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Abstract. In this note I will describe a simple, but non-trivial, explicit example

of a solution to the “coquecigrue” problem of Loday. More precisely, a Leibniz

algebra structure will be defined on R4, and therefrom a digroup contained in this
space, whose tangent space at the unit element inherits the original Leibniz algebra

structure. This illustrates both, the properties that might be expected from the

coquecigrues, and the difficulties still remaining in the full understanding of the
problem.

Introduction.

The “coquecigrue” problem of Loday may be thought of as the analog in the
context of Leibniz algebras to Lie’s third problem. That is to say, given a Leibniz
algebra, one wishes to construct a manifold possessing also an algebraic structure, in
such a way that its tangent space at some distinguished point inherits the structure
of the given Leibniz algebra; such an object was called by Loday a “coquecigrue.”
(Recall that a Leibniz algebra is a generalization of a Lie algebra, where the bracket
is bilinear and satisfies a form of the Jacobi identity, but is not assumed to be anti-
commutative, see [L1].)

Although this problem is still unsolved in full generality, perhaps the best step
towards its solution was taken by M. Kinyon in [K]. There he showed that, for a
significant class of Leibniz algebras, this can be accomplished through the use of
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Lie digroups. Essentially, his strategy was to consider the action of conjugation in
the digroup (which yields a structure sometimes referred to as a “rack”), and then,
by differentiating this action, a Leibniz bracket can be defined in the tangent space
at the identity of the digroup.

Rather independently, but along the same line of ideas, in [O] I described some
more restricted examples of digroups, determined by a linear functional ϕ on a
Leibniz algebra, and discussed in what sense they can be regarded as explicit solu-
tions to the coquecigrue problem. The interesting point here is the following: As
showed in [K], digroups have a natural splitting as the product of the subgroup
of inverses by the semigroup of bar units; for the digroups considered in [O] the
subgroup of inverses is a (real) general linear group, and moreover, these digroups
have the geometric structure of a flat trivial principal bundle. But surprisingly
enough—and contrary to what might be thought of at first, the structure group is
not the group of inverses: this is rather the base manifold of the bundle, while the
structure group is the vector space that models the affine space of bar units.

In this note, by “toying” with the quaternionic structure of R4, I will construct
a coquecigrue of a different type, embedded in R4. This coquecigrue has obvious
relations to those in [O] (e.g., it still has the structure of a bundle with connec-
tion), but it presents some differences, so I believe this provides an additional nice
illustration of both, the properties that might be expected from the coquecigrues,
and the difficulties still remaining in the full understanding of the problem.

I. A non-trivial dialgebra structure on R4.

Let us begin by recalling some basic facts.

A disemigroup is a set G together with two associative operations, a, `, satisfying
the relations

x a (y a z) = x a (y ` z)

(x ` y) a z = x ` (y a z)

(x a y) ` z = (x ` y) ` z.

A bar unit in a disemigroup is an element, e, satisfying

e ` x = x = x a e; ∀x ∈ G.
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Bar units may or may not exist in a disemigroup; but a bar unit is said to be non-
trivial if the corresponding relations from the pointer side (i.e., e a x = x = x ` e)
do not in general hold; for in that case it is well known—and easy to see—that the
two operations coincide, and the bar unit is unique. The set of bar units will be
denoted by E.

If the disemigroup does possess a non-trivial bar unit, say 1, an element x ∈ G

is (pointer) invertible (relative to the fixed bar unit) if there exists y ∈ G such that
y a x = x ` y = 1. Such an inverse is necessarily unique, but several elements
may have the same inverse. A digroup is a disemigroup in which every element has
an inverse. Given a disemigroup G with a bar unit 1, we shall denote the set of
elements of G that are inverses of some element by J . It is also well known that
both operations restricted to J coincide, and J thus becomes a group. As usual,
when the sets are manifolds and the operations involved are differentiable, we speak
of Lie digroups, etc., and hereafter we place us in this setting.

A dialgebra is a vector space, V , which is also a disemigroup, with the disemi-
group operations bilinear. If the dialgebra posseses a non-trivial bar unit 1, then
the set of bar units, sometimes called the halo of the dialgebra, is an affine subspace
of the dialgebra, modelled after the subspace N = N` ∩ aN , where

N` = {x|x ` y = 0 ∀y} ; aN = {x|y a x = 0 ∀y},

and passing through 1.

Finally, to each dialgebra one associates a Leibniz algebra, by defining the bracket
as

[x, y] = x ` y − y a x

(we follow here the convention of [K] of using left Leibniz algebras, as this seems
better suited to the analysis of the coquecigrue problem).

We are now ready to describe our construction: Let V = R4, with the standard
basis 1, i, j, k as in the quaternions. Let V = C ⊕ N , with N = 〈j, k〉 (the linear
span of j and k); essentially we want to modify the quaternionic operations, so that
1 will be a bar unit, but not a unit in the resulting dialgebra, and the halo of this
dialgebra will be E = 1 + N .
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Now, in view of the bilinearity of the operations, obviously it suffices to determine
the operations on the basis elements, and they imply

1 ` x = x a 1 = x ; j ` x = x a j = k ` x = x a k = 0 ; ∀x ∈ V.

