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Abstract
We investigate existence of non-negative global solutions to the semilinear
equation %1: = Agu + a(z) Y22, pru® + (po + pru)g(x), u(z,0) = f(z), = €
R¢, where o € (0,2], ¢,a > 0, ¢ € C*R?), a and ¢ grow no faster than
polynomially, p > 1, pg > 0 and f > 0.

1 Introduction and main results

In this paper we investigate existence of non-negative global solutions to semilinear

equations of the type

ou -
a = Aau + CL(LU) Zpkuk + (pO +P1U)¢(5’3)7 U(SL’, O) = f LS Rd7 (1)
k=2
where A, is the fractional power —(—A)%/? of the Laplacian, a € (0,2], a, ¢ and f
are certain nice functions, and pg, k = 0, 1,..., are non-negative constants such that
> w Dk =1, with py > 0.
The asymptotic properties of equations of the form (1) are related to the large

deviations behavior of super-Brownian motion (in the case @ = 2) and of other
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measure-valued processes, see [3] and the references therein. Moreover, the cumulant
generating function of the occupation measures of a large family of superprocesses
are governed by equations of the form (1), see e.g. [2] and [4]. Pinsky [5] and Zhang
[6] studied both existence and non-existence of positive global solutions to the above
equation when the sum in the reaction part consists of a single term a(z)u?, where p
is greater than 1, p; = 0 and pg is a non-negative function of x.

In the present note we investigate existence of global solutions in a different setup,
with the assumption that py does not depend on x. We deal firstly the case in which
the sum in (1) consists of a single term of the form (a(z)u?, with p > 1. Our result

is the contents of the following theorem.

Theorem 1 Consider the semilinear initial value problem

ou

Fri Agu+ a(z)u? 4+ (po + pru)o(z) u(z,0) = f (2)

where 0 < a,¢ € C"(R?), a and ¢ grow no faster than polynomially, p > 1, py, p1 > 0
and f > 0. Assume that

1. 0 <a(z) <c(L+|z))™ for ¢ >0,
2. 0 < ¢(x) <co(14 |x|)79 for ey >0, q € (o, d],
g p>1+(a+m)t/(g—a).

Then for all sufficiently small po,p1 > 0 and all sufficiently small f > 0, the mild
solution to Eq. (2) exists globally in time. More specifically, for sufficiently small po,
p1 > 0 and each € > 0, there exists a constant ¢ > 0 such that, if

0 < fla) < el Jaf)letm /0=,
then the mild solution to (2) exists for all time.
Our second theorem addresses existence of positive solutions to Equation (1).

Theorem 2 Consider the equation

Ou/ot = Ayu + a(x) Zpkuk + (po + pru)o(z) u(z,0)=f x¢€RY (3)
k=2



where 0 < a,¢ € C"(RY), a and ¢ grow no faster than polynomially, 1 > po, p1 > 0,
Sreope=1—po—p1 and f > 0. Assume that

1. 0 <a(z) <c(I+|z))™ for e >0,
2. 0 < ¢(x) <co(l+z|)79 forea >0, q € (a,d],
3. q—a>(a+m)T".

Then for sufficiently small pg, p1 > 0 and sufficiently small f > 0, the solution to the
equation (8) is global. More specifically, for sufficiently small py, p1 > 0, and each

€ > 0, there exists a constant ¢ > 0 such that if 0 < f(z) < (1 + |z])=@+™ " ¢ then

the solution to (3) is global in time.

2 Proofs

Our method of proof is an adaptation of a technique used in [3]. We use the following

lemma (which is proved in the final section of the present paper).

Lemma 3 There exists a C, > 0 and for all 6 > 0, a Cs > 0 such that,

(1+ [y~

Clu+lar s [ BEM Dy <G e, gead. (@
Rt [T — Yl
We define
1+ Jy|)
ey =ot) = [ B Ry s 5
re |l =yl

2.1 Proof of Theorem 1

Our assumptions imply that

a(z) <ca(l+[z))", o) < el + Jz])™
for some positive constants cj,ca > 0. Noticing [1] that the Green’s function G of
the generator —A,, satisfies, G(x,y) = Ya.a/|r — y|?=® for an appropriate constant
Ya.d > 0, it follows from the right-hand inequality in (4), and p > 14 (a+m)*/(¢—a),
that there exists a 6 > 0 such that

Agv—vi+a(z)vP+(po+p1v)o(x) < <;—Z + ¢ CY P + (p0+p105,u)02) (1+]z|)~9. (6)

3



It is easy to show that

At € =it/ raa(l+|2)) ™0 and  poo(e) < poca(l + J2]) .
Moreover,
a(z)v? < ;O P (1 + || )Pl tt)tm < o ChyP(1 + |z])
because

pla—q+0)+m = pla—q)+pi+m

< (1+(a+m)*/(g—a))(a—q)+pi+m

_l’_
< (1+

(

I+ (a+m)/(g—a)+d)a—q)+pi+m  (7)

for some ¢’ > 0. This is possible because p is strictly greater than 1+ (a+m)™/(g—a).
We consider two cases.

