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Abstract

In this paper we study the performances of h-step ahead predictions in TAR mod-
els versus those of AR models. We propose the alternative of Predictive Likelihood
(PL), based on the principle of likelihood. Unlike other alternatives for prediction
generation, PL jointly attacks the problems of estimating, obtaining and evaluting
predictions. Which, for non linear models, presents an integrated way to take into
account in both processes, the DGP. We also study the asymptotic properties of the
maximum likelihood estimators under a known threshold parameter. We implement a
wide simulation exercise to compare the predictions under PL and the standard predic-
tion generating method, identified as the recursive Monte Carlo method. Comparisson
of predictors performances is implemented through the Mean Square Forecast Errors
(MSFE). The gain observed in the performances of predictions by means of PL is clear
and mainly due to the fact that the predictions for both the threshold variable and the
autoregressive variable are obtained simultaneously.

1 Introduction
Non-linear time series models are a useful tool to describe and forecast a great variety of
time series. However, several empirical studies have shown that although such models fit
well inside the sample, they seldom represent a substantial gain in their forecasts outside
the sample, when compared to those stemming from autoregressive models. Some authors
like Pesaran and Potter (1997) and Clements and Smith (1999), suggest that nonlinear
models may be better performing point forecast competitors as a function of their respective
Mean Square Forecast Errors (MSFE´s), if the conditional variances for each regime are
considered. Clements and Smith (1999) compute MSFE´s conditioning on each of the
regimes and computing the statistics related to the direction of change as well. The study
by Pesaran and Potter(1997) suggests that nonlinear models may be better at predicting
high-order moments, implying that the performance of the prediction intervals and of the
density predictive is better than their corresponding linear competitor.
Obtaining forecasts in nonlinear models is more difficult than in the linear case, because it
involves solving multiple integrals that depend on the number of forecasts to compute.
Generally, consider the model,

Yt = g (Yt−1) + εt,with εt ∼ IID
¡
0, σ2

¢
, (1)
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and g (·) , a nonlinear function. Let FT be the σ-algebra generated by the information set
up to time T, i.e., {Y1, . . . , YT } . Using a least squares criterion, the optimal one-step ahead
forecast is

ŶT+1 = E [YT+1|FT ] = g (YT ) .

However, given the nonlinearity of function g, the optimal two-step ahead forecasts is

ŶT+2 = E [YT+2|FT ] = E [g (YT+1) |FT ] 6= g (E [YT+1|FT ]) = g
³
ŶT+1

´
.

Or equivalently,

ŶT+2 = E [YT+2|FT ] = E [g (YT+1) |FT ] = E [g (g(YT ) + εT+1) |FT ]

= E
h
g
³
ŶT+1 + εT+1

´
|FT

i
6= g

³
ŶT+1

´
.

In a similar way, we can express the h-step ahead forecasts through the following identity:

ŶT+h = E [YT+h|FT ] = E [g (YT+h−1) |FT ]

= E
h
g
³
g
³
g(g(· · · g(ŶT+1 + εT+1)) + · · ·+ εT+h−3

´
+ εT+h−2) + εT+h−1) |FT ],

where function g is evaluated h− 1 times.
In nonlinear models, obtaining h-step ahead forecasts generally involves the analytical solu-
tion of multiple integrals, and thus the use of alternative numerical integration techniques
or simulation methods, Tong (1990). The methods most commonly used in the literature
to approach the conditional expectation for the different prediction horizons are: the exact
method, the naive method, the Monte-Carlo method and the bootstrap method, discussed
in Granger and Teräsvirta (1993); Clements and Smith (1997,1998); Diebold and Mariano
(1995); De Gooijer and De Bruin (1998), Davies et al (1998), Diebold et al (1998); Clements
et al (2003); Russell-Noriega (2006), among others. From a practical standpoint, the most
used method is the Monte Carlo one, given its ease of implementation and properties of
convergence for a large enough N .
The Monte Carlo method calculates the conditional expectation through a recursive com-
putational method. The two-step ahead forecasts, for instance, is approximated by the
following equation:

ŶMC,t+2 =
1

N

NX
j=1

g
³
ŶMC,T+1 + Zj

´
where Zj , j = 1, . . . , N are extracted from a known distribution D function. Under this
scheme, the Monte Carlo forecast for YT+h with h > 1 is

ŶMC,T+h =
1

N

NX
j=1

g(g(· · · g| {z }
h−1 times

(ŶMC,T+1 + Z1j ) · · · ) + Zh−1
j ),

with Z1j , Z
2
j , . . . , Z

h−1
j generated from the distribution D, for j = 1, 2, . . . , N.

In practice, function g (·) is unknown and must be specified or estimated through some
estimation procedure. The estimated function ĝ (·) is substituted into the method considered
to obtain the forecasts of interest.
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Most of the literature on obtaining and evaluating predictions has focused on point pre-
dictions, where the summary of uncertainty of the predictions is measured through their
standard errors Clements and Smith (1997), Clements et al (2003), Diebold et al (1998),
Diebold and Mariano (1995), Dacco and Sanchell (1999), among others. Chistosffersen
(1998) suggests several forms to assess the performance of the predictions through the eval-
uation of intervals of conditional predictions, while Diebold et al (1998) and Berkowitz
(2001) propose some methods to assess the density of the prediction. Clements et al (2003)
argue that the evaluation methods of the predictive density, under the assumption of normal
errors in the DGP, may be viewed as an evaluation method for point predictions, since each
of the sequence of normal probabilities is equivalent to the errors of the scaled predictions
(See Russell-Noriega (2006)). Regardless of the evaluation method considered, the overall
conclusion is that the gain in the prediction is larger in the SETAR model, as long as the
prediction and the performance mean used are obtained conditioning on each one of the
regimes. Our particular interest lies in economics applications, where it has been observed
that autoregressive threshold models are able to capture characteristics commonly seen in
economics series, such as: irreversibility in time, asymmetry, persistence, etc.. Also, from an
economics standpoint it is more realistic to assume that the changes through time from one
regime to another are due to lags or a lag function of an exogenous random variable, rather
than to lags in the series itself. Moreover, there are practical situations in which to assume
an autoregressive linear model implies the consideration that this phenomenon behaves as
a unitary root process, and so the notion of conditioning to obtain and evaluate predictions
is not applicable. González and Gonzalo (1998,1999) analyze USA interest rates quarterly
data during the period between August 1959 and June 1999, from Citibase, considering
inflation changes as the threshold variable. The mathematical representation of the TAR
model, with threshold variable Zt−d , is given by:

Yt =
£
α1I(Zt−d ≤ γ1) + · · ·+ αT I(Zt−d > γT−1)

¤
Yt−1 + εt (2)

= δtYt−1 + εt, t = 1, 2, . . . ,

where δt = α1I(Zt−d ≤ γ1) + · · · + αT I(Zt−d > γT−1), I(·) is the indicator function, and
the processes εt and Zt satisfy the following conditions:
S1. The processes (εt, Zt−d) are strictly stationary and ergodic.
S2. E (εt|Ft−1) = 0 and E

¡
ε2t |Ft−1

¢
= σ2.

S3. For some τ > 1, E
¡
ε2τt |Ft−1

¢
≤ B <∞.

S4. E (max (0, log |ε1|)) <∞.
S5. The essential supreme of |ε1| <∞, that is,

ess sup |ε1| = inf {x : Pr (|ε1| > x) = 0} <∞.

