EXISTENCE OF GLOBAL POSITIVE SOLUTIONS FOR AN INHOMOGENEOUS REACTION-DIFFUSION EQUATION

S. Chakraborty and J. A. López-Mimbela

Comunicación Técnica No I-07-20/19-12-2007 (PE/CIMAT)

Existence of Global Positive Solutions for an Inhomogeneous Reaction-Diffusion Equation

S. Chakraborty

Department of Mathematics University of Texas - Pan American Edinburg TX, USA

J.A. LÓPEZ-MIMBELA

Área de Probabilidad y Estadística Centro de Investigación en Matemáticas Guanajuato, Mexico

Abstract

We investigate existence of non-negative global solutions to the semilinear equation $\frac{\partial u}{\partial t} = \Delta_{\alpha} u + a(x) \sum_{k=2}^{\infty} p_k u^k + (p_0 + p_1 u)\phi(x), \ u(x,0) = f(x), \ x \in \mathbb{R}^d$, where $\alpha \in (0,2]$, $\phi, a > 0$, $\phi \in C^{\alpha}(\mathbb{R}^d)$, a and ϕ grow no faster than polynomially, p > 1, $p_0 > 0$ and $f \geq 0$.

1 Introduction and main results

In this paper we investigate existence of non-negative global solutions to semilinear equations of the type

$$\frac{\partial u}{\partial t} = \Delta_{\alpha} u + a(x) \sum_{k=2}^{\infty} p_k u^k + (p_0 + p_1 u)\phi(x), \quad u(x,0) = f \quad x \in \mathbb{R}^d,$$
 (1)

where Δ_{α} is the fractional power $-(-\Delta)^{\alpha/2}$ of the Laplacian, $\alpha \in (0, 2]$, a, ϕ and f are certain nice functions, and p_k , $k = 0, 1, \ldots$, are non-negative constants such that $\sum_k p_k = 1$, with $p_0 > 0$.

The asymptotic properties of equations of the form (1) are related to the large deviations behavior of super-Brownian motion (in the case $\alpha = 2$) and of other

measure-valued processes, see [3] and the references therein. Moreover, the cumulant generating function of the occupation measures of a large family of superprocesses are governed by equations of the form (1), see e.g. [2] and [4]. Pinsky [5] and Zhang [6] studied both existence and non-existence of positive global solutions to the above equation when the sum in the reaction part consists of a single term $a(x)u^p$, where p is greater than 1, $p_1 = 0$ and p_0 is a non-negative function of x.

In the present note we investigate existence of global solutions in a different setup, with the assumption that p_0 does not depend on x. We deal firstly the case in which the sum in (1) consists of a single term of the form $(a(x)u^p)$, with p > 1. Our result is the contents of the following theorem.

Theorem 1 Consider the semilinear initial value problem

$$\frac{\partial u}{\partial t} = \Delta_{\alpha} u + a(x)u^p + (p_0 + p_1 u)\phi(x) \quad u(x,0) = f$$
 (2)

where $0 < a, \phi \in C^r(\mathbb{R}^d)$, a and ϕ grow no faster than polynomially, p > 1, $p_0, p_1 > 0$ and $f \ge 0$. Assume that

1.
$$0 < a(x) \le c_1(1+|x|)^m$$
 for $c_1 > 0$,

2.
$$0 < \phi(x) \le c_2(1+|x|)^{-q} \text{ for } c_2 > 0, q \in (\alpha, d],$$

3.
$$p > 1 + (\alpha + m)^+/(q - \alpha)$$
.

Then for all sufficiently small $p_0, p_1 > 0$ and all sufficiently small $f \ge 0$, the mild solution to Eq. (2) exists globally in time. More specifically, for sufficiently small p_0 , $p_1 > 0$ and each $\epsilon > 0$, there exists a constant c > 0 such that, if

$$0 \le f(x) \le c(1+|x|)^{-(\alpha+m)^+/(p-1)-\epsilon}$$

then the mild solution to (2) exists for all time.

Our second theorem addresses existence of positive solutions to Equation (1).

