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Abstract

Almost sure and LF-convergence of the traces of Laguerre processes to the family
of dilations of the standard free Poisson distribution are established. We also prove
that the fluctuations around the limiting process, converge weakly to a continuous
centered Gaussian process. The almost sure convergence on compact time intervals
of the largest and smallest eigenvalues processes is also established.
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1. Introduction

"
For m,n > 1, let {Bmn(t)};50 = {<B¥n’n(t)>1<j<m,1<k<n}t>0 be an m X n complex

Brownian motion; that is, the entries {Re (B,Jnkn (t)) }t>0 and {Im (Bfnkn (t)) }t>0 are

independent one-dimensional Brownian motions.

The continuous n x n—matrix-valued process Ly, n(t) = By, ,,(t) Bmn(t),t > 0, is
known as Laguerre process (or complex Wishart process) of size n, of dimension m and
starting from Ly, »(0) = By, ,,(0)Bmn(0). For n =1, Ly, 1 is a squared Bessel process.
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Let {Emn(t)}is0 = {5 L (t) }i>0 be a Laguerre processes scaled by 5= and let

DO} (0,280,200 o

be the n-dimensional stochastic process of eigenvalues of {¥,, () },~,-
In the case of real Wishart processes (i.e. By, n(t) has real entries) and m > n — 1,
Bru [4] proved that if the eigenvalues start at different positions

0 <A™ 0) < A" (0) < .. < Amm(0) | (1)
then they never meet at any time
0 < Mm@ < A ) < < A (1) a.s. v > 0,

and furthermore they are governed by a diffusion process satisfying an Itd Stochastic
Differential Equation (ISDE).

The same happens in the case of Laguerre processes (with the same arguments as
in the real case) and the ISDE’s has the form

AT () 4 A (1)
)\(m n) t km ,n) (t)

ma gy [ 250
A" (1) = || L t—i— mt Y

(2)
for m > n — 1, where W(m n),. Wr(lm’n) are independent one-dimensional standard
Brownian motions; see for example [7], [8], [9], [19], [20], [21].

A special feature of this system of ISDEs is that it has non smooth drift coefficients
and the eigenvalues processes do not collide. When m > n — 1, this SDE has a unique
solution in the sense of probability law [7, Theorem 4]

Throughout the paper we shall assume that m > n—1 and (1). We denote by Tr the
usual unnormalized trace of a matrix and tr = %Tr is the normalized one.

Consider the empirical process

mmn) 1 ¢
_EzléAgm,n)(t),tZO, (3)
]:

where 0, is the unit mass at z. In the present paper we are concerned with functional
limit theorems for the p-moment or p-trace processes associated with ,ugm’n) for any
p > 1. The dynamical behavior of the extreme eigenvalues processes is also investigated.

Specifically, we consider propagation of chaos and fluctuations for one-dimensional

processes ({Mm,n,p(t)} >0t > 1) defined by the semimartingales

Manglt) = b (Suun®F) = [ &™) =25 0] @)

Jj=1

dt, t>0,1<j<n,
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An important role in this paper is played by the family of dilations of free Poisson law.

Recall that the free Poisson distribution (or Marchenko-Pastur distribution) ,uécp ,c >0,

is the probability measure on R, defined by

» B ve(de), c>1
pl? (de) = { (1— ¢) do(dz) + vo(dz), c<1 (5)
where
Vc(dx) = (x _267LT):1:(b — $) l(a,b) (CC)d.%', (6)

o= (1-va?, b= (140

It was shown by Marchenko and Pastur [23] that MZP is the asymptotic distribution,
when ¢ = 1, of the empirical spectral measure (3) when lim,, .oo"* = c. This explains
why when ¢ < 1 this distribution has an atom at zero with mass (1 — ¢), since in this
case the Laguerre matrices are singular having zero eigenvalues. In this work we always
consider the case ¢ > 1.

In this work we also consider the family (y.(t)),s, of dilations of the free Poisson

distribution given by p.(t) = pi¥ o h; ' where hy(x) = tz. That is,

ve(t)(dz), c>1
pe(t)(d) = { (1 = ¢) do(dz) + ve(t)(dz), c<1 ")

ve(t)(dz) = V/(z —at) (bt — )

2rtx

1(at,bt) (z)dz,

with p.(0) = dp. For the p-moment we use the notation

e (1) = /0 " P ()(de). (®)

For a fixed ¢ > 0, the study of different aspects of traces or moments of Wishart
random matrices has been considered by Marchenko and Pastur [23], Oravecz and Petz
[24], Voiculescu-Dykema and Nica [27], amongst others. An important role in those
papers is played by the moments of the free Poisson law MZ” .

