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Abstract

We study the distribution of the exponential functional I(ξ, η) =
∫∞

0 exp(ξt−)dηt, where
ξ and η are independent Lévy processes. In the general setting using the theories of Markov
processes and Schwartz distributions we prove that the law of this exponential functional satisfies
an integral equation, which generalizes Proposition 2.1 in [9]. In the special case when η is a
Brownian motion with drift we show that this integral equation leads to an important functional
equation for the Mellin transform of I(ξ, η), which proves to be a very useful tool for studying the
distributional properties of this random variable. For general Lévy process ξ (η being Brownian
motion with drift) we prove that the exponential functional has a smooth density on R\{0}, but
surprisingly the second derivative at zero may fail to exist. Under the additional assumption that
ξ has some positive exponential moments we establish an asymptotic behaviour of P(I(ξ, η) > x)
as x→ +∞, and under similar assumptions on the negative exponential moments of ξ we obtain
a precise asympotic expansion of the density of I(ξ, η) as x → 0. Under further assumptions
on the Lévy process ξ one is able to prove much stronger results about the density of the
exponential functional and we illustrate some of the ideas and techniques for the case when ξ
has hyper-exponential jumps.
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pardo@cimat.mx
‡New College, Holywell Street, Oxford, OX1 3BN, UK. Email: savov@stat.ox.ac.uk ; mladensavov@hotmail.com

1



 
 

1 Introduction

In this paper, we are interested in studying distributional properties of the random variable

I(ξ, η) :=

∫ ∞
0

eξt−dηt, (1.1)

where ξ and η are independent real-valued Lévy processes such that ξ drifts to −∞ and E[|ξ1|] <∞
and E[|η1|] <∞.

The exponential functionals I(ξ, η) appear in various aspects of probability theory. They describe
the stationary measure of generalized Ornstein-Uhlenbeck processes and the entrance law of positive
self-similar Markov processes, see [6, 9]. They also play a role in the theory of fragmentation processes
and branching processes, see [4, 22]. Besides their theoretical value, the exponential functionals are
very important objects in Mathematical Finance and Insurance Mathematics. They are related to
Asian options, present values of certain perpetuities, etc., see [10, 17, 14] for some particular examples
and results.

In general, the distribution of exponential functionals is difficult to study. It is known explicitly
only in some very special cases, see [8, 14, 19]. Properties of the distribution of I(ξ, η) are also of
particular interest. Lindner and Sato [25] show that the density of I(ξ, η) doesn’t always exist, and
in the special case when ξ and η are specific compound Poisson processes, distributional properties
of I(ξ, η) can be related to the problem of absolute continuity of the distribution of Bernoulli con-
volutions, which dates back to Erdös, see [12]. The distribution of I(ξ, η), when ξs = −s and in
some other instances, is known to be self-decomposable and hence absolutely continuous, see [5, 18].
When η is a subordinator with a strictly positive drift the law of the exponential functional I(ξ, η)
is absolutely continuous, see Theorem 3.9 in Bertoin et al. [5]. Some further results are obtained in
[23, 28, 29, 34].

The asymptotic behaviour P (I(ξ, η) > x), as x → ∞, is a question which has attracted the
attention of many researchers. In the general case, but under rather stringent requirements on the
existence of exponential moments for ξ and absolute moments for η, it has been studied in [24]. The
special case when ηt = t has been considered in [26, 30, 31] and properties of the density of the law
of I(ξ, η) at zero and infinity have been studied by [19, 21, 27] and results such as asymptotic and
series expansions for the density have been obtained.

The first objective of this paper is to develop a general integral equation for the law of I(ξ, η)
under the assumptions that E[|ξ1|] < ∞ and E[|η1|] < ∞ and ξ being independent of η. Using the
fact that in general I(ξ, η) is a stationary law of a generalized Ornstein-Uhlenbeck process, Carmona
et al. [9] show that if ξ has jumps of bounded variation and ηt = t then the law of I(ξ, η) satisfies
a certain integral equation. We refine and strengthen their approach and using both stationarity
properties of I(ξ, η) and Schwartz theory of distributions we show that in the general setting the
law of I(ξ, η) satisfies a certain integral equation. This equation is important on its own right, as
demonstrated by Corollary 1, but it is also amenable to different useful transformations as can be
seen from the discussion below.

The second main objective of our paper is to study some properties of Iµ,σ = I(ξ, η) in the specific
case when ηs = µs + σBs, where Bs is a standard Brownian motion. Quantities of this type have
already appeared in the literature, see [14], but have not been thoroughly studied. The latter, as it
seems to us, is due to the lack of suitable techniques, which are available in the case when ηs = s,
and in particular due to the lack of any information about the Mellin transform of I(ξ, η), which
is the key tool for studying the properties of I(ξ, η), see [19, 21, 26]. We use the integral equation
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(2.2) and combine techniques from special functions, complex analysis and probability theory to
study the Mellin transform of Iµ,σ, i.e. M(s) = E

[
(Iµ,σ)s−11{Iµ,σ>0}

]
. In particular we derive an

important functional equation for M(s), see (3.8), and study the decay of M(s) as Im(s) → ∞.
These results supply us with quite powerful tools for studying the properties of the density of Iµ,σ via
the Mellin inversion. Furthermore, the functional equation (3.8) allows for a meromorphic extension
of M(s) when ξ has some exponential moments. This culminates in very precise asymptotic results
for P (Iµ,σ > x), as x → ∞, see Theorem 5, and asymptotic expansions for k(x) – the density of
Iµ,σ , as x → 0, see Theorem 4. The latter results show us that while k(x) ∈ C∞(R \ {0}), rather
unexpectedly k′′(0) may not exist. Finally we would like to point out that while the behaviour of
P (Iµ,σ > x), as x→∞, might be partially studied via the fact that Iµ,σ solves a random recurrence
equation, see for example [24], the behaviour of k(x), as x → 0, seems for the moment to be only
tractable via our approach based on the Mellin transform.

As another illustration of possible applications of our general results we study the density of Iµ,σ
when ξ has hyper-exponential jumps (see [7, 8, 20]). This class of processes is quite important for
applications in Mathematical Finance and Insurance Mathematics, and it is particularly well suited
for investigation using our methods due to the rich analytical structure enjoyed by these processes.
In this case we show how to derive complete asymptotic expansions of k(x) both at zero and infinity.
We point out that our methodology is not restricted to this particular case, and can be easily applied
to more general classes of Lévy processes.

The paper is organized as follows: in Section 2 we study the law of I(ξ, η) for general independent
Lévy processes ξ and η and derive an integral equation for the law of I(ξ, η); in Section 3 we specialize
the results obtained in Section 2 to the case when ηs = µs+σBs and, employing additionally various
techniques from special functions and complex analysis, we study the properties of the density of Iµ,σ.
Section 4 is devoted to some applications of the results derived in the previous section, we study the
asymptotic behaviour at infinity of the tail of Iµ,σ and its density at zero, and in the case of processes
with hyper-exponential jumps we show how these results can be considerably strengthened. Finally,
Section 5 contains the proofs of all the results.

2 Integral equation satisfied by m(dx)

Let us introduce some notation which will be used throughout this paper. Let Πξ(dx) and Πη(dx) be
the Lévy measures of ξ and η, respectively. We use the following notation for the double-integrated
tail

Π
(+)

ξ (x) =

∫ ∞
x

Πξ((y,∞))dy and Π
(−)

ξ (x) =

∫ ∞
x

Πξ((−∞,−y))dy,

and similarly for Π
(+)

η and Π
(−)

η . Note that all the above quantities are finite for x > 0 since E[|ξ1|] <
∞. We define the Laplace exponent of ξ and η as ψξ(z) = ln

(
E
[
ezξ1
])

and ψη(z) = ln (E [ezη1 ]),
where without any further assumptions ψξ and ψη are defined at least for Re(z) = 0, see [3, Chapter
I]. Since E[|ξ1|] < ∞ we will use the following specific forms of ψξ (which corresponds to the cutoff
finction h(x) ≡ 1 in the general Lévy-Khintchine formula, see [3])

ψξ(z) =
σ2
ξ

2
z2 + bξz +

∫
R

(ezx − 1− zx) Πξ(dx) (2.1)

=
σ2
ξ

2
z2 + bξz + z2

(∫ ∞
0

Π
(+)

ξ (w)exzdx+

∫ ∞
0

Π
(−)

ξ (x)e−xzdx

)
,
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with a similar expression for ψη. Note that with this notation we have bξ = ψ′ξ(0) = E[ξ1].
Our main result in this section is the derivation of an integral equation for the law of I(ξ, η).

This equation will be very useful for us later, when we’ll derive the functional equation (3.8) for the
Mellin transform of the exponential functional in the special case ηt = µt + σBt. The main idea of
this Theorem comes from Proposition 2.1 in [9].

Theorem 1. Assume that ξ and η are as in (5.3) with bξ < 0. Then I(ξ, η) is well defined and its
law, hereafter denoted by m(dx), satisfies the following integral equation: for v > 0(

bξ

∫ ∞
v

m(dx)

)
dv +

σ2
ξ

2
vm(dv) +

(∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)

)
dv +

(∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)

)
dv

+

(
bη

∫ ∞
v

m(dx)

x

)
dv +

σ2
η

2

m(dv)

v
−
(
σ2
η

2

∫ ∞
v

m(dx)

x2

)
dv

+

(
1

v

∫ v

0

Π
(+)

η (v − x)m(dx)

)
dv +

(
1

v

∫ ∞
v

Π
(−)

η (x− v)m(dx)

)
dv (2.2)

−
(∫ ∞

v

1

w2

∫ w

0

Π
(+)

η (w − x)m(dx)dw

)
dv −

(∫ ∞
v

1

w2

∫ ∞
w

Π
(−)

η (x− w)m(dx)dw

)
dv = 0,

where all quantities in (2.2) are a.e. finite. Equation (2.2) for the law of I(ξ,−η) on (0,∞) describes
m(dx) on (−∞, 0).

Proof. See section 5, page 18.

The proof of Theorem 1 is based on the so-called generalized Ornstein-Uhlenbeck (GOU) process,
which is defined as

Ut = Ut(ξ, η) = xeξt + eξt
∫ t

0

e−ξs−dηs
d
= xeξt +

∫ t

0

eξs−dηs, for t > 0. (2.3)

Note that the GOU process is a strong Markov process, see [9, Appendix 1]. Lindner and Maller
[24] have shown that the existence of a stationary distribution for the GOU process is closely related
to the a.s. convergence of the stochastic integral

∫ t
0
eξs−dηs, as t → ∞. Necessary and sufficient

conditions for the convergence of I(ξ, η) were obtained by Erickson and Maller [13]. More precisely,
they showed that this happens if and only if

lim
t→∞

ξt = −∞ a.s. and

∫
R\[−e,e]

[
log |y|

1 +
∫ log |y|∨1

1
Πξ(R \ (−z, z))dz

]
Πη(dy) <∞. (2.4)

Under our assumptions, i.e. E|ξ1| <∞ and E|η1| <∞, we note that (2.4) is clearly satisfied. Hence

the stationary distribution satisfies U∞
d
= I(ξ, η) and this is the starting point of our proof.

The strategy of the proof of Theorem 1 consists of three steps. We first compute the generator
of U , here denoted by L(U). Next the stationary measure m(dx) satisfies the equation∫ ∞

0

L(U)f(x)m(dx) = 0, (2.5)

where f is any infinitely differentiable function with a compact support in (0,∞). Finally an appli-
cation of Schwartz theory of distributions after rephrasing (2.5) gives (2.2).
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We start by working out how the infinitesimal generator of U , i.e. L(U), acts on functions in
K ⊂ C0(R), where

K =
{
f(x) : f(x) ∈ C2

b (R), f(ex) ∈ C2
b (R) ∩ C0(R)

}
∩ { f(x) = 0, for x ≤ 0; f ′(0) = f ′′(0) = 0}

(2.6)
and C2

b (R) stands for two times differentiable, bounded functions with bounded derivatives on R and
C0(R) is the set of continuous functions vanishing at ±∞. Denote by L(ξ) and L(η) ( resp. Dξ and
Dη) the infinitesimal generators (resp. domains) of ξ and η. Note that

L(ξ)f(x) = bξf
′(x) +

σ2
ξ

2
f ′′(x) +

∫
R

(f(x+ y)− f(x)− yf ′(x)) Πξ(dy) (2.7)

= bξf
′(x) +

σ2
ξ

2
f ′′(x) +

∫
R+

f ′′(x+ w)Π
(+)

ξ (w)dw +

∫
R+

f ′′(x− w)Π
(−)

ξ (w)dw,

with a similar expression for L(η). The first formula in (2.7) is a trivial modification of the form of
the generator of Lévy process for the case when the cutoff function is h(x) ≡ 1, see [3, p 24], whereas
the second expression follows easily by integration by parts, the fact that f ∈ K and E|ξ1| < ∞.
Finally we are ready to state our result, which should strictly be seen as an extension of Proposition
5.8 in [9] where the generator L(U) has been derived under very stringent conditions.

