elements of the class LC1 can be transformed
into elements of the class LC2.

3 Path decomposition at the minimum

We suppose throughout this section that (ξ,P) is a Lévy process with in�nite lifetime which
drifts to +∞, that is limt→+∞ ξt = +∞, a.s. We start by recalling a William's type path
decomposition of (ξ,P) at its minimum. Let Iξ = inft≥0 ξt and ρ = sup{t : ξt ∧ ξt− = Iξ}. We
de�ne the post minimum process as

→ξ
(def)
= (ξρ+t − Iξ, t ≥ 0) .

The following result is due to Millar [24], proposition 3.1 and Theorem 3.2.

Theorem 1. The pre-minimum process ((ξt, t < m),P) and the post-minimum process (→ξ ,P)
are independent. Moreover, the three following exhaustive cases hold:

(i) 0 is regular for both (−∞, 0) and (0,∞) and P-a.s., there is no jump at the minimum,

(ii) 0 is regular for (−∞, 0) but not for (0,∞) and Iξ = ξρ− < ξρ , P-a.s.

(iii) 0 is regular for (0,∞) but not for (−∞, 0) and Iξ = ξρ < ξρ−, P-a.s.

In any case under P, the process (ξt, t < m) and →ξ are also conditionally independent given Iξ

and the process →ξ is strongly Markovian.

Actually, Millar's result is much more general and asserts that for any Markov process, which
admits a minimum, the pre-minimum process and the post minimum process are conditionally
independent given both the value at the minimum and the subsequent jump and the post-
minimum process is strongly Markovian. When this Markov process is a pssMp that belongs
to the class (LC3), we may complete Millar's result as in the following proposition. First of
all, observe that X derives towards +∞ as well as ξ, and so the following are well de�ned
IX = inft≥0 Xt and m = sup{t : Xt ∧Xt− = IX}.
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Proposition 1. For any x > 0, under IPx, the processes (Xt, t < m) and (Xt+m, t ≥ 0) are
conditionally independent given IX , and with the representation given by Lamperti's transfor-
mation (Section 2), we have

((Xt, 0 ≤ t < m), IPx) =

((
x exp ξτ(t/x), 0 ≤ t < x

∫ ρ

0

exp ξsds

)
,P

)
, (3.1)

((Xt+m, t ≥ 0), IPx) =

((
IX exp→ξ →τ (t/IX)

, t ≥ 0

)
,P

)
, (3.2)

where →τ(t) = inf
{

s :
∫ s

0
exp

(
→ξ u

)
du > t

}
, for t ≥ 0.

Proof. The expression of the pre-minimum part of (X, IPx) follows directly from Lamperti's
transformation (Section 2). Note that in particular, since τ is a continuous and strictly increas-
ing function, one has:

Aρ =

∫ ρ

0

exp ξsds , τ(Aρ) = ρ , xAρ = m and IX = x exp Iξ . (3.3)

To express the post-minimum part of (X, IPx), �rst note that

Xm+t = x exp ξτ(Aρ+t/x) , t ≥ 0 .

Then we can write the time change as follows:

τ(Aρ + t/x) = inf{s > 0 :

∫ s

0

exp ξu du > Aρ + t/x}

= inf{s > ρ :

∫ s−ρ

0

exp ξu+ρ du > t/x}

= inf{s > 0 :

∫ s

0

exp→ξ u
du > (t/x) exp(−Iξ)}+ ρ

= →τ((t/x) exp(−Iξ)) + ρ = →τ(t/IX) + ρ ,

so that
ξτ(Aρ+t/x) = ξ→τ (t/IX)+ρ = →ξ→τ (t/IX)

+ Iξ

and the expression (3.2) for the post-minimum part of (X, IPx) follows.

From (3.1), we see that (Xt , t < m) is a measurable functional of (ξt , t < ρ) and from (3.2),
(Xm+t, t ≥ 0) is a functional of IX and →ξ . Since IX = x exp Iξ, the conditional independence
follows from Theorem 1.

When X has no positive jumps (or equivalently when ξ has no positive jumps), it makes sense
to de�ne the last passage time at level y ≥ x as follows

σy = sup{t : Xt = y} .

Then the post-minimum process of X becomes more explicit as the following result shows; its
proof is an easy consequence of Proposition 1.
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Proposition 2. Let y ≤ x. Conditionally on IX = y, the post-minimum process (Xt+m, t ≥ 0)
has the same law as (Xσy+t, t ≥ 0), and

((Xσy+t, t ≥ 0), IPx)
(d)
=

((
y exp→ξ →τ (t/y)

, t ≥ 0

)
,P

)
. (3.4)

As we have just seen, the post-minimum process of (X, IP) can be completely described
using the underlying Lévy process (ξ,P) conditioned to stay positive (→ξ,P). Nevertheless,

the description of the pre-minimum obtained in (3.1) is not so explicit. So our next purpose
is to make some contributions to the understanding of the pre-minimum process of a positive
self-similar Markov process.

Let us start by the case where the process (X, IP) (or equivalently the underlying Lévy
process (ξ,P)) has no negative jumps, because in this case we can provide a more precise
description of the pre-minimum process using known results for Lévy processes. Recall that
the overall minimum of (ξ,P), −Iξ, follows an exponential law of parameter γ > 0 for some
γ which is determined in terms of the law P . (See Bertoin [3], Chapter VII.) Furthermore, it
has been proved by Bertoin [1] that the pre-minimum part of (ξ,P) has the same law as a real
valued Lévy process, say (ξ,P↓), killed at its �rst hitting time of −e with e a r.v. independent
of (ξ,P↓) and that follows an exponential law of parameter γ. (The process (ξ,P) can be
viewed as (ξ, pr) conditioned to drift to −∞.) The translation of Bertoin's results for positive
self-similar Markov process leads to the following Proposition. Denote by IP↓, the law of the
process obtained by applying Lamperti's transformation to the Lévy process (ξ,P↓).

