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Abstract

For two combinations of proportional and excess of loss reinsurance
in a renewal risk process, we investigate existence of the insurer’s ad-
justment coefficient as a function of retention levels, assuming that the
premiums are calculated according to the expected value principle. In the
classical Poisson compound case with exponentially distributed claims we
prove, under some additional assumptions, unimodality of the adjustment
coefficient as a function of the retention levels. For the maximal adjust-
ment coefficient the ruin probability is minimal. Our results complement
previous work of Waters [8], Centeno [3] and Hesselager [4].
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1 Introduction and Background Results

In several papers and textbooks on optimal reinsurance, it is assumed that the
insurer estimates the probability of ruin using the Cramer-Lundberg approxi-
mation (if the adjustment coefficient exists). Thus, as the adjustment exponent
increases, the ruin probability decreases exponentially fast. The effects of rein-
surance treaties on the Cramer-Lundberg coefficient have been investigated
in various papers (see e.g. Waters (1979,1983), Hesselager (1990), Kaluszka
(2001), Centeno (1985,1986,2002), and the references therein). Assuming that
the reinsurer premiums are calculated according to the standard deviation and
variance principles, Hesselager (1990) studied optimal reinsurance treaties when
both, the insurer and the reinsurer, aim to minimize their ruin probabilities. He
considered three different types fA, fB and fC , of reinsurance compensation
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functions, namely

fA(x) = ax+ (1− a) max{0, x−M}
fB(x) = min{ax,max{0, x−M}}
fC(x) = amax{0, x−M},

where a ∈ [0, 1] and M ≥ 0 are fixed parameters of the model, termed retention
levels. Hesselager proved that for all global and individual reinsurance treaties
with general Vajda compensation function f, the corresponding reinsurer’s ad-
justment coefficient Rf fulfills

RfA ≤ Rf ≤ RfB ,

and if f is convex, then
RfA ≤ Rf ≤ RfC .

As a consequence, the ruin probability for the reinsurer is minimal for reinsur-
ance treaties B and C, respectively.

Centeno (2002) investigated reinsurance treaties of type A for renewal risk
models. In the case when the proportional reinsurance premium is calculated
on original terms, and the excess of loss premium is calculated according to the
expected value principle, she proved that the insurer’s adjustment coefficient
has a unique maximum with respect to the retention levels a and M (this
property of the coefficient is called unimodality).

Following the approach of Centeno (2002), in this paper we investigate rein-
surance treaties of types B and C. Assuming that the premiums are calculated
according to the expected value principle, we obtain conditions for existence of
the insurer’s adjustment coefficient as a function of levels M and a. In the case
of classical risk processes with exponentially distributed claims, under some
restrictions on the reinsurance levels a,M and the premium c, we also prove
unimodality of the adjustment coefficient.

The general renewal risk model is described as follows (for more details see
e.g. Rolski et all. [6]). The number of claims N(t) arriving at a insurance
company in the time interval [0, t] is given by N(t) = sup{n : Sn ≤ t}, where
S0 = 0, Sn = T1 + T2 + · · · + Tn, and Tn is the interarrival time between
the (n − 1)th and the nth claims. We suppose that {Tn}∞n=1 is a sequence of
independent and identically distributed random variables with mean value 1/γ.

Let {Xn}∞n=1 be a sequence of non-negative, independent and identically
distributed random variables, having common distribution function F with
mean µ and density function f . Here Xn corresponds to the amount of nth
claim. We assume that the moment generating function MX(r) = E[erXi ]
exists on (−∞, τ) for some 0 < τ ≤ ∞. We also assume that {Xn}∞n=1 is
independent of {Tn}∞n=1, and that F is strictly increasing in [0,∞) with F (0) =
0. This implies 0 < F (x) < 1 for all x > 0. The risk process {Yt, t ≥ 0} is
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defined by

Y (t) = ct−
N(t)∑
n=1

Xn,

where c > 0 is the insurer’s premium income per unit time. The classical risk
process corresponds to exponentially distributed interarrival times. The ruin
probability ψ(u) associated to an initial capital u ≥ 0 is defined by

ψ(u) = inf{t > 0 : Y (t) < 0}.