Proposition 1. Let f ∈ K, g(x) := (xf ′(x)) and φ(x) := f(ex). Then, f ∈ Dη, φ ∈ Dξ and

L(U)f(x) = L(ξ)φ(lnx) + L(η)f(x)

= bξg(x) +
σ2
ξ

2
xg′(x) +

∫ x

0

g′(v)Π
(−)

ξ

(
ln
x

v

)
dv +

∫ ∞
x

g′(v)Π
(+)

ξ

(
ln
v

x

)
dv

+bηf
′(x) +

σ2
η

2
f ′′(x) +

∫ ∞
0

f ′′(x+ w)Π
(+)

η (w)dw +

∫ ∞
0

f ′′(x− w)Π
(−)

η (w)dw. (2.8)

where we recall that bξ = E[ξ1] and bη = E[η1].

Proof. See section 5, page 14.

The next result is an almost immediate corollary of Theorem 1, and in particular formula (2.2).
See also Corollary 3 for a stronger result in a particular case when σ2

η > 0.

Corollary 1. If σ2
ξ + σ2

η > 0 then m(dx) is absolutely continuous with continuous density k(x) on
R \ {0}.

Proof. See section 5, page 19.

3 Exponential functionals with respect to Brownian motion

with drift

In this section we study the special case when ηt = µt + σBt, so that the exponential functional is
defined as

Iµ,σ :=

∫ ∞
0

eξt−(µdt+ σdBt). (3.1)
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As we have discussed above, this exponential functional exists if E[ξ1] < 0. Everywhere in this section

we assume that σ > 0. Note that in this case Iµ,σ
d
= σIµ/σ,1, therefore it is sufficient to study the

exponential functional with σ = 1. Everywhere in this section we will write ψ(s) = ψξ(s) in order to
simplify the notation.

The following three quantities will be very important later

ρ := sup{z ≥ 0 : E
[
ezξ1
]
<∞},

ρ̂ := sup{z ≥ 0 : E
[
e−zξ1

]
<∞}, (3.2)

θ := sup{z ≥ 0 : E
[
ezξ1
]
≤ 1}.

In view of (2.1) it is clear that

ρ = sup{z ≥ 0 :

∫ ∞
1

ezxΠξ(dx) <∞}, ρ̂ = sup{z ≥ 0 :

∫ ∞
1

ezxΠξ(−dx) <∞}.

thus ρ > 0 (ρ̂ > 0) if and only if the measure Πξ(dx) has exponentially decaying positive (negative)
tail. In this case the Lévy-Khintchine formula (2.1) implies that the Laplace exponent ψ(z) can be
extended analytically in a strip −ρ̂ < Re(z) < ρ. At the same time, since E[ξ1] = ψ′(0) < 0 we see
that θ > 0 if and only if ρ > 0.

In the next Lemma we collect some simple analytical properties of the Laplace exponent ψ(z).

Lemma 1. Let ξ be Lévy process with a negative mean and ρ > 0. Then ψ(s) has no zeros in the
strip 0 < Re(s) < θ. Moreover if ξ has a non-lattice distribution and ψ(θ) = 0, then θ is the unique
zero of ψ(s) in the strip 0 < Re(s) ≤ θ and the unique real zero in the interval (0, ρ).

Proof. See section 5, page 19.

Next, let us introduce two other important objects

Jα =

∫ ∞
0

eαξtdt, and V =
J2

1

J2

. (3.3)

We will frequently use the following result, its proof follows immediately from Lemma 2.1 in [26]:

Proposition 2. For all z ∈ C in the strip −1 ≤ Re(z) < θ/α we have E [Jzα] <∞.

Our main object of interest is the probability density function of Iµ,σ, which we will denote by
k(x) = kµ,σ(x). In the next Lemma we collect some simple properties of kµ,σ(x).

Lemma 2. The law of Iµ,σ has a continuously differentiable density kµ,σ(x) which is given by

kµ,σ(x) =

∫∫
R2

+

1

σ
√

2πz
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz). (3.4)

Moreover, both functions kµ,σ(x) and k′µ,σ(x) are uniformly bounded on R and kµ,σ(x) is decreasing
on R+ for any µ ≤ 0.

Proof. See section 5, page 20.
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Our main tool for studying the properties of kµ,σ(x) will be the Mellin transform of Iµ,σ, which
is defined for Re(s) = 1 as

Mµ,σ(s) = E[(Iµ,σ)s−11{Iµ,σ>0}] =

∫ ∞
0

xs−1kµ,σ(x)dx. (3.5)

Later we will extend this definition for a wider range of s, but a priori it is not clear why this object
should be finite for Re(s) 6= 1. Also, this choice of truncated random variable may seem awkward,
since we only use the information about the density kµ,σ(x) for x ≥ 0. However, it is easy to see
that the Mellin transform Mµ,σ(s) uniquely determines kµ,σ(x) for x ≥ 0 while M−µ,σ(s) uniquely
determines kµ,σ(x) for x ≤ 0. This follows from the simple fact that kµ,σ(−x) = k−µ,σ(x) (clearly

Iµ,σ
d
= −I−µ,σ, see (3.1)). Moreover, later it will be clear that our definition of the Mellin transform

is in fact quite natural, since Mµ,σ(s) satisfies the crucial functional equation (3.8), which will lead
to a wealth of interesting information about kµ,σ(x).

As a first step in our study of the Mellin transform Mµ,σ(s) we obtain its analytic continuation
into a vertical strip in a complex plane.

Lemma 3. The function Mµ,σ(s) can be extended to an analytic function in the strip −1 < Re(s) <
1 + θ, except for a simple pole at s = 0 with residue k(0). Moreover, for all s in the strip −1 <
Re(s) < 1 + θ we have

Mµ,σ(s) =
k(0)

s
+

∫ 1

0

(k(x)− k(0))xs−1dx+

∫ ∞
1

k(x)xs−1dx, (3.6)

and for all s in the strip −1 < Re(s) < 0 it is true that

Mµ,σ(s) = −1

s

∫ ∞
0

xsk′(x)dx. (3.7)

Proof. See section 5, page 20.

The next theorem is our first main result in this section.

Theorem 2. Assume that θ > 0. Then for all s such that 0 < Re(s) < θ we have

ψ(s)

s
Mµ,σ(s+ 1) + µMµ,σ(s) +

σ2

2
(s− 1)Mµ,σ(s− 1) = 0. (3.8)

Proof. See section 5, page 22.

Remark 1. Note that the functional equation (3.8) is a more general version of the well-known
functional equation when σ = 0, see formula (2.3) in Maulik and Zwart, [26]. Nonetheless, the
derivation of (3.8) requires the integral equation (2.2) whereas the classical functional equation (2.3)
in [26] can be obtained by rather simple arguments.

Theorem 2 will prove crucial for applications. It allows to derive the analytical properties of the
Mellin transformMµ,σ(s) (such as its behaviour at the singularities and their precise location in the
complex plane) from the properties of the Laplace exponent ψ(s) itself. The next result serves to
illustrate these ideas.
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Corollary 2. Assume that θ > 0.

(i) The function Mµ,σ(s) can be analytically continued into the strip Re(s) ∈ (−1 − ρ̂, 1 + ρ).
Its only singularities in the strip −1 − ρ̂ < Re(s) < 1 + θ are the simple poles at the points
{−n : 0 ≤ n < 1 + ρ̂}.

(ii) If ξ has a non-lattice distribution and θ < ρ then Mµ,σ(s) has a simple pole at s = 1 + θ with
residue

R(θ) := − θ

ψ′(θ)

(
µMµ,σ(θ) +

σ2

2
(θ − 1)Mµ,σ(θ − 1)

)
. (3.9)

The only other singularities of Mµ,σ(s) in the strip 0 < Re(s) < 1 + ρ are poles of the form
ζ + n, where n ∈ N and ζ is a root of ψ(s) in the strip θ < Re(s) < ρ.

(iii) Consider the “boundary” case θ = ρ. Assume that ξ has a non-lattice distribution. If ψ(θ) < 0
then the function Mµ,σ(s) is continuous in the strip 0 < Re(s) ≤ 1 + θ. On the other hand, if
ψ(θ) = 0 and E [ξ2

1 exp(θξ1)] <∞, then the function Mµ,σ(s)−R(θ)/(s− 1− θ) is continuous
in the strip 0 < Re(s) ≤ 1 + θ.

Proof. See section 5, page 23.

In view of (3.4) it is clear that kµ,σ(x) depends on the joint distribution of J1 and J2. As we will
see later in Lemma 5, the Mellin transformMµ,σ(x) can be expressed in terms of the joint moments
E[Ju1 J

v
2 ]. The next Lemma presents several crucial results on the existence of joint moments of this

form. Recall that we have defined V = J2
1/J2.

Lemma 4.

(i) There exists ε > 0 such that
E
[
eεV
]
<∞. (3.10)

(ii) For any (u, s) ∈ R2 in the domain

D =
{
− 1 < s < 1 + θ, u ≤ 0

}
∪
{
s > 0;u > 0; u ≤ 1− s

}
we have

E
[
J−u1 J

1
2

(u+s−1)

2

]
<∞. (3.11)

The function (u, s) ∈ C2 7→ E
[
J−u1 J

1
2

(u+s−1)

2

]
is analytic as long as (Re(s),Re(u)) ∈ D and it

is uniformly bounded if (Re(s),Re(u)) belongs to a compact subset of D.

Proof. See section 5, page 24.

Now we are ready to present several integral expressions for the Mellin transformMµ,σ(s). These
expressions are interesting in their own right, but they will also lead to an important result about
the exponential decay of Mµ,σ(s) as Im(s)→∞ (Theorem 3 below). Note that due to the identity

Iµ,σ
d
= σIµ/σ,1 we haveMµ,σ(s) = σs−1Mµ/σ,1(s), therefore it is enough to state the results for σ = 1.
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Recall that the confluent hypergeometric function (see section 9.2 in [16] or chapter 6 in [11]) is
defined as

1F1(a, b, z) =
∑
n≥0

(a)n
(b)n

zn

n!
, (3.12)

where (a)n = a(a + 1) . . . (a + n − 1) is the Pochhammer symbol. Using the ratio test it is easy to
see that the series in (3.12) converges for all z ∈ C, thus 1F1(a, b, z) is an entire function of z.

Lemma 5.

(i) For −1 < Re(s) < 1 + θ

M0,1(s) =
2−

1
2

(s+1)Γ(s)

Γ
(

1
2
(s+ 1)

)E
[
J

1
2

(s−1)

2

]
. (3.13)

(ii) For µ < 0 and −1 < Re(s) < 1 + θ

Mµ,1(s) =M0,1(s) +
2−

1
2

(s+1)

2πi

∫
− 1

2
+iR

Γ(s)Γ(u)

Γ
(

1
2
(u+ s+ 1)

)E [J−u1 J
1
2

(u+s−1)

2

]
(2µ2)−

u
2 du. (3.14)

(iii) For µ > 0 and −1 < Re(s) < 1 + θ

Mµ,1(s) =
2−

1
2

(s−1)Γ(s)

Γ
(

1
2
(s+ 1)

)E
[
J

1
2

(s−1)

2 1F1

(
1− s

2
,
1

2
,−µ

2

2
V

)]
−M−µ,1(s). (3.15)

Proof. See section 5, page 28.

The next theorem is our second main result in this section and its estimate opens the way for the
application of powerful complex-analytical tools.

Theorem 3. For any µ ∈ R and any small number δ > 0 there exist constants A = A(µ, σ, δ) > 0
and B = B(µ, σ, δ) > 0 such that ∣∣Mµ,σ(s)

∣∣ ≤ Ae−B|Im(s)| (3.16)

for all s ∈ C such that Re(s) ∈ (−1 + δ, 1 + θ − δ) and |Im(s)| > 1.

Proof. See section 5, page 30.

Corollary 3. The function k(x) is infinitely differentiable on R \ {0} and k(x) ∈ C1(R).

Proof. See section 5, page 31.

Corollary 4. Assume that ρ̂ > 0 and θ > 0. For any µ ∈ R and any small number δ > 0 the
estimate (3.16) holds uniformly in the strip Re(s) ∈ (−1− ρ̂+ δ, 1 + θ − δ).

Proof. See section 5, page 32.

