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Abstract

This paper introduces the COPSO algorithm (Constrained Optimization via Particle Swarm Opti-
mization) for the solution of single objective constrained optimization problems. The approach includes
two new perturbation operators to prevent premature convergence, and a new ring neighborhood struc-
ture. A constraint handling technique based on feasibility and sum of constraints violation, is equipped
with an external file to store particles we termed “tolerant” . The goal of the file is to extend the life
period of those particles that otherwise would be lost after the adjustment of the tolerance of equality
constraints. COPSO is applied to various engineering design problems, and for the solution of state of
the art benchmark problems. Experiments show that COPSO is robust, competitive and fast.
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1 Introduction

Particle swarm optimization (PSO) algorithm is a population-based optimization technique inspired by the
motion of a bird flock, or fish schooling. Such groups are social organizations whose overall behavior relies
on some sort of communication amongst members, and cooperation. All members obey a set of simple rules
that model the communication inside the flock, and between the flock and the environment. The global
behavior, however, is far more complex and generally successful. For instance, a flock is usually successful
at finding the best place for feeding, same which seems impossible to achieve by any single member. The
PSO paradigm seems to follow the five basic principles of swarm intelligence: proximity, quality, diverse
response, stability, and adaptability [1]. These principles translate into the following: a swarm should carry
out simple space and time computations, respond to quality factors in the environment, react in various
ways to stimulus, keep its mode of behavior at changing environments, but should change its mode if it is
worth the computational price [2]. The last two principles, stability and adaptability, are opposite views of
the same goal. Therefore, a trade-off between them is necessary since the strength of one may diminish the
capacity to achieve the other.

A member of the flock is called “particle”, thus a flock is a collection of particles. The popular term
“flying the particles” means the exploration of the search space. Every particle knows its current position
and the best position visited since the first fly. PSO performs exploration by continually sensing (reading)
the search space at local level. The information collected by the particles is concentrated and sorted to find
the best member (called global best). The new best member and the current best member are compared

1Source code available at request
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and the best one is kept as global best. Its position is communicated to all flock members thus in the next
fly the particles know where the best spot lies in the search space. Locating the next best spot is the main
task of the flock for which exploration and therefore population diversity is crucial. In this scenario the flock
explores the space but remains stable after changing its flying direction (fourth principle). At the same time,
however, all flock members are attracted by the position of the global best. Thus the flock adapts to new
attractors in space (fifth principle). Being simultaneously stable and adaptable is a major problem for PSO
algorithms. A flock must keep flying and looking for better spots even when the current one seemed good.

PSO is a global optimization technique, therefore, it lacks an explicit mechanism to bias the search
towards the feasible region in constrained search spaces. This paper presents a new PSO based approach
called Constrained Optimization via PSO, (COPSO). COPSO performs the main PSO algorithm but executes
two additional steps: the C-perturbation which is oriented to sustain global exploration by keeping diversity,
and the M-perturbation oriented to local refinement of solutions. A review of several diversity control
techniques for PSO is presented in Section 2. Next, a review of constraint handling techniques used by PSO
algorithms is presented in Section 3. The general class of problems of interest is defined in Section 4. Section
5 presents the two basic PSO models and explains the advantages of the local best approach implemented by
COPSO. The COPSO algorithm is thoroughly explained in Section 7. In Section 8, COPSO is used to solve
a state of the art benchmark of 24 functions. Comparisons against four different approaches are provided
(one of them based on PSO). Furthermore, in Section 9, five engineering design problems are solved and
COPSO is compared to three PSO based approaches (found in the literature). Conclusions are provided in
Section 10. The formal description of the problems chosen for the experiments is given in Appendix A and
Appendix B.

2 Diversity control in PSO

In PSO, the source of diversity, called variation, comes from two sources. One is the difference between the
particle’s current position and the global best, and the other is the difference between the particle’s current
position and its best historical value. Although variation provides diversity, it can only be sustained by for a
limited number of generations because convergence of the flock to the best is necessary to refine the solution.
In an early analysis, Angeline shows that PSO may not converge neither refine solutions when variation is
null, that is, when all the particles rest near by the best spot [3]. Although most approaches procure diversity
by including ad-hoc operators to the basic PSO algorithm, a simply approach of Eberhart and Shi [4] (now
adopted in the basic PSO model), keeps variation for as many generations as possible by slowing down the
speed of the flock. In this approach, inertia coefficients are applied to the particle’s previous velocity and
the current one. Small coefficients let the particles reach the global best in a few number of iterations but
large values do the opposite and favor exploration.

Many ad-hoc operators are inspired in evolutionary operators, for instance reproduction. Angeline [3],
and also Eberhart [5], proposed population breeding. Therefore, two randomly chosen particles (parents)
may reproduce and create offsprings. Lovbjerg [6], and more recently Settles [7] implemented breeding with
some success. More investigations on reproduction as source of diversity were recently conducted by S.
Das [8]. He adapted the reproduction operator of differential evolution [9, 10] to PSO, and reported robust
performance in a small set of global optimization problems.

If these approaches keep diversity by preventing premature convergence, other approaches let premature
convergence happen but later in the process they try to extinguish it. For instance, in Krinks approach, the
particles as clustered and their density used as a measure of crowding [11]. Once such clusters are detected,
their density is reduced by bouncing away the particles. Blackwell also investigated a mechanism that repels
clustered particles [12].

The diversity of the flock is important to reach the optimum. The formal analysis of van den Bergh shows
that the PSO algorithm is not a global optimizer, and that the flock will only converge to the best position
visited, not the global optimum [13]. Therefore, the quest for diversity is a sound approach to approximate
the global optimum since more diversity can be read as “more positions visited”. van den Bergh also showed
that local convergence is guaranteed if local exploration is performed around the global best [14]. These
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two ideas are captured by the perturbation operators of COPSO: the C-perturbation implements global
exploration, whilst the M-perturbation performs exploration at a local level.

3 Related work on constraint handling techniques for PSO

Several authors have noted how important is to achieve the proper balance between the diversity control
technique, the constraint handling technique, and the particular features of the search engine [15, 16, 17, 18].
A PSO algorithm in constrained space must take into account that the inherent tendency of PSO to premature
convergence may be increased by a constraint handling technique that overestimates unfeasible particles. The
next two issues are common to PSO algorithms in a constrained search space:

• Which particle is a good leader to guide the flock towards the feasible region? An example of such
question is whether the sole distance from a particle to the feasible region can be used to identify the
leader.

• How to maintain the exploration and exploitation capacity of the flock during generations? That is,
the behavior of the flock needs to change, slowly, from exploration to exploitation.

Many initial approaches did not combine a diversity maintenance strategy with the constraint handling tech-
nique. For instance, Parsopoulos used a multi-stage assignment penalty function without diversity control
[19]. Hu and Eberhart proposed a feasibility preservation strategy that determines the best particle [20, 21].
Both penalty and feasibility preservation strategies were analyzed by G. Coath [22] (whose experiments
clearly detect the need of some form of diversity control). He and Prempain used a “fly-back” mechanism
that returns an unfeasible particle to its previous feasible position [23]. An more important drawback of this
technique is the requirement of a all-feasible initial population. A few more sophisticated approaches include
diversity control. For instance Toscano and Coello [24], use a turbulence operator (a kind of mutation)
combined with a feasibility tournament [25]. They succeeded in most problems but faced weak capacity to
refine the solutions. Reproduction operators can also be combined with PSO in constrained optimization.
For instance, W. Zhang [26] proposed to compute the velocity term by taking turns between PSO and differ-
ential evolution. At odd generations he would use the PSO formula; at even generations he would compute
it as in the differential evolution formalism. Zhang [27], introduced a special technique, called periodic mode,
to handle equality constraints. His approach consists in keeping the global-best near the boundary thus the
flock which is constantly pulled to the border, can sustain exploration. We contrast our method with the
best results of the recent proposals reviewed in this section.

4 Problem Statement

We are interested in the general nonlinear programming problem in which we want to:

Find ~x which optimizes f(~x)

subject to:
gi(~x) ≤ 0, i = 1, . . . , n

hj(~x) = 0, j = 1, . . . , p

where ~x is the vector of solutions ~x = [x1, x2, . . . , xr]T , n is the number of inequality constraints and
p is the number of equality constraints (in both cases, constraints could be linear or non-linear). For an
inequality constraint that satisfies gi(~x) = 0, then we will say that is active at ~x. All equality constraints hj

(regardless of the value of ~x used) are considered active at all points of F (F = feasible region).
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5 From global best to local best PSO algorithm

In PSO, the particles fly over a real valued n-dimensional search space and each one has three attributes:
position ~x, velocity ~v, and best position visited Pbest. The best Pbest is called global best, or leader,
GBest. The next position of any member is computed by adding a displacement (named velocity) to its
current position.

~x(t + 1) = ~x(t) + ~v(t + 1) (1)

The velocity term combines the local information of the particle with global information of the flock, in the
following way.

~v(t + 1) = w ∗ ~v(t) + φ1 ∗ (~xPBest − ~x) + φ2 ∗ (~xGBest − ~x) (2)

The equation above reflects the socially exchanged information. It resumes PSO three main features:
distributed control, collective behavior, and local interaction with the environment [2, 28].The second term
is called the cognitive component, while the last term is called the social component. w is the inertia weight,
and φ1 and φ2 are called acceleration coefficients.

The best particle is called “the leader”. The whole flock moves following the leader but the leadership
can be passed from member to member. At every PSO iteration the flock is inspected to find the best
member. Whenever a member is found to improve the function value of the current leader, that member
takes the leadership. A leader can be global to all the flock, or local to a flock’s neighborhood. In the latter
case there are as many local leaders as neighborhoods. Having more than one leader in the flock translates
into more attractors or good spots in space. Therefore, the use of neighborhoods is a natural approach to
fight premature convergence [29].

