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Abstract

There are several studies on the desirable properties that a compari-
son method for evolutionary multiobjective algorithms must have. One of
these properties is called compatibility and completeness. There is a theo-
rem that states that, in the general case (infinite size sets), it is not pos-
sible to create a unary comparison method with the property mentioned
before. As a consequence, unary performance measures are considered
to be less reliable than binary performance measures. In this paper we
provide a further analysis for practical conditions (finite size sets). We
prove, for these conditions, that the impossibility to create a compatible
and complete unary comparison method, is no longer valid. Our result
opens the door for future research to establish whether or not is possible
to create such a comparison method.

1 Introduction

The evaluation of the performance of multiobjective evolutionary algorithms is
an open problem. The output of these algorithms are sets of non–dominated
points (also known as non–dominated sets, approximation sets, NS). So, the
evaluation of multiobjective algorithms is usually reduced to evaluate the quality
of their outputs. Many methods to evaluate the quality of non–dominated set
(popularly know as metrics or performance measures) have been proposed. Some

1



examples are the S–metric [7], the C–metric [7], etc. All of them have their
advantages and disadvantages as is shown in [5] and [8].

Performance measures (PM) are usually classified based on the number of
non–dominated sets they take as an input. For example, a PM is unary if it
takes only one non–dominated set as an argument and returns a real number as
an output. This number is a evaluation for the NS. So, we can compare different
NSs based on this number. A binary PM uses two NS as input and evaluates
which one is better than the other. The evaluation of a binary PM is valid only
for those two NSs it takes as input and cannot be used to compare them with
others.

Unary metrics are easier to use than binary metrics. If we compare m NSs
(for m > 2), with a unary metric we only need m evaluations, while with a binary
metric we need O(m2) evaluations. Also, binary metrics can induce cycles, for
example for NSs A, B and C it is possible for a binary metric to consider A
better than B, B better than C and C better than A. These are some of the
reasons why unary metrics were more popular than binary metrics.

All this changed when an extensive study in performance measures were
published [8]. In this study, the authors defined the property of compatibility and
completeness (CC ). According to that study, this is a very important property
for a PM to have, because it ensures that the PM is able to decide whether a
NS is better than another. They also introduced the concept of Comparison
Method, that is a more formal definition of a methodology to compare non–
dominated sets. One of the most important results in the study is that, in the
general case, it is not possible to construct a unary comparison method that is
compatible and complete. To prove this, they assumed that there exists a unary
metric that is compatible and complete, then they showed that this leads to an
absurd result.

In this work, we make a revision and corroborate some affirmations made
in [8]. Also, we obtain a different theorem that states that the absurd result
mentioned before is not present if we consider other conditions usually met in
practice. The rest of the work is organized as follows: in Section 2, we make an
introduction to the basic terminology from multiobjective optimization and set
theory that are needed in the rest of the sections. Some important demonstra-
tions about the cardinality of the sets of non–dominated sets are introduced in
Section 3. In Section 4, we present a demonstration of an important theorem
that restricts the utility of unary comparison methods. In Section 5, we review
some special conditions in which it is possible to construct a compatible and
complete unary comparison method and give an explanation why this is possi-
ble. In Section 6, we discuss the practical conditions under which the absurd
result mentioned before does not occur. In Section 7, we state our conclusions.

2 Basic Concepts

In this section we introduce some concepts and terminologies about both mul-
tiobjective optimization and set theory. This information is useful to simplify
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the following explanations.

2.1 Multiobjective Optimization

Multiobjective optimization (MOO) consist of maximizing/minimizing a vector
of objective functions F (x) = {f1(x), f2(x), . . . , fn(x)} subject to constraints.
The objective functions and constraints depend on a vector of variables x ∈ Rm,
these vectors x are possible solutions for the problem, so they are also known as
“solutions”. We also refer to these vectors as “points”, because they are usually
visualized as points in Rm. We define the set Ψ ⊆ Rm as all vectors x that do
not violate the constraints, and Z as the projection of Ψ in objective functions
space. Without loss of generality, we consider hereafter that we are minimizing
the objective functions.

