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Abstract
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1 Introduction

Statistical shape theory based on Euclidean transformation has been studied
extensively in literature, see Dryden and Mardia (1998) and the references
there in. By another hand, Goodall and Mardia (1993) (corrected by Dı́az-
Garćıa et al. (2003) and revised again by Caro-Lopera et al (2008)) proposed
a normal shape (called configuration) density based on affine transformations;
it opened as usual, a distributional problem for elliptical generalizations and
inference based on exact distributions.

Recently, Caro-Lopera et al (2008), derived the noncentral configuration den-
sity under an elliptical model and by using partition theory, a number of ex-
plicit configuration densities were obtained; i.e. configuration densities asso-
ciated with the matrix variate symmetric Kotz type distributions (it includes
normal), the matrix variate Pearson type VII distributions (it includes t and
Cauchy distributions), the matrix variate symmetric Bessel distribution (it
includes Laplace distribution) and the matrix variate symmetric logistic dis-
tribution. The configuration density of any elliptical model was set in terms of
zonal polynomials which now can be efficiently computed by Koev and Edel-
man (2006), and in consequence, the inference problem can be studied and
solved with the exact densities instead of usual constraints and asymptotic
distributions, and approximations of the statistical shape theory works (see
Goodall and Mardia (1993), Dryden and Mardia (1998) and the references
there in). The general procedure becomes very clear now and the underlying
problem, the programming problem, is simply time consuming.

Thus two perspectives can be explored, first, the inference based on exact
distributions and second, their applications in shape theory.

The general procedure for performing inference of any elliptical model is pro-
posed and it is set in such manner that the published efficient numerical al-
gorithms for confluent infinite series type involving zonal polynomials, can be
used; this is outlined in section 2.

More over, a further simplification of the closed computational problem is also
proposed, the study of finite configuration densities (section 3); a subfamily of
them is derived and as a simple example of their use, exact inference for testing
configuration location differences in some applied problems are provided in
section 4. The applications involve Biology (mouse vertebra, gorilla skulls,
girl and boy craniofacial studies), Medicine (brain MR scans of schizophrenic
patients) and image analysis (postcode recognition).

jadiaz@uaaan.mx (José A. Dı́az-Garćıa), farias@cimat.mx (Graciela
González-Faŕıas).
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2 Inference for elliptical configuration models

First we recall the basic definitions of elliptical distributions and configurations
(see Gupta and Varga (1993) and Goodall and Mardia (1993), respectively).

We say that X : N×K has a matrix variate elliptically contoured distribution
if its density respect to the Lebesgue measure is given by:

fX(X) =
1

|Σ|K/2|Θ|N/2
h(tr((X− µ)′Σ−1(X− µ)Θ−1)),

where µ : N ×K, Σ : N ×N , Θ : K×K, Σ positive definite (Σ > 0), Θ > 0.
Such a distribution is denoted by X ∼ EN×K(µ,Σ,Θ, h).

Definition 1 Two figures X : N ×K and X1 : N ×K have the same config-
uration, or affine shape, if X1 = XE + 1Ne′, for some translation e : K × 1
and a nonsingular E : K ×K.

The configuration coordinates are constructed in two steps summarized in the
expression

LX = Y = UE. (1)

The matrix U : N − 1 × K contains configuration coordinates of X. Let
Y1 : K × K be nonsingular and Y2 : q = N − K − 1 ≥ 1 × K, such that
Y = (Y′

1 | Y′
2)
′. Define also U = (I | V′)′, then V = Y2Y

−1
1 and E = Y1.

Where L is an N − 1×N Helmert sub-matrix.

Now, from Caro-Lopera (2008), Caro-Lopera et al (2008) the configuration
density under a non-isotropic noncentral elliptical model, is given by

Theorem 2 If Y ∼ EN−1×K(µN−1×K ,ΣN−1×N−1 ⊗ IK , h), for Σ > 0, µ 6=
0N−1×K, then the configuration density is given by

πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

)
∞∑

t=0

1

t!Γ
(

K(N−1)
2

+ t
)

∞∑

r=0

1

r!

[
tr

(
µ′Σ−1µ

)]r

×∑
τ

(
N−1

2

)
τ(

K
2

)
τ

Cτ (U
′Σ−1µµ′Σ−1U(U′Σ−1U)−1)S, (2)

where

S =
∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy < ∞.
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Our proposal is to use the elliptically contoured distribution to model pop-
ulation configurations (2) for some particular cases. For this, we consider
a random sample of n independent and identically distributed observations
U1, . . . ,Un obtained from

Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), i = 1, . . . , n,

by mean of (1).

Now we define the configuration population parameters. Let CD(U;U , σ2) be
the exact configuration density, where U is the location parameter matrix of
the configuration population (we just say configuration location) and σ2 is
population scale parameter. Both U and σ2 are the parameters to estimate.
More exactly, let µ 6= 0N−1×K be the parameter matrix of the elliptical density
Y considered in theorem 2; if we write it as µ = (µ′1 | µ′2)′, where µ1 : K ×K
(nonsingular) and µ2 : q = N − K − 1 ≥ 1 × K, then, according to (1), we
can define the configuration location parameter matrix U : N − 1 × K as
follows: U = (IK | V ′)′ where V = µ2µ

−1
1 ; and V : q = N − K − 1 ≥ 1 × K

contains q × K configuration location parameters to estimate. Then, taking
into account this remark and using the same notation of Dryden and Mardia
(1998), p. 144-145. we have:

log L(U1, . . . ,Un;V , σ2) =
n∑

i=1

log CD(Ui;V , σ2).