Theorem 3 is very important for several reasons. First of all, as we have seen in Corollary 3, it
implies smoothness of k(x) on R \ {0}. This should be compared with the case σ = 0, where it is
known that k(x) may be non-smooth on (0,∞). For example, if ξ has bounded variation and negative
linear drift µξ, then k(x) may be non-smooth at point −1/µξ, see Proposition 2.1 in [9] and remark
2 in [19]. Secondly, as we will see in the next section, Theorem 3 together with Theorem 2 will allow
us to use simple techniques from Complex Analysis, such as shifting the contour of integration in
the inverse Mellin transform, to prove rather strong results about the asymptotic behavior of k(x)
as x→ 0+ or x→ +∞.
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4 Applications

In this section we present several applications of the results obtained in the previous section. We are
still working under the same assumptions as in Section 3, i.e. we consider the exponential functional
Iµ,σ defined by (3.1) and assume that σ > 0.

Our main tools are the meromorphic extension ofMµ,σ, Tauberian theorems and Mellin inversion
with shifting of the contour of integration. We will also use the functional equation (3.8) and the
estimate (3.16) developed in Section 3. We derive some asymptotic results for k(x) as x → 0, see
Theorem 4, while in Theorem 5 we discuss the behaviour of P(Iµ,σ > x) and k(x) as x → ∞, thus
strengthening significantly some of the results of Lindner and Maller [24, Theorem 4.5] in this special
case when ηs = µs+ σBs. We note that under further assumptions much stronger results are within
reach for the asymptotic behaviour of P(Iµ,σ > x) and k(x) both as x → 0 and x → ∞. In order
to illustrate the techniques we choose to work with a rather simple but nevertheless very useful for
applications class of processes ξ which have hyper-exponential jumps (see [7, 8, 20]). The same results
can be easily generalized to more general class of Lévy processes with jumps of rational transform
(see [19]).

Finally we point out that P(Iµ,σ > x) can be associated to ruin probability for certain actuarial
models, see for example Theorem 4 in [1].

4.1 General results about asymptotic behavior of k(x)

Our first theorem in this section deals with the asymptotic behaviour of k(x) at zero. As usual, we
define the “floor” function as bxc = max{n ∈ Z : n ≤ x}. We recall that ρ̂ is defined by (3.2): if
ρ̂ > 0 then the Lévy measure of ξ has exponentially decaying negative tail with the rate of decay
equal to ρ̂.

Theorem 4. Assume that θ > 0 and ρ̂ > 0. Then for every integer m ≥ 0 and ε ∈ (0, 1) such that
m+ ε < 1 + ρ̂ we have

k(x) =
m∑
n=0

bn
n!
xn +O(xm+ε), as x→ 0, (4.1)

where the coefficients {bn}n≥0 are defined recursively: b0 = k(0), b−1 = 0 and

bn+1 =
2

σ2
(µbn − ψ(−n)bn−1) , for 0 ≤ n < ρ̂. (4.2)

In particular, k(x) ∈ C1+bρ̂c(R), and if ρ̂ = ∞ then k(x) ∈ C∞(R). Moreover, as Remark 5 shows
k′′(0) may fail to exist.

Proof. See section 5, page 32.

Remark 2. To the best of our knowledge this is the first general result on the behaviour of kµ,σ(x) as
x→ 0 in the case σ > 0. At the same time there are several recent results concerning such behaviour
when σ = 0, see [19, 21, 27].

Note that if the process ξ is spectrally positive, or more generally, if Πξ(dx) restricted to (−∞, 0)
has exponential moments of arbitrary order, then k(x) ∈ C∞(R).

Our next result provides an extensive account of the asymptotic behaviour of P(Iµ,σ > x) as
x→ +∞.
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Theorem 5. Assume that θ > 0 and ξ has a non-lattice distribution.

(i) If one of the following conditions is satisfied

(a) θ < ρ,

(b) θ = ρ, ψ(θ) = 0 and E[ξ2
1 exp(θξ1)] <∞,

then

P(Iµ,σ > x) = Cx−θ + o
(
x−θ
)
, x→ +∞, (4.3)

where C = −R(θ)/θ and R(θ) is defined in (3.9).

(ii) If θ = ρ and ψ(θ) < 0 then

P(Iµ,σ > x) = o
(
x−θ
)
, x→ +∞. (4.4)

Moreover, if µ ≤ 0 then the asymptotic expressions (4.3) and (4.4) can be differentiated and leads to
an asymptotic expression for k(x).

Proof. See section 5, page 33.

Remark 3. Note that, for all t > 0,

Iµ,σ =

∫ t

0

eξsdηs + eξtI ′µ,σ,

where I ′µ,σ
d
= Iµ,σ and I ′µ,σ independent of

(
eξt ,
∫ t

0
eξsdηs

)
. Recalling that in [24, Prop. 4.1 ; Theorem

4.5] the authors use −ξ for ξ in the definition of Iµ,σ, we point out that the authors supplement the
theory of random recurrent equations developed in [15] to deduce general results for the behaviour
of P (I(ξ, η) > x). For the case when ηt = µt+ σBt their result translates to

lim
x→∞

xθP (Iµ,σ > x) = C+ ≥ 0; lim
x→∞

xθP (Iµ,σ < −x) = C− ≥ 0; lim
x→∞

xθP (|Iµ,σ| > x) = C+ + C− > 0

under the conditions (following our notation) that either ρ > θ ≥ 1 or θ < 1 < ρ. Our assumptions
are much weaker, see (i) Theorem 5 and we also compute the constants C±.

Moreover, assuming µ ≤ 0, or otherwise working with I−µ,σ
d
= −Iµ,σ, one can show that −R(θ) >

0, thus C+ > 0 and hence C+ + C− > 0. To prove that −R(θ) > 0 we consider two cases: when
θ ≥ 1 this follows directly from (3.9) and the fact that ψ′(θ) > 0, and when θ ∈ (0, 1) this follows
from (3.9) and the fact that (θ− 1)Mµ,σ(θ− 1) > 0 (the latter is true due to (3.7) and the fact that
k(x) is decreasing, see Lemma 2).

Finally we note that, despite dealing with the asymptotics of I(ξ, η) for general η, the methodology
in [24] cannot seemingly be improved to yield stronger results for the special case when η is a Brownian
motion with drift.

Remark 4. The case when σ = 0 has been completely dealt with in [26, 30, 31]. We note
that the technique applied there again relies on the random recurrence equations studied in [15]
and the authors are able to obtain results in part (i), contidion (b) under the weaker assumption
E [ξ1 exp(θξ1)] < ∞. A recent paper by V. Rivero [32] addresses the case when the process ξ has
convolution equivalent Lévy measure, the main tools are fluctuation theory of Lévy processes and an
explicit path-wise representation of the exponential functional.
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4.2 Case study: processes with hyper-exponential jumps

In this section we will show how our methods can be extended to derive quite strong results about
the density of the exponential functional, provided that we impose additional restrictions on the
Lévy process ξ. In particular, we will need more information about the analytical structure of the
Laplace exponent ψ(z). Our purpose in this section is not to prove the most general results possible,
but rather to present the ideas and give the flavour of the results which can be derived.

Let us consider a simple (but very useful) class of processes having hyper-exponential jumps (see
[7, 8, 20]). In this case the Lévy measure of a process ξ is essentially a mixture of exponential
distributions

Πξ(dx) = 1{x>0}

N∑
n=1

ane
−ρnxdx+ 1{x<0}

N̂∑
n=1

âne
ρ̂nxdx. (4.5)

where all the constants an, ân, ρn, ρ̂n are strictly positive. Since λ = Πξ(R) < 0, the process ξ can be
represented as Brownian motion with drift plus a compound Poisson process

ξt = µξt+ σξWt +

N(λt)∑
n=1

Yi,

where N(t) is the standard Poisson process and Yi are i.i.d. random variables with distribution
P(Yi ∈ dy) = λ−1Πξ(dy).

Formula (4.5) implies that the Laplace exponent of a hyper-exponential process is a rational
function of the form

ψ(z) =
σ2
ξ

2
z2 + µξz + z

N∑
n=1

an
ρn(ρn − z)

− z
N̂∑
n=1

ân
ρ̂n(ρ̂n + z)

. (4.6)

For hyper-exponential processes, it is known (see [7, 20]) that equation ψ(z) = 0 has only real simple
solutions. Denote the positive solutions as {ζm}1≤m≤M , where we assume that they are arranged in
increasing order. It is also known that M = N+1 if (i) σξ > 0 or (ii) σξ = 0 and µξ > 0, and M = N
otherwise (see [19]). Note that in our previous notation (3.2) we have θ = ζ1, ρ = ρ1 and ρ̂ = ρ̂1.

Using this information about zeros and poles of ψ(z) and the functional equation (3.8) it is easy
to see that Mµ,σ(s) can be extended to a meromorphic function, with poles at the points

{ζm + n : m ≥ 1, 1 ≤ n ≤ N} ∪ {−ρ̂n −m : m ≥ 1, 1 ≤ n ≤ N̂} ∪ {−m : m ≥ 0}.

If we further assume that{
ζi − ζj /∈ Z for all 1 ≤ i, j ≤M and i 6= j,

ρ̂i /∈ N and ρ̂i − ρ̂j /∈ Z for all 1 ≤ i, j ≤ N̂ and i 6= j,
(4.7)

then it is clear that all the poles of Mµ,σ(s) are simple. Let us introduce the following notations

ci,j = − 1

(ζi)j
Res (Mµ,σ(s) : s = j + ζi) , 1 ≤ i ≤M, j ≥ 1,

bi,j = (1 + ρ̂i)jRes (Mµ,σ(s) : s = −j − ρ̂i) , 1 ≤ i ≤ N̂ , j ≥ 1,
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recall that (a)n = a(a+1) . . . (a+n−1) denotes the Pochhammer symbol. Our next goal is to compute
coefficients ci,j and bi,j in terms of the Mellin transform Mµ,σ(s). Let us fix i such that 1 ≤ i ≤ M .
Since ζi is a simple root of a rational function ψ(z) we have ψ(z) = ψ′(ζi)(z − ζi) + O((z − ζi)2) as
z → ζi. This fact and the functional equation (3.8) show that

ci,1 =
1

ψ′(ζi)

(
µMµ,σ(ζi) +

σ2

2
(ζi − 1)Mµ,σ(ζi − 1)

)
. (4.8)

Next, using the functional equation (3.8) and the same technique as in the proof of Theorem 4 we
obtain a recursion equation

ci,j+1 = − 1

ψ(j + ζi)

(
µci,j +

σ2

2
ci,j−1

)
, j ≥ 1, (4.9)

where we have defined ci,0 = 0. Next, let us fix i such that 1 ≤ i ≤ N̂ . Formula (4.6) implies
that ψ(z) has a simple pole at z = −ρ̂i with residue âi. Again, we use this fact and the functional
equation (3.8) to conclude that

bi,1 = − 2

σ2

âi
ρ̂i
Mµ,σ(1− ρ̂i), (4.10)

and

bi,j+1 =
2

σ2
(µbi,j − ψ(−j − ρ̂i)bi,j−1) , j ≥ 1, (4.11)

where we have defined bi,0 = 0. Recall that the coefficients bj = j!Res(Mµ,σ(s) : s = −j) can be
computed via the recurrence relation (4.2)

Our main result in this section is the following Theorem, which provides a complete asymptotic
expansion for k(x) as x → 0+ and at x → +∞. The corresponding expansions as x → 0− and
x→ −∞ can be obtained by considering k−µ,σ(x) = kµ,σ(−x).

Theorem 6. Assume that ξ is a process with hyper-exponential jumps (4.5) and that conditions (4.7)
are satisfied. Then for every c > 0

kµ,σ(x) =



∑
0≤j<c

bj
j!
xj +

N̂∑
i=1

∑
j≥1

1{j+ρ̂i<c}bi,j
xj+ρ̂i

(1 + ρ̂i)j
+O (xc) , as x→ 0+,

M∑
i=1

∑
j≥1

1{j+ζi<c}ci,j
(ζi)j
xj+ζi

+O
(
x−c
)
, as x→ +∞.

(4.12)

Proof. See section 5, page 33.

Remark 5. Note that if ρ̂ = ρ̂1 ∈ (0, 1) then the coefficient bi,1 defined by (4.10) is strictly negative.
Theorem 6 then shows that as x→ 0+ we have

k(x) = k(0) + k′(0)x+
bi,1

1 + ρ̂
x1+ρ̂ + o(x1+ρ̂),

which implies that in this case k′′(0) does not exist.
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We would also like to point out that if conditions (4.7) are not satisfied, then Mµ,σ(s) will have
multiple poles. This not a big problem, but it implies that the asymptotic expansions (4.12) will
contain terms of the form xα ln(x)k, where −α is the pole ofMµ,σ(s) and 0 ≤ k < multiplicity of the
pole α. Also, similar results to Theorem 6 can be derived for a more general class of Lévy processes,
for example for processes which have jumps of rational transform, see [19] for results in the case
σ = 0.