If moreover—as implied by our notation—we also want C to be embedded in V , we
need also define

i ` 1 = 1 a i = i ; i ` i = i a i = −1,

and hence the above requests determine most of the structure constants of the dial-
gebra and we are left with the problem of determining only the following products
by i:

i ` j ; i ` k ; j a i ; k a i,

and writing the associativity conditions in terms of the basis then yields a system of
algebraic equations for the solutions of these relations. Unfortunately, this system
is somewhat ‘messy’, and although it might be of interest to classify all the possible
dialgebra structures so obtained, I will not go into this, and will only analyse the
following simple case:

i ` j = k ; i ` k = −j ; j a i = −k ; k a i = j.

The main reason why this structure is of interest is that it has a nice and easy
geometric interpretation: ` multiplication on the left by i acts as a rotation on
the plane N by π/2 in the positive direction—just as in the quaternions—while
a multiplication on the right acts as a rotation by the same amount, but in the
opposite direction (and notice that the products involved are not the same). More
generally, it follows easily that ` multiplication on the left by eiθ ∈ C acts as a
rotation in the positive sense by an angle θ, while a multiplication on the right acts
as a rotation by the same amount but in the opposite direction.

Actually, the products can be described as follows: let x = u + a, y = v + b,
where u, v ∈ C, and a, b ∈ N ; then

(1) x ` y = uv + u ` y = uv + ub ; x a y = uv + x a v = uv + v̄a,

where the bar denotes complex conjugate, and with the product that of the quater-
nions. (However, one must keep in mind that the products are not in general the
quaternionic ones; e.g., b ` u = 0.)
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It also follows easily from these considerations that this is indeed a dialgebra
structure: associativity is clear for the C and N summands separately (being the
standard structure in the former case and trivial in the latter); moreover, N is
invariant under both products, and whenever an element of N appears on the bar
side, the product is zero. Thus, only a few cases need to be checked (such as
(i ` i) ` j, or (i ` k) a i), and the computations are straightforward. Also this
shows that the dialgebra is not trivial, and neither is the associated Leibniz algebra,
since for instance, [i, k] = 2ik = −2j, while [k, i] = 0. Incidentally, the only other
non-zero bracket of basis elements is [i, j] = 2k.

We collect these remarks:

Proposition 1. The products (1) give V = R4 the structure of a dialgebra, with 1
as a bar unit. The associated Leibniz algebra is not a Lie algebra.

II. The digroup of invertible elements and its geometry.

To describe the invertible elements, let x and y be as in (1), and suppose we
want y to be the inverse of x; then we must have

x ` y = uv + ub = 1

Since ub ∈ N , necessarily v = u−1 and b = 0. Clearly, y so defined also satisfies
y a x = 1, and so y = x−1. Let us denote by G this digroup of invertible elements.

Equally clearly, we have that G = V \N , so it is an open subset and therefore
its tangent space at 1 is T1G ∼= R4, and it also follows immediately from these
considerations that the subgroup of inverses is precisely J = C∗ = C \ {0}. Finally,
it is also plain that, as a set and even as a manifold, G = E × J ∼= J × E.

Remark. As mentioned, the last remark shows that the structure of G is what
should be, cf. [K]; but incidentally, this also shows that this digroup is not of the
same type as those discussed in [O], since for those the group of inverses is a real
general linear group. (It is also not a complex version of that construction, since
some of the operations involve taking complex conjugates, but I shall not dwell
more on these matters, since they are not relevant to what follows.)

Next, we want to compute the adjoint action of G on T1G, which also gives the
rack structure associated to the digroup. By the linearity of the operations we need
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only compute the conjugation for x ∈ G and y ∈ V :

(2) x ` y a x−1 = (u + a) ` (v + b) a u−1 = uvu−1 + u ` b a u−1 = v +
u2

|u|2
b.

Notice how this acts on y: it fixes the complex part v, and rotates the direct
complement b by twice the angle of the vector u.

Finally, by differentiating this formula the Leibniz algebra structure in the tan-
gent space is obtained. This is of course a quite standard argument, but let us
actually carry it over: Thus, consider a curve x(t) in G such that x(0) = 1; then
we have to compute

d

dt
|t=0(x ` y a x−1) ; y ∈ V.

Since the operations are bilinear, it is plain that

d

dt
|t=0(x ` y a x−1) =x′(0) ` y a 1 + 1 ` y a (x−1)′(0)

=x′(0) ` y + y a (x−1)′(0),

and so we need to compute (x−1)′(0).

We know that (x−1)′(t) = (u−1)′(t) = −u−2(t)u′(t), so (x−1)′(0) = −u′(0).
Notice that this is not −x′(0); but we also know that x ` y = u ` y, so in the end
we are left with

d

dt
|t=0(x ` y a x−1) = u′(0) ` y − y a u′(0) = [u′(0), y] = [x′(0), y].

Thus, although the argument is slightly trickier than for Lie groups, the Leibniz
algebra structure in the tangent space is indeed that of V , as should be.