Case 1: (a+m)*t =0 and o+ m < 0. In this case we choose ¢’ = 0 and the right
hand side in the last inequality becomes (o — q) + pd + m. Now we can choose § so
small as to make a + pd + m negative and, so, (o — q) + pd +m < —q.

Case 2: (o« +m)" >0 and a +m > 0. The RHS in (7) becomes

a—q—(a+m)"+8(a—q)+pi+m
= a—q¢—(a+m)+§(a—q)+pd+m
= —q+d(a—q)+po.

Now we can choose ¢ so small that ¢'(ac — ¢) 4+ pd is negative. Then the whole thing

is less than or equal to —q. Thus, Case 2 is also done. In addition,

p1od(x) < preaCop(l + |z])* 071 < presCop(1 + |z]) 77,

this being so because o — ¢ + 0 is negative. In this way (6) is justified.

Now, by first choosing p sufficiently small so that CYu? < 1/2 - j1/74.4, and then
choosing pg, p1 > 0 sufficiently small, the RHS of (6) can be made negative. Using
the maximum principle together with the first inequality in (4), it follows that for all
sufficiently small ¢, pg, p1 > 0, the solution wu(z,t) to (1) with f(x) < ¢(1 + |z|)* ¢

satisfies u(z,t) < v(z), and is thus a global solution.
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Our next goal is to increase the exponent o — ¢ appearing in the bound for f, up
to the exponent —(av+m)*/(p — 1) — € figuring in the statement of the theorem.
We argue as follows. By assumption p > 1+ (o +m)" /(¢ — ). This implies

p—1>(a+m)"/(q—a),

which in turn yields
a—q<—(at+m)"/(p-1)
We can now choose ¢ = ¢y so that the last inequality becomes an equality. Let
q1€(qo, q)- Then ¢, satisfies the above inequality, and from the above results it follows
that, if
¢(x) < co(1+ |af)~

for some ¢; > 0, then for sufficiently small ¢, py, p1 > 0, the solution to (1) with
f(z) <ec(1+ |x])* % is global. But then, by the maximum principle, the same holds
true if we decrease ¢ so that it satisfies the bound in the statement of the theorem,
namely ¢(x) < co(1 + |a]) 7.

Subsuming, we have proved that (1) possesses a global solution provided that
¢, po, p1 > 0 are sufficiently small, and f(x) < ¢(1 + |z|)*~ % for all ¢; € (qo,q). Since

¢1 can be chosen arbitrarily close to qq, it follows that a global solution exists if
f(x) < e(1+ [a])(erm /b

for some ¢ > 0 and ¢ > 0 sufficiently small. This completes the proof of global

existence.

Notice that, when a(x) = 1, the first condition for global solution disappears and
the exponent in the bound of f we obtaina instead of (o +m)™. Also, it can easily

be seen that when p; = 0 we can apply just the same proof.



2.2 Proof of Theorem 2

Our approach here is an adaptation of the technique used in the proof of Theorem 1.

We use again Inequality (4). Let v be given by (5). There exists § > 0 such that

Ayv — v+ a(x) Zpkvk + (po + p1v)9(x)
k=2

< (;—“ﬁZpkcgfm(pwpw)@) (1+[z))70. (8)
a,d

k=2

Indeed, as before, Apv < —p1/v4.4(1+|2])"? and pop(x) < poca(1+|x|)~?. Moreover,

a(z) Zpkvk < Zpk(]gmk(l + |x|)m+k(a—q+6)
k=2 k=2

for all & > 0. Since the inequality
m+ k(o —q+6) <m+2(a—q+9)

is valid for all k, it suffices to show that m + 2(a — ¢ + §) < —¢. Again two cases
arise: If a +m < 0, then we choose 6 > 0 so small that m + a + d < 0, and thus,
m+2(a—q+0) < —q. In case of a+m > 0, since ¢ —a > (a+m)" = a+m, we can
choose § > 0 so small that m+a+(a—q)+4 is negative. Hence, m+2(a—q+9) < —q.
In addition, because of a — ¢+ 9 < 0,

prvg(x) < preaCop(l + |2))*7T7 < preaCap(1 + )77

Thus (8) is satisfied. Now, by first choosing  so small so C§pi? < 1/2- /74,4 and then
choosing pg, p; > 0 sufficiently small, the RHS of (8) can be made negative. Hence,
using the maximum principle together with the first inequality in (4), it follows that
for sufficiently small ¢, pg, p1 > 0 the solution u(z,t) to (3) with f(z) < ¢(1 + |z|)* ¢
satisfies u(z,t) < v(z), and is thus a global solution.