S6. ε1 admits a continuous and positive probability density function .
González and Gonzalo (1998) show the ergodicity and stationarity properties for the TAR
model given in equation (2). In particular, it is shown the TAR model considered is sta-
tionary in covariance if E(δt) < 1.
Part of the discussion on the badly performance of predictions in TAR models it relates to
the problem of incorrect specification of the regimes. Dacco and Sanchell (1999) illustrate
this issue in the Regime-Switching versus random walk models with and without drift. It
is concluded that the bad performance of the one-step ahead forecast is due to large values
for the probability of misclassification. Russell-Noriega (2006), study the behaviors of the
MSFE in TAR and AR models, under incorrect specifications. Bad specification due to the
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incorrect classification of the observations in the regimes is first considered, similarly to the
case studied in Dacco and Sanchell (1999). Following the incorrect specification of the true
DGP, the expressions of the MSFE are obtained under the assumption of a linear model
for the forecasts, when the real DGP is a TAR model. The analysis becomes to rewrite the
TAR model as a type linear model AR. If the threshold variable Zt−1 follows a sequence of
independent random variables, it is shown that the error process associated to a linear model
follows a volatility process. If the threshold variable Zt−1 is given by an AR(1) time series
the volatility behavior of the error process is shown through a simulation exercise. The error
behavior departs from a white noise process as a function of the values of the autoregressive
parameters in the TAR model. The asymmetric behaviors observed in a great variety of
real phenomena cannot be described through a linear model, so the residuals inherit the
asymmetrical behaviors due to the incorrect specification of the true generating process.
However, the increase in variability in the model is counteracted by considering different
methods for estimating, obtaining and evaluating, possibly favoring the linear model, and
causing the predictions from the TAR model to show poor performances when compared to
their linear competitors. Our predictive likelihood proposal is more effective since it jointly
considers the processes of estimating, obtaining and evaluating the predictions.

2 Maximum likelihood estimation in TAR models
One of the practical characteristics of threshold models when compared to other nonlinear
models is that the estimation procedures are relatively easy to implement computationally.
The Ordinary Least Squares (OLS) method is one of the most commonly used estimation
procedures in the literature. OLS estimators for SETAR models, as well as their asymptotic
properties, are mainly due to the work of Petruccelli and Woolford (1984), Chan et al (1985),
Chen and Tsay (1991), Chan (1993), and Hansen (1997). Russell-Noriega (2006) proves the
consistency and asymptotic normality properties of the OLS estimators for the TAR model
given in equation (2), under known γ. Estimation of the γ parameter may be performed
through OLS, by means a direct search of the parameter in a compact set (Chan (1993) and
Hansen (1997)), or through the maximization of the profile log likelihood function discussed
in Russell-Noriega (2006).
The estimation procedure considered here is based on the principle of Maximum Likelihood
(ML). It is shown that the ML estimators in the TAR model are strongly consistent, under
the assumption that the error distribution has a finite fourth moment. In particular, the
normal distribution satisfies this assumption, implying that the OLS estimators are strongly
consistent since they coincide with the ML estimators under normality distribution of the
errors.
The following equivalent representation of the stationary and ergodic TAR model, given in
equation (2), is considered

Yt = [φ1I (Zt−1 ≤ γ) + φ2I (Zt−1 > γ)]Yt−1 + εt (3)

= h(Zt−1, Yt−1,θ) + εt, t = 1, 2, . . . ,

where h(·) = [φ1I(Zt−1 ≤ γ) + φ2I(Zt−1 > γ)]Yt−1, I (·) denotes the indicator function,
and in general Zt−1 is a time series observed up to time t. The threshold variable Zt−1 is
a stationary time series, since the Yt values depend on the values taken I (Zt−1 ≤ γ) . It is
also considered that the behavior of the Zt−1 series is not ruled by the behavior of the Yt
series (Zt−1 causes Yt, but Yt does not cause Zt−1). Two scenarios for the Zt−1 process are
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considered, Zt−1 as an autoregressive stationary process of order one (Zt−1 ∼AR(1)) and
Zt−1 as an independent process with uniform distribution over the interval (0,1), that is,
Zt−1 ∼ iidU (0, 1) .

2.1 Obtaining maximum likelihood estimators

Let us assume that the errors {εt} in equation (3) are identically distributed, independent
random variables with distribution D, i.e., εt ∼ iidD. εt independent from Yt−1, Yt−2, . . . ,
t ≥ 1, and with a D distribution function with mean zero and finite variance. Let process
Zt−1, be stationary, given by: Zt−1 = ρZt−2+ut = h1 (Zt−2, ρ)+ut, with ut ∼ iidN

¡
0, σ2u

¢
and εt mutually independent from Zt−1, such that the likelihood function can be written
as:

L
¡
φ1, φ2, σ

2, γ, ρ, σ2u; {Yt, Zt}
¢

=
TY
t=2

f
¡
Yt|Yt−1, Zt−1;φ1, φ2, σ2, γ

¢
f1
¡
Zt−1|Zt−2; ρ, σ2u

¢
gϑ (Y1, Z0)

=
TY
t=2

f (Yt − h (Yt−1, Zt−1, ϑ) ;σ) f1 (Zt−1 − h1 (Zt−2, ρ) ;σu) gϑ (Y1, Z0) ,

where ϑ = (φ1, φ2, γ)
0
, and f and f1, are the density functions of εt and ut, respectively.

Likewise, the conditional likelihood function of the parameter vector θ =
¡
φ1, φ2, σ

2, γ, ρ, σ2u
¢0
,

is

L (θ; {Yt, Zt}) =
TY
t=2

f (Yt − h (Yt−1, Zt−1,ϑ) ;σ) f1 (Zt−1 − h1 (Zt−2, ρ) ;σu) . (4)

For an observed sample Y1, ..., YT , Z0, ..., ZT−1 and a D a normal distribution with mean
zero and variance σ2, we obtain a conditional log likelihood function of θ, given the sample,
of the form:

c (θ) = − (T − 1) log σ − 1

2σ2

TX
t=2

(Yt − δtYt−1)
2 − (T − 1) log σu

− 1

2σ2u

TX
t=2

(Zt−1 − ρZt−2)
2 .

From the previous equation, solving ∂c (θ) /∂σ2 = 0, we get the following expression for the
estimated variance:

σ̂2 (φ1, φ2, γ) =
1

T − 1

TX
t=2

(Yt − δtYt−1)
2
,

Likewise, solving the equation ∂c(θ)
∂φi

= 0, for i = 1, 2 we have:

∂c (θ)

∂φi
= − 1

2σ2

TX
t=2

¡
−2ItYt−1Yt + 2φiItY 2

t−1
¢
= 0, i = 1, 2.
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And from here we find the ML estimators for φ1 and φ2 as a function of parameter γ,

φ̂1 (γ) =

TP
t=2

ItYtYt−1

TP
t=2

ItY 2
t−1

, φ̂2 (γ) =

TP
t=2

YtYt−1 −
TP
t=2

ItYtYt−1

TP
t=2

Y 2
t−1 −

TP
t=2

ItY 2
t−1

,

with It = I (Zt ≤ γ), hence the ML estimator for σ2 as a function of γ is given by:

σ̂2 (γ) = σ̂2
³
φ̂1, φ̂2, γ

´
=

1

T − 1

TX
t=2

³
Yt − δ̂t (γ)Yt−1

´2
,

with:

δ̂t (γ) =

½
φ̂1 (γ) , Zt−1 ≤ γ,

φ̂2 (γ) , Zt−1 > γ.

Similarly, the ML estimators for ρ and σ2u, are, respectively:

ρ̂ =

TP
t=2

Zt−1Zt−2

TP
t=2

Z2t−2

, σ̂2u (ρ̂) =
1

T − 1

TX
t=2

(Zt − ρ̂Zt−1)
2
.

