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Abstract

There is a one-to-one correspondence between classical one-dimensional infi-

nitely divisible distributions and free infinitely divisible distributions. In this work

we study the free infinitely divisible distributions corresponding to the one-dimensional

type  distributions. A new characterization of classical type  distributions is

given first and the class of type  classical infinitely divisible distributions is in-

troduced. The corresponding free type  distributions are studied and the role of

a special symmetric beta distribution is shown as a building block for free type 

distributions. It is proved that this symmetric beta distribution is the free multi-

plicative convolution of an arcsine distribution with the Marchenko-Pastur distrib-

ution.
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1. Introduction

The distribution of a one-dimensional random variable  is said to be a variance mix-

ture of the normal distribution if it is the distribution of  12, where  and  are

independent random variables with  being positive and  having the standard nor-

mal distribution. When the mixing distribution of  is infinitely divisible,  is also

infinitely divisible [12], [16]. In this case we say that  has a type  distribution or

belongs to the class  of classical type  distributions, and write L( 12) ∈ .

Such distributions are also called ( ) distributions in [20] and Gaussian transforms

in [10]. A type  distribution is the law of the subordinated Brownian motion  at

time  = 1, where { :  ≥ 0} is a Brownian motion independent of a nondecreasing
Lévy process (subordinator) { :  ≥ 0} such that 1 has the same distribution as 

Many important examples of classical infinitely divisible symmetric distributions are

of type : symmetric -stable distributions, 0    2 where  is a positive 2-stable

random variable, and more generally, convolutions of symmetric stable distributions

of different stability indices; the Laplace distribution, where  has the exponential

distribution, and more generally, symmetric gamma distributions, where  has the

gamma distribution; Student , where  has the distribution of the reciprocal chi-square

distribution; symmetric normal inverse Gaussian, with inverse Gaussian distribution for

 ; and more generally, all the symmetric generalized hyperbolic distributions.

The Bercovici-Pata [8] bijection is a homeomorphism Λ from the set of classical one-

dimensional infinitely divisible distributions (∗) to the set of free infinitely divisible
distributions (¢). The bijection Λ is such that if  is a distribution in (∗) with
classical characteristic triplet (  ), then Λ() has free characteristic triplet (  );

see also [7]. For an introduction to free probability see the monographs [11], [14].

The purpose of this paper is to study the class of free infinitely divisible distributions

corresponding to the classical type  distributions under the bijection Λ which we

call free type  distributions. An important role is played by the theory of Upsilon

transformations of classical infinitely divisible distributions as recently studied in [2],

[4], [6], [13], [18] and [19].

We first take a new look to classical type  distributions. This is done by intro-

ducing the class  of type  distributions on R as those classical infinitely divisible
distributions whose Lévy measures are mixtures of the symmetric arcsine distribution.

The building block example is the symmetric compound Poisson arcsine distribution

which is the distribution of the random variable  =
P

=1 , where  is a random

variable with classical Poisson distribution of mean one and independent of a sequence

1 2  of random variables with the arcsine distribution on (−1 1) We then prove a
new characterization of Lévy measures in  showing that  is the image of (the

ancestor class)  under an appropriate Upsilon type transformation. We conclude

that any classical type  random variable has a random integral representation with
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respect to a Lévy process with type  distribution at time 1.

In the second part of this work we introduce the class of free type  (denoted

by ) and free type  (denoted by ) distributions as free infinitely divisible

distributions which are the image of  and  under Λ respectively. Analogous

characterizations as for the classical case are given in terms of the Lévy measure and

the free cumulant transform. We identify the symmetric beta distribution with shape

parameter  = 32 and scale parameter  = 12 as a free infinitely divisible distribution

in , but not in , being the image of the classical compound Poisson arcsine

distribution under Λ. Moreover, this distribution is identified as the free multiplicative

convolution of an arcsine distribution with the Marchenko-Pastur distribution. Its role

as a building block for free type  distributions is shown.

The paper is organized as follows. Section 2 recalls basic facts about Upsilon trans-

formations of Lévy measures, free infinite divisibility, multiplicative convolutions and

free compound Poisson distributions. In Section 3 we take a new look to classical

type  distributions and introduce a new class of classical type  distributions. Sec-

tion 4 characterizes the free infinitely divisible distributions given by the image of the

Bercovici-Pata bijection of  and . Finally, in Section 5 we present examples

of free type  and free type  distributions, as well as their interpretations as free

multiplicative convolutions.