In the case of complex Hermitian Brownian motions {By,(t);t > 0},n > 1, the
corresponding systems of eigenvalues are called Dyson Brownian motions. In the study
of functional limit theorems for these processes (see for example [5], [25]), a key role is
played by the family of semicircle laws which agrees with the dilations of the standard
semicircle law, which is the spectral distribution of the free Brownian motion. However,
in the case of Laguerre process, we show that the limit is the family of dilations of free
Poisson laws which is different from the family of free Poisson laws, obtained by taking
ct as the parameter.
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The paper is organized as follows. For the sake of completeness, in Section 2 we
recall a known result on the characterization of the families of dilations of free Poisson
laws in terms of an initial valued problem for their Cauchy transforms. We also present
a functional recursive equation for the families of moments of free Poisson laws.

In Section 3 we prove, for the Laguerre model, uniform almost surely and in L* laws
of large numbers. We show that the sequence of measure-valued processes Nﬁm’”) con-
verges almost surely, as lim,, oo™ = ¢, to the family {s.(t)},~, (which for t = 1 agrees

with u{p ) in the space of continuous functions from R, into probability measures in
R, endowed with the uniform convergence on compact intervals of R (Theorems 3.1
and 3.3). We also address the question of the weak convergence of the fluctuations of
the moment processes Vy, pnr(t) = fert(mm) (dz), where Yt(m’n) =n (u§m’n) — uc(t)>.
It is shown that for each r > 1, V;;, 5, - converges, as lim,, .o "* = ¢, to a one-dimensional
Gaussian process Z, given in terms of the previous (r—1)th limiting processes Z1,...,Z,_1,
and a Gaussian martingale (Theorem 3.7). By using an upper large deviations bound
for the empirical measure valued process obtained in [5], we derive an upper estimate
of the deviation of the moment processes from a given deterministic measure valued
process v in terms of the entropy of v (Proposition 3.5).

In Section 4 we prove the almost sure convergence, as lim, .. = ¢, of the
supremum over the interval [0,7] of the largest eigenvalue process {/\%m’n) (t)}t>0 to

(1+/2)°>T as well as the convergence for the infimum over the interval [0, 7] of the
smallest eigenvalue process {)\gm,n) (t)}t>0 to (1 — /2)> T (Theorem 4.1).

2. Preliminaries

Recall that for a finite non-negative measure v on R, its Cauchy transform is defined

by
6" = [ 4%,

for all non-real z with Im(z) # 0. It is well known that G” is analytic in C\ R, G¥(z) =
G¥(z), G : Ct — C*, where C* := {z : Im(2) > 0} and lim, .o 7 |G"(in)| < co (see
for example [17]).

The Cauchy transform for the free Poisson distribution is

—(z+1—c)+\/(z+1—c)2—4c

Gfp(z) - 2z
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For the laws {11.()}>¢, writing Gc¢(z) for GHe(®)(z), we have the relation

—(z —c z —¢))? — 4et?
Gei(2) = E+td )H\gzﬂ(l ) 4t,t>0,Im(z)7éO. 9)

The following characterization of the family of distributions {u.(t)};>, of dilations
of free Poisson distribution in terms of an initial valued problem for the corresponding
Cauchy transforms was proved in [5, Corollary 3.1].

Proposition 2.1 The family {u.(t)};>q is characterized by the property that its
Cauchy transforms is the unique solution of the initial value problem

90 = G2(2) + [1— e+ 22G4(2)] 2942 ¢ >0, (10)
which satisfies Gi(z) € C* for z € C* and
lim 7 |G(in)| < oo, for each t > 0. (11)
n—00

Remark 2.2. a) From Lemma 3.3.9 in [17], a characterization of the family
{ u{” (t)} >00f free Poisson laws can be obtained in terms of an initial valued problem
t

for the corresponding Cauchy transforms.
b) From [11, Remark 6.9] or [24, Proposition 11] we have the relation

I — _
Mc,r(l) = o Zcfcf 1ckvr 2> 1, (12)
k=1
and hence
ﬂc,r(t) = ﬂc,r(l)tr' (13)

The following functional recursive equation for the families of moments of free Pois-
son laws holds.

Proposition 2.3. For each r > 1 and t >0

t r—2 ¢
per®) =7 [ pep (s 403 [ teg 1 s(6hnes(9)s (14)
7=0

Proof. The following formula for the moments of free Poisson distribution
r—2
:uc,r(l) = C/Lc,rfl(l) + Z iuc,rflfj(l)luc,j(l)a (15)
j=0

5
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follows from the series expansion
oo
Gea(z) =Y plh(1)=7"1,
r=0

identifying the coefficients in the relation
—2Ge1(2) = —cGea(2) + = [qu(z)]2 +Gea(z)+ 1.

