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Abstract

In this paper we show some basic properties of quasi-Jordan alge-
bras and we study the definition of Leibniz-Jordan algebra introduced by
P. Kolesnikov and restrictive quasi-Jordan algebras introduced by M. R.
Bremner. We show that these definitions are equivalent and we define
K-B quasi-Jordan algebras. We present a characterization of K-B quasi-
Jordan algebras by Jordan bimodules and construct right units over a K-B
quasi-Jordan algebras.

On the other hand, we prove that there are inner derivations (classical
and left derivations) in K-B quasi-Jordan algebras, we find the relationship
between K-B quasi-Jordan algebras and Leibniz algebras and we construct
Leibniz algebras from K-B quasi-Jordan algebras.

2000 Mathematics Subject Classification (MSC2000): 17C50, 17A32.
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Introduction

There are three strongly related algebras: Associative, Jordan and Lie
algebras. It is known that any associative algebra A becomes a Lie algebra
under the skew-symmetric product (Lie bracket) [x, y] := xy − yx and at
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the same time it becomes a Jordan algebra with respect to the product
x • y := 1

2
(xy + yx). On the other hand, it is known that the universal

enveloping algebra of a Lie algebra has the structure of an associative
algebra. Finally, we recall that from the works of J. Tits, I. Kantor and
M. Koecher follows that any Jordan algebra can be embedded into a Lie
algebra.

In 1993, J. L. Loday introduced the notion of Leibniz algebras (see
[15]), which is a generalization of the Lie algebras where the skew-symmetry
of the bracket is dropped and the Jacobi identity is changed by the Leib-
niz identity. Loday also showed that the relationship between Lie algebras
and associative algebras translate into an analogous relationship between
Leibniz algebras and the so-called Dialgebras (see [15]) which are a gener-
alization of associative algebras possessing two operations. In particular
Loday showed that any dialgebra (D,a,`) becomes a Leibniz algebra
DLeib under the Leibniz bracket [x, y] := x a y − y ` x and the universal
enveloping algebra of a Leibniz algebra has the structure of a Dialgebra
(see [15] or [16]).

On the other hand, the authors have introduced the notion of quasi-
Jordan algebras over fields of characteristic other than two. These algebras
satisfy the identities

x(yz) = x(zy)

and
(yx)x2 = (yx2)x,

The quasi-Jordan algebras will have a relationship the Leibniz algebras
similar to the one existing among the Jordan algebras and the Lie algebras.
In fact in [18] we attached a quasi-Jordan algebra Lx to any ad-nilpotent
element x with index of nilpotence 3 (Q-Jordan element) in a Leibniz
algebra L. Thus the quasi-Jordan algebras are a generalization of Jordan
algebras where the commutative law is changed by a quasi-commutative
identity and a special form of the Jordan identity is retained. In [18] we
showed a few results about the relationship between Jordan algebras and
quasi-Jordan algebras. Also, we compared quasi-Jordan algebras with
some known structures.

In Addition, Velásquez and Felipe introduced the concept of split
quasi-Jordan algebras and add right units to split quasi-Jordan algebras.
In [19] the authors studied the relationship between quasi-Jordan algebras
and split quasi-Jordan algebras. In particular, they showed that every
quasi-Jordan algebra is isomorphic to a subalgebra of a split quasi-Jordan
algebra.

Independently, K. Liu introduced the notion of generalized Jordan
algebra from associative Z2-algebras over fields of characteristic other than
two and three (see [12]). The generalized Jordan algebra satisfies three
identities, the first two identities are the same identities in the definition of
quasi-Jordan algebras, and the third identity, called the Hu-Liu identity,
is

(x, y, x2) = 2(x2, y, x),

where (·, ·, ·) denotes the associator.
More recently, P. Kolesnikov introduced the notion of Leibniz-Jordan

algebras over fields of characteristic other than two and three (see [11]).
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The Leibniz-Jordan algebras were obtained from the relationship between
conformal algebras and dialgebras and satisfy three identities, the first two
identities are the same identities in definition of quasi-Jordan algebras.
The third identity is

(z, y, x2) = 2(zx, y, x).

In 2008, M. R. Bremner, using computer algebra, introduced the defini-
tion of restrictive quasi-Jordan algebras over fields of characteristic other
than two and three (see [1]). The definition of restrictive quasi-Jordan
algebras are obtained from the Jordan product

xy =
1

2
(x a y + y ` x),

where x and y are elements in a dialgebra D.
These algebras satisfy three identities, the first two identities are the

same identities in the definition of quasi-Jordan algebras. The third iden-
tity is

(y, x2, z) = 2(y, x, z)x.

M. R. Bremner and L. A. Peresi showed in [2] that there exist ex-
ceptional (non-special) restrictive quasi-Jordan algebras, i.e. there exist
restrictive quasi-Jordan algebras that are not generated by dialgebras.

Finally, we show that the definitions of Leibniz-Jordan algebras and
restrictive quasi-Jordan algebras are equivalent, and we called this al-
gebras K-B quasi-Jordan algebras. Moreover, this definition implies the
Liu’s definition of generalaized Jordan algebra.

In this paper we will work with K-B Quasi-Jordan algebras.

1 Leibniz algebras and dialgebras

Around 1990, J. L. Loday introduced the notions of Leibniz algebras and
dialgebras (see [15] and [16]). Leibniz algebras are a generalization of Lie
algebras where the skew-symmetry of the bracket is suppressed and the
Jacobi identity is changed by the Leibniz identity.

Definition 1 A Leibniz algebra over a field K is a K-vector space L
equipped with a binary operation, called a Leibniz bracket, [·, ·] : L×L → L
which satisfies the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y] , for all x, y, z ∈ L (L)

Example 2 Let (A, d) be a differential associative algebra. Therefore
d(ab) = da b + a db and d2 = 0. Define the bracket on A by the for-
mula

[a, b] := a db− db a

The vector space A equipped with this bracket is a Leibniz algebra.

It is known that the universal enveloping algebra of a Lie algebra has
the structure of an associative algebra. Loday showed that the relationship
between Lie algebras and associative algebras can be translated into an
analogous relationship between Leibniz algebras and dialgebras.

Dialgebras are a generalization of associative algebras with two asso-
ciative products.
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Definition 3 A dialgebra over a field K is a K-vector space D equipped
with two bilinear associative products

a: D ×D → D

`: D ×D → D

satisfying the identities:

x a (y a z) = x a (y ` z) (D1)

(x ` y) a z = x ` (y a z) (D2)

(x ` y) ` z = (x a y) ` z (D3)

This example of dialgebra was studied by R. Felipe, F. Ongay, N.
López and R. Velásquez (see [4]).