Finally, the maximum likelihood estimators for location and scale parameters
are

(Ṽ , σ̃2) = arg sup
V, σ2

log L(U1, . . . ,Un;V , σ2). (3)

Now, for the numerical optimization we can use a number of routines, which,
clearly, are based on the initial point for estimation. In our case, consider
the Helmertized landmark data Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h) i =
1, . . . , n (see (1)) and let µ̃ = (µ̃′1 | µ̃′2)

′ and σ̃2 be the maximum likelihood
estimators of the location parameter matrix µN−1×K and the scale parameter
σ2 of the elliptical distribution under consideration, so, given that

U′
iΣ

−1µµ′Σ−1Ui(U
′
iΣ

−1Ui)
−1 = Y′

iΣ
−1µµ′Σ−1Yi(Y

′
iΣ

−1Yi)
−1,

then an initial point can be x0 = (vec′(V0
′), σ2

0), where V0 = µ̃2µ̃
−1
1 and σ2

0 =
σ̃2.

So, the exact inference procedure can be outlined in the next few steps.
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2.1 Step I. Available distributions: Families of isotropic elliptical configura-

tion densities

A first step considers a list of configuration densities, they are full derived
in Caro-Lopera et al (2008). The classical elliptical configuration densities
included are the Kotz, Pearson type VII, Bessel, Logistic. But we must note
that any elliptical function h(·) which satisfies theorem 2 is appropriated.

Most of the applications in statistical theory of shape reside on the isotropic
model (see Dryden and Mardia (1998)), so in the case of the noncentral ellip-
tical configuration density if we take Σ = σ2IN−1 in the general configuration
density , we get a list of suitable distributions for inference; which, are ex-
panded in terms of zonal polynomials and they can be computed efficiently by
Koev and Edelman (2006). Note, that we can consider a more enriched estruc-
ture, for example Σ = diag(σ2

1, σ
2
2, . . . , σ

2
N−1) (which suppose a different scale

parameter in each landmark component), and similar diagonal structures.

We will not write down such densities here, only we will performed inference
with a special Kotz subfamily; but we must highlight that the four step infer-
ence procedure can be studied with the densities provided in Caro-Lopera et
al (2008).

The particular Kotz density which will be studied in applications is the fol-
lowing

Corollary 3 If Y ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h) and T = 1, then the
Kotz type isotropic noncentral configuration density simplifies to

ΓK

(
N−1

2

)
etr

(
R
σ2 µ

′U(U′U)−1U′µ− R
σ2 µ

′µ
)

πKq/2|IK + V′V|N−1
2 ΓK

(
K
2

)

×1F1

(
−q

2
;
K

2
;−R

σ2
µ′U(U′U)−1U′µ

)
, (4)

and where R = 1
2
, we get the normal configuration density.

2.2 Step II. Choosing the elliptical configuration density

Here, the main advantage of working with elliptical models appears, we have
the possibility of choosing a distribution for the landmark data. Recall that
the main assumptions for inference in this works are supported by independent
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and identically elliptically contoured distributed observations

Yi ∼ EN−1×K(µN−1×K , σ2IN−1 ⊗ IK , h), i = 1, . . . , n.

According to our assumptions we can consider Schwarz (1978) as an appro-
priate technique for choosing the elliptical model. Explicitly, the procedure
is as follows: consider k elliptical models, then perform the maximization of
the likelihood function separately for each model j = 1, . . . , k, obtaining say,
Mj(Y1, . . . ,Yn), then Schwarz’s criterion for a large-sample is given by

Choose the model for which log Mj(Y1, . . . ,Yn)− 1

2
kj log n is largest ,

where kj is the dimension (number of parameters) of the model j.

Remark 4 The preceding result can be implemented for choosing a shape
model, i.e. given an independent and identically distributed random sample
of landmark data and a list of shape distributions: pre-shape, size and shape,
shape, reflection shape, reflection size and shape, cone, disk, (all of them sup-
ported by Euclidean transformations), configuration (supported by affine trans-
formations), and projection, etc. we can select the best shape-transformation-
model. However, it is constrained by the computation of the densities, and as
we can check in the statistical shape literature, the Euclidean based shape den-
sities have important difficulties for computations even in the gaussian case
(most of them have not an elliptical version yet), see Dryden and Mardia
(1998) and the references there in, but it is not the case with our configuration
densities. We will let these comparisons for a subsequent work.

2.3 Step III. Configuration Location

Once the elliptical model is selected, we find the estimators of location and
scale parameters of configuration by mean of (3). The crucial point here is the
computation of the configuration density; if the selected model is the Gaus-
sian one, then the matlab algorithms for confluent hypergeometric functions
of matrix argument by Koev and Edelman (2006) gives the solution very
efficiently, this solves in fact the inference problem proposed by Goodall and
Mardia (1993). We highlight that the cited computation of the 1F1(a; c;X)
series is restricted to the truncation and it is an open problem addressed in
the last section of Koev and Edelman (2006), however the fast algorithms
let a sort of numerical experiments until a given precision is reached, so the
optimization problem remains in terms of the truncation and the set preci-
sion, but this occurs, clearly, since it is an intrinsic problem of any numerical
optimization problem.
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But, if the selected model is not Gaussian, we could think that the problems
remains open, but fortunately, the configuration densities can be computed
efficiently by using the same work of Koev and Edelman (2006).

