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Abstract

We consider an age-dependent branching particle system in Rd, where the particles

are subject to α-stable migration, 0 < α ≤ 2, critical binary branching, and general

(non-arithmetic) lifetimes distribution. The population starts off from a Poisson ran-

dom field in Rd with Lebesgue intensity. We prove functional central limit theorems

and strong laws of large numbers under two rescalings: high density, and a space-

time rescaling. Properties of the limit processes, such as Markov property, almost sure

continuity of paths, Langevin equation and spectral measure, are also investigated.

1 Introduction

In this paper, we investigate high density and space-time scaling limits of a random popu-

lation living in the d-dimensional Euclidean space Rd. The evolution of the population is

as follows. Any given individual independently develops a spherically symmetric α-stable

process during its lifetime τ , where 0 < α ≤ 2 and τ is a random variable having a non-

arithmetic distribution function, and at the end of its life it either disappears, or is replaced

at the site where it died by two newborns, each event occurring with probability 1/2. The

population starts off from a Poisson random field having Lebesgue measure Λ as its intensity.

We postulate the usual independence assumptions in branching systems.

Two regimes for the distribution of τ are considered: either τ has finite mean µ > 0, or
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τ possesses a distribution function F such that F (0) = 0, F (x) < 1 for all x ∈ [0,∞), and

F̄ (u) := 1− F (u) ∼ u−γΓ(1 + γ)−1 as u −→∞, (1)

where γ ∈ (0, 1) and Γ denotes the Gamma function, i.e. F belongs to the normal domain

of attraction of a γ-stable law. In particular, this allows to consider lifetimes with infinite

mean.

Let X ≡ {X(t), t ≥ 0}, where X(t) denotes the simple counting measure on Rd whose

atoms are the positions of particles alive at time t. When τ has an exponential distribution

it is well known that the measure-valued process X is Markov. In the literature there is

a lot of work about the Markovian model. Our objective here is to investigate the case

when τ is not necessarily an exponential random variable, in whose case {X(t), t ≥ 0}
is no longer a Markov process. Another striking difference with respect to the case of

exponential lifetimes arises when the particle lifetime distribution satisfies (1). When the

distribution of τ possesses heavy tails, a kind of compensation occurs between longevity of

individuals and clumping of the population: heavy-tailed lifetimes enhance the mobility of

individuals, favouring in this way the spreading out of particles, and thus counteracting the

clumping of the population. Since clumping goes along with local extinction (due to critical

branching), a smaller exponent γ suits better for stability of the population. As a matter of

fact, Vatutin and Wakolbinger [29] and Fleischmann, Vatutin and Wakolbinger [11] proved

that X admits a nontrivial equilibrium distribution if and only if d ≥ γα. This contrasts

with the case of finite-mean (or exponentially distributed) lifetimes, where the necessary and

sufficient condition for stability is d > α. As we shall see, such qualitative departure from the

Markovian model propagates also to other aspects of the branching particle system, such as

the large-time behavior of the limit theorem mentioned at the beginning of this introduction.

As we mentioned above we investigate the so-called high density and space-time scaling

limits of our age-dependent branching system. The high density limit consist in increasing the

initial intensity by a factor K which will tend to infinity, see [22] for the physical motivation of

this rescaling. We are interested in the fluctuations process, i.e, we center the process around

its mean measure and normalize it by K1/2; this entails to change the state-space of X and

the underlaying notion of convergence. We show that the fluctuations process converges
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to an S ′(Rd)-valued centered Gaussian process whose covariance functional is calculated

explicitly, where S ′(Rd) s the space of tempered distributions, dual of the space S(Rd) of

rapidly decreasing functions. Also we prove several properties of the limit process, namely,

Markov property and almost sure continuity of paths in the norm ‖·‖−p for some p ≥ 1,

see the following section for this technical points. These results are valid for a general

non-arithmetic lifetime distribution. When the lifetime distribution possesses a continuous

density, we also show that the limit process satisfies a generalized Langevin equation. These

results were known only in the case of exponentially distributed lifetimes; see [13] for the

general mono-type branching case, and [19] for systems with multi-type branching.