2. Background and notation

2.1. Upsilon transformations and ancestors

Let (∗) be the class of all infinitely divisible distributions on R. For  ∈ (∗), the
Lévy-Khintchine representation of its classical cumulant function C() = log b() is
given by

C() = − 1
2
2+

Z
R

¡
e− 1− 1{||≤1}

¢
(d)  ∈ R (1)

where  ∈ R  ≥ 0, and  is a measure on R (called the Lévy measure) satisfying

({0}) = 0 and Z
R
min(1 ||2)(d) ∞ (2)

The triplet (  ) is called the generating triplet of  ∈ (∗) Let M(R) be the class
of all Lévy measures of elements in (∗) and letM(R+) be the class of Lévy measures
on R+ with (−∞ 0) = 0 and

R
R+
(1 ∧ )(d)  ∞. See [17] for a detailed study of

classical infinitely divisible distributions on R.

The Upsilon transformation Υ0, introduced in Barndorff-Nielsen and Thorbjørnsen

[5], [6] and studied further in [2], [3], [4], is defined as the mapping on M(R) into
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M(R), given by

Υ0()(d) =

Z ∞

0

(−1d)−d (3)

This mapping is one-to-one, smooth and strongly regularizing, and hence Υ0(M(R))
is a proper subset of M(R). For  ∈M(R+), Υ0() ∈M(R+) and Υ0(M(R+)) =
B(R+), which is the smallest class which contains all mixtures of classical exponential
distributions and is closed under convolution and weak convergence. Moreover, B(R+)
is the class of distributions whose Lévy measures have completely monotone densities

and it is called the Goldie-Steutel-Bondesson class. In this work we call an infinitely

divisible distribution with Lévy measure  the Υ0-ancestor of the infinitely divisible

distribution with Lévy measure Υ0()

More specifically, we have the following result, which is used several times in this

work. It is a special case of (2.16) and (2.18) in Theorem A of [2].

Lemma 1. (a) Let  ∈M(R+). Then the Lévy measure Υ0() is absolutely continu-
ous with completely monotone density (; ) given by

(; ) =

Z
R+

−1−
−1
(d) (4)

Moreover,

(; ) =

Z
R+

−(d) (5)

where  is a measure given by

(d) =  ←−(d) (6)

and ←− is the measure on R+ induced from  by the mapping → −1
(b) Conversely, let  : R+ → R+ be a completely monotone function satisfyingZ ∞

0

min(1 )()d ∞ (7)

Then there exist a Lévy measure  ∈ M(R+) such that Υ0() has density  and

therefore  is represented by (4).

The theory of general Upsilon transformations of Lévy measures is discussed in [4].

Of particular interest in the present work is the generalized Upsilon transformation

Υ1−  0   ≤ 1, defined on M(R) into M(R) by

Υ1−()(d) =
Z ∞

0

(−d)−d (8)

Like for Υ0 we call  the Υ1−-ancestor of Υ1−()1.
1 In [13] what is here denoted by Υ12 is called Ψ−22
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2.2. Free infinite divisibility

In this section we present several facts about free additive and multiplicative convo-

lutions as well as free infinitely divisible distributions, and in particular some useful

results about free compound Poisson distributions. We refer to [1], [7], [9], [11] and

[14] for details and further material.

2.2.1. Transforms of probability measures

We first recall several transforms of probability measures that are useful in the analytic

theory of free probability. The basic one is the Cauchy transform of a probability

measure  on R, defined, for  ∈ C\R, by

() =

Z
R

1

 − 
 (d)  (9)

It is known that  is analytic in C\R,  : C+ → C−, where C+ := { : Im()  0} 
C− := { : Im()  0}, and that lim→∞ () = 1 Moreover, the following inver-

sion formula holds when the density  of  exists

 () = − 1

lim
→0

Im (+ )  (10)

In connection to free infinite divisibility, the reciprocal of the Cauchy transform is

useful. It is the function  () : C+ → C+ defined by

 () =
1

()


The free cumulant transform of a probability measure  is

C¢ () = −1

¡
−1

¢− 1 (11)

for  in a domain  of C− 

On the other hand, for the study of multiplicative convolutions of measures, the

Ψ-transform and the -transform are useful. The first one is defined by

Ψ() = −1(
−1)− 1 (12)