First let us denote the elliptical configuration density of theorem 2 by

A 1P1(f(t) : a; c;X), (5)

where

A =
πK2/2ΓK

(
N−1

2

)

|Σ|K2 |U′Σ−1U|N−1
2 ΓK

(
K
2

) , 1P1(f(t) : a; c;X) =
∞∑

t=0

f(t)

t!

∑
τ

(a)τ

(c)τ

Cτ (X),

f(t) =
∞∑

r=0

[tr (µ′Σ−1µ)]
r

r!Γ
(

K(N−1)
2

+ t
)

∫ ∞

0
h(2t+r)(y)y

K(N−1)
2

+t−1dy,

X = U′Σ−1µµ′Σ−1U(U′Σ−1U)−1, a =
N − 1

2
, c =

K

2
.

Unfortunately, the configuration density A 1P1(f(t) : a; c;X) is an infinite se-
ries, given that a and c are positive, (recall that N is the number of landmarks,
K is de dimension and N −K − 1 ≥ 1). So a truncation is needed if we want
to use it directly by using computation of zonal polynomials.

Expression (5) belongs to the class of eq. (1.6), p.3 from Koev and Edelman
(2006) , and as they affirm ”With minimal changes our algorithms (for hyper-
geometric functions of one matrix arguments) can approximate the hyperge-
ometric function of two matrix arguments..., and more generally functions of
the form G(x) =

∑∞
k=0

∑
κ aκC

α
κ (X), for arbitrary coefficients aκ at a similar

computational cost,” see, eq. (6.5) of Koev and Edelman (2006), and they
add ”Although the expression (6.5) is not a hypergeometric function of a ma-
trix argument, its truncation for |κ| ≤ m has the form (1.6), and is computed
analogously.”

Then, in principle, the configuration densities can be evaluated efficiently with
the fast algorithms of Koev and Edelman (2006) and the corresponding in-
ference problem can be solved numerically. And at this stage, by using for
example the compatible matlab routine fminsearch (unconstrained nonlin-
ear optimization) with the modified matlab files of Koev and Edelman (2006),
we have the estimators for the configuration location and the scale parameter
of the ”best” elliptical model chosen with Schwarz’s criterion. We arrive then,
to the final step.
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2.4 Step IV. Hypothesis testing

Finally, given that the likelihood can be evaluated and optimized, then a sort
of likelihood ratio tests can be performed for testing a particular configura-
tion for a population, or testing for differences in configuration between two
populations, or testing one-dimensional uniform shear of two populations, etc.

In the statistical shape analysis, the large sample standard likelihood ratio
tests are the most frequently used, see for example Dryden and Mardia (1998),
by mean of Wilk’s theorem. Explicitly, for testing whether H0 : U ∈ Ω0

versus Ha : U ∈ Ω1, where Ω0 ⊂ Ω1 ⊆ RKq, with dim(Ω0) = p < Kq and
dim(Ωa) = r ≤ Kq. Thus, the −2 log-likelihood ratio is given by

−2 log Λ = 2 sup
Ha

log L(U , σ2)− 2 sup
H0

log L(U , σ2),

and by the Wilk’s theorem for large samples, the distribution of the null
hypothesis H0 obeys (see Dryden and Mardia (1998))

−2 log Λ ≈ χ2
r−p.

In a similar way we can test differences in configuration between two popu-
lations, etc. Suppose that the last hypothesis is rejected, then an interesting
test can be performed one-dimensional uniform shear of two populations which
determines the amount of deformation axes by axes. Note that the classical
statistical shape analysis (pre-shape, size and shape, shape, reflection shape,
reflection size and shape, cone, disk,) which is based on Euclidean transfor-
mations assume that any shape is uniform deformed in any dimension, which
certainly is very idealistic, but the configuration density accept different uni-
form shearing among the axes.

Explicitly, if we want to test uniform shear in the i coordinate of two pop-
ulations, then the testing procedure lies on H0 : µ1B = µ1B versus H0 :
µ1B 6= µ1B, where B = (0, . . . , i, . . . , 0)′ and the configuration density U goes
to UB. Note that the new configuration density is simpler, since it is just a
vector density and it is easier of computing.

Thus, the whole inference procedure of the above four steps can be carried
out for a particular landmark data (for example from Dryden and Mardia
(1998), Bookstein (1991)), and up here we can consider the inference problem
numerically solvable.
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3 Further simplifications: finite configuration densities

Even the whole elliptical configuration problem is cleared. There are interest-
ing simplifications which open a promissory future work. We explore a little
the problem in this section, before ending the work with some applications.

However, the zonal polynomials are computable very fast the problem now
resides in the convergence and the truncation of the above series for performing
the numerical optimization, in fact in the same reference of Koev and Edelman
(2006) we read:

”Several problems remain open, among them automatic detection of conver-
gence .... and it is unclear how to tell when convergence sets in. Another open
problem is to determine the best way to truncate the series. ”

Thus the implicit numerical difficulties for truncation of any configuration den-
sity series of type (5) motivates two areas of investigation: one, continue the
numerical approach started by (Koev and Edelman (2006)) with the conflu-
ent hypergeometric functions and extend it to the case of some configuration
series type Kotz, Pearson, Bessel, Logistic, for example; or second, propose a
theoretical approach for solving analytically the problem.