A popular way to deal with MOO problems is to use the Pareto Optimality
Criteria (POC ). POC is defined through the relation between two vectors x, y ∈
Rm known as Pareto dominance or dominance. We have that x dominates y
(x º y) if ∀i ∈ {1, 2, . . . , n}, fi(x) ≤ fi(y) ∧ ∃j ∈ {1, 2, . . . , n} | fj(x) < fj(y).
The goal is to find a set of vectors known as the Pareto Set (PS ) defined as
PS = {x ∈ Ψ | ∀y ∈ Ψ, y � x}. According to POC, all elements of PS are
optimal, because they represent different tradeoffs between objective functions
where it is not possible to improve one objective without degrading another.
The projection of PS in objective function space is called the Pareto Front (PF )
and is usually described as a surface that represents the best tradeoff possible
between the objective functions.

In recent years, many evolutionary algorithms based on POC have been
developed [1] [9]. These algorithms are based on populations and use the
principles of evolution to solve a problem. Instead of generating a single so-
lution, these algorithms generate a finite set X of explicit vector solutions x
that approximate the PS. These approximation sets have the characteristic that
∀x, y ∈ X, x � y ∧ y � x and are usually called non–dominated sets. We
assume that for x1 6= x2 ∈ X, F (x1) 6= F (x2). The set of all non–dominated
sets for a multiobjective problem is represented by Ω.

It is valid to refer to a non–dominated set by their elements in the space of
variables Ψ or by its projection in the space of objective functions Z. Perfor-
mance measures are usually evaluated in the space of objective functions, so in
the rest of the article we locate points, sets, solutions and vectors in this space.

As more evolutionary multiobjective algorithms were published, new per-
formance measures to evaluate these algorithms were proposed, as mentioned
in Section 1. These measures were created based more on intuition than on
a formal theory. A reason for that was that practically there were no studies
about performance measures for multiobjective algorithms.

In order to establish a minimum of what we expect from a quality indicator,
Hansen and Jaszkiewicz [3], defined the three following relationships for A,B ∈
Ω.

Weak outperformance: A weakly outperforms B (A OW B), if for every
point b ∈ B there exists a point a ∈ A so that a º b or a = b and there exists

3



at least a point c ∈ A so that c /∈ B.
Strong outperformance: A strongly outperforms B (A OS B), if for every

point b ∈ B there exists a point a ∈ A so that a º b or a = b and there exists
at least a pair of points r ∈ A and s ∈ B such that r º s.

Complete outperformance: A completly outperforms B (A OC B), if for
every point b ∈ B there exists at least one point a ∈ A so that a º b.

These outperformance relations are used to establish a minimum of what
we expect from a comparison method. It is easy to understand that A OC B
implies that A is better than B, because for every vector in B there is a better
one in A. So, if we have a comparison method R, and it evaluates B as better
than A, then R is not reliable. We expect the same with respect to OS and
A OW B. Hansen and Jaszkiewicz [3] also define the property of compatibility
with an outperformance relation O, where O can be OW , OS or OC , as follows:

Compatibility. A performance measure R is compatible with O if A O B
implies that R will evaluate A as better than B (R(A > B)). In other words,
A O B =⇒ R(A > B).

These concepts established a base to evaluate the effectiveness of quality in-
dicators, considering only the concept of Pareto dominance. The work of Hansen
and Jaszkiewicz has had an important influence and is a point of reference in
the area.

Zitzler et al [8] went further and made a more formal characterization of
what a performance measure is, through the following definition.

Definition 1. A comparison method CI,E, is a combination of k performance
measures I = (I1, I2, . . . , Ik) and a function E:Rk × Rk → {false, true} that
somehow interprets two vectors I. If I consists of unary metrics only, we have
a unary comparison method CI,E = E(I(A), I(B)), where A, B ∈ Ω and I(Y ) =
(I1(Y ), I2(Y ), . . . , Ik(Y )) for Y ∈ Ω.