Flock neighborhoods have a structure that define the way information is concentrated and then distributed
among its members. The most common flock organizations are shown in Figure 1. The organization of the
flock affects convergence and search capacity. The star structure has reported the fastest convergence time
while the ring has been reported to traverse larger areas of the search space [2, 28]). The global best approach
(see Equation 2), works on the star structure; local best only works on neighborhoods of particles such as the
ring [30, 31]. Flock members organized in a ring communicate with n immediate neighbors, n/2 on each side
(usually n = 2). Every particle is initialized with a permanent label which is independent of its geographic
location in space. Finding the local best (LBest) neighbor of particle i is done by inspecting the particles
in the neighborhood: i + 1, i + 2, . . . , i + n/2 and i − 1, i − 2, . . . , i − n/2 (COPSO uses the selfless model,
therefore, particle i is not considered member of the neighborhood [32]). The approach introduced in this
paper organizes the flock in a modified ring fashion called singly-linked ring. This structure improves the
exploration capacity of the flock.

Figure 1: Neighborhood structures for PSO

The equation for local best PSO is similar to that of the global best version. One would simply substitute
“GBest” by “LBest” in Equation 2. This is shown in Figure 2 in greater detail, where n is the population
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%create members and measure their properties X0 = Rand(LL, UL)
V0 = Rand(-(UL-LL), (UL-LL))
F0 = Fitness ( X0 )
C0 = SCV ( X0 )
PBest0= X0
FBest0= F0
CBest0= C0
Function LBestPSO
For i = 1 To maxgenerations

LBesti = LocalBest ( FBesti, CBesti )
Vi+1 = Velocity ( Vi, Xi, PBesti, LBesti)
Xi+1 = Xi + Vi+1
Fi+1 = Fitness ( Xi+1 )
Ci+1 = SCV ( Xi+1 )
[PBesti+1, FBesti+1, CBesti+1] = ParticleBest ( PBesti, Xi+1, FBesti, Fi+1, CBesti, Ci+1 )

End For
Function Velocity
For k = 0 To n

For j = 0 To d
r1 = φ1 * U(0, 1); r2 = φ2 * U(0, 1); w = U(0.5, 1);
Vi+1[k, j] = w * Vi[k, j] + r1 * (PBesti[k, j] - Xi[k, j]) + r2 * (LBesti[k, j] - Xi[k, j])

End For
End For

Figure 2: Pseudo-code of LBestPSO algorithm

size, d is the dimension of the search space, φ1 and φ2 are constants set to 1 (not needed), and w is the
inertia weight whose random value comes from a uniform distribution in [0.5, 1]. Of course, ParticleBest
updates the local memory of each particle, and LocalBest finds the best in every neighborhood.

6 Singly-Linked Ring Neighborhood Structure

The ring neighborhood structure is commonly used by PSO implementations. Each particle is assigned a
permanent label which is used to construct the neighborhoods. For each particle k, a neighborhood of size n
is composed by the next n/2 linked particles, and by n/2 previous particles. For example, in a neighborhood
of size n = 2, particle k has 2 neighbors: particles k− 1 and k + 1. The best particle of the neighborhood is
the LBest of particle k. The ring structure is implemented by a doubly-linked list, as shown in Figure 3-a.

b)

kk−1k−2k−3 k+1 k+2 k+3

k+2

k+1

k

k+3k−1

k−2

k−3

k+1

k−2

k

1

3

4 6

::::

2

5

N

k+1

k−1

k

1

3

4 6

::::

2

5

N

a)

Figure 3: Ring neighborhood structures for PSO

COPSO uses an alternative ring implementation, the singly-linked list, shown in Figure 3-b. This struc-
ture improved the success of experimental results by a very important factor. Although more details are
not provided, the advantages of the new structure can be explained as follows (see Figure 3). Assume the

6



ring is based on a double link, and particle 3 is the best of particle’s neighborhood 2 and 4. Since 2 and 4
have particle 3 in their own neighborhood, but 3 is the best, then particles 2 and 4 are directly pulled by 3.
Simultaneously, particle 3 has particles 2 and 4 as neighbors. Therefore, 3 attracts 2 and 2 attracts 3. After
some generations, particles 2 and 3 converge to the same point. Now, assume the ring is based on a single
link, and particle 3 is again the best of particle’s neighborhood 2 and 5. But particle 3 now has particles 1
and 4 as neighbors (not 2 and 5 as in the double link). Since particle 4 has particles 2 and 5 as neighbors,
3 attracts 2 but 2 only attracts 3 through particle 4. Therefore, the particle in between cancels the mutual
attraction, and in consequence reduces the convergence of the flock.

For each particle i, the members of a neighborhood of size n are selected by the next algorithm.

1. Set step = 1

2. Set switch = 1 (pick from left or right side)

3. Include in the neighborhood the particle i + switch ∗ step

4. Increment step = step + 1

5. Calculate switch = −switch

6. Repeat step 3 until neighborhood size = n.

7 COPSO = LBestPSO + Perturbations + Constraint Handling

COPSO improves the local best PSO algorithm with external procedures that keep diversity and guide the
flock towards good spots without destroying its self organization capacity. Thus, only the memory of best
visited location, PBest, may be altered by the perturbation operators. Flying the particles remains the main
task of PSO. A view of COPSO algorithm with its three components is shown in Figure 7. In the first stage
the standard LbestPSO algorithm (described in Figure 2) runs one iteration [28]. Then the perturbations
are applied to PBest in the next two stages. The goal of the second stage is to add a perturbation generated
from the linear combination of three random vectors. This perturbation is preferred over other operators
because it preserves the distribution of the population (also used for reproduction by the differential evolution
algorithm [33]). In COPSO this perturbation is called C-Perturbation. It is applied to the members of PBest
to yield a set of temporal particles Temp. Then each member of Temp is compared with its corresponding
father and PBest is updated with the child if it wins the tournament. Figure 4 shows the pseudo-code of the
C-Perturbation operator.

For k = 0 To n
For j = 0 To d

r = U(0, 1)
p1 = k
p2 = Random(n)
p3 = Random(n)
Temp[k, j] = Pi+1[p1, j] + r (Pi+1[p2, j] - Pi+1[p3, j])

End For
End For

Figure 4: Pseudo-code of C-Perturbation

In the third stage every vector is perturbed again so a particle could be deviated from its current direction
as responding to external, maybe more promissory, stimuli. This perturbation is implemented by adding
small random numbers (from a uniform distribution) to every design variable. The perturbation, called
M-Perturbation, is applied to every member of PBest to yield a set of temporal particles Temp. Then each
member of Temp is compared with its corresponding father and PBest is updated with the child if it wins
the tournament. Figure 5 shows the pseudo-code of the M-Perturbation operator. The perturbation is
added to every dimension of the decision vector with probability p = 1/d (d is the dimension of the decision
variable vector).
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For k = 0 To n
For j = 0 To d

r = U(0, 1)
If r ≤ 1/d Then

Temp[k, j] = Rand(LL, UL)
Else

Temp[k, j] = Pi+1[k, j]
End For

End For

Figure 5: Pseudo-code of M-Perturbation

These perturbations have the additional advantage of keeping the self-organization potential of the flock
since they only work on the PBest memory. In Figure 6 the position PBest is relocated to a new “best” after
the perturbation operations. Notice this change is made to the particle’s memory of best visited location.
When PSO takes turn to perform its computations, it finds everything as left in the previous generation,
except that the memory PBest may store a better position. In Figure 7 the main algorithm of COPSO is
listed. p is a linearly decreasing probability from 1.0 to 0 (according to the function evaluations), LL and UL
are the lower and upper limits of the search space. LocalBest and ParticleBest perform the obvious task
as explained before. The procedure Update tolerant file is invoked only when the problem has equality
constraints. This is explained next.

Figure 6: PBest updated after the C and M perturbations

7.1 Constraint handling approach

K. Deb introduced a feasibility tournament selection based on the idea that any individual in a constrained
search space must first comply with the constraints and then with the function value [25]. COPSO adopted
such popular tournament selection whose rules have been included in the functions LocalBest and Parti-
cleBest: 1) given two feasible particles, pick the one with better function value; 2) if both particles are
infeasible, pick the particle with the lowest sum of constraint violation, and 3) from a pair of feasible and
infeasible particles, pick the feasible one. The sum of constraint violations is, of course, the total value
by which unsatisfied constraints are violated (computed by function SCV in Figure 7). Two additional
characteristics of the constraint handling mechanism are:

• Dynamic tolerance for equality constraints. COPSO handles equality constraints by rewriting them as
inequality constraints of the form |hj | ≤ ε, where ε is called the tolerance. In COPSO, the tolerance is
linearly decremented from 1.0 to a specified target value during the first 90% of function evaluations
(1E-06 in our experiments). For the last 10% the tolerance is kept fixed; thus, the particles have
additional time to achieve convergence.

• Storage of tolerant particles. We call tolerant a particle that remains feasible after two or more
consecutive reductions of the tolerance. Thus, a tolerant particle is located very near the constraint
boundary. Many other particles become unfeasible after the tolerance value is decremented. Procedure
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% create members and measure their properties
X0 = Rand(LL, UL)
V0 = Rand(-(UL-LL), (UL-LL))
F0 = Fitness ( X0 )
C0 = SCV ( X0 )
PBest0= X0
FBest0= F0
CBest0= C0

Stage 1
Function COPSO
For i = 1 To maxgenerations

LBesti = LocalBest ( FBesti, CBesti )
Vi+1 = Velocity ( Vi, Xi, PBesti, LBesti)
Xi+1 = Xi + Vi+1
Fi+1 = Fitness ( Xi+1 )
Ci+1 = SCV ( Xi+1 )
[PBesti+1, FBesti+1, CBesti+1] = ParticleBest ( PBesti, Xi+1, FBesti, Fi+1, CBesti, Ci+1 )
Update tolerant file (PBesti+1)

Stage 2
If (U(0, 1) < p )

Temp = C-Perturbation (PBesti+1 )
FTemp = Fitness ( Temp )
CTemp = SCV ( Temp )
[PBesti+1, FBesti+1, CBesti+1] = ParticleBest ( PBesti, Temp, FBesti, FTemp, CBesti,

CTemp )
Update tolerant file (PBesti+1)

End If
Stage 3

If (U(0, 1) < p )
Temp = M-Perturbation (PBesti+1 )
FTemp = Fitness ( Temp )
CTemp = SCV ( Temp )
[PBesti+1, FBesti+1, CBesti+1] = ParticleBest ( PBesti, Temp, FBesti, FTemp, CBesti,

CTemp )
Update tolerant file (PBesti+1)

End If
End For

Figure 7: Pseudo-code of COPSO algorithm
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Update tolerant file keeps a file of tolerant particles. Figure 8 describes the actions performed: the best
among all PBest, called q, is inserted in the file. The tolerance is decremented and the whole file is
evaluated. The best particle in the file substitutes q.