In the next few lines we establish the second question and leave their impli-
cations for a future works.

First represent the configuration density as it was done in (5).

The above series can be finite if we use the following basic principle.

Lemma 5 Let N−K−1 ≥ 1 as usual, and consider the infinite configuration
density

CD1 = A 1P1

(
f(t) :

N − 1

2
;
K

2
;X

)
.

If the dimension K is even (odd) and the number of landmarks N is odd
(even), respectively, then the equivalent configuration density

CD2 = A 1P1

(
g(t) : −

(
N − 1

2
− K

2

)
;
K

2
; h(X)

)
,

is a polynomial of degree K
(

N−1
2
− K

2

)
in the latent roots of the matrix X

(otherwise the series is infinite), for suitable f(t), g(t) and h(X).

Proof. Recall that τ = (t1, . . . , tK), t1 ≥ t2 ≥ · · · tK ≥ 0, is a partition of t and

(α)τ =
K∏

i=1

(
α− 1

2
(i− 1)

)

ti

,
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where

(α)t = α(α + 1) · · · (α + t− 1), (α)0 = 1.

Now, If K is even (odd) and N is odd (even) then −
(

N−1
2
− K

2

)
= − q

2
is a

negative integer and clearly (− q
2
)τ = 0 for every t ≥ Kq

2
+ 1, then CD2 is a

polynomial of degree Kq
2

in the latent roots of X. 2

So, the addressed truncation problem of an infinite configuration density can
be solved by finding an equivalent finite configuration density according to
the preceding lemma and selecting an appropriate number of landmarks in
the figure.

Given an elliptical configuration density CD1 indexed by function f(t), a =
N−1

2
> 0,c = K

2
> 0, the crucial point consist of finding an integral represen-

tation valid for c − a = − q
2

< 0 leading an equivalent elliptical configuration
density CD2 indexed by some function g(t). Then the finiteness of CD2 follows
from K even (odd) and N odd (even), respectively.

We already met a kind of this relations, when f(t) is a constant, i.e. in corol-
lary 3; in this case lemma 5 is reduced to the Kummer relations; and the
corresponding configuration densities (which includes Gaussian) are finite by
selecting an odd (even) number of landmarks N according to an even (odd)
dimension K, respectively. The implications of the finiteness for applications
will avoid the addressed open problem for truncation proposed in Koev and
Edelman (2006).

The above discussion it is important for a generalization of Kummer type
relations; for example, equalities for non constant f(t), i.e. expressions of
g(t) and h(X) for non R-normal models (4). Some advances in this direc-
tion are available from the authors, for example, the generalized Kummer
relations for a Kotz type (T positive integer), and a Pearson type VII based
con a Beta type integral representation has ratified that 1P1 (f(t) : a; c;X) =1

P1 (g(t) : c− a; c;−X), for the corresponding f, g, but in the case of c−a > 0.
The next step is to prove the relations for c − a < 0, by a Laplace represen-
tation type, then lemma 5 can be applied to Kotz type and Pearson type VII
configuration densities and the respective series become finite.

Meanwhile, fortunately, we can performed inference with the finite series of
corollary 3, specially with the Gaussian case R = 1

2
.

Corollary 6 If Y ∼ NN−1×K(µN−1×K , σ2IN−1 ⊗ IK), K is even (odd) and
N is odd (even), respectively, then the finite isotropic noncentral normal con-
figuration density is given by
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ΓK

(
N−1

2

)

πKq/2|IK + V′V|N−1
2 ΓK

(
K
2

) etr
(

1

2σ2
µ′U(U′U)−1U′µ− 1

2σ2
µ′µ

)

× 1F1

(
−q

2
;
K

2
;− 1

2σ2
µ′U(U′U)−1U′µ

)
,

and it is a polynomial of degree K
(

N−1
2
− K

2

)
in the latent roots of

1

2σ2
µ′U(U′U)−1U′µ.

4 Applications

In this section we consider planar classical application in the statistical shape
analysis. The following situations are sufficiently studied by shape based on
euclidian transformations and asymptotic formulae. We will use here exact
inference in the sense that we will use the exact densities and compute the
likelihood exactly by using zonal polynomials theory.

We will test configuration differences under the exact gaussian configuration
density, and the applications include Biology (mouse vertebra, gorilla skulls,
girl and boy craniofacial studies), Medicine (brain MR scans of schizophrenic
patients) and image analysis (postcode recognition).

First we start with the two dimensional case, then corollary 6 turns:

Corollary 7 If Y ∼ NN−1×2(µN−1×2, σ
2IN−1 ⊗ I2), and N is odd, then the

finite two dimensional isotropic noncentral normal configuration density is
given by

Γ2

(
N−1

2

)

πN−3|I2 + V′V|N−1
2 ΓK (1)

etr
(

1

2σ2
µ′U(U′U)−1U′µ− 1

2σ2
µ′µ

)

× 1F1

(
−N − 3

2
; 1;− 1

2σ2
µ′U(U′U)−1U′µ

)
,

and it is a polynomial of degree N − 3 in the two latent roots of

1

2σ2
µ′U(U′U)−1U′µ.