For the space-time scaling limit we again assume that the lifetime distribution has a tail of

the form (1). The coordinates in space and time are respectively Kx and Kαt, again K being

a parameter which will tend to infinity. In this case we need to assume that d > αγ, i.e., we

require supercritical dimension for persistence. The normalizing constant for the fluctuation

process is Kd+αγ, with K −→ ∞. (Recall that, for exponentially distributed lifetimes, the

normalizing function is Kd+α; see [13]). The limit process is again an S ′(Rd)-valued centered

Gaussian process, it is a Markov process and possesses a version which is continuous in the

norm ‖·‖−p for some p ≥ 1. Also, it satisfies a generalized Langevin equation. Heavy-tailed

lifetimes play a key role in the space-time scaling because the power γ of the tail decay

figures explicitly in the limit theorems, the effect being similar to the one that it has in the

diffusion limit approximation of [18]; see equation (5.1) there.

It is well known that, in order to prove weak convergence of a sequence {Pn}∞n=1 of prob-

ability measures in the Skorokhood space, it is sufficient to show weak convergence of the

finite-dimensional marginals, and tightness (or relative compactness) of {Pn}. In our proof of

the fluctuation limit theorems mentioned above, convergence of finite-dimensional distribu-

tions is achieved by the usual method, showing convergence of characteristic functionals and

using the Minlos-Sasonov’s theorem. The proof of tightness can not be carried out as in the

classical case of exponentially distributed life times because, as we mentioned above, {Xt,

t ≥ 0} is not a Markov process, and many of the steps in the proof of tightness are based on

this property. To overcome this difficulty, we consider the Markov process {Xt× X̄t, t ≥ 0},
where {X̄t, t ≥ 0} is a Markovianization of the branching system {Xt, t ≥ 0} obtained by
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enlarging the phase-state, including the “elapsed time” or “age” of each individual (see [27]

for a more detailed discussion, and [18] and [11] for a related procedure based on the residual

lifetime of each particle).

The occupation time process of a branching system is another object that has been

extensively studied in the context of exponentially distributed lifetimes (see [7], [23], [4],

[5]). [16] and [10] investigated the occupation time of Dawson-Watanabe superprocesses,

i.e., measure-valued processes which are diffusion limits of branching particle systems with

exponential lifetimes. The authors have investigated laws of large numbers for the occupation

time of the critical binary age-dependent branching system, see [27].

2 Some notation and technical points

For each p ≥ 0 we define the reference function φp(x) = (1 + |x|2)−p, x ∈ Rd, we denote

by Mp(Rd) the space of non-negative Radon measures µ on Rd, such that
∫

φpdµ < ∞,

and endow Mp(Rd) with the p-vague topology, i.e., the minimal topology under which the

maps µ 7−→ ∫
φdµ are continuous for φ ∈ Kp(Rd)+, where Kp(Rd)+ = Cc(Rd)+ ∪ {φp},

where Cc(Rd) denotes the space of continuous functions with compact support. Mp(Rd) is

a complete, separable metric space, and the finite atomic measures are dense in it. The

Lebesgue measure on Rd belongs to Mp(Rd) for p > d/2. D(R+,Mp(Rd)) denotes the space

of functions from R+ to Mp(Rd) which are continuous from the right with limits from the

left. It is well know that D(R+,Mp(Rd)) equipped with the Skorokhod topology ([9]) is a

complete, separable metric space. The process X takes values on D(R+,Mp(Rd)).

Now we introduce the state-space which will be need when we Markovianize the process

X. Let E = R × Rd, and let Ĉp = Ĉp(E) denote the space of all continuous functions

ψ : E −→ R such that

bψcp := sup
(u,x)∈E

∣∣∣∣
ψ(u, x)

φp(x)

∣∣∣∣ ,

and such that the map

(u, x) 7−→ ψ(u, x)

φp(x)

on E can be extended continuously to a function on Ṙ+× Ṙd, where Ṙ+ and Ṙd are the one-
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point compactifications of Rd
+ and Rd, respectively. Then (Ĉp, b·cp) is a separable Banach

space.

Let M̂p = M̂p(E) be the set of all p-tempered measures on E, that is, measures µ on E

such that the integral

〈φp, µ〉 :=

∫

E

φp(x)µ (d(u, x))

is finite. Introduce the weakest topology in M̂p such that for each ψ ∈ Ĉp the mapping

µ 7−→ 〈ψ, µ〉 is continuous. Note that ν × Λ belongs to M̂p for any finite measure ν (since

〈φp, Λ〉 < ∞). The process X̄ takes values on D(R+,M̂p).

Regarding p, α and d above, we assume that p > d/2, and in addition p < (d + α)/2 if

α < 2 (see [8] and [16] on this condition).