Theorem 2 Consider the equation

$$\partial u/\partial t = \Delta_{\alpha} u + a(x) \sum_{k=2}^{\infty} p_k u^k + (p_0 + p_1 u)\phi(x) \quad u(x,0) = f \quad x \in \mathbb{R}^d,$$
 (3)

where $0 < a, \phi \in C^r(\mathbb{R}^d)$, a and ϕ grow no faster than polynomially, $1 > p_0$, $p_1 > 0$, $\sum_{k=2}^{\infty} p_k = 1 - p_0 - p_1$ and $f \ge 0$. Assume that

1.
$$0 < a(x) \le c_1(1+|x|)^m$$
 for $c_1 > 0$,

2.
$$0 < \phi(x) \le c_2(1+|x|)^{-q}$$
 for $c_2 > 0$, $q \in (\alpha, d]$,

3.
$$q - \alpha > (\alpha + m)^+$$
.

Then for sufficiently small $p_0, p_1 > 0$ and sufficiently small $f \ge 0$, the solution to the equation (3) is global. More specifically, for sufficiently small $p_0, p_1 > 0$, and each $\epsilon > 0$, there exists a constant c > 0 such that if $0 \le f(x) \le c(1 + |x|)^{-(\alpha+m)^+ - \epsilon}$, then the solution to (3) is global in time.

2 Proofs

Our method of proof is an adaptation of a technique used in [3]. We use the following lemma (which is proved in the final section of the present paper).

Lemma 3 There exists a $C_* > 0$ and for all $\delta > 0$, a $C_{\delta} > 0$ such that,

$$C_*(1+|x|)^{\alpha-q} \le \int_{\mathbb{R}^d} \frac{(1+|y|)^{-q}}{|x-y|^{d-\alpha}} \, dy \le C_\delta(1+|x|)^{\alpha-q+\delta}, \quad q \in (\alpha, d]. \tag{4}$$

We define

$$v(x,t) \equiv v(x) = \mu \int_{\mathbb{R}^d} \frac{(1+|y|)^{-q}}{|x-y|^{d-\alpha}} \, dy, \quad \mu > 0.$$
 (5)

2.1 Proof of Theorem 1

Our assumptions imply that

$$a(x) \le c_1(1+|x|)^m$$
, $\phi(x) \le c_2(1+|x|)^{-q}$

for some positive constants $c_1, c_2 > 0$. Noticing [1] that the Green's function G of the generator $-\Delta_{\alpha}$ satisfies, $G(x,y) = \gamma_{\alpha,d}/|x-y|^{d-\alpha}$ for an appropriate constant $\gamma_{\alpha,d} > 0$, it follows from the right-hand inequality in (4), and $p > 1 + (\alpha + m)^+/(q - \alpha)$, that there exists a $\delta > 0$ such that

$$\Delta_{\alpha} v - v_t + a(x)v^p + (p_0 + p_1 v)\phi(x) \le \left(\frac{-\mu}{\gamma_{\alpha,d}} + c_1 C_{\delta}^p \mu^p + (p_{0+} p_1 C_{\delta} \mu)c_2\right) (1 + |x|)^{-q}.$$
 (6)

It is easy to show that

$$\Delta_{\alpha} v \le -\mu/\gamma_{\alpha,d} (1+|x|)^{-q}$$
 and $p_0 \phi(x) \le p_0 c_2 (1+|x|)^{-q}$.

Moreover,

$$a(x)v^p \le c_1 C_{\delta}^p \mu^p (1+|x|)^{p(\alpha-q+\delta)+m} \le c_1 C_{\delta}^p \mu^p (1+|x|)^{-q}$$

because

$$p(\alpha - q + \delta) + m = p(\alpha - q) + p\delta + m$$

$$\leq (1 + (\alpha + m)^{+}/(q - \alpha))(\alpha - q) + p\delta + m$$

$$\leq (1 + (\alpha + m)^{+}/(q - \alpha) + \delta')(\alpha - q) + p\delta + m \tag{7}$$

for some $\delta' \geq 0$. This is possible because p is strictly greater than $1 + (\alpha + m)^+/(q - \alpha)$. We consider two cases.