Proposition 3. If (X, IP), equivalently (ξ,P), has no negative jumps, then there exists a real
γ > 0 such that for any x > 0

IPx(I
X ≤ ε) = (ε/x)γ ∧ 1, ε ≥ 0,

and the law of ((Xt, 0 ≤ t < m), IPx) is the same as that of ((Xt, 0 ≤ t < T (Z)), IP↓x) , where
Z is a random variable independent of (X, IP↓x) and such that (− log(Z/x), IP↓x) follows an
exponential law of parameter γ > 0.

Proof. This follows from Proposition 1 and Theorem 2 in [1], described above.

So to reach our end, we will next provide a description of the pre-minimum of a real val-
ued Lévy process that drifts to ∞, which generalizes Bertoin's result and is analogous to the
description of the pre-minimum of a Lévy process conditioned to stay positive that has been
obtained in [9] and [17].

Let V̂ (dx), x ≥ 0 be the renewal measure of the downward ladder height process, see e.g. [3]
or [13] for background. In the remaining of this Section we will assume that under P,

(H)


0 is regular for ]−∞, 0[

ξ derives towards +∞
the measure V̂ (dx) is absolutely continuous w.r.t Lebesgue's measure.
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In order to construct the Lévy process which describes the pre-minimum part of (ξ,P) we
will need the following Lemma which is reminiscent of Theorem 1 in [26]. Let P]−∞,0[ be the
law of (ξ,P) killed at its �rst hitting time of ]−∞, 0[.

Lemma 1. Under the assumptions (H) the renewal measure V̂ (dx) has a density, say ϕ : R →
R+, which is excessive for the semigroup of (ξ,P]0,∞[) and 0 < ϕ(x) < ∞ for a.e. x ∈ R+ .

Proof. It is known that the processes (ξ,P) and (−ξ,P) are in weak duality w.r.t. Lebesgue's
measure, so by Hunt's switching identity we have that (ξ,P]−∞,0[) and (−ξ,P]−∞,0[) are also
in weak duality w.r.t. Lebesgue measure, see e.g. [20]. On the other hand, it is known that

the measure V̂ (dx) is an invariant measure for the process, S − ξ = {sups≤t ξs − ξt, t ≥ 0}, ξ

re�ected at its supremum, see e.g. [3] Chapter VI exercise 5. So the measure, V̂ (dx) is excessive
for S − ξ, killed at its �rst hitting time of 0, so for (−ξ,P]−∞,0[). Thus the �rst assertion of
Lemma 1 is a direct consequence of Theorem in Chapter XII paragraph 71 in [14]. To prove
the second assertion we recall that

V̂ [0, x] = k P(− inf
0≤s<∞

ξs ≤ x), x ≥ 0,

with k ∈]0,∞[ a constant, see [3] Proposition VI.17. So ϕ < ∞ a.e. and by the regularity for
]−∞, 0[ of 0, the support of the law of inf0≤s<∞ ξs is ]−∞, 0[, thus 0 < ϕ a.e.

Let P↘, be the h-transform of the law, P]−∞,0[, via the excessive function ϕ. That is, P↘

is the unique measure which is carried by {0 < ζ} and under which the canonical process is
Markovian with semi-group (P↘

t , t ≥ 0),

P↘
t f(x) =

{
1

ϕ(x)
E]−∞,0[

x (f(ξt)ϕ(ξt)) if x ∈ {z ∈ R : 0 < ϕ(z) < ∞},
0 if x /∈ {z ∈ R : 0 < ϕ(z) < ∞}.

Let Λ = {z ∈ R : 0 < ϕ(z) < ∞}. Furthermore, the measure P↘ is carried by {ξt ∈ Λ, ξt− ∈
Λ, t ∈]0, ζ[}, and for any Gt-stopping time T

P↘
x 1{T<ζ} =

ϕ(ξT )

ϕ(x)
1{T<ζ}P

]−∞,0[
x , on GT .

In the case where the semigroup of (ξ,P) is absolutely continuous, P↘ has been introduced
in [9] where it is proved that this measure can be viewed as the law of (ξ,P) conditioned to hit
0 continuously. In the case where (ξ,P) creeps downward ϕ can be made explicit:

ϕ(x) = cP(ξT]−∞,−x[
= −x) > 0, x > 0,

with 0 < c < ∞, a constant, see [3] Theorem VI.19, and then we have the right conditioning:

P↘
x = P]−∞,0[

x ( · | ξT]−∞,0[
= 0).

So in the sequel we will refer to P↘ as the law of (ξ,P) conditioned to hit 0.
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Lemma 2. Let ξ be a real valued Lévy process that satis�es the hypotheses (H) and ϕ be the

density of the renewal measure V̂ as in Lemma 1. Then for any bounded measurable functional
F ,

E (F (ξs − ξρ−, 0 ≤ s < ρ)) =
1

V̂ ]0,∞[

∫
]0,∞[

daϕ(a)E↘
a (F (ξs, 0 ≤ s < ζ)) .

In particular under P conditionally on Iξ = a, the pre-minimum process has the same law as
ξ + a under P↘

−a .