Let S(Rd) be the space of rapidly decreasing functions, i.e. functions φ : Rd → R such

that φ is infinitely differentiable, and for all p = 0, 1, 2, · · · ,

‖φ‖p =




p∑

|k|=0

∫

Rd

(
1 + |x|2)p |Dkφ(x)|2dx




1/2

< ∞, (2)

where x = (x1, · · · , xd), k = (k1, · · · , kd), |k| = k1 + · · ·+ kd and Dk = ∂|k|/∂xk1
1 · · · ∂xkd

d . It

can be shown that S(Rd) ⊂ Cp(Rd), where Cp(Rd) denotes the space of real-valued continuous

functions φ on Rd such that |φ|p := supx∈Rd |φ(x)/φp(x)| < ∞
The space S(Rd) endowed with the topology induced by the system of Hilbert’s norms

{‖·‖p , p ≥ 0} is a metric space which is separable, complete and nuclear. Let Sp(Rd) be

completion of S(Rd) with respect to the norm ‖·‖p. Then Sm(Rd) ⊂ Sn(Rd) for n ≤ m,

S(Rd) = ∩p≥0Sp(Rd), and for each p ≥ 0, Sp(Rd) is a Hilbert space. In particular, S0(Rd) =

L2(Rd). Let us denote by S ′p(Rd) and S ′(Rd) the strong dual space of Sp(Rd) and S(Rd),

respectively. S ′(Rd) is nuclear and is called the Schwartz’s space of tempered distributions

on Rd.

For each p = 0, 1, 2, · · · , S ′p(Rd) is a Hilbert space with norm

‖F‖−p := sup
‖φ‖p=1

|〈F, φ〉|, F ∈ S ′p(Rd), φ ∈ Sp(Rd), (3)

where 〈·, ·〉 denotes the canonic bilinear form in S ′(Rd) × S(Rd) and S ′p(Rd) × Sp(Rd). We

denote by D(R+, S ′(Rd)) the space of functions from R+ to S ′(Rd) which are continuous
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from the right with limits from the left, endowed with the Skorokhod topology (see [26]).

For more details on this topic see [12] and [28].

3 Results

1. High density. The initial intensity changes to KΛ. The resulting branching particle

system is denoted by X1,K ≡ {X1,K
t , t ≥ 0}.

2. Space-time re-scaling. Let us suppose that d > αγ. We recall that γ = 1 can be

regarded as finite mean life times case. The coordinates in space-time are Kx and Kαt,

respectively. The branching particle system is denoted by X2,K ≡ {X2,K
t , t ≥ 0}.

The fluctuation processes corresponding to these re-scalings are respectively

M l,K = K l
(
X l,K − EX l,K

)

, where K1 = K−1/2 and K2 = K−(d+αγ)/2, l = 1, 2.

Theorem 3.1 (Functional central limit theorems) M l,K =⇒ M l, l = 1, 2, in D
(
[0,∞), S ′(Rd)

)
,

as K −→∞, where M l, l = 1, 2, are centered Gaussian process whose covariance functionals

Kl(s, ϕ; t, ψ) ≡ E (〈ϕ,M l
s〉〈ψ,M l

t〉
)
, l = 1, 2,

are given by

K1(s, ϕ; t, ψ) = 〈ϕSt−sψ, Λ〉+

∫ s

0

〈(Ss−rϕ)(St−rψ), Λ〉dU(r), (4)

where U(r) =
∑∞

k=0 F ∗k(r); and

K2(s, ϕ; t, ψ) :=
1

Γ(1 + γ)

∫ s

0

〈(St−uψ)(Ss−uϕ), Λ〉γuγ−1du (5)

for all 0 ≤ s ≤ t < ∞ and ϕ, ψ ∈ S(Rd).

Theorem 3.2 (Laws of large numbers) For each t ≥ 0 and ϕ ∈ S(Rd):

〈ϕ,X1,K
t 〉

K
−→ 〈ϕ, Λ〉,
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and
〈ϕK , X2,K

t 〉
Kd

−→ 〈ϕ, Λ〉,

in L2(Rd), as K −→∞.

Theorem 3.3 (Properties of the fluctuation limits) (a) For l = 1, 2, M l is a Markov process,

and

〈ψ, M l
t〉 −

∫ t

0

〈ψ, M l
s〉ds, t ≥ 0, (6)

is a martingale with respect to the filtration Ft = σ{〈φ,M l
r〉, r ≤ t, φ ∈ S(Rd)}, t ≥ 0.

(b) There exists p ≥ 1 such that M l, l = 1, 2, has a continuous version in the norm ‖ · ‖−p.