Update Tolerant File (PBest)
% TF: tolerant file, initially empty
q ← Particlebest(PBest)
If TF == full

TF ← TF \ any member TF
Endif
TF ← TF ∪ q
TF ← SCV(TF)
bp ← Particlebest(TF)
PBest ← PBest \ q
PBest ← PBest ∪ bp

Figure 8: Procedure Update-tolerant-file

For COPSO the total amount of violation measured on the equality constraints helps to determine a
better leader for the flock. Other approaches simply consider that any individual is as good as any other if
they are located inside the margin of tolerance.

7.2 Refining Solutions

The cooperation between PSO and the perturbation operators have been carefully analyzed by the authors
through out the many experiments conducted. The PSO stage performs very efficiently at refining solutions in
a local space, but exploration is performed by the perturbation operators. Hence, the perturbation operators
have their activity reduced along generations so a refining phase conducted by PSO may take place. The
implementation of these cooperative activities is as follows: the perturbation operators are invoked with
probability p = 1 when the flock is flown for the first time. This probability is constantly and linearly
decremented reaching its final value of p = 0 at the last time the particles fly.

8 Experiments on benchmark functions

For all experiments, COPSO used the following parameters: factors c1 and c2 are not needed thus set to
1. The inertia weight w is a random number in the interval [0.5,1] with uniform distribution. Flock size of
100 members. Minimum tolerance value of 1 × 10−6 for all equality constraints. Total number of function
evaluations is 350,000. A PC computer with Windows XP and C++ Builder Compiler, Pentium-4 processor
at 3.00GHz, 1.00 GB of RAM. Two large sets of experiments were conducted, one on a benchmark of 24
functions, and another on engineering problems.

8.1 The benchmark problems

E. Mezura has extended to 24 functions the original benchmark of Runnarson and Yao, with 13 functions
[34]. The definition of these functions is given in Appendix A. The basic statistics for 30 runs are shown in
Table 1.

The Table 2 shows the COPSO’s convergency in the benchmark problems. We present the objective
function evaluations required to approximate the best-known optimum within a margin of 1E-4. The top
value is 350, 000 function evaluations. In test problems g03, g05, g11, g13, g14, g15, g17, g20, g21, g22,
and g23, the number of function evaluations required by equality constraints to reach a tolerance value of
ε=1E-6, is 315, 000.

In the Table 2, we also show the number of feasible runs, F.Runs. A run that finds at least one feasible
solution in less than 350, 000 fitness evaluations is called feasible. The column S.Runs shows the number
of successful runs (when the best value found is within 1E-4 of the optimal the run is successful). The
experiments show a poor performance of COPSO in test problems g20, g21, g22 and g23. These problems
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Table 1: The results of COPSO on the benchmark

TF Optimal Best Median Mean Worst S. D. F. S.

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 0 30/30
g02 -0.803619 -0.803619 -0.803617 -0.801320 -0.786566 4.5945E-03 30/30
g03 -1.000000 -1.000005 -1.000005 -1.000005 -1.000003 3.1559E-07 30/30
g04 -30665.539 -30665.538672 -30665.538672 -30665.538672 -30665.538672 0 30/30
g05 5126.4981 5126.498096 5126.498096 5126.498096 5126.498096 0 30/30
g06 -6961.8138 -6961.813876 -6961.813876 -6961.813876 -6961.813876 0 30/30
g07 24.306209 24.306209 24.306210 24.306212 24.306219 3.3414E-06 30/30
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0 30/30
g09 680.630057 680.630057 680.630057 680.630057 680.630057 0 30/30
g10 7049.248 7049.248020 7049.248638 7049.250087 7049.263662 3.6121E-03 30/30
g11 0.750000 0.749999 0.749999 0.749999 0.749999 0 30/30
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 0 30/30
g13 0.053950 0.053950 0.053950 0.053950 0.053965 2.7688E-06 30/30
g14 -47.761 -47.761108 -47.747212 -47.741430 -47.670921 2.1566E-02 30/30
g15 961.715 961.715171 961.715171 961.715171 961.715171 0 30/30
g16 -1.905 -1.905155 -1.905155 -1.905155 -1.905155 0 30/30
g17 8876.98068 8856.502344 8863.875542 8877.812811 8941.344349 30.1195 30/30
g18 -0.8660 -0.866025 -0.866025 -0.866001 -0.865568 8.7410E-05 30/30
g19 32.386 32.349645 32.386872 32.411596 32.571543 6.3055E-02 30/30
g20 0.967 *0.204095 *0.209711 *0.212003 *0.233281 6.9487E-03 0/30
g21 193.778349 205.852693 279.309106 273.298016 303.454837 23.8556 30/30
g22 12812.500 *157.513639 *3161.102678 *5376.226516 *18732.783872 5.0132E+03 0/30
g23 -400.0551 -361.856637 -136.564268 -138.407772 3.775736 84.521723 30/30
g24 -5.508 -5.508013 -5.508013 -5.508013 -5.508013 0 30/30

* Infeasible solution

have several equality constraints, in fact the problems g20 and g22 have more than 10 of them. In test
problem g17, the tolerance value used in the equality constraints allows better results of COPSO than the
optimal reported.

Table 2: COPSO’s Convergency

TF Best Median Mean Worst S.D. Feasible Runs Successful Runs

g01 90800 95000 95396.67 99400 2613.29 30 30
g02 142900 175800 179395.45 232100 28120.18 30 22
g03 315100 315100 315123.33 315600 97.14 30 30
g04 59600 65100 65086.67 70000 2713.28 30 30
g05 315100 315100 315256.67 315900 245.91 30 30
g06 47100 54200 53410.00 57000 2577.80 30 30
g07 185500 227600 233400.00 304500 32253.97 30 30
g08 3600 6850 6470.00 8500 1381.94 30 30
g09 69900 78500 79570.00 102400 7154.65 30 30
g10 167200 221300 224740.00 307200 38407.82 30 30
g11 315000 315000 315000.00 315000 0 30 30
g12 400 6900 6646.67 10400 2606.98 30 30
g13 315100 315150 315546.67 318100 710.87 30 30
g14 326900 326900 326900.00 326900 0 30 1
g15 315100 315100 315100.00 315100 0 30 30
g16 37200 41000 40960.00 45400 2210.88 30 30
g17 315100 316500 316608.70 318800 1061.69 30 23
g18 102200 153600 167088.89 252900 43430.30 30 27
g19 206800 259650 264414.29 331000 36456.84 30 14
g20 NR NR NR NR NR 0 0
g21 NR NR NR NR NR 30 0
g22 NR NR NR NR NR 0 0
g23 NR NR NR NR NR 30 0
g24 14900 19350 19156.67 22200 1927.24 30 30

NR: Optimal not reached

Firstly, we compare COPSO and PSO for constrained optimization. Since both are based on PSO this
is the fairest comparison reported in the paper.

11



8.2 Comparison COPSO - PSO for constrained optimization

Toscano and Coello [24] proposed a constraint handling technique for PSO. Their approach handles con-
straints through a feasibility tournament, and keeps diversity by adding mutations to the velocity vector. The
comparison is shown in Table 3. TC-PSO (Toscano and Coello’s PSO) performed 340,000 fitness function
evaluations, 10,000 less than COPSO, but it is not significative for the comparison. COPSOs performance
is better than TC-PSO on test problems g02, g05, g07, g10, g11 and g13. (Hu and Eberhart [21], and Zhang
[27] reported the first solutions to these problems with very limited success).

Table 3: Comparison of COPSO and Toscano-Coello PSO in the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO TC-PSO COPSO TC-PSO COPSO TC-PSO

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803619 -0.803432 -0.801320 -0.790406 -0.786566 -0.750393
g03 -1.000000 -1.000005 -1.004720 -1.000005 -1.003814 -1.000003 -1.002490
g04 -30665.539 -30665.538672 -30665.500 -30665.538672 -30665.500 -30665.538672 -30665.500
g05 5126.4981 5126.498096 5126.640 5126.498096 5461.081333 5126.498096 6104.750
g06 -6961.8138 -6961.813876 -6961.810 -6961.813876 -6961.810 -6961.813876 -6961.810
g07 24.306209 24.306209 24.351100 24.306212 25.355771 24.306219 27.316800
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.638 680.630057 680.852393 680.630057 681.553
g10 7049.3307 7049.248020 7057.5900 7049.250087 7560.047857 7049.263662 8104.310
g11 0.750000 0.749999 0.749999 0.749999 0.750107 0.749999 0.752885
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.068665 0.053950 1.716426 0.053965 13.669500

8.3 Comparison COPSO - Diversity-DE

Mezura, Velazquez and Coello [35], modified the Differential Evolution algorithm in a way that every parent
may have more than one offspring. The winner is the best child but then the child is compared to the current
parent. Another tournament is performed but this time the winner is found by tossing a coin and comparing
by fitness value, or by constraint violation (similar to Stochastic Ranking [36]. The comparison is shown in
Table 4, the number of fitness evaluations for both algorithms is 225000. The performance of COPSO and
DE is very similar. A little advantage is shown by COPSO and Diversity-DE on test problems g09 and g10,
respectively; but COPSO shows a better performance on test problem g13.

