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Abstract

We investigate lower and upper bounds for the blow-up time of a system

of semilinear stochastic partial differential equations (SPDEs). From these

bounds we obtain lower and upper bounds for the probability of explosion in

finite time of the system. The lower bound is obtained from a related system

of random partial differential equations, and is given in terms of the Laplace

transform of a perpetual integral functional of a standard Brownian motion.

The upper bound is given in terms of the expected value of a similar perpetual

integral functional. We also extend the approach introduced by Chow (2011)

to our system of SPDEs, and get an explosion result in Lp-norm, for any
1 ≤ p <∞.
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1 Introduction

In this paper we investigate upper and lower bounds for the explosion time,

and for the probability of explosion in finite time of the system of semilinear

SPDEs

du1(t, x) =
Ä
∆αu1 (t, x) + u1+β1

2 (t, x)
ä
dt+ κ1u1 (t, x) dWt,

du2(t, x) =
Ä
∆αu2 (t, x) + u1+β2

1 (t, x)
ä
dt+ κ2u2 (t, x) dWt, (1.1)

ui(0, x) = fi(x), x ∈ D,

ui(t, x) = 0, t ≥ 0, x ∈ Rd \D, i ∈ {1, 2} ,

where ∆α is the fractional power −(−∆)α/2 of the Laplacian, 0 < α ≤ 2,

βi and κi are strictly positive constants, {Wt, t ≥ 0} is a one-dimensional

standard Brownian motion defined on a stochastic basis (Ω,F , {Ft},P), and

D ⊂ Rd is a bounded and smooth domain. The initial values fi ∈ C2
0

Ä
D̄
ä
are

nonnegative and not identically zero.

When κ1 = κ2 = 0 system (1.1) provides a simplified model of the process

of diffusion of heat and burning in a two-component continuous media. In such

model u1 and u2 represent the temperatures of the two reactant components,

the thermal conductivity is supposed to be the same for both substances but

it might be discontinuous, and even evolve solely by jumps.

By adapting the approach of Dozzi et al. (2013) to our system, we lower-

bound the probability of explosion in finite time of weak nontrivial positive

solutions of (1.1). This entails to transform (1.1) into a parabolic system
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 of random semilinear equations by means of the transformation vi(t, x) =

e−κiWtui(t, x), i ∈ {1, 2}, and then to produce a suitable subsolution for the

weak solutions of the random parabolic system. We distinguish two cases:

one in which β1 = β2 > 0, where we show that the probability of finite-

time blowup of (1.1) is bigger than 1 − eKH. Here K > 0 is a constant

whose value is explicitly given, and H is the Laplace transform of a related

perpetual integral functional of {Wt : t ≥ 0}. The other case corresponds to

the parameter configuration β1 > β2 > 0. In this setting the probability of

explosion in finite time of (1.1) is lower bounded by 1− eCH with a constant

C (different from K) which again is explicitly computed. Then we proceed

to derive upper bounds for the probability of explosion in finite time of non-

trivial positive solutions of (1.1). The bounds we get are obtained following

closely the approach of Dozzi and López-Mimbela (2010), which is based on

the classical Picard’s approximation scheme. At the end of the paper we also

explore the concept of explosion in the Lp(D)-norm of (1.1). This notion of

explosion was introduced by Chow (2011). Under suitable assumptions on

the system parameters, we prove that any nontrivial positive solution of (1.1)

explodes in finite time in the Lp(D)-norm sense for any 1 ≤ p <∞.

We remark that in this manuscript we report our main results only (without

proofs). Detailed proofs of our main theorems and other auxiliary result will

appear in the PhD thesis of the second-named author.

Let A and c be positive constants. Let H(x, z) be the unique solution of the

integral equation

H (x, z) = 1− c−1ze
2c
A2 x

ˆ ∞
x

e−(1+ 2c
A2 )uH (u, z) du− c−1z

ˆ x

0

e−uH (u, z) du,

(1.2)

which is strictly positive and exists under suitable assumptions on x ≥ 0 and
z ≥ 0.
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 2 A lower bound for the probability of explosion

in finite time

In this section we obtain a lower bound for the probability of explosion in finite

time of the system (1.1). For this we first construct a suitable subsolution of

(1.1) by means of the change of variable vi (t, x) := exp {−κiWtui (t, x)} to get

a related system of random partial differential equations (RPDEs), with ui a

weak solution of (1.1).

Consider the system of RPDEs

∂

∂t
v1 (t, x) =

Ç
∆αv1 (t, x)− κ2

1

2
v1 (t, x)

å
+ e((1+β1)κ2−κ1)Wtv1+β1

2 (t, x) ,

∂

∂t
v2 (t, x) =

Ç
∆αv2 (t, x)− κ2

2

2
v2 (t, x)

å
+ e((1+β2)κ1−κ2)Wtv1+β2

1 (t, x) ,(1.3)

vi (0, x) = fi (x) ≥ 0, x×D,

vi (t, x) = 0, (t, x) ∈ R+
0 × Rd \D, i ∈ {1, 2}

with the same assumptions as in (1.1). As is shown in Dozzi et al. (2013), the

function vi (t, x) is a weak solution (1.3).