(c) Assume that F has a continuous density f . Then, the process M1 satisfies the generalized

Langevin equation

dM1
t = ∆αM1

t + dWt, (7)

M1
0 = W,

where W is a centered spatial white noise and the Wiener process W is associated to the

family of operators {Q1
t , t ≥ 0} such that for each ϕ, ψ ∈ S(Rd),

〈ϕ,Qtψ〉 = 〈ϕψ, Λ〉u(t)− 2〈ϕ∆αψ, Λ〉, (8)

where u(t) = dU(t)/dt.

Remark 3.4 (a) The assumption in the theorem above that F has a continuous density can-

not be dropped; without such assumption we cannot guarantee differentiability of the function

t 7−→ K1(t, ϕ; t, ϕ).

(b) Assuming that F (t) = 1− e−V t, t ≥ 0, and α = 2 we get that U(dt) ≡ V dt. Hence, (8)

is equivalent to

〈ϕ,Qtψ〉 = V 〈ϕψ, Λ〉+ 〈∇ϕ · ∇ψ, Λ〉,

which recovers a result from [13] for critical binary branching.

(c) By Remark (a) of Theorem 3.6 in [2], without any regularity condition on F we still have

〈ϕ,Mt〉 = 〈ϕ,W 〉+

∫ t

0

〈ϕ,Ms〉ds + 〈ϕ,Wt〉, t ≥ 0,
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where {Wt, t ≥ 0} is a continuous S ′(Rd)-valued Gaussian process with covariance functional

E [〈ϕ,Ws〉〈ϕ,Wt〉] = K(s ∧ t, ϕ; s ∧ t, ψ)

−
∫ s∧t

0

(K(u, ∆αϕ; u, ψ)−K(u, ϕ; u, ∆αψ))du,

for all s, t ≥ 0 and ϕ, ψ ∈ S(Rd).

(d) When α < 2, (7) has to be understood in a generalized sense, because of ∆αS(Rd) *

S(Rd), see [8].

4 Some moment calculations

Let Zt(A) denote the number of individuals living in A ∈ B(Rd) at time t, in a population

starting with one particle at time t = 0. Following [18] we define

Qtϕ(x) := Ex

[
1− e−〈ϕ,Zt〉] , x ∈ Rd, t ≥ 0, (9)

where Ex means that the initial particle is located at x ∈ Rd and ϕ ∈ C+
c (Rd). Since the

initial population X0 is Poissonian, we have

Ee−〈ϕ,Xt〉 = exp

(
−

∫
Ex

[
1− e−〈ϕ,Zt〉] dx

)

= exp

(
−

∫
Qtϕ(x)dx

)
, ϕ ∈ Cc(Rd). (10)

Let {τk, k ≥ 1} be a sequence of i.i.d. random variables with common distribution function

F , and let

Nt =
∞∑

k=1

1{Sk≤t}, t ≥ 0,

where the random sequence {Sk, k ≥ 0} is recursively defined by

S0 = 0, Sk+1 = Sk + τk, k ≥ 0.

For any p = 1, 2, . . ., 0 < tp ≤ tp−1, . . . , t1 < ∞, ϕ1, ϕ2, . . . , ϕp ∈ Cc(Rd) and θ1, . . . , θp ∈ R,

we define t̄ = (t1, t2, . . . , tp), t̄− s = (t1 − s, t2 − s, . . . , tp − s), θ(p) = (θ1, . . . , θp)
′ and

Qp
t̄ θ(p)(x) = Ex

[
1− e−

∑p
j=1 θj〈ϕj ,Ztj 〉

]
.
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Let {Bs, s ≥ 0} denote the spherically symmetric α-stable process in Rd, with transition

density functions {pt(x, y) := pt(x − y), t > 0, x, y ∈ Rd}, and semigroup {St, t ≥ 0}, we

will use the following upper-bound

pt(x) ≤ ct|x|−d−α, t > 0, x ∈ Rd, (11)

for some positive constant c.

Proposition 4.1 ([18]) The function Qp
t̄ θ(p) satisfies

Qp
t̄ θ(p)(x) = Ex

[
1− e−

∑p
j=1 θjϕj(Btj ) −

∫ tp

0

1

2

(
Qp

t̄−sθ(p)(Bs)
)2

dNs

−
p−1∑
i=1

(
1− e−

∑p
j=i+1 θjϕj(Btj )

) ∫ ti

ti+1

1

2

(
Qi

t̄−sθ(i)(Bs)
)2

dNs

]
.

