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Abstract. We show that the study of digroups is equivalent to the study
of right G-spaces with a �xed point, and that this implies that digroups can
be viewed as trivial associated bundles. We consider a generalization of this
construction, that relates the "coquecigrue" problem of Loday to the study of
associated bundles.

1. Introduction.

Digroups were independently introduced, as a generalization of groups, almost
simultaneously by Liu [L], Felipe [F] and Kinyon [K]. Their de�nition was largely
motivated by Loday´s work on Leibniz algebras and dialgebras and, more speci�-
cally, by the question (also raised by Loday) of the existence of integral manifolds
to a Leibniz algebra, the so-called "coquecigrue" problem (see [Lo]), which is also
the motivation for this article.

Formally, a digroup D is a set with two associative binary operations, often
denoted by `;a, satisfying the associativity relations

(x ` y) ` z = (x a y) ` z
x a (y a z) = x a (y ` z)
(x ` y) a z = x ` (y a z) ;

a distinguished element, e, satisfying the relations (de�ning a so-called bar unit)

e ` x = x a e = x 8 x 2 D;
and such that, for each x 2 D a unique element exists, x�1; so that

x ` x�1 = x�1 a x = e:

I refer the reader to the works cited above for a more complete discussion of
this notion, but I wish to recall two well known facts:

First, that to any digroup we can associate two distinguished subsets: The set
of inverses

G =
�
y 2 D j 9x such that y = x�1

	
1
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and the set of bar units

J = fy 2 D j 8x y ` x = x a y = xg :
And second, that the operations restricted to G not only are closed, but actually

coincide, which in particular implies that G is a group.
Perhaps the deepest result in this context is a theorem of Kinyon (Theorem 4.8

of [K]) to the e¤ect that D is isomorphic to G�J , not only as a set but as a digroup.
Kinyon based his result on semigroup theory, and more concretely on the existence
of a very natural epimorphism of digroups D ! G, given by x 7!

�
x�1

��1
, whose

kernel is precisely J .
Now, Kinyon´s paper is elegant and readable, so there is no point in trying to

reproduce his arguments; rather, my twofold aim is: to give a somewhat di¤erent
proof of his result � arguing directly from very basic properties of digroups, but in
a way that, as I hope to show, gives a still better understanding of their structure,
bringing to the fore the group action implicit in this construction; and then to give
a mostly self-contained discussion of some implications of this result, mostly from a
di¤erential geometric point of view. In doing so, I will also give a uni�ed approach
that considerably expands some results I obtained in previous works ([O1], [O2]),
where I analyzed the geometric structure of some very special types of digroups,
and their relation to the coquecigrue problem. (In honesty, however, I should add
right away that the full coquecigrue problem still remains a challenge.)

2. The algebraic structure of a digroup.

2.1. Digroups and group actions. Let us start with a couple of very simple
lemmas, that allow us to easily identify the result of multiplying by inverses and
the bar unit in the "reverse" order:

Lemma 1. Let D be a digroup and x 2 D. Then, x a x�1 and x�1 ` x belong
to J .

Proof. If y is any element in D, then, using the properties of the products we
get �

x a x�1
�
` y =

�
x ` x�1

�
` y = e ` y = y;

the remaining identities are entirely similar. �

Lemma 2. Let D be a digroup and x 2 D. Then,
�
x�1

��1
= x ` e = e a x:

Proof. Since inverses are unique, this also follows immediately from the prop-
erties of the products:

x�1 ` (x ` e) =
�
x�1 ` x

�
` e =

�
x�1 a x

�
` e = e ` e = e;

and again the other assertion is similar. �

The key point here is that the lemmas show that to any x 2 D we can associate,
in a simple way, a bar unit and an inverse, that moreover have very nice expressions:
x�1 ` x and x ` e, respectively. Of course, strictly speaking there are actually two
bar units to choose from, and there is also an even simpler choice of inverse, namely
x�1; but the arguments that follow do not depend on the choice of the bar unit
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in a signi�cant way, while choosing x�1 instead of
�
x�1

��1
would introduce some

mildly unpleasant, but also not essential, changes of order in what follows, and so
from now on I will work with the choices stated above.

At any rate, using this we can restate (a part of) Kinyon´s result as follows:

Proposition 1. Let D be a digroup, G its subgroup of inverses and J its set
of bar units. Then, the map

D ! J �G : x 7! (x�1 ` x; x ` e)
is a bijection with inverse

(�; a) 7! a ` �; � 2 J; a 2 G

Proof. The proof is again quite simple, so let us just verify that the second
formula gives indeed the inverse of the �rst map. Thus, assume � = x�1 ` x and
a = x ` e, then,

a ` � = (x ` e) `
�
x�1 ` x

�
= (x a e) `

�
x�1 ` x

�
= x `

�
x�1 ` x

�
=
�
x ` x�1

�
` x = e ` x = x;

as desired. �

Remark 1. Up to this point the setting has been entirely algebraic; but for fu-
ture reference, observe that, if the digroup is a topological or a di¤erentiable mani-
fold, and the operations are accordingly continuous or di¤erentiable, then the iden-
ti�cations above are homeomorphisms or di¤eomorphisms, respectively. Thus, from
a topologico-geometrical point of view, digroups can be regarded as trivial �ber bun-
dles; either over G with �ber J , or over J with �ber G (see section 3.1). Later on
I shall try to argue which one is more convenient; but for the time being, observe
moreover that, given the choices mentioned above, the operations in the digroup
already provide a natural way of writing the projections onto the factors of D.