We suppose that our model satisfies the positive safety loading condition

c > λµ, (1)

which yields ψ(u) < 1 for each u ≥ 0.
Let Yn = Xn − cTn, n = 1, 2, . . . , and let g(r) = EerYn be the moment

generating function of Yn. The adjustment coefficient R of the risk process
{Y (t), t ≥ 0} is defined as the unique positive solution to the equation g(r) = 1,
when such solution exists, and 0 otherwise, and satisfies the Cramer-Lundberg
inequality

ψ(u) ≤ e−Ru, u ≥ 0, (2)

and the Cramer-Lundberg approximation

ψ(u) ≈ Ce−Ru, u→∞, (3)

for some constant C.
Because of the last inequality, the adjustment coefficient is considered a

measure of riskiness of {Y (t), t ≥ 0}. Hence, maximization of R as a function
of the parameters of the process is relevant; we will consider the important case
in which the insurance company takes a reinsurance contract.

2 Main Results and Proofs

We suppose that the insurer has the choice of reinsuring risk by reinsurance
treaties of type B and C. This means that the reinsurer retains in the nth

claim the amounts

ZB
n = min{aXn,max(0, Xn −M)},

and
ZC

n = amax{(0, Xn −M)},

respectively, and the reinsurer covers the difference Xn − Zn. We will suppose
that the retention limits a and M are real numbers satisfying M ≥ 0 and
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0 ≤ a < 1. (The case a = 1 is a particular instance of the reinsurance model
studied by Centeno (2002)).

We also assume that the corresponding reinsurance premiums PB
a,M and

PC
a,M are calculated according to the expected value principle with loading

coefficient α, i.e.,

PB
a,M

= (1 + α)γE[ZB
n ] = (1 + α)γE[min{aXn,max(0, Xn −M)}]

= (1 + α)γ

[∫ M
1−a

M

xf(x) dx−M
[
F (

M

1− a
)− F (M)

]
+
∫ ∞

M
1−a

axf(x)dx

]
,

and

PB
a,M = (1 + α)γE[ZB

n ] = (1 + α)γ
[∫ ∞

M

(x−M)f(x) dx
]
.

Thus, for treaties of type B, the insurer’s adjustment coefficient Ra,M is the
unique positive root of

ga,M (r) := E[er(Xn−ZB
n )−crT+rTP B

a,M ] = 1 (4)

if such solution exists, and 0 otherwise. The adjustment coefficient for treaties
of type C are defined similarly. Since

ψ(u) ≈ Ce−Ra,M u

for big u by (3), a natural question is to determine whether the adjustment
coefficient is a unimodal function of the parameters a and M and what is its
maximum.

In addition to (1), let us assume that

(1 + α)γµ > c. (5)

This condition reflects the fact that the insurer cannot insure the whole risk.
Let us denote by W (a,M) the insurer’s net profit per period of time after

reinsurance. We write
a0 =

c− γµ
αγµ

and put

A = {a : 0 ≤ a < 1, and there exists M ≥ 0 withEW (a,M) = 0.}

From (1) and (5) it follows that 0 < a0 < 1. Notice that

EW (a,M) = c− (1 + α) γEZn − γE (Xn − Zn)
= c− αγEZn − γµ.
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Let L be the set of points (a,M) for which the expected profit is strictly
positive, namely

L = {(a,M) : 0 ≤ a < 1, M ≥ 0, E [W (a,M)] > 0} .

The following result can be proved similarly as in Centeno (2002).

Lemma 1. For both types of reinsurance treaties B and C, the adjustment
coefficient Ra,M is positive if and only if (a,M) ∈ L.

Our first result is the following theorem.

Theorem 1. Under conditions (1) and (5), for both types of reinsurance
treaties B and C,

a) A = [a0, 1).
b) For all a ∈ A there exists a unique M ≥ 0 such that E [W (a,M)] = 0.