Example 4 Let V be a vector space and fix ϕ ∈ V ′, where V ′ denotes the
dual space of V . Then one can define a dialgebra structure on V by setting
x a y = ϕ(y)x and x ` y = ϕ(x)y, denoted by Vϕ. If ϕ 6= 0, then Vϕ is
a dialgebra with non-trivial bar-units (e ∈ D such that x a e = x = e ` x
for all x ∈ D). Moreover, its halo (set of bar units) is an affine space
modelled after the subspace Kerϕ.

If D is a dialgebra and we define the bracket [·, ·] : D ×D → D by

[x, y] := x a y − y ` x , for all x, y ∈ D,

then (D, [·, ·]) is a Leibniz algebra.
Moreover, Loday showed that the following diagram is commutative

Dias
−→ Leib

↑ ↑
As

−→ Lie

where Dias, As, Lie and Leib denote, respectively, the categories of dial-
gebras, associative, Lie and Leibniz algebras.

2 Quasi-Jordan algebras

In 2008, R. Velásquez and R. Felipe introduced the notion of quasi-Jordan
algebras (see [18]. Quasi-Jordan algebras are a generalization of the
Jordan algebras for which the commutative law is changed by a quasi-
commutative identity and a special form of the Jordan identity is retained.

Definition 5 A quasi-Jordan algebra is a vector space = over a field K
of characteristic other than 2 equipped with a bilinear product / : =×= →
= that satisfies

x / (y / z) = x / (z / y) (right commutativity) (QJ1)

(y / x) / x2 = (y / x2) / x (right Jordan identity), (QJ2)

for all x, y, z ∈ =, where x2 = x / x.
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If we translate the quasi-multiplication (Jordan product) to the dial-
gebra framework, we obtain a quasi-Jordan algebra.

If D is a dialgebra over a field K of characteristic other than 2 and we
define the product / : D ×D → D by

x / y :=
1

2
(x a y + y ` x), (/)

for all x, y ∈ D, then (D; /) is a quasi-Jordan algebra.
If D is a unital dialgebra, with a specific bar-unit e, we have that

x / e = x, for all x in D. This implies that e is a right unit for the algebra
(D, /).

Example 6 Let V be a vector space over a field K with characteristic
other than 2 and let gl+(V ) be a Jordan algebra of linear transformations
over V with product defined by

A •B =
1

2
(AB + BA).

We consider the vector space gl+(V ) × V and we define the product
/ : (gl+(V )× V )× (gl+(V )× V ) → gl+(V )× V by

(A, u) / (B, v) = (A •B, Bu)

for all A, B ∈ gl(V ) and u, v ∈ V . Then (gl+(V )×V, /) is a quasi-Jordan
algebra.

Moreover, (Id, v) is a right unit for all v ∈ V , but (Id, v) is not a
left unit. If the field K has characteristic zero, then gl+(V ) × V is a
power-associative algebra.

Definition 7 For a quasi-Jordan algebra = we define

Zr(=) = {z ∈ =|x / z = 0, ∀x ∈ =},

and we denote by =ann the subspace of = spanned by elements of the form
x / y − y / x, with x, y ∈ =.

We have that = is a Jordan algebra if and only if =ann = {0}. Besides,
=ann ⊂ Zr(=).

We have the following properties of =ann and Zr(=)

Lemma 8 Let = be a quasi-Jordan algebra. Then =ann and Zr(=) are
two-sided ideals of =. Moreover,

(Zr(=) / =) ⊂ =ann.

Let (=, /) be a quasi-Jordan algebra. If we consider the quotient alge-
bra =Jor := =/=ann, then we see that =Jor is a Jordan algebra.

Besides, the ideal =ann is the smallest two-sided ideal in = such that
=/=ann is a Jordan algebra.

The quotient map π : = → =Jor is a homomorphism of quasi-Jordan
algebras. Moreover, π is universal with respect to all homomorphisms
from = to another Jordan algebra J , this is equivalent to say that the
following diagram commutes
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= π→ =Jor

↘ ↓
J

.

A right unit in a quasi-Jordan algebra = is an element e in = such
that x / e = x, for all x ∈ =.

Let = be a quasi-Jordan algebra, if there is an element ε in = such
that ε /x = x then = is a classical Jordan algebra and ε is a unit. For this
reason we only consider right units over quasi-Jordan algebras.

We denote by Ur(=) the set of all right units of a quasi-Jordan algebra
=. A right unital quasi-Jordan algebra is a quasi-Jordan algebra with
a specified right unit e.

Example 9 Let V be a vector space and fix ϕ ∈ V ′ with ϕ 6= 0. We
define the product / : V × V → V by x / y = ϕ(y)x, for all x, y ∈ V .
Then (V, ϕ) is a quasi-Jordan algebra and all elements x in V such that
ϕ(x) 6= 0 define a right unit x/ϕ(x). Moreover, Ur(V ) is an affine space
modelled after the Kerϕ.

We will show the following characterization of the ideal =ann and the
set Ur(=) of all right units.

Lemma 10 Let = be a right unital quasi-Jordan algebra, with a specific
right unit e. Then

=ann = Zr(=),

=ann = {x ∈ =|e / x = 0}
and

Ur(=) = {x + e|x ∈ =ann}

3 Kolesnikov’s and Bremner’s definitions

In 2008 Pavel Kolesnikov (see [11]), using techniques of conformal alge-
bras, showed that the product (/) satisfies the identities

x(yz) = x(zy), (K1)

(y(xz))u + (y(zu))x + (y(ux))z = (yx)(zu) + (yz)(ux) + (yu)(xz) (K2)

x(y(zu)) + ((xu)y)z + ((xz)y)u = (xy)(zu) + (xz)(yu) + (xu)(yz) (K3)

The last identities over a field K with characteristic other than 2 and
3 are equivalent to

x(yz) = x(zy), (K1’)

(yx2)x = (yx)x2 (K2’)

(z, y, x2) = 2(zx, y, x), (K3’)

where (·, ·, ·) denotes the associator.
Then, P. Kolesnikov proposed the following more restrictive definition

of quasi-Jordan algebras, called Leibniz-Jordan algebras.
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Definition 11 An algebra J over a field K with characteristic different
from 2 and 3 is said to be a Leibniz-Jordan algebra if it satisfies the
identities (K1’), (K2’) and (K3’).