The later authors also defined the property of compatible and completeness
(CC ), that essentially transforms the implication in the definition of compati-
bility, into a double implication.

Compatibility and completeness. A comparison method C is compatible and
complete with an outperformance relation O, when A outperforms B if and only
if C evaluates A as better than B. In other words, A O B ⇐⇒ C(A > B).

Compatibility and completeness established a stricter criteria of what prop-
erties are desirable for a performance measure. According to Zitzler et al. [8] it
is important because a compatible and complete comparison method is able to
decide whether a NS is better than another. In the same study [8], it is demon-
strated that in general, unary comparison methods can not be compatible and
complete.

2.2 Set Theory

The concepts in this subsection were taken from [2] and [4]. The demonstrations
of the results presented here can also be consulted in [2] and [4].
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Two sets, A and B, are equivalent (A ∼ B) if it is possible to make a
correspondence between the elements of both sets in such a way that to every
element of A correspond one and only one element of B; and to every element
of B correspond one and only one element of A. This kind of correspondence
is called a one to one correspondence or a mapping. The equivalence property
is reflexive, transitive and symmetric. An injection from A to B is a mapping
from A to a subset of B.

One of the most important concepts of set theory is that of cardinal numbers,
or cardinality. Cardinal numbers are related to the size of a set. A cardinal
number refers to an arbitrary member of a family of mutually equivalent sets.
For example, the cardinal number 4 represents any set equivalent to {1,2,3,4},
like {a,b,c,d}, {“dog”, “rat”, “cat”, “mouse”}, etc. We represent the cardinal
number of a set A by |A|, for example |{a, b}| = 2. Infinite sets also have cardinal
numbers. For the set of positive integers N = {1, 2, 3, . . .}, we represent its
cardinal number by a. For real numbers R we represent |R| by c. We represent
the cardinal number of the set of functions defined in a continuous interval by
f .

It is not possible to make an injection from A to B if |A| > |B| because
there are not enough different elements in B to be associated with the elements
in A. If A ⊂ B then |A| ≤ |B|. An interesting result from set theory is that
it is impossible to make an injection from R to N, the set of natural numbers
is somehow “smaller” than the set of real numbers. For two infinite sets A and
B, |A| < |B| if and only if there is an injection from A to B but there is no
injection from B to A. If we can make an injection from A to B, than |A| ≤ |B|.
It is proved that a < c < f .

A set A with cardinal number a is called countable and it is equivalent to
the set of natural numbers. When listing its elements, a countable set is usually
represented using “. . .”, for example A = {a1, a2, . . .}.

An interesting property of the infinite sets, like N and R, is that it is possible
to make a one–to–one correspondence between an infinite set and some of its
subsets.

For two sets A and B, their union is represented by A + B. Their Cartesian
product is represented by A×B. The cartesian product of a set with itself can
be represented by an exponent. For example, A×A×A = A3.

The power set of A (P(A)) is the set whose elements are all possible subsets
of A and it is proved that |A| < |P (A)|. If |A| = |B| then |P (A)| = |P (B)|.

The cardinal numbers of infinite sets are called transfinite numbers. The
smallest transfinite number is a and all finite numbers are smaller than any
transfinite number. We present a list of results of set theory, where k > 0 is a
finite cardinal number and m,n > 0 are finite numbers.

a: A ∼ B ⇐⇒ |A| = |B|. Two sets are equivalent if and only if they have
the same cardinal number.

b: c + k = c + a = c + c = c. For a set A of cardinality c, if we add a finite
number of elements to A, the resulting set has cardinality c. The same
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occurs if we add a–many elements to A or if we add c–many elements to
A. For example |R−{a, b, c}| = |R| = c, |(0, 1)+N| = c, |[0, 1)+ [1, 2)| =
|[0, 1)| = c. Similarly, we can subtract a finite number of elements from a
set of cardinality c and the resulting set has cardinality c.