Let us denote this dependence function of M on a by Φ(a), where Φ : A →
[0,∞). Then for M > Φ(a) we have that Ra,M > 0.

c) Φ has continuous first derivative.
d) Φ(a0) = 0.

Proof. Let 1 ≥ a > a0. Due to condition (5) we have

E [W (a, 0)] = c− αγaµ− γµ < 0

for both types of reinsurance treaties B and C. The safety loading condition
gives

lim
M→∞

E [W (a,M)] = c− γµ > 0.

Since EW (a, ·) is continuous, the equation

E [W (a, ·)] = 0 (6)

has at least one positive solution. In case of reinsurance treaty B

∂E [W (a,M)]
∂M

= αγ

[
F

(
M

1− a

)
− F (M)

]
> 0, (7)

whereas in case of reinsurance treaty C,

∂E [W (a,M)]
∂M

= aαγ(1− F (M)) > 0, (8)

which shows that the solution to (6) is unique. Moreover, there is no M ≥ 0
satisfying E [W (a,M)] = 0 for 0 ≤ a < a0. This follows from (7), (8), and
the inequalities EW (a, 0) > 0, 0 ≤ a < a0. Using again (7), (8) and that
EW (a0, 0) = 0, we obtain a) and b). Part c) follows easily from the explicit
function theorem, and d) is a consequence of c) and the fact that EW (a0, 0) =
0.
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The study of unimodality of Ra,M as an implicit solution of (4) can be com-
plicated for general distributions of T and Xn. Here we consider the particular
case of a classical risk process with exponentially distributed claims. Without
loss of generality, we can assume that µ = 1.

We have the following results on the unimodality of the adjustment coeffi-
cient.

Theorem 2. Consider a classical risk process with exponentially dis-
tributed claims and reinsurance treaty of type B. Let a ≥ a0, and we assume

(1 + α)γ > c > γ > 1, (9)

M > max
{
α,
γ ln[(1 + α)γ]

γ − 1

}
.

Then, the insurer’s adjustment coefficient Ra,M is a unimodal function of M,
and attains its maximum at the point R′ = M−1 ln[(1 + α)γ]. In particular,
the maximal adjustment coefficiet coincides with the maximal adjustment co-
efficient obtained by Centeno [3] in the case of the classical risk model with
exponentially distributed claims and reinsurance treaty of type A.

Proof. We have

Pa,M = (1 + α)γE[min{aXn,max(0, Xn −M)}]

= (1 + α)γ
[
e−M − (1− a)e−

M
1−a

]
and

E[erTPa,M−crT ] =
1

1 + cr − r(1 + α)γ
[
e−M − (1− a)e−

M
1−a

] . (10)

Calculating the moment generating function of Xn − Zn we obtain that it
exists for r < 1

1−a , and for r 6= 1,

E[er(Xn−Zn)] =
e(r−1)M

r − 1
− 1
r − 1

−e
M(r−ra−1)

1−a +eM(r−1)− 1
r − ra− 1

e
M(r−ra−1)

1−a .

(11)
Let us note that for a ≥ a0, and M satisfying (9), we have E(W (a,M) > 0,
that is

e−M − (1− a)e−
M

1−a <
c− γ
αγ

, (12)

hence the adjustment coefficient Ra,M exists and is positive, from Theorem 1.
Substituting (10) and (11) into (4), we obtain that Ra,M satisfies the equation

A(a,Ra,M ,M) = 0, (13)
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where

A(a, r,M) := (r − ra− 1)e(r−1)M

−(1 + α)γ(r − 1)(r − ra− 1)[e−M − (1− a)e−
M

1−a ]

−(r − 1)(1− a)e
M(r−ra−1)

1−a − (r − ra− 1)[1 + (r − 1)c].

We will show that the solution Ra,M is a unimodal function of M .
Indeed, the implicit function theorem gives

d

dM
Ra,M = − (d/dM)A(a, r,M)

(d/dr)A(a, r,M)
|r=Ra,M

.