Table 4: Comparison of COPSO and Diversity-DE in the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO DE COPSO DE COPSO DE

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803618 -0.803619 -0.797141 -0.798079 -0.785217 -0.751742
g03 -1.000000 -1.000005 -1.000 -1.000004 -1.000 -1.000003 -1.000
g04 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539 -30665.538672 -30665.539
g05 5126.4981 5126.498096 5126.497 5126.498096 5126.497 5126.498096 5126.497
g06 -6961.8138 -6961.813876 -6961.814 -6961.813876 -6961.814 -6961.813876 -6961.814
g07 24.306209 24.306211 24.306 24.306390 24.306 24.307496 24.306
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.638 680.630057 680.852393 680.630057 681.553
g10 7049.3307 7049.248435 7049.248 7049.318269 7049.266 7049.910984 7049.617
g11 0.750000 0.749999 0.75 0.749999 0.75 0.749999 0.75
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.053941 0.054029 0.069336 0.0546054 0.438803
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8.4 Comparison COPSO - ISRES.

Runarsson and Yao proposed the Stochastic Ranking algorithm for constrained optimization [36], and re-
cently an improved version called “Improved Stochastic Ranking Evolution Strategy”, (ISRES), which is
the state of the art [37]. Experiments for test problems g14 through g24 were developed using the ISRES’s
code available at Runarsson’s page. The parameters used were the same to the suggested by the authors
[37]. The comparison is shown in Table 5. Both algorithms performed the same number of fitness function
evaluations, 350,000. Note that ISRES finds the best values for problems g07, g10, g17, g19 and g23 test
problems. Also, ISRES average is closer to the optimum value and is better than COPSO in problems g07,
g10, g17 and g23. But COPSO is better in problems g02 and g13, where it finds the optimum in all 30 runs.
In test problem g21, COPSO found feasible solutions in all 30 runs, whereas ISRES only had 5 successful
runs. Both COPSO and ISRES were unable to find feasible solutions for test problems g20 and g22.

Table 5: Comparison of COPSO and ISRES on the benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO ISRES COPSO ISRES COPSO ISRES

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803619 -0.803619 -0.801320 -0.782715 -0.786566 -0.723591
g03 -1.000000 -1.000005 -1.001 -1.000005 -1.001 -1.000003 -1.001
g04 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539
g05 5126.4981 5126.498096 5126.497 5126.498096 5126.497 5126.498096 5126.497
g06 -6961.8138 -6961.813876 -6961.814 -6961.813876 -6961.814 -6961.813876 -6961.814
g07 24.306209 24.306209 24.306 24.306212 24.306 24.306219 24.306
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.630 680.630057 680.630 680.630057 680.630
g10 7049.248 7049.248020 7049.248 7049.250087 7049.25 7049.263662 7049.27
g11 0.750000 0.749999 0.750 0.749999 0.750 0.749999 0.750
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.053942 0.053950 0.066770 0.053965 0.438803
g14 -47.761 -47.761108 -47.761129 -47.741430 -47.759250 -47.670921 -47.735569
g15 961.715 961.715171 961.715171 961.715171 961.715171 961.715171 961.715171
g16 -1.905 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155 -1.905155
g17 8876.98068 8856.502344 8889.9003 8877.812811 8889.9442 8941.344349 8890.9516
g18 -0.8660 -0.866025 -0.866025 -0.866001 -0.866025 -0.865568 -0.866025
g19 32.386 32.349645 32.348689 32.411596 32.374095 32.571543 32.644735
g20 0.967 *0.204095 NA *0.212003 NA *0.233281 NA
g21 193.778349 205.852693 193.785034 273.298016 220.056989 303.454837 325.144812
g22 12812.500 *157.513639 NA *5376.226516 NA *18732.7838 NA
g23 -400.0551 -361.856637 -400.000551 -138.407772 -321.342939 3.775736 -47.842844
g24 -5.508 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013 -5.508013

* Infeasible solution, NA Not available

8.5 Comparison COPSO - SMES.

Mezura and Coello proposed the “Simple Multimember Evolutionary Strategy”, (SMES), which worked
reasonable well on the first 13 problems but had a weak performance on the new problems (g14 through
g23), mainly due to reduced exploration [17]. In Table 6 we show the comparison of COPSO and SMES.
In this case both algorithms performed 240,000 fitness function evaluations. It can be seen that COPSO is
clearly better than SMES in problems g05, g07, g10, g13, g14, g15, g17, g19, g21 and g23. Although the
best values reported for the rest of the problems are comparable, COPSO outperforms SMES in the average
results for problems g05, g06, g07, g10, g13, g14, g15, g17, g18, g19, g21 and g23. COPSO and SMES were
unable to find feasible solutions for test problems g20 and g22. But, COPSO finds feasible solutions for test
problems g17, g21 and g23, where SMES could not find feasible solutions in any single run.
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Table 6: Results of COPSO and SMES for benchmark problems

Best Result Mean Result Worst Result
TF Optimal COPSO SMES COPSO SMES COPSO SMES

g01 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000 -15.000000
g02 -0.803619 -0.803618 -0.803601 -0.800092 -0.785238 -0.785265 -0.751322
g03 -1.000000 -1.000005 -1.000000 -1.000004 -1.000000 -1.000003 -1.000000
g04 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539 -30665.53867 -30665.539
g05 5126.4981 5126.498096 5126.599 5126.498096 5174.492 5126.498096 5304.167
g06 -6961.8138 -6961.813876 -6961.814 -6961.813876 -6961.284 -6961.813876 -6952.482
g07 24.306209 24.306211 24.327 24.306312 24.475 24.306539 24.843
g08 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.630057 680.630057 680.632 680.630057 680.643 680.630057 680.719
g10 7049.248 7049.248871 7051.903 7049.278821 7253.047 7049.668593 7638.366
g11 0.750000 0.749999 0.750000 0.749999 0.750000 0.749999 0.750000
g12 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
g13 0.053950 0.053950 0.053986 0.053986 0.166385 0.054191 0.468294
g14 -47.761 -47.760600 -47.535 -47.617510 -47.368 -47.392351 -47.053
g15 961.715 961.715171 *961.698 961.715171 963.922 961.715171 967.787
g16 -1.905 -1.905155 -1.905 -1.905155 -1.905 -1.905155 -1.905
g17 8876.98068 8860.030895 *8890.1826 8886.641583 *8954.1364 8958.883372 *9163.6767
g18 -0.8660 -0.866025 -0.866 -0.840455 -0.716 -0.674349 -0.648
g19 32.386 32.351376 34.223 32.616663 37.208 33.782773 41.251
g20 0.967 *0.204095 *0.211364 *0.212003 *0.251130 *0.233281 *0.304414
g21 193.778349 236.928359 *347.9809 313.456855 *678.3924 690.568587 *985.7821
g22 12812.500 *157.513639 *2340.6166 *5376.2265 *9438.2549 *18732.7838 *17671.5351
g23 -400.0551 -369.765012 *-1470.1525 -114.136118 *-363.5082 199.238633 *177.2526
g24 -5.508 -5.508013 -5.508 -5.508013 -5.508 -5.508013 -5.507

* Infeasible solution

9 Engineering optimization problems

A set of five problems, frequently used by the specialized literature, have been chosen to compare COPSO
against the results of several authors who have approached the problem via PSO. We also provide results
from E. Mezura who used a state of the art differential evolution algorithm [38] (thus the reader may compare
solutions from different algorithms). This section is organized by showing the comparisons between COPSO
and each author’s approach (a brief review of the work of all authors is provided in Section 3). Each
comparison includes all possible problems reported. The full description of the five problems can be found
in Appendix B. The problems chosen are the following:

1. Problem E01: Design of a Welded Beam

2. Problem E02: Design of a Pressure Vessel

3. Problem E03: Minimization of the Weight of a Tension/Compression Spring

4. Problem E04: Minimization of the Weight of a Speed Reducer

5. Problem E05: Himmelblau’s Nonlinear Optimization Problem

9.1 Comparison COPSO and Mezura’s Differential Evolution

In Table 7 we compare the results of COPSO and Mezura’s algorithm [38]. The number of fitness function
evaluations for both algorithms was set to 30,000 for all engineering design problems. COPSO shows better
performance than Mezura’s approach in engineering problems E01, E02 and E03 (the results presented by
Mezura for engineering problem E04 are clearly unfeasible since the solution for variable x2 is outside of the
search space). The solution vector is showed in Table 13.
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Table 7: The best results of COPSO and Mezura’s algorithm for problems E01, E02, E03, and E04

Best Result Mean Result St. Dev.
TF Optimal COPSO Mezura COPSO Mezura COPSO Mezura

E01 1.724852 1.724852 1.724852 1.724881 1.777692 1.2661E-05 8.8E-2
E02 6059.7143 6059.714335 6059.7143 6071.013366 6379.938037 15.101157 210
E03 0.012665 0.012665 0.012689 0.012666 0.013165 1.2803E-06 3.9E-4
E04 NA 2996.372448 *2996.348094 2996.408525 *2996.348094 0.028671 0

* Unfeasible solution
NA Not available

9.2 Comparison COPSO and Hu-Eberhart PSO

Hu and Eberhart solved four problems of the list. In Table 8 we show the results of COPSO and HE-PSO
(Hu and Eberhart’s PSO) [20]. The number of fitness function evaluations performed by HE-PSO were
200,000. Therefore, COPSO was also set to 200,000 as to have a fair comparison. COPSO is better than
HE-PSO in engineering problem E03 (the result presented by HE-PSO in engineering problem E02 seems
abnormal because the solution vector is equal to COPSO and Mezura’s Differential Evolution.) The solution
vectors are showed in Table 11.