Let us now look at the digroup operations using the above identi�cation. First,
x ` y goes to:

�
(x ` y)�1 ` (x ` y) ; x ` y ` e

�
=

��
y�1 ` x�1

�
` (x ` y) ; x ` y ` e

�
=

�
y�1 `

�
x�1 a x

�
` y; x ` y ` e

�
=

�
y�1 ` e ` y; x ` y ` e

�
=

�
y�1 ` y; x ` y ` e

�
:(2.1)

Then, x a y corresponds to:

�
(x a y)�1 ` (x a y) ; (x a y) ` e

�
=

��
y�1 a x�1

�
` (x a y) ; x ` y ` e

�
=

��
y�1 ` x�1

�
` (x a y) ; x ` y ` e

�
=

�
y�1 `

�
x�1 ` x

�
a y; x ` y ` e

�
(2.2)
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and the last expression cannot be further simpli�ed. Moreover, since x ` y ` e =
(x ` e) ` (y ` e); the second element in both pairs is nothing but the product�
x�1

��1 ` �y�1��1 (and since both elements lie in G, the choice of product is
irrelevant here):

Also, observe that the �rst component of expression (2) is (up to a change of
order) the "conjugation" x�1 ` y a x, giving the "rack" structure of D considered
by Kinyon in his paper. Let us now have a closer look at this "action." So, let
x; y 2 D, then

x�1 ` y a x = x�1 ` y a (x a e) = x�1 ` y a (x ` e) = x�1 ` y a
�
(x)

�1
��1

:

Hence, the action does not require that x be an arbitrary element of D, since it
only depends on its projection onto G. Since on G both operations coincide, it
follows immediately that this de�nes in fact a true action of the group G on D;
given our choices it turns out to be a right action.

Furthermore, if y is any bar unit, then, for any z 2 D we have�
x�1 ` y a x

�
` z =

�
x�1 ` y ` x

�
` z =

�
x�1 ` x

�
` z = z;

so J is invariant under the action, and therefore is itself a right G-space.

Remark 2. For completeness, it is perhaps worthwhile to recall here that a
right action of a group G on a space X is just a map � : X � G ! X, satisfying
� (x; g1g2) = � (� (x; g1) ; g2) (left actions are similarly de�ned); the space X is
then said to be a right G-space, or sometimes a "right homogeneous space" for G,
although the latter is often reserved for a more speci�c type of action. For the sake
of simplicity, actions are frequently denoted by the less explicit, but more suggestive,
notation � (x; g) = x � g (a practice we shall follow here), so the action condition
becomes x � (g1g2) = (x � g1) � g2.

Observe, �nally, that since feg = G \ J; it follows that e is a �xed point for
the action, that is e � a = e , 8a 2 G (however, we shall see that there is no reason
� nor need� for it to be unique).

Gathering the above, we can strengthen proposition 4 in the following form:

Proposition 2. Let D be a digroup, with bar unit e, subgroup of inverses G,
and set of bar units J . Then, J is a right G-space for the action (�; a) 7! a�1 `
� a a, with �xed point e, and D is isomorphic as a digroup to (the digroup given
by) the product J �G with operations

(�; a) ` (�; b) = (�; ab) ; (�; a) a (�; b) =
�
b�1 ` � a b; ab

�
(here, and henceforth, we have suppressed the symbol for the product when dealing
exclusively with elements of G).

Thus, given the choice of projections, a digroup determines in a very natural
way a right G-space structure on its set of bar units. Now, let us show that this is
indeed all that is needed: a right G-space J with a �xed point.
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Proposition 3. Let G be a group, with unit element e, and J a right G-space;
denote the action J � G ! J : (a; b) 7! a � b, and assume it has a �xed point ".
Then D = J �G has the structure of a digroup with operations

(�; a) ` (�; b) = (�; ab) ; (�; a) a (�; b) = (� � b; ab)
and the point ("; e) as the preferred bar unit. Inverses with respect to this bar unit
are given by (�; a)�1 =

�
"; a�1

�
.