Case 1: $(\alpha + m)^+ = 0$ and $\alpha + m < 0$. In this case we choose $\delta' = 0$ and the right hand side in the last inequality becomes $(\alpha - q) + p\delta + m$. Now we can choose δ so small as to make $\alpha + p\delta + m$ negative and, so, $(\alpha - q) + p\delta + m \le -q$.

Case 2: $(\alpha + m)^+ \ge 0$ and $\alpha + m \ge 0$. The RHS in (7) becomes

$$\alpha - q - (\alpha + m)^{+} + \delta'(\alpha - q) + p\delta + m$$

$$= \alpha - q - (\alpha + m) + \delta'(\alpha - q) + p\delta + m$$

$$= -q + \delta'(\alpha - q) + p\delta.$$

Now we can choose δ so small that $\delta'(\alpha - q) + p\delta$ is negative. Then the whole thing is less than or equal to -q. Thus, Case 2 is also done. In addition,

$$p_1 v \phi(x) \le p_1 c_2 C_{\partial} \mu(1+|x|)^{\alpha-q+\partial-q} \le p_1 c_2 C_{\partial} \mu(1+|x|)^{-q},$$

this being so because $\alpha - q + \partial$ is negative. In this way (6) is justified.

Now, by first choosing μ sufficiently small so that $C^p_{\delta}\mu^p \leq 1/2 \cdot \mu/\gamma_{\alpha,d}$, and then choosing $p_0, p_1 > 0$ sufficiently small, the RHS of (6) can be made negative. Using the maximum principle together with the first inequality in (4), it follows that for all sufficiently small $c, p_0, p_1 > 0$, the solution u(x, t) to (1) with $f(x) \leq c(1 + |x|)^{\alpha-q}$ satisfies $u(x, t) \leq v(x)$, and is thus a global solution.

Our next goal is to increase the exponent $\alpha - q$ appearing in the bound for f, up to the exponent $-(\alpha + m)^+/(p-1) - \epsilon$ figuring in the statement of the theorem.

We argue as follows. By assumption $p > 1 + (\alpha + m)^+/(q - \alpha)$. This implies

$$p-1 > (\alpha + m)^+/(q-\alpha),$$

which in turn yields

$$\alpha - q < -(\alpha + m)^+/(p-1).$$

We can now choose $q \equiv q_0$ so that the last inequality becomes an equality. Let $q_1\epsilon(q_0,q)$. Then q_1 satisfies the above inequality, and from the above results it follows that, if

$$\phi(x) \le c_2 (1 + |x|)^{-q_1}$$

for some $c_1 > 0$, then for sufficiently small $c, p_0, p_1 > 0$, the solution to (1) with $f(x) \le c(1+|x|)^{\alpha-q_1}$ is global. But then, by the maximum principle, the same holds true if we decrease ϕ so that it satisfies the bound in the statement of the theorem, namely $\phi(x) \le c_2(1+|x|)^{-q}$.

Subsuming, we have proved that (1) possesses a global solution provided that $c, p_0, p_1 > 0$ are sufficiently small, and $f(x) \leq c(1 + |x|)^{\alpha - q_1}$ for all $q_1 \in (q_0, q)$. Since q_1 can be chosen arbitrarily close to q_0 , it follows that a global solution exists if

$$f(x) \le c(1+|x|)^{-(\alpha+m)^+/(p-1)-\epsilon}$$

for some $\epsilon > 0$ and c > 0 sufficiently small. This completes the proof of global existence.

Notice that, when $a(x) \equiv 1$, the first condition for global solution disappears and the exponent in the bound of f we obtain α instead of $(\alpha + m)^+$. Also, it can easily be seen that when $p_1 = 0$ we can apply just the same proof.