Now (14) is a consequence of (13) and (15). |

3. Functional limit theorems for the trace processes

In this section we show the uniform a.s. and L¥ laws of large numbers for the moment
T
processes { M nr(t) }s0 = {tr <[Zmn(t)} )} -~ given by (4) and we prove the weak
a ) t>

(m,n) . . .
convergence of < /i, to a measure valued process satisfying an evolution equation.
t>0

Let Pr(R) be the space of probability measures on R endowed with the topology
of weak convergence and let C' (R, Pr(R)) be the space of continuous functions from
R, into Pr(R), endowed with the topology of uniform convergence on compact intervals
of Ry. As it is usual, for a probability measure p and a p-integrable function f we use

the notation (u, f) = [ f(z)u(dz).
3.1. Propagation of chaos

The next goal is to prove uniform a.s. and LF, for each k > 1, laws of large numbers
for the trace processes My, . The first part of the next result gives useful recursive
equations systems for the processes M,y, ,, and for product of powers of them in terms
of the martingales

1 u t m,n r—3% m,n
KXppnrg @ =3 > [ )] 7 aw(m s, 20, (16)

whose increasing processes are given by

1 t
<an7«_l> = _2/ Mm,n,2r—1(3)d5>t >0, (17)
7 ) 2 t n 0
for any r > 0.
In the following (m(n)),, is a sequence of positive integers with m(n) > n — 1 and
limy, oo 22 = ¢ > 0.

n
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For each k£ > 0 and a multi-index i1 = (i1, ..., 9k+1) € Zi“ such that Zfi} T, =
k + 1, we define ‘ '
it () = ML (). ML ().

Tt T myn,k+1

Theorem 3.1. (i) The following two relations hold for m > n > 1,7 > 1,k > 0
and t >0

a)
mr t
Mm,n,r<t) = Mm,n,r(o) + TXm,n,r—%(t) + 7 / Mmm,r_l(s)ds
0

r(r—1 t = [
N % / Miprr(s)ds +73 / Mopnr-1—(8)Mmnj(s)ds,t >0, (18)
0 0
7=0

b)

k+1 ¢
m,n . mmn . m,n
rg'kﬂ(t) = rik+1(0) + Zlmr/o rz'k+rer(3)de,n,r—%(3)
r=
m k+1 ¢
+—= i /0 PP e (5)ds
r=1
k+1 ‘
_._E 2 ,r(/r' B 1)7/7‘/0 Tz:;ifer+erfl(s)ds
r=
k+1r—2 t
+ erir/o TZ:j:*6T+6r71fz+ez<3)d5
r=21=0
1 k+1 :
s 3 m,n
—i—m IZ lrmr/o Tz'kﬂfelfewelﬂ,l(s)ds
1<i<r
1 k+1 .
2. 4. 7
+W ZT Ty (Zr = 1)/0 ng+71_2€r++62r71<8)d87 (19)
r=1

where e1, ..., e11 is the canonical basis of R¥! and X, 1(t) is the martingale given
b b 2
by (16).
(i) Assume that for each r,j > 1,

sup E <Mrjn(n)’n’r(0)) =c(r,j) < o0. (20)
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Then, for any k> 0 and T > 0, there exists a positive constant K (£k+1,T) such that

sup £ ( sup rm(n) n(t))) < K (rp1,.T) < o0o. (21)

n o<t<T Hh+1

In particular, for every r,j > 1 and T > 0, there exist a positive constant K(r,j,T)
such that

sup £ ( sup an(n)nr(t)> < K(r,j,T) < oc. (22)
n 0<t<T "
(@) If for every r > 1
Mm(n),n,r(o) =50 asn— 0, (23)
then
SUP | M) (8) = e (8)] 2% 0 as n — oo. (24)

0<t<T

Moreover if (20) is satisfied, then
E ( sup }M nr(t) — ,uC’T(t)}j> — 0 as n — 0. (25)
0<t<T

Proof. (i) An application of Ito’s formula to (2) gives that for f € C?,

(g = (g +—Z/ "(5)) Y25 ()W )

t
L1 Z / (Ao )) AT () 1 +# /O <Mgm(n),n)’ f,> s

/ @) = PO EFY) i) (g ummod@g) £ > 0. (26)

R2 r—yY y

The relation (18) follows from (26) with f(z) = z".
Define F : R*' — R by

k+1 '
F(y1,-ynrn) = [J o
The It6 formula and (18) imply

drmn (t) = dF (M1 (t)....Mmm,kJrl (t))