5 Proofs

Proof of Proposition 1. For the proof we use the definition of the infinitesimal generator and Itô’s
formula. Let f ∈ K and note that by definition

L(U)f(x) = lim
t→0

Ex [f(Ut)]− f(x)

t
= lim

t→0

1

t

(
E
[
f

(
xeξt +

∫ t

0

eξs−dηs

)]
− f(x)

)
. (5.1)

We apply Itô’s formula to f(Ut) using the fact that (Ut)t≥0 is a semimartingale and f ∈ K to obtain

f(Ut)− f(x) =

∫ t

0

f ′(Us−)dUs +
1

2

∫ t

0

f ′′(Us−)d[U,U ]cs +
∑
s≤t

(f(Us)− f(Us−)−∆Usf
′(Us−)) . (5.2)

Now, let Ht := eξt and Vt := x+
∫ t

0
e−ξs−dηs, and note that Ut = HtVt. Hence by integration by parts

Ut = x+

∫ t

0

Hs−dVt +

∫ t

0

Vs−dHs + [H, V ]t.

We recall that the Lévy processes ξ and η can be written, as follows

ξt = σξBt + bξt+Xt, ηt = σηWt + bηt+ Yt (5.3)

where B and W are Brownian motions, X and Y are pure jump zero mean martingales, bξ = E[ξ1],
bη = E[η1] and the processes B,W,X and Y are mutually independent. Then we get

Vt = x+ bη

∫ t

0

e−ξs−ds+ ση

∫ t

0

e−ξs−dWs +Nt,

where Nt =
∫ t

0
e−ξs−dYs is a pure jump local martingale. On the other hand using Itô’s formula, we

have

Ht = eξt = 1 +

∫ t

0

eξs−dξs +
1

2

∫ t

0

eξs−d[ξ, ξ]cs +
∑
s≤t

eξs−(e∆ξs −∆ξs − 1)

= 1 +

(
bξ +

σ2
ξ

2

)∫ t

0

eξs−ds+ σξ

∫ t

0

eξs−dBs + Ñt +
∑
s≤t

eξs−
(
e∆ξs −∆ξs − 1

)
,

where Ñs =
∫ t

0
eξsdXs is a pure jump local martingale. Therefore, we conclude that

[H,V ]t =

[
σξ

∫ t

0

e−ξs−dBs, ση

∫ t

0

e−ξs−dWs

]
t

+
∑
s≤t

∆Vs∆Hs = 0 a.s.,
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since ∆Vs = e−ξs−∆ηs, ∆Hs = Hs−(e∆ξs − 1) and the fact that ξ and η are independent and do not
jump simultaneously a.s. . This implies that

Ut = x+

∫ t

0

Hs−dVs +

∫ t

0

Vs−dHs = x+

∫ t

0

eξs−dVs +

∫ t

0

Vs−dHs.

Using the expressions of H and V , we deduce that

Ut = x+ bηt+ σηWt +

∫ t

0

eξs−dNs +

(
bξ +

σ2
ξ

2

)∫ t

0

Vs−e
ξs−ds

+ σξ

∫ t

0

Vs−e
ξs−dBs +

∫ t

0

Vs−dÑs +
∑
s≤t

Vs−e
ξs−
(
e∆ξs −∆ξs − 1

)
= x+Kt +Kc

t + bηt+

(
bξ +

σ2
ξ

2

)∫ t

0

Us−ds+
∑
s≤t

Us−
(
e∆ξs −∆ξs − 1

)
,

where

Kt =

∫ t

0

eξs−dNs +

∫ t

0

Vs−dÑs = Yt +

∫ t

0

Us−dXs,

Kc
t = σηWt + σξ

∫ t

0

Us−dBs.

From the definition of Kc, we get for the continuous part of the quadratic variation of U

[U,U ]ct = [Kc, Kc]t = σ2
ηt+ σ2

ξ

∫ t

0

U2
s−ds,

since B and W are independent. Putting all the pieces together in identity (5.2), we have

f(Ut)− f(x) = Mt + bη

∫ t

0

f ′(Us−)ds+

(
bξ +

σ2
ξ

2

)∫ t

0

f ′(Us−)Us−ds

+
∑
s≤t

f ′(Us−)Us−

(
e∆ξs −∆ξs − 1

)
+
σ2
η

2

∫ t

0

f ′′(Us−)ds+
σ2
ξ

2

∫ t

0

f ′′(Us−)U2
s−ds

+
∑
s≤t

(f(Us)− f(Us−)−∆Usf
′(Us−))

where M is a local martingale starting from 0 and M describes the integration with respect to K
and Kc in the expressions above. In fact using that f ∈ K implies that f(x) = 0, for x < 0, and
x|f ′(x)| + x2|f ′′(x)| < C(f) < ∞, we deduce that Mt is a proper martingale as all other terms in
the expression above have a finite absolute first moment. Furthermore applying the compensation
formula to the jump part of f(Ut) we get

E

[∑
s≤t

f ′(Us−)Us−
(
e∆ξs −∆ξs − 1

)]
= E

[∫ t

0

f ′(Us−)Us−

(∫
y∈R

(ey − y − 1)Πξ(dy)

)
ds

]
.
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Similarly, using the fact that ∆Us = ∆ηs when ∆ηs 6= 0 and ∆Us = Us−(e∆ξs − 1) when ∆ξs 6= 0
(see the definition of U) we get

E

[∑
s≤t

(f(Us)− f(Us−)−∆Us−f
′(Us−))

]
= E

[∫ t

0

∫
z∈R

(f(Us− + z)− f(Us−)− zf ′(Us−)) Πη(dz)ds

]
+E

[∫ t

0

∫
y∈R

(
f(Us−e

y)− f(Us−)−
(
ey − 1

)
f ′(Us−)Us−

)
Πξ(dy)ds

]
.

Finally, as f ∈ K, we derive

E
[
f(Ut)

]
− f(x) = bηE

[∫ t

0

f ′(Us−)ds

]
+

(
bξ +

σ2
ξ

2

)
E
[∫ t

0

f ′(Us−)Us−ds

]
+
σ2
η

2
E
[∫ t

0

f ′′(Us−)ds

]
+
σ2
ξ

2
E
[∫ t

0

f ′′(Us−)U2
s−ds

]
+ E

[∫ t

0

∫
z∈R

(
f(Us− + z)− f(Us−)− zf ′(Us−)

)
Πη(dz)ds

]
+ E

[∫ t

0

∫
y∈R

(
f(Us−e

y)− f(Us−)− yf ′(Us−)Us−

)
Πξ(dy)ds

]
.

and dividing by t, letting t go to 0 and recalling that Ũ0 = x a.s., we obtain for f ∈ K the identity

L(U)f(x) = bηf
′(x) +

(
bξ +

σ2
ξ

2

)
xf ′(x) +

σ2
η

2
f ′′(x) +

σ2
ξ

2
f ′′(x)x2

+

∫
z∈R

(
f(x+ z)− f(x)− zf ′(x)

)
Πη(dz) +

∫
y∈R

(
f(xey)− f(x)− yxf ′(x)

)
Πξ(dy), (5.4)

and therefore the infinitesimal generator of U satisfies

L(U)f(x) = L(ξ)φ(lnx) + L(η)f(x).

In order to finish the proof one only has to apply integration by parts.

The following Lemma will be needed for the proof of Theorem 1.

Lemma 6. Let ξ and η be as in Theorem 1 and m(dv) be the law of I(ξ, η). Let ν(dv) denote the
measure in the left-hand side of formula (2.2). Then |ν|(dv) and hence ν(dv) define finite measures
on any compact subset of (0,∞) and for any a > 0

lim
z→∞

z−1|ν| ((a, z)) = 0. (5.5)

Proof of Lemma 6. We only need to prove (5.5), as the finiteness of |ν|(dv) on compact subsets of
(0,∞) follows from (5.5). It is sufficient to show the claims for 1 ≥ a > 0. We integrate every term
on the left-hand side of (2.2) from a to z and divide by z showing that the limit goes to zero, as
z →∞. We first note that

lim
z→∞

z−1

∫ z

a

xm(dx) = 0 and lim
z→∞

z−1

∫ z

a

m(dx)

x
≤ lim

z→∞
(az)−1

∫ ∞
a

m(dx) = 0.

Hence,

lim
z→∞

z−1

∫ z

a

∫ ∞
v

m(dx)dv ≤ lim
z→∞

(
z−1

∫ z

a

xm(dx) +

∫ ∞
z

m(dx)

)
= 0,
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z→∞
z−1

∫ z

a

∫ ∞
v

m(dx)

x
dv = 0 and lim

z→∞
z−1

∫ z

a

∫ ∞
v

m(dx)

x2
dv = 0.

So far, we have checked that the terms in (2.2) that do not depend on the tail of the Lévy measure
vanish under the transformation we made, as z →∞. Now, we turn our attention to the terms that
involve the Lévy measure of ξ. When we’ll be dealing with these integrals, the main trick that we
will use is to change the order of integration. First we check that

lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv

≤ lim sup
z→∞

z−1

(∫ z

a

∫ ev

v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv

)
+ lim sup

z→∞
z−1

(
Π

(−)

ξ (1)

∫ z

a

m(ev,∞)dv

)
= lim sup

z→∞
z−1

∫ z

a

∫ ev

v

Π
(−)

ξ

(
ln
x

v

)
m(dx)dv ≤ lim sup

z→∞
z−1

∫ ez

a

∫ x

x/e

Π
(−)

ξ

(
ln
x

v

)
dv m(dx)

=

[∫ 1

0

Π
(−)

ξ (w)e−wdw

]
× lim sup

z→∞
z−1

∫ ez

a

xm(dx) = 0

where we have applied Fubini’s Theorem, a change of variables w = ln(x/v) and we have used

the finiteness of E[|ξ1|] and henceforth the finiteness of the quantities
∫ 1

0
Π

(−)

ξ

(
w
)

exp(−w)dw and

Π
(+)

ξ (1).

Next using Fubini’s Theorem and the monotonicity of Π
(+)

ξ , we note that for any positive number
b,

lim sup
z→∞

z−1

∫ z

a

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)dv

≤ lim sup
z→∞

z−1

∫ z

0

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)dv = lim sup

z→∞
z−1

∫ z

0

x

∫ ln(z/x)

0

Π
(+)

ξ

(
w
)
ewdwm(dx)

≤ lim sup
z→∞

z−1

(∫ b

0

Π
(+)

ξ

(
w
)
ewdw

∫ z

0

xm(dx) +

∫ z

0

x

∫ ln(z/x)∨b

b

Π
(+)

ξ

(
w
)
ewdwm(dx)

)
≤ Π

(+)

ξ

(
b
)
.

Since Π
(+)

(b) decreases to zero as b increases, we see that

lim
z→∞

z−1

∫ z

a

∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx) dv = 0.

Since η has a finite mean and m is a finite measure

lim sup
z→∞

z−1

∫ z

a

1

v

∫ v

0

Π
(+)

η (v − x)m(dx) dv

≤ lim sup
z→∞

z−1

(
Π

(+)

η (a) ln
(z
a

)
+

∫ z

a

1

v

∫ v

v−a
Π

(+)

η (v − x)m(dx) dv

)
= lim sup

z→∞
z−1

(∫ z

0

m(dx)

∫ (x+a)∧z

a∨x
Π

(+)

η (v − x)
dv

v

)

≤
[∫ a

0

Π
(+)

η (s)ds

]
× lim

z→∞
(az)−1

∫ z

0

m(dx) = 0.
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Similarly, we estimate the following integral

lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

1

w2

∫ w

0

Π
(+)

η (w − x)m(dx) dw dv

≤ lim sup
z→∞

z−1

(
Π

(+)

η (a) ln
(z
a

)
+

∫ z

a

∫ ∞
v

1

w2

∫ w

w−a
Π

(+)

η (w − x)m(dx) dw dv

)
= lim sup

z→∞
z−1

∫ z

a

∫ ∞
v−a

∫ x+a

v∨x

1

w2
Π

(+)

η (w − x)dwm(dx) dv

≤
[∫ a

0

Π
(+)

η (s)ds

]
× lim sup

z→∞
z−1

∫ z

a

1

v2
m(v − a,∞) dv = 0.