Observe that Bertoin's [1] Theorem 2 can be deduced from this Lemma since in the case
where ξ has no negative jumps ϕ, is given by ϕ(x) = γe−γx, x > 0, and so we have that

E (F (ξs, 0 ≤ s < ρ)) =

∫
]0,∞[

daγe−γa E↘
a (F (ξs − a, 0 ≤ s < ζ))

=

∫
]0,∞[

daγe−γa E]−∞,0[
a

(
F (ξs − a, 0 ≤ s < ζ) | T]−∞,0[ < ∞

)
= γ

∫
]0,∞[

daE
(
F

(
ξs, 0 ≤ s < T]−∞,−a[

)
, T]−∞,−a[ < ∞

)
=

∫
]0,∞[

daγe−γa E
(
F

(
ξs, 0 ≤ s < T]−∞,−a[

)
e
−γξT]−∞,−a[ , T]−∞,−a[ < ∞

)
= E↓

(
F

(
ξs, 0 ≤ s < T]−∞,−e[

))
,

where P↓ and e are as explained just before Proposition 3.

Proof. To prove the claimed identity, we will start by calculating for any continuous and
bounded functional F,

Ee/λ (F (ξs − ξρ, 0 ≤ s < ρ)) ,

where Ee/λ is the law of (ξ,P) killed at time e/λ, with e an exponential random variable
independent of (ξ,P). To do that we will denote by {Lu, u ≥ 0} the local time at 0 of the
strong Markov process {ξt − It, t ≥ 0}, by gt the last hitting time of 0 by ξ − I before time t,
gt = sup{s ≤ t : ξs − Is = 0}, and by N the excursion measure of ξ − I away from 0. Indeed,
using Maisonneuve's exit formula of excursion theory it is justi�ed that

Ee/λ (F (ξs − Iρ, 0 ≤ s < ρ)) =

∫ ∞

0

dtλe−λt E (F (ξs − Igt , 0 ≤ s < gt))

=

∫ ∞

0

dtλe−λt E

(∫ t

0

dLuF (ξs − Iu, 0 ≤ s < u) N(t− u < ζ)

)
= E

(∫ ∞

0

dLue
−λuF (ξs − Iu, 0 ≤ s < u)

)
N(1− e−λζ).

Next, making λ tend to 0, the left hand term in the previous equality tends to

E (F (ξs − ξρ−, 0 ≤ s < ρ)) ,

while the right hand term tends to

E

(∫ ∞

0

dLuF (ξs − Iu, 0 ≤ s < u)

)
N(ζ = ∞).
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Finally, a straightforward extension of Lemma 3 in [10] to our weaker hypothesis allows us to
ensure that

E

(∫ ∞

0

dLuF (ξs − Iu, 0 ≤ s < u)

)
=

∫
]0,∞[

daϕ(a)E↘
a (F (ξs, 0 ≤ s < ζ)) ,

which concludes the proof given that V̂ ]0,∞[= (N(ζ = ∞))−1 .

We next introduce the law of a Lévy process conditioned to hit by above a given level a ∈ R.
Owing to the fact that the function ϕ is excessive for (ξ,P) killed at 0, we have that for any
a ∈ R the function ϕa : R → R+ de�ned by ϕa(x) = ϕ(x − a), x ∈ R, is excessive for the
semigroup of ξ killed at its �rst hitting time of ]−∞, a[. Indeed,

Ex(ϕa(ξt), t < T]−∞,a[) = Ex−a(ϕ(ξt), t < T]−∞,0[) ≤ ϕ(x− a) = ϕa(x), x > a,

and analogously it is veri�ed that limt→0+ Ex(ϕa(ξt), t < T]−∞,a[) = ϕa(x). We will denote by
P↘a the h-transform of the law of ξ killed at it �rst hitting time of ] −∞, a[ via ϕa, i.e.: for
any Gt-stopping time T , with an obvious notation for P]−∞,a[

x ,

P↘a
x 1{T<ζ} =

ϕa(ξT )

ϕa(x)
1{T<ζ}P

]−∞,a[
x , on GT .

The following elementary Lemma will enable us to refer to this measure as the law of ξ condi-
tioned to hit a continuously and by above. Of course the measure P↘0

x is simply P↘
x .

Lemma 3. Let (ξ,P) be a real valued Lévy process that satis�es the hypotheses (H). For
a ∈ R, and any x > a the law of ξ + a under P↘

x−a is the same as that of ξ under P↘a
x . As a

consequence, for a.e. x > a

P↘a
x (ξ0 = x; ζ < ∞; ξt > a for all t < ζ; ξζ− = a) = 1.

Proof. To prove the �rst assertion it su�ces to verify that both laws are equal over Gt for
any t > 0. Indeed, the spatial homogeneity of (ξ,P) implies that for t > 0 and any bounded
measurable functional F

P↘a
x

(
F (ξs, 0 ≤ s < t)1{t<ζ}

)
=

1

ϕa(x)
Px(F (ξs, 0 ≤ s < t)1{t<T]−∞,a[}ϕa(ξt))

=
1

ϕ(x− a)
Px−a(F (ξs + a, 0 ≤ s < t)1{t<T]−∞,0[}ϕ(ξt))

= P↘
x−a(F (ξs + a, 0 ≤ s < t)1{t<ζ}).

Now, the second assertion is an easy consequence of Lemma 2 and the hypothesis that 0 is
regular for ]−∞, 0[.

A rewording of Lemma 2 using Lemma 3 reads:

Theorem 2. Let (ξ,P) be a real valued Lévy process that satis�es the hypotheses (H). The
following identity holds for any bounded measurable functional F ,

Ex (F (ξs, 0 ≤ s < ρ)) =
1

V̂ ]0,∞[

∫
]−∞,x[

daϕa(x)E↘a
x (F (ξs, 0 ≤ s < ζ)) . (3.5)
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We have now all the elements to state the main result of this section whose proof follows
easily from Lemma 3 & Theorem 2.