As in (10), since the initial population is Poissonian we have

E
[
e−

∑p
j=1 θj〈ϕj ,Xtj 〉

]
= exp

(
−

∫
Ex

[
1− e−

∑p
j=1 θj〈ϕ,Ztj 〉

]
dx

)

= exp

(
−

∫
Qp

t̄ θ(p)(x)dx

)
. (12)

Using criticality of the branching, and that Lebesgue measure is invariant for the semigroup

of the symmetric α-stable process, it is easy to see that

m(t, ϕ) := E[〈ϕ,Xt〉] = 〈ϕ, Λ〉, t ≥ 0, ϕ ∈ Cc(Rd). (13)

Lemma 4.2 Let 0 < s ≤ t < ∞ and ψ, ϕ ∈ Cc(Rd). Then,

Cx(s, ϕ; t, ψ) := Ex [〈ϕ,Zs〉〈ψ, Zt〉]
= Ex

[
ϕ(Bs)ψ(Bt) +

∫ s

0

mBr(t− r, ψ)mBr(s− r, ϕ)dNr

]
. (14)

Proof: In order to preserve the notation in Proposition 4.1, we put p = 2, t1 = t, t2 = s,

ϕ1 = ψ and ϕ2 = ϕ. Then we have

Cx(t1, ϕ1; t2, ϕ2) = − ∂2

∂θ1∂θ2

Q2
t̄ θ(2)(x)

∣∣∣∣
θ1=θ2=0+

,
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where

∂2

∂θ1∂θ2

Q2
t̄ θ(2)(x) = Ex

[
− ϕ1(Bt1)ϕ2(Bt2)e

−θ1ϕ(Bt1 )−θ2ϕ2(Bt2 )

−
∫ t2

0

∂

∂θ2

Q2
t̄−rθ(2)(Br)

∂

∂θ1

Q2
t̄−rθ(2)(Br)dNr

−
∫ t2

0

(
Q2

t̄−rθ(2)(Br)
) ∂2

∂θ2∂θ1

Q2
t̄−rθ(2)(Br)dNr

−ϕ2(Bt2)e
−θϕ2(Bt2)

∫ t2

t1

(
Q1

t2−rθ1(Br)
) ∂

∂θ1

Q1
t2−rθ1(Br)dNr

]
.

Evaluating at θ1 = θ2 = 0 we finish the proof. ¤

Proposition 4.3 Let 0 < s ≤ t < ∞ and ψ, ϕ ∈ Cc(Rd). Then,

C(s, ϕ; t, ψ) := Cov (〈ϕ, Xs〉, 〈ψ, Xt〉) = 〈ϕSt−sψ, Λ〉+

∫ s

0

〈(Ss−rϕ) (St−rψ) , Λ〉dU(r), (15)

where U(r) =
∑∞

k=0 F ∗k(r).

Proof: We put p = 2 in (12) and use the same notations as in the proof of Lemma 4.2.

Then,

E [〈ϕ1, Xt1〉〈ϕ2, Xt2〉] =
∂2

∂θ1∂θ2

exp

(
−

∫
Q2

t̄ θ(2)(x) dx

) ∣∣∣∣
θ1=θ2=0+

=

[
− ∂2

∂θ1∂θ2

∫
Q2

t̄ θ(2)(x)dx

+

∫
∂

∂θ1

∫
Q2

t̄ θ(2)(x)dx

∫
∂

∂θ1

∫
Q2

t̄ θ(2)(x)dx

] ∣∣∣∣
θ1=θ2=0+

=

∫
Cx(t1, ϕ1; t2, ϕ2)dx +

∫
mx(t1, ϕ1)dx

∫
mx(t2, ϕ2)dx,

and from Lemma 4.2 we obtain

C(s, ϕ; t, ψ) =

∫

Rd

Ex

[
ϕ(Bs)ψ(Bt) +

∫ s

0

mBr(t− r, ψ)mBr(s− r, ϕ)dNr

]
dx, (16)

which completes the proof. ¤

5 Markovianizing an age-dependent branching system

In this Section we discuss a Markovianized version of the the critical binary age-dependent

branching system, which will be needed to prove weak convergence in the Skorokhod space
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D(R+, S ′(Rd)). We recall that, by a well known result of [26], to show tightness of the

sequence {M l,K
t , t ≥ 0}, K = 1, 2, · · · , is enough to prove tightness of the sequence of real-

values processes {〈ϕ,M l,K
t 〉, t ≥ 0}, K = 1, 2, · · · , for each ϕ ∈ S ′(Rd).