The expressions for the maximum likelihood estimators for coefficients φ1, φ2 and σ
2 assume

a fixed γvalue. It is not possible to derive the log likelihood function with respect to
parameter γ, because it is not continuous at the points Z0, ..., ZT−1, so in this case a search
method is recommend to estimate the γ parameter. Once the MLE´s for a fixed γ have
been calculated, the log likelihood function is evaluated at this values, obtaining the profile
log likelihood function for γ, i.e.,

cp (γ) = c
h
φ̂1 (γ) , φ̂2 (γ) , σ̂γ , ρ̂, σ̂u

i
= − (T − 1) log σ̂γ −

1

2σ̂2γ

TX
t=2

³
Yt − δ̂t (γ)Yt−1

´2
− (T − 1) log σ̂2u −

1

2σ2u

TX
t=2

(Zt − ρ̂Zt−1)
2 .

Note that ρ̂ and σ̂u do not depend functionally on γ, so the effects of maximization respect
to parameter γ, maximizing cp (γ) is equivalent to maximizing:

c∗p (γ) = − (T − 1) log σ̂γ −
1

2σ̂2γ

TX
t=2

³
Yt − δ̂t (γ)Yt−1

´2
= −T − 1

2
log

"
1

T − 1

TX
t=2

³
Yt − δ̂t (γ)Yt−1

´2#
.
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Likewise, maximizing c∗p (γ) in the previous equation is equivalent to minimizing −c∗p (γ) ,
with respect to γ. This procedure gives us a large number of γvalues; Qian´s (1998) recom-
mendation is to take γ̂ as the value of γ that satisfies the following condition:

inf argmin
γ

T − 1
2

log

"
1

T − 1

TX
t=2

³
Yt − δ̂t (γ)Yt−1

´2#
.

Equations for the case in which the variable Zt−1 ∼ iidU(0, 1) simplify since the density
functionf1

¡
Zt−1|Zt−2; ρ, σ2u

¢
= 1.Generalization of the likelihood equations for TARmodels

is direct; however we will use the TAR(2;1,1) model for illustration purposes.

2.2 Asymptotic properties of maximum likelihood estimators

The study of the asymptotic properties of OLS and ML parameter estimators in SETAR
models for an unknown γ is found in the papers by Chan (1993), Qian (1998), and Chan
and Tsay (1998). Chan (1993) and Qian (1998) consider the case of discontinuous SETAR
models, while Chan and Tsay (1998) do so for continuous SETAR.

Definition 1 (Discontinuous autoregressive function, Chan 1993). Let φ1 and φ2 be coeffi-
cients of the model SETAR(2;1,1), it is said that the model has a discontinuous autoregres-
sive function if there exists

Z∗ = z0, (5)

such that (φ1 − φ2)Z∗ 6= 0 and z0 = γ. In this case, the threshold γ becomes the autoregres-
sive function break point. If (φ1 − φ2)Z∗ = 0 for all Z∗ satisfying (5), it is said that the
model has a continuous autoregressive function.

Note that the continuity definition for the autoregressive function relates to a smooth regime
change when the value of Yt−1 = γ, for t = 2, . . . , T.
Chan´s paper (1993) considers the OLS estimation, which is equivalent to the ML method
when the distribution of the sequence {εt} is Gaussian (εt ∼ iidN

¡
0, σ2

¢
).Qian (1998) shows

the asymptotic properties of the SETAR model parameters MLE when the {εt} ∼ iidD,
whereD is a distribution with mean zero and finite variance. However, Qian (1998) does
not consider the estimation of the parameters of distribution D, while Chan (1993) does
estimate and study the properties of the estimator for σ.

It is convenient to highlight that the TAR model considered in this discussion lacks the
concept of continuity; we cannot speak of discontinuity in the autoregressive function in
the sense of the previous Definition because Yt−1 may take the γ value without implying
a change of regime. The change of regime occurs when Zt−d = γ and if we wished for the
change of regime to be continuous we soul need to ask that φ1yt−1 = φ2yt−1 when Zt−d = γ,
which in the continuous case has a zero probability.

In TAR models it is impossible to use this property because their continuity or discontinuity
cannot be determined.
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2.2.1 Strong consistency of maximum likelihood estimators

A demonstration for the general case were the error sequence {εt} has an arbitrary distrib-
ution with mean zero and finite fourth moment will be made.
Let be the TAR(2; p, p) model, with initial conditions Y1, . . . , Yp, Z0, . . . , Zd, given in the
following equation

Yt =

½
φ01 +

Pp
i=1 φi1Yt−i + εt, Zt−d ≤ γ

φ02 +
Pp

i=1 φi2Yt−i + εt, Zt−d > γ
,

or,
Yt = h (Yt−1, Zt−d,φ) + εt, t > 1 (6)

for some φ =
¡
φ01,φ

0
2, γ, d

¢
∈ <2p+3 × {1, 2, ..., p} , where Yt−1 = (Yt−1, Yt−2, . . . , Yt−p)

0
,

φj =
¡
φ0j , φ1j , ..., φpj

¢0 ∈ <p+1, j = 1, 2 and for y ∈ <p and z ∈ <d,
h (y, z,φ) =

Ã
φ01 +

pX
k=1

φk1yk

!
I (zd ≤ γ) +

Ã
φ02 +

pX
k=1

φk2yk

!
I (zd > γ) .

The errors {εt} in (6) are iidN
¡
0, σ2

¢
.

Theorem 2 (Consistency of ML estimators). Assume that {Yt, Zt} of the model (6) is
stationary and ergodic and that the SC1-SC4 conditions in Technical Appendix are met.
Then θ̂T is a strongly consistent estimator for θ.

The Theorem proof is given in the Technical Appendix.

3 Predictions in TAR models through predictive likeli-
hood

The problem of predicting unobserved values or future values from random variables is
fundamental in Statistics. One form of solving it is to use the concept of predictive likelihood.
From a Bayesian perspective, the problem of predicting unobserved values is directly solved
by finding the posterior predictive density for the unobserved variables given the data.
Chen and Lee (1995), Chen (1998) and Sáfadi and Morettin (2000) study the problem of
estimating and obtaining predictions in SETAR models under this scope. However, we were
unable to find references dealing with the problem of prediction in TAR models through the
predictive likelihood approach studied here. Geisser (2002) presents a general overview of
predictive inference considering both Bayesian and non Bayesian approaches.
The predictive likelihood proposal to order the plausibility of future values was developed
by Lauritzen (1974), Hinkley (1979), and generalized by Butler (1986), although the initial
idea was introduced by Fisher (1956) for the binomial model.
Let X = x be the observed value of the X random variable, the problem is to predict
unobserved values x∗ from X∗, and the inference is performed on the x∗ values. Assume
that (X,X∗)

0 has a probability density with regard to the Lebesgue mean, denoted by
fθ (x,x

∗) , or equivalently denoted by f (x,x∗;θ ), where θ is the unknown parameters
vector. Likewise, we denote the conditional density function as f (x∗|x;θ) . Let θ̂ be the
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ML estimator for θ based on the x data, and θ̂w the ML estimator based on w = (x,x∗)
0 .

Let us suppose that X =(Y1, . . . , YT )
0 contains the observed sample of size T and X∗ =

(YT+1, . . . , YT+h)
0 the unobserved sample for which we desire to make inferences.