2.2 Proof of Theorem 2

Our approach here is an adaptation of the technique used in the proof of Theorem 1. We use again Inequality (4). Let v be given by (5). There exists $\delta > 0$ such that

$$\Delta_{\alpha} v - v_t + a(x) \sum_{k=2}^{\infty} p_k v^k + (p_0 + p_1 v) \phi(x)$$

$$\leq \left(\frac{-\mu}{\gamma_{\alpha,d}} + c_1 \sum_{k=2}^{\infty} p_k C_{\delta}^k \mu^k + (p_0 + p_1 v) c_2 \right) (1 + |x|)^{-q}. \tag{8}$$

Indeed, as before, $\Delta_{\alpha}v \leq -\mu/\gamma_{\alpha,d}(1+|x|)^{-q}$ and $p_0\phi(x) \leq p_0c_2(1+|x|)^{-q}$. Moreover,

$$a(x) \sum_{k=2}^{\infty} p_k v^k \le c_1 \sum_{k=2}^{\infty} p_k C_{\delta}^k \mu^k (1+|x|)^{m+k(\alpha-q+\delta)}$$

for all $\delta > 0$. Since the inequality

$$m + k(\alpha - q + \delta) \le m + 2(\alpha - q + \delta)$$

is valid for all k, it suffices to show that $m+2(\alpha-q+\delta)\leq -q$. Again two cases arise: If $\alpha+m<0$, then we choose $\delta>0$ so small that $m+\alpha+\delta<0$, and thus, $m+2(\alpha-q+\delta)\leq -q$. In case of $\alpha+m\geq 0$, since $q-\alpha>(\alpha+m)^+=\alpha+m$, we can choose $\delta>0$ so small that $m+\alpha+(\alpha-q)+\delta$ is negative. Hence, $m+2(\alpha-q+\delta)\leq -q$. In addition, because of $\alpha-q+\delta<0$,

$$p_1 v \phi(x) \le p_1 c_2 C_\delta \mu(1+|x|)^{\alpha-q+\delta-q} \le p_1 c_2 C_\delta \mu(1+|x|)^{-q}.$$

Thus (8) is satisfied. Now, by first choosing μ so small so $C^p_{\delta}\mu^p \leq 1/2 \cdot \mu/\gamma_{\alpha,d}$ and then choosing $p_0, p_1 > 0$ sufficiently small, the RHS of (8) can be made negative. Hence, using the maximum principle together with the first inequality in (4), it follows that for sufficiently small $c, p_0, p_1 > 0$ the solution u(x, t) to (3) with $f(x) \leq c(1 + |x|)^{\alpha-q}$ satisfies $u(x, t) \leq v(x)$, and is thus a global solution.

In order to increase the exponent $\alpha - q$ appearing in the bound for f to the exponent $-(\alpha + m)^+ - \epsilon$ appearing in the statement of the theorem, we argue as follows.

By assumption $q - \alpha > (\alpha + m)^+$ and so $\alpha - q < (\alpha + m)^+$. Let q_0 be such that the above inequality becomes an equality if we replace q by q_0 . Let $q_1 \in (q_0, q)$.

Then q_1 satisfies the above inequality. So, by the above results, it follows that if $\phi(x) \leq c_2(1+|x|)^{-q_1}$ for some $c_1 > 0$, then for sufficiently small $p_0, p_1 > 0$ and sufficiently small c > 0, the solution to (3) with $f(x) \leq c(1+|x|)^{\alpha-q_1}$ is global. But then, by the maximum principle, the same conclusion holds true if we decrease ϕ so that it satisfies the original bound, that is, $\phi(x) \leq c_2(1+|x|)^{-q}$. In this way we have proved that (3) possesses a global solution provided that $p_0, p_1 > 0$ and c > 0 are sufficiently small, and $f(x) \leq c(1+|x|)^{\alpha-q_1}$ for all $q_1 \in (q_0, q)$. Since q_1 can be chosen arbitrarily close to q_0 , it follows that the solution to (3) is global if $f(x) \leq c(1+|x|)^{-(\alpha+m)^+-\epsilon}$ for some $\epsilon > 0$ and c > 0 small.

When $a(x) \equiv 1$, the first condition for existence of global solution disappears, and in the bound of f, we get α instead of $(\alpha + m)^+$. Finally, it is easy to see that the same argument also works when $p_1 = 0$.