Then, we apply the confluent hypergeometric’s given in the appendix in a sort
of problems and as motivations of future works with other elliptical models
and situations.
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4.1 Biology: mouse vertebra

This problem has been studied deeply by Dryden and Mardia (1998). The
data come from an investigation into the effects of selection for body weight on
the shape of mouse vertebra and the experiments consider the second thoracic
vertebra T2 of 30 control (C), 23 large (L) and 23 small (S) bones. The control
group contains unselected mice, the large group contains mice selected at each
generation according to large body weight and the small group was selected for
small body weight. In order to apply the finite densities we do not consider the
third landmark of the total 6, they proposed (see Dryden and Mardia (1998),
p.10 and the data given in p. 313-316).

Inference is based on (A.1), a confluent hypergeometric polynomial of two de-
gree in the two eigenvalues of the zonal polynomial argument, then after a
very simple computation we have the following configuration locations of the
three groups.

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 σ̃2

Control -0.10789 0.15594 0.0005299 -0.97056 0.00165

Large -0.084983 0.12436 0.00049203 -1.0787 0.0021303

Small -0.092342 0.21291 0.00052577 -1.018 0.0019863

A test for scala parameters reveals significantly differences between C-L and L-
S, but equality in the C-S case. Then the likelihood ratios (based on −2 log Λ ≈
χ2

4) for the paired tests H0 : U1 = U2 vs Ha : U1 6= U2, give the p-values:
2.8E − 9 for C-L; 177.769E − 7 for L-S and 3E − 10 for C-S. So, we can
say that there are strong evidence for different configuration changes, and the
most important is given between small and large, as we expected.

4.2 Biology: gorilla skulls

In this application Dryden and Mardia (1998) investigate the cranial dif-
ferences between the 29 male and 30 female apes by studying 8 anatomical
landmarks. For the finiteness of the configuration density we remove landmark
o (see Dryden and Mardia (1998) p.11, and the data in p. 317-318) and the
corresponding confluent hypergeometric is a polynomials of fourth degree, see
(A.2).

The estimators of the configuration location and scale parameters are given
below

12



 
 

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Female -0.28033 0.31315 -0.42269 -0.59672

Male -0.33313 0.42484 -0.43594 -0.5734

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · 0.27398 -1.4695 0.7363 -1.2665 0.0042665

· · · 0.30563 -1.306 0.73169 -1.0594 0.010057

A test for scale parameters reveals significant difference between the two pop-
ulations, so the likelihood ratio (based on −2 log Λ ≈ χ2

8) for H0 : U1 = U2 vs
Ha : U1 6= U2 of configuration location cranial difference between the sexes of
the apes, gives a p-value of 12.74E−13. Which clearly ratifies strong evidence
for differences between the female and male configuration locations.

4.3 Biology: The university school study subsample

In this experiment Bookstein (1991) studies sexes shapes differences between
8 craniofacial landmarks for 36 normal Ann Arbor boys and 26 girls near the
ages of 8 years. In order to get a finite configuration density we discard the
landmark Sella (see Bookstein (1991), p.401-405), then the hypergeometric
functions is a polynomial of fourth degree, see (A.2).

Then, the estimators of the configuration location and scale parameters are
the following

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22

Male -1.2425 2.1948 0.46435 -1.3752

Female -1.2483 2.2331 0.43685 -1.3845

· · · Ṽ31 Ṽ32 Ṽ41 Ṽ42 σ̃2

· · · -0.91487 0.66127 0.15775 -0.069042 0.0032908

· · · -0.92903 0.70439 0.1616 -0.077236 0.0059142

In this case, strong evidence for differences in the scale parameter is reveled
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by a test between the two populations, thus the likelihood ratio (based on
−2 log Λ ≈ χ2

8) for H0 : U1 = U2 vs Ha : U1 6= U2 of configuration location
cranialfacial difference between the boys and girls, gives a p-value of 0.7053.
And the difference between these two configuration locations is insignificant.
A similar global conclusion gives Bookstein (1991), however a more detailed
study of landmark subset is required, then possible differences can be detected,
as Bookstein (1991) ratifies in a different shape context.

4.4 Medicine: brain MR scans of schizophrenic patients

We return to the applications in Dryden and Mardia (1998), in this case,
they study 13 landmarks on a near midsagittal two dimensional slices from
magnetic resonance (MR) brain scans of 14 schizophrenic patients and 14
normal patients. Given that the number of two dimensional landmarks is odd
we preserve them leading a 10 degree confluent hypergeometric polynomial,
easily to compute, see (A.5).