Proof. Once again, the computations are quite straightforward, so let us just
verify the identity (x ` y) a z = x ` (y a z) : Let x = (�; a), y = (�; b) and
z = (
; c), then

(x ` y) a z = ((�; a) ` (�; b)) a (
; c)
= (�; ab) a (
; c)
= (� � c; abc)
= (�; a) ` (� � c; bc)
= (�; a) ` ((�; b) a (
; c))
= x ` (y a z)

�

With the last proposition we have �nally recovered all of Kinyon´s result; but
what I would like to point out here is that, since the speci�cation of the G-space
J already involves the information of the group G, in a very de�nite sense this is
the only datum required to construct the digroup J �G. In fact, more can be said,
because proposition 8 actually implies a kind of functorial converse to proposition
7, in the following sense:

Proposition 4. Let D = J �G be a digroup constructed as in proposition 8.
Identify J and G as subsets of D in the natural way:

�$ (�; e) , a$ ("; a)

(observe that " and e get both identi�ed with ("; e)). Then the element � � a gets
identi�ed with a�1 ` � a a:

Proof. Simply observe that

a�1 ` � a a$
�
"; a�1

�
` (�; e) a ("; a) =

�
�; a�1

�
a ("; a)

=
�
� � a; a�1a

�
= (� � a; e)$ � � a

�

Example 1. A simple class of digroups can be constructed as follows: Let
V be a vector space (for the sake of de�niteness, say it is a k-dimensional real
vector space), and consider a non-identically null linear functional ', and a �xed
element e 2 V such that ' (e) = 1. Endow V with the operations x ` y = ' (x) y,
x a y = x' (y) (so that V becomes a dialgebra).

Obviously e is a bar unit for these operations, and if x =2 ker', we can declare
its inverse with respect to e to be ' (x)�1, then, the open subset D = V� ker'
becomes a digroup, which I called a '-digroup.
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From our point of view, G = R�f0g(to be more precise, but somewhat pedantic,
G = (R�f0g)
feg), while J is the a¢ ne space N = e+ker', and the identi�cation

D = J � G takes on the form x $
�
' (x)

�1
x; ' (x)

�
; the right action is given by

(�; a) 7! a�1�a.
Moreover, the relatively straightforward generalization to a matrix case, ob-

tained by considering instead of V a space of matrices with entries in V ,Matn(V ) =
Matn (R)
 V , and extending ' to a map ' :Matn(V )!Matn (R) entry-wise, is
signi�cantly more interesting for the coquecigrue problem, since the Leibniz algebra
related to this matrix case is not abelian (I refer the reader to [O1] for details).

For future reference, let us close this section stressing the following: If x =
(�; a) ; y = (�; b) 2 D, with the identi�cation of proposition 9, the products on the
digroup can be written in the following form:

(2.3) x ` y = (�; ab) ;

(2.4) x a y = (� � b; ab) :

In particular, the product ` is the same for any digroup supported by the
manifold J � G. The moral here is therefore that the construction of a digroup
requires a right G-space J , that is, a right action of G on J , but in fact only one
non-trivial product , together with a simple agreement on the way we associate
bar units to elements of the digroup; this, in turn, corrsponds to a choice of one of
the two possible natural projections of the product space J �G on J given by the
algebraic structure of the digroup. With our choices, the non-trivial product is the
one denoted a, and this non-trivial product is in fact equivalent to the given right
action.

2.2. Morphisms of digroups. The digroup approach raises some natural

questions; chief amongst them is the one regarding morphisms between digroups,
which we now consider. The appropriate de�nition is as follows:

Definition 1. Let D and D0 be two digroups, with bar units e and e0 respec-
tively. A morphism between them is a map ' : D ! D0 such that for all x; y 2 D,

'(x ` y) = ' (x) ` ' (y), ' (x a y) = ' (x) a ' (y), and ' (e) = e0.
(Here, to avoid cluttering the notations, we have denoted the operations on both

digroups with the same symbols.)

Now, since our point of view here is to regard D as the product J � G, we
want to see how the above de�nition translates to this setting. Let us �rst state a
preliminary lemma:

Lemma 3. Let D = J �G, and D0 = J 0�G0 be two digroups, and � : D ! D0

a morphism. Then � (G) � G0 and � (J) � J 0:
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Proof. For the �rst assertion, it su¢ ces to show that both products restricted
to � (G) coincide, which characterizes the subgroup of inverses in a digroup; this is
true because �, being a morphism of digroups, for arbitrary x; y 2 G we have

� (x) ` � (y) = � (x ` y) = � (x a y) = � (x) a � (y) :
For the second assertion, it su¢ ces to prove that for any bar unit � 2 J the

inverse associated to � (�) is e0, or what is the same, that �02 (�) = e0 (where �0i
denotes the projections onto the i-th factor of D0). But

�02 (� (�)) = � (�) ` e0 = �(� ` e) = � (e) = e0

as desired. �

The consequence here is that a digroup morphism splits into two maps, ' :
G! G0 and  : J ! J 0; so that we can write

(2.5) � (x)$ ( (�) ; ' (a)) ;

where as before we are identifying x with (�; a).