Theorem 3. Let (ξ,P) be a real valued Lévy process that satis�es the hypotheses (H) and
(X, IP) be the self-similar Markov process associated to (ξ,P) via Lamperti's representation.
Then for any bounded measurable functional F ,

IEx (F (Xs, 0 ≤ s < m)) =

∫ 1

0

ν1(dv) IP↘vx
x (F (Xs, 0 ≤ s < ζ))

=

∫ 1

0

ν1(dv) IP↘1
1/v(F (vxXs/vx, 0 ≤ s < vxζ)),

where ν1 is a measure over ]0, 1[ with density

ν1(dv)

dv
= (V̂ ]0,∞[)−1v−1ϕ(− ln v), 0 < v < 1,

and IP↘vx
x is the law of the process obtained by applying Lamperti's representation to (ξ, P

↘log(vx)
log(x) ).

4 The asymptotic behavior of the pre- and post-minimum

as the minimum tends to 0.

Throughout this section we will leave aside the assumptions (H). We only assume that the
underlying Lévy process ξ drifts to ∞, it is not a subordinator and it is non lattice. Some
ancillary hypothesis will be stated below.

4.1 Post-minimum

Under these hypotheses, it is known that the support of the law of Iξ is ] −∞, 0]. From (3),
the support of IX is then [0, y] under IPy, for any y > 0. Proposition 1 shows that a regular
version of the law of the post-minimum process (Xm+t, t ≥ 0) under IPy given IX = x, for

x ∈]0, y] is given by the law of the process

((
x→ξ →τ (t/x)

, t ≥ 0

)
,P

)
. In particular, this law

does not depend on y. Let us denote it by →IP
x. A straight consequence of this representation

is that the family (→IP
x) is weakly continuous on ]0,∞[. In Theorem 4 below, we show that if

moreover 0 < E(ξ1) < ∞, then →IP
x converges weakly as x tends to 0 towards the law IP0+.

This measure is the weak limit of IPx as x → 0+, whose existence is ensured by Theorem 2 in
[11].

Recall that Millar's results implies that for any x > 0, the process (X,→IP
x) is strongly

Markov with values in [x,∞[.

Theorem 4. Assume that 0 < E(ξ1) < ∞. The laws →IP
x converge weakly in D as x → 0+ to

the law IP0+ . As a consequence, for any x > 0,

IPx(· ◦ θm|IX < ε)
w−−→

ε→0
IP0+(·).

10



Proof. Recall that from [11], under our hypothesis, the family of laws (IPx) converges weakly
in D as x ↓ 0 towards the non degenerate law of a self-similar strong Markov process. Denote
by IP0+ the limit law. Then on the space D, we de�ne a process X(0) with law IP0+. We recall
from [11] that

lim
t→0+

X
(0)
t = 0 and lim

t↑∞
X

(0)
t = +∞ , IP0+ a.s. (4.1)

Let (xn) be any sequence of positive real numbers which tends to 0. De�ne Σn = inf{t : X
(0)
t ≥

xn}, then by the Markov property and Lamperti's representation, we have

Y (n) (def)
= (X

(0)
Σn+t, t ≥ 0) =

(
X

(0)
Σn

exp ξ
(n)

τ (n)(t/X
(0)
Σn

)
, t ≥ 0

)
, (4.2)

where on the left hand side of the second equality, X
(0)
Σn

and ξ(n) are independent and ξ(n) (d)
= ξ.

Let
In = inf

t≥0
Y

(n)
t and mn = sup{t : Y

(n)
t ∧ Y

(n)
t− = In} .

Then we deduce from (4.2) and Proposition 1 the following representation:

(Y
(n)
mn+t, t ≥ 0) =

(
In exp→ξ

(n)

→τ (t/In)
, t ≥ 0

)
, (4.3)

where →ξ
(n) is independent of the events prior to mn. In particular, →ξ

(n) is independent of

Gn
(def)
= σ{Ik : k ≥ n}. It follows from (4.3) that for any bounded and measurable functional H,

IE0+(H(Y
(n)
mn+t, t ≥ 0) | Gn) = →IE

In(H) . (4.4)

Since (X, IPx), x ≥ 0 is a Feller process, the tail σ-�eld ∩t>0σ{X(0)
s : s ≤ t} is trivial and it is

not di�cult to check that ∩nGn ⊂ σ{X(0)
s : s ≤ t} for each �xed t. So ∩nGn is trivial. On the

other hand, from (4.1) we have limn Σn = 0 and limn mn = 0, IP0+�a.s., so

(Y
(n)
mn+t, t ≥ 0) −→ X(0) , IP0+ a.s., as n → +∞,

on the space D. Hence if we suppose moreover that H is continuous, then

lim
n

E(H(Y
(n)
mn+t, t ≥ 0) | Gn) = lim

n →IE
In(H) = IE0(H) , IP0+ almost surely . (4.5)

Now, from (3.3), we have In = X
(0)
Σn

exp Iξ(n)
. Recall that from Theorem 1 in [11], the r.v. X

(0)
Σn

may be decomposed as X
(0)
Σn

(d)
= xne

θ, where θ is a �nite r.v. whose law is this of the limit
overshoot of the Lévy process ξ, i.e. if Tz = inf{t : ξt ≥ z}, then under our hypothesis, ξTz − z
converges in law as z ↑ +∞ towards the law of θ. So, we have

In
(d)
= xne

θeIξ

, (4.6)

where θ and Iξ are independent. On the space D, we de�ne a r.v. ν such that ν
(d)
= eθeIξ

(so

that In
(d)
= xnν), then it follows from (4.5) that

→IE
xnν(H) −→ IE0(H) , in probability, as n → +∞ . (4.7)
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So there exists a subsequence xnk
such that

→IE
xnk

ν(H) −→ IE0(H) , a.s., as k → +∞ . (4.8)

The convergence (4.8) implies that there exists ω0 ∈ D such that ν(ω0) > 0 and→IE
xnk

ν(ω0)(H) →
IE0(H), as k → +∞. Put a = ν(ω0) and for all ω ∈ D de�ne Sa(ω) = (a−1ωat, t ≥ 0). Since Sa

is a continuous functional on D, we have

→IE
xnk

a(H ◦ Sa) −→ IE0(H ◦ Sa) , as k → +∞ .