The basic prediction problem is the following: two unknown quantities, x∗ and θ, are
considered, and the primary interest is to obtain information about x∗ with θ playing the
role of nuisance parameter. The principle of likelihood for prediction, formulated by Berger
and Wolpert (1984), stems from the fact that all evidence about (x∗,θ) is contained in the
joint likelihood function,

L (x∗,θ;x) = f (x,x∗;θ) . (7)

We start from the base likelihood for the observed x, and strive to develop a likelihood
function for x∗, say L (x∗|x) , eliminating θ from the equation (7). L (x∗|x), with the
previously described characteristics, is known as the predictive likelihood function. Due
to the fact that there are different ways to eliminate the nuisance parameter θ, several
proposals for predictive likelihood arise. Bjørnstad (1990) counts fourteen proposals for
predictive likelihood; however, some of them are completely similar, and all of them are
based on one of the following three operations on L (x∗,θ;x) : integration, maximization, or
conditioning. The Bayesian approach is equivalent to integrating L (x∗,θ;x) with respect
to the a priori distribution for θ. That is, the posterior predictive density, f0 (x∗|x) may be
thought of as the marginal integrated likelihood such that f0 (x∗|x) ∝

R
L (x∗,θ;x) dθ.

In this paper we consider the Profile Predictive Likelihood of the future x∗ observations,
introduced by Mathiasen (1979) and recommended by Bjørnstad (1990), which eliminates
the nuisance parameter θ through the maximization of the following likelihood function:

Lp (x
∗|x) = sup

θ
f (x,x∗;θ) = L

³
x∗, θ̂w;x

´
. (8)

intuitively, the motivation for the predictive likelihood functionLp is as follows: for x∗ being
the vector of parameters of interest and θ the vector of nuisance parameters, the most likely
values for θ are obtained given (x,x∗)0 , resulting in the likelihood function given in equation
(8). In parametric inference this likelihood corresponds to the profile likelihood, introduced
by Kalbfleisch and Sprott (1970) and hence the name of profile predictive likelihood.
Russell-Noriega (2006) illustrates the implementation of the predictive likelihood for the case
of the linear AR(1) model. The fact that predictions for the AR(1) case through predictive
likelihood and the recursive equations in terms of the autoregressive coefficient are equal, is
highlighted by Clements and Hendry (1998).

4 Predictive Likelihood for the TAR Model
The implementation of the predictive likelihood for the TAR(k;p,p) model is direct. How-
ever, in order to clarify it, the equations for the TAR(2; 1, 1) model are presented in equation
(3). Given a size T observed sample, the following equation is satisfied:

Y ∗t = δ∗tY
∗
t−1 + εt, t = T + 1, ..., T + h,

with εt ∼ iidN
¡
0, σ2

¢
, Z∗t a stationary AR(1) process with gaussian noise (0, σ

2
u) and δ

∗
t =

φ1I(Z
∗
t−1 ≤ γ) + φ2I(Z

∗
t−1 > γ). Let also be y = (y1, ..., yT )

0
, y∗ =

¡
y∗T+1, ..., y

∗
T+h

¢0
, z =

(z0, ..., zT )
0
, and z∗ =

¡
z∗T+1, ..., z

∗
T+h

¢0
. such that w = (y0,y∗0)0 and v = (z0, z∗0)0 , then

the TAR(2; 1, 1) model for t = 1, 2, . . . , T, T + 1, . . . , T + h may be written as:

wt = δtwt−1 + εt, (9)
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for which the δt variable is given by: δ
∗
t = φ1I(vt−1 ≤ γ) + φ2I(vt−1 > γ).

The likelihood function for (y∗, z∗,θ), with θ = (φ1, φ2, σ, γ, ρ, σu)
0 depending on (y, z),

with T large enough, and equivalent to the likelihood (4), is:

L (θ;y,y∗, z, z∗) =
1

σT+h−1
exp

"
− 1

2σ2

T+hX
t=2

(wt − δtwt−1)
2

#

× 1

σT+h−1u

exp

"
− 1

2σ2u

T+hX
t=2

(vt − ρvt−1)
2

#
.

Thus the log likelihood function for (w,v) is given by:

c (θ;y,y∗, z, z∗) = − (T + h− 1) log σ − 1

2σ2

T+hX
t=2

(wt − δtwt−1)
2

− (T + h− 1) log σu −
1

2σ2u

T+hX
t=2

(vt − ρvt−1)
2
.

Equivalently to obtaining the ML estimators in the previous section, we have the following
identities:

φ̂1 (y
∗; γ) =

T+hP
t=2

Itwtwt−1

T+hP
t=2

Itw2t−1

, φ̂2 (y
∗; γ) =

T+hP
t=2

(1− It)wtwt−1

T+hP
t=2

(1− It)w2t−1

,

with It = I (vt ≤ γ) . As well as:

ρ̂ (z∗) =

T+hP
t=2

vtvt−1

T+hP
t=2

v2t−1

and σ̂2u (z
∗; ρ̂) =

1

T + h− 1

T+hX
t=2

(vt − ρ̂vt−1)
2 .

And similarly, if δ̂t (y∗; γ) = φ̂1 (y
∗; γ) + φ̂2 (y

∗; γ) I(Zt−1 > γ), then:

σ̂2 (y∗; γ) = σ̂2
³
y∗; φ̂1, φ̂2, γ

´
=

1

T + h− 1

T+hX
t=2

³
wt − δ̂t (y

∗; γ)wt−1
´2

,

So maximizing the profile predictive log likelihood for (y∗, z∗), cp (y∗, z∗; γ|y, z) is equivalent
to minimizing −cp (y∗, z∗; γ|y, z) . that is, to minimize

T + h− 1
2

log

"
1

T + h− 1

T+hX
t=2

³
wt − δ̂t (y

∗; γ)wt−1
´2#

(10)

+
T + h− 1

2
log

"
1

T + h− 1

T+hX
t=2

(vt − ρ̂ (y∗) vt−1)
2

#
,
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with respect to y∗,z∗; γ. If the threshold parameter γ is know, we must minimize the target
function(10) with respect to (y∗,z∗) to obtain the corresponding predictions, say ŷ∗, and ẑ∗.
The values ŷ∗, ẑ∗ are the predictive likelihood predictions for y∗ and z∗, respectively, for a
fixed γ.
If the threshold variable Zt−1 ∼ iidU (0, 1) the predictive likelihood predictions for y∗ are
obtained under the assumption that the future values for the z∗ threshold variable are
known. The function to minimize with respect to y∗ and γ is,

1

T + h− 1

T+hX
t=2

³
wt − δ̂t (y

∗; γ)wt−1
´2

, (11)

due to the fact that the logarithmic function is an increasing function.
The generalization for the TAR model of more than two regimes and an autoregressive order
p > 1 for each regime is written directly, through the adequate redefinition of the δt variable.

5 Simulation study
A comparison of the performance of the h-step ahead forecasts in the TAR model versus
the performance of the forecasts in the AR model is made. We compute the ratios of the
MSFE from the AR model divided by the MSFE from the TAR model for each of the
forecast horizons. If the ratio is higher than one, it follows that the MSFE in horizon h for
the TAR model is lowest. The predictive likelihood approach is compared to the recursive
Monte Carlo alternative. For the AR linear model both alternatives result in the same
expressions for the computation of predictions (Russell-Noriega (2006)). Implementation of
the recursive method in the TAR model implies knowledge of the future behavior of the
threshold variable, or of the value of the indicator variable, that determine the change or
regime. The simulation exercise consists of a large variety of important scenarios around
the problem studied.