Table 8: The best result of COPSO and HE-PSO on problems E01, E02, E03, and E05

Best Result Mean Result St. Dev.
TF Optimal COPSO HE-PSO COPSO HE-PSO COPSO HE-PSO

E01 1.724852 1.724852 1.72485 1.724852 1.72485 0 0
E02 6059.7143 6059.714335 6059.131296 6059.714335 NA 0 NA
E03 0.012665 0.012665 0.0126661409 0.012665 0.012718975 0 6.446E-5
E05 NA -31025.560242 -31025.56142 -31025.560242 -31025.56142 0 0

NA Not available

9.3 Comparison COPSO and Improved PSO of He-Prempain-Wu

The improved PSO algorithm of He, Prempain and Wu (HPW-PSO) is compared next. In Table 9 we
show the results of COPSO and HPW-PSO [23]. The number of fitness function evaluations performed by
HPW-PSO were 30,000 for engineering problems E01, E02, E03; and 90,000 for test problem g04. The same
number of fitness evaluations were used by COPSO. The performance presented by COPSO is clearly better
that HPW-PSO’s performance in all problems.

Table 9: The best result of COPSO and HPW-PSO on problems E01, E02, E03, and g04

Best Result Mean Result St. Dev.
TF Optimal COPSO HPW-PSO COPSO HPW-PSO COPSO HPW-PSO

E01 1.724852 1.724852 2.38095658 1.724881 2.381932 1.2661E-05 5.239371E-3
E02 6059.7143 6059.714335 6059.7143 6071.013366 6289.92881 15.101157 305.78
E03 0.012665 0.012665 0.01266528 0.012666 0.01270233 1.2803E-06 4.12439E-5
g04 -30665.539 -30665.538672 -30665.539 -30665.538672 -30643.989 0 70.043

9.4 Best solution vector found by each approach

In Table 10 we compare the solution vectors found for engineering design problem E01 (welded beam design).
In Table 11 we show the solution vector for engineer problem E02 (pressure vessel design).
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Table 10: Solution vector for problem E01 (design of a welded beam)

Best Solutions
COPSO Mezura HE-PSO HPW-PSO

x1 0.205730 0.205730 0.20573 0.24436898
x2 3.470489 3.470489 3.47049 6.21751974
x3 9.036624 9.036624 9.03662 8.29147139
x4 0.205730 0.205730 0.20573 0.24436898

g1(x) -1.818989E-12 0.0 0.0 -5741.17693313
g2(x) -7.275957E-12 0.00002 0.0 -0.00000067
g3(x) 9.4368957E-16 0.0 -5.5511151E-17 0.0
g4(x) -3.432983 -3.432984 -3.432983 -3.02295458
g5(x) -0.080729 -0.080730 -0.0807296 -0.11936898
g6(x) -0.235540 -0.235540 -0.2355403 -0.23424083
g7(x) -9.094947E-13 0.000001 -9.094947E-13 -0.00030900
f(x) 1.724852 1.724852 1.72485 2.3809565827

Table 11: Solution vector for problem E02 (design of a pressure vessel)

Best Solutions
COPSO Mezura HE-PSO HPW-PSO

x1 0.8125 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 0.4375
x3 42.098446 42.098446 42.09845 42.0984456
x4 176.636596 176.636596 176.6366 176.63659584

g1(x) 9.479179E-16 0.0 0.0 0.0
g2(x) -0.0358808 -0.035880 -0.03588 -0.03588083
g3(x) -3.342393E-10 0.0 -5.8208E-11 0.0
g4(x) -63.36340 -63.363404 -63.3634 -63.36340416
f(x) 6059.714335 6059.7143 6059.131219 6059.7143

In Table 12 we show the solution vectors found for engineering design problem E03 (tension/compression
spring design).

Table 12: Solution vector found for problem E03 (design of a tension/compression spring)

Best Solutions
COPSO Mezura HE-PSO HPW-PSO

x1 0.05168908 0.052836 0.051466369 0.05169040
x2 0.35671831 0.384942 0.351383949 0.35674999
x3 11.28893209 9.807729 11.60865920 11.28712599

g1(x) -6.728016E-15 -0.000001 -0.003336613 -0.00000449
g2(x) -3.199480E-16 -0.000000 -1.0970128E-4 0.0
g3(x) -4.053786 -4.106146 -4.0263180998 -4.05382661
g4(x) -0.727728 -0.708148 -0.7312393333 -0.72770641
f(x) 0.012665 0.012689 0.0126661409 0.0126652812

In Table 13 we show the solution vector for engineering problem E04 (minimization of the weight of a
speed reducer).

In Table 14 we show the solution vector for engineering design problem E05 (Himmelblau’s nonlinear
optimization).

10 Final Remarks

This work, proposes a new algorithm called COPSO. It has shown high performance in constraint optimiza-
tion problems of linear or nonlinear nature. The experimental results are highly competitive with respect
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Table 13: Solution vector found for problem E04 (design of a speed reducer)

Best Solutions
COPSO Mezura

x1 3.5 3.499999
x2 0.7 0.699999
x3 17 17
x4 7.3 7.3
x5 7.8 7.8
x6 3.3502146 3.350215
x7 5.2866832 5.286683

g1(x) -0.07391528 -0.073915
g2(x) -0.19799852 -0.197998
g3(x) -0.49917224 -0.499172
g4(x) -0.90464390 -0.901472
g5(x) -1.502162E-16 -0.000000
g6(x) -4.586717E-16 -0.000000
g7(x) -0.7025 -0.702500
g8(x) -6.342582E-17 0.000000
g9(x) -0.58333333 -0.583333
g10(x) -0.05132575 -0.051325
g11(x) -3.995827E-16 -0.010852
f(x) 2996.348165 2996.348094

Table 14: Best solutions found for problem E05 (Himmelblau’s nonlinear optimization problem)

Best Solutions
COPSO HE-PSO

x1 78 78
x2 33 33
x3 27.070997 27.070997
x4 45 45
x5 44.969242 44.96924255

g1(x) -4.378442E-15 0.0
g2(x) -92 -92
g3(x) -9.595215 -9.595215
g4(x) -10.404784 -10.404784
g5(x) -5 -5
g6(x) 6.730727E-16 0.0
f(x) -31025.560242 -31025.56142

to the state-of-the-art algorithms. Three important contributions of COPSO are worth to mention: A new
neighborhood structure for PSO, the incorporation of perturbation operators without modifying the essence
of the PSO, and a special handling technique for equality constraints.
The first contribution is the singly-linked neighborhood structure. It slows down the convergence of the flock,
breaking the double-link that exists between the particles using the original ring neighborhood structure.
COPSO implements a singly-linked ring with a neighborhood of size n = 2, but a general algorithm to build
neighborhoods of size n is given.

Another relevant idea developed by COPSO, is the perturbation of the target to keep flock’s diversity
and space exploration. Two perturbation operators, C-perturbation and M-perturbation are applied to the
PBest. It is equivalent to perturb the particle’s memory and not its behavior (as it is performed by other
approaches, that tend to destroy the flock’s organization capacity).

The last property of COPSO is its special technique to handle equality constraints. It is performed
through a external file that stores the real amount of equality constraint violation of any particle (remember
that COPSO uses a dynamic tolerance value to allow unfeasible particles). The external file helps to keep
the flock near the feasible region.

The results on the benchmark and engineering problems provide evidence that COPSO is highly com-
petitive. Although, it should be improved to handle problems with a higher number of equality constraints,
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COPSO performed very well at solving the current state-of-the-art problems.
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Appendix A: Benchmark functions

This first 13 functions conform the well known benchmark of Runarsson and Yao [36].

1. g01 Minimize: f(~x) = 5
∑4

i=1
xi − 5

∑4

i=1
x2

i −
∑13

i=5
xi

subject to:

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0

g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0

g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0

g4(~x) = −8x1 + x10 ≤ 0

g5(~x) = −8x2 + x11 ≤ 0

g6(~x) = −8x3 + x12 ≤ 0

g7(~x) = −2x4 − x5 + x10 ≤ 0

g8(~x) = −2x6 − x7 + x11 ≤ 0

g9(~x) = −2x8 − x9 + x12 ≤ 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 9), 0 ≤ xi ≤ 100 (i = 10, 11, 12) and 0 ≤ x13 ≤ 1. The global optimum is at
x∗ = (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where f(x∗) = −15. Constraints g1, g2, g3, g7, g8 and g9 are active.

2. g02 Maximize: f(~x) =

∣∣∣∣
∑n

i=1
cos4(xi)−2

∏n

i=1
cos2(xi)√∑n

i=1
ix2

i

∣∣∣∣
subject to:

g1(~x) = 0.75−
n∏

i=1

xi ≤ 0

g2(~x) =

n∑
i=1

xi − 7.5n ≤ 0

where n = 20 and 0 ≤ xi ≤ 10 (i = 1, . . . , n). The global maximum is unknown; the best reported solution is f(x∗) = 0.803619.

Constraint g1 is close to being active (g1 = −10−8).

3. g03 Maximize: f(~x) =
(√

n
)n ∏n

i=1
xi

subject to:

h(~x) =

n∑
i=1

x
2
i − 1 = 0

where n = 10 and 0 ≤ xi ≤ 1 (i = 1, . . . , n). The global maximum is at x∗i = 1/
√

n (i = 1, . . . , n) where f(x∗) = 1.