But from the scaling property, we have→IE
xnk

a(H◦Sa) = →IE
xnk (H) and IE0+(H◦Sa) = IE0+(H).

In conclusion, for any bounded and continuous functional H on D and for any sequence (xn)
which decreases to 0, there is a subsequence (xnk

) such that →IE
xnk (H) −→ IE0+(H), as k tends

to ∞. This proves our result.

4.2 Pre-minimum

In our description of the pre-minimum process we have provided, under some assumptions, a
method to construct a process that can be viewed as X conditioned to die at a given level
0 < a < X0. But a priori this method cannot be applied to construct a process that dies at
0, since this means conditioning the underlying Lévy process to die at −∞. Thus, the purpose
of this section is to construct the law of a self-similar Markov process that can be viewed as
the law of a pssMp that drift to ∞, X, conditioned to hit 0 in a �nite time. In fact we will
answer the questions: What is the process obtained by making tend to 0 the value of the overall
minimum of X? Is the resulting process determined by the pre-minimum process of X? In the
case where X has no negative jumps, using the assertions in Proposition 3 it is clear, at least
intuitively, that the process (X, IP↓) can be obtained from (X, IP) by making tend to 0 the value
of its overall minimum. Actually, the former process can be viewed as (X, IP) conditioned to
have an overall minimum equal to 0 and this conditioning depends only on the pre-minimum
part of (X, IP).

As a consequence of the assumption that (X, IP) drifts to ∞, the set of paths that have an
overall minimum equal to 0, {IX = 0}, has probability 0, and so the law of (X, IP) conditionally
on that set does not make sense. A natural issue to give a meaning to that conditioning is by
approximating that set by the sequence {IX < ε} as ε → 0. So, our main task will be describe
the limit law of the pre-minimum process conditionally on the event {IX < ε} as ε → 0. To
that end we will use the method of h-transformations.

Let h :]0,∞[→ [0,∞] be the function de�ned by

h(x) = lim inf
ε→0

IPx(I
X < ε)

IP1(IX < ε)
, x ∈]0,∞[. (4.9)

The following Lemma will be useful.

Lemma 4. The function h de�ned in equation (4.9) is excessive for the semigroup of the pssMp
X.
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Proof. Given that the cone of excessive functions is closed under liminf it su�ces with proving
that for every ε > 0, the function

hε(x) =
IPx(I

X < ε)

IP1(IX < ε)
, x ∈]0,∞[,

is excessive for the semigroup of X. Indeed, owing the relation

IPx(I
X < ε) = IPx(Lε > 0), with Lε = sup{s > 0 : Xs < ε}, (sup{∅} = 0),

and the Markov property, it is straightforward that for any reals t > 0 and x > 0

Pth
ε(x) =

IEx(IPXt(Lε > 0))

IP1(IX < ε)
=

IPx((Lε − t)+ > 0)

IP1(IX < ε)
≤ hε(x), x > 0,

and
lim
t→0

Pth
ε(x) = hε(x), x > 0.

To perform the desired conditioning we will make some assumptions on the excessive function
h. Firstly, to avoid pathological cases we will assume that h does not take the values 0 or ∞,
and next that it has some regularity, namely that

(H') the liminf in equation (4.9) is in fact a limit and h :]0,∞[→]0,∞[ is a non-constant
function.

The hypothesis (H') is satis�ed by a wide class of positive self-similar Markov processes, as it
will be seen in Remark 1 below, and, whenever it holds, the self-similarity implies that, the
excessive function h has the form

h(x) = x−γ, x > 0, for some γ > 0.

Here is a reformulation of (H') in terms of the underlying Lévy process (ξ,P). First, one has
P(−Iξ > z) > 0 for each z > 0 and

lim
u→∞

P(−Iξ > u− z)

P(−Iξ > u)
= eγz for each z ∈ R .

In other words, the law of the negative of the overall minimum of ξ belongs to one of the classes
Lγ, for some γ > 0;

In the sequel we will assume that the hypothesis (H') is satis�ed. Let IP↓ be the h-transform
measure of IP via h, i.e.: for any Ft-stopping time T

IP↓x 1{T<ζ} =
h(XT )

h(x)
IPx, on FT .

By standard arguments it follows that the law IP↓ is that of a positive self-similar Markov
process, say (X, IP↓). We will denote by (ξ,P↓) the Lévy process associated to (X, IP↓) via
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Lamperti's transformation. By the absolute continuity relation between IP↓ and IP applied to
the sequence of F -stopping times

Tt = inf{r > 0 :

∫ r

0

X−1
s ds > t}, t ≥ 0,

and Lamperti's transformation, it holds that E(e−γξt) ≤ 1 for all t > 0, and more importantly
that the laws P↓ and P are absolutely continuous: for any t ≥ 0

P↓ 1{t<ζ} = e−γξt P, on FTt = Gt. (4.10)

The latter relation can be extended to G-stopping times using standard arguments.