c: c · k = c · a = c · c = c. The cartesian product of a set A with cardinality
c with a finite set results in a set with cardinality c. The same result is
obtained if the cartesian product is evaluated with a set of cardinality a
or c. For example |R× {1, 2, 3}| = c, |R×N| = c, |R×R| = c.

d: cm = ca = c. A set A with cardinality c elevated to a finite exponent
results in an equivalent set. For example, |R5| = |R| = c. The same
result is obtained if A is elevated to a.

e: Let |A| = c. |Ac| = |P (A)|. If we elevate a set A of cardinality c to
the exponent c, the result is a set with a bigger cardinality. The same
cardinality of the power set of A. For example, Rc ∼ P (R).

f: cm × cn = c(m+n) = c. For example, R5 ×R2 ∼ R7 ∼ R.

g: c + c + . . . = c. The sum of a–many sets, each of them with cardinality c,
results in a set of cardinality c. For example [0, 1) + [1, 2) + . . . + [k, k +
1) + . . . ∼ R.

h: |A| ∼ |B| =⇒ |P (A)| = |P (B)|. If two sets have the same cardinality,
then their power sets are equivalent.

i: A ⊂ B =⇒ |A| ≤ |B|. If A is a subset of B, then the cardinal number of
A is less or equal to that of B.

j: Let |A| = c and |B| = a: f = |P (A)| > c = |P (B)| > a.

k: If C ⊂ B then: A ∼ C =⇒ |A| ≤ |B|.

These results are used in the following Sections.

3 Some demonstrations about the cardinality of
non–dominated sets

We introduced some demonstrations about the cardinality of the sets of non–
dominated sets. These demonstrations are interesting by themselves from the
theoretical point of view but they are also useful to prove the theorems we
present later. We use extensively the Theorems (a)–(k) from Section 2.2.

In Section 2.1 we called Z the space of objective functions. Depending on
the multiobjective problem, Z can have many topologies, for example, it can
be discrete or continuous. We consider in the following demonstrations the
more general case, where Z is equal to Rn where n is the number of objective
functions. We also defined the set Ω of all non–dominated sets we can create
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Figure 1: A non–dominated set S ⊂ R2

from Z. Ω is a very interesting set with respect to performance measures for
multiobjective optimization. As we see later, the cardinality of this set restricts
the utility of unary performance measures for the general case.

We are interested in the following question. How many non–dominated sets
can we create from Z? In other words, what is the cardinality of Ω? The answer
is shown in the following Lemma.

Lemma 1. The cardinal number of Ω is f .

In order to demonstrate Lemma 1 first we enunciate the following definition:

Definition 2. Choose a, b ∈ R with a < b . The line S ⊂ Rn is defined as
S = {(z1, z2, . . . , zn) ∈ Z | zi = (a + b)/2 for 3 < i < n, z1 ∈ (a, b) and
z2 = b + a− z1}. ΩS is the set of all non–dominated sets we can generate from
S.

Due to its construction, S is a non–dominated set. An example of the line S is
shown in Figure 1. This line is a special construction that we borrowed from [8]
and we use it in the demonstration of some of the lemmas in this Section. ΩS

is equivalent to the power set of S, because any subset of non–dominated set is
also a non–dominated set with the exception of the empty set1.

1In order to make the demonstrations shorter, we consider that the empty set is not a
non–dominated set. This makes no difference because our demonstrations holds; even if we
consider that the empty set is a non–dominated set.
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Proof of Lemma 1. Consider the line S ⊂ Z described before. The argumenta-
tion is the following:

(1): ΩS ⊂ Ω ⊂ P (Rn), because of the definition of S, Ω and ΩS .
(2): |ΩS | ≤ |Ω| ≤ |P (Rn)|, because of (1) and (i).
(3): ΩS = P (S)− {∅}, because the subset of a NS is also a NS.
(4): |ΩS | = f , because the power set of a set with cardinality c has cardinality

f (j), S has cardinality c and (3).
(5): P (Rn) ∼ P (R), because of (d) and (h).
(6): |P (Rn)| = f , because of (5), (a) and (j).
(7): f ≤ |Ω| ≤ f , because of (2), (4) and (6).
(8): |Ω| = f , this is a direct consequence of (7).