Thus, the estimators of the configuration location and scale parameters are
given by

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Normal -0.64099 2.6942 -1.2744 -2.8323 -0.42155 -1.003

Squizo. -0.68623 2.393 -1.145 -2.8484 -0.37349 -1.0744

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-0.31011 -2.3094 -0.30236 -3.5261 0.36 -0.90135

-0.23173 -2.1929 -0.20173 -3.3226 0.38123 -0.84316

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

0.1597 -2.2205 0.8518 -0.7578 1.8686 0.86501

0.20429 -2.109 0.84683 -0.56588 1.7948 0.88466

Ṽ10,1 Ṽ10,2 σ̃2

-0.14205 0.20718 0.010843

-0.079005 0.1378 0.054064
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A test for scale parameters in the two populations revels significant differences
in this topic. Dryden and Mardia (1998) advert about the small sample size
of this experiment and obviously it can be explain the opposite result based
on −2 log Λ ≈ χ2

20, which means a p-value of 0.9174. Mean shape differences
is concluded in Dryden and Mardia (1998), but configuration difference is
definitely insignificant. The controversial configuration location results could
suggest some a deep study for small sample likelihood and perhaps it can
ratify important different conclusions of a sort of studies about schizophrenia
classification based only on MR scans. But the most important fact here is the
geometrical meaning of the data, because it certainly differs of the preceding
ones, which have a explicit geometrical explanation.

In general the study of scale parameter, certainly is complicated and it deserves
a deeper study.

4.5 Image analysis: postcode recognition

Again, a 13 landmark problem, which supposes a 10 degree confluent hyperge-
ometric appears, in this case Dryden and Mardia (1998) studies a 30 random
sample of handwritten digit 3 for postcode recognition. The data is available
in Dryden and Mardia (1998), p. 318-320.

The next table shows, the configuration location and scale parameter esti-
mates, joint the configuration coordinates of a template number 3 digit, with
two equal sized arcs, and 13 landmarks (two coincident) lying on two regular
octagons see Dryden and Mardia (1998), p.153.

Group Ṽ11 Ṽ12 Ṽ21 Ṽ22 Ṽ31 Ṽ32

Digit 3 -0.79087 1.9432 -2.1073 1.5875 -2.713 0.81862

Template -2.0908 2.2071 -4.0409 2.8051 -4.5904 2.2904

Ṽ41 Ṽ42 Ṽ51 Ṽ52 Ṽ61 Ṽ62

-2.8084 -0.066901 -2.5712 0.71315 -2.6934 1.2955

-4.2069 1.3688 -3.3126 1.7582 -3.5881 2.7053

Ṽ71 Ṽ72 Ṽ81 Ṽ82 Ṽ91 Ṽ92

-3.1548 1.6802 -3.8004 1.34 -4.0517 0.33141

-5.4996 4.0629 -7.5557 4.8428 -8.2514 4.4208
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Ṽ10,1 Ṽ10,2 σ̃2

-3.7659 -0.6583 0.22904

-6.9108 2.8899

And clearly, this enormous difference most be reveled in the corresponding
test based on −2 log Λ ≈ χ2

20, with approximately zero p-value. This result was
corroborated with probability ≈ 0.0002 by Dryden and Mardia (1998), p. 153.
under a shape model. In any case an strong evidence that the configuration
location does not have the configuration of the ideal template for digit 3.

Finally we must note that the remaining planar applications in Dryden and
Mardia (1998), and Bookstein (1991), etc. can be studied with the finite
configuration densities and exact formulae for zonal polynomials; in fact the
three dimensional applications available in the literature (see Goodall and
Mardia (1993)) and others in genetics for 3D DNA part, etc, can be studied
in an exact form with the help of corollary 3 via lemma 5 and exact formu-
lae for zonal polynomials of third degree in James (1964), avoiding the open
truncation problems implicit in Koev and Edelman (2006). Even more, some
comparisons among the shape models can be performed via remark 4 and
other tests for uniform deformations (see step IV) can be performed. This will
be considered in a subsequent work. Of course the study of finite configura-
tion densities associated to Pearson, Bessel, logistic and the general Kotz, will
facilitate exact inference and will avoid the addressed truncation problem, but
it will depends on some developments in integration and series representation.
In fact, the distribution of the likelihood ratio could be potentially studied
by using the low degree finite configuration densities. These topics are been
investigated.
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A Finite series for planar applications of maximum 21 landmarks

Given that most of the applications in shape theory comes from two dimen-
sional images (see Dryden and Mardia (1998)), then it is important to give

explicit expressions for the finite series 1F1

(
−N−3

2
; 1;− 1

2σ2 µ
′U(U′U)−1U′µ

)

involved in corollary 7 when N = 5, 7, 9, . . . is small. Let x, y be the eigen-
values of Ω = 1

2σ2 µ
′U(U′U)−1U′µ, then we have for N = 5, 7, . . . , 21 the

following list of polynomials of degree Kq/2 = N − 3; these expressions are
useful for exact inference of the corresponding configuration densities. We
use in this case exact formulae for zonal polynomials given by James (1968)
see also Caro-Lopera et al (2007). In fact all the applications studied in
Dryden and Mardia (1998) have maximum 21 landmarks (which supposes
a polynomial of 18 degree in the two eigenvalues of corresponding matrix),
so the following confluent hypergeometric expressions are sufficient for their
corresponding configuration analysis. Note that the cited applications demand
formulae for zonal polynomials of second order up maximum 18 degree, and
this expressions are available since 60’s, so the numerical algorithms of Koev
and Edelman (2006), very useful for infinite series, but with the addressed
problem of truncations, are not needed here and the exact inference on con-
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figuration densities, historically could be studied since the configurations were
proposed by Goodall and Mardia (1993).

Observe that the selection of an odd number of landmarks for planar applica-
tions suggest deleting one of them of the available tables usually studied for
approximations methods, clearly it is also possible to reduce in one, any group
of preset even landmarks, however we leave the decision to an expert. Accord-
ing to the number of odd landmarks, we suggest some problems studied by
Dryden and Mardia (1998) but in the context of finite gaussian configuration
densities (we put in parenthesis the original number of landmarks studied by
Dryden and Mardia (1998)).