41
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k+1
F (M1 (t)... My t
3 2E M (B Minien®)

r=1

oy

k+1 09
—Za Minna®-o-Minnbs®) g g g

t
Ir=1 5.%8.%
k+1 o FH
- Z 7"2'7«’/”23:11 —€r (t)de n, 'I‘—— Z TZT ;nJrnl er Mm,n,rfl(t)dt
r=1
k+1
+~ Z; r(r =)y " (8) M1 (t)dt
r=
k+1r—2
IS T ()M () My (1)l
r=2 [=0
k+1r—1
2 Z erzl% ka —ej—er (t)Mm,n,l-i-r—l(t)dt
r=2[=1
1 k+1
+2—TL2 1 r2ir (ir = 1) TZZTI_%T (t)Mm,n,2r—1(t)dt
r=
k+1 k1

m . ,
- Z it " e (DA 1 (8) + gZTZrTZ:ﬁ_eT e (D)dt
r=1

k+1 k+1r—2

m,n m,n
+ E (r—1)i,r irq—erber (t)dt + E E ripT i1 —erter_1_iter
r=2 |=1
k+1
ST g (Ot + = > 12 (i — 1)1
n2 lor ik+1_el_€r+el+r—l 2n2 AT ik+1—267»+€2r—1
1<i<r r=1

(i) From (19) we obtain by induction over k the estimate

sup sup E( lkig”(t))) <K; (ng,T) < 00,
n 0<t<T

and in particular

sup sup F (M’ < Ki(r,j,T) < oo.
up sup ( (n)m()>_ 1(r, 4, T)

(t)dt

(t)dt.

(27)
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Next, from Burkholder’s inequality and (28) we obtain

k T T, k: :
FE ( sup ’Xm(nxn’ri%(t)‘ ) < ——F |:/ M (n),n,2r— 1( )d :|
0<t<T

< Ko(T,r k) < oc. (29)

Now (21) (in particular (22)) follows easily from (19), by using (20), (28) and (29).
(i11) Now (29) implies

k
E( sup ‘Xm(n 7ﬂ_;(t)‘ ) — 0, as n — o0. (30)
0<t<T 2

On the other hand, using Chebyshev inequality and (29) we have that for each € > 0

;P( sup ‘Xm(n)m,_i( ’ ) < ;ZE < sup ‘Xm(n),n7r_%(t)’2>

0<t<T 0<t<T

1
< KQ(T,T,z)Zm < 00,

and thus

(n),n, rf—

sup )Xm

‘ 2% 0 as n — oo. (31)
0<t<T

The almost surely convergence in (24) follows from (31) and (18) by an induction argu-
ment, since the family { I )} A satisfies uniquely the relation (14).

Finally, (22) and (24) yield (25) [

Remark 3.2. (a) The recurrence relation (18) involves products of previous moment
processes and therefore it cannot be used to estimate or to compute the expectation
of the moments. For this reason we need to work with the products Tmﬁ( ) which are
stable by an application of the Itd formula.

(b) Define the vector-valued process

Riesa(t) = (r (1)) .
Tpt1 g1 =01,y 1) EZETE SR pip =1

10
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The proof of Theorem 3.1 implies the existence of a deterministic matrix Dy, such that

B (Reys(8) = B (Ria )+ Dy [ B(Ruls)) ds (32

The inductive relation (32) provides in particular the explicit computation of the mo-
ments M, . r(t); see [14] for real Wishart distributions, [13], [22] for complex Wishart
distributions and [15] for the case of real Wishart processes.

Theorem 3.3. For any T > 0 and any bounded continuous function f: R — R we
have

/7umﬁwmmm—/ﬂm%@u@

lim sup
n—00 0<¢<T

=0 a.s. (33)

That is, the empirical process {(ugm(n)’n)> >0} converges a.s. in C (R4, Pr(R)).
£20) n>1

Proof. From Theorem 3.1 follows the convergence (33) for continuous functions
with compact support.