3 Remaining proofs

In this section we prove the following statement:

There exists a $c_1 > 0$ and, for all $\delta > 0$, a $C_{\delta} > 0$ such that

$$c_1(1+|x|)^{\alpha-q} \le \int_{\mathbb{R}^d} (1+|y|)^{-q}/|x-y|^{d-\alpha}dy \le C_{\delta}(1+|x|)^{\alpha-q+\delta}, \quad q \in (\alpha,d].$$

In order to prove the second inequality we need the following lemma.

Lemma 4 The integral

$$\int_{\mathbb{R}^d} \frac{(1+|x|)^{q-\alpha-\partial}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy \tag{9}$$

is a bounded function of x for any $\delta \in (0, q - \alpha)$.

Proof. Let $x \in \mathbb{R}^d$ be fixed. We split (9) into three integrals over the Borel sets

$$D_1 = \{ y \in R^d : |x - y| < |x|/2 \}$$

$$D_2 = \{ y \in R^d : |x - y| > |x|/2, |x - y| < |y|/2 \}$$

$$D_3 = \{ y \in R^d : |x - y| > |x|/2, |x - y| > |y|/2 \}$$

and proceed in two steps as follows.

Step 1: For the integral over D_1 we have,

$$\int_{D_1} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy \le \text{Const.}(1+|x|)^{-\alpha-\delta} \int_{D_1} |x-y|^{d-\alpha} \, dy. \tag{10}$$

This is so because |x-y|<|x|/2 and |x|-|y|<|x|/2 imply |y|>|x|/2, and therefore

$$(1+|x|)^q/(1+|y|)^q \le (1+|x|)^q/(1+\frac{|x|}{2})^q \le \text{Const.}$$

At this stage we pass to polar co-ordinates

$$(y_1 - x_1, y_2 - x_2, \dots, y_d - x_d) \longrightarrow (r \cos \theta_1, r \sin \theta_1 \cos \theta_2, \dots, r \sin \theta_1 \sin \theta_2 \dots \sin \theta_d),$$

the Jacobian of the transformation being equal to $r^{d-1} \sin^{d-2} \theta_1 \cdots \sin \theta_{d-2}$. After the change of variables the RHS of (10) becomes

$$\operatorname{Const.}(1+|x|)^{-\alpha-\delta} \int_{0}^{|x|/2} \int_{\theta_{1}} \cdots \int_{\theta_{d-1}} r \sin^{d-2} \theta_{1} \cdots \sin \theta_{d-2} d\theta_{d-2} \cdots d\theta_{1} dr \\
\leq \operatorname{Const.}(1+|x|)^{-\alpha-\delta} \cdot \int_{0}^{|x|/2} r dr \\
\leq \operatorname{Const.}(1+|x|)^{-\alpha-\delta} \cdot |x|^{2} \\
\leq \operatorname{Const.},$$

which shows that the integral over D_1 is bounded in x.

Step 2: In order to bound from above the integral over D_2 , we first assume that |x| < 1. In this case $(1 + |x|)^{q-\alpha-\delta} \le \text{Const.}$, and

$$\int_{D_2} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy \leq \text{Const.} \int_{D_2} \frac{dy}{|x-y|^{d-\alpha}(1+|y|)^q} \\
\leq \text{Const.} \int_{D_2} \frac{dy}{|x-y|^{d-\alpha}} \\
\leq \text{Const.} \int_{\{y:|x|/2<|x-y|<|x|\}} \frac{dy}{|x-y|^{d-\alpha}}$$

because |x-y| < |y|/2 and |y| - |x| < |y|/2, and therefore |x| > |y|/2, which implies |x-y| < |y|/2 < |x| and thus |x|/2 < |x-y| < |x|. Passing to polar coordinates

renders

$$\int_{D_2} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} dy \leq \operatorname{Const.} \int_{|x|/2}^{|x|} \int_{\theta_1} \dots \int_{\theta_d} r \sin^{d-2} \theta_1 \dots \sin \theta_{d-2} d\theta_{d-2} \dots d\theta_1 dr$$

$$\leq \operatorname{Const.} \int_{|x|/2}^{|x|} r dr$$

$$\leq \operatorname{Const.}$$

Hence, the integral over D_2 is bounded in x if $|x| \leq 1$.