As for the remaining two integrals, we split the innermost integrals at the point where Π
(−)

η (x−

v) = Π
(−)

η (a) and similarly estimate the resulting two terms to get

lim sup
z→∞

z−1

∫ z

a

1

v

∫ ∞
v

Π
(−)

η (x−v)m(dx) dv = lim sup
z→∞

z−1

∫ z

a

∫ ∞
v

1

w2

∫ ∞
w

Π
(−)

η (x−w)m(dx)dwdv = 0.

Thus we verify (5.5) and conclude the proof of our lemma.

Proof of Theorem 1. We proceed with the second step of our proof. Take an infinitely differentiable
function f with compact support in (0,∞) and let g(x) := xf ′(x). We use (2.5), (2.8), and the
identity g(x) =

∫ x
0
g′(v)dv to get,∫ ∞

0

L(ξ)φ(lnx)m(dx) =

∫ ∞
0

g(x)

x
m(dx) +

σ2
ξ

2

∫ ∞
0

xg′(x)m(dx) + bξ

∫ ∞
0

g(x)m(dx)

+

∫ ∞
0

∫ x

0

g′(v)Π
(−)

ξ

(
ln
x

v

)
dvm(dx) +

∫ ∞
0

∫ ∞
x

g′(v)Π
(+)

ξ

(
ln
v

x

)
dvm(dx)

=

∫ ∞
0

g′(v)

(∫ ∞
v

m(dx)

x

)
dv +

∫ ∞
0

g′(v)

(
bξ

∫ ∞
v

m(dx)

)
dv

+

∫ ∞
0

g′(v)

(
σ2
ξ

2
vm(dv)

)
+

∫ ∞
0

g′(v)

(∫ ∞
v

Π
(−)

ξ

(
ln
x

v

)
m(dx)

)
dv

+

∫ ∞
0

g′(v)

(∫ v

0

Π
(+)

ξ

(
ln
v

x

)
m(dx)

)
dv =: (g′, F1),

where the interchange of integrals is permitted due to claims of Lemma 6.
Next, substituting f ′(x) = g(x)/x and f ′′(x) = g′(x)/x− g(x)/x2, we get∫ ∞

0

L(η)f(x)m(dx) = bη

∫ ∞
0

g(x)

x
m(dx) +

σ2
η

2

∫ ∞
0

(
g′(x)

x
− g(x)

x2

)
m(dx)

+

∫ ∞
0

∫ ∞
0

(
g′(x+ w)

x+ w
− g(x+ w)

(x+ w)2

)
Π

(+)

η (w)dwm(dx)

+

∫ ∞
0

∫ ∞
0

(
g′(x− w)

x− w
− g(x− w)

(x− w)2

)
Π

(−)

η (w)dwm(dx).
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Again, using the identity g(x) =
∫ x

0
g′(v)dv and the fact that g is a function with compact support

on (0,∞), we get after careful calculations and an appeal again to Lemma 6 for interchange of
integration∫ ∞

0

L(η)f(x)m(dx) = bη

∫ ∞
0

g′(v)

∫ ∞
v

m(dx)

x
dv +

σ2
η

2

(∫ ∞
0

g′(x)
m(dx)

x
−
∫ ∞

0

g′(v)

∫ ∞
v

m(dx)

x2
dv

)
+

∫ ∞
0

g′(v)
1

v

∫ v

0

Π
(+)

η (v − x)m(dx)dv −
∫ ∞

0

g′(w)

∫ ∞
w

1

v2

∫ v

0

Π
(+)

η (v − x)m(dx)dvdw

+

∫ ∞
0

g′(v)
1

v

∫ ∞
v

Π
(−)

η (x− v)m(dx)dv −
∫ ∞

0

g′(w)

∫ ∞
w

1

v2

∫ ∞
v

Π
(−)

η (x− v)m(dx)dvdw

:= (g′, F2).

We arrange the above expressions in the form
∫
g′(x)ν(dx), where ν(dx) := F1(dx) + F2(dx) is the

same as in Lemma 6. From Lemma 6 we conclude that ν(dx) defines a finite measure on every
compact subset of (0,∞) and henceforth we consider it as a distribution in Schwartz sense. Thus we
get

0 =

∫ ∞
0

L(U)f(x)m(dx) = (g′, ν) = (g, ν ′) = (xf ′, ν ′) = (f ′, xν ′) = (f, (xν ′)′) ,

for each infinitely differentiable function f with a compact support in (0,∞) and derivatives in the
sense of Schwartz. Therefore using Schwartz theory of distributions for the distribution ν(dx), we
get that xν ′(dx) = Cdx and subsequently

ν(dx) = (C lnx+D) dx.

Next, we show that C = D = 0. Note that from (5.5) for a = 1 we have limz→+∞ z
−1
∫ z

1
ν(dv) = 0.

Comparing this with

0 = lim
z→+∞

z−1

∫ z

1

(C lnx+D)dx = lim
z→+∞

(C ln z − C +D)

we verify that C = D = 0. Thus the proof of Theorem 1 is complete.

Proof of Corollary 1. The absolute continuity of I(ξ, η) and boundedness of its derivative on compact
subsets of (0,∞), when σ2

ξ+σ2
η > 0 is immediate from (2.2). Put m(dx) = k(x)dx. To show continuity

we note that immediately all integral terms in (2.2) are continuous but the ones involving Π
(+)

ξ and

Π
(−)

ξ . Fix v > 0 and v/4 > a > 0 note that, for any h ∈ R such that |h| < v/4 we have∫ v+h

0

Π
(+)

ξ

(
ln
v + h

x

)
k(x)dx =

∫ v+h−a

0

Π
(+)

ξ

(
ln
v + h

x

)
k(x)dx+

∫ v+h

v+h−a
Π

(+)

ξ

(
ln
v + h

x

)
k(x)dx.

As Π
(+)

ξ is continuous and decreasing we verify the dominated convergence theorem applies, as h→ 0,

by bounding Π
(+)

ξ in the first term and k(x) in the second. This shows that all integral terms in (2.2)

are continuous in v and hence k(v) is continuous. The computation for Π
(−)

ξ is the same whereas for
v < 0 we study I(ξ,−η) with the same effect.
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Proof of Lemma 1. Assume that 0 < Re(s) < θ. Since

eRe(ψ(s)) =
∣∣E [esξ1]∣∣ ≤ E

[
eRe(s)ξ1

]
= eψ(Re(s))

we conclude that Re(ψ(s)) ≤ ψ(Re(s)) < 0, therefore ψ(s) 6= 0 in the strip 0 < Re(s) < θ.
Next, assume that ψ(θ + iy) = 0 for some y 6= 0 and ξ has a non-lattice distribution. Then the

characteristic function of the probability measure eθvP(ξ1 ∈ dv) is equal to one at y, therefore it has
to be a lattice distributed probability measure, see [33, p 306, Theorem 5] which contradicts our
assumption.

In order to prove that θ is the unique real zero of ψ(s) on the interval (0, ρ) we note that the first
formula in (2.1) implies that

ψ′′(s) = σ2
ξ +

∫
R
x2esxΠξ(dx) > 0,

therefore ψ(s) is convex on (0, ρ) and it has at most one positive root at θ.

Proof of Lemma 2. Expression (3.4) follows by a simple conditioning on ξ and the fact that∫ ∞
0

ef(t)(µdt+ σdBt) ∼ N

(
µ

∫ ∞
0

ef(s)ds;σ2

∫ ∞
0

e2f(s)ds

)
,

where N(a, b) denotes a normal random variable with mean a and variance b. The continuity of

kµ,σ(x) follows from the Dominated Convergence Theorem and the fact that E
[
J
− 1

2
2

]
< ∞, see

Proposition 2.
Next, we observe that the function |v|e−v2 is bounded on R and therefore for some C > 0 we have∣∣∣∣ ∫∫

R2
+

(x− µy)

σ3
√

2πz3
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz)

∣∣∣∣ ≤ CE[J−1
2 ] <∞,

where the last inequality follows from Proposition 2. This shows that we can differentiate the right-
hand side of (3.4) and obtain

k′µ,σ(x) = −
∫∫
R2

+

(x− µy)

σ3
√

2πz3
e−

(x−µy)2

2zσ2 P(J1 ∈ dy; J2 ∈ dz), (5.6)

and from the above discussion it follows that |k′µ,σ(x)| ≤ CE[J−1
2 ] < ∞ for all x ∈ R. Finally, for

µ ≤ 0 and x > 0 we check that k′µ,σ(x) < 0 (see (5.6)), therefore kµ,σ(x) is decreasing.

Proof of Lemma 3. First of all, since k(x) is a probability density, it is integrable on [0,∞). Also,
due to Lemma 2 we know that k(x) = k(0) + k′(0)x + o(x) as x → 0+, these two facts imply that
Mµ,σ(s) exists for all s in the strip 0 < Re(s) ≤ 1.

Next, one can check that identity (3.6) is valid for s in the strip 0 < Re(s) ≤ 1. Since k(x)−k(0) =
k′(0)x+o(x) as x→ 0+ we see that the first integral in the right-hand side of (3.6) extends analytically
into the larger strip −1 < Re(s) < 1, while the second integral is analytic in the half-plane Re(s) < 1.
Thus (3.6) provides an analytic continuation ofMµ,σ(s) into the strip −1 < Re(s) < 1 and it is clear
that Mµ,σ(s) has a simple pole at s = 0 with the residue k(0).
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Next, we note that for −1 < Re(s) < 0 we have∫ ∞
1

k(x)xs−1dx =

∫ ∞
1

(k(x)− k(0))xs−1dx− k(0)

s
.

Combining this expression with (3.6) and applying integration by parts we obtain (3.7).
If θ = 0 then the proof is finished, however if θ > 0 we still have to prove that Mµ,σ(s) <∞ for

1 < s < 1 + θ, and this requires a little bit more work. We will use the parabolic cylinder function,
which is defined as

Dp(z) = 2
p
2 e−

z2

4

[ √
π

Γ
(

1−p
2

)1F1

(
−p

2
,
1

2
;
z2

2

)
+

√
2πz

Γ
(
−p

2

)1F1

(
1− p

2
,
3

2
;
z2

2

)]
, (5.7)

where 1F1(a, b; z) is the confluent hypergeometric function defined by (3.12). Note that the parabolic
cylinder function is analytic function of p and z. See sections 9.24-9.25 in [16] for more information
on the parabolic cylinder function. We will prove that Mµ,1(s) exists for all s in the strip Re(s) ∈
(0, 1 + θ) and everywhere in this strip we have

Mµ,1(s) =
Γ(s)√

2π
E
[
J
s−1
2

2 e−
µ2

4
VD−s

(
−µ
√
V
)]

. (5.8)

Let us assume first that Re(s) = 1. Then using (3.4) and (3.5) we conclude that

Mµ,1(s) = E
[∫ ∞

0

xs−1 1√
2πJ2

e
− (x−µJ1)2

2J2 dx

]
=

1√
2π

E
[
e−

µ2

2
V

∫ ∞
0

xs−1e
− 1

2J2
x2+

µJ1
J2

x
dx

]
.

Performing the change of variables x = u
√
J2 and using the following integral identity (formula

9.241.2 in [16]) ∫ ∞
0

us−1e−
u2

2
−uzdu = Γ(s)e

z2

4 D−s(z), Re(s) > 0,

we obtain equation (5.8).
Thus we have established that (5.8) is true for all s on the vertical line Re(s) = 1. Now we will

perform analytical continuation into the larger domain. Formulas 9.246 in [16] give us the following
asymptotic expansions: for z ∈ R

D−s(z) =

O
(
z−se−

z2

4

)
, z → +∞,

O
(
z−se−

z2

4

)
+O

(
zs−1e

z2

4

)
, z → −∞.

Assume that µ < 0 and s ∈ (0, 1 + θ) or µ > 0 and s ∈ (0, 1). Then from (5.9) and the fact
that Ds(z) is a continuous function of z we find that there exists a constant C1 > 0 such that

|e−µ
2

4
zD−s (−µ

√
z) | < C1 for all z > 0. Therefore from (5.8) we conclude that

|Mµ,1(s)| < C1
Γ(s)√

2π
E
[
J
s−1
2

2

]
,

and the right-hand side is finite if s ∈ (0, 1 + θ), see Proposition 2.
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Next, when µ > 0 and s ∈ (1, 1 + θ), we again use (5.9) and the fact that Ds(z) is continuous in z

to conclude that there exists C2 > 0 such that |e−µ
2

4
zD−s (−µ

√
z) | < C2z

s−1
2 for all z > 0. Therefore,

from (5.8) we conclude that

|Mµ,1(s)| < C2
Γ(s)√

2π
E
[
J
s−1
2

2 V
s−1
2

]
= C2

Γ(s)√
2π

E
[
Js−1

1

]
,

and the right-hand side is finite if s ∈ (1, 1 + θ), see Proposition 2.