Now we prove the tightness of the sequence of processes { (uﬁm(”)’”)> >0} in the
|2 n>1

space C (R4, Pr(R)).
From (26) and (29) it is easily seen that for every 0 < ¢; < to < T,n > 1 and
e Gi(R),

E <(<u§§”(”)’”), f> - <u§;n(")’"),f>)4) < K(T,f)ltr —tf,

which, by the well known standard criterion, shows that the sequence of continuous real

processes {<,u§m(n)’n), f > >0} is tight and consequently the sequence of processes
t20 ) n>1

{(Ngm(n)m))tm}nx is tight in the space C' (R4, Pr(R)) (see [10, pp. 107]).
Then, for any ¢, 7 > 0 there exists a compact K. C C ([0,T],Pr(R)) such that
s%pP (,u(m(")’") € CK67T> <e.
In particular we find a compact I'. 7 C Pr(R) such that
Kerc{p:p €lep,V0O<t <T}
and consequently, there exists a. 7 > 0 such that

sup  sup gy (|e] > aer) < e, (34)
peK, 1 0<t<T

11
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sup pie(t) (|2 = aer) < e (35)
0<t<T
(in fact we have supg<;<r tc(t) (|z| > ac7) = 0 for a. v enough large).
From (34), (35) and an approximation argument we obtain (33) for all continuous
and bounded functions. [

Corollary 3.4. For any interval (a,b) C R

lim max

n—0oo 0<t<T | N

{125 < AT € fatl} - 00| =0as. G0

As a consequence of the above theorem we obtain Wachter’s result on almost sure
convergence of the empirical distribution of the eigenvalues to the measures u{p (see
[11], [28]), since the moments determine uniquely the free Poisson law and also the well
known result (taking ¢ = 1) on the weak convergence of traces of complex Wishart
matrices [11, Theorem 6.7].

In the case of Dyson Brownian motion the limit in the previous theorem is the family
of semicircle laws which agrees with the dilations of the standard semicircle law (see [5],
[16], [25]). However, in the case of Laguerre process, the limit is the family of dilations
of free Poisson laws which is different from the family of free Poisson laws, obtained by
taking ct as the parameter, which correspond to the free Poisson Lévy process.

3.2. Large deviations approach

The result of Theorem 3.3 is also a consequence of the following large deviations up-
per bound for the empirical process with good rate function (see [5, Theorem 3.2 and
Corollary 3.1]).

Denote C’;’Q ([0,7] x Ry) the subset of C’;’Q ([0,7] x Ry) of functions f such that

(2]

For any 0 < s <t<T, f,g€ Ci?([0,T] x Ry),v € C([0,T],Pr(Ry)) with

& f(t,x)
0z

sup sup
0<t<T s€R4

T < 00, sup sup

0<t<T z€R,

Q.

sup /:L‘I/t(d:L’) < 00,

0<t<T
define,
S5t (, f) = / F(t 2)vi(d) — / F(5,2)vs(da)

12
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//afw“ //af“xu )du
/// afux _Of( uy)) (x+y) v (e (dy) s

)
ot 6f u,x) 0g(u, )
(f,9) / / e vy (dz)du,

S (v, f S“(V £ —=2(f.9)"

o0, Vo 7& (50
S(V) I sup sup S'S,t(y’ f)a Vo :50‘
O§s<t§Tf€é;72([071} xRy)
The sequence {(Mgm(n),n)> } satisfies in the space C ([0,7],Pr(R;)) the
t€[0,T] o
large deviation upper bound with good rate function S :

— 1
: al| (m(n)n) _j
lim,, o0 — In P <;L S F) < VHEl%S(V) (37)

for every closed subset F' C C ([0,7],Pr(R4)).

In particular the sequence (uﬁm(”)’”)> } is exponentially tight.
t€[0,7T) el

Proposition 3.5. Let v € C ([0,T],Pr(Ry)) be such that for some gy > 0,

sup /lerEOVt(dx) < 0.
0<t<T

Then

Mm(n),mk(t) —/.’L’kl/t(d.’L')

<eg k< r) < —=S(v).

1
lim lim,—oo— 3 InP| sup
7200 0<t<T

e—0

Proof. If we apply (37) to the closed set F(e,r) = A(e,r), where

A
Ale,r) = {u € C([0,T],Pr(R)) ’/J:k;zt(d:c) _ /xkut(d:n

<g k< r} ,
we obtain for every e, > 0,

T 1 m(n),n
hmnﬁoomlnP(,u( (n)n) ¢ F(e,r)) < —Mean(fg’r)S( ).

13
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Next, let £; — 0, 7; — oo and choose ph) e A(ej,75),5 > 1, such that

inf  S(u) = S(uF)).
et (1) = S(u™)

Then it is easily seen (like in the proof of Theorem 3.3) that p*U) converges to p in

C ([0,7],Pr(R+)) and conclude by the lower semicontinuity of S.