Proposition 5. Let � : D ! D0 be a morphism of digroups, and identify it
with the pair ( ;') as above. Then ' : G ! G0 is a homomorphism of groups,
and  is a '-equivariant map from the right G-space J to the right G0-space J 0,
mapping the preferred �xed point " 2 J to "0 2 J 0.

Remark 3. Before giving the proof, it is perhaps useful to remind the reader
that if J and J 0 are as in the proposition, and ' : G! G0 is a group homomorphism,
a map  : J ! J 0 is said to be '-equivariant if for � 2 J , a 2 G we have  (� � a) =
 (�) �' (a). This is in fact mostly terminology, since  (�) �a =  (�) �' (a) de�nes
an action of G on  (J) ; which can then be extended to an action of G on J declaring
that G acts trivially on the elements in J 0� (J), so both spaces, J and J 0, can be
seen as G-spaces; if we denote the action of G on J by, say �, and the one by G0

on J 0 by �0, what we have de�ned is the so-called pullback action, usually denoted
'��0, and the map  is then equivariant in the usual sense (for � and '��0). The
terminology is nevertheless convenient in our setting, because when we deal with
two digroups there are naturally involved two groups, which of course need not be
the same.

Proof. (Of Proposition 10) That ' is a group homomorphism is immediate
from the lemma, since the digroup operations coincide on theG factor. Equivariance
is likewise clear from formula (4) of the previous section.

Finally, to see that the �xed points are preserved, since equivariant maps send
�xed points to �xed points, we just invoke the fact that the bar units in D and
D0 are given by ("; e), and ("0; e0), respectively, together with the fact that under
the natural injections G; J ,! D, G0; J 0 ,! D0, these are the only points in the
intersections G \ J , and G0 \ J 0. �

Since the '-equivariance of the map  implies knowledge of the G-action on
J 0, and hence of the group homomorphism ', again we can say that knowledge of
the morphism � is equivalent to knowledge of the '-equivariant map  . Moreover,
since the composition of homomorphisms and equivariant maps is of course again
a homomorphism or an equivariant map respectively, we see that if �1 and �2
are two digroup morphisms, with the obvious conventions the morphism �1 � �2
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is associated to the pair ( 1 �  2; '1 � '2); thus, the identi�cation of the digroups
D $ J �G preserves the composition of morphisms, and is therefore categorical.

Remark 4. And incidentally, we see now that had we chosen x a x�1 as the bar
unit to associate to x, the only noticeable change would have been the interchange
of the role of the products, so that the "trivial" product would have been the one
we have denoted a instead of `. On the other hand, if instead of

�
x�1

��1
had we

chosen x�1, the action we would recover in Proposition 9 would be the left action
a ` � a a�1, and not the original action; there seems to be no way around this (in
a sense this is akin to a change of orientation).

So, to be technically more precise, we might say that what the above results
show is that the digroup operations give two functorial, but naturally equivalent,
ways of doing the identi�cationD $ J�G. Thus, and to summarize our statements
up to this point: the algebraic study of digroups is formally equivalent to the study
of spaces with a right group action with a �xed point, and their corresponding
equivariant maps.

3. The geometric structure of a digroup.

3.1. Bundles and digroups. In spite of the comment made at the end of

the last section, I believe the notion of digroup is interesting in its own right,
precisely because of its relationship to the coquecigrue problem mentioned at the
introduction. This is because the homogeneous space J de�ning a digroup cannot
be viewed, in a natural way by itself, as an integral manifold of a given Leibniz
algebra (that is, as a coquecigrue); we need to consider the whole product J �G.

On the other hand, as Kinyon already pointed out, digroups cannot be the full
solution to the coquecigrue problem, and what I intend to do next will also address,
at least partially, this question.

Now, the coquecigrue problem is not only an algebraic question, but also a dif-
ferential geometrical one. So, we will now assume that our objects are di¤erentiable
manifolds, although topological manifolds � or even orbifolds� could probably suf-
�ce � or perhaps even be better suited� to discuss some aspects of what follows;
this surely warrants some investigation, but it would certainly involve some techni-
cal complications that I wish to avoid here, mostly because, as I said, the approach
here still leaves an important part of the coquecigrue problem unanswered. So,
hereafter G is a Lie group, and J a smooth manifold (and smooth means C1).

As mentioned, we can regard D = J�G as a �ber bundle in two di¤erent ways,
by considering the projections �1 : D ! J and �2 : D ! G. Both bundles are
of course trivial, but let us dig a bit deeper into the relationship of these bundle
structures on D to the algebraic structure of D.

Consider �rst the bundle structure given by �1 : D ! J . Then, from formula
(3) of section 1.1, that shows that for �xed y the product ` only depends on the
projection of y onto its �rst factor �, this gives a left action of G on D preserving
the �bers of �1. Indeed, what the product ` does is simply transfer the group
structure of G to the �ber ��1 (�), and therefore this endows D with the structure
of a (trivial and principal, see below) bundle of groups over J . Since from our
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point of view the "trivial" product ` is the same for any digroup supported by the
manifold J � G, this gives little, if any, information about the speci�c digroup...
but then again, we are dealing here with the "trivial" product.