It was proved in [9] that for probability measures with support on R+ and such that
({0})  1 the function Ψ() has a unique inverse () in the left-half plane C+
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and Ψ(C+) is a region contained in the circle with diameter (({0}) − 1 0). In this
case the -transform of  is defined as

() = ()
1 + 




Let

 = { ∈ C+; |Re()|  Im()}  e = { ∈ C−; |Re()|  |Im()|} 

Recently, it was proved in [1] that when  is a symmetric probability measure on R
with ({0})  1, the transform Ψ has a unique inverse on ,  : Ψ()→  and a

unique inverse on e, e : Ψ( e) → e In this case there are two -transforms for 

given by

() = ()
1 + 


and e() = e()1 + 



and these are such that

2() =
1 + 


2() and

e2() = 1 + 


2() (13)

for  in Ψ() and Ψ( e) respectively, where 2 is the measure on R+ induced by the
transformation → 2. Moreover,

 = C¢ (()) and  = C¢
³
 e()´  (14)

for  in Ψ() and Ψ( e) respectively.
2.2.2. Additive and multiplicative free convolutions

The free additive convolution of two probability measures 1 2 on R is defined as the
probability measure 1 ¢ 2 on R such that

C¢1¢2() = C¢1() + C¢2() (15)

for  in the common domain where C¢1 and C¢2 are defined.
On the other hand, following [1], the free multiplicative convolution of a probability

measure 1 supported on R+ with a symmetric probability measure 2 on R is defined
as the symmetric probability measure 1 £ 2 on R such that

1£2() = 1()2() and
e1£2() = 1()

e2() (16)
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2.2.3. Relation between free and classical infinite divisibility

A probability measure  on R is free infinitely divisible if for   1 there exists a

probability measure 1 on R such that  = 1 ¢ · · · ¢ 1 ( times). There is a

free Lévy-Khintchine formula for the free cumulant transform similar to the classical

cumulant function (1). Specifically,  is free infinitely divisible if and only if

C¢ () =  + 2 +

Z
R

µ
1

1− 
− 1− 1[−11] ()

¶
 (d)   ∈ C−  (17)

where  ∈ R  ≥ 0, and  is a Lévy measure [7, Proposition 4.16]. As in the classical

case, the triplet (  ) is unique.

The Bercovici-Pata bijection Λ between classical and free infinitely divisible distrib-

utions is such that if  is infinitely divisible in the classical sense with Lévy-Khintchine

representation (1) and characteristic triplet (  ), then Λ() is free infinitely divisible

with free Lévy-Khintchine representation (17) and free characteristic triplet (  )

This bijection is such that Λ(1 ∗ 2) = Λ(1) ¢ Λ(2) Λ is preserved under affine
transforms, and it is a homeomorphism w.r.t. weak convergence i.e.  ⇒  if and only

if Λ()⇒ Λ(). The Cauchy distribution is a fixed point of Λ
The most well known examples of free infinitely divisible distributions are the semi-

circle and the free Poisson distributions. More specifically, if  is a classical random

variable with the standard Gaussian distribution L(), then w = Λ(L()) is the stan-
dard semicircle distribution on (−2 2) given by

w(d) =
1

2

p
4− 21[−22]()d

In this case C¢w () = 2 and w() = 1
√


When L() is the classical Poisson distribution with mean one, m = Λ(L()) is the
Marchenko-Pastur distribution (a special case of the so called free Poisson distribution)

m(d) =
1

2

p
(4− )1[04]()d (18)

The free cumulant and -transforms are given, respectively, by C¢m() = 
1− and

m() =
1

 + 1
 (19)

2.2.4. Free compound Poisson distributions

When  is a classical compound Poisson distribution, the Lévy measure  is a finite

measure and the classical Lévy-Khintchine representation (1) takes the form

C() =
Z
R
(e− 1)(d)
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In this case we say that  has  () distribution. The corresponding free infinitely

divisible distribution Λ() is called the free compound Poisson distribution -denoted by

 ()− with free cumulant transform

C¢Λ()() =
Z
R
(

1

1− 
− 1) (d)  (20)

The first part of the following theorem is useful to identify some free compound Pois-

son distributions. The second part gives an interpretation of some symmetric  ()

distributions as the multiplicative convolution of the Marchenko-Pastur distribution

m = Λ(L()) with the measure  The latter is an extension of Proposition 12.18 in
[14] for compactly supported probability measures to symmetric probability measures

with unbounded support.