More recently, in 2009, Murray Bremner (see [1]), using computer
algebra, showed that the product (/) in a Dialgebra D over a field K with
characteristic other than 2 and 3 satisfies the identities

x(yz) = x(zy), (B1)

(y(xz))u + (y(zu))x + (y(ux))z = (yx)(zu) + (yz)(ux) + (yu)(xz) (B2)

((xy)u)z + ((xz)u)y + x((yz)u) = (x(yz))u + (x(yu))z + (x(zu))y (B3)

These equations are equivalent to the identities

x[y, z] = 0, (B1’)

(yx2)x = (yx)x2 (B2’)

(y, x2, z) = 2(y, x, z)x (B3’)

Then M. Bremner proposed the following definition.

Definition 12 A quasi-Jordan algebra over a field K with characteristic
different from 2 and 3 is a nonassociative algebra satisfying the polynomial
identities (B1’), (B2’) and (B3’).

It is simple to see that Kolesnikov and Bremner linear identities are
equivalent, since the identities (K1) and (K2) are equal to the identities
(B1) and (B2), respectively. If we change x with y in (B3), we obtain the
identity

((yx)u)z + ((yz)u)x + y((xz)u) = (y(xz))u + (y(xu))z + (y(zu))x.

Since the right side of the last identity is equal to left side of the
identity (B2), then we obtain the identity (K3). In a similar form we
obtain (B3) from (K2) and (K3).

Remark 13 The definition of Leibniz-Jordan algebra due to Kolesnikov
and the definition of quasi-Jordan algebra due to Bremner are equivalent.
We call these algebras K-B quasi-Jordan algebras.

With respect to generalization of Jordan algebras in this context, K.
Liu introduced in 2006 (see [12]) the notion of generalized Jordan algebra.
The definition is a follows.

Definition 14 A generalized Jordan algebra over a field K with char-
acteristic other than 2 and 3 is a nonassociative algebra satisfying the
polynomial identities

x[y, z] = 0, (L1)

(yx2)x = (yx)x2 (L2)

(x, y, x2) = 2(x2, y, x), (HL)

where (·, ·, ·) denotes the associator.
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In 2007, K. Liu proved a generalization of Cohns Theorem on Jordan
algebras by generalized Jordan algebras (see [13]).

It is easy to see that the Liu’s definition of generalized Jordan algebras
is a particular case of the Kolesnikov’s definition of Leibniz-Jordan alge-
bras. In this context, we are going to work only with the K-B quasi-Jordan
algebras in the rest of this paper.

The first step is to give a characterization of K-B quasi-Jordan algebras
in terms of Jordan algebras and Jordan bimodules.

We introduce the following definition to construct a characterization
of K-B quasi-Jordan algebras.

Definition 15 Let J be a Jordan algebra and let M be a vector space
over the same field as J . Then M is a Jordan bimodule for J , if there
are two bilinear maps (m, a) 7→ ma and (m, a) 7→ am, for all m ∈ M and
a ∈ J , satisfying

ma = am,

a2(ma) = (a2m)a

and
(a2, b, m) = 2(a, b, am),

for all m ∈ M and a, b ∈ J .

Example 16 Let J be a Jordan algebra over a field K of characteristic
6= 2, 3 and let M be a Jordan bimodule. A linear map f : M → J is called
J-equivariant over M if f(am) = a•f(m), for all m ∈ M and a ∈ J . If
f is a J-equivariant map over M , and we define a product from M ×M
to M by

mn = f(n)m , for all m, n ∈ M.

Then M is a K-B quasi-Jordan algebra.
Indeed, for all m, n, s ∈ M we have that

m(ns) = m(f(s)n) = f(f(s)n)m = (f(s)f(n))m

and

m(sn) = m(f(n)s) = f(f(n)s)m = (f(n)f(s))m = (f(s)f(n))m,

then m(ns) = m(sn).

On the other hand,

(nm2)m = f(m)(f(m)2n) = (f(m)2n)f(m)

and

(nm)m2 = (f(m)n)(f(m)m) = f(f(m)m)(f(m)n) = f(m)2(f(m)n)

= f(m)2(nf(m)),

since am = ma, for all a ∈ J and m ∈ M . Therefore,

(nm2)n = (nm)m2.
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Finally, since

(s, n, m2) = (sn)m2 − s(nm2) = f(m)2(f(n)s)− (f(m)2f(n))s

= −(f(m)2, f(n), s)

and
(sm, n, m) = ((sm)n)m− (sm)(nm)

= f(m)(f(n)(f(m)s))− (f(m)f(n))(f(m)s)

= −(f(m), f(n), f(m)s),

then (s, n, m2) = 2(sm, n, m).

Hence by Kolesnikov’s definition we have that M is a K-B quasi-Jordan
algebra.

Proposition 17 Let = be a K-B quasi-Jordan algebra and J := =/=ann

its canonical Jordan algebra. Then there exists a J-bimodule structure on
= and exists a J-equivariant map f over = such that the K-B quasi-Jordan
structure on = is recovered by xy = f(y)x.

Proof. We have that = is a Jordan bimudule for the Jordan algebra
J := =/=ann, with actions yx = xy = xy, for all y ∈ J and x ∈ =.

The map f : = → J , defined by f(x) = x, is J-invariant over =, since

f(yx) = f(xy) = xy = yx = y x = yf(x),

for all y ∈ J and x ∈ =.
The axioms for Jordan bimodule imply that the K-B quasi-Jordan

structure on = is recovered by xy = f(y)x.

The main idea in this part is to construct right units over K-B quasi-
Jordan algebras.

It is well known that if J is a Jordan algebra which is not unital, then
the algebra bJ := K⊕ J , where K is the field over J , with product defined
by

(α + x)•̂(β + y) = (αβ) + (αy + βx + xy),

for all α, β ∈ K and x, y ∈ J , is a unital Jordan algebra, with unit 1 + 0.
Additionally, {0} ⊕ J ∼= J and J is embedded in bJ as a subalgebra.

We are going to use this construction and the characterization of K-B
quasi-Jordan algebras by Jordan bimodules to construct right units over
K-B quasi-Jordan algebras.

We suppose that = is a K-B quasi-Jordan algebra over the field K of
characteristic other than 2 and 3, and J := =/=ann its canonical Jordan

algebra. We consider the vector space b= := K⊕ J ⊕= and we define the
product on b= by

(α⊕ a⊕ x)(β ⊕ b⊕ y) = αβ ⊕ αb + βa + ab⊕ βx + xb, (*)

for any α, β ∈ K, a, b ∈ J and x, y ∈ =.
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Remark 18 The product (*) is well defined, since for b = b′ we have
b− b′ ∈ =ann, and therefore 0 = x(b− b′) = xb− xb′, which is equivalent
to xb = xb′.