Other demonstrations that will be useful in the rest of this work are about
the cardinality of the sets of non–dominated sets of a fixed size. For example,
define Ωk as the set of all non–dominated sets in Rn of size k, for k > 0. What
is the cardinality of Ω1, Ω2 and in general Ωk?

The cardinality of Ω1 is c, because by definition, Ω1 is a set in the form
{{z}|z ∈ Z}, so we can make a one to one correspondence between the elements
{z} ∈ Ω1 with the corresponding z ∈ Z. The cardinality of Z is c, so recalling
Theorem (a) from Section 2.2 we can conclude that |Ω1| = c.

The cardinality of Ω2 is c. This demonstration is more extensive than that
for Ω1, and is presented below:

Proof. Consider the line S described before. Choose a point s1 ∈ S and define
S′ = S−{s1}. Define Ω′2 as the set of all sets in the form {s1, s} for s ∈ S′. We
have that all elements of Ω′2 are non–dominated sets of size two.

(1): |S′| = c, because if we take from a set of cardinality c a finite number
of elements, the resulting set has cardinality c (b). We define S′ as S − {s1}
and the cardinality of S is c, so the cardinal number of S′ is c.

(2): |Ω′2| = c, because we can make a one to one correspondence between
Ω′2 and S′. For this, associate each element {s1, s} ∈ Ω′2 with the corresponding
element s ∈ S′. But the cardinality of S′ is c (1), so the cardinal number of Ω′2
is c (a).

(3): Ω′2 ⊂ Ω2, because the elements of Ω′2 are non–dominated sets of size 2
and Ω2 is the set of all non–dominated sets of size 2.

(4): |Ω′2| ≤ |Ω2|, because Ω′2 is a subset of Ω2 (3), its cardinality must be
less or equal to that of Ω2 (i).

(5): c ≤ |Ω2|, because the cardinal number of Ω′2 is less or equal to the
cardinal number of Ω2 (4), and the cardinal number of Ω′2 is c (2).

(6): |Ω2| ≤ |R2n|, because of (k) and because we can make an injection from
Ω2 to R2n. In order to make the injection mentioned before, sort the vectors
v =< v1, v2, ...vn >∈ A for A ∈ Ω2 using the following rule: v precedes u, for
v, u ∈ A, if v1 < u1 or if vr < ur when vi = ui for 1 ≤ i ≤ r−1. This way, every
non–dominated set A ∈ Ω2 is associated with a unique pair of ordered vectors
v1 =< v1

1 , v2
1 , . . . , vn

1 >, v2 =< v1
2 , v2

2 , . . . , vn
2 >. Associate each non–dominated
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set A ∈ Ω2 with the point (v1
1 , v2

1 , . . . , vn
1 , v1

2 , v2
2 , . . . , vn

2 ) ∈ R2n and we have the
desired injection.

(7): |Ω2| ≤ c, because the cardinal number of Ω2 is less or equal to the
cardinal number of R2n (6) and the cardinal number of R2n is c (d).

(8): c ≤ |Ω2| ≤ c, because of (5) and (7).
(9): |Ω2| = c. This is a direct consequence of (8).

The demonstration presented above can be extended for Ωk for any value of
k > 2, as is shown in the following demonstration.

Proof. Consider the line S described before. Choose k − 1 different points
s1, s2, . . . , sk−1 ∈ S and define S′ = S −{s1, s2, . . . , sk−1}. Define Ω′k as the set
of all sets in the form {s1, s2, . . . , sk−1, s} for s ∈ S′. We have that all elements
of Ω′k are non–dominated sets of size k.