Let X ≡ {Xt, t ≥ 0} be the branching system defined in Section 1. For any t ≥ 0, let X̄t

denote the population in R × Rd obtained by attaching to each individual δx ∈ Xt its age.

Namely, for each t ≥ 0,

X̄t =
∑

i

δ(ηi
t,ξ

i
t)
, (17)

where ηi
t and ξi

t denotes respectively, the age and position of the ith particle at time t, and the

summation is over all particles alive at time t. Let us assume that X̄0 is a Poisson random

field on R+ × Rd with intensity measure F × Λ. Here, F also means the Lebesgue-Stieltjes

measure corresponding to F . The probability generating function of the branching law is

denoted by Φ. Thus, for critical binary branching, Φ(s) ≡ 1
2
(1 + s2), −1 ≤ s ≤ 1.

Given a counting measure ν on R+×Rd, and a measurable function φ : R×Rd −→ (0, 1],

we define

Gφ(ν) := exp (〈log φ, ν〉) .

It can be shown that the infinitesimal generator of {X̄t, t ≥ 0} evaluated at the function

Gφ(ν) is given by

GGφ(ν) = Gφ(ν)

〈Lφ(∗, ·) + λ(∗)[Φ(φ(0, ·))− φ(0, ·)]
φ(∗, ·) , ν

〉
, (18)

where

λ(u) =
f(u)

1− F (u)
, u ≥ 0, (19)

and

Lφ(u, x) =
∂φ(u, x)

∂u
+ ∆αφ(u, x)− λ(u) [φ(u, x)− φ(0, x)] , (20)

where the function φ is such that φ(·, x) ∈ C1
b (R+) for any x ∈ Rd, and φ(u, ·) ∈ C∞

c (Rd)

for any u ∈ R+. Here C1
b (R+) denotes the set of all bounded functions with continuous first

derivative, and C∞
c (Rd) denotes the space of infinitely differentiable functions from Rd to R,

having compact support. The operator L is the infinitesimal generator of a Markov process

on R× Rd whose semigroup is denoted by {T̃t, t ≥ 0}, see [27] for details.
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Now consider the process X̂ := {Xt×X̄t, t ≥ 0}, which is a Markov process taking values

in the Skorokhod space D(R+,Mp(Rd) × M̂p). Next we give the infinitesimal generator of

the process X̂ for certain cylindrical functions. Define

g(µ1, µ2) := G(〈ϕ, µ1〉) for ϕ ∈ S(Rd), µ1 ∈M(Rd), µ2 ∈M(R+ × Rd),

where G ∈ C3(R) is such that G′′′ ≡ 0. It can be seen ([27]) that the infinitesimal generator

G, is given by

Gg(µ1, µ2) = 〈∆αϕ, µ1〉G′(〈ϕ, µ1〉) +
1

2
〈∆αϕ2 − 2ϕ∆αϕ, µ1〉G′′(〈ϕ, µ1〉)

+〈λ(∗)
∞∑

k=0

pk[G(〈ϕ, µ1 + (k − 1)δ·〉)−G(〈ϕ, µ1〉)], µ2〉. (21)

Putting G(y) = y for all y ∈ R, from (21) we get that

Gg(µ1, µ2) = 〈∆αϕ, µ1〉+ 〈λ(∗)
∞∑

k=0

pk(k − 1)ϕ(·), µ2〉

= 〈∆αϕ, µ1〉,

where the second equality follows from criticality of the branching. Then, from the Markov

property we have that

Yt(ϕ) := 〈ϕ,Xt〉 −
∫ t

0

〈∆αϕ,Xs〉ds, t ≥ 0 and ϕ ∈ S(Rd), (22)

is a martingale (with respect to the filtration generated by the process X̂).

Proposition 5.1 Let X̄ ≡ {X̄t, t ≥ 0} as before and let X̄0 be a Poisson random field on

R+×Rd with intensity measure F ×Λ. The joint Laplace functional of the branching particle

system X̄ and its occupation time is given by

E
[
e−〈ψ,X̄t〉−

∫ t
0 〈φ,X̄s〉ds

]
= e−〈V

ψ
t φ,F×Λ〉, t ≥ 0,

for all measurable functions ψ, φ : R+×Rd −→ R+ with compact support, where V ψ
t φ satisfies,

in the mild sense, the non-linear evolution equation

∂

∂t
V ψ

t φ(u, x) = LV ψ
t φ(u, x)− λ(u)[Φ(1− V ψ

t φ(0, x))− (1− V ψ
t φ(0, x))]

+φ(u, x)(1− V ψ
t φ(u, x)), (23)

V0ψφ(u, x) = 1− e−ψ(u,x).
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Proof: The proof is carried out using the martingale problem for {X̄t, t ≥ 0}, and Itô’s

formula. We omit the details. ¤

6 Proofs

6.1 Proof of Theorem 3.3

Proof of (a): First, we show that C(s, ϕ; s,St−sψ) = C(s, ϕ; t, ψ) for all s ≤ t and ϕ, ψ ∈ S.