In Addition, if = is a Jordan algebra, then J = = and we obtain the
classical construction.

If = is not a Jordan algebra, then the product (*) is not commutative.
Besides, this product satisfies the following identities for all α, β, γ ∈ K,
a, b, c ∈ J and x, y, z ∈ =.

1. (0⊕ a⊕ x)(0⊕ b⊕ y) = (0⊕ ab⊕ xb)

2. b= is a right unital algebra, since (α⊕ a⊕ x)(1⊕ 0⊕ y) = α⊕ a⊕ x

The space b= can be written in the form bJ⊕= and the product (*) can

be written, over bJ ⊕=, in the form

(α⊕ a⊕ x)(β ⊕ b⊕ y) = (α⊕ a)•̂(β ⊕ b)⊕ (βx + xb). (**)

If we write (α⊕a⊕x)(β⊕ b⊕ y) = (α⊕a)•̂(β⊕ b)⊕x(β⊕ b), we have
the following result.

Lemma 19 Let = be a K-B quasi-Jordan algebra over the field K of char-
acteristic other than 2 and 3, and J := =/=ann its canonical Jordan al-

gebra. Then bJ ⊕= is a right unital K-B quasi-Jordan algebra with respect
to the product defined by (**).

Proof. Because bJ is a Jordan algebra with the product •̂, we only
need to show that the K-B quasi-Jordan algebra axioms are satisfied by
the third component.

First, we have that

(β ⊕ b⊕ y)(γ ⊕ c⊕ z) = (β ⊕ b)•̂(γ ⊕ c)⊕ (y(γ ⊕ c))

and
(γ ⊕ c⊕ z)(β ⊕ b⊕ y = (γ ⊕ c)•̂(β ⊕ b)⊕ (y(γ ⊕ c)).

Since the product •̂ is commutative, then these two expressions are
different only in the last terms.

From

(α⊕ a⊕ x)
�
(β ⊕ b⊕ y)(γ ⊕ c⊕ z)

�

= (α⊕ a⊕ x)
�
(β ⊕ b)•̂(γ ⊕ c)⊕ y(γ ⊕ c)

�

= (α⊕ a)•̂
�
(β ⊕ b)•̂(γ ⊕ c)

�
⊕ x

�
(β ⊕ b)•̂(γ ⊕ c)

�

and

(α⊕ a⊕ x)
�
(γ ⊕ c⊕ z)(β ⊕ b⊕ y)

�

= (α⊕ a⊕ x)
�
(γ ⊕ c)•̂(β ⊕ b)⊕ z(β ⊕ b)

�

= (α⊕ a)•̂
�
(β ⊕ b)•̂(γ ⊕ c)

�
⊕ x

�
(β ⊕ b)•̂(γ ⊕ c)

�
,

we have that b= satisfies the identity (B1).
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Also, from (α⊕ a⊕ x)2 = (α⊕ a)2 ⊕ x(α⊕ a), we have that

(β ⊕ b⊕ y)(α⊕ a⊕ x)2 = (β ⊕ b⊕ y)
�
(α⊕ a)2 ⊕ x(α⊕ a)

�

= (β ⊕ b)•̂(α⊕ a)2 ⊕ y(α⊕ a)2

= (β ⊕ b)•̂(α⊕ a)2 ⊕ y(α2 ⊕ 2αa + a2).

Therefore, since

((β ⊕ b⊕ y)(α⊕ a⊕ x)2)(α⊕ a⊕ x)

=
�
(β ⊕ b)•̂(α⊕ a)2 ⊕ y(α2 ⊕ 2αa + a2)

�
(α⊕ a⊕ x)

=
�
(β ⊕ b)•̂(α⊕ a)2

�
(α⊕ a)⊕

�
y(α2 ⊕ 2αa + a2� (α⊕ a)

=
�
(β ⊕ b)•̂(α⊕ a)2

�
(α⊕ a)⊕ (α2y + 2αya + ya2)(α⊕ a)

=
�
(β ⊕ b)•̂(α⊕ a)2

�
(α⊕ a)⊕

�
α3y + 3α2ya + αya2 + 2α(ya)a + (ya2)a

�

and

((β ⊕ b⊕ y)(α⊕ a⊕ x))(α⊕ a⊕ x)2

=
�
(β ⊕ b)•̂(α⊕ a)⊕ y(α⊕ a)

� �
(α⊕ a)2 ⊕ x(α⊕ a)

�

=
�
(β ⊕ b)•̂(α⊕ a)

�
•̂(α⊕ a)2 ⊕ (y(α⊕ a)) (α⊕ a)2

=
�
(β ⊕ b)•̂(α⊕ a)

�
•̂(α⊕ a)2 ⊕ (αy + ya)(α2 ⊕ 2αa + a2)

=
�
(β ⊕ b)•̂(α⊕ a)

�
•̂(α⊕ a)2 ⊕

�
α3y + 3α2ya + αya2 + 2α(ya)a + (ya)a2� ,

then b= satisfies the identity (B2).
Finally, since

((β ⊕ b⊕ y)(α⊕ a⊕ x)2)(γ ⊕ c⊕ z)

=
�
(β ⊕ b)•̂(α⊕ a)2 ⊕ y(α2 ⊕ 2αa + a2)

�
(γ ⊕ c⊕ z)

=
�
(β ⊕ b)•̂(α⊕ a)2

�
•̂(γ ⊕ c)⊕

�
α2y + 2αya + ya2� (γ ⊕ c)

=
�
(β ⊕ b)•̂(α⊕ a)2

�
•̂(γ ⊕ c)⊕

�
α2γy + 2αγya + γya2 + α2yc + 2α(ya)c + (ya2)c

�
,

and

(β ⊕ b⊕ y)
�
(α⊕ a⊕ x)2(γ ⊕ c⊕ z)

�

= (β ⊕ b⊕ y)
��

(α⊕ a)2 ⊕ x(α⊕ a)
�
(γ ⊕ c⊕ z)

�

= (β ⊕ b⊕ y)
�
(α⊕ a)2•̂(γ ⊕ c)⊕ (x(α⊕ a))(γ ⊕ c)

�

= (β ⊕ b)•̂
�
(α⊕ a)2•̂(γ ⊕ c)

�
⊕ y(α2γ ⊕ α2c + 2αγa + γa2 + 2αac + a2c)

= (β ⊕ b)•̂
�
(α⊕ a)2•̂(γ ⊕ c)