Since

d

dM
A(a, r,M) = (r − 1)(r − ra− 1)[e(r−1)M

+(1 + α)γ(−e−M + e−
M

1−a )− eM(r− 1
1−a ]

= (r − 1)(r − ra− 1)[erM − (1 + α)γ][e−M − e−
M

1−a ],

the function R(a,M) has a unique possible inflection point, given by

R′ =
ln[(1 + α)γ]

M
. (14)

We will prove that d2A(a,r,M)
dM2 |r=R′ < 0, thus showing that Ra,M is a unimodal

function of M , attaining its maximum at R′.
Differentiating Ra,M twice with respect to M at the point R′, we obtain

from the implicit function theorem that

d2Ra,M

dM2
|r=R′ = − (d2/dM2)A(a, r,M)

(d/dr)A(a, r,M)
|r=R′ .

Calculating the derivatives in this expression, we get

d2A(a, r,M)
dM2

|r=R′ = (1 + α)γr(e−M − e−
M

1−a ) > 0.

Calculating the derivative (d/dr)A(a, r,M), we have

dA(a, r,M)
dr

= (1− a)e(r−1)M +M(r − ra− 1)e(r−1)M

−(1 + α)γ(r − ra− 1)[e−M − (1− a)e−
M

1−a ]

−(1 + α)γ(r − 1)(1− a)[e−M − (1− a)e−
M

1−a ]

−(1− a)eM(r− 1
1−a ) − (r − 1)MeM(r− 1

1−a )

−(1− a)(1 + rc− c)− c(r − ra− 1).
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Substituting (14) in the previous equation and using (12), we obtain

(d/dr)A(a, r,M)|r=R′

= (1 + α)γ(1− a)e−M + (1 + α)γ(R′ −R′a− 1)Me−M (15)

−(1 + α)γ(R′ −R′a− 1)[e−M − (1− a)e−
M

1−a ]

−(1 + α)γ(R′ − 1)(1− a)[e−M − (1− a)e−
M

1−a ]

−(1 + α)γ(1− a)e−
M

1−a − (1 + α)Mγ(R′ − 1)e−
M

1−a

−(1− a)(1 +R′c− c)− c(R′ −R′a− 1)
> (1 + α)γ(1− a)e−M + (1 + α)γ(R′ −R′a− 1)Me−M

−(1 + α)γ(R′ −R′a− 1)
c− γ
αγ

−(1 + α)γ(R′ − 1)(1− a)
c− γ
αγ

−(1 + α)γ(1− a)e−
M

1−a − (1 + α)γ(R′ − 1)Me−
M

1−a

−(1− a)(1 +R′c− c)− c(R′ −R′a− 1).

Further, using e−M > e−
M

1−a , and R′ < 1, it holds

(d/dr)A(a, r,M)|r=R′

> (1 + α)γ(−R′ +R′a+ 1)[−Me−M +
c

(1 + α)γ)
]− (1− a)(1 +R′c− c)

> 0,

where in the last inequality we used our assumptions on c,M and γ, to obtain
that both addends are positive.

Theorem 3. Consider a classical risk process with exponentially dis-
tributed claims and reinsurance treaty of type C. Let a ≥ a0. Under assump-
tions (1) and (5), there exists some positive constant M0, such that for all
M > M0, the insurer’s adjustment coefficient Ra,M is a unimodal function of
M, and attains its maximum at the unique point satisfying

M =
1

Ra,M
ln[α(1 +Ra,Ma−Ra,M )].