Now, for the projection �2 : D ! G, the bundle structure of D can no longer
� in general� be that of a principal bundle; however, D will be an associated
bundle. For the sake of completeness, but also to �x some conventions, let us �rst
recall a few basic facts about principal and associated bundles.

Definition 2. Let G be a Lie group, � : P ! M a manifold submersion.
Then P is a principal bundle over M with structure group G, or simply a G-
principal bundle, if G acts on P on the right in such a way that: The action of G
preserves each �ber ��1(x), x 2 M , and is transitive on it; and for each x 2 M
there exists a neighborhood U , such that ��1(U) is di¤eomorphic to G � U , and
such that the di¤eomorphism can be written in the form

	 : ��1 (U)! G� U : p 7! ( (p) ; � (p))

where  is equivariant with respect to the action of G on P and to the action of G
on G � U given by right multiplication in G, that is,  (p � a) =  (p) a, for p 2 P
and a 2 G.

(It follows in particular that the �bers of P are di¤eomorphic to the structure
group G, and that the base manifoldM is di¤eomorphic to the quotient space P=G.)

The last condition, called local triviality, says that P locally looks like the
product space G � U , and any neighborhood U where ��1(U) is di¤eomorphic to
G�U is called a trivializing neighborhood (principal bundles are therefore a special
type of what are called locally trivial �ber bundles). The key point is that they are
in general not globally di¤eomorphic to a products pace. To make this statement
precise, recall that we say that two bundles P and P 0 are isomorphic if there exists
a di¤eomorphism, � : P ! P 0, such that � preserves �bers and is equivariant; and
a bundle is trivial if it is isomorphic to the trivial bundle G�M . A necessary and
su¢ cient condition for global triviality of a principal bundle is the existence of a
global section to �; that, is a map � :M ! P such that � � � is the identity on M .

If fUig is a covering of M by trivializing neighborhoods, with corresponding
di¤eomorphisms 	i = ( i; �), then whenever Ui \ Uj 6= ?, by equivariance, the
map  j �  �1i : G � (Ui \ Uj) ! G depends only on � (p), and therefore de�nes
a map gij : Ui \ Uj ! G, called a transition function for the bundle. These
transition functions satisfy the 2-cocycle condition: if Ui \ Uj \ Uk 6= ? then
gijgjk = gik (in particular, gii : Ui ! G is the constant map with value e, and
(gij (p))

�1
= gji (p)), so one usually calls the collection fgijg a cocycle for the

bundle. The knowledge of such a cocycle actually determines the bundle, since it
can be recovered by considering the disjoint union

S
iG�Ui modulo the equivalence

relation (g1; x1) 2 G�U1 � (g2; x2) 2 G�U2 i¤ x1 = x2 and g2 = g1g21 (x1) (well
de�ned due to the cocycle condition), which turns out to be isomorphic to the
original bundle.

Example 2. Plainly, from the above de�nition, a digroup D = J � G is a
trivial principal bundle with respect to �1, with base manifold J , and action of G
on D given by right multiplication on the second factor.
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.

Definition 3. If � : P ! M is a principal bundle, and J is a right G-space,
with action � : J � G ! J (whose e¤ect we will denote as usual (�; a) 7! � � a),
then the bundle associated to P via � is constructed as follows: On the Cartesian
product J � P de�ne the equivalence relation: (�; p) � (�; q) if there exists g 2 G
such that (�; q) = (� � g; q � g), and endow the quotient space E = J � P� � with
the quotient topology and the projection [�; p] 7! � (p).

The manifold E is then a �ber bundle, and with the same trivializing neigh-
borhoods as P , but with �ber di¤eomorphic to J ; the group G is then called the
structure group of the bundle. In fact, the associated bundle can also be recov-
ered from the knowledge of a cocycle for the corresponding principal bundle, by
considering this time the disjoint union

S
i J �Ui, modulo the equivalence relation

(�1; x1) 2 J � U1 � (�2; x2) 2 J � U2 i¤ x1 = x2 and �2 = �1 � g21 (x1).

Remark 5. The reader should perhaps be warned that in most of the literature
the action on the �ber is taken to be a left action; the equivalence relation is then
(g1; x1) 2 G � U1 � (g2; x2) 2 G � U2 i¤ x1 = x2 and g2 = g21 (x1) g1. This is
due to the fact that the most important class of associated bundles are the vector
bundles, where the �ber is a vector space V , and the group G = GL(V ) acts by
linear transformations which are usually written on the left; the principal bundle
associated in this case is the so-called bundle of frames. I will nevertheless stick to
the convention stated above, since it seems to me more natural to relate bundles to
digroups.

With these preliminaries, let us turn back to digroups, and their non-trivial
product.