5.1 Description of the simulation algorithm

The simulation exercise begins with the generation of 500 time series of size 255, considering
the model associated to the threshold variable, and then to simulate the 500 series from the
TAR(2; 1, 1) model. The first 250 observations in each series are utilized for the parameter
estimation stage, while the last five observations are used for the predictors comparison stage.
The simulated scenarios are given with consideration to the values of the model parameters
and the probabilities of dominance in each one of the regimes. The analyzed situations
scope a large variety of possible situations, as will be seen in the Table 1. Consider the case
in which the threshold variable Zt−1 is a stationary AR(1) time series, with Gaussian white
noise. The case where Zt−1 ∼ iidU (0, 1) is discussed in Russell-Noriega (2006) and it is
mainly useful at the time of manipulating and reducing the resulting theoretical expressions.
The forecasts for h = 1, 2, 3, 4, and 5 steps ahead are obtained through methods identified as
recursive method (RM), and predictive likelihood method (PL), under the assumption that
the threshold parameter γ is known. The RM method is to approximate the conditional
expectation given in the following equation:

Ŷt+h = E (Yt+h|Ft) = φ1E[I(Zt+h−1 ≤ γ)Yt+h−1|Ft] + φ2E[I(Zt+h−1 > γ)Yt+h−1|Ft]
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through a recursive Monte Carlo procedure (Granger and Teräsvirta, (1993), Russell-Noriega
(2006)). The first step is to predict the values of ZT+1, . . . , ZT+h−1 from the model associ-
ated to Zt−1, or else to predict the values of I(Zt−1 ≤ γ) with fixed γ. The indicator variable
is predicted following the ideas of Kedem and Fokianos (2002), as detailed in Russell-Noriega
(2006).
Given a set of T observations we have that the T+1 forecast, conditional on the information
up to time T, for the TAR(2; 1, 1) model, is easily arrived at since the regime is known with
certainty and the one-step ahead forecast by RM is simply:

Ŷ RM
T+1 = [φ̂1I(ZT ≤ γ) + φ̂2I(ZT > γ)]YT

with φ̂1 and φ̂2, the estimator of the autoregressive coefficients in the TAR(2; 1, 1) model,
obtained through likelihood equations under the assumption of normality in the errors.
At time T + 2, the regime prediction is determined by the value of ZT+1, so we sub-
stitute the corresponding prediction, generated from the model that rules the threshold
variable dynamics. We have the same result if substitute the predicted value of the indi-
cator I(ZT+1 ≤ γ). Then, the prediction for YT+2, YT+3, . . . , YT+h for one iteration of the
error process ζi,j ∼ N

¡
0, σ̂2

¢
, where σ̂2 is the estimator of the error variance under the

consideration of the TAR(2; 1, 1) model, is defined as:

Ŷ
PRZtj
T+h = [φ̂1I(Z̃T+h−1 ≤ γ) + φ̂2I(Z̃T+h−1 > γ)]Ŷ

PRZtj
T+h−1 + ζh,j (12)

or
Ŷ
PRIZtj
T+h = [φ̂1Ĩ(ZT+h−1 ≤ γ) + φ̂2Ĩ(ZT+h−1 > γ)]Ŷ

PRIZtj
T+h−1 + ζh,j , (13)

where PRZtj refers to the recursive method using the prediction for the Zt variable, while
PRIZtj indicates that the recursive method uses the prediction of the indicator variable
I(ZT+h−1 ≤ γ). Each of the h-step ahead forecasts is performed j times iteratively, in such
a way that the final prediction is generated by averaging the values for each of the h periods
over the j = 1, . . . , N iterations. We denote Ŷ PRZt

T+h or Ŷ PRIZt
T+h as the h-step ahead forecasts

for Yt by means the recursive method depending on whether we use the prediction of the
threshold variable or that of the indicator variable and given by the sample average:

Ŷ PRZt
T+h = 1

N

PN
j=1 Ŷ

PRZtj
T+h , Ŷ PRIZt

T+h = 1
N

PN
j=1 Ŷ

PRIZtj
T+h , h > 1.

This alternative to generate forecasts, as well as its variations, have been thoroughly stud-
ied for the SETAR models by De Gooijer and De Bruin (1998), and Clements and Smith
(1997,1999). Inherent to the process of approximation of the predictions, we gather in each
iteration the corresponding forecast errors and the MSFE for each of the 500 series simu-
lated. To complete the forecasts for the TAR(2; 1, 1) model under this method, we generate
the h-step ahead forecasts under the AR(1) model, by means of the corresponding recursive
equation, and obtain the valued for the MSFE loss functions as well as those for the TAR
model.
the predictive likelihood predictors for the TAR(2; 1, 1) model are obtained by means of
this procedure: from the likelihood principles, the predictors for the h unobserved values
are those whose values minimize the negative of the profile log likelihood function, given
in equation (10). The optimization process for each of the simulated series is performed,
jointly predicting the Yt and Zt−1 variables by PL, i.e., the predictive likelihood function is
optimized as a function of the values YT+1, . . . , YT+h and ZT , ZT+1, . . . , ZT+h−1. Later,
the prediction errors are computed considering these predictions and the last five values
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simulated for Yt. The MSFE reported is the average of the 500 MSFE obtained from each
one of the simulated series and each one of the prediction horizons. The same procedure is
followed for the alternative AR(1) method.

6 Presentation and analysis of the results
Table 1 presents the parameter values for each of the simulated scenarios, as well as the av-
erages for the 500 parameter values estimated by maximum likelihood under the TAR(2;1,1)
model and the AR(1) model, respectively. The regime dominance probabilities considered
are : p = Pr (Zt−1 ≤ γ) = 0.5 and 0.75, with variance σ2 = 1.

Table 1. Values of the parameters used in the simulation exercise and averages
of their estimated values under the TAR an AR models, respectively, by ML

Case φ1 φ2 p φ̂1 φ̂2 σ̂2TAR φ̂AR σ̂2AR
1-1 −0.1 1 0.50 −0.096 0.99 0.994 0.54 1.71
1-2 −0.1 1 0.75 −0.099 0.989 0.984 0.239 1.366
1-3 1 −0.1 0.75 0.989 −0.096 0.995 0.712 1.888
2-1 1 0.1 0.50 0.988 0.101 0.988 0.631 1.467
2-2 1 0.1 0.75 0.992 0.104 0.991 0.816 1.632
2-3 0.1 1 0.75 0.096 0.983 0.990 0.380 1.253
3-1 −0.8 −0.6 0.50 −0.786 −0.594 0.996 −0.697 1.019
4-1 −0.8 0.6 0.50 −0.791 0.597 0.994 −0.138 1.973
4-2 −0.8 0.6 0.75 −0.79 0.596 0.991 −0.471 1.792
4-3 0.6 −0.8 0.75 0.595 −0.792 0.989 0.227 1.658
5-1 −0.4 −0.6 0.50 −0.400 −0.591 0.990 −0.499 1.006
6-1 −0.4 0.6 0.50 −0.399 0.591 0.995 0.114 1.333
6-2 −0.4 0.6 0.75 −0.396 0.581 0.993 −0.133 1.236
6-3 0.6 −0.4 0.75 0.589 −0.400 0.993 0.352 1.255
7-1 −0.4 0.4 0.50 −0.403 0.396 0.986 −0.002 1.181
7-2 −0.4 0.4 0.75 −0.398 0.392 0.988 −0.202 1.130
7-3 0.4 −0.4 0.75 0.394 −0.381 0.988 0.201 1.125
8-1 −0.95 0.95 0.50 −0.941 0.943 0.990 −0.0006 9.664
8-2 −0.95 0.95 0.75 −0.941 0.941 0.989 −0.468 7.528
8-3 0.95 −0.95 0.75 0.941 −0.942 0.988 0.006 9.762
9-1 −0.9 1 0.50 −0.893 0.992 0.990 0.096 10.576
9-2 −0.9 1 0.75 −0.894 0.988 0.994 −0.3871 5.981
9-3 1 −0.9 0.75 0.993 −0.894 0.992 0.541 14.43
10-1 0.9 1 0.50 0.893 0.993 0.997 0.945 1.027
11-1 0.9 0.7 0.50 0.895 0.692 0.989 0.802 1.023