Proof of Theorem 2. Setting Πη ≡ 0 in (2.2) we find that k(x) satisfies the following integral equation

σ2
ξ

2
F1(k; v) + bξF2(k; v) + F3(k; v) + F4(k; v) + µF5(k; v) +

σ2

2
F6(k; v) = 0, (5.9)

where we have defined F1(k; v) = k(v) and

F2(k; v) =
1

v

∫ ∞
v

k(x)dx, F3(k; v) =
1

v

∫ ∞
v

Π
(−)

ξ

(
ln
(x
v

))
k(x)dx,

F4(k; v) =
1

v

∫ v

0

Π
(+)

ξ

(
ln
(v
x

))
k(x)dx, F5(k; v) =

1

v

∫ ∞
v

k(x)

x
dx, (5.10)

F6(k; v) =
1

v

[
k(v)

v
−
∫ ∞
v

k(x)

x2
dx

]
.

Our plan is to compute the Mellin transform of each term in (5.9). Assume first that 1 < Re(s) <
1 + min{1, θ}. According to Lemma 3, the Mellin transform of the first term exists in this strip and
is equal to Mµ,σ(s).

Let us compute the Mellin transform of the second term. We use integration by parts and obtain
for all y > 0 ∫ y

0

vs−1F2(k; v)dv =
1

s− 1
ys−1

∫ ∞
y

k(x)dx+
1

s− 1

∫ y

0

vs−1k(v)dv. (5.11)

As y → +∞ the first term in the right-hand side of the above equation goes to zero (this follows
from the fact that the k(x)xs−1 is absolutely integrable on (0,∞)), thus we conclude that the Mellin
transform of F2(k; v) is equal toMµ,σ(s)/(s− 1). In exactly the same way one finds that the Mellin
transform of F5(k; v) is equal to Mµ,σ(s− 1)/(s− 1).

Let us consider the third term F3(k; v). Performing the change of variables x 7→ yv we find that

F3(k; v) =

∫ ∞
1

Π
(−)

ξ (ln(y)) k(yv)dy.

Therefore the Mellin transform of F3(k; v) is given by∫ ∞
0

vs−1F3(k; v)dv =

∫ ∞
1

Π
(−)

ξ (ln(y))

∫ ∞
0

vs−1k(yv)dvdy

=

[∫ ∞
1

Π
(−)

ξ (ln(y)) y−sdy

]
×Mµ,σ(s) =

[∫ ∞
0

Π
(−)

ξ (u)e−(s−1)udu

]
×Mµ,σ(s),

where we have used Fubini’s theorem in the first step, performed change of variables v 7→ z/y in the
second step and applied change of variables y 7→ exp(u) in the last step.
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In exactly the same way we find that the Mellin transform of F4(k; v) is equal to∫ ∞
0

vs−1F4(k; v)dv =

[∫ ∞
0

Π
(+)

ξ (u)e(s−1)udu

]
×Mµ,σ(s).

Finally, let us consider the sixth term F6(k; v). Using integration by parts and the fact that k(x)
is bounded we find that

F6(k; v) = −1

v

∫ ∞
v

k′(x)

x
dx. (5.12)

Since k′(x) is uniformly bounded on [0,∞) we conclude that F6(k; v) = O(ln(v)/v), as v → 0+, and
from (5.10) we see that F6(k; v) = O(1/v2), as v → +∞. This shows that the Mellin transform of
F6(k; v) exists for 1 < Re(s) < 1 + min{1, θ}. Using (5.12) and integration by parts we find that for
0 < v0 < v1 <∞∫ v1

v0

vs−1F6(k; v)dv =
vs1

s− 1
F6(k; v1)− vs0

s− 1
F6(k; v0)− 1

s− 1

∫ v1

v0

vs−2k′(v)dv. (5.13)

From the above discussion we find that the first (second) term in right-hand side of (5.13) converges
to zero as v1 → +∞ (v0 → 0+), therefore from (3.7) and (5.13) we conclude that for 1 < Re(s) <
1 + min{1, θ} the Mellin transform of F6(k; v) is given by∫ ∞

0

vs−1F6(k; v)dv = − 1

s− 1

∫ ∞
0

vs−2k′(v)dv =
s− 2

s− 1
Mµ,σ(s− 2).

Collecting all the terms in (5.9) we see that for all s in the strip 1 < Re(s) < 1 + min{1, θ} we
have

σ2
ξ

2
Mµ,σ(s) +

bξ
s− 1

Mµ,σ(s) +

[∫ ∞
0

Π
(−)

ξ (u)e−(s−1)udu+

∫ ∞
0

Π
(+)

ξ (u)e(s−1)udu

]
×Mµ,σ(s)

+
µ

s− 1
Mµ,σ(s− 1) +

σ2

2

s− 2

s− 1
Mµ,σ(s− 2) = 0.

Formula (3.8) follows from the above equation by changing variables s 7→ s−1 and applying formula
(2.1). This ends the proof in the case θ ∈ (0, 1). If θ > 1 then (3.8) can be extended from the strip
0 < Re(s) < min{1, θ} to 0 < Re(s) < θ by analytic continuation.

Proof of Corollary 2. The proof of parts (i) and (ii) follows easily from Theorem 2 and Lemmas 1
and 3.

Let us prove (iii). If ψ(θ) < 0 we use the same argument as in the proof of Lemma 1 and conclude
that Re(ψ(s)) ≤ ψ(Re(s)) = ψ(θ) < 0 on the line Re(s) = θ; this fact and Lemma 1 imply that
ψ(s) 6= 0 in the strip 0 < Re(s) ≤ θ. Since ψ(θ) < 0 we can use (2.1) and the dominated convergence
theorem to show that ψ(s) is continuous in the strip 0 < Re(s) ≤ θ. These two facts and the
functional equation (3.8) show that Mµ,σ(s) is continuous in the strip 0 < Re(s) ≤ θ.

Finally, let us consider the case when θ = ρ and ψ(θ) = 0. Condition E[ξ2
1 exp(θξ1)] < ∞ and

the dominated convergence theorem show that ψ(s), ψ′(s) and ψ′′(s) are continuous functions in the
strip 0 < Re(s) ≤ θ. Again, using (2.1) and the dominated convergence theorem one can check that
as s→ θ in the strip 0 < Re(s) ≤ θ it is true that

H(s) :=
1

ψ(s)
− 1

ψ′(θ)(s− θ)
→ −1

2

ψ′′(θ)

ψ′(θ)2
<∞. (5.14)
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Note that ψ′(θ) > 0 due to the convexity of ψ(s) on the interval 0 < s < ρ. Lemma 1 and the fact
that ξ has non-lattice distribution guarantee that the only zero of ψ(s) in the strip 0 < Re(s) ≤ θ is
at s = θ. From here and from (5.14) we see that the function H(s) defined in (5.14) is continuous in
the strip 0 < Re(s) ≤ θ.

Let us define

F (s) = −s
(
µMµ,σ(s) +

σ2

2
(s− 1)Mµ,σ(s− 1)

)
.

It is clear from Lemma 3 that F (s) is analytic in some neighbourhood of the line Re(s) = θ, thus the
function G(s) = (F (s) − F (θ))/(s − θ) is also analytic in the neighbourhood of the line Re(s) = θ.
Next, we use the functional equation (3.8) in the formMµ,σ(s+1) = F (s)/ψ(s) and after rearranging
the terms we find

Mµ,σ(s+ 1)− F (θ)

ψ′(θ)

1

s− θ
= F (s)H(s) +

G(s)

ψ′(θ)
.

From the above discussion it is clear that the function in the right-hand side is continuous in the
strip 0 < Re(s) ≤ θ, which ends the proof of part (iii).

Proof of Lemma 4. Let us prove (i). Denote by J1(t) =
∫ t

0
eξsds and J2(t) =

∫ t
0
e2ξsds. It is clear

that J1(0) = J2(0) = 0 and that both J1(t) and J2(t) are continuous in t. Since

d

dt
J2

1 (t)

∣∣∣∣
t=0

= 0 and
d

dt
J2(t)

∣∣∣∣
t=0

= 1 (5.15)

we conclude that for every x > 0 with probability one there exists ε > 0 such that J2
1 (t) < xJ2(t) for

0 < t < ε. This fact and the continuity of J1(t) and J2(t) imply that

g(x) := P (Tx <∞) ≥ P(J2
1 > xJ2), (5.16)

where we have denoted Tx = inf{t > 0 : J2
1 (t)/J2(t) = x} and as usual we assume that inf{∅} = +∞.

We aim to show that for all x > 0 we have g(2x) ≤ g2(x).
From the (5.15) we know that J2

1 (t)/J2(t) → 0 as t → 0+. This fact and the continuity of J1(t)
and J2(t) imply that P(Tx = 0) = 0 for all x > 0 and Tx < Ty a.s. for y > x. Using the inequality
2a2 + 2b2 ≥ (a+ b)2 we get that

2 (J1(Tx + t)− J1(Tx))
2 + 2J2

1 (Tx) ≥ J2
1 (Tx + t),

and we estimate

g(2x) = P(T2x <∞) = P
(
Tx <∞;∃ t > 0 : J1(Tx + t)2 = 2xJ2(Tx + t)

)
≤

P
(
Tx <∞;∃ t > 0 : 2 (J1(Tx + t)− J1(Tx))

2 + 2J2
1 (Tx) = 2xJ2(Tx + t)

)
.

Since J2
1 (Tx) = xJ2(Tx) we obtain from the above inequality

g(2x) ≤ P
(
Tx <∞; ∃ t > 0 : (J1(Tx + t)− J1(Tx))

2 = x(J2(Tx + t)− J2(Tx))
)

=

P
(
Tx <∞;∃ t > 0 : e2ξTx J̃2

1 (t) = xe2ξTx J̃2(t)
)

= g2(x),
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where J̃i are the exponential functionals based on ξ̃t = ξTx+t − ξTx and we have used the fact that
the process {ξ̃t}t≥0 is independent of FTx . Thus we have obtained the key inequality g(2x) ≤ g2(x).

Next, let us prove that there exists x∗ > 0 such that g(x∗) < 1. Assume that the converse is
true, that is g(x) = 1 for all x > 0, in particular, g(n) = 1 for all n ≥ 1. Let An = {∃ t > 0 :
J1(t)2 = nJ2(t)}. Since P(An) = 1 for all n ≥ 1, we conclude that P(∩n≥1An) = 1. This implies that
with probability one there exists a strictly increasing random sequence of positive numbers {tn}n≥1

such that J2
1 (tn) = nJ2(tn). Since J2(tn) is an increasing sequence we conclude that as n → +∞

we have P(J1(tn)2 → +∞) = 1, and due to the fact that J1(tn) ≤ J1 we arrive at a contradiction
P(J1 =∞) = 1.

Thus we have proved that there exists x∗ > 0 such that g(x∗) < 1. For x > x∗ let us define
N > 0 to be the unique integer number such that 2N ≤ x/x∗ < 2N+1. Applying the inequality
g(x) < g(x/2)2 exactly N times we obtain g(x) ≤ g(x/2N)2N . Using the fact that g(x) is a decreasing
function and that x∗ ≤ x/2N we conclude that g(x) ≤ g(x∗)2N , and since x/(2x∗) < 2N we see that
for all x > x∗

g(x) < e−cx,

where c = − ln(g(x∗))/(2x∗) > 0. This fact and (5.16) imply that P(V > x) < exp(−cx) for all
x > x∗, thus (3.10) is true for any ε ∈ (0, c). This ends the proof of part (i).

Let us prove (ii). Assume first that u ≤ 0. Then using Holder inequality we get

E
[
J−u1 J

1
2

(u+s−1)

2

]
= E

[
V −

u
2 J

1
2

(s−1)

2

]
≤
(
E
[
V −

u
2
p
]) 1

p

(
E
[
J
q
2

(s−1)

2

]) 1
q
.

From part(i) we know that V has finite positive moments of all orders. Then it suffices to choose
q = 2(1− s)−1 for −1 < s < 0, q = 2 for 0 ≤ s ≤ 1 and q = 1

2
+ θ

2(s−1)
for 1 < s < 1 + θ to conclude

that (3.11) holds.
Assume next 0 < s < 1, u > 0 and u ≤ 1− s. Then with p = u−1 and q = (1− u)−1 we have

E
[
J−u1 J

1
2

(u+s−1)

2

]
≤
(
E
[
J−1

1

])u(E
[
J

1
2

(−1+ s
1−u )

2

])1−u

<∞,

due to Proposition 2 and the fact that
(
−1 + s

1−u

)
∈ (−1, 0].

The following technical result will be needed in the proof of Lemma 5.

Lemma 7.