So let D = J �G, be a digroup, with non-trivial product a determined by the
right action � : J � G ! J . Notice that if we consider only elements of the form
y = ("; b) 2 G, formula (2) becomes (�; a) a ("; b) = (� � b; b), which, from what
has been said, is a �ber preserving right action of G on D. This action is trivially
equivariant, and thus, with respect to the projection �2 : D ! G, D becomes an
associated bundle (to the trivial principal bundle G�G, via the action �).

Although this may seem almost as super�cial as the description of D as a
principal bundle over J , it certainly is not, because this involves the non-trivial
product, which does indeed distinguish the di¤erent digroups supported by J �G.
To see our gain, let us consider again the matrix '-digroups mentioned in example
9:

Example 3. Let V be a k-dimensional real vector space, G � GL (k;R), ' a
linear functional and the G-space J essentially be the vector space N = ker', where
' : Matn (R) 
 V ! Matn (R). The associated bundle here is therefore a vector
bundle, but the principal bundle associated by our construction is not the bundle of
frames, since G is in general a strict subgroup of GL (N) (technically, we could say
that viewing the digroup as an associated bundle over G corresponds to a reduction
of the structure group).

But more interestingly, two particular features of this example are that the
operations are linear, and that the vector bundle can be considered as a principal
bundle; not with respect to the original action, but with respect to the right action
given by addition in the �bers (which of course, are themselves groups). This is not
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entirely trivial because, by linearity of the operations, for �xed y the product y ` x a
x�1 (which from our point of view corresponds to

�
� � a�1; b

�
), describes a subspace

of TyD, and thereby we get a distribution (i.e., a subbundle of the tangent bundle
TD), which is equivariant for the latter action, and therefore gives a connection in
this bundle.

Remark 6. However, the fact that the associated bundle we get here is also
principal somehow obscures the deeper meaning of looking at D as a bundle over G.
Moreover, in addition to the bundle being trivial, which as we have seen holds for
any digroup, the connection here turns out to be �at, so these digroups are indeed
of a very special type. (Nonetheless, for a time I conjectured that the solution to
the coquecigrue problem could come from the analysis of principal bundles with �at
connections; I refer the reader to [O1] and [O2] for more details.)

3.2. A generalization of digroups. Now, as mentioned in the introduction,

the coquecigrue problem calls for the integration of Leibniz algebras. To state it
more precisely, recall the following de�nition

Definition 4. A (left) Leibniz algebra is a vector space, endowed with a bilinear
operation [�; �], satisfying the Leibniz identity

[[x; y] ; z] = [[x; z] ; y] + [x; [y; z]] :

Leibniz algebras clearly generalize Lie algebras, in the sense that a Lie bracket
satis�es the previous equation; but it also satis�es the additional requirement that it
be anti-symmetric. This allows some rewording of the Leibniz identity, particularly
the so-called Jacoby identity [[x; y] ; z]+[[y; z] ; x]+[[z; x] ; y] = 0, which is the usual
way of presenting the requirements for a Lie bracket; this is not available for Leibniz
algebras.

In any case, just as for Lie groups, to recover the Leibniz algebra from the
digroup, we can consider the rack structure given by conjugation, x ` y a x�1, and
di¤erentiate (see e.g., [K] or [O1]): More precisely, if X;Y are two tangent vectors
at TeD, we can consider two curves x(s), y(t), such that x (0) = e = y (0), and
x0 (0) = X, y0 (0) = Y ; then we can compute the Leibniz bracket [X;Y ] as

(3.1) [X;Y ] =
@2

@s@t
js=t=0

�
x (s) ` y (t) a x�1 (s)

�
:

Upon identifying x = (�; a), y = (�; b), and using what we have seen, this can be
rewritten as

(3.2) [X;Y ] =

�
@2

@s@t
js=t=0 (� (t) � a (s)) ; [A;B]

�
;

where A = a0 (0), B = b0 (0),and their bracket is computed in the Lie algebra g of
G.

The last expression makes two things clear: First, that the Leibniz algebra TeD
of a digroup is split, meaning that it decomposes as a direct sum j� g, where g is
the Lie algebra of G; and second, that the essential new ingredient in the Leibniz
bracket comes again from the action of G on J . (The �rst observation is in fact
a somewhat more precise statement of the fact mentioned above, that digroups
cannot solve the general coquecigrue problem, because not every Leibniz algebra is
split.)
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As for the second, we see that we need to linearize the non-trivial product,
which in turn is related to the bundle structure �2 : D ! G. The important
remark here, however, is that computation of formulas (6) and (7) does not require
a knowledge of the global structure of D, and in particular, of its decomposition as
a product J � G; it only requires a knowledge of its structure in a neighborhood
of some special point �. Therefore, one way to generalize the construction above of
integral manifolds for Leibniz algebras would be to replace digroups by associated
bundles that are not necessarily trivial, with a distinguished point. Let us now
discuss how this can be done.