�
⊕

�
α2γ y + α2yc + 2αγya + γya2 + 2αy(ac) + y(a2c)

�
,

then

(β ⊕ b⊕ y, (α⊕ a⊕ x)2, γ ⊕ c⊕ z)

= ((β ⊕ b⊕ y)(α⊕ a⊕ x)2)(γ ⊕ c⊕ z)− (β ⊕ b⊕ y)
�
(α⊕ a⊕ x)2(γ ⊕ c⊕ z)

�

= (β ⊕ b, (α⊕ a)2, γ ⊕ c)•̂ ⊕
�
2α(y, a, c)= + (y, a2, c)=

�
,

where (·, ·, ·)•̂ denotes the associator in bJ and (·, ·, ·)= denotes the associ-
ator in =.
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In a similar way, we can show that

(β ⊕ b⊕ y,α⊕ a⊕ x, γ ⊕ c⊕ z)(α⊕ a⊕ x)

=
�
(β ⊕ b, α⊕ a, γ ⊕ c)•̂•̂(α⊕ a)

�
⊕ (α(y, a, c)= + (y, a, c)=a) ,

hence b= satisfies the identity (B3), and therefore bJ ⊕ = is a right unital
K-B quasi-Jordan algebra.

If we consider the vector space b=0, generated by the elements 0⊕x⊕x,
for all x ∈ =, we have

(0⊕ x⊕ x)(0⊕ y ⊕ y) = 0⊕ xy ⊕ xy,

for all 0⊕ x⊕ x, 0⊕ y ⊕ y in b=0. Therefore b=0 is a subalgebra of b=.
Moreover, if we consider the application = → b=0 define by x 7→ 0 ⊕

x⊕x, then we have that = is isomorphic to b=0 and we have the following
result.

Lemma 20 Any K-B quasi-Jordan algebra = is embedded in the unital
K-B quasi-Jordan algebra b=. In addition, we have

1. b=ann = Zr(b=) = {0} ⊕ {0} ⊕ =

2. b=ann
0 = {0} ⊕ {0} ⊕ =ann

3. Ur(b=) = {1} ⊕ {0} ⊕ =.

In 2009, Velásquez and Felipe introduced the definition of split quasi-
Jordan algebra and showed some properties.

Definition 21 Let = be a quasi-Jordan algebra and let I be an ideal in
= such that =ann ⊂ I ⊂ Zr(=). We said that = is split over I if there is
a subalgebra J of = such that = = I ⊕ J , as direct sum of subspaces.

It is clear from the previous definition that if = is split over an ideal I
with complement J , then J is a Jordan algebra with respect to restricted
product / over J . This is equivalent to saying that (J, /|J) is a Jordan
algebra.

In addition, for u, v ∈ I and x, y ∈ J we have

(u + x) / (v + y) = u / y + x / y,

since I ⊂ Zr(=).

From the definition of split quasi-Jordan algebra and Lemma 20, we
have

Lemma 22 Let = be a K-B quasi-Jordan algebra. Then b= = bJ ⊕ = and
therefore b= is a split K-B quasi-Jordan algebra.
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4 Relationship between K-B quasi-Jordan
algebras and Leibniz algebras

In this section we will work with K-B quasi-Jordan algebras and Leib-
niz algebras L over a field K of characteristic other than 2 and 3 . In
particular, we have that L is 2 and 3-torsion free.

In 2008, Velásquez and Felipe showed that it is possible to attach a
quasi-Jordan algebra to some elements of a Leibniz algebra L. For this
construction we need to introduce the following definitions.

Definition 23 Let L be a Leibniz algebra. For all x ∈ L, we define the
adjoint map adx : L → L by adxy = [y, x], for all y ∈ L.

Remark 24 The map ad : L → gl(L), x 7→ adx, where gl(L) is the Lie
algebra of linear maps over L with a Lie bracket [T, S] = TS − ST , it is
an antihomomorphism of Leibniz algebras, this is

ad[x,y] = [ady, adx] , for all x, y ∈ L

The set ad(L) = {adx|x ∈ L} with the bracket defined by [adx, ady] :=
adxady − adyadx turns out to be a Lie algebra, in particular it is a Lie
subalgebra of gl(L).

Notation 25 We will use capital letters to denote the adjoint maps (the
elements of ad(L)): X = adx, Y = ady, etcetera. In this notation the last
identity has the form

ad[x,y] = [Y, X]

Definition 26 Let L be a Leibniz algebra and let x be an element in L.
We say that x is an ad-nilpotent element if there is a positive integer
m such that adm

x = 0.
We say that an element x in a Leibniz algebra L is a Q-Jordan ele-

ment if x is an ad-nilpotent element of index at most 3.

In the rest of this section we will work with Leibniz algebras over a
field K containing 1/6. In particular, we have that L is 2 and 3-torsion
free.

First, we have the following lemma.

Lemma 27 Let x be a Jordan element of a Leibniz algebra L. For any
a, b ∈ L and α ∈ K, we have

1. X2AX = XAX2

2. X2AX2 = 0

3. X2A2XAX2 = X2AXA2X2

4. [X2(a), X(b)] = −[X(a), X2(b)]

5. ad2
x([a, [b, x]]) = [X(a), X2(b)]

6. X2ad[a,X2(b)] = ad[X2(a),b]X
2

7. ad2
X2(a) = X2A2X2

8. αx, ad2
x(a) are Jordan elements in L,
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where A = ada

Theorem 28 Let L be a Leibniz algebra and let x be a Q-Jordan element
of L. Then L with the product defined by

ab :=
1

2
[a, [b, x]]

is a nonassociative algebra, denoted by L(x), such that

KerL(x) := {a ∈ L|[[a, x], x] = 0}

is an ideal of L(x).

We attach a quasi-Jordan algebra to any Q-Jordan element x of a
Leibniz algebra L in the following form.

Theorem 29 Let L be a Leibniz algebra and let x be a Q-Jordan element
of L. Then Lx := L(x)/KerL(x) is a quasi-Jordan algebra. Moreover, Lx

is a noncommutative algebra in general.

Definition 30 For any Q-Jordan element x of a Leibniz algebra L, the
quasi-Jordan algebra Lx we have just introduced will be called the quasi-
Jordan algebra of L at x.

The next example of Leibniz algebras appeared in the work of K. Liu
[14]. This Leibniz algebra generates a noncommutative quasi-Jordan alge-
bra and it follows that in general the quasi-Jordan algebras obtained from
Leibniz algebras and Q-Jordan elements are noncommutative algebras.