Let us summarize what we have up until now:

Proposition 2. The set of invertible elements in V is G = C∗ ×N ∼= J ×E, and
its tangent space at 1 naturally inherits the Leibniz algebra structure of V .

Proposition 2 tells us that the digroup G can be regarded as a solution to the
coquecigrue problem.

Now, we know that as a manifold G = J × E; the point is that it possesses
a differential geometric structure determined by the set of units (cf., [O]). More
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precisely, we want to regard G as a fiber bundle over J with fiber E (or, what is the
same, N), and we want to determine what kind of bundle structure can we get from
the dialgebra operations. To this end, we notice that any bar unit can be written
in the form x a x−1; since x a x−1 = 1 + ū−1a, this always has a component in
C, and thus gives a direction transversal to N . We claim that this can be used to
define a connection on G.

Indeed, let x ∈ G be fixed, and y ∈ V ∼= TxG, and consider y ` x a x−1; this
operation is R-linear in y, so its image is a subspace of TxG, and indeed a direct
computation gives

y ` x a x−1 = y `
(
1 +

a

ū

)
= v + v

(a

ū

)
;

since a/ū is fixed, we actually get at each point x a real 2-dimensional subspace
Hx, complementary to N in TxG. Therefore we get a distribution H ⊂ TG, and
we want this to be the horizontal distribution of a connection.

In order for this to make sense, we consider the abelian group N acting on the
right on G, via

Rbx = x + x ` b = x + ub ; x ∈ G ; b ∈ N.

This action trivially preserves the fibers, since if x = a ∈ N , Rba = a, so let us see
how the distribution H behaves under this action:

First, since the action is linear, the same formula will give the action on tangent
vectors, Rb∗. As we have seen, any horizontal tangent vector, say ξ ∈ TxG, can be
written as ξ = v + v(a/ū); therefore we have

Rb∗ξ = ξ + ξ ` b = v + v
(a

ū

)
+ vb = v + v

(
a + ub

ū

)
,

which is a horizontal tangent vector at Rbx = u + (a + ub). We have thus proved

Proposition 3. G has the structure of a principal N -bundle under the action R,
and H is equivariant under this action. Thus, the distribution H is a connection
on G. The horizontal part of a vector y ∈ V , regarded as an element of TxG, is
given by y ` (x a x−1)

Remark. Alternatively, one could make N act according to x 7→ x + b a x, and
then an equivariant distribution will be determined by x a x−1 a y.
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III. Subdigroups of G.

To conclude, let us briefly discuss the restrictions of the bundle G to the two
distinguished 1-dimensional subgroups of C∗, namely R+ = (0,∞) and U(1), corre-
sponding to the one parameter subgroups generated by 1 and i, as this will illustrate
some of the striking differences in the analysis of digroups as compared to the case
of Lie groups.

First, let us denote these restrictions by G1 and Gi respectively; then, recalling
formula (1), if x = u + a and y = v + b, then

x ` y = uv + ub ; x a y = uv + v̄a.

We easily see from here that G1 and Gi are closed under both operations; moreover,
the bar unit 1 belongs to both, so they are subdigroups of G. Also clearly none of
them is trivial, in the sense that they are not Lie groups.

As a group R+ is isomorphic to R via the logarithm, therefore, for G1, what
this gives is a non-trivial digroup structure on R3. The Leibniz algebra associated
to G1 is however not very interesting, since it is easily seen to be abelian, being
generated by 1, j, k.

In contrast, formula (2) shows that the rack structure of G is completely deter-
mined by Gi; it follows that the Leibniz algebra associated to Gi is also non-trivial,
and indeed, it is generated by i, j, k. This is probably not surprising, since the
topological properties of C∗ are encoded in U(1).

Now, a very interesting situaion arises if we assume further that |a| = |b| = 1, so
that x, y ∈ Gs = U(1)× S1, where the second factor is the unit cirle in N . Indeed,
the formulas above show that then also x ` y;x a y ∈ Gs, since both sumands in
the decomposition of the products are also of norm 1. Thus Gs, which is a torus,
is closed under both operations.

However, it is not a subdigroup of G, because 1 /∈ Gs, and this in spite of the
fact that Gs has many bar units (so we might say that it is a subdimonoid , in the
terminology of [K]). Indeed, any element in Gs can be written as

x = eiθ + eiηj,

and such an element is a bar unit, iff it has the form 1 + eiηj.
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We could therefore try to consider any of these, say e0 = 1 + eiη0j as the new
distinguished bar unit, and define inverses with respect to it. But there is actually
no way to fix things up and give this torus a subdigroup structure: In fact, if we
try to solve the equations for y = eiτ + eiζj to be the inverse of x with respect to
e0, we get:

x ` y = e0 ⇐⇒ τ = −θ ; ζ = η0 − θ;

but then
y a x = 1 + ei(η0−2θ)j = e0 ⇐⇒ θ = 0,

and so the only invertible element with respect to e0 is e0 itself.

The failure of Gs to form a subdigroup can perhaps be explained by the fact
that the tangent spaces to Gs are not Leibniz subalgebras of V . For instance, the
tangent space at 1+j is generated by i and k, but since [i, k] = −2j, it is not closed
under the Leibniz bracket.
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