(1): |S′| = c, because if we take from a set of cardinality c a finite num-
ber of elements, the resulting set has cardinality c (b). We define S′ as S −
{s1, s2, . . . , sk−1} and the cardinality of S is c, so the cardinal number of S′ is
c.

(2): |Ω′k| = c, because we can make a one to one correspondence between
Ω′k and S′. For this, associate each element {s1, s2, . . . , sk−1, s} ∈ Ω′k with the
corresponding element s ∈ S′. But the cardinality of S′ is c (1), so the cardinal
number of Ω′k is c (a).

(3): Ω′k ⊂ Ωk, because the elements of Ω′k are non–dominated sets of size k
and Ωk is the set of all non–dominated sets of size k.

(4): |Ω′k| ≤ |Ωk|, because Ω′k is a subset of Ωk (3), its cardinality must be
less or equal to that of Ωk (i).

(5): c ≤ |Ωk|, because the cardinal number of Ω′k is less or equal to the
cardinal number of Ωk (4), and the cardinal number of Ω′k is c (1).

(6): |Ωk| ≤ |Rkn|, because of (k) and because we can make an injection
from Ωk to Rkn. In order to make the injection mentioned before, sort the
vectors v =< v1, v2, ...vn >∈ A for A ∈ Ωk using the following rule: v precedes
u, for v, u ∈ A, if v1 < u1 or if vr < ur when vi = ui for 1 ≤ i ≤ r − 1.
This way, every non–dominated set A ∈ Ωk is associated with a unique list
of ordered vectors v1 =< v1

1 , v2
1 , . . . , vn

1 >, v2 =< v1
2 , v2

2 , . . . , vn
2 >, . . . , vk =<

v1
k, v2

k, . . . , vn
k >. Associate each non–dominated set A ∈ Ωk with the point

(v1
1 , v2

1 , . . . , vn
1 , v1

2 , v2
2 , . . . , vn

2 , . . . , v1
k, v2

k, . . . , vn
k ) ∈ Rkn and we have the desired

injection.
(7): |Ωk| ≤ c, because the cardinal number of Ωk is less or equal to the

cardinal number of Rkn (6) and the cardinal number of Rkn is c (f).
(8): c ≤ |Ωk| ≤ c, because of (5) and (7).
(9): |Ωk| = c. This is a direct consequence of (8).

So, based on the demonstrations presented before, we introduce the following
lemma:
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Lemma 2. The cardinal number of Ωk, where k is a positive integer, is c.

Lemma 2 will be useful in the following sections to clarify the demonstrations
of some important theorems.

4 The impossibility to create a CC unary com-
parison method

In this section we present a demonstration of an important theorem presented
in [8]. Our demonstration follows the same methodology used in the one pre-
sented [8], we assume that it is possible to construct a compatible and complete
comparison method with a finite number of unary performance measures and
then we show that this assumption leads to an absurd result.

Theorem 1. For multiobjective problems with 2 or more objectives, there exits
no unary comparison method with a finite number k of performance measures
in I, that is compatible and complete with any of the outperformance relations.

Theorem 1 is one of the most important results obtained by Zitzler et al [8].
It has very important implications. It means that, in the more general case,
unary metrics have a limited capacity to evaluate whether a non–dominated set
is better than another. In order to demonstrate this theorem, the Ziztler et al
first proved Lemma 3.

Lemma 3. Let Z = {(z1, z2, . . . , zn) ∈ Rn | a < zi < b, 1 < i < n}, be an open
hypercube in Rn with n ≥ 2, a, b ∈ R. If there exist a compatible and complete
unary comparison method with I = (I1, I2, ..., Ik), and an interpretation function
E, then for all A,B ∈ Ω with A 6= B there is at least one Ij in I such that
Ij(A) 6= Ij(B).