The involved series up 15 landmarks are easily computed as (parenthesis in-
dicates the number of landmarks in the original source of Dryden and Mardia
(1998)(DM) and Bookstein (1991)(B), respectively):

• N = 5: Mouse vertebra (6)(DM),

1 + y + x + 2 yx (A.1)

• N = 7: Gorilla skulls (8)(DM), the university school study subsample (8)(B),

1 + 2 y + 2 x +
1
2

y2 + 7 yx +
1
2

x2 + 2 y2x + 2 yx2 +
2
3

y2x2 (A.2)

• N = 9:

1 + 3 y + 3 x +
3
2

y2 + 15 yx +
3
2

x2 +
1
6

y3 +
17
2

y2x

+
17
2

yx2 +
1
6

x3 + y3x +
16
3

y2x2 + yx3 +
2
3

y3x2

+
2
3

y2x3 +
4
45

y3x3 (A.3)

• N = 11: Sooty mangabeys (12)(DM).

1 + 4x + 22 y2x + 4 y +
81
4

y2x2 + 5 y2x3 + 5 y3x2 + 22 yx2

+
31
6

y3x +
31
6

yx3 + 26 yx +
1
24

x4 +
1
3

yx4 +
1
3

y4x

+
2

315
y4x4 +

4
45

y4x3 +
4
45

y3x4 +
1
3

y4x2 +
58
45

y3x3

+
1
3

y2x4 + 3 y2 + 3 x2 +
2
3

y3 +
2
3

x3 +
1
24

y4 (A.4)

• N = 13: Brain MR scans of schizophrenic patients (13)(DM), postcode recogni-
tion (13)(DM)
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1 + 5x + 45 y2x + 5 y +
655
12

y2x2 +
241
12

y2x3 +
241
12

y3x2 + 45 yx2

+
95
6

y3x +
95
6

yx3 + 40 yx +
5
24

x4 +
49
24

yx4 +
49
24

y4x +
1
12

yx5

+
4

14175
y5x5 +

2
315

y5x4 +
2

315
y4x5 +

2
45

y5x3 +
46
315

y4x4

+
2
45

y3x5 +
1
9

y5x2 +
47
45

y4x3 +
47
45

y3x4 +
1
9

y2x5

+
1
12

y5x +
8
3

y4x2 +
689
90

y3x3 +
8
3

y2x4 + 5 y2

+5x2 +
5
3

y3 +
5
3

x3 +
5
24

y4 +
1

120
y5 +

1
120

x5 (A.5)

• N = 15:

1 + 6x + 80 y2x + 6 y +
1445
12

y2x2 +
353
6

y2x3 +
353
6

y3x2 + 80 yx2

+
75
2

y3x +
75
2

yx3 + 57 yx +
5
8

x4 +
29
4

yx4 +
29
4

y4x +
71
120

yx5

+
134

14175
y5x5 +

34
315

y5x4 +
34
315

y4x5 +
1
36

y6x2 +
23
45

y5x3

+
263
210

y4x4 +
23
45

y3x5 +
1
36

y2x6 +
1
60

y6x +
35
36

y5x2 +
181
30

y4x3

+
181
30

y3x4 +
35
36

y2x5 +
1
60

yx6 +
2

135
y6x3 +

2
135

y3x6 +
1

315
y6x4

+
1

315
y4x6 +

4
14175

y6x5 +
4

467775
y6x6 +

4
14175

y5x6 +
1

720
x6

+
1

720
y6 +

71
120

y5x +
187
16

y4x2 +
5339
180

y3x3 +
187
16

y2x4 +
15
2

y2

+
15
2

x2 +
10
3

y3 +
10
3

x3 +
5
8

y4 +
1
20

y5 +
1
20

x5 (A.6)

• N = 17:
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1 + 7x + 7 y +
1

945
y4x7 + 77 yx +

21
2

y2 +
21
2

x2 +
259
2

y2x

+
259
2

yx2 +
931
4

y2x2 +
35
6

y3 +
35
6

x3 +
455
6

y3x +
455
6

yx3

+
567
4

y3x2 +
567
4

y2x3 +
3199
36

y3x3 +
8

42567525
y7x7 +

35
24

y4

+
35
24

x4 +
469
24

y4x +
469
24

yx4 +
1799
48

y4x2 +
1799
48

y2x4

+
1

945
y7x4 +

3457
144

y4x3 +
3457
144

y3x4 +
416
63

y4x4 +
2

14175
y5x7

+
7
40

y5 +
7
40

x5 +
287
120

y5x +
287
120

yx5 +
1121
240

y5x2 +
1121
240

y2x5

+
73
24

y5x3 +
73
24

y3x5 +
2

14175
y7x5 +

107
126

y5x4 +
107
126

y4x5

+
523
4725

y5x5 +
4

467775
y7x6 +

4
467775

y6x7 +
7

720
y6 +

7
720

x6

+
97
720

y6x +
97
720

yx6 +
4
15

y6x2 +
4
15

y2x6 +
19
108

y6x3 +
19
108

y3x6

+
47
945

y6x4 +
47
945

y4x6 +
31

4725
y6x5 +

31
4725

y5x6 +
184

467775
y6x6

+
1

5040
y7 +

1
5040

x7 +
1

360
y7x +

1
360

yx7 +
1

180
y7x2

+
1

180
y2x7 +

1
270

y7x3 +
1

270
y3x7 (A.7)