Theorem 2. Let  be a probability distribution on R
(a) If  has the classical compound distribution  (), the Cauchy transform

Λ() of the free compound Poisson distribution  () satisfies the equation

Λ()

¡
2 ()

¢
= −1  ∈ C\R (21)

(b) If  is a symmetric probability distribution on R, the distribution  () is

symmetric and  () = m£ 

Proof. (a) From (20), since  is a probability measure we have

C¢Λ()() =
Z
R

1

1− 
 (d)− 1 (22)

= −1
Z
R

1

−1 − 
 (d)− 1

= −1

¡
−1

¢− 1 (23)

= Ψ() (24)

Taken together with (11) this gives

−1
Λ()

() = 2 () (25)

which is equivalent to (21).

(b) From (16) and (19) the -transform of  = Λ(L())£  is given by

() =
1

 + 1
 =

()
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Then

() = ()

Ψ(()) = Ψ(()) = 

and similarly for e and e . This means by equation (14) that
C¢ () = Ψ()

which by (23) and the uniqueness of the Lévy-Khintchine representation gives that

 = Λ()

3. A new look to classical type  distributions

3.1. Alternative expression for the Lévy measure

Let  have a classical type  distribution L( 12) and let  be the Lévy measure
of  When  is nondegenerate,  has a symmetric non Gaussian infinitely divisible

distribution with characteristic triplet (0  0) where  has a symmetric Lévy density

 given by

() =

Z
R+

(; )(d)  ∈ R (26)

and where ( ) denotes the density function of the one-dimensional Gaussian distri-

bution with zero mean and variance  (see [16], [20]). Moreover, it is well known that

the classical cumulant transform of a type  distribution is given by

C∗() =
Z
R+
(−

1
2
2 − 1)(d)  ∈ R (27)

The following result expresses the Lévy measure of a type  distribution in terms of

mixtures of arcsine distributions and the Upsilon transformation Υ0 of the Lévy measure

 Recall

a( ) =

½ 1

(− 2)−12 ||  √

0 ||  √ (28)

is the density of the arcsine distribution a on (−
√

√
); in particular, a2 is the stan-

dard arcsine distribution, that is, a2 has zero mean and variance one.

Following the notation in Lemma 1, for  ∈M(R+), we denote by (·; ) the Lévy
density of Υ0()
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Proposition 3. Let  be a classical type  distribution L( 12), with  having Lévy
measure  The Lévy measure  of  has a density  given by

() =

Z ∞

0

a(; 2)(; )d (29)

Proof. From a well known result by Box and Muller, the standard Gaussian distribution

is the distribution of 12, where  and  are independent random variables with 

having the exponential distribution with mean 2 and  having the arcsine distribution

on (−1 1). In fact, it is easy to prove that

(; 1) =

Z ∞

0

1

2
−2a(−12 1)−12d =

Z ∞

0

−a( 2)d

and therefore for   0

(; ) =

Z ∞

0

1


−a( 2)d  ∈ R (30)

Thus, using the last expression in (26), we obtain

() =

Z
R+

1



Z ∞

0

−a( 2)d(d)

=

Z ∞

0

a( 2)

Z
R+

1


−(d)d

=

Z ∞

0

a( 2)(; )d

which proves the result.

3.2. Characterization

Rosinski [16] proved the following characterization for Lévy measures of type  distri-

butions.

Theorem 4. A symmetric probability measure  on R is of type  if and only if it is

infinitely divisible and its Lévy measure  is either zero or

(d) = (2)d (31)

where () is a completely monotone function in  ∈ (0∞) such that

Z ∞

0

min(1 2)(2)d ∞
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The following result is a new characterization of Lévy measures of type  distri-

butions. It is useful to identify the ancestor class of type  distributions under the

transformation Υ12.

Theorem 5. A symmetric probability measure  on R is of type  if and only if it

is infinitely divisible and its Lévy measure  is either zero or has a Lévy density 

representable as

(d) =

Z ∞

0

a(; 2)()d (32)

where  is a completely monotone function in  ∈ (0∞) such thatZ ∞

0

min(1 )()d ∞ (33)

Proof. The only if part is given by Proposition 3 and Lemma 1 (a). On the other

hand, suppose  is the Lévy density of an infinitely divisible symmetric distribution 

satisfying (32) and (33). From Lemma 1 (b)  is the Lévy density of Υ0() for a Lévy

measure  in M(R+). Therefore from (26) and (29),  is the distribution L( 12)
where  is infinitely divisible with Lévy measure 

Since a completely monotone function does not have bounded support, we obtain

Corollary 6. A type  Lévy measure is not a finite range mixture of arcsine measures.