Example 31 (K. Liu) Let L be a Leibniz algebra over a field K (of char-
acteristic zero) with basis {h, e, f, u, v, w} defined by

[h, e] = 2e + 2αu [h, f ] = −2f + βw [e, h] = −2e [e, f ] = h + αv

[f, h] = 2f [f, e] = −h− βv [u, h] = −2u [u, f ] = −v

[v, e] = −2u [v, f ] = −w [w, h] = 2w [w, e] = −2v,

where the omitted products are equal to zero and α, β are fixed elements
of the field K.

We have that e is a Q-Jordan element in L and KerL(e) is the subspace
generated by {e, h, u, v}.

Since uf = f and fu = 0, then Le is not commutative.

The relationship between Leibniz algebras with K-B quasi-Jordan al-
gebras is given by the following lemma.

Lemma 32 Let L be a Leibniz algebra and let x be a Q-Jordan element
of L. Then the quasi-Jordan algebra of L at x, Lx, satisfies the identity

(b, a2, c) = 2(b, a, c) / a,

and therefore Lx is a K-B quasi-Jordan algebra.
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Proof. First, for all a, b, c ∈ L we have that

(ba2)c = [ba2, [c, x]] = [[b, [a2, x]], [c, x]] = [[b, [[a, [a, x]], x]], [c, x]]

= [X, C][X, [[X, A], A]](b),

b(a2c) = [b, [a2c, x]] = [b, [[a2, [c, x]], x]] = [b, [[[a, [a, x]], [c, x]], x]]

= [X, [[X, C], [[X, A], A]]](b),

((ba)c)a = [(ba)c, [a, x]] = [[ba, [c, x], [a, x]] = [[[b, [a, x]], [c, x]], [a, x]]

= [X, A][X, C][X, A](b)

and

(b(ac))a = [b(ac), [a, x]] = [[b, [ac, x]], [a, x]] = [[b, [[a, [c, x]], x], [a, x]]

= [X, A][X, [[X, C], A]](b).

Now we consider b as a variable and we will work with the maps in
the right hand side of the last equations. The identities in the Lemma 27
imply

[X, C][X, [[X, A], A]] = XCX2A2 − 2XCXAXA + 2XCAXAX

−XCA2X2 + 2CX2AXA− 2CXAXAX

+ CXA2X2,

(1)

[X, [[X, C], [[X, A], A]]] = −2X2CAXA + 2XCXAXA + X2CA2X

− 2XCXA2X + X2A2CX + 2XAXAXC

− 2XAXACX + XA2XCX + 2CX2A2X

− 2X2A2XC + 2XCAXAX − 2CXAXAX

−XCA2X2 + XA2XCX −XA2CX2

− 2AXAXCX + 2AXACX2,
(2)

[X, A][X, C][X, A] = XAXCXA−XAXCAX −XACX2A

+ XACXAX −AX2CXA + AX2CAX

+ AXCX2A−AXCXAX

(3)

and

[X, A][X, [[X, C], A]] = XAX2CA−XAXCXA + AX2XCA

−XAXAXC + AX2AXC + XAXACX

−AX2ACX −XAXCAX + AX2CAX

+ XACXAX −AXCXAX + XA2XCX

−AXAXCX −XA2CX2 + AXACX2.

(4)
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Now, if we apply the map X2 on the left hand side of (1), (2), (3) and
(4), we obtain

X2([X, A][X, [[X, C], A]]) = −2X2CXAXAX, (5)

X2([X, [[X, C], [[X, A], A]]]) =− 2X2CXAXAX − 2X2AXAXCX

+ 2X2AXACX2,
(6)

X2([X, A][X, C][X, A]) = −X2AXCXAX (7)

and

X2([X, A][X, [[X, C], A]]) =−X2AXCXAX −X2AXAXCX

+ X2AXACX2.
(8)

The identities (5), (6), (7) and (8) imply

X2([X, A][X, [[X, C], A]]− [X, [[X, C], [[X, A], A]]]

− 2[X, A][X, C][X, A] + 2[X, A][X, [[X, C], A]]) = 0

and therefore

([X, A][X, [[X, C], A]]− [X, [[X, C], [[X, A], A]]]

− 2[X, A][X, C][X, A] + 2[X, A][X, [[X, C], A]])(b) ∈ KerL(x),
(9)

for all b ∈ L.
The identity 9 is equivalent to

(ba2)c− b(a2c)− 2((ba)c)a + 2(b(ac))a ∈ KerL(x),

for all a, b, c ∈ L, and this implies that

(ba2)c− b(a2c)− 2((ba)c)a + 2(b(ac))a = 0,

for all a, b, c ∈ Lx. Therefore

(b, a2, c) = 2(b, a, c)a,

for all a, b, c ∈ Lx.

5 Leibniz algebras generated by K-B quasi-
Jordan algebras

In the late 1960s I. Kantor and M. Koecher independently showed how
build a Lie algebra TKK(J) := L1 ⊕ L0 ⊕ L−1 with short 3-grading
[Li, Lj ] ⊆ Li + j by taking L±1 two copies of any Jordan algebra J glued
together by the structure Lie algebra L0 = Strl(J) := R(J) ⊕ Der(J)
and by the inner Lie algebra L0 = Inn(J) := R(J)⊕ [R(J), R(J)], where
R(J) is spanned by all right multiplication operators Rx, Der(J) is the
Lie algebra spanned by all derivations and [R(J), R(J)] is spanned by all
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inner derivations [Rx, Ry] = RxRy − RyRx, where J is a Jordan algebra
and x, y ∈ J (see [10] and [17]).

In this section we are going to show that there are inner derivations
(classical and left derivations) in K-B quasi-Jordan algebras and we will
define the structure and inner Leibniz algebra by K-B quasi-Jordan alge-
bras. These results were obtained by R. Velásquez in [20] and some other
results were obtained by R. Felipe in [7].

We start with the notions of derivation and left derivation over alge-
bras.

Definition 33 Let A be an algebra over a field K and let D and ∂ be a
linear transformations over A. Then D is called a derivation of A if

D(ab) = Da b + a Db, ∀a, b ∈ A.

The linear transformation ∂ is called a left derivation of A if

∂(ab) = ∂a b + ∂b a, ∀a, b ∈ =.

If the algebra A is commutative, then derivations and left derivations
agree.

It is well known that a linear transformation D of A is a derivation if
and only if LDa = [D, La] and if and only if RDa = [D, Ra], for all a ∈
A, where La and Ra denotes the left and right multiplication operators,
respectively, and [B, C] = BC − CB denotes the Lie bracket of linear
transformations.