Russell-Noriega (2006) discusses the importance of the cases in Table 1, considering a higher
value of the error variance. All cases analyzed in Table 1 satisfy the second order stationarity
condition (E (δt) < 1); however, several of them are close to the non-stationarity condition.
The discussion of the results is illustrated by two interesting cases. The first one, the 1-1
case, has a unitary root in regime 2, under a condition of stationarity E

¡
δ2t
¢
= 0.505, which

is much lower than one. This model is identified in literature like Threshold Unit Root
model (TUR model). The second case is the 8-1, where E

¡
δ2t
¢
= 0.903 is close to one, with
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autoregressive coefficients in the regimes equal in magnitude but with opposite sign. Both
examples have the same dominance in each regime. The results of the analysis extend to
the rest of the cases listed in Table 1.
The analysis summary concentrates on Figures 1, 2 and 3. Figures 1 and 2 show the
variability of the 500 prediction errors for the TAR and AR models under the alternatives
of the recursive and the predictive likelihood method. Notice that the error variability under
predictive likelihood for the TAR model around zero is lower in both cases. The MSFE under
the recursive method will be affected by the values of errors that exceed the interquantile
interval.
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Forecast Error in TAR model, case 1−1
Recursive Method, forecasting IZt
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Forecast Error in TAR model, case 1−1
Recursive Method, forecasting Zt
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h=1 h=2 h=3 h=4 h=5

−
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5
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Forecast Error in AR model, case 1−1

Predictive Likelihood Method

Figure 1. Box-plot for the forecast error, case 1-1.

Figure 3 shows the averages for the MSFE under each prediction horizon, for each method.
It highlights the behavior of the MSFE for the TAR model under predictive likelihood,
making it clear that their performance is superior to that of the forecasts under the AR
model. The same result is obtained when comparing the TAR model forecasts under the
recursive method.
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Figure 2. Box-plot for the forecast error, case 8-1.
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Figure 3. Mean squares forecast error
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7 Conclusions
One characteristic of TAR models is that under certain scenarios (as a function of the
magnitudes and signs of the autoregressive parameters), the linear model provides a good
approximation to the nonlinear model, hence in view of the simplicity of the prediction-
generating linear model this last one is often and wrongly considered as the best one. How-
ever, Russell-Noriega (2006) showed that under an incorrectly specified model, the process
of associated errors is ruled by a volatility model. The observed variability through time
in that process is directly identified as a function of the first two moments of the variable
δt, because they determine the stationarity condition of the TAR model. This variability is
directly inherited by the error variance under the incorrectly specification, i.e., the farther
we are from the non stationarity condition the better the linear model approximation will
become. Even in those cases, the predictive likelihood method shows a good performance
against its linear rival, AR.

The increased variability identified under the misspecified model, as well as the distribu-
tional lack of fit of the respective residuals, is overtaken upon consideration of the different
methodologies for estimating and obtaining predictions that have been discussed in most of
the literature. Predictive likelihood approaches the problem of estimating and obtaining the
parameters under the same statistical methodology and, because of this, at the time of eval-
uating the predictions performance under the actual DGP, they show better performances
than those under an incorrect model.

Under the normality assumption, OLS and ML estimators are the same; however, the pre-
diction methods in TAR models associated to those estimation methods are not the same,
while in the linear case they actually are. Predictive likelihood jointly considers all the
information, using the probabilistic properties of the threshold variable, resulting in a more
efficient optimization process. The recursive method assumes a known threshold variable,
and the process for generating the predictions for this variable is performed as previously
to the generation of the predictions in the TAR model. Russell-Noriega (2006) comments,
as part of the results of the simulation exercise, that the TAR predictions through the re-
cursive method are more efficient if the indicator variable predictions are used instead of
the threshold variable ones. This is due to the misclassification probabilities in the regimes
under the predictions of the threshold variable.

In order to solve the problem that originated this paper it was necessary to undertake a
detailed study of the TAR models parameter estimation process, showing the consistency
and asymptotic distribution properties of the MLE, with a known γ. For an unknown γ
only the consistency of the MLE was shown. The particular probabilistic structure of the
TAR model must be determined before applying the results from the SETAR case to the
TAR case. The demonstrations in this paper are contributions to the non linear models
literature.

8 Future work
In order to study the robustness of predictive likelihood it is necessary to exhaustively study
the effect of non-normal distributions over the errors.

The proofs for asymptotic distributions in OLS and ML estimators in SETAR models rely
heavily on the continuity or discontinuity concept for those models. The MLE asymptotic
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distributions with unknown γ were not studied in this paper, since the concept of continuity
does not have a clear extension to the TAR case.

It is also tempting to extend the predictive likelihood methodology to the SETAR models,
an effort not yet undertaken in the literature and which is quite direct.

One of our results, that of the residuals following a volatility process under an incorrectly
specified model, allows us to set as a future task that of finding and comparing asymmetric
function methods to quantify the performances, as well as to explore new methods, robust
for departures from normality.

Technical appendix: Proof of the MLE consistency prop-
erty

Notation
Function f is the ε2 density function and function F is the distribution function for f.
The expectation under ϑ is denoted by E.
Let < be the real line (−∞,∞) and <̄ = <∪ {−∞,∞} , then <̄ is compact under the d (·, ·)
metrics, defined by d (x, y) = |arctanx− arctan y| .
A function ϕ is Lip(1) if ∀x, y ∈ <, there exists an L ≥ 0, such that |ϕ (x)− ϕ (y)| ≤
L |x− y| .
The complement of A is denoted by Ac.
The inner product of x and y is denoted by x0y.
The subscript t = 2, ..., T will be omitted unless otherwise specified.

Preliminaries to the maximum likelihood estimation method
Let us assume that ε2 has a known distribution and that σ is involved in the model as a
scale modification, i.e., the TAR(2;p,p) model may be written as:

Yt = h (Yt−1,Zt−d,φ, γ) + σεt, t ≥ 2, (14)

for some ϑ =
¡
φ01,φ

0
2, γ
¢
∈ <2p+3, d ∈ {1, 2, ..., p} , where Yt−1 = (Yt−1, . . . , Yt−p)

0 ,

Zt−d = (Zt−d, ...Zt−d−p+1)
0 φj = (α0j , α1j , ..., αpj)

0 ∈ <p+1, j = 1, 2 and for y ∈ <p and
z ∈ <p,

h (y, z,ϑ) =

Ã
φ01 +

pX
k=1

φk1yk

!
I (zd ≤ γ) +

Ã
φ02 +

pX
k=1

φk2yk

!
I (zd > γ) .

The errors {εt} in (14) are iidN (0, 1) and Zt = ρZt−1 + ut,where {ut} are iidN
¡
0, σ2u

¢
.

The proof of the asymptotic properties of the MLE for φ, γ, d, σ, ρ, σu will be done assuming
that σ = 1, for convenience in the expressions we proof Lemma 1 and Theorem 2. In Lemma
2 the general case σ > 0 will be proved.

Because Zt has its own dynamics, estimators for ρ and σu satisfy the properties of AR(1)
models: they are strongly consistent and asymptotically normal (see Theorem 8.2.1. in
Fuller (1996)).