(i) For every ε > 0 and a < b there exists C = C(ε, a, b) > 0 such that∣∣Γ(x+ iy)
∣∣ < Ce−(π2−ε)|y|

for all a < x < b and |y| > 1.

(ii) For every ε > 0 and a < b there exists C = C(ε, a, b) > 0 such that∣∣Γ(x+ iy)
∣∣ > Ce−(π2 +ε)|y|

for all a < x < b and y ∈ R.
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Proof. We start with the following asymptotic expression∣∣∣Γ(x+ iy)
∣∣∣ =
√

2π|y|x−
1
2 e−

π
2
|y|(1 +O(

1

|y|
)
)
, y →∞ (5.17)

which holds uniformly in x on compact subsets of R, see formula 8.328.1 in [16]. Part (i) follows
easily from (5.17) and for part (ii) we use the additional fact that Γ(s) has no zeros in the entire
complex plane.

The following technical result will be needed in the Proof of Lemma 5.

Lemma 8. For µ < 0, Re(w) < 1
2

and 0 < Re(s) < 1− 2Re(w)∫∫
R2

+

1√
2πz

e−
(x−µy)2

2z xs−1zw−1dxdz = 2w−1(−µy)2w+s−1 Γ(s)Γ(1− 2w − s)
Γ(1− w)

. (5.18)

Proof. We change the variable of integration z 7→ 1
u

and find that for a > 0 and Re(w) < 1/2∫ ∞
0

e−
a
z zw−1− 1

2dz =

∫ ∞
0

e−auu−
1
2
−wdu = aw−

1
2 Γ
(1

2
− w

)
.

Then for 2Re(w) + Re(s)− 1 < 0 we can apply the Fubini’s theorem and obtain∫∫
R2

+

1√
2πz

e−
(x−µy)2

2z xs−1zw−1dxdz =
1√
2π

2
1
2
−wΓ

(1

2
− w

)∫ ∞
0

(x− µy)2w−1xs−1dx

= (−µy)2w+s−1 1√
2π

2
1
2
−wΓ

(1

2
− w

)∫ ∞
0

(x+ 1)2w−1xs−1dx

= (−µy)2w+s−1 1√
2π

2
1
2
−wΓ

(1

2
− w

)Γ(s)Γ(1− 2w − s)
Γ(1− 2w)

,

where in the last step we have used the beta-integral identity (see equation 3.194.3 [16]). Formula
(5.18) can be derived from the above equation by application of the Legendre duplication formula
for the gamma function (see formula 8.335.1 in [16]).

The following techincal result will be needed in the Proof of Lemma 5 and Theorem 3.

Lemma 9. Assume that a0 < a1 and b ∈ C such that Re(b) ∈ (0, 1) ∪ (1, 2). For each ε > 0 there
exist a constant C = C(a0, a1, b, ε) > 0 and a constant D = D(a0, a1, ε) ∈ (0, π

2
) such that for all

a ∈ C with a0 < Re(a) < a1 and all z > 0∣∣
1F1(a, b,−z)

∣∣ ≤ Ceεz+D|Im(a)|. (5.19)

Proof of Lemma 9. We start with the following integral representation

1F1(a, b,−z) =
1

2πi
Γ(b)z1−be−z

∫
γ+iR

ewzw−b(1− w−1)a−bdw, (5.20)

which holds for z > 0, Re(b) > 0 and γ > 1. This representation follows from formula (7) on page
273 in [11] and the identity 1F1(a, b,−z) = exp(−z)1F1(b − a, b, z) (see formula (7) on page 253 in
[11]).
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Next fix ε > 0 and assume that Re(b) ∈ (1, 2) and z ≥ 1. We also denote γ = 1 + ε. Then
changing variables w 7→ γ + it we obtain from (5.20)

∣∣
1F1(a, b, z)

∣∣ =

∣∣∣∣∣ 1

2πi
Γ(b)z1−beεz

∫ ∞
−∞

eitz(γ + it)−b
(

1− (γ + it)−1
)a−b

dt

∣∣∣∣∣
≤ C1(b)eεz

∫ ∞
−∞

∣∣∣(γ + it)−b
∣∣∣× ∣∣∣(1− (γ + it)−1

)a−b∣∣∣dt. (5.21)

Note that the set {(γ + it)−1 : t ∈ R} ⊂ C is a circle with centre (2γ)−1 and radius (2γ)−1.
Therefore the set {1 − (γ + it)−1 : t ∈ R} ⊂ C is a circle with centre 1 − (2γ)−1 and radius (2γ)−1.
Recall that γ = 1 + ε > 0, therefore this last circle does not touch the vertical line iR and we have

D = max
t∈R

{
|arg(1− (γ + it)−1)|

}
<
π

2
. (5.22)

At the same time we have for all t ∈ R

ε

1 + ε
≤
∣∣1− (γ + it)−1

∣∣ =

√
ε2 + t2

γ2 + t2
< 1.

The above two estimates and the equality |uv| = |u|Re(v)e|arg(u)×Im(v)| (which is valid for all u ∈ C and
v ∈ C with Re(v) > 0) show that for all t ∈ R we have∣∣∣(1− (γ + it)−1

)a−b∣∣∣ ≤ C2(a0, a1, b, ε)e
D|Im(a)|, (5.23)

where

C2(a0, a1, b, ε) = max

{
1,

(
ε

1 + ε

)a0−Re(b)

,

(
ε

1 + ε

)a1−Re(b)
}
.

Using (5.21) and (5.23) we conclude that

∣∣
1F1(a, b,−z)

∣∣ ≤ C1(b)C2(a0, a1, b, ε)e
εz+D|Im(a)|

∫ ∞
−∞

∣∣(γ + it)−b
∣∣dt

= C(a0, a1, b, ε)e
εz+D|Im(a)|. (5.24)

Note that the integral appearing in the above estimate converges since Re(b) ∈ (1, 2). This proves
(5.19) for z ≥ 1.

Assume next that z ∈ (0, 1). Using (5.20) with γ = (1 + ε)/z and changing variables in the
integral w 7→ (1 + ε+ it)/z we get

1F1(a, b,−z) =
e1+ε−z

2π
Γ(b)

∫
R
eit (1 + ε+ it)−b

(
1− z

1 + ε+ it

)a−b
dt.

Now we can proceed as in the case when z > 1 noting that the set {1− z(1 + ε+ it)−1 : t ∈ R} ⊂ C
is a circle with centre 1− z(2(1 + ε))−1 and radius z(2(1 + ε))−1. As 0 < z < 1 one can see that this
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only improves all the estimates above. For example, the estimate (5.22) also holds true and for all
t ∈ R we have

ε

1 + ε
<

1 + ε− z
1 + ε

≤
∣∣1− z(1 + ε+ it)−1

∣∣ =

√
(1 + ε− z)2 + t2

(1 + ε)2 + t2
< 1.

Therefore (5.19) is also true for z ∈ (0, 1).
Finally we consider the case when Re(b) ∈ (0, 1). One can see that this case follows easily from

the already established result valid for Re(b) ∈ (1, 2) and the following identity for the confluent
hypergeometric function

b1F1(a, b,−z) = a1F1(a+ 1, b+ 1,−z) + (b− a)1F1(a, b+ 1,−z),

see formula 9.212.3 in [16].

Proof of Lemma 5. The equation (3.13) follows from (5.8) and the fact that

D−s(0) =

√
π2−

s
2

Γ
(

1
2
(s+ 1)

) ,
see the definition of the parabolic cylinder function (5.7).

Let us prove (ii). Assume first that s ∈ C is a fixed number which satifies Re(s) ∈
(

1
4
, 3

4

)
. Using

Lemma 2 and Fubini Theorem we find that the Mellin transform of k(x) is given by

Mµ,1(s) =

∫∫
R2

+

F (s, y, z)P(J1 ∈ dy, J2 ∈ dz), (5.25)

where we have defined

F (s, y, z) =
1√
2πz

∫ ∞
0

xs−1e−
(x−µy)2

2z dx.

According to Lemma (8), since Re(s) ∈
(

1
4
, 3

4

)
then the Mellin transform of F (s, y, z) in the z-variable

exists for all w such that 0 < Re(w) < 1/8 and is given by

G(s, y, w) :=

∫ ∞
0

F (s, y, z)zw−1dz = 2w−1(−µy)2w+s−1 Γ(s)Γ(1− 2w − s)
Γ(1− w)

. (5.26)

Using Lemma 7 we find that for every s such that 1/4 < Re(s) < 3/4 there exists C = C(s) > 0
such that for all w with Re(w) = 1/16 we have

|G(s, y, w)| < C|y|Re(s)− 7
8 e−|Im(w)|. (5.27)

Therefore as |G(s, y, w)| is absolutely integrable along the line w = 1
16

+ iR then F (s, y, z) can be
written as an inverse Mellin transform

F (s, y, z) =
1

2πi

∫
1
16

+iR
G(s, y, w)z−wdw.

28



 
 

From the above identity and (5.25) we find that

Mµ,1(s) =
1

2πi

∫ ∞
y=0

∫ ∞
z=0

∫
w∈ 1

16
+iR

G(s, y, w)z−wdwP(J1 ∈ dy, J2 ∈ dz).

Due to (5.27) and the fact that E[J
Re(s)−7/8
1 J

−1/16
2 ] < ∞ since 1/4 < Re(s) < 3/4 (see Lemma 4)

we conclude that the function G(s, y, w)z−w is absolutely integrable with respect to the measure
dw×P(J1 ∈ dy, J2 ∈ dz), thus we can apply the Fubini Theorem to the right-hand side of the above
equation, and with the help of (5.26) we obtain

Mµ,1(s) =
Γ(s)

2πi

∫
1
16

+iR

Γ(1− 2w − s)
Γ(1− w)

E
[
J2w+s−1

1 J−w2

]
2w−1(−µ)2w+s−1dw. (5.28)

Next, we perform a change of variables w 7→ 1
2
(1 − u − s) (recall that s is a fixed number) and

obtain from (5.28)

Mµ,1(s) =
2−

1
2

(s+1)Γ(s)

2πi

∫
7
8
−s+iR

Γ(u)

Γ(1
2
(u+ s+ 1))

E
[
J−u1 J

1
2

(u+s−1)

2

]
(2µ2)−

u
2 du. (5.29)

For s fixed, such that 1/4 < Re(s) < 3/4, we know that E
[
J−u1 J

1
2

(u+s−1)

2

]
is a bounded analytic

function of u everywhere in the strip −1 < Re(u) < 7/8 − Re(s). The ratio of Gamma functions
Γ(u)/Γ(1

2
(u+ s+ 1)) decays exponentially (and uniformly) as Im(u)→∞ in the strip −1 < Re(u) <

7/8 − Re(s), and it has a unique simple pole at u = 0, coming from Γ(u). Thus we can shift the
contour of integration in (5.29) 7/8 − s + iR 7→ −1/2 + iR and taking into account the residue at
u = 0 we finally obtain

Mµ,1(s) =
2−

1
2

(s+1)Γ(s)

Γ
(

1
2
(s+ 1)

)E
[
J

1
2

(s−1)

2

]
(5.30)

+
2−

1
2

(s+1)

2πi

∫
− 1

2
+iR

Γ(s)Γ(u)

Γ
(

1
2
(u+ s+ 1)

)E [J−u1 J
1
2

(u+s−1)

2

]
(2µ2)−

u
2 du.

According to Lemma 4, E
[
J−u1 J

1
2

(u+s−1)

2

]
is a bounded analytic function for Re(w) = −1/2 and

−1 + ε < Re(s) < 1 + θ − ε for any ε > 0. Due to Lemma 7, the ratio of the Gamma functions
Γ(u)/Γ(1

2
(u + s + 1)) decays exponentially as Im(u) → ∞, Re(u) = −1/2 and uniformly in s if

−1 + ε < Re(s) < 1 + θ− ε. Therefore, the right-hand side in (5.30) defines a meromorphic function
in the strip −1 < Re(s) < 1 + θ, which has a unique simple pole at s = 0 (which comes from
Γ(s)), and we can apply analytic continuation and conclude that (5.30) is valid for all s in the strip
−1 < Re(s) < 1 + θ. This ends the proof of part (ii).