3.3. Fluctuations of moments processes

Next, we consider the asymptotic fluctuations of the moments processes {Mm(n)m’r

(t) }tZO

around the corresponding moments { ,uw(t)} 1~ Of the dilations of free Poisson distrib-

ution. Let
v =n (W — (1))

Vno(t) =0 and for r > 1

Wﬂﬂz/fﬁMwwan@mmﬂﬂ—mﬁm-

From (26) we obtain that for f € C? and t > 0
<Y;(n),f> i <Y0(n),f>

t
0

J

VL[ )0 (220 [ i

t
" (A (5)) A ()
|7 (5 em@) i)

The martingales

E ! ( L( L) L) ( L( L) ”)
t) = ‘ ’ M/ ’ t > >
]Vn,r( ) \/ﬁ ‘ / |:)\‘7 (S)] d j (S), 0, 7 1,

play an important role (see [25] for the Dyson Brownian model).

14
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(39)

(41)
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Next, for a r—dimensional martingale C' = (C; : 1 < j <r) denote by [C,C] the

R" ® R"-valued process whose components are the quadratic variations [C}, Cy]; - k<

Proposition 3.6. Assume (20) holds. Then, for each r > 1 the r-dimensional

martingale (Nn k71)1<k< converges weakly in C(Ry,R"), when n goes to infinity, to
b 2 < 77,,
a continuous centered Gaussian martingale <Nk_ 1 ) with
2/ 1<k<r
E (N, 1()N_1(8) = Herrial) (o i (42)
k=3 =3 k+1
and quadratic variation
. Uc,kJrlfl(l) k+1
Moy N, == 1)
Proof. Using the equality
t
[Nn,k7%7Nn,[7%L :/O Mm(n),n,k—f—l—l(s)dsv (44)

Burkholder’s inequality and (22), we obtain for each 0 <t; <t9 < T,

to

Mm(n) ,n,2k—1 (S)ds

t1

E <‘Nn,k—% (b2) = Ny, j 1 (tl)r) <K E <

2)
to

< K (t2 —tl)/

i L (an(n),nzk—l(s)) ds < Ks (t2 — 1),
1

and thus the sequence (Nmk : k< r) is tight in C' (R4, R").

_1:1<
2
Choose a subsequence N7 := <Nn

1 <k< r) which converges weakly to

=

a limit N = (N,c_%)m< .
T

By [18, Corollary 1.19, pp. 486] It follows that N is a continuous r-dimensional
local martingale (in fact it is a martingale) and by [18, Theorem 6.1] we have that
(N7, [N7,N7]) converges weakly to (N, [N, N]) in C (R+,R" x (R” @ R")).

In particular [N7, N7| converges weakly to [N, N]. From (13), (24) and (44) we
deduce that [Nj, NI ] , converges almost surely to

t
freor1-1(1)
(/ Mc7k+l—1(5)d5> = (CthkH ’
0 1<k,i<r 1<k,I<r

15
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and thus

_4(1
{N, N]t _ (Mc,k—H 1( )tk+l> )
k+1 1<ki<r

By [18, Theorem 4.15] N is a process with independent increments and for s < ¢ the ran-
dom variable N; — N is has centered Gaussian distribution. Therefore N is a continuous
centered Gaussian martingale which satisfies (42) and (43). ]

In the final result of this section we show for each r > 1, the fluctuation processes
Vi, converge weakly to a one dimensional Gaussian process Z,, which is given by a
recursive expression that involves 41, ..., Z,_1, the Gaussian martingale N__ 1 and the

2

T
families of moments { . ;. (¢) } E=1,..,r—1.

t>0"

Theorem 3.7. For every k > 1 assume that V;, (0) converges weakly to Vk(o) eR
as n — oo and (20).

Then, for each r > 1, the r-dimensional process (Vi 1) <<, converges weakly in
C(R4+,R") to the unique in law continuous Gaussian process (Z) <<, given by

Zy(t) = Vi + k2N, _1 (1)
1\ [t A
+k(c+ 5 Zy—1(8)ds + pre 1 (1)t
0

+2k/() [Heg—2(8)Z1(8) + oo+ p101(8) Zi—2(s) | ds, 1 <k <, (45)

where Zy =0 and Nszé is given by (41).

Proof of Theorem 3.7. From (45) and by induction on k it is easily seen that

,%(Sl)dsl

k*l t -
Z1(t) = Pu(t) + kV2N,_1(8) + CZ/O SPN,
j=1

C]/ / / .. ;{:fZNi% 8]+1)d8]+1 dSl, (46)

where Py(t) is a polynomlal of order k, ¢,¢; > 0 and ji,71,...,7j41 > 0.
It is clear that (46) implies that the distribution of the process (Zx); <, is uniquely
determined by the distribution of the k-dimensional Gaussian martingale (N 1 )

1<k<r
In particular (Zy); <<, is a Gaussian process.