3.3. The Υ12-ancestor class of CTG: Type  distributions

We now define the class of type  distributions on R as those symmetric infinitely

divisible distributions whose Lévy measure  is either zero or has a density  of the

form

() =

Z
R+
a(; )(d) (34)

for some Lévy measure  ∈M(R+)We denote by  the class of type  distributions
on R and observe that it is indeed well defined. When we talk about free type 

distributions, which will appear later, we refer to type  distributions as classical type

 distributions.

Lemma 7. For any  ∈M(R+) the function  given by the expression (34) defines a

symmetric Lévy density.
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Proof. Z ∞

−∞
min(1 2)()d =

Z ∞

−∞
min(1 2)

Z
R+
a(; )(d)d

=
1



Z 1

−1

1p
1− 2

Z
R+
min(1 2)(d)d

≤ 1



Z 1

−1

1p
1− 2

Z
R+
min(1 )(d)d

=

Z
R+
min(1 )(d) ∞

since  is a Lévy measure on R+
From Proposition 3 (a) we have that  is a subclass of . Examples of type

 distributions that are not type  are obtained when the Lévy measure  has bounded

support. This follows from Corollary 6. Concrete examples of this are obtained when

 is the arcsine distribution a( ) corresponding to  =   or  is the semicircle

distribution w( 1) obtained from (34) when  is the distribution of 12 where  has

uniform distribution on (0 1)

The following result gives a characterization of type  distributions as the image of

type  distributions under the transformation Υ12. We recall that the mapping Υ12
is defined in (8).

Theorem 8. =Υ12().

Proof. Let  ∈ . Using (8), (34) and Lemma 1(a)

Υ12()(d) =

Z ∞

0

(−12)−12−dd

=

Z ∞

0

Z
R+

−12a(−12; )−(d)dd

=

Z ∞

0

Z
R+
a(; )−(d)dd (35)

=

Z ∞

0

a(; )

Z ∞

0

−(−1d)dd

=

Z ∞

0

a(; )(; )dd (36)

Since, by the second part of Lemma 1(a), (; ) is completely monotone in  on ac-

count of Theorem 5, Υ12() is the Lévy measure of a type  distribution. Hence

Υ12() ⊂ 
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On the other hand, let  be a type  distribution L( 12) with  having Lévy

measure  and let e be the Lévy measure of  From Proposition 3 (a) we have that the
Lévy density e of e is given by

e() = Z ∞

0

a(; )(; )d

Let  be the Lévy measure whose density is given by (34). Then from (36) and the

uniqueness of Lévy measures we have e = Υ12(), that is  ⊂ Υ12()
As a consequence of the above theorem and Theorem 2.1 in [13] we deduce the

following integral representation of type  distributions.

Theorem 9. An infinitely divisible random variable  is of type  if and only if there

is a Lévy process {;  ≥ 0} with type  distribution at time 1 such that

L() = L(
Z 12

0

(− log(2)) 12 d)

Proof. Let  be a Levy measure on R Using change of variables  = 2 and (8) with

 = 12 we haveZ ∞

0

(−1d)−
2

d =
1

2

Z ∞

0

(−12d)−d =
1

2
Υ12()(d) (37)

If  is the Lévy measure of a type , from Theorem 8 there is a Lévy measure 0
of a type  distribution such that  = Υ12(0). Using the same notation Υ12 for

mappings of Lévy measures and mappings of their corresponding classical infinitely

divisible distributions, we observe that in the notation in [13], () = −22() =R∞


−
2
d = 1

2
exp(−2) and Υ12 = 2Ψ−22. Let {;  ≥ 0} be a Lévy process such

that L(1) = L() From Theorem 2.1 in [13] Υ12(L()) = L(R 12
0

()d) where

 is the inverse function of (), i.e. () = (− log(2)) 12 . The result follows by the
relation between Upsilon transformations of Lévy measures and the random integral

representations of their corresponding distributions, as explained in Section 9 of [4] and

by observing that the triplet (0  0) of a type  distribution and the triplet (0 0 0)

of a type  distribution only depend on their Lévy measures.