Proof. We proceed similarly as in the proof of Theorem 2. We have

Pa,M = (1 + α)γaE[max(0, Xn −M)] = (1 + α)γae−M ,

and
E[erTP(a,M)−crT ] =

1
1 + cr − r(1 + α)γae−M

(16)

for all r satisfying
1 + cr − r(1 + α)γae−M > 0.
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The moment generating function of Xn − Zn exists for r < 1
1−a , and is given

for r 6= 1 by

E[er(Xn−Zn)] = − 1
r − 1

− raeM(r−1)

(r − 1)(r − ra− 1)
. (17)

Substituting (16) and (17) into (4) yields that for fixed a ≥ a0, M ≥ Φ(a), the
adjustment coefficient Ra,M exists and solves the equation

− 1
r − 1

− raeM(r−1)

(r − 1)(r − ra− 1)
= 1 + cr − r(1 + α)γae−M ,

which is equivalent to

A(a,M, r) := (r−1)(r−ra−1)[1+cr−(1+α)are−M ]+raeM(r−1)+r−ra−1 = 0.
(18)

From the implicit function theorem we obtain

d

dM
Ra,M = − (d/dM)A(a,M, r)

(d/dr)A(a,M, r)
|r=Ra,M

.

The possible inflection points R′′ of Ra,M satisfy (d/dM)A(a,M, r)|r=R′′ = 0.
Since

(d/dM)A(a,M, r) = r(r − 1)a[(1 + α)(r − ra− 1)e−M + eM(r−1)],

we obtain that R′′ satisfies

M =
ln[α(1 +R′′a−R′′)]

R′′
.

From the previous expression we obtain that limM→∞R′′ = 0, hence there
exists M1 > 0 such that for M > M1 we have R′′ < 1.

We will show that there exists M0 > 0 such that for M > M0 we have
d2A(a,M,r)

dM2 |r=R′′ < 0, thus proving that Ra,M is a unimodal function of M ,
attaining its unique maximum at R′′. We have

(d2/dM2)Ra,M = − (d2/dM2)A(a,M, r)
(d/dr)A(a,M, r)

|r=R′′ ,

and for M > M1,

(d2/dM2)A(a,M, r)|r=R′′ = −R′′2(R′′ − 1)ae−Mα(R′′ −R′′a− 1) < 0.

On the other hand,

(d/dr)A(a,M, r)|r=R′′

= (R′′ −R′′a− 1)[1 + cR′′ − (1 + α)aR′′e−M ] + (R′′ − 1)(1− a)[1 + cR′′

−(1 + α)aR′′e−M ]
+(R′′ −R′′a− 1)[c− (1 + α)ae−M ] + a(1 + α)e−M (1 +R′′a−R′′)
+R′′aMe−M (1 + α)(1 +R′′a−R′′) + 1− a.
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Using that limM→∞R′′ = 0, we obtain

lim
M→∞

(d/dr)A(a,M,R′′) = −1− c < 0,

hence there exists M0 such that for M > M0 there holds

d2A(a,M, r)
dM2

|r=R′′a,M
< 0.

3 Conclusions

For renewal risk models we considered two different types of reinsurance treaties,
B and C, respectively, which are combinations of excess-of-loss and quota-share
contracts. Following the approach of Centeno [3], in Theorem 1 we obtained
conditions on the reinsurance levels a and M and on the premium c, which
give for general renewal risk models existence of the corresponding adjustment
coefficients Ra,M .

Due to the complicated form of the equation which satisfies the adjustment
coefficient Ra,M for general renewal risk models, we considered the particular
case of classical risk models with exponentially distributed claims. In case of
reinsurance treaty of type B, we obtained in Theorem 2 explicit conditions on
a,M, and c, under which the reinsurance adjustment coefficient Ra,M is a uni-
modal function of M. The maximal reinsurance coefficient is the same as the
maximal adjustment coefficient obtained by Centeno [3], for a different type of
reinsurance treaty, and in this case the ruin probability is minimized among all
the reinsurance contracts of type B. Unimodality of Ra,M for general renewal
risk models with reinsurance treaties of type B remains to be investigated.
For classical risk models with exponentially distributed claims and reinsurance
treaties of type C, we obtained unimodality or Ra,M when M > M0, for some
constant M0, thus minimizing the ruin probability for such reinsurance con-
tracts It remains to study the unimodality of Ra,M for reinsurance treaties of
type C , for general renewal risk models.
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