In other words, for a CC unary comparison method if A 6= B then I(A) 6=
I(B). Define Υ as the set of all different vectors I we can generate with k quality
indicators. The cardinal number of Υ is c, because Υ = Rk ∼ R, (see (d) in
Section 2.2). So, there must be an injection from Ω to R. The demonstration of
Lemma 3 can be found in [8]. Next, we present a demonstration of Theorem 1
that is equivalent to the one presented in [8] using Lemma 1 from Section 3.

Proof of Theorem 1. Let Z = Rn.
(1) |Ω| = f , Lemma 1.
(2) |Υ| = c, because of the definition of Υ and (d).
(3) c < f , because of (j).
(4) We need to make an injection from Ω to Υ, because of Lemma 3.
(5) It is impossible to make an injection from Ω to Υ, because of (1), (2)

and (3).
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The conclusion is that no comparison method based on a finite number of
unary performance measures can be compatible and complete, because it leads
to an absurd result. The central part of the demonstration is that we can not
make an injection from Ω to Υ. This part of the demonstration is important
and for easy reference we called it the cardinality contradiction.

In the next section we review some conditions under which the cardinality
contradiction does not occur.

5 Some special conditions

According to Theorem 1, in general it is not possible to construct a compatible
and complete comparison method with a finite number of unary performance
measures (CCUPM). This is because we cannot make an injection from Ω to Υ,
because the cardinality of Ω is bigger than the cardinality of Υ. It is valid to
ask if it is possible to construct a CCUPM under some special conditions. One
strategy for this is to increment the size of Υ in such a way that its cardinality
is equal to that of Ω. We state this in the following theorem.

Theorem 2. If we use c–many unary performance measures, the cardinality
contradiction vanishes.

Proof. Redefine I as a combination of c–many unary performance measures.
(1) |Ω| = f , because of Lemma 1.
(2) |Υ| = f , because the number of different combinations of unary perfor-

mance measures we can generate from I is Rc = f (e).
(3) We need to make an injection from Ω to Υ, because of Lemma 3.
(4) It is possible to make an injection from Ω to Υ, because of (1) and (2).

So, the cardinality contradiction vanishes if we use c–many unary perfor-
mance measures. Note that this is not true if we redefine I to contain a–many
quality indicators, because in this case |Υ| = |Ra| = c < f = |Ω|, so the
cardinality contradiction holds.

In [8] it was already stated that it is possible to create a CCUCM with an
infinite number of unary metrics. In Theorem 2 we explained how this condition
makes it possible.

Another strategy to make possible the construction of a CCUCM is to reduce
the size of Ω. An example of this strategy was also given in [8] in the form of
the following theorem.

Theorem 3. There exists a CCUPM if we restrict the size of the non–dominated
sets we are going to compare, to be smaller than or equal to a fixed value l.

The description of this CCUPM can be found in [8]. The existence of such
a CCUPM generates another question. Why is it possible to construct such a
comparison method when in general it is not possible? The reason is that in
Theorem 3, new conditions are added, and these conditions lead us to a new
result. We show this in the following theorem:

11



Theorem 4. If we restrict the size of the non–dominated sets we are going to
compare, to be smaller than or equal to a fixed value l the cardinality contradic-
tion vanishes.

In order to prove Theorem 4 we first demonstrate the following lemma.

Lemma 4. Let Z = Rn. Define Ω≤l as the set of all non–dominated sets of
size equal or less than l. The cardinality of Ω≤l is c.

Proof. We can represent Ω≤l with the following sum:

Ω≤l = Ω1 + Ω2 + . . . + Ωl (α)

(1) |Ω≤l| = |Ω1 + Ω2 + . . . + Ωl|, because of (α)
(2) |Ω≤l| = |Ω1| + |Ω2| + . . . + |Ωl|, because the different Ωk are mutually

disjoint.
(3) |Ω≤l| = l · c, because for Lemma 2, |Ωk| = c.
(4) |Ω≤l| = c, because the product of c with a natural number l > 0 is equal

to c (c) and (3).

Once Lemma 4 is proved, it is easy to prove Theorem 4.