4. Free type  and free type  distributions

We say that a free infinitely divisible distribution  is free type  if there is a classical

type  probability measure  such that  = Λ() Similarly, we say that a free infinitely

divisible distribution  is free type  if there is a classical type  probability measure
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 such that  = Λ()We denote by  and  the classes of free type  and free

type  distributions on R, respectively.
The semicircle distribution is a free type and a free type  distribution. Additional

examples are provided in the last section of this paper.

By the Bercovici-Pata bijection Λ, the characterization of Lévy measures of classical

type  and classical type  distributions given in Section 3 hold as well in the free case.

We next present a characterization in terms of the free cumulant transform. In view of

Theorem 8 we first consider the ancestor class of free type  distributions.

4.1. The free Υ12-ancestor class

The arcsine probability measure plays an important role in the study of free type 

distributions. It is then of interest to study the corresponding free compound Poisson

arcsine distribution which we are able to identify in an explicit manner.

Let  be the free compound Poisson distribution  (a), for   0 We first

derive the Cauchy transform and then the density of  (a) Recall (see for example

[11]) that the Cauchy transform of the arcsine measure a on (−
√

√
) is given by

a () = (
p
2 − )−1 (38)

Lemma 10. The Cauchy transform of the probability measure  of the free compound

Poisson distribution  (a) is given by

() =
−1√
2

q
1−

p
−2(2 − 4) (39)

Proof. Using (38) in (21), we have that  is such that



µ
2√
2 − 

¶
= −1

Making the change of variable

 =
2√
2 − 



we observe that  ∈ C+ when  ∈ C+ and that  and  satisfy

4 − 22 + 2 = 0

Solving for 2,

2 =
2 ±

p
2(2 − 4)
2
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and hence

 = ±
s

2 ±
p
2(2 − 4)
2



Then, the potential candidates for  are

√
2

±
q
2 ±

p
2(2 − 4)



Since  must be such that  : C
+ → C− and ||() → 1 when || → ∞, we

deduce that

−() =

√
2q

2 +
p
2(2 − 4)



Then, multiplying and dividing by
³p

2 − (2(2 − 4))12
´
,

−() =

√
2

q
2 −

p
2(2 − 4)p

4 − 2(2 − 4)

=

√
2

q
2 −

p
2(2 − 4)

√
42

=
1√
2

q
1−

p
−2(2 − 4)

as we wanted to prove.

We next identify the distribution  as the symmetric beta distribution (
3
2
 1
2
)

on (−2√ 2√). Recall that for    0 a probability measure has the symmetric

beta distribution ( ) on (−2
√
 2
√
) if it is absolutely continuous with density

 () =
1

2( )
√

||−1 (2√− ||)−1, ||  2√

Proposition 11. The probability measure  with Cauchy transform (39) has the sym-

metric beta distribution (
3
2
 1
2
) with density

() =
1

2
√

||−12 (2√− ||)12 ||  2√ (40)

Proof. From the inversion formula (10), the density of  is given by

() = −
1


√
2
Im

q
1−

p
−2(2 − 4)
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We notice that there is an imaginary part when ||  2
√
 and  6= 0 Thus, we are

looking for   0 such that q
1−

p
−2(2 − 4) = + 

That is,

1− 
p
−2(4− 2) = 2 − 2 + 2;

so 2 = 2 + 1 and p
−2(4− 2) = −2

if and only if

−2(4− 2) = 422 = 44 + 42

Then, solving for 2 in the equation

4 + 2 − 1
4
−2(4− 2) = 0

we obtain

2 =
−1±

p
1 + −2(4− 2)

2


Since 2 is real and nonnegative, we have

2 =
1

2
||−1 (

√
4− ||)

and therefore

 = −
r
1

2
||−1 (

√
4− ||)

from where we obtain (40).

The above result gives a concrete example of a free infinitely divisible distribution

which belongs to  but not to . This follows from Corollary 6 since  =

Λ() An interpretation of this distribution as the multiplicative convolution of the

Marchenko-Pastur and an arcsine distribution is proved in Section 5.

Since the symmetric beta distribution has been derived as the symmetric free infi-

nitely divisible distribution with arcsine Lévy measure, we trivially have the following

result.

Proposition 12. For each   0 the symmetric beta distribution (
3
2
 1
2
) has free

cumulant transform

C¢() =
1√

1− 2
− 1 (41)
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Proof. Taking  = a in (23) and using (38) we obtain

C¢() =
Z
R

µ
1

1− 
− 1
¶
a(; )d

= −1(
−1)− 1

=
1√

1− 2
− 1

as we wanted to prove.