In fact,

C(s, ϕ; s,St−sψ) = 〈ϕSs−sSt−sψ, Λ〉+

∫ s

0

〈(Ss−r(St−rψ)(Ss−rϕ), Λ〉dU(r)

= 〈ϕSt−sψ, Λ〉+

∫ s

0

〈(St−rψ)(Ss−rϕ), Λ〉dU(r)

= C(s, ϕ; t, ψ). (24)

Hence, the Markov property follows from Theorem 6 in [22]. ¤

Proof of (b): We will show that there exists p ≥ 1 such that M is almost surely continuous

in the norm ‖·‖−p. To this end, we will use that

sup
T∈R+

VT (φ)

g(T )
< ∞, (25)

where g is a positive locally bounded function on [0,∞) and

VT (φ) := E
[

sup
0≤t≤T

〈φ,Mt〉2
]

,

with φ ∈. Taking for granted (25), the result follows from a theorem in [24].

The proof of (25) follows along the same lines as in [13]. Namely, by applying Doob’s

inequality to the martingale (6). We omit the details. ¤

Proof of (c): We will show that M1 satisfies all the conditions of Theorem 3.6 in [2].

Condition 1 follows from part (b) and condition 4 follows from part (a) of this theorem;
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condition 3 holds by hypothesis. It remains to show Condition 2. We have that, for each

t ≥ 0 and ϕ ∈ S(Rd),

K1(t, ϕ; t, ϕ) = 〈ϕ2, Λ〉+

∫ t

0

〈(St−rϕ)2 , Λ〉dU(r)

= 〈ϕ2, Λ〉+

∫ t

0

〈(St−rϕ)2 , Λ〉u(r)dr,

the second inequality is a consequence of lifetimes distribution with continuous density.

Hence, the function t 7−→ K1(t, ϕ; t, ϕ) is continuously differentiable. Then, M1 satisfies all

the conditions in Theorem 3.6 from [2].

It remains to show equation (8). Notice that for s = t, (4) can be written as follows

K1(t, ϕ; t, ψ) = 〈ϕψ, Λ〉+

∫ t

0

〈ϕ(S2(t−r)ψ), Λ〉u(r)dr, 0 ≤ t, ϕ, φ ∈ S ′(Rd). (26)

Therefore,

〈ϕ,Qtϕ〉 ≡ d

dt
K1(t, ϕ; t, ϕ)− 2K1(t, ∆αϕ; t, ϕ)

= 〈ϕ2, Λ〉 − 2〈(∆αϕ)ϕ, Λ〉.

Notice that, (8) can be deduced from

〈ϕ,Qtψ〉 =
1

2
[〈(ϕ + ψ), Qt(ϕ + ψ)〉 − 〈ϕ,Qtϕ〉 − 〈ψ,Qtψ〉] .

¤

6.2 Proof of the limit theorems

We give the proofs only for the case l = 1, since the case l = 2 are similar. Notice that, from

Proposition 4.3, for 0 ≤ t1 ≤ t2 < ∞ and ϕ1, ϕ2 ∈ S(Rd),

Cov(〈ϕ1, X
1,K
t1 〉, 〈ϕ2, X

1,K
t2 〉) = KK1(t1, ϕ1; t2, ϕ2). (27)

The next lemma gives convergence of finite-dimensional distributions of M1,K to those

of M .
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Lemma 6.1 M1,K =⇒f M as K −→∞, i.e., for each p ≥ 1, 0 < tp ≤ tp−1 ≤ · · · ≤ t1 < ∞,

ϕ1, · · · , ϕp ∈ S(Rd) and θ1, · · · , θp ∈ R,

E
[
e

i
∑p

j=1 θj〈ϕj ,M1,K
tj

〉] −→ exp

(
−1

2

p∑
j=1

p∑

k=1

θjθkK1(tj, ϕj; tk, ϕk)

)
,

as K →∞.