Assume now that $|x| \geq 1$. Then we have

$$\int_{D_2} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy \le \text{Const.} \int_{D_2} \frac{(1+|x|)^{-\alpha-\delta}}{|x-y|^{d-\alpha}} \, dy. \tag{11}$$

This is so because |x-y|<|y|/2 together with the triangle inequality imply |y|>2/3|x|, hence $(1+|x|)^q/(1+|y|)^q)\leq \text{Const.}$ Notice also that |x-y|<|x|/2 implies

$$|x - y| + 1/2 < 1/2 + |x|/2 = (1 + |x|)/2,$$

which in turn gives 1/(1+|x|) < Const.(1/|x-y|). We can now bound from above the RHS of (11) by

Const.
$$\int_{D_2} 1/|x-y|^{d-\alpha+\alpha+\delta} dy = \text{Const.} \int_{D_2} 1/|x-y|^{d+\delta} dy.$$

Using polar coordinates as before, we see that the LHS of (11) is bounded from above by

Const.
$$\int_{\{y: |x|/2 < |x-y| < |x|\}} r dr = \frac{1}{\delta |x|^{\delta}}.$$

This shows that the integral over D_2 is bounded in x also in the case $|x| \geq 1$. We conclude that the integral over D_2 is bounded in x.

In order to bound the last integral we split D_3 into two parts D_{31} and D_{32} , where

$$D_{31} = \{y : |x - y| > |x|/2, |x - y| > |y|/2, |x - y| \le 1\},\$$

$$D_{32} = \{y : |x - y| > |x|/2, |x - y| > |y|/2, |x - y| > 1\}.$$

We have $|x| \leq 2$ on D_{31} as |x-y| > |x|/2 and $|x-y| \leq 1$ imply $|x|/2 \leq 1$. Therefore,

$$\int_{D_{31}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} dy \leq \operatorname{Const.} \int_{D_{31}} \frac{dy}{|x-y|^{d-\alpha}(1+|y|)^q} \\
\leq \operatorname{Const.} \int_{D_{31}} |x-y|^{\alpha-d} dy \\
\leq \operatorname{Const.} \int_{\{y: |x|/2 \le |x-y| \le 1\}} |x-y|^{\alpha-d} dy \\
\leq \operatorname{Const.} \int_{|x|/2}^1 r dr \\
\leq \operatorname{Const.},$$

where we passed to polar coordinates after the third inequality, and used that $0 \le |x| \le 2$ to obtain the last inequality.

For the integral over D_{32} we have

$$\int_{D_{32}} \frac{(1+|x|)^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy \le \int_{D_{32}} \frac{|x-y|^{q-\alpha-\delta}}{|x-y|^{d-\alpha}(1+|y|)^q} \, dy.$$

This is because |x-y| > |x|/2 and |x-y| > 1 on D_{32} , and so $(1+|x|)/2 \le \text{Const.}|x-y|$. Since |x-y| > |y|/2 and |x-y| > 1 yield both $|x-y| > \{1+|y|\}/2$ and 1+|y| < Const.|x-y|, the above inequality becomes

$$\leq \text{Const.} \int_{D_{32}} 1/\{|x-y|^{d-q+\delta} (1+|y|)^q\} dy$$

$$\leq \text{Const.} \int_{D_{32}} 1/\{(1+|y|)^{d-q+\delta} (1+|y|)^q\} dy$$

$$\leq \text{Const.} \int_{D_{32}} 1/(1+|y|)^{d+\delta} dy,$$

which, after passing to polar coordinates renders

$$\leq \operatorname{Const.} \int_{R^d} 1/(1+|y|)^{d+\delta} \, dy$$

$$\leq \operatorname{Const.} \int_0^\infty r^{d-1}/(1+r)^{d+\delta} \, dr$$

$$\leq \operatorname{Const.} \int_0^\infty r^{d-1}/(1+r)^{d+\delta} \, dr$$

$$\leq \operatorname{Const.} \int_0^\infty 1/(1+r)^{1+\delta} \, dr$$

$$\leq \operatorname{Const.} \int_0^\infty 1/s^{1+\delta} \, ds = [-1/\delta s^\delta]_1^\infty$$

$$= 1/\delta.$$

Thus, the integral over D_3 is also bounded in x. Lemma (4) is proved.