4.2. Free type  distributions

We begin with a characterization of free infinitely divisible distributions in  It

gives the free cumulant of a distribution in  as a mixture of the free cumulant

transforms of the symmetric beta distributions (
3
2
 1
2
),   0

Theorem 13. A symmetric free probability distribution  belongs to  if and only

if its cumulant transform is expressible as

C¢ () =
Z
R+
C¢()(d) =

Z
R+
(

1√
1− 2

− 1)(d) (42)

for some Lévy measure  ∈ M(R+), and where  is the symmetric beta distribution
(12 32) with density (40). Moreover

C¢ () =
Z
R+
C¢m£a()(d) (43)

where m is the Marchenko-Pastur distribution and a the arcsine distribution on (−
√

√
)

Proof. Let  be a nonnegative infinitely divisible random variable with Lévy measure

 Let  ∈  with Lévy measure given by (34). Then, from (22) and (41) we obtain

C¢Λ()() =
Z
R

µ
1

1− 
− 1
¶
 (d)

=

Z
R+

½Z
R

µ
1

1− 
− 1
¶
a(; )d

¾
(d)

=

Z
R+
C¢()(d)

=

Z
R+
(

1√
1− 2

− 1)(d)

which, by the uniqueness of the free cumulant transform, shows that  = Λ(), and

conversely. To prove (43) we use Proposition 17 in Section 5 to obtain C¢() = C¢m£a().
The result then follows from the first equality in (42).
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4.3. Free type  distributions

The free cumulant transforms of free type  distributions are also mixtures of the free

cumulant transforms of the symmetric beta distributions (
3
2
 1
2
),   0

Theorem 14. A symmetric probability measure  in R is  if and only if it is the

semicircle distribution or its free cumulant transform is given by

C¢ () =
Z
R+
C¢()(d) =

Z ∞

0

(
1√

1− 2
− 1)()d (44)

where  is a completely monotone function in R+ such that
R∞
0
min(1 )()d  ∞

Moreover

C¢ () =
Z
R+
C¢m£a()()d (45)

where m is the Marchenko-Pastur distribution and a the arcsine distribution on (−
√

√
)

Proof. Suppose  ∈  Then  = Λ() where  ∈ , that is,  is the distribution

of L( 12) with  having Lévy measure  Then the Lévy measure  of  (and ) has

a Lévy density  giving by (29). Therefore using (22) and (41) we obtain

C¢Λ()() =
Z
R

µ
1

1− 
− 1
¶
()d

=

Z
R

Z ∞

0

µ
1

1− 
− 1
¶
a(; )(; )dd

=

Z ∞

0

(; )d

Z
R

µ
1

1− 
− 1
¶
a(; )d

=

Z ∞

0

µ
1√

1− 2
− 1
¶
(; )d

where from Lemma 1 (a) (; ) is completely monotone in R+. Conversely, if (44) is
satisfied with  a completely monotone Lévy density, then by Lemma 1 (b) there is a

Lévy measure  in R+ such that  is the density of Υ0(). Taking  ∈  of the

form L( 12) with  having Lévy measure , from the above calculations we have

that (44) is the free cumulant transform of Λ() and therefore Λ() belongs to 

To prove (45) we use Proposition 17 in Section 5 to obtain C¢() = C¢m£a(). The
result then follows from the first equality in (44).

5. Examples and multiplicative convolutions

In this section we describe some free type  distributions in terms of multiplicative

convolutions. As before we use the notation L() for the distribution of a classical
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random variable . In particular we denote by  and ,   0 classical random

variables with standard Gaussian distribution L(), Poisson distribution L() of mean
one and arcsine distribution a=L() on (−

√

√
). Then w = Λ(L()) is the semi-

circle distribution on (−2 2) and m = Λ(L()) is the Marchenko-Pastur distribution
on (0 4) given by (18).

Using the characterization Theorem 5 of classical type  distributions, we first

obtain the following interpretation of some symmetric free compound Poisson type 

distributions and some symmetric free compound Poisson type  distributions. Recall

that distributions in  and in  are symmetric and therefore they have symmetric

Lévy measures.