Moreover, if D1 and D2 are a derivations of A, then the bracket
[D1, D2] is a derivation of A. Therefore the vector space generated by
derivations over A, denoted by Der(A), is a Lie algebra over K, namely a
subalgebra of the Lie algebra of linear transformations.

From the definition of left derivations, we obtain the following charac-
terization.

Corollary 34 Let ∂ be a linear transformation of A. Then ∂ is a left
derivation of A if and only if L∂a = [∂, Ra], for all a ∈ A.

The Lie bracket of left derivations is not in general a left derivation,
but the Lie bracket of a derivation and a left derivation is a left derivation.
Indeed, if D is a derivation and ∂ is a left derivation of A, then for all
a ∈ A

L[∂,D](a) = L∂(Da)−D(∂Da) = L∂(Da) − LD(∂Da)

= [∂, RDa]− [D, L∂a] = [∂, [D, Ra]]− [D, [∂, Ra]]

= −[[D, Ra], ∂]− [[Ra, ∂], D] = [[∂, D], Ra],

hence [∂, D] is a left derivation of A.
The vector space generated by left derivations of A it is denoted by

LDer(A).

If we consider the direct sum of the vector spaces

LD(A) := LDer(A)⊕Der(A)
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and we define product 〈·, ·〉 : LD(A)× LD(A) → LD(A) by



∂ ⊕D, ∂′ ⊕D′� = [∂, D′]⊕ [D, D′],

for all ∂ ⊕D, ∂′ ⊕D′ ∈ LD(A), we obtain the following result.

Lemma 35 Let A be an algebra, then LD(A) is a Leibniz algebra with
the product 〈·, ·〉.

Proof. Let ∂1, ∂2, ∂3 be a left derivations and let D1, D2, D3 be a
derivations. Then

1. 〈〈∂1 ⊕D1, ∂2 ⊕D2〉 , ∂3 ⊕D3〉 = [[∂1, D2], D3]⊕ [[D1, D2], D3]

2. 〈〈∂1 ⊕D1, ∂3 ⊕D3〉 , ∂2 ⊕D2〉 = [[∂1, D3], D2]⊕ [[D1, D3], D2]

3. 〈∂1 ⊕D1, 〈∂2 ⊕D2, ∂3 ⊕D3〉〉 = [∂1, [D2, D3]]⊕ [D1, [D2, D3]]

By the skew-symmetry and the Jacobi identity of the Lie bracket, we have
that

[[∂1, D2], D3] = [[∂1, D3], D2] + [∂1, [D2, D3]]

and
[[D1, D2], D3] = [[D1, D3], D2] + [D1, [D2, D3]].

Replacing the last identities in the items 1, 2 and 3, then

〈〈∂1 ⊕D1, ∂2 ⊕D2〉 , ∂3 ⊕D3〉 =

〈〈∂1 ⊕D1, ∂3 ⊕D3〉 , ∂2 ⊕D2〉+ 〈∂1 ⊕D1, 〈∂2 ⊕D2, ∂3 ⊕D3〉〉 ,

for all ∂1 ⊕D1, ∂2 ⊕D2, ∂3 ⊕D3 ∈ LD(A). Therefore (LD(A), 〈·, ·〉) is a
Leibniz algebra.

In this section we are going to construct Leibniz algebras defined by
K-B quasi-Jordan algebras. In particular, we introduce two structure
Leibniz algebras and two inner Leibniz algebras.

Let = be a K-B quasi-Jordan algebra, then we have two equivalent
sets of linear identities, Kolesnikov’s identities

x(yz) = x(zy), (K1)

(y(xz))u + (y(zu))x + (y(ux))z = (yx)(zu) + (yz)(ux) + (yu)(xz), (K2)

x(y(zu)) + ((xu)y)z + ((xz)y)u = (xy)(zu) + (xz)(yu) + (xu)(yz) (K3)

and Bremner’s identities

x(yz) = x(zy), (B1)

(y(xz))u + (y(zu))x + (y(ux))z = (yx)(zu) + (yz)(ux) + (yu)(xz), (B2)

((xy)u)z + ((xz)u)y + x((yz)u) = (x(yz))u + (x(yu))z + (x(zu))y. (B3)

Because of the consequences of definition 12, we will work only with
Bremner’s identities.

Rewriting Bremner’s identities using the left and right multiplication
operators, we obtain from (B1) the identities

LxLy = LxRy, (B1’)
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Rxy = Ryx. (B1”)

From (B2) we obtain

RxRyz + RyRzx + RzRxy = RyzRx + RzxRy + RxyRz, (B2’)

or equivalently

[Rx, Ryz] + [Ry, Rzx] + [Rz, Rxy] = 0

and

Lx(yz) + RyLxRz + RzLxRy = RyzLx + LxzLy + LxyLz. (B2”)

The bracket form of the (B2’) identity was obtained by R. Felipe in
relation with split quasi-Jordan algebras in [7].

From (B3) we obtain

RxRyRz + RzRxRy + Rzyx = RxRyz + RyRzx + RzRxy (B3’)

and

LxRyz + RyLxz + RzLxy = LxyRz + LxzRy + RyzLx. (B3”)

On the other hand (B3”) is equivalent to

[Lx, Ryz] + [Ry, Lxz] + [Rz, Lxy] = 0

and

L(xz)y + RzRyLx + LxRyRz = RyLxRz + Lx(zy) + RzLxRy. (B3*)

The last identity (B3*) implies that

L[Lx,Ry ](z) = [[Lx, Ry], Rz] (LD)

and we conclude from this identity that [Lx, Ry] ∈ LDer(=).
Moreover, the left hand side of (B2’) is equal to the right hand side of

(B3’) and hence we obtain the identity

RyzRx + RzxRy + RxyRz = LxRyz + RyLxz + RzLxy.

Interchanging x and y in this identity and subtracting this from the
resulting identity we get

R[Rx,Ry ](z) = [[Rx, Ry], Rz] (D)

and we conclude that [Rx, Ry] ∈ Der(=). The identity (D) was obtained
by R. Felipe in relation with quasi-Jordan algebras (see [7]).

We are now going to construct two structure and inner algebras of a
K-B quasi-Jordan algebra.
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5.1 The structure and inner Leibniz algebras

In this subsection we will assume that = is a K-B quasi-Jordan algebra
with a specific right unit e.