Finally, let us prove (iii). Assume first that 0 < Re(s) < 1. We use formulae (5.7) and (5.8) to
find that

Mµ,1(s) +M−µ,1(s) = Γ(s)
2−

1
2

(s−1)

Γ(1
2
(s+ 1))

E
[
J

1
2

(s−1)

2 e−
µ2

2
V

1F1

(
s

2
,
1

2
,
µ2

2
V

)]
. (5.31)

From the above formula and the identity e−z1F1(a, b, z) = 1F1(b− a, b,−z) (see formula (7) on page
253 in [11]) we conclude that (3.15) holds true for 0 < Re(s) < 1. Now our goal is to check that
formula (3.15) can be extended into the wider strip −1 < Re(s) < 1 + θ.
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Assume that δ > 0 is a small number and that −1 + δ < Re(s) < 1 + θ − δ. It is clear that
we can find p = p(δ) > 1 such that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ we have
(Re(s)−1)p ∈ (−2, θ). Define q = p/(p−1). According to Lemma 4, we can find ε > 0 small enough

such that E
[
exp(εq µ

2

2
V )
]
< ∞. Using Lemma 9 we see that there exists D = D(δ) ∈ (0, π/2) and

C = C(δ) > 0 such that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ we have∣∣∣∣1F1

(
1− s

2
,
1

2
,−µ

2

2
V

) ∣∣∣∣ < Ceε
µ2

2
V+D|Im( s2)|.

Therefore, we can use Hölder inequality with p and q defined as above and estimate the expectation
in the right-hand side of (3.15) as follows∣∣∣∣∣E

[
J

1
2

(s−1)

2 1F1

(
1− s

2
,
1

2
,−µ

2

2
V

)] ∣∣∣∣∣ < CeD|Im( s2)|
(
E
[
J

1
2

(Re(s)−1)p

2

]) 1
p

(
E
[
eεq

µ2

2
V

]) 1
q

<∞, (5.32)

where in the last step we have used the fact that 1
2
(Re(s) − 1)p ∈ (−1, θ/2). This shows that the

expectation in the right-hand side of (3.15) is well-defined for all s such that−1+δ < Re(s) < 1+θ−δ,
and since δ > 0 is an arbitrary small number, we can extend the validity of this equation into the
whole strip −1 < Re(s) < 1 + θ.

Proof of Theorem 3. Note that Iµ,σ
d
= σIµ

σ
,1, hence Mµ,σ(s) = σs−1Mµ

σ
,1(s), therefore without loss

of generality we can assume σ = 1.
Since −1/2 is not a pole for Γ(s), we use Lemma 7 and conclude that there exists C1 > 0 such

that for all y ∈ R ∣∣∣Γ(−1

2
+ iy)

∣∣∣ ≤ C1e
− 7π

16
|y|. (5.33)

At the same time, from Lemma 7 we find that for all x ∈ (−1, 1 + θ) and y ∈ R there exists C2 > 0
such that ∣∣∣Γ(x+ iy)

∣∣∣ ≥ C2e
− 9π

16
|y|. (5.34)

First let us assume that µ = 0. Then (3.16) follows immediately from Lemma 7 and (3.13) since∣∣∣E [J s−1
2

2

]∣∣∣ < C(δ), for Re(s) ∈ (−1 + δ, 1 + θ − δ). The latter is obvious from Proposition 2 for J2.

Next, assume that µ < 0. Thanks to (3.14) and Lemma 4 we get that

|Mµ,1(s)| ≤ C̃(µ, δ, ε)

(
|Γ(s)|

|Γ(1
2
(s+ 1))|

+ |Γ(s)|
∫

R

|Γ
(
−1

2
+ iy

)
|∣∣Γ (1

2

(
1
2

+ iy + s
))∣∣dy

)
. (5.35)

From Lemma 7 we deduce that for −1 < Re(s) < 1 + θ and |Im(s)| > 1 there exists C3 > 0 such that

|Γ(s)|
|Γ(1

2
(s+ 1))|

≤ C3e
−π

6
|Im(s)|,

which shows that the first term in (5.35) is decaying exponentially as Im(s)→∞. Next, from Lemma
7 we know that for −1 < Re(s) < 1 + θ and |Im(s)| > 1 there exists C4 > 0 such that

|Γ(s)| < C4e
− 7π

16
|Im(s)|.
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Using this fact and estimates (5.33) and (5.34) we see that for |Im(s)| > 1

|Γ(s)|
∫

R

|Γ
(
−1

2
+ iy

)
|∣∣Γ (1

2

(
1
2

+ iy + s
))∣∣dy ≤ C1

C2

|Γ(s)|
∫ ∞
−∞

e−
7π
16
|y|+ 9π

32
|y+Im(s)|dy

≤ C4
C1

C2

e−
7π
16
|Im(s)|

∫ ∞
−∞

e−
7π
16
|y|+ 9π

32
|y|+ 9π

32
|Im(s)|dy

≤ C4
C1

C2

e−
5π
32
|Im(s)|

∫ ∞
−∞

e−
5π
32
|y|dy = C5e

− 5π
32
|Im(s)|.

The above estimate shows that the second term in (5.35) is decaying exponentially as Im(s) → ∞,
which ends the proof in the case µ < 0.

Finally, let us consider the case when µ > 0. In the proof of part (iii) of Lemma 5 (see inequality
(5.32)) we have established that for every δ > 0 there exist constants D = D(δ) ∈ (0, π/2) and
C = C(δ) > 0 such that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ we have∣∣∣∣∣E

[
J

1
2

(s−1)

2 1F1

(
1− s

2
,
1

2
,−µ

2

2
V

)] ∣∣∣∣∣ < CeD|Im( s
2

)|.

Then from (3.15) we find that for all s in the strip −1 + δ < Re(s) < 1 + θ − δ

∣∣Mµ,1(s)
∣∣ < ∣∣∣∣∣ Γ(s)

Γ(1
2
(s+ 1))

∣∣∣∣∣CeD|Im( s
2

)| +
∣∣M−µ,1(s)

∣∣. (5.36)

Using Lemma 7 and the fact that D < π/2 we conclude that there exist C1 > 0 such that for all s
in the strip −1 + δ < Re(s) < 1 + θ − δ and |Im(s)| > 1 we have∣∣∣∣∣ Γ(s)

Γ(1
2
(s+ 1))

∣∣∣∣∣ < C1e
− 1

4(π2 +D)|Im(s)|,

therefore the first term in (5.36) can be bounded as

CC1e
− 1

4(π2−D)|Im(s)|

and it decays exponentially as Im(s)→∞ since π/2−D > 0. This ends the proof in the case µ > 0,
since we have already established that the second term in (5.36) decays exponentially to zero.

Proof of Corollary 3. The fact that k(x) ∈ C1(R) was already established in Lemma 2. Assume that
x ∈ (0,∞). Applying Mellin transform inversion we find that

kµ,σ(x) =
1

2πi

∫
1
2

+iR
x−sMµ,σ(s)ds, (5.37)

where the integral converges absolutely since (3.16) guarantees exponential decay ofMµ,σ(s) on the
line 1/2 + iR. This exponential decay also guarantees that for every n ≥ 0 the functions

n−1∏
i=0

(s+ i)Mµ,σ(s)

31



 
 

are absolutely integrable along the line 1/2 + iR, which shows that kµ,σ(x) ∈ C∞(0,∞). Noting that

−Iµ,σ
d
= I−µ,σ we deduce that kµ,σ(x) ∈ C∞(−∞, 0).

Proof of Corollary 4. The statement about the exponential decay follows from Theorem 3, the
functional equation (3.8) and the fact that ψ(z) = O(z2) uniformly in the strip Re(s) ∈ (−1 − ρ̂ +
δ, 1 + θ − δ). The latter fact follows from (2.1) (see also Proposition 2 in [3]).

Proof of Theorem 4. Recall from Corollary 3 that Mµ,σ(s) is analytic in the strip Re(s) ∈ (−1 −
ρ̂, 1 + θ) and has simple poles at all negative integers −n such that 0 ≤ n < 1 + ρ̂. Define

an = an(µ, σ) = Res(Mµ,σ(s) : s = −n), 0 ≤ n < 1 + ρ̂. (5.38)

Choose c < 1 + ρ̂, such that c /∈ N. We start from the Mellin transform inversion formula (5.37), use
the fact that Mµ,σ(s) decays exponentially as Im(s) → ∞ (and uniformly in Re(s)) and shift the
contour of integration 1/2 + iR 7→ −c + iR while taking into account the residues at points −n to
obtain

kµ,σ(x) =
1

2πi

∫
s= 1

2
+iR

x−sMµ,σ(s)ds =
∑

0≤n<c

anx
n +

1

2πi

∫
−c+iR

x−sMµ,σ(s)ds. (5.39)

The integral term in the right-hand side of the above equation can be estimated as follows∣∣∣∣∣
∫
−c+iR

x−sMµ,σ(s)ds

∣∣∣∣∣ ≤ xc
∫

R

∣∣∣Mµ,σ(−c+ it)
∣∣∣dt,

therefore this term is O(xc) as x→ 0+.
Let us derive a recurrence relation for the coefficients an. First of all, from Lemma 3 we find that

a0 = k(0) (this fact is also obvious from (5.39)). Next, from the definition (5.38) and the fact that
all the poles are simple we find that

Mµ,σ(s) =
an
s+ n

+O(1), s→ −n. (5.40)

Using formula (5.40) and the functional equation (3.8) we find that as s→ 0 we have

ψ(s)

s
Mµ,σ(s+ 1) + µ

a0

s
+O(1) +

σ2

2
(−1)

a1

s
+O(1) = 0.

Due to the fact that ψ(s)/s→ ψ′(0) = E[ξ1] <∞ as s→ 0 and that Mµ,σ(s + 1)→ 1 as s→ 0 we
conclude that µa0 − σ2a1/2 = 0. Following the same steps and considering the functional equation
(3.8) as s→ −n we find that coefficients an satisfy the recurrence relation

ψ(−n)

−n
an−1 + µan +

σ2

2
(−n− 1)an+1 = 0, n ≥ 1.

Therefore, if we define bn = bn(µ, σ) = n!an(µ, σ) then from the above equation we obtain the
recurrence relation (4.2).

Combining all the above results we see that we have established (4.1), but only in the one-sided

sense x→ 0+. Using the fact that Iµ,σ
d
= −I−µ,σ and repeating the above arguments we obtain

kµ,σ(−x) = k−µ,σ(x) =
m∑
n=0

bn(−µ, σ)

n!
xn +O(xm+ε), as x→ 0+.
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Clearly, (4.1) would be true if bn(−µ, σ) = (−1)nbn(µ, σ). This fact can be easily verified: using the
recurrence relation (4.2) we check that bn(µ, σ) is a polynomial in µ of degree n, which is odd (even)
if n is an odd (even) number. This ends the proof of asymptotic formula (4.1).

Finally, formula (4.1) and the fact that k(x) ∈ C∞(R \ {0}) imply that k(x) ∈ C1+bρ̂c(R), which
ends the proof of Theorem 4.

Proof of Theorem 5. Let us prove part (i). For x ≥ 0 we define

F (x) :=

x∫
0

P(Iµ,σ > y
1
2θ )dy.

Using integration by parts in the same way as we did above when dealing with the Mellin transform
of the F2(k; v) term in the proof of Theorem 2 (see also equation (5.11)) we find that for all s in the
strip Re(s) ∈ (0, 1

2
)

F̂ (s) :=

∫ ∞
0

xs−1dF (x) = s−1Mµ,σ(1 + 2θs). (5.41)

Due to Corollary 2, the function F̂ (s) − C/(1/2 − s) is continuous in the strip 0 < Re(s) ≤ 1/2,
therefore we can apply Wiener-Ikehara Theorem (see Theorem 7.3 in [2]) and conclude that as
x→ +∞

F (x) = 2C
√
x+ o

(√
x
)
.

Using the above asymptotic expression, the fact that P(Iµ,σ > y
1
2θ ) is a decreasing function of y and

applying the Monotone Density Theorem we obtain (4.3).
The proof of part (ii) is very similar: now we use Corollary 2 to find that F̂ (s) is continuous

in the strip 0 < Re(s) ≤ 1/2, therefore by applying Wiener-Ikehara Theorem we conclude that as
x→ +∞ we have F (x) = o(

√
x), and applying the Monotone Density Theorem we obtain (4.4).

If µ < 0 then from Lemma 2 we know that k(x) is a decreasing function on (0,∞), therefore we
can apply the Monotone Density Theorem to (4.3) or (4.4) and obtain the corresponding asymptotic
expression for k(x).

Proof of Theorem 6. From (4.6) it is clear that ψ(z) = O(z2) and 1/ψ(z) = O(1) as Im(z) → ∞,
|Im(z)| > 1, and that these estimates are uniform in Re(s). Therefore, using Theorem 3 and the
functional equation (3.8) we see that Mµ,σ(s) decays exponentially as Im(s) → ∞, Im(s) > 1, and
uniformly if Re(s) belongs to a compact subset of R. Therefore we can apply the same technique as
in the proof of Theorem 4: shift the contour of integration, collect all the residues and estimate the
resulting integral. The details are left to the reader.
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