Proof of Theorem 4. Redefine Ω so Ω = Ω≤l.
(1) |Ω| = c, because of Lemma 4.
(2) |Υ| = c, because the number of different combinations of unary per-

formance measures we can generate from I with k unary metrics is |Rk| = c
(d).

(3) We need to make an injection from Ω to Υ, because of Lemma 3.
(4) It is possible to make an injection from Ω to Υ, because of (1) and

(2).

When we reduce the size of Ω, as described in Lemma 4, there is no reason
to consider the construction of a CCUPM as impossible. Theorem 3 shows that
it is possible through an example.

6 Another Special Condition

In the demonstration of Theorem 1, both the one presented here and the one
in [8], it was considered that there is not restriction on the size of the sets we
wish to evaluate, a very valid assumption in theory. However, under practical
conditions, the size of the sets is finite because a MOEA can only generate sets
of finite size. When we consider this new premise we arrive to a new result with
important consequences. To show this, we first present the following definition.

Definition 3. Ω<a is the set of all possible non–dominated sets from Z of finite
cardinality.

As mentioned before, all MOEAs in literature only generate non–dominated
sets in Ω<a. Based on this, we formulate the following theorem.
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Theorem 5. If we only compare non–dominated sets A ∈ Ω<a, the cardinality
contradiction vanishes.

In order to prove Theorem 5, we first demonstrate Lemma 5.

Lemma 5. The cardinal number of Ω<a is c.

Proof. We can represent Ω<a with the following sum:

Ω<a = Ω1 + Ω2 + Ω3 + . . . (β)

Note that this sum has a–many elements, because we can make a mapping
between the positive integers and the elements of the sum. For this we only
need to associate each positive integer k with the corresponding Ωk. The values
of k increase without a limit, but they are always finite.

(1): |Ωk| = c, because of Lemma 2.
(2): |Ω≤a| = |Ω1 + Ω2 + Ω3 + . . . |, because of (β).
(3): |Ω≤a| = |Ω1|+ |Ω2|+ |Ω3|+ . . ., because the different Ωk are mutually

disjoint and (2).
(4): |Ω≤a| = c + c + c + . . ., because of (1) and (3).
(5): |Ω≤a| = c, because of (4) and (g).

With Lemma 5 demonstrated, we prove Theorem 5.

Proof of Theorem 5. Redefine Ω as Ω = Ω≤a

(1) |Ω| = c, because of Lemma 5.
(2) |Υ| = c, because of the definition of Υ and (d).
(3) Ω ∼ Υ, because of (1), (2) and (a).
(4) We need to make an injection from Ω to Υ, because of Lemma 3.
(5) It is possible to make an injection from Ω to Υ, because of (3).

The consequence is that under the practical conditions of Theorem 5 we can
not longer affirm that a compatible and complete comparison method based on
a finite number of unary metrics is impossible to construct.

7 Conclusions

In this work we present a study based on the work of Zitzler et al [8]. In this
study we make an analysis on the cardinality of the sets of non–dominated sets.
The value of these cardinalities were used to explain why under some condi-
tions it is possible to construct a compatible and complete unary comparison
method. The most important result in this study is that under practical con-
ditions there is not (known) restriction to the construction of a CCUCM. This
result is obtained adding the premise that we are to evaluate non–dominated
sets of arbitrary finite size. Unfortunately, we can neither affirm that such com-
parison method is possible, this is unknown at the moment. Further research
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is necessary to determine whether it is possible to construct a compatible and
complete comparison method under practical conditions.

8 Corrections

In previous versions of this Technical Report and in [6] we made some affir-
mations like “Theorem 1 (or its demonstration) is flawed” or “Theorem 1 does
not apply”. After a review of the work, is our obligation to report that these
affirmations are incorrect, Theorem 1 is right and not flawed at all. Both The-
orem 1 and Theorem 5 are correct, they consider different premises and that is
why different results are obtained. We apologize for this error from our part.
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