Proof: The proof of this lemma uses Minlos-Sasonv’s theorem ([17]). First we note that

E
[
e

i
∑p

j=1 θj〈ϕj ,M1,K
tj

〉]
= E

[
exp

(
i

p∑
j=1

θj

〈ϕj, X
1,K
tj 〉 −K〈ϕj, Λ〉

K−1/2

)]

= exp

(
−K

∫

Rd

Ex

[
1− ei

∑p
j=1 θjK−1/2〈ϕj ,Ztj 〉

]
dx

)

× exp

(
−iK1/2

p∑
j=1

θj〈ϕj, Λ〉
)

= exp


−1

2

∫

Rd

Ex

(
p∑

j=1

θj〈ϕj, Ztj〉
)2

dx




× exp

(∫
K

[
Exe

i
∑p

j=1 K−1/2θj〈ϕj ,Ztj 〉 − 1

−iK−1/2

p∑
j=1

θjEx〈ϕj, Ztj〉+
1

2
K−1Ex

(
p∑

j=1

θj〈ϕj, Ztj〉
)2


 dx


 ,

where the integrand converges to 0, as K −→ ∞, and is bounded by c
∑p

j=1 θ2
jEx〈ϕj, Ztj〉2

for some constant c > 0 (see [6] Proposition 8.44). Hence,

lim
K→∞

E
[
e

i
∑p

j=1 θj〈ϕj ,M1,K
tj

〉]
= exp


−1

2

∫

Rd

Ex

(
p∑

j=1

θj〈ϕj, Ztj〉
)2

dx


 .

¤

Proof of Theorem 3.2. Note that, from (27), for all ϕ ∈ S(Rd)

E

(
〈ϕ,X1,K

t 〉
K

− 〈ϕ, Λ〉
)2

=
1

K2
Var

(
〈ϕ,X1,K

t 〉
)

=
1

K
K1(t, ϕ; t, ϕ).

Letting K −→∞ yields the result. ¤
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Proof of Theorem 3.1. We will show that the sequence {M1,K , K = 1, 2, · · · } satisfies all

the conditions in Theorem 2.1 from [14]. First we note that, by Theorem 3.3 (b), the process

M possesses continuous paths. Condition (b) is proved in Lemma 6.1. To prove conditions

(c) and (d) we show that

sup
K≥1

sup
0≤t≤T

E〈ϕ,M1,K〉2 < ∞, (28)

for each T > 0 and ϕ ∈ S(Rd), see Remark (1) after Theorem 2.1 in [14]. In fact, from (27)

we have that

E〈ϕ,M1,K
t 〉2 = 〈ϕ2, Λ〉+

∫ t

0

〈(St−rϕ)2 , Λ〉dU(r), (29)

for each t ≥ 0 and ϕ ∈ S(Rd). Note that, (29) can be bounded from above as follows

E〈ϕ,M1,K
t 〉2 ≤ 〈ϕ2, Λ〉+

∫ t

0

〈(St−r|ϕ|)2 , Λ〉dU(r).

Hence, without loss of generality we can assume that ϕ > 0. Now, we observe that

〈(St−rϕ)2 , Λ〉 = 〈St−rϕ

φp

φpSt−rϕ, Λ〉 ≤ |ϕ|p〈ϕ, Λ〉. (30)

Hence

sup
0≤t≤T

E〈ϕ,M1,K〉2 ≤ sup
0≤t≤T

(
〈ϕ2, Λ〉+

∫ t

0

|ϕ|p〈ϕ, Λ〉dU(r)

)

≤ 〈ϕ2, Λ〉+ |ϕ|p〈ϕ, Λ〉U(T ),

which implies (28).

It remains to verify Condition (a), for this we use the Markovianized process discussed in

Section 5. From (22) and the fact that 〈∆αϕ, Λ〉 = 0, we can deduce that for all ϕ ∈ S(Rd),

〈ϕ,M
(K)
t 〉 −

∫ t

0

〈∆αϕ,M (K)
s 〉ds, t ≥ 0, (31)

is a martingale, seen as a process in D
(
[0,∞), S ′(Rd)× S ′(Rd+1)

)
.

Finally, notice that Lemma 6.1 gives M1,K =⇒f M , from this follows that (M1,K , 0) =⇒f

(M, 0). Hence, we have shown that (M1,K , 0) =⇒ (M, 0), this convergence holds in the space

D
(
[0,∞), S ′(Rd)× S ′(Rd+1)

)
. The proof can be completed by using Continuous Mapping

Theorem. ¤
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