16
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Taking f(z) = #* in (40) we obtain the equality

V() = Vi1 (0) + k\/ﬁNMf%(t)

E—1 1\ [t
+k <@ +— 5) / Vi1 (s)ds
0

+ (M - c> k;/ot fhe —1(s)ds + g /Ot [Minnymp—1(8) + pep-1(5)] ds

n

t
+k/0 {[Mm(n),n,k:fQ(S) + Nc7k—2(s)] Vn,1<3) + [Mm(n),n,l(s) + :U’c,l(s)] Vn,k*Q(S)} ds.
(47)
By the Skorohod representation of the weak convergence (eventually in a new prob-
ability space) we can assume that

(Vn,k(o)lékﬁr’ (Nn:k*%) 1<k<r> ’

converges a.s. in R” x C' (R4, R") to

((V’“(O)> 1<k<r’ (Nk—%> 1§k§r> )

Then, by induction we deduce that (Vi 1);j, defined by (47) converges a.s. to
(Zk)lgkgr given by (45). [ |

4. Convergence of extreme eigenvalues processes

The behavior of the largest and smallest eigenvalues of Wishart random matrices was
established in [1], [2], [3], [12], [26] (see also [11] for a more recent proof). In the next
theorem we extend these results for the supremum of the largest eigenvalue process as
well as for the infimum of the smallest eigenvalue process from a Laguerre process.

Theorem 4.1. Assume that

SUD TH(X iy n(0)) = sup (A" (0) + .. AT (0)) <00 (48)

Then for each T > 0 we have

- (m(n).m) (g 95 2

Jim B Ay (t) == (14+c) T, (49)
lim min A0 25 (1 - /0)? T (50)
n—oo 0<t<T 1

17
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To prove this theorem, we need the next lemmas. Denote ¢, = m(n)

Lemma 4.2. Assume that (48) is satisfied. Then, for every T > 0, € [O, %],
the following estimations hold

E [exp (aA;van) (T))} < C(T)n? exp <aT 1+ ven)? + w> . (51)

T 2 24
E [exp (a/ )\%m(”)vn)(s)dsﬂ < C(T)n? exp (% (1+/en)? + 20;: (1+ cn)> ,
0
(52)
for some positive constant C (T) .
Proof. Suppose first the centered case, that is B,;,;,),,(0) = 0.
From the following estimate (see [11, inequality 7.13])
E [exp (a)\%m(”)’”)(l)ﬂ <FE [Tr <exp (aZm(n),n(]‘)))}
2
< mexp <(1—|—\/&)2a+ M) , Va € [O,E} :
n 2
and the equality in law
AP0 (E) 2 A (1)
we obtain for each o € [O, %]
22
E [exp (oa)\;m(”)ﬂ)(T))] < mexp <ozT 1+ Ven) + M) . (53)

Next, by using (53) and the generalized Holder’s inequality, we have

T
E [exp (a/ A%m(")’”)(s)ds)]
0
k-1
oT m(n)m rT
exXp (72%& e )(7)>

s rT g
<lim inf ] {E [exp (aT)\%m(n),n)(?)>] }

< lim kinf FE

18
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Rl o arT? (1 +c,)a?r®T? %
<lim inf {nexp ((1 +v/cn) T 12 ) }
r=0

k—o0
9 k— 4 k—
aT? (1 n
= limkiilgonexp ((1 + v/cn) k:— EZO: + c 2:0 )

2T
3n

T2
= nexp (%(14_@)2_’_

In the noncentered case define

m(n),n(t) 3 Bm(n),n(t) ~ Bm(n),n(o)v

1+ cn)> . (54)

() _ 1 (g®W " )
Zm(n),n(t) - % <Bm(n),n(t)> Bm(n),n(t)’

and consider the following Laguerre process with drift

Yty ®) =

1 (p0 t (B0 t

Let ALLm(mm) (t) (resp. )\(1 m(n),n) (t) ) be the largest eigenvalue of Zgzn)n(t) (resp.

S tatmynir (D)

Note that ALy ™™ (1) = AT*"(T).

If Gisa nonnegative measurable functional defined on the space of continuous
functions, then by the multivariate Cameron-Martin formula we have the equality

B |G (S0 ar(9.0<s<t)] =BG (20, (5.0 <5 <1)

1 " 4 *

forany 0 <t <T.
Applying (55) to exp (a/\;ljl}n(n)’n) (t)) we get

E [exp (a)\gll,ﬁﬁl(n)’n) (t))] =F [exp <oz)\7(11’m(”)’”)(t)>
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< {E {exp (204/\511””(")’") (t))} }% X

=

20212 (1 + ¢p) "
n

< ns exp <at (1+ \/cn)2 +

{5 o {20 (B0 B2, 0) = 257 (B0 B0 )]

13 *
X exp {ﬁTt (Bm(n),n(o) Bm(n),n(o)) }

] 2022 (1 + ¢,
< exp {T sup Tr (Bon k) £ (0)* Bi (i) 1(0)) } n3 exp <at (1+en) + %) .