We will assume that ϑ =
¡
φ0, γ, d

¢0
is an inner point in the parametric space <2p+2 × <̄ ×

{1, 2, ..., p} .
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Since ϑ is an inner point, it follows that there exists a compact set K ⊂ <2p+2 such that ϑ
is an inner point of Λ = K × <̄ × {1, 2, ..., p} , Λ is a compact set.
Let υ =

¡
β0, r, q

¢0
be an inner point of Λ. Let (Y0

t,Z
0
t)
0 = (Yt, ..., Yt−p+1, Zt, ..., Zt−p+1)

0 ,
{Zt} and {Yt,Zt} be Markov chains. Let gϑ (Y1,Z2−d) be the initial density of Y1 and
Z2−d under ϑ. The one-step transitional function, initiating at

¡
Y0
1,Z

0
2−d
¢0
is

f (Yt − h (Yt−1,Zt−d,ϑ)) f1 (Zt−d − h1 (Zt−d−1, ρ)) , t ≥ 2.

The one-step transitional function, initiating at Z02−d is f1 (Zt − h1 (Zt−1, ρ))w (Zt|Zt−1) ,
t ≥ 2.
Let f1 be the density function of ut, g1 (Z2−d) is the initial density of Z2−d under

¡
ρ, σ2u

¢0
,

If we observe (Y0
1, Y2, ..., YT ,Z2−d, Z2−d+1, ..., ZT−d+1)

0
, it follows the the likelihood func-

tion under ϑ is

TY
t=2

f (Yt − h (Yt−1,Zt−d,φ, γ)) f1 (Zt−d − h1 (Zt−d−1, ρ)) gϑ (Y1,Z2−d) .

Estimation of ϑ is not affected by the estimation of ρ, so we will consider the conditional
likelihood function of ϑ given by

Ln (ϑ) =
TY
t=d

f (Yt − h (Yt−1,Zt−d,φ, γ)) . (15)

Let ϑ̂T =
³
α̂0, γ̂, d̂

´0
be any measurable function of (Y1, Y2, ..., YT ,Z2−d, Z2−d+1, ..., ZT−d+1)

0

from <T+2p to Λ such that ϑ̂T maximizes over Λ, the conditional likelihood function given
in (15).

Assumptions
AC1. f (y) > 0, for all y ∈ < and is absolutely continuos. f 0 exists almost everywhere,
ϕ = f 0/f and I (f) =

R∞
−∞ ϕ2 (y) f (y) dy <∞.

AC2. ϕ is Lip(1) .
AC3. ϕ is and the derivative of ϕ0 is Lip (1) .
AC4. E |ε2|4 <∞ and E |u2|4 <∞.

We will use the fact that E |ε2|k <∞, for k = 1, 2, 3, 4, implies that E |Yd−1|k <∞.
Let us prove the strong consistency of the MLE for ϑ̂T . Let cT be the conditional log
likelihood ratio:

cT (υ) = cT (β, r, q) =
1

T

X
ln

f (Yt − h (Yt−1,Zt−q,β, r))

f (Yt − h (Yt−1,Zt−d,φ, γ))
, υ ∈ Λ (16)

The invariant equation

gϑ (y, z) =

Z ∞
−∞

Z ∞
−∞

f (y − h (u, v,ϑ)) f1 (z − h1 (u, ρ)) gϑ (u, v) dudv
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and assumption AC1 imply that gϑ is bound outside of [0,∞]2 over compact sets. I (f) <∞
implies that f is bounded.

ψ (Yt−1, Zt−q, εt,β, r) = ln
f (εt + h (Yt−1,Zt−d,φ, γ)− h (Yt−1,Zt−q,β, r))

f (εt)
, 1 ≤ t ≤ n.

Notice that
cT (υ) =

1

T

X
ψ (Yt−1,Zt−q, εt,β, r) , υ ∈ Λ.

letW =(1,y0)0 and

∇φh (y, zq;β, s) =
∂

∂β
h (y, zq;β, r)

= (W0I (zd ≤ r) ,W0I (zd > r))
0
.

Hence

|∇φh (y, zq;β, r)| =
q
1 + |y|2. (17)

We have

|h (y, zq;β, r)| ≤ |β|
q
1 + |y|2, (18)

since
h (y, zq;β, s) = β0∇βh (y, zq;β, s) . (19)

Additionally, for all s ∈ <̄, r ∈ <̄, q ∈ {1, ..., p}

|∇φh (y, zq;β, r)−∇φh (y, zq;β, s)| ≤
r
2
³
1 + |y|2

´
I (min (s, r) < zq < max (s, r))

≤
r
2
³
1 + |y|2

´
I (|zq − s| ≤ |r − s|) . (20)

Lemma 1. Under the assumptions of Theorem 2, for all υ=
¡
β0, r, q

¢0 ∈ Λ with Λ =
K × <̄ × {1, 2, ..., p} and an open vicinity Uυ,

E

∙
sup

υ∗∈Uυ
|ψ (Y1,Z2−q, ε2,β

∗, r∗)− ψ (Y1,Z2−q, ε2,β, r)|
¸
−→ 0, (21)

when Uυ contracts to υ.

Proof. Let

Uυ (η) =
n
υ∗ =

¡
β∗0, r∗, q

¢0 ∈ Λ : |β∗ − β| < η, d (r∗, r) < η
o
, η > 0.

Without loss of generality, we will prove the lemma for

E sup
υ∗∈Uυ(η)

|ψ (Y1,Z2−q, ε2,υ
∗)− ψ (Y1,Z2−q, ε2,β, r)| −→ 0 when η → 0.
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Let ε2 (υ) = Y2 − h (Y1,Z2−q,β, r) and δ (y, zq,β
∗, r∗) = h (y, zq,β, r) − h (y, zq,β

∗, r∗) .

For all υ =
¡
β0, r, q

¢0
and for all y ∈ <p, by (17) and (19) we conclude that

|h (y, zq,β, r)− h (y, zq,β
∗, r∗)| ≤ |β − β∗|

q
1 + |y|2, (22)

and from equations (18) and (20)

|h (y, zq,β∗, r)− h (y, zq,β
∗, r∗)| ≤ |β∗|

r
2
³
1 + |y|2

´
I (min (r, r∗) < zq < max (r, r

∗))

≤ |β∗|
r
2
³
1 + |y|2

´
I (|zq − r| ≤ |r∗ − r|) .

Then for υ∗ ∈ Uυ (η) and for r ∈ <, y ∈ <p,

|δ (y, zq,υ∗)| = |h (y, zq,β, r)− h (y, zq,β
∗, r∗)|

= |h (y, zq,β, r)− h (y, zq;β, r
∗) + h (y, zq;β, r

∗)− h (y, zq,β
∗, r∗)|

≤ |h (y, zq;β, r)− h (y, zq;β, r
∗)|+ |h (y, zq;β, r∗)− h (y, zq;β

∗, r∗)|

≤
h√
2 |β| I (|zq − r| ≤ |r∗ − r|) + |β − β∗|

iq
1 + |y|2

≤
h√
2 |β| I (|zq − r| ≤ |r0 (η)− r|) + η

iq
1 + |y|2, (23)

where r0 (η) is such that d (r0 (η) , r) = η.
Let us define

∆ (y, zq, η) ≡
h√
2 |β| I (|zq − r| ≤ |r0 (η)− r|) + η

iq
1 + |y|2. (24)

Assumptions AC1 and AC2, E |Yd−1| < ∞ and equation (18) imply that there exists a
constant L such that for any υ ∈ Λ,

Eϕ2 (ε2 (υ)) = E {[ϕ (ε2 + h (Y1,Z2−d,φ, γ)− h (Y1,Z2−q,β, r))− ϕ (ε2)] + ϕ (ε2)}2

= E
n
[ϕ (ε2 + h (Y1,Z2−d,φ, γ)− h (Y1,Z2−q,β, r))− ϕ (ε2)]

2
+ ϕ2 (ε2)