4. g04 Minimize: f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:

g1(~x) = 85.334407 + 0.0056858x2x5

+ 0.0006262x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5

− 0.0006262x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x2
3 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5

− 0.0029955x1x2 − 0.0021813x2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5

− 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5). The optimum solution is x∗ = (78, 33,
29.995256025682, 45, 36.775812905788) where f(x∗) = −30665.539. Constraints g1 y g6 are active.
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5. g05 Minimize: f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2
subject to:

g1(~x) = −x4 + x3 − 0.55 ≤ 0

g2(~x) = −x3 + x4 − 0.55 ≤ 0

h3(~x) = 1000 sin(−x3 − 0.25)

+ 1000 sin(−x4 − 0.25) + 894.8− x1 = 0

h4(~x) = 1000 sin(x3 − 0.25)

+ 1000 sin(x3 − x4 − 0.25) + 894.8− x2 = 0

h5(~x) = 1000 sin(x4 − 0.25)

+ 1000 sin(x4 − x3 − 0.25) + 1294.8 = 0

where 0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200, −0.55 ≤ x3 ≤ 0.55, and −0.55 ≤ x4 ≤ 0.55. The best known solution is x∗ =
(679.9453, 1026.067, 0.1188764, −0.3962336) where f(x∗) = 5126.4981.

6. g06 Minimize: f(~x) = (x1 − 10)3 + (x2 − 20)3

subject to:

g1(~x) = −(x1 − 5)
2 − (x2 − 5)

2
+ 100 ≤ 0

g2(~x) = (x1 − 6)
2

+ (x2 − 5)
2 − 82.81 ≤ 0

where 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤ 100. The optimum solution is x∗ = (14.095, 0.84296) where f(x∗) = −6961.81388. Both
constraints are active.

7. g07 Minimize:

f(~x) = x
2
1 + x

2
2 + x1x2 − 14x1 − 16x2 + (x3 − 10)

2

+4(x4 − 5)
2

+ (x5 − 3)
2

+ 2(x6 − 1)
2

+ 5x
2
7

+7(x8 − 11)
2

+ 2(x9 − 10)
2

+ (x10 − 7)
2

+ 45

subject to:

g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0

g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(~x) = 3(x1 − 2)
2

+ 4(x2 − 3)
2

+ 2x
2
3 − 7x4 ≤ 120

g5(~x) = 5x
2
1 + 8x2 + (x3 − 6)

2 − 2x4 − 40 ≤ 0

g6(~x) = x
2
1 + 2(x2 − 2)

2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(~x) = 0.5(x1 − 8)
2

+ 2(x2 − 4)
2

+ 3x
2
5 − x6 ≤ 30

g8(~x) = −3x1 + 6x2 + 12(x9 − 8)
2 − 7x10 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 10). The global optimum is x∗ = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574, 1.321644, 9.828726, 8.280092, 8.375927) where f(x∗) = 24.3062091. Constraints g1, g2, g3, g4, g5 and g6
are active.

8. g08 Maximize: f(~x) =
sin3(2πx1) sin(2πx2)

x3
1
(x1+x2)

subject to:

g1(~x) = x
2
1 − x2 + 1 ≤ 0

g2(~x) = 1− x1 + (x2 − 4)
2 ≤ 0

where 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10. The optimum solution is located at x∗ = (1.2279713, 4.2453733) where f(x∗) = 0.095825.
The solutions is located within the feasible region.

9. g09 Minimize:

f(~x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to:

g1(~x) = −127 + 2x
2
1 + 3x

4
2 + x3 + 4x

2
4 + 5x5 ≤ 0

g2(~x) = −282 + 7x1 + 3x2 + 10x
2
3 + x4 − x5 ≤ 0

g3(~x) = −196 + 23x1 + x
2
2 + 6x

2
6 − 8x7 ≤ 0

g4(~x) = 4x
2
1 + x

2
2 − 3x1x2 + 2x

2
3 + 5x6 − 11x7 ≤ 0

where −10 ≤ xi ≤ 10 (i = 1, . . . , 7). The global optimum is x∗ = (2.330499, 1.951372,−0.4775414, 4.365726,
−0.6244870, 1.038131, 1.594227) where f(x∗) =
680.6300573. Two constraints are active (g1 and g4).
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10. g10 Minimize: f(~x) = x1 + x2 + x3
subject to:

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0

g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0

g3(~x) = −1 + 0.01(x8 − x5) ≤ 0

g4(~x) = −x1x6 + 833.33252x4 + 100x1

− 83333.333 ≤ 0

g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

where 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤ 10000, (i = 2, 3), 10 ≤ xi ≤ 1000, (i = 4, . . . , 8). The global optimum is: x∗ =
(579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979) where f(x∗) = 7049.3307. g1, g2 and g3 are
active.

11. g11 Minimize: f(~x) = x2
1 + (x2 − 1)2

subject to:

h(~x) = x2 − x
2
1 = 0

where: −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1. The optimum solution is x∗ = (±1/
√

2, 1/2) where f(x∗) = 0.75.

12. g12 Maximize: f(~x) =
100−(x1−5)2−(x2−5)2−(x3−5)2

100
subject to:

g1(~x) = (x1 − p)
2

+ (x2 − q)
2

+ (x3 − r)
2 − 0.0625 ≤ 0 (3)

where: 0 ≤ xi ≤ 10 (i = 1, 2, 3) and p, q, r=1,2,. . . ,9. The feasible region of the search space consists of 93 disjointed spheres.
A point (x1, x2, x3) is feasible if and only if there exist p, q, r such the above inequality holds. The global optimum is located
at x∗ = (5, 5, 5) where f(x∗) = 1.

13. g13 Minimize: f(~x) = ex1x2x3x4x5

subject to:

h1(~x) = x
2
1 + x

2
2 + x

2
3 + x

2
4 + x

2
5 − 10 = 0

h2(~x) = x2x3 − 5x4x5 = 0

h3(~x) = x
3
1 + x

3
2 + 1 = 0

where: −2.3 ≤ xi ≤ 2.3 (i = 1, 2) and −3.2 ≤ xi ≤ 3.2 (i = 3, 4, 5). The optimum solution is x∗ = (−1.717143,
1.595709, 1.827247,−0.7636413,−0.763645) where f(x∗) = 0.0539498.

Now, we list the new test problems proposed by Mezura and Coello [34].

1. g14 Minimize: f(~x) =
∑10

i=1
xi

(
ci + ln

xi∑10

j=1
xj

)

where c1 = −6.089 c2 = −17.164 c3 = −34.054 c4 = −5.914 c5 = −24.721 c6 = −14.986 c7 = −24.100 c8 = −10.708
c9 = −26.662 c10 = −22.179
subject to:

h1(~x) = x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0

h2(~x) = x4 + 2x5 + x6 + x7 − 1 = 0

h3(~x) = x3 + x7 + x8 + 2x9 + x10 − 1 = 0

where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 10). The global optimum is at x∗ = (0.0407, 0.1477, 0.7832, 0.0014, 0.4853, 0.0007, 0.0274, 0.0180, 0.0373, 0.0969)
where f(x∗) = −47.761.

2. g15 Minimize: f(~x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

subject to:

h1(~x) = x
2
1 + x

2
2 + x

2
3 − 25 = 0

h2(~x) = 8x1 + 14x2 + 7x3 − 56 = 0

where the bounds are 0 ≤ xi ≤ 10 (i = 1, . . . , 3). The global optimum is at x∗ = (3.512, 0.217, 3.552) where f(x∗) = 961.715.
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3. g16 Maximize: f(~x) = 0.0000005843y17 − 0.000117y14 − 0.1365− 0.00002358y13 − 0.000001502y16 − 0.0321y12 − 0.004324y5 −
0.0001

c15
c16

− 37.48
y2
c12

where

y1 = x2 + x3 + 41.6

c1 = 0.024x4 − 4.62

y2 =
12.5

c1
+ 12

c2 = 0.0003535x
2
1 + 0.5311x1 + 0.08705y2x1

c3 = 0.052x1 + 78 + 0.002377y2x1

y3 =
c2

c3

y4 = 19y3

c4 = 0.04782(x1 − y3) +
0.1956(x1 − y3)

2

x2

+ 0.6376y4 + 1.594y3

c5 = 100x2

c6 = x1 − y3 − y4

c7 = 0.95− c4

c5
y5 = c6c7

y6 = x1 − y5 − y4 − y3

c8 = (y5 + y4)0.995

y7 =
c8

y1

y8 =
c8

3798

c9 = y7 −
0.0663y7

y8
− 0.3153

y9 =
96.82

c9
+ 0.321y1

y10 = 1.29y5 + 1.258y4 + 2.29y3 + 1.71y6

y11 = 1.71x1 − 0.452y4 + 0.58y3

c10 =
12.3

752.3

c11 = (1.75y2)(0.995x1)

c12 = 0.995y10 + 1998

y12 = c10x1 +
c11

c12

y13 = c12 − 1.75y2

y14 = 3623 + 64.4x2 + 58.4x3 +
146312

y9 + x5

c13 = 0.995y10 + 60.8x2 + 48x4 − 0.1121y14 − 5095

y15 =
y13

c13

y16 = 148000− 331000y15 + 40y13 − 61y15y13

c14 = 2324y10 − 28740000y2

y17 = 14130000− 1328y10 − 531y11 +
c14

c12

c15 =
y13

y15
− y13

0.52

c16 = 1.104− 0.72y15

c17 = y9 + x5

subject to:

g1(~x) = y4 −
0.28

0.72
y5 ≥ 0

g2(~x) = 1.5x2 − x3 ≥ 0

g3(~x) = 21− 3496
y2

c12
≥ 0

g4(~x) =
62212

c17
− 110.6− y1 ≥ 0
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213.1 ≤ y1 ≤ 405.23

17.505 ≤ y2 ≤ 1053.6667

11.275 ≤ y3 ≤ 35.03

214.228 ≤ y4 ≤ 665.585

7.458 ≤ y5 ≤ 584.463

0.961 ≤ y6 ≤ 265.916

1.612 ≤ y7 ≤ 7.046

0.146 ≤ y8 ≤ 0.222

107.99 ≤ y9 ≤ 273.366

922.693 ≤ y10 ≤ 1286.105

926.832 ≤ y11 ≤ 1444.046

18.766 ≤ y12 ≤ 537.141

1072.163 ≤ y13 ≤ 3247.039

8961.448 ≤ y14 ≤ 26844.086

0.063 ≤ y15 ≤ 0.386

71084.33 ≤ y16 ≤ 140000

2802713 ≤ y17 ≤ 12146108

where the bounds are 704.4148 ≤ x1 ≤ 906.3855, 68.6 ≤ x2 ≤ 288.88, 0 ≤ x3 ≤ 134.75, 193 ≤ x4 ≤ 287.0966 and 25 ≤ x5 ≤
84.1988. The global optimum is at x∗ = (705.060, 68.600, 102.900, 282.341, 35.627) where f(x∗) = 1.905.