In order to increase the exponent a — ¢ appearing in the bound for f to the
exponent —(«ov + m)" — € appearing in the statement of the theorem, we argue as

follows.
By assumption ¢ — a > (a« +m)" and so @« — ¢ < (o +m)". Let gy be such

that the above inequality becomes an equality if we replace ¢ by qo. Let ¢1 € (qo, q)-
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Then ¢; satisfies the above inequality. So, by the above results, it follows that if
o(z) < ol + |z])~" for some ¢; > 0, then for sufficiently small po,p; > 0 and
sufficiently small ¢ > 0, the solution to (3) with f(z) < ¢(1 + |z])*% is global.
But then, by the maximum principle, the same conclusion holds true if we decrease
¢ so that it satisfies the original bound, that is, ¢(z) < cz(1 + |2])7% In this way
we have proved that (3) possesses a global solution provided that py,p; > 0 and
¢ > 0 are sufficiently small, and f(z) < ¢(1 + |z|)*? for all ¢; € (qo,q). Since ¢,
can be chosen arbitrarily close to qo, it follows that the solution to (3) is global if
f(x) < (14 |z|)~ ™= for some € > 0 and ¢ > 0 small.

When a(x) = 1, the first condition for existence of global solution disappears, and
in the bound of f, we get « instead of (o +m)*. Finally, it is easy to see that the

same argument also works when p; = 0.

3 Remaining proofs

In this section we prove the following statement:

There exists a ¢; > 0 and, for all > 0, a C's > 0 such that
a(l+[z)* < / (L+1yl) /| = y|*dy < Cs(1 + [x])*7, g € (a,d].
Rd

In order to prove the second inequality we need the following lemma.

Lemma 4 The integral

(14 fa])r-o?
/Rd gl gl ©)

is a bounded function of x for any § € (0,q — «).
Proof. Let x € R? be fixed. We split (9) into three integrals over the Borel sets
Dy = {yeR":|z—y|l<l|zl/2}

Dy = {yeR":|z—y|>|z/2, |z —y| <|yl/2}
Dy = {yeR":|z—y|>|z/2, |z —y| > |y|/2}

and proceed in two steps as follows.



Step 1: For the integral over D; we have,

(14 |zf)7—? s / 0
dy < Const.(1 + |z|)~* x—y|" " dy. 10
/Dl RSN (At la)™ f Jo =l (10

This is so because |z —y| < |z|/2 and |z| —|y| < |z|/2 imply |y| > |z|/2, and therefore

T
(14 )+ ) < 1+ /(1 2y < Const.
At this stage we pass to polar co-ordinates
(y1 — x1,Yy2 — Tay .. ., Yg — q) — (rcosby,rsinby cosby, ..., rsinbysinbs...sinb,),

the Jacobian of the transformation being equal to 7%~ sin® 26, - - -sin f,_,. After the

change of variables the RHS of (10) becomes
|z|/2
Const.(1 + |x|)_o‘_5/ / e / rsin®=26; - -sinfy_odfy_s---dby dr
0 01 0q—1

|z[/2
< Const.(1+|z])™- / rdr
0

< Const.(1 + |2[)™*° - |z|?
< Const.,

which shows that the integral over D, is bounded in z.

Step 2: In order to bound from above the integral over D, we first assume that

x| < 1. In this case (1 + |z[)9~*7% < Const., and
|z

1 g—o—8 d
/ ( +d|i|) dy < Const. / d,ay
D, [T =yl (1 + |y|) p, [T =yl (1 + Jy[)e

d
< Const./ —ydi
Dy [ =yl

< Const. / dy
{

_ d—
v lel/2<la—yl<lal} 1T — Y[T*

because |r —y| < |y|/2 and |y| — |z| < |y|/2, and therefore |z| > |y|/2, which implies
|z —y| < |y|/2 < |z| and thus |z]/2 < |z — y| < |z|. Passing to polar coordinates
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renders

(14 |z /w' / / Cia,
dy < Const. v [ rsin® " 0y...8in 0, 2dby_5...dOdr
/1)2 |z — y|=(1 + |y[)9 zl/2 o Joy ' -t !

||
< Const./ rdr
\

x|/2

< Const.

Hence, the integral over D is bounded in z if |z| < 1.