+ 2 [ϕ (ε2 + h (Y1,Z2−d,φ, γ)− h (Y1,Z2−q,β, r))− ϕ (ε2)]ϕ (ε2)}

≤ 2E
h
ϕ2 (ε2) + L |h (Y1,Z2−d,φ, γ)− h (Y1,Z2−q,β, r)|2

i
≤ 2I (f) + 4L

³
|φ|2 + |β|2

´
E
³
1 + |Y1|2

´
<∞ (25)

From assumption AC1 and equation (23) it follows that ln f is absolutely continuos, and
hence

|ψ (Y1,Z2−q, ε2,υ
∗)− ψ (Y1,Z2−q, ε2,υ)| ≤

Z ∆(y,zq,η)
−∆(y,zq,η)

|ϕ (ε2 (υ) + v)| dv, (26)

where ∆ (y, zq, η) is defined in (24).
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Therefore, from equations (25) and (26) and the Cauchy-Bunyakovskĭı-Schwarz inequality,
it follows that

E

∙
sup

υ∗∈Uυ
|ψ (Y1,Z2−q, ε2,υ

∗)− ψ (Y1,Z2−q, ε2,υ)|
¸

≤ E {[|2ϕ (ε2 (υ))|+ L∆ (y, zq, η)]∆ (y, zq, η)}

≤ 2
¡
Eϕ2 (ε2 (υ))

¢1/2 ¡
E∆2 (y, zq, η)

¢1/2
+ LE∆2 (y, zq, η) .

Because

E∆2 (y, zq, η) = E
n³
1 + |y|2

´ h√
2 |β| I (|zq − r| ≤ |r0 (η)− r|) + η

io
−→
η→0

0. (27)

From (25) and (27) it follows (21).
If r =∞, we have a result similar to (23)

|h (y, zq,β∗, r)− h (y, zq,β
∗, r∗)| ≤ |β∗|

r
2
³
1 + |y|2

´
I (min (∞, r∗) < zq < max (∞, r∗))

≤ |β∗|
r
2
³
1 + |y|2

´
I (zq > r∗) .

|δ (y, zq,υ∗)| = |h (y, zq,β, r)− h (y, zq,β
∗, r∗)|

≤ |h (y, zq;β, r)− h (y, zq;β, r
∗)|+ |h (y, zq;β, r∗)− h (y, zq;β

∗, r∗)|

≤
h√
2 |β| I (zq > r∗) + |β − β∗|

iq
1 + |y|2

≤
h√
2 |β| I (zq > r0 (η)) + η

iq
1 + |y|2,

where d (r0 (η) ,∞) = η. Again, if ∆1 (y, zq, η) =
£√
2 |β| I (zq > r0 (η)) + η

¤q
1 + |y|2 it

may be proved that
E∆21 (y, zq, η) −→ 0 when η −→ 0.

If r = −∞

|h (y, zq,β∗, r)− h (y, zq,β
∗, r∗)| ≤ |β∗|

r
2
³
1 + |y|2

´
I (min (−∞, r∗) < zq < max (−∞, r∗))

≤ |β∗|
r
2
³
1 + |y|2

´
I (zq < r∗) .

|δ (y, zq,υ∗)| = |h (y, zq,β, r)− h (y, zq,β
∗, r∗)|

≤
h√
2 |β| I (zq < r∗) + |β − β∗|

iq
1 + |y|2

≤
h√
2 |β| I (zq < r0 (η)) + η

iq
1 + |y|2,
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Lastly, if ∆2 (y, zq, η) =
£√
2 |β| I (zq < r0 (η)) + η

¤q
1 + |y|2 it may be proved that

E∆22 (y, zq, η) −→ 0 when η −→ 0.

¤

Proof for Theorem 2 with σ = 1.

Let α (υ) = Eψ (Y1,Z2−q, ε2,υ) for υ ∈ Λ. Assumptions AC1 and AC2, the mean value
Theorem, the independence of ε2 and Y1 and the Cauchy-Bunyakovskĭı-Schwarz inequality
imply that E |(Y1,Z2−q, ε2,υ)| < ∞. Thus, α is well defined. α (ϑ) = 0 and ln y ≤ y − 1,
y 6= 1 are both satisfied. For any open vicinity V of ϑ in Λ and any υ ∈ V c, a conditional
argument gives

α (υ) = Eψ (Y1,Z2−q, ε2,υ)

= E ln
f (εt + h (Y1,Z2−q,ϑ)− h (Y1,Z2−q,υ))

f (εt)

= E

½
E

∙
ln

f (εt + h (Y1,Z2−q,ϑ)− h (Y1,Z2−q,υ))

f (εt)

¯̄̄̄
Y1,Z2−q

¸¾
< E

½Z
[f (y + h (Y1,Z2−q,ϑ)− h (Y1,Z2−q,υ))− f (y)] dy

¾
= 0.

For Lemma 1, function α is continuos and from here, by the compacity of V c, there exists
a υ0 ∈ V c, such that

sup
υ∈V c

α (υ) = α (υ0) < 0.

Let δ0 = −α (υ0) /3. For any υ ∈ V c, by Lemma 1 we have that there exists a η0 > 0 such
that

E sup
υ∗∈Uυ(η0)

ψ (Y1,Z2−q, ε2,υ
∗) ≤ Eψ (Y1,Z2−q, ε2,υ) + δ0 (28)

≤ α (υ0) + δ0

= −2δ0.

The compacity of V c implies that there exists a finite number M of vicinities Uυj (η0) ,
υj ∈ V c, j = 1, 2, ...,M such that [

Uυj (η0) = V c.

Thus, by the ergodicity Theorem and by (28), there exists a T0 such that for any T ≥ T0,
1 ≤ j ≤M,

sup
υ∗∈Uυj (η0)

cT (υ
∗) ≤ 1

T

X
sup

υ∗∈Uυj (η0)
ψ (Yt−1, Zt−d, εt,β

∗, r∗)

≤ E sup
υ∗∈Uυj (η0)

ψ (Y1,Z2−q, ε2,υ
∗) + δ0

≤ −δ0, c.s.
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But
sup
υ∈V

cT (υ) ≥ cT (ϑ) = 0.

Then for any vicinity V of ϑ in Λ, there exists a T0 such that for all T ≥ T0,

sup
υ∗∈V c

cT (υ
∗) ≤ max

1≤j≤M
sup

υ∗∈Uυj (η0)
cT (υ

∗)

≤ −δ0
< 0

≤ sup
υ∈V

cT (υ) .

Which implies that

ϑ̂T ∈ V, c.s. for all V and for all T ≥ T0.

Since V is arbitrary, it follows that ϑ̂T → ϑ c.s. ¤

Proof of Theorem 2 with σ > 0.
Let ϑ =

¡
φ0, γ, d, σ

¢
and υ =

¡
β0, r, q, τ

¢
.

The proof of Lemma 1. with σ > 0 may be obtained in a similar way to the proof already
described. The proof for the case σ = 1 may also be generalized to the case σ > 0 with the
following modifications.
Define

cT (υ) = cT (β, r, q, τ) =
1

T

X
ln

1
τ f
³
Yt−h(Yt−1,Zt−q,β,r)

τ

´
1
σf
³
Yt−h(Yt−1,Zt−d,φ,γ)

σ

´ , υ ∈ Λ×<

and

ψ (Yt−1, Zt−q, εt,β, r) = ln
1
τ f (σεt + h (Yt−1, Zt−d,φ, γ)− h (Yt−1, Zt−q,β, r))

1
σf (σεt)

, 1 ≤ t ≤ n.

Given that if ε∗t = σεt and f is the density function for εt, then the density function for ε∗t
is given by f∗ = 1

σf (y/σ) , f
∗ defined in this way it satisfies assumptions AC1-AC4. ¤
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