The estimate (52) follows from (51) as in the centered case. ]

Remark 4.3. By using the estimate (see [11, 7.14])

(cn+1)a?
n

E [exp (—a)\gm(n)’n)(l))} < nexp (— (Ven — 1) a+ > , Vo> 0,

in the centered case, in a similar manner it follows the inequality

E [exp (—a /0 < Aﬁmm%“)(s)ds)}

T2 20°T*
< C(T)n? exp <—QT (1— &) + O;m 1+ cn)> , Yo > 0. (56)
Remark 4.4. The above argument based on the Cameron-Martin formula provides

an alternative method for proving the boundedness of the moments in Theorem 3.1
(inequality (28) and consequently (22)).

Lemma 4.5. The processes

t 2t
a — [\ (m(n).n) (n) _ &~ (m(n)n) _”
t— X5, (t) :=exp (a/o An (s)dW, 5 /0 A (s)ds,) , o € [O, QT] ,
7)

5

t 2t
t— X2 (t) = exp <—a/0 /)\gm(n),n)(s)dwl(n) _ %/ /\(m(n)’n)(s)ds> >0,

0 1
(58)

20
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are martingales. In particular, the processes

(m(n),n) .
t — exp (oz)\n (t)> , o€ [O, 5T | (59)
t — exp (_axg’”‘")v") (t)) La >0, (60)

are submartingales.

Proof. The fact that (57) (and (58)) is a martingale follows from the previous
lemma and Novikov’s criterion.
Next, if t1 < t2 from (2) and the fact that (57) is a martingale, we have

E [exp (a)\,(lm(")’") (t2)> 1> mm)n(s) 18 < tl}

2 (m(n)n)
0 n
to n—1 )\%m(n) ")(S) 4 )\(”)(S)
+—/ met Y ———— I——ds | ¢ |3 mmyn(s) s <t
0 ( A () = A (s)
+ A\

xFE

2 t1 t1 n—1 )\(m(n),n) s +)\(m(ﬂ)7ﬂ) S
exp a_ )\(m(n),n)(s)ds+ g m+z n ) j ( )dS
n Jo n n Jo - )\%m(n),n)(s) . )\gm(n),n)(s)
2

xXiaX (t1) = exp (a)\gm(”)’”) (t1)> )
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i.e., exp {a/\,(lm(n)’n) (t)} is a submartingale.
¢

The case of the process t — exp (—aAgm(n)’n) (t)) follows similarly, by using (58).H
Proof of Theorem 4.1. From (51) and Doob’s inequality applied to the sub-
martingale exp (a/\%m(n)’n) (t)), we obtain

P<maX Alm(n);n >(t)>T<s+(1+\/a)2)>

0<t<T
<P <Or£tax exp ( Alm(n);n) (t)> > exp {OZT <€ +(1+ @)2> })
< exp {—aT <5 +(1+ @)2) } E (exp (aAT(lm(n)’n) (T))>

20272 (1
Oé——i-Cn_aT<€+ 1_‘_\/_ >>

20277 (1 + cn)>

< Cn? exp <aT (1+ @)2

— Cn? exp < als +

and the function (for ¢ € (0,1))

20772 (1
o —> exp <—aT€+w>, a >0,

n

attains its minimum for a = Wjﬂ) € (O, %], and replacing above, we get the
inequality

2
(m(n).n) 27\ < Ons __ne
P (oglfgr)\” (t)>e+ (1++/cn) T) < CnZz exp ( Sa+oy) (61)

Then, from (61), the convergence of the series » >, n3 exp (_S(r?n—il)> and Borel-
Cantelli lemma, we obtain

hmsup max )xflm(”) ) <(1 —i-\/_) T, as.. (62)

Next, from (36) we have

1 m(n),n a.s
—g {1 € [al,aﬂ}' % max pe () ([a1, a2]) as = oo,

max
0<t<T |n 0<t<T
and then
. .y (m(n), n) 2 a.s. .
Oréltzggf#{lgjgn.)\j {(1+\/_) (1+\/E) T}}—>ooasn—>oo.
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Consequently

liminf max A7) (4) > (1+ \/E)2T, a.s.. (63)

n—s00 0<t<T

From (62), (63) we obtain (49).
Finally, (50) follows using similar arguments and the fact that the process t —

exp <—a)\§m(n)’n) (t)) is a submartingale. |
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