Assume now that |z| > 1. Then we have

1 qg—a—0 1 —a—§
/ ( +d|x|) dy < Const./ % dy. (11)
Dy |l =yl (1 + |y|)9 p, | —ylie

This is so because |r — y| < |y|/2 together with the triangle inequality imply |y| >
2/3|x|, hence (1 + |x])?/(1 + |y|)?) < Const. Notice also that |z — y| < |z|/2 implies

e —y|+1/2<1/24 |z|/2=(1+|z])/2,

which in turn gives 1/(1 + |z|) < Const.(1/|x — y|). We can now bound from above
the RHS of (11) by

Const. / 1/|z —y|“ T dy = Const. / 1/|z — y|* dy.
Do Do

Using polar coordinates as before, we see that the LHS of (11) is bounded from above

by

1
Const./ rdr = ST
(v I2l/2<la—y|<lzl} 0|

This shows that the integral over D is bounded in x also in the case |z| > 1. We
conclude that the integral over D5 is bounded in x.

In order to bound the last integral we split D3 into two parts D3y and Dsq, where
Dgi ={y: e —yl > |2[/2, |z =yl > [yl/2, |x —y| <1},

Dsy = {y |z —y| > [2|/2, |z —y| > |y|/2, |z —y| > 1}.



We have |z| < 2 on D3 as |z —y| > |z|/2 and |z —y| < 1 imply |z|/2 < 1.

Therefore,
1 g-a=d d
/ ( —|—d|_m|) dy < Const./ d_y
Dy [T =yl (L + [y]) Dy [T = Y|P (L + [y])

< Const./ |z —y|*dy
D31

< Const. / lz —y|*dy
{y: |z|/2<]|z—y|<1}
1

< Const./ rdr
|zl/2

< Const.,

where we passed to polar coordinates after the third inequality, and used that 0 <
|z| < 2 to obtain the last inequality.

For the integral over D3; we have

1 q—a—30 o lg—a—6
[ Ry =Y "
D3so ‘I—y‘ a(1+ |y‘)q D32 ’x_y’ a(1+ |y’)q

This is because |z —y| > |z|/2 and |z—y| > 1 on D3y, and so (1+]|z|)/2 < Const.|z—yl.
Since |r — y| > |y|/2 and |z — y| > 1 yield both |z — y| > {1 + |y|}/2 and 1 + |y|

A\

Const.|x — y|, the above inequality becomes
< Const./ 1/{|z —y|“ (1 + |y])9} dy
D32
< Const./ 1/{(L+ [y (1 + |y])} dy
D32

< Const./ 1/(1+ [y))*™ dy,
D3
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which, after passing to polar coordinates renders

< Const./ 1/(1+ |y))*° dy
R4

IN

Const./ r /(14 )0 dr
0

IN

Const./ r /(14 )40 dr
0

IN

Const./ 1/(1+r)*odr
0

IN

Const./ 1/s"0ds = [—1/85°]5°
1
= 1/0.
Thus, the integral over Dj is also bounded in x. Lemma (4) is proved.

3.1 Proof of Lemma 3

The RHS inequality in (4) follows directly from Lemma (4).

We now prove the remaining inequality in (4). Notice that

/ (A Iyl 1/ — " dy > Const (14 [ / r—yltdy.  (12)
R

Dy
This is because |x — y| < |z|/2 on Dy, which implies |y| < 3|x|/2. Hence,
(L4 [z))?/ (T +[y)?* = (1 + [2[)?/(1 + 3[x]/2)* = Const.,

yielding (14 |y|)~? > Const.(1+ |z|)~%?. We use once again polar coordinates to show
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that the LHS of (12) equals

Const.(1 + |x|)_q/ |z — y|*dy

{y: 0<|z—y|<|x[/2}

|z[/2
= Const.(1 + \:c])q/ / / r@ 1 /rd=2sin?"2 0, ... sin 04_9d04_s...dO dr
0 01 041
|[/2
= Const.(1 + \:U])q/ r.f(m,d)dr
0

|z|/2
= Const.(1 + |x|)_q/ rdr
0
= (L +a)77 |2

Subsuming, we have proved that
/ (1+ lyh)~/|z = y|*"*dy > Const.(1 + [a]) " - [z]*.
R

From here, the left-hand inequality in (4) follows easily if |z| > 1. In the case |z| < 1
one has to verify that [,.(1+ |y|)~9/|z — y|**dy is bounded away from zero. To

prove this, notice that, as |z| < 1,

[t e —giedy = [ b/
> [
— [ @y
Rd

which is a non-zero constant, and hence is no smaller than C, (14 |z|)~¢ for a suitable

constant C, > 0. This proves Lemma 3.
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