Proposition 15. Let L( 12) ∈  have a Lévy measure  with density

() =

Z ∞

0

a(; )()d (46)

where  is a probability density. Then

Λ(L( 12)) = m£ L() (47)

where  is a random variable with distribution  independent of the arcsine random

variable  on (−1 1)

Proof. The measure  is a (symmetric) probability measure on R, since  is a proba-
bility density on R+. Then we can apply Theorem 2 to obtain

Λ(L( 12)) = m£ 

Finally,  given by (46) is the density of the scale mixture 1, where has distribution

with density  independent of the arcsine random variable  on (−1 1)
In a very similar manner we can obtain the more general result for free compound

Poisson type  distributions.

Proposition 16. Let  ∈  have a symmetric Lévy measure  with density

(d) =

Z ∞

0

a(; )(d) (48)

for some probability measure  on R+. Then Λ() = m£L() where  is a random

variable with distribution  independent of the arcsine random variable 

Next, we use Proposition 15 to describe some free type  distributions in terms of

multiplicative convolution.
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5.1. A symmetric beta distribution

In Proposition 11 we showed that the  (a) distribution has the density of the

symmetric beta distribution (32 12) on (−2
√
 2
√
) given by

() =
1

2
√

||−12 (2√− ||)12 ||  2√

The following result shows that the free type  Υ12-ancestor given by the symmetric

beta distribution (32 12) on (−2
√
 2
√
), has a representation as the multi-

plicative convolution of the Marchenko-Pastur distribution on (0 4) with the arcsine

distribution a on (−√√).

Proposition 17. Let  be the symmetric beta distribution (32 12) on (−2
√
 2
√
).

Then  = m£ a

Proof. From Theorem 2 we have that m £ a has the same distribution as  (a)
which is a (32 12) distribution on (−2

√
 2
√
) by Proposition 11.

Remark 18. (a) From the above proposition we are able to give an interpretation of

the symmetric beta distribution in terms of non-conmutative random variables. Let

 and  be non-conmutative random variables in free relation in a non-conmutative

probability space ( ), where  is a Haar unitary element with ∗-distribution a4 on
(−2 2) and  is a semicircular element with ∗-distribution w on (−2 2); see for example
[15]. Then the above proposition says that 4(32 12) is the ∗-distribution of the
non-conmutative random variable 2(+ ∗)

(b) The symmetric beta (32 12) is an explicit example of a distribution in

 which is not in  This is a consequence of Corollary 6. since m has finite

range.

5.2. Free Normal Poisson distribution

Consider the Normal Poisson type  distribution L(12). We will show that the

corresponding free type  distribution Λ(L(12)), called the free Normal Poisson

distribution, has an interpretation as the multiplicative convolution of the Marchenko-

Pastur distribution with the Gaussian distribution.

Recall that 12 is a symmetric  () distribution with Lévy measure  equal

to the standard Gaussian measure.

Proposition 19. The following two representations of the free Normal Poisson distri-

bution Λ(L(12)) hold
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(a)

Λ(L(12)) = m£ L()
(b)

Λ(L(12)) = m£ L(12)
where  is an exponential random variable of mean 2 independent of the arcsine random

variable  on (−1 1)

Proof. (a) Since L(12) is a symmetric  () distribution with the Gaussian

distribution as its Lévy measure , by the Bercovici-Pata bijection Λ(L(12)) is a

 () with the same Gaussian Lévy measure . From Theorem 2 Λ(L(12)) is the

free multiplicative convolution of L() and the Gaussian distribution L(). The proof
of (b) follows from (a) and the fact that the standard Gaussian distribution L() is the
distribution of 12, where  and  are independent random variables,  having the

exponential distribution with mean 2 and  with the arcsine distribution on (−1 1).

5.3. Semicircle Marchenko—Pastur distribution

Finally, we present another example of a distribution in  which is not in  It is

the multiplicative convolution of the Marchenko-Pastur distribution with the semicircle

distribution, recently considered in [15]. Here we show that this distribution is free type

 We recall that semicircle distribution w on (−2 2) is given by

w(d) =
1

22

p
42 − 21[−22]()d

Proposition 20. For each   0 let  be the  (w) distribution where w is

the semicircle distribution on (−2 2). Then Λ() ∈  and Λ() = m £ w

Furthermore, Λ() does not belong to .

Proof. Using Theorem 2 we have Λ() = m£w The fact that Λ() is in  but

not in  follows from Corollary 6, since it is well known and easy to check that the

semicircle distribution w1 is the law of L(12), where  is a random variable with

uniform distribution on (0 1) independent of , and since  has finite range.
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