4. g17 Minimize: f(~x) = f1(x1) + f2(x2)
where

f1(x1) =

{
30x1 0 ≤ x1 < 300
31x1 300 ≤ x1 < 400

}

f2(x1) =

{
28x2 0 ≤ x2 < 100
29x2 100 ≤ x2 < 200
30x2 200 ≤ x2 < 1000

}

subject to:

h1(~x) = x1 − 300 +
x3x4

131.078
cos(1.48577− x6)

− 0.90798

131.078
x
2
3 cos(1.47588) = 0

h2(~x) = x2 +
x3x4

131.078
cos(1.48477 + x6)

− 0.90798

131.078
x
2
4 cos(1.47588) = 0

h3(~x) = x5 +
x3x4

131.078
sin(1.48477 + x6)

− 0.90798

131.078
x
2
4 sin(1.47588) = 0

h4(~x) = 200− x3x4

131.078
sin(1.48477− x6)

+
0.90798

131.078
x
2
3 sin(1.47588) = 0

where the bounds are 0 ≤ x1 ≤ 400, 0 ≤ x2 ≤ 1000, 340 ≤ x3 ≤ 420, 340 ≤ x4 ≤ 420, −1000 ≤ x5 ≤ 1000, 0 ≤ x6 ≤ 0.5236.
The global optimum is at x∗ = (212.684440144685, 89.1588384165537, 368.447892659317, 409.03379817159, 4.16436988876356,
0.0680394595246655) where f(x∗) = 8876.980680.

5. g18 Maximize: f(~x) = 0.5(x1x4 − x2x3 + x3x9 − x5x9 + x5x8 − x6x7
subject to:

g1(~x) = 1− x
2
3 − x

2
4 ≥ 0

g2(~x) = 1− x
2
9 ≥ 0

g3(~x) = 1− x
2
5 − x

2
6 ≥ 0

g4(~x) = 1− x
2
1 − (x2 − x9)

2 ≥ 0

g5(~x) = 1− (x1 − x5)
2 − (x2 − x6)

2 ≥ 0

g6(~x) = 1− (x1 − x7)
2 − (x2 − x8)

2 ≥ 0

g7(~x) = 1− (x3 − x5)
2 − (x4 − x6)

2 ≥ 0

g8(~x) = 1− (x3 − x7)
2 − (x4 − x8)

2 ≥ 0
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g9(~x) = 1− x
2
7 − (x8 − x9)

2 ≥ 0

g10(~x) = x1x4 − x2x3 ≥ 0

g11(~x) = x3x9 ≥ 0

g12(~x) = −x5x9 ≥ 0

g13(~x) = x5x8 − x6x7 ≥ 0

where the bounds are−1 ≤ xi ≤ 1 (i = 1, . . . , 8) and 0 ≤ x9 ≤ 1. The global optimum is at x∗ = (0.9971,−0.0758, 0.5530, 0.8331, 0.9981,−0.0623, 0.5642, 0.8256, 0.0000024)
where f(x∗) = 0.8660.

6. g19 Maximize: f(~x) =
∑10

i=1
bixi −

∑5

j=1

∑5

i=1
cijx10+ix10+j − 2

∑5

j=1
djx3

10+j

subject to:

gj(~x) = 2

5∑
i=1

cijx10+i + 3djx
2
10+j + ej −

10∑
i=1

aijxi ≥ 0 j = 1, . . . , 5

(Note: The ej , cij , dj , aij , bj are given in the Table 15.) where the bounds are 0 ≤ xi ≤ 100 (i = 1, . . . , 15). The global optimum
is at x∗ = (0.0000, 0.0000, 5.1470, 0.0000, 3.0611, 11.8395, 0.0000, 0.0000, 0.1039, 0.0000,
0.3000, 0.3335, 0.4000, 0.4283, 0.2240) where f(x∗) = −32.386.

Table 15: Data for problem g19

j 1 2 3 4 5
ej -15 -27 -36 -18 -12
c1j 30 -20 -10 32 -10
c2j -20 39 -6 -31 32
c3j -10 -6 10 -6 -10
c4j 32 -31 -6 39 -20
c5j -10 32 -10 -20 30
dj 4 8 10 6 2
a1j -16 2 0 1 0
a2j 0 -2 0 0.4 2
a3j -3.5 0 2 0 0
a4j 0 -2 0 -4 -1
a5j 0 -9 -2 1 -2.8
a6j 2 0 -4 0 0
a7j -1 -1 -1 -1 -1
a8j -1 -2 -3 -2 -1
a9j 1 2 3 4 5
a10j 1 1 1 1 1

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10
-40 -2 -0.25 -4 -4 -1 -40 -60 5 1

7. g20 Minimize: f(~x) =
∑24

i=1
aixi

subject to:

hi(~x) =
xi+12

bi+12

∑24

j=13

xj
bj

− cixi

40bi

∑12

j=1

xj
bj

= 0

i = 1, . . . , 12

h13(~x) =

24∑
i=1

xi − 1 = 0

h14(~x) =

12∑
i=1

xi

di

+ 0.7302(530)

(
14.7

40

) 24∑
i=13

xi

bi

− 1.671 = 0

gi(~x) = − xi + xi+12∑24

j=1
xj + ei

≥ 0 i = 1, 2, 3

gk(~x) = − xk+3 + xk+15∑24

j=1
xj + ek

≥ 0 k = 4, 5, 6
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(Note: The ai, bi, ci, di, ei are given in the Table 16.) where the bounds are 0 ≤ xi ≤ 1 (i = 1, . . . , 24). The global optimum is
at x∗ = (9.537E−07, 0, 4.215E−03, 1.039E−04, 0, 0, 2.072E−01, 5.979E−01, 1.298E−01, 3.350E−02, 1.711E−02, 8.427E−
03, 4.657E−10, 0, 0, 0, 0, 0, 2.868E−04, 1.193E−03, 8.332E−05, 1.239E−04, 2.070E−05, 1.829E−05) where f(x∗) = 0.09670.

Table 16: Data for problem g20

i ai bi ci di ei

1 0.0693 44.094 123.7 31.244 0.1
2 0.0577 58.12 31.7 36.12 0.3
3 0.05 58.12 45.7 34.784 0.4
4 0.20 137.4 14.7 92.7 0.3
5 0.26 120.9 84.7 82.7 0.6
6 0.55 170.9 27.7 91.6 0.3
7 0.06 62.501 49.7 56.708
8 0.10 84.94 7.1 82.7
9 0.12 133.425 2.1 80.8
10 0.18 82.507 17.7 64.517
11 0.10 46.07 0.85 49.4
12 0.09 60.097 0.64 49.1
13 0.0693 44.094
14 0.0577 58.12
15 0.05 58.12
16 0.20 137.4
17 0.26 120.9
18 0.55 170.9
19 0.06 62.501
20 0.10 84.94
21 0.12 133.425
22 0.18 82.507
23 0.10 46.07
24 0.09 60.097

8. g21 Minimize: f(~x) = x1
subject to:

g1(~x) = −x1 + 35x
0.6
2 + 35x

0.6
3 ≤ 0

h1(~x) = −300x3 + 7500x5 − 7500x6 − 25x4x5

+ 25x4x6 + x3x4 = 0

h2(~x) = 100x2 + 155.365x4 + 2500x7 − x2x4

− 25x4x7 − 15536.5 = 0

h3(~x) = −x5 + ln(−x4 + 900) = 0

h4(~x) = −x6 + ln(x4 + 300) = 0

h5(~x) = −x7 + ln(−2x4 + 700) = 0

where the bounds are 0 ≤ x1 ≤ 1000, 0 ≤ x2 ≤ 40, 0 ≤ x3 ≤ 40, 100 ≤ x4 ≤ 300, 6.3 ≤ x5 ≤ 6.7, 5.9 ≤ x6 ≤ 6.4 and 4.5 ≤ x7 ≤
6.25. The global optimum is at x∗ = (193.7783493, 0, 17.3272116, 100.0156586, 6.684592154, 5.991503693, 6.214545462) where
f(x∗) = 193.7783493.