3.1 Proof of Lemma 3

The RHS inequality in (4) follows directly from Lemma (4).

We now prove the remaining inequality in (4). Notice that

$$\int_{R^d} (1+|y|)^{-q}/|x-y|^{d-\alpha} \, dy \ge \text{Const.} (1+|x|)^{-q} \int_{D_1} |x-y|^{\alpha-d} \, dy. \tag{12}$$

This is because |x-y| < |x|/2 on D_1 , which implies |y| < 3|x|/2. Hence,

$$(1+|x|)^q/(1+|y|)^q \ge (1+|x|)^q/(1+3|x|/2)^q \ge \text{Const.},$$

yielding $(1+|y|)^{-q} \ge \text{Const.}(1+|x|)^{-q}$. We use once again polar coordinates to show

that the LHS of (12) equals

$$\operatorname{Const.}(1+|x|)^{-q} \int_{\{y:\ 0<|x-y|<|x|/2\}} |x-y|^{\alpha-d} dy
= \operatorname{Const.}(1+|x|)^{-q} \int_{0}^{|x|/2} \int_{\theta_{1}} \dots \int_{\theta_{d-1}} r^{d-1}/r^{d-2} \sin^{d-2}\theta_{1} \dots \sin\theta_{d-2} d\theta_{d-2} \dots d\theta_{1} dr
= \operatorname{Const.}(1+|x|)^{-q} \int_{0}^{|x|/2} r \cdot f(\pi, d) dr
= \operatorname{Const.}(1+|x|)^{-q} \int_{0}^{|x|/2} r dr
= (1+|x|)^{-q} \cdot |x|^{2}.$$

Subsuming, we have proved that

$$\int_{\mathbb{R}^d} (1+|y|)^{-q}/|x-y|^{d-\alpha} dy \ge \text{Const.}(1+|x|)^{-q} \cdot |x|^2.$$

From here, the left-hand inequality in (4) follows easily if $|x| \ge 1$. In the case |x| < 1 one has to verify that $\int_{R^d} (1+|y|)^{-q}/|x-y|^{d-\alpha}dy$ is bounded away from zero. To prove this, notice that, as |x| < 1,

$$\int_{R^d} (1+|y|)^{-q}/|x-y|^{d-\alpha}dy \ge \int_{R^d} (1+|y|)^{-q}/(|x|+|y|)^{d-\alpha}dy$$

$$\ge \int_{R^d} (1+|y|)^{-q}/(1+|y|)^{d-\alpha}dy$$

$$= \int_{R^d} (1/(1+|y|)^{d-\alpha+q}dy$$

which is a non-zero constant, and hence is no smaller than $C_*(1+|x|)^{-q}$ for a suitable constant $C_* > 0$. This proves Lemma 3.

References

[1] Bogdan, K. and Byczkowski, T. Potential theory for the α -stable Schrödinger operator on bounded Lipschitz domains. *Studia Math.* **133** (1999), no. 1, 53–92.

- [2] Iscoe, I. A weighted occupation time for a class of measure-valued branching processes. *Probab. Theory Relat. Fields* **71** (1986), no. 1, 85–116.
- [3] Lee T.Y., Some limit theorems for super-Brownian motion and semilinear differential equations, *Annals of Probab.* **21** (1993), 979-995.
- [4] Lee T.Y., Asymptotic Results for Super-Brownian Motions and Semilinear Differential Equations. *The Annals of Probability* **29**, No. 3, pp. 1047-1060.
- [5] Pinsky, Ross G. Finite time blow-up for the inhomogeneous equation $u_t = \Delta u + a(x)u^p + \lambda \phi$ in \mathbb{R}^d . Proc. Amer. Math. Soc. 127 (1999), no. 11, 3319–3327.
- [6] Zhang, Qi S. A new critical phenomenon for semilinear parabolic problems. *J. Math. Anal. Appl.* **219** (1998), no. 1, 125–139.