With the following result we prove that the family of laws (IP↓x, x > 0) can be thought as
those of the process (X, IP) strictly before m when the whole trajectory is conditioned to have
an overall minimum equal to 0.

Theorem 5. Assume the hypothesis (H ′) is satis�ed.

(i) The process (X, IP↓x) hits 0 in a �nite time, a.s. Moreover,

IP↓x (T0 < ∞, XT0− = 0) = 1, for all x > 0,

if and only if Cramér's condition, IE(e−γξ1) = 1, is satis�ed.

(ii) If (ξ,P) satis�es furthermore that either

(a1) its law is not lattice,

(a2) Cramér's condition, IE(e−γξ1) = 1 and IE(ξ−1 e−γξ1) < ∞ are satis�ed,

or

(b1) IE(e−γξ1) < 1,

then the law IP↓ is determined by the law of the pre�minimum process of (X, IP) in the
following way: for any x > 0

lim
ε→0+

IPx(Ft ∩ {t < m}|IX < ε) = IP↓x(Ft ∩ {t < T0}), Ft ∈ Ft, t ≥ 0.

A consequence of (ii) in Theorem 5 is that the �nite dimensional laws of the pre-minimum
process converge to those of (X, IP↓x).

Proof of part (i). By the identity (4.10) it follows that

E(e−γξt) = P↓(t < ζ), for all t > 0,

and so under P↓ the canonical process ξ has an in�nite lifetime if and only if E(e−γξt) = 1, for all
t > 0 or equivalently for some t > 0, see e.g. Sato [25] Theorem 25.17. In which case Cramér's
condition is satis�ed and the process (ξ,P↓) drifts to −∞. Given that the process (X, IP↓)
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coincides with the pssMp associated to (ξ,P↓) via Lamperti's transformation, we conclude
using Lamperti's representation of pssMp, see Section 2, that if Cramér's condition is satis�ed
then

IP↓x(T0 < ∞, XT0− = 0) = 1, for all x > 0.

Now, assume that Cramér's condition is not satis�ed, that is E(e−γξt) < 1 for some t > 0.
By Theorem 25.17 in [25] this implies that the latter holds for all t > 0. So the Lévy process
(ξ,P) has a �nite lifetime, actually it is a real valued Lévy process that has been killed at an
independent time that follows an exponential law of parameter κ = − log E(e−γξ1). According
to Lamperti representation of pssMp we have that in this case

IP↓x(T0 < ∞, XT0− > 0) = 1, for all x > 0.

In any case, (X, IP↓x) hits 0 in a �nite time a.s. for all x > 0. Which �nish the proof of assertion
(i).

Proof of part (ii). To prove the assertion we will start by proving that for any x > 0 and t > 0,

lim
ε→0+

IPx(t < m|IX < ε) = xγ IEx(X
−γ
t ) = IP↓x(t < T0). (4.11)

To that end we will use that {Lε > 0} = {IX < ε}, and so that

IPx

(
t < m, IX < ε

)
= IPx (t < m, 0 < Lε, t < Lε)

= IPx (m ∧ Lε > t)

= IPx (IPXt (m ∧ Lε > 0))

= IPx (IPXt (Lε > 0)) ,

which is a consequence of the fact that Lε and m are both coterminal times, the Markov property
and that IPx(m = 0) = 0, owing that (ξ,P) is not a subordinator. Moreover, it follows from
the scaling and Markov properties that

IEx (IPXt (Lε > 0)) = IEx (g(Xt/ε)) ,

where g(z) = IPx

(
IX ≤ z−1

)
. Now, if the conditions (a-1,2) are satis�ed, then the main result of

[5] implies that g(z) = zγL(z), z > 0, where L :]0,∞[→]0,∞[ is a bounded and slowly varying
function such that L(z) −→ C ∈]0,∞[ as z → ∞. In this case, the dominated convergence
theorem implies that

lim
ε→0

IPx(t < m|IX < ε) = lim
ε→0

1

IPx(IX < ε)
IEx(g(Xt/ε))

= lim
ε→0

(
εγ

IPx(IX < ε)

)
IEx

(
X−γ

t L(ε/Xt)
)

= xγ IEx(X
−γ
t ).

However, in the case where Cramér's condition is not satis�ed it follows from hypothesis (H')
that g is regularly varying at in�nity with index γ and we claim that IEx(X

−γ−1
s ) < ∞ for

x > 0, t ≥ 0, which, in view of Proposition 3 in [8], imply that

lim
ε→0

1

g(1/ε)
IEx(g(Xt/ε)) = IEx(X

−γ
t ),
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and the limit in equation (4.11) follows. So we just have to prove that IEx(X
−γ−1
s ) < ∞ for

x > 0, t ≥ 0. Indeed, we have seen that hypothesis (H') implies that E(eγξt) ≤ 1, for all t ≥ 0,
and since Cramér's condition is not satis�ed the latter inequality is a strictly one. So, by
Lamperti's transformation∫ ∞

0

dt IEx(X
−γ−1
t ) = x−(γ+1) E

(∫ ∞

0

dt exp{−(γ + 1)ξτ(tx−1)}
)

= x−γ

∫ ∞

0

dsE(e−γξs)

= x−γ(− log(E(e−γξ1))) < ∞, x > 0.

Thus for x > 0, IEx(X
−γ−1
t ) < ∞, for a.e. t > 0, and by the scaling property the latter holds

for any t > 0, x > 0.

To conclude, let Ft ∈ Ft, t > 0, then arguing as before and using Fatou's lemma we have
that

lim inf
ε→0

IPx(Ft ∩ {t < m}|IX < ε) = lim inf
ε→0

(
IP1(I

X < ε)

IPx(IX < ε)

)
IEx

(
1Ft

IPXt(I
X < ε)

IP1(IX < ε)

)
≥ xγ IEx(1FtX

−γ
t ).