• N = 19:
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1 + 8x + 8 y +
31

1890
y4x7 + 100 yx + 14 y2 + 14 x2 + 196 y2x

+196 yx2 +
819
2

y2x2 +
28
3

y3 +
28
3

x3 +
413
3

y3x +
413
3

yx3

+
896
3

y3x2 +
896
3

y2x3 +
10073

45
y3x3 +

44
3869775

y7x7 +
35
12

y4

+
35
12

x4 +
133
3

y4x +
133
3

yx4 +
1183
12

y4x2 +
1183
12

y2x4 +
31

1890
y7x4

+
1357
18

y4x3 +
1357
18

y3x4 +
104071
4032

y4x4 +
41

14175
y5x7 +

7
15

y5

+
7
15

x5 +
217
30

y5x +
217
30

yx5 +
1

40320
x8 +

491
30

y5x2 +
491
30

y2x5

+
1

2520
y8x +

9151
720

y5x3 +
9151
720

y3x5 +
41

14175
y7x5 +

247
56

y5x4

+
247
56

y4x5 +
3089
4050

y5x5 +
122

467775
y7x6 +

122
467775

y6x7 +
1

1080
y2x8

+
7

180
y6 +

7
180

x6 +
11
18

y6x +
11
18

yx6 +
2017
1440

y6x2 +
2017
1440

y2x6

+
1189
1080

y6x3 +
1189
1080

y3x6 +
1

2520
yx8 +

2921
7560

y6x4 +
2921
7560

y4x6

+
319
4725

y6x5 +
319
4725

y5x6 +
1129

187110
y6x6 +

1
40320

y8 +
1

630
y7

+
1

630
x7 +

127
5040

y7x +
1

1080
y8x2 +

127
5040

yx7 +
7

120
y7x2 +

7
120

y2x7

+
5

108
y7x3 +

5
108

y3x7 +
1

1350
y8x3 +

1
1350

y3x8 +
1

3780
y8x4

+
1

3780
y4x8 +

2
42525

y8x5 +
2

42525
y5x8 +

2
467775

y8x6 +
2

467775
y6x8

+
8

42567525
y8x7 +

8
42567525

y7x8 +
2

638512875
y8x8 (A.8)

• N = 21: Microfossils (21)(DM).
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1 + 9x + 9 y +
109
840

y4x7 +
1

8100
y3x9 + 126 yx + 18 y2 + 18x2

+282 y2x + 282 yx2 +
1343

2
y2x2 + 14 y3 + 14 x3 +

1
7560

y9x2 + 231 y3x

+231 yx3 +
2

1403325
y6x9 +

1141
2

y3x2 +
1141

2
y2x3 +

1
85050

y9x5

+
7462
15

y3x3 +
349

1576575
y7x7 +

1
18900

y9x4 +
21
4

y4 +
21
4

x4 +
357
4

y4x

+
357
4

yx4 +
1

18900
y4x9 +

903
4

y4x2 +
903
4

y2x4 +
109
840

y7x4 +
4013
20

y4x3

+
4013
20

y3x4 +
184099
2240

y4x4 +
2

638512875
y8x9 +

1613
56700

y5x7 +
21
20

y5

+
21
20

x5 +
91
5

y5x +
91
5

yx5 +
1

4480
x8 +

2809
60

y5x2 +
2809
60

y2x5

+
23

5760
y8x +

10133
240

y5x3 +
10133
240

y3x5 +
1613
56700

y7x5 +
353047
20160

y5x4

+
353047
20160

y4x5 +
1711063
453600

y5x5 +
1061

311850
y7x6 +

1061
311850

y6x7 +
1

8100
y9x3

+
2

189
y2x8 +

7
60

y6 +
7
60

x6 +
41
20

y6x +
41
20

yx6 +
2563
480

y6x2 +
2563
480

y2x6

+
21041
4320

y6x3 +
21041
4320

y3x6 +
23

5760
yx8 +

2
1403325

y9x6 +
643
315

y6x4

+
643
315

y4x6 +
50333
113400

y6x5 +
50333
113400

y5x6 +
2

638512875
y9x8

+
49279
935550

y6x6 +
1

7560
y2x9 +

1
4480

y8 +
1

140
y7 +

1
140

x7 +
71
560

y7x

+
2

189
y8x2 +

71
560

yx7 +
4

42567525
y7x9 +

3361
10080

y7x2 +
3361
10080

y2x7

+
221
720

y7x3 +
221
720

y3x7 +
1

20160
yx9 +

1
20160

y9x +
53

5400
y8x3

+
53

5400
y3x8 +

79
18900

y8x4 +
79

18900
y4x8 +

4
97692469875

y9x9

+
157

170100
y8x5 +

157
170100

y5x8 +
1

85050
y5x9 +

52
467775

y8x6

+
52

467775
y6x8 +

1
362880

x9 +
62

8513505
y8x7 +

62
8513505

y7x8

+
2

8292375
y8x8 +

1
362880

y9 +
4

42567525
y9x7 (A.9)
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