9. g22 Minimize: f(~x) = x1
subject to:

g1(~x) = −x1 + x
0.6
2 + x

0.6
3 + x

0.6
4 ≤ 0

h1(~x) = x5 − 100000x8 + 1E07 = 0

h2(~x) = x6 + 100000x8 − 100000x9 = 0

h3(~x) = x7 + 100000x9 − 5E07 = 0

h4(~x) = x5 + 100000x10 − 3.3E07 = 0

h5(~x) = x6 + 100000x11 − 4.4E07 = 0

h6(~x) = x7 + 100000x12 − 6.6E07 = 0

h7(~x) = x5 − 120x2x13 = 0

h8(~x) = x6 − 80x3x14 = 0

h9(~x) = x7 − 40x4x15 = 0

h10(~x) = x8 − x11 + x16 = 0

h11(~x) = x9 − x12 + x17 = 0

h12(~x) = −x18 + ln(x10 − 100) = 0
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h13(~x) = −x19 + ln(−x8 + 300) = 0

h14(~x) = −x20 + ln(x16) = 0

h15(~x) = −x21 + ln(−x9 + 400) = 0

h16(~x) = −x22 + ln(x17) = 0

h17(~x) = −x8 − x10 + x13x18 − x13x19 + 400 = 0

h18(~x) = x8 − x9 − x11 + x14x20 − x14x21 + 400 = 0

h19(~x) = x9 − x12 − 4.60517x15 + x15x22 + 100 = 0

where the bounds are 0 ≤ x1 ≤ 20000, 0 ≤ xi ≤ 1E06 i = (2, 3, 4), 0 ≤ xi ≤ 4E07 i = (5, 6, 7), 100 ≤ x8 ≤ 299.99, 100 ≤ x9 ≤
399.99, 100.01 ≤ x10 ≤ 300, 100 ≤ x11 ≤ 400, 100 ≤ x12 ≤ 600, 0 ≤ x10 ≤ 500 i = (13, 14, 15), 0.01 ≤ x16 ≤ 300, 0.01 ≤ x17 ≤
400 and−4.7 ≤ xi ≤ 6.25 i = (18, . . . , 22). The global optimum is at x∗ = (12812.5, 722.1602494, 8628.371755, 2193.749851, 9951396.436, 18846563.16, 11202040.4, 199.5139644,
387.979596, 230.4860356, 251.5343684, 547.979596, 114.8336587, 27.30318607, 127.6585887, 52.020404,
160, 4.871266214, 4.610018769, 3.951636026, 2.486605539, 5.075173815) where f(x∗) = 12812.5.

10. g23 Minimize: f(~x) = −9x5 − 15x8 + 6x1 + 16x2 + 10(x6 + x7)
subject to:

h1(~x) = x1 + x2 − x3 − x4 = 0

h2(~x) = 0.03x1 + 0.01x2 − x9(x3 + x4) = 0

h3(~x) = x3 + x6 − x5 = 0

h4(~x) = x4 + x7 − x8 = 0

g1(~x) = x9x3 + 0.02x6 − 0.025x5 ≤ 0

g2(~x) = x9x4 + 0.02x7 − 0.015x8 ≤ 0

where the bounds are 0 ≤ xi ≤ 300 i = (1, 2, 6), 0 ≤ xi ≤ 100 i = (3, 5, 7), 0 ≤ xi ≤ 200 i = (4, 8) and 0.01 ≤ x9 ≤ 0.03. The
best known solution has a objective function value of f(x∗) = −400.0551.

11. g24 Minimize: f(~x) = −x1 − x2
subject to:

g1(~x) = −2x
4
1 + 8x

3
1 − 8x

2
1 + x2 − 2 ≤ 0

g2(~x) = −4x
4
1 + 32x

3
1 − 88x

2
1 + 96x1 + x2 − 36 ≤ 0

where the bounds are 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4. The optimum is at x∗ = (2.3295, 3.17846) where f(x∗) = −5.50796.
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Appendix B: Engineering optimization problems

Formal statement of the engineering design problems.
Problem E01: Design of a Welded Beam A welded beam is designed for minimum cost subject to constraints of shear stress (τ),
bending stress in the beam (σ), buckling load on the bar (Pc), end deflection of the beam (δ), and side constraints. There are four
design variables, h(x1), l(x2), t(x3), b(x4). The formal statement of the problem is the following:

Minimize: f(~x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

subject to:

g1(~x) = τ(~x)− τmax ≤ 0

g2(~x) = σ(~x)− σmax ≤ 0

g3(~x) = x1 − x4 ≤ 0

g4(~x) = 0.10471x
2
1 + 0.04811x3x4(14 + x2)− 5 ≤ 0

g5(~x) = 0.125− x1 ≤ 0

g6(~x) = δ(~x)− δmax ≤ 0

g7(~x) = P − Pc(~x) ≤ 0

where:

τ(~x) =

√
(τ ′)2 + 2τ ′τ ′′

x2

2R
+ (τ ′′)2

τ
′

=
P√

2x1x2

τ
′′

=
MR

J

M = P

(
L +

x2

2

)

R =

√
x2
2

2
+

(
x1 + x3

2

)2

J = 2

{√
2x1x2

[
x2
2

12
+

(
x1 + x3

2

)2]}

σ(~x) =
6PL

x4x2
3

δ(~x) =
4PL3

Ex3
3x4

Pc(~x) =
4.013E

√
x2
3

x6
4
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L2

(
1−

x3

√
E
4G

2L

)

where P = 6000lb, L = 14in, E = 30x106psi, G = 12x106psi, τmax = 13, 600psi, σmax = 30, 000psi, δmax = 0.25in, and
0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0, 0.1 ≤ x3 ≤ 10.0 and 0.1 ≤ x4 ≤ 2.0. The best solution founded by Mezura [38] is x∗ =
(0.205730, 3.470489, 9.036624, 0.205729) where f(x∗) = 1.724852.
Problem E02: Design of a Pressure Vessel A cylindrical vessel is capped at both ends by hemispherical heads. The objective is
to minimize the total cost, including the cost of the materials forming the welding. There are four design variables: Thickness of the
shell Ts = x1, thickness of the head Th = x2, the inner radius R = x3, and the length of the cylindrical section of the vessel L = x4.
Ts and Th are discrete values which are integer multiples of 0.0625 inch. The formal statement of the problem is the following:

Minimize: f(~x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to:

g1(~x) = −x1 + 0.0193x3 ≤ 0

g2(~x) = −x2 + 0.00954x3 ≤ 0

g3(~x) = −πx
2
3x4 −

4

3
πx

3
3 + 1, 296, 000 ≤ 0

g4(~x) = x4 − 240 ≤ 0

where 1 ≤ x1 ≤ 99, 1 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200 and 10 ≤ x4 ≤ 200. The best solution found by Mezura [38] is x∗ =
(0.8125, 0.4375, 42.098446, 176.636596) where f(x∗) = 6059.7143.
Problem E03: Minimization of the Weight of a Tension/Compression Spring This problem consists of minimizing the weight
of a tension/compression spring, subject to constraints of minimum deflection, shear stress, surge frequency, and limits on outside
diameter and on design variables. The design variables are the wire diameter (x1), the mean coil diameter, (x2), and the number of
active coils (x3). The formal statement of the problem is as follows:

Minimize: f(~x) = (x3 + 2)x2x2
1

subject to:

g1(~x) = 1− x3
2x3

71785x4
1

≤ 0

29



g2(~x) =
4x2

2 − x1x2

12566(x2x3
1 − x4

1)
+

1

5108x2
1

− 1 ≤ 0

g3(~x) = 1− 140.45x1

x2
2x3

≤ 0

g4(~x) =
x2 + x1

1.5
− 1 ≤ 0

where 0.05 ≤ x1 ≤ 2.0, 0.25 ≤ x2 ≤ 1.3 and 2.0 ≤ x3 ≤ 15.0. The best solution founded by He [23] is x∗ = (0.051690, 0.356750, 11.287126)
where f(x∗) = 0.012665.
Problem E04. Minimization of the Weight of a Speed Reducer The weight of the speed reducer is to be minimized subject to
constraints on bending stress of the gear teeth, surface stress, transverse deflections of the shafts and stresses in the shaft. The variables
x1, x2, . . . , x7 are the face width, module of the teeth, number of teeth in the pinion, length of the first shaft between bearings, length
of the second shaft between bearings, and the diameter of the first and second shafts. The third variable is integer, the rest of them
are continuous. The formal statement of the problem is as follows:

Minimize: f(~x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)− 1.508x1(x
2
6 + x2

7) + 7.4777(x3
6 + x3

7) + 0.7854(x4x2
6 + x5x2

7)
subject to:

g1(~x) =
27

x1x2
2x3

− 1 ≤ 0

g2(~x) =
397.5

x1x2
2x2

3

− 1 ≤ 0

g3(~x) =
1.93x3

4

x2x3x4
6

− 1 ≤ 0

g4(~x) =
1.93x3

5

x2x3x4
7

− 1 ≤ 0

g5(~x) =

√(
745x4
x2x3

)2
+ 16.9x106

110x3
6

− 1 ≤ 0

g6(~x) =

√(
745x5
x2x3

)2
+ 157.5x106

85x3
7

− 1 ≤ 0

g7(~x) =
x2x3

40
− 1 ≤ 0

g8(~x) =
5x2

x1
− 1 ≤ 0

g9(~x) =
x1

12x2
− 1 ≤ 0

g10(~x) =
1.5x6 + 1.9

x4
− 1 ≤ 0

g11(~x) =
1.1x7 + 1.9

x5
− 1 ≤ 0

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9 and 5.0 ≤ x7 ≤ 5.5. The
best solution found by Mezura [38] is x∗ = (3.499999, 0.699999, 17, 7.300000, 7.800000, 3.350215, 5.286683) where f(x∗) = 2996.348094.
But, it is unfeasible because x2 < 0.7 in the solution reported by Mezura.
Problem E05: Himmelblau’s Nonlinear Optimization Problem This problem was proposed by Himmelblau and similar to
problem g04 of the benchmark except for the second coefficient of the first constraint. There are five design variables. The problem
can be stated as follows:

Minimize: f(~x) = 5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to:

g1(~x) = 85.334407 + 0.0056858x2x5

+ 0.00026x1x4 − 0.0022053x3x5 − 92 ≤ 0

g2(~x) = −85.334407− 0.0056858x2x5

− 0.00026x1x4 + 0.0022053x3x5 ≤ 0

g3(~x) = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x
2
3 − 110 ≤ 0

g4(~x) = −80.51249− 0.0071317x2x5

− 0.0029955x1x2 − 0.0021813x
2
3 + 90 ≤ 0

g5(~x) = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4 − 25 ≤ 0

g6(~x) = −9.300961− 0.0047026x3x5

− 0.0012547x1x3 − 0.0019085x3x4 + 20 ≤ 0

where: 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 (i = 3, 4, 5).
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