Furthermore, applying this estimate to the set complementary of Ft and using the result in
equation (4.11) we get that

lim sup
ε→0

IPx(Ft ∩ {t < m}|IX < ε) ≤ xγ IPx(FtX
−γ
t ).

It is interesting to note that in the non-Cramér case the law IP↓ is that of a pssMp that hits
0 in �nite time and it does it by a jump,

IP↓x(T0 < ∞, XT0− > 0) = 1, ∀x > 0.

Roughly speaking, Theorem 5 tells us that in this case by pulling down the trajectory of (X, IP),
under the law IP·, from the place at which it attains its overall in�mum for the last time, we
break this trajectory and introduce a jump to the level 0.

However, the equality in (ii) Theorem 5 does not hold on the whole σ-�eld of the events
prior to m, i.e. Fm− = σ (Ft ∩ {t < m}, Ft ∈ Ft, t ≥ 0). Indeed, if this were the case it would
imply that

lim
ε→0

IPx(Xm− ∈ dy|IX < ε) = IP↓x(XT0− ∈ dy),

given that Xm− is Fm−�measurable. But the r.h.s. in the previous equality is equal to
P↓(x exp{ξe} ∈ dz), where e is a random variable independent of ξ↓ and with an exponential
law of parameter κ = − log(e−γξ1). While the l.h.s. is equal to the Dirac mass at 0 whenever 0
is regular for (−∞, 0).

Remark 1. Owing to the equivalent formulation of hypothesis (H') in terms of the underlying
Lévy process it is easy to provide examples of pssMp that satis�es (H'). Indeed, it is easily
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deduced from Proposition 3 that when the process has no negative jumps the function ϕ has
the properties required in (H'). Besides, if a Lévy process does satis�es the hypotheses (a1) and
Cramér's condition in (a2) of Theorem 5, it follows from the result of Bertoin and Doney [5]
that

lim
t→∞

eγt P(Iξ < −t) = C,

where C < ∞ and C > 0 if and only if E(ξ−1 e−γξ1) < ∞. We deduce therefrom that under (a1)
and (a2) of Theorem 5 we have

IPx(I
X < ε) ∼ εγx−γC, as ε → 0,

and hence (H') is satis�ed. Furthermore, the hypothesis (H') holds if the distribution of the
negative of the overall minimum of (ξ,P) belongs to a class of close to exponential laws Sγ

with γ > 0. (See the recent work [21] for the de�nition of the classes Sγ and NASC on the
Lévy process (ξ,P) that ensure that the negative of the overall in�mum belongs to one of this
classes.)

5 Conditioning a pssMp to hit 0 continuously

Throughout this section we will assume that (X, IP) is a self�similar Markov process that be-
longs to the class (LC1). It was showed by Lamperti [22] that under these assumptions the
process (X, IP) is the exponential of a Lévy process that has been killed at an independent
exponential time and time changed, see Section 2 for more details. So, for notational conve-
nience we will hereafter assume that (ξ,P) is a Lévy process (with in�nite lifetime), that e, is
an independent r.v. that follows an exponential law of rate q > 0, and that the Lévy process
with �nite lifetime associated to (X, IP) via Lamperti's transformation is the one obtained by
killing (ξ,P) at time e.

The problem of conditioning a self�similar Markov process that hits 0 by a jump to hit 0
continuously is a problem that was studied by Chaumont [9] in the case where the process
has furthermore stationary and independent increments, i.e. is a stable Lévy process. See
Chaumont and Caballero [12] for a computation of the underlying Lévy process of this pssMp
in Lamperti's representation.

Throughout this section we will assume that

(H") =


non�arithmetic

there exists a γ < 0 for which E(eγξ1) = eq,

E(ξ−1 eγξ1) < ∞.

Under these hypotheses we will prove the existence of a self�similar Markov process (X, IP↓)
that can be thought as (X, IP) conditioned to hit 0 continuously.

The second hypothesis in (H") implies that the function h↓(x) = eγx, x ∈ R is an invariant
function for the semigroup of (ξ,P), killed at time e. Let P↓ be the h�transform of the law of
(ξ,P) killed at time e, via the invariant function h↓. Under P↓ the canonical process is still a
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Lévy process with in�nite lifetime that drifts to −∞. Furthermore, by the third hypothesis in
(H") we have that m↓ = E↓(ξ1) ∈] −∞, 0[. We are interested in the pssMp (X, IP↓), which is
the Markov process associated to the Lévy process with law P↓ via Lamperti's transformation.
Since the Lévy process (ξ,P↓) drifts to −∞ we have that (X, IP↓x) hits 0 continuously at some
�nite time a.s. for every x > 0. As a consequence of the following result we will refer to (X, IP↓)
as the process (X, IP) conditioned to hit 0 continuously.

Theorem 6. Assume that the hypotheses (H”) are satis�ed.

(i) For every x > 0, IP↓x is the unique measure such that for every stopping time T of (Gt)
we have

IP↓x(FT , T < T0) = x−γ IPx(FT Xγ
T , T < T0),

for every FT ∈ GT .

(ii) For every x > 0,

lim
ε→0

IPx(Ft ∩ {t < T0}|XT0− ≤ ε) = IP↓x(F ), Ft ∈ Gt, t ≥ 0.

(iii) For every x > 0,

lim
ε→0

IPx(Ft ∩ {t < T0}| inf
0≤t<T0

Xt < ε) = IP↓x(F ), Ft ∈ Gt, t ≥ 0.