We recall (see [18]) that if = is a unital K-B quasi-Jordan algebra,
with a specific right unit e, then

=ann = Zr(=),

=ann = {x ∈ =|e / x = 0}
and

Ur(=) = {x + e|x ∈ =ann}.
First, we are going to show the action of left derivations and derivations

over right units. Let ∂ ∈ LDer(=) and D ∈ Der(=), then

∂e = ∂(ee) = ∂e e + ∂e e,

this is equivalent to ∂e = 0, and

De = D(ee) = De e + e e = De + e De.

Since x ∈ =ann if and only if ex = 0, then De ∈ =ann.
Since Lx(e) = x, for all x ∈ =, we have that L(=) ∩ LDer(=) =

{0}, where L(=) denotes the vector space generated by left multiplication
operators.

Then we consider the direct sum

SL(=) := L(=)⊕ LDer(=).

Next, we consider the vector space generated by the right multiplica-
tion operators, denoted by R(=). For any x ∈ =, we have

1. If x ∈ =ann, then Rx = 0.

2. If Rx = 0, then Rx(e) = ex = 0 and therefore x ∈ =ann.

These results imply that Rx = 0 if and only if x ∈ =ann.
Let x /∈ =ann and we suppose Rxe ∈ =ann. Then ex ∈ =ann and

ex = e(xe) = e(ex) = 0.

This is equivalent to x ∈ =ann, but this is a contradiction. Hence we
conclude that Rxe /∈ =ann.

Since Rxe /∈ =ann, for any x /∈ =ann, Rx = 0 if and only if x ∈ =ann

and De ∈ =ann, we have R(=) ∩ Der(=) = {0}, and therefore we can
consider the direct sum

SR(=) = R(=)⊕Der(=).

Remark 36 If = is a Jordan algebra, then SL(=) and SR(=) are the
same vector space. This vector space is the classical structure algebra (Lie
algebra) of the Jordan algebra =.
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For our purpose, we take the formal sum of vector spaces

S(=) := LS(=)⊕̄SR(=),

and we define the product

[(Lx ⊕ ∂⊕̄Ry ⊕D), (Lz ⊕ ∂′⊕̄Rw ⊕D′)] :=

([Lx, D′]+[∂, Rw])⊕([Lx, Rw]+[∂, D′])⊕̄([Ry, D′]+[D, Rw])⊕([Ry, Rw]+[D, D′]),

for any a, b, c, d ∈ =, ∂, ∂′ ∈ LDer(=) and D, D′ ∈ Der(=), where [·, ·]
denoted the Lie bracket in End(=).

Theorem 37 Let = be a unital K-B quasi-Jordan algebra, then (S(=), [·, ·])
is a Leibniz algebra.

Proof. From the identity

[[A, B], C] = [[A, C], B] + [A, [B, C]],

for all A, B, C in the Lie algebra End(=), the result follows from a straight-
forward calculations.

Definition 38 The Leibniz algebra S(=) is called the structure Leibniz
algebra of the unital K-B quasi-Jordan algebra =.

Since the identities (LD) and (D) imply that [Lx, Ry] ∈ LDer(=) and
[Rz, Rw] ∈ Der(=), for all x, y, z, w ∈ =, respectively, we can consider
the vector space [L(=), R(=)] spanned by the products [Lx, Ry] and the
vector sapce [R(=), R(=)] panned by the products [Rz, Rw].

The direct sum [L(=), R(=)] ⊕ [R(=), R(=)] is a subalgebra of the
Leibniz algebra (LD(=), 〈·, ·〉).

Now, if we consider the direct sums L(=)⊕ [L(=), R(=)] and R(=)⊕
[R(=), R(=)], we can define the Leibniz algebra

L(=)⊕ [L(=), R(=)]⊕R(=)⊕ [R(=), R(=)],

with the bracket defined in Theorem 37. This Leibniz algebra is called
the inner Leibniz algebra of =.

Remark 39 If = is a Jordan algebra, then [L(=), R(=)] and [R(=), R(=)]
are the same vector space. This vector space is the classical inner algebra
(Lie algebra) of the Jordan algebra =, and it is a subalgebra of the structure
algebra.

5.2 The quasi-structure and quasi-inner Leibniz
algebras

The constructions of the structure Leibniz algebra, S(=), and the inner
Leibniz algebra, L(=) ⊕ [L(=), R(=)]⊕R(=) ⊕ [R(=), R(=)], of a unital
K-B quasi-Jordan algebra =, give two copies of the classical structure and
inner algebras of a Jordan algebra, respectively, if = is a Jordan algebra.
Hence it is necessary to consider other type of construction of structure
and inner Leibniz algebras for K-B quasi-Jordan algebras.

To make this other construction. We consider of vector subspaces of
End(=):
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1. The vector space M(=) spanned by the multiplication operators Lx

and Ry, for all x, y ∈ =.

2. The vector space D(=) spanned by the left derivations and deriva-
tions of =,

where = is a K-B quasi-Jordan algebra.

We define the bracket [·, ·] over the direct sum M(=)⊕D(=) by

[Lx + Ry, Lz + Rw] = [Lx, Rw] + [Ry, Rw] ∈ D(=), (10)

[Lx + Ry, ∂′ + D′] = [Lx, D′] + [Ry, D′] ∈ M(=), (11)

[∂ + D, Lz + Rw] = [∂, Rw] + [D, Rw] ∈ M(=) (12)

and

[∂ + D, ∂′ + D′] = [∂, D′] + [D, D′] ∈ D(=). (13)

From this definition and some straightforward calculations we obtain
the following.

Theorem 40 Let = be a K-B quasi-Jordan algebra. Then M(=)⊕D(=)
equipped with the bracket defined by (10), (11), (12) and (13) is a Leibniz
algebra.

Considering the vector space spanned by [Lx, Ry] and [Rz, Rw], for all
x, y, z, w ∈ =, denoted by [M(=), M(=)], we get the following.

Lemma 41 Let = be a K-B quasi-Jordan algebra. Then M(=)⊕[M(=), M(=)]
is a Leibniz subalgebra of M(=)⊕D(=).

Since Lx = Rx, for all x ∈ J and the left derivations of J are a
derivations of J , where J is a Jordan algebra, hence the Leibniz algebras
M(=)⊕D(=) and M(=)⊕ [M(=), M(=)] are the classical structure and
inner algebras of = (Lie algebras), if = is a Jordan algebra.

Definition 42 The Leibniz algebras M(=)⊕D(=) and M(=)⊕[M(=), M(=)]
are called the quasi-structure Leibniz algebra and the quasi-inner
Leibniz algebra of the K-B quasi-Jordan algebra =, respectively.
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