So, we let G be a Lie group, P a G-principal bundle over G, J a right G-space,
and E a bundle associated to P via some action, with projection � : E ! G. Our
aim is to de�ne a binary operation E�E ! E : (x; y) 7! p�q, that upon di¤erenti-
ation gives a Leibniz algebra structure to T�E, where � is some distinguished point.
Since for trivial bundles this should recover the case of digroups, there are some
natural requirements that we might impose to this operation (although perhaps not
necessary conditions, in a strict sense).

The �rst would be the existence of the distinguished point �. In contrast to the
digroup case, we do not have a priori the natural choice � = ("; e) at our disposal
here. However, from what has been said before, the existence of a distinguished
point should require the existence of a �xed point " 2 J for the action. This leads
to the following:

Proposition 6. Let G be a Lie group, P a G-principal bundle over a manifoldM ,
J a right G-space, and E a bundle associated to P , with projection � : E ! M ,
via an action with a �xed point " 2 J . Then E admits a natural global section �"
associated to ".

Proof. Let 	 = ( ; �) be any trivialization over an open set ��1 (U); then
�";U : U ! E, given by �";U (a) = 	�1 ("; a), clearly de�nes a section over U . To
see that this de�nes a global section, if 	1 = ( 1; �), 	2 = ( 2; �) are two trivializa-
tions de�ned on ��1 (Ui), where Ui are two overlapping trivializing neighborhoods
for the bundle, and the relation between them on the intersection U1 \ U2:

 1 (x) =  2 (x) � g12 (a) ;
where gij is a cocycle for the bundle. Then for a 2 U1 \ U2 we have to show that
�";U1 (a) = �";U2 (a), that is, that 	

�1
1 ("; a) = 	�12 ("; a). Since 	i are di¤eomor-

phisms, this in turn is equivalent to 	1 �	�12 ("; a) = ("; a). But

	1 �	�12 ("; a) =
�
 1 �

�
	�12 ("; a)

�
; a
�

=
�
 2 �

�
	�12 ("; a)

�
� g12 (a) ; a

�
= (" � g12 (a) ; a) = ("; a) :

The same computations show that, indeed, �" is independent of the trivialization.
�

In particular, we see that the choice of a �xed point " indeed determines the
distinguished point � = �" (e) (but we stress the fact that such a special point need
not be unique).

Remark 7. It is also perhaps worthwhile to recall here that, while for a prin-
cipal bundle existence of a global section implies triviality, associated bundles can
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certainly have global sections without being trivial. The standard example, which
is in fact a special case of the proposition above, is that of vector bundles, which
always possess the zero section.

The second requrement would be that, upon projection, the operation � should
correspond to the product in the group G. If we let � (x) = a, � (y) = b, this
condition is simply � (x� y) = ab,

Finally, we would like � to be described by equation (4), at least in a neighbor-
hood of �, so we are actually generalizing the notion of digroup. In other words, if
we let 	 = ( ; �) be a trivialization of the bundle, de�ned on an open neighborhood
U , the operation should be expressed as

(3.3) 	((x� y)) = ( (x) � b; ab) :

Now,since E can be described as equivalence classes of pairs, (z; a), z 2 J , a 2 Ui
, this suggests the following de�nition of the product �: Let x = [(�; a)], y =
[(�; b)] 2 E, then de�ne

(3.4) x� y = [(� � b; ab)] :

If we do so, �rst we need to see under what conditions the operation is well de-
�ned. So, consider two arbitrary representatives for the classes, (�1; a1) ; (�2; a2) 2
x; (�1; b1) ; (�2; b2) 2 y; we need to see when the elements (�1 � b1; a1b1) and (�2 � b2; a2b2)
are in the same class. By hypothesis, however, a1 = a2 = a, and b1 = b2 = b, so
we only need to see when �1 � b � �2 � b. Now, both points �1 � b � �2 � b, are to
be regarded as lying on the �ber over ab, possibly on two distinct trivializing open
sets U1, U2; so this amounts to show that there exists a transition function g12
de�ned on U1 \U2 such that �1 � b = �2 � bg12 (ab). Now by hypothesis, there exists
a transition function ~g12 (a) such that �1 = �2 � ~g12 (a); acting on this equality by
b, we get therefore the relation

�2 � bg12 (ab) = �2 � ~g12 (a) b;

as a condition on the associated bundle that would allow a global product, de�ned
by relation (9), and this will satisfy all three requirements stated above.