Proof. Part (i) is an immediate consequence of the fact that P↓ is an h�transform. To prove
(ii) we will need the following Lemma in which we determine the tail distribution of a Lévy
process at given exponential time.

Lemma 5. Let σ be a Lévy process of law P, and with in�nite lifetime. Assume that σ is
non�arithmetic and that there exists a ϑ > 0 for which 1 < E(eϑσ1) < ∞, and E(σ+

1 eϑσ1) < ∞.
Let Tλ be an exponential random variable of parameter λ = log E(eϑσ1) and independent of σ.
We have that

lim
x→∞

eϑxP (σTλ
≥ x) =

λ

µ\ϑ
,

with µ\ = E(σ1e
ϑσ1).

Lemma 5 is a consequence of the renewal theorem for real�valued random variables and
Cramer's method, see e.g. Feller [19] �XI.6.

Proof. Observe that the function Z(x) = P (σTλ
≥ x), satis�es a renewal equation. More

precisely, for z(x) =
∫ 1

0
dtλe−λtP (σt ≥ x) and L(dy) = e−λP (σ1 ∈ dy) we have that

Z(x) = z(x) +

∫ ∞

−∞
L(dy)Z(x− y).

This is an elementary consequence of the fact that the process (σ′s = σ1+s−σ1, s ≥ 0) is a Lévy
process independent of (σr, r ≤ 1) with the same law as σ. Next, the measure L is a defective
law, L(R) < 1, such that∫ ∞

−∞
eϑyL(dy) = e−λE(eϑσ1) = 1; and

∫ ∞

−∞
yeϑyL(dy) < ∞,
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by hypotheses. Thus the function Z\(x) ≡ eθxZ(x), x ∈ R satis�es a renewal equation with
L(dy) replaced by L\(dy) = eθyL(dy), y ∈ R, and z replaced by z\(x) = eθxz(x), x ∈ R . By the
uniqueness of the solution of the renewal equation we have that

Z\(y) =

∫
R

z\(y − x)U \(dx), y ∈ R,

where U \(dx) is the renewal measure associated to the law L\. Furthermore, the function z\

is directly Riemann integrable because it is the product of an exponential function and a
decreasing one and z\ is integrable. To see that z\ is integrable, use the Fubini's theorem to
establish ∫ ∞

−∞
z\(x)dx =

∫ 1

0

dtλe−λtE

(∫ ∞

−∞
dxeϑx1{σt≥x}

)
=

1

ϑ

∫ 1

0

dtλe−λtE(eϑσt)

=
λ

ϑ
< ∞.

Finally, given that L\ is a non-defective law with �nite mean the Key renewal theorem implies
that

lim
y→∞

Z\(y) = lim
y→∞

∫
R

z\(y − x)U \(dx) =
1

µ\

∫ ∞

−∞
z\(x)dx =

λ

ϑµ\
.

Now we may end the proof of part (ii). Observe that under IPx the random variable XT0− has the
same law as xeξe under P. Then, applying Lemma 5 to (−ξ,P) we obtain by hypotheses (H")
that

lim
y→∞

e−γy P(ξe ≤ −y) =
q

γµ↓
:= dq,

with µ↓ = E(ξ1e
γξ1) ∈] − ∞, 0[, which is �nite by hypothesis. Thus, we have the following

estimate of the left tail distribution of XT0−

lim
ε→0

εγ IPx(XT0− ≤ ε) = xγdq. (5.1)

We conclude by a standard application of the Markov property, estimate (5.1) and a dominated
convergence argument.

Now we prove part (iii). First of all, we claim that under the assumptions of Theorem 6,

x−γ lim
ε→0+

εγ IPx( inf
0≤t<T0

Xt < ε) := d”
q ∈]0,∞[, x > 0. (5.2)

Owing to this estimate the rest of the proof of Theorem 6 (iii) is quite similar to the one of (ii)
in Theorem 5 in the case where Cramer's condition is satis�ed, so we omit the details. Indeed,
it is clear that the r.v. inf0≤t<T0 Xt, has the same law as

exp{ inf
0≤s≤e

{ξs}},
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under P . Its well known that (sup0≤s≤e{−ξs},P) has the same law as a subordinator, say
σ̃, with Laplace exponent κ̂(q, λ) − κ̂(q, 0), evaluated at an independent exponential time of
parameter κ̂(q, 0), where κ̂(·, ·) is the bivariate Laplace exponent of the dual ladder height
process associated to (ξ,P), see e.g. [3] Section VI.2. So in order to deduce the assertion (5.2)
using Lemma 5 we have to verify that

(a) 1 < E(ebγeσ1) < ∞, (b) E(σ̃1e
bγeσ1) < ∞ and (c) κ̂(q, 0) = log E(ebγeσ1), for γ̂ = −γ.

Recall that a function f : R → R, of the type f(x) = |x|aeβx, for a ∈ R, β < 0, is integrable
w.r.t. the law of (ξt,P) for some t > 0 if and only if f(x)1{x<−1} is integrable w.r.t. the
Lévy measure of (ξ,P), see e.g. [25] Proposition 25.4. Furthermore, Vigon [27] Section 6.2,
established that f(x)1{x<−1}, is integrable w.r.t. the Lévy measure of (ξ,P) if and only if
f(−x)1{−x>1}, is integrable w.r.t. the Lévy measure of the dual ladder height subordinator
associated to (ξ,P). So, that (a) and (b) are consequences of the hypotheses (H") and the fact
that the subordinator σ̃ has the same Lévy measure and drift term as the dual ladder height
subordinator associated to (ξ,P). Finally, the assertion in (c) is an easy consequence of the
inversion theorem in Vigon [27] Section 4.3.
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