The previous observations prove the following:

Theorem 1. Let G be a Lie group, J a right G-space, with a �xed point " 2 J .
Let P a G-principal bundle over G,and E a bundle associated to P via the action,
with projection � : E ! G. Let � be the �xed point in the �ber over the identity
element of the group, e, given by the canonical section determined by ". Assume
that P admits a cocycle satisfying the following condition: For all a; b 2 G and
z 2 J , there exist transition functions gij, ~gij such that

� � bg12 (ab) = � � ~g12 (a) b;

for all � 2 J .
Then, if we de�ne a binary operation E � E ! E : (x; y) 7! x� y, by

x� y = [(� � b; ab)] ;

upon di¤erentiation this gives a Leibniz algebra structure to T�E, and is therefore
a solution to the coquecigrue problem.
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The condition stated in the theorem seems rather hard to analyze in general,
because it involves both the topology of the bundle and the action. On the other
hand, it will be clearly satis�ed if we demand the simpler condition that the cocycle
gij satisfy the relation

(3.5) gij (ab) = b�1~gij (a) b;

Moreover, since for the coquecigrue problem we are actually only interested in
the tangent space at the special point � in the �ber ��1 (e) ; and thus we need
to compute some derivatives, we could restrict ourselves to the requirement that
formula (9) holds only for a small neighbourhood V about e, contained in the
intersection of two trivializing neighborhoods of e, and such that if a; b 2 V , then
ab 2 Ui \ Uj , which is certainly possible by continuity of the product, for then we
could take gij = ~gij and setting a = e in the last condition, this would be reduced
to

(3.6) gij (b) = b�1gij (e) b:

for all terms of the cocycle de�ned in a neighbourhood of e.

Remark 8. The last conditions certainly seem cohomological in nature, but not
exactly. The condition for two cocycles fgijg and f~gijg (which can be assumed to be
associated to the same family of trivializng neighbourhoods fUig) to be cohomologous
is that there exists a family of maps fgi : Ui ! Gg (a 1-cocycle) such that gij (a) =
g�1i (a) ~gij (a) gj (a); and in contrast to the previous formulas, all maps are evaluated
at the same point. This certainly requires further investigation.

Now, let us see that the above constructions are meaningful, by considering in
some detail the following simple but non-trivial example:

Example 4. Let G = U (1) be the unit circle group in the complex plane,
Consider the U (1)-principal bundle P over U (1) de�ned by the following cocycle:
Let U1 = G�fig, U2 = G�f�ig; fU1; U2g de�ne an open covering of the circle,
then we can de�ne a U (1)-principal bundle via the cocycle g12 : U1 \ U2 ! U (1) :
ei� 7! �1.This bundle P , which on the intersection U1 \ U2 identi�es a point in
the �ber with its antipode, is sometimes called a twisted torus, and topologically is
a Klein bottle, so it is certainly not trivial.

Thus, if we let J = D = fj z j< 1g be the open unit disk, where G acts in the
standard way by rotations, de�ning E to be the associated bundle via these data,
then E is also not trivial, so it cannot be a digroup.

Nevertheless, following the above constructions we can provide a (local) product
that will solve the coquecigrue problem. Indeed, over U1 we can consider the explicit
trivialization of J , (z; a), while over U2 we can take (�z; a). Then, if V = fei�; � 2
(��=2; �=2)g, clearly V V � U1 \ U2, and so we if take x = (z; a), y = (w; b) 2 V ,
we can de�ne their product as

(3.7) x� y = (zb; ab) :
Since the action has only one �xed point, namely 0, the distinguished point is

necessarily � = (0; 1); di¤erentiation of the action at � gives the following Leibniz
algebra structure on T�J : If X = (Z;A) = (z0 (0) ; a0 (0)) and Y = (W;B) =
(w0 (0) ; b0 (0)) are two tangent vectors, then, from formula (7),

[X;Y ] = (z0 (0) ; [a0 (0) ; b0 (0)]) = (Z; 0) :
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.

One might rightfully say that there is some cheating here, in asmuch as we
can not de�ne the product globally this way, because condition (10) is not satis�ed
for all members of the cocycle at all points. To understand what di¢ culties result
from this, notice that formula (9) can be used to de�ne a product on a set larger
than V ; indeed, the product would not be well de�ned using formula (9) only if
ab = �i, therefore, we could de�ne de�ne the product on the complement of the set
W = fab = �ig, which is an open and dense subset of G�G. The problem is that,
roughly speaking, crossingW brings a jump discontinuity, the product passing from
(zb; ab) to (�zb; ab), so we can not de�ne a global product in a continuous way.

Remark 9. On the other hand, the same considerations show that, at least in
this case, we can amend the product by, for instance, considering a modi�ed product
x�0 y = (�(b)zb; ab), where � is a smooth "bump" function, with value 1 in a small
closed neighborhood V0 � V of b = 1, and 0 outside V , thus getting a still reasonable
solution to the coquecigrue problem that is not a digroup.

To conclude, our results here suggest that a good way to attack the coqueci-
grue problem is via associated bundles. In other words, a general coquecigrue can
perhaps be constructed by a suitable deformation of a digroup, somehow like the
way an associated bundle is a deformation of a product space. As we have seen,
this poses a number of non-trivial technical problems, among them some of a coho-
mological nature, which seems appropriate, since this was the original motivation
for Leibniz algebras. I will try to address some of these questions in a forthcoming
paper.
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