2.1 Case β1 = β2 > 0

Denote by λ and ψ the first eigenvalue and eigenfunction of ∆α in D, re-

spectively, with ψ normalized so that
´
ψ (x) dx = 1. Using the fact that

∆αψ (x) = −λψ (x), it is easy to show that the vector function (h1.h2) given

by

∂

∂t
hi (t) = −

Ç
λ+

κ2
i

2

å
hi (t) + e((1+βi)κj−κi)Wth1+βi

j (t) , t ∈ R+,

hi (0) =

ˆ
D

fi (x)ψ (x) dx, i = 1, 2,
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 is, componentwise, a subsolution of (v1, v2). Let

E (t) := h1 (t) + h2 (t) , t ≥ 0, (1.4)

m := λ+
max {κ2

1, κ
2
2}

2

and

Mt := e((1+β1)κ2−κ1)Wt ∧ e((1+β2)κ1−κ2)Wt .

Let I be given by

I (t) = e−mt
[
I−β1 (0)− 2−(1+β1)β1

ˆ t

0

e−mβ1sMsds
]− 1

β1

, t ∈ [0, τ ∗) ,

where

τ ∗ := inf

{
t ≥ 0 :

ˆ t

0

e−mβ1sMsds ≥ 21+β1β−1
1 I−β1 (0)

}
.

Let
A := min {(1 + β1)κ2 − κ1, (1 + β1)κ1 − κ2} ,

and assume that A > 0. Writing τ for the blow up time of system (1.1), we

have that τ ≤ τ ∗.

Theorem 1. If β1 = β2 > 0, then

P (τ <∞) ≥ 1− exp
Ä
21+β1β−1

1 I−β1 (0)
ä
H (0, 1) , (1.5)

where H (x, z) is the solution of (1.2) with c = mβ1.

2.2 Case β1 > β2 > 0

Let A0 =
(

1+β1
1+β2

)− 1+β2
β1−β2 β1−β2

1+β1
. Using Young’s inequality one can deduce, as in

Dozzi et al. (2013), that E(t) ≥ I(t) for t ≥ 0, where E is defined in (1.4) and
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I is the solution of

∂

∂t
I (t) = −mI (t) +

2−(1+β2)ε0E
1+β2 (0)− ε

1+β2
β1−β2
0 A0

E1+β2 (0)
MtI

1+β2 (t) , t ∈ R+
0 ,

I (0) = E (0) ,

which is given by

I (t) = e−mt

I−β2 (0)− 2−(1+β2)ε0E
1+β2 (0)− ε

1+β2
β1−β2
0 A0

E1+β2 (0)
β2

ˆ t

0

e−mβ2sMsds


− 1
β2

,

for all t ∈ [0, τ ∗∗∗), where

τ ∗∗∗ := inf

t ≥ 0 :

ˆ t

0

e−mβ2sMsds ≥

Ö
2−(1+β2)ε0E

1+β2 (0)− ε
1+β2
β1−β2
0 A0

E1+β2 (0)
β2

è−1

I−β2 (0)

 .

Putting C :=

ÖÑ
2−(1+β2)ε0E1+β2 (0)−ε

1+β2
β1−β2
0 A0

E1+β2 (0)
β2

é−1

I−β2 (0) β2

è−1

I−β2 (0), and

defining

τ ∗∗∗∗ := inf

{
t ≥ 0 :

ˆ t

0

e−(AWs−mβ2s)1{AWs−mβ2s≥0}ds ≥ C

}
,

then τ ≤ τ ∗∗∗ ≤ τ ∗∗∗∗, and we get (as in case β1 = β2) that P (τ =∞) ≤

eCH (0, 1) . Thus we obtain:

Theorem 2. If β1 > β2 > 0, then

P (τ <∞) ≥ 1− eCH (0, 1) .
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 3 An upper bound for the probability of explo-

sion in finite time

Suppose that {Yt : t ≥ 0} is an isotropic α-stable Lévy process with infinites-

imal generator ∆α. Let τD := inf {t > 0 : Yt /∈ D} and consider the killed

process
¶
Y D
t : t ≥ 0

©
given by

Y D
t =

Yt t < τD

∂ t ≥ τD,

where ∂ is a cemetery point. Recall that a pair of Ft-adapted random fields

{vi (t, x) : x ∈ D, t ≥ 0}, i ∈ {1, 2} is a mild solution of (1.3) in the interval

[0, τ) if

vi (t, x) = e−
κ2
i
2
tPD

t fi (x) +

ˆ t

0

e−
κ2
i
2

(t−r)e((1+βi)κj−κi)WrPD
t−r
î
v1+βi
j (r, x)

ó
dr,

(1.6)

P-a.s., where
Ä
PD
t

ä
is the semigroup of the process

Ä
Y D
t

ä
t≥0

.

Theorem 3. For all x ∈ D we have

vi (t, x) ≤ e−
κ2
i
2
tPD

t fi (x)Ñ
1− βi

´ t
0
e((1+βi)κj−κi)Wr

∥∥∥∥∥e−κ2i2 rPD
r fi

∥∥∥∥∥
βi

∞
dr

é 1
βi

,

for all t ∈ [0, τ∗), where

τ∗ = inf

t ≥ 0 :

ˆ t

0

e((1+β1)κ2−κ1)Wr

∥∥∥∥∥e−κ
2
1
2
rPD

r f1

∥∥∥∥∥
β1

∞
dr ≥ β−1

1 or

ˆ t

0

e((1+β2)κ1−κ2)Wr

∥∥∥∥∥e−κ
2
2
2
rPD

r f2

∥∥∥∥∥
β2

∞
dr ≥ β−1

2

 .
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 In the sequel we consider fi = Liψ in D, where Li > 0 is a constant, i ∈ {1, 2}.
In this case

τ∗ = inf

t ≥ 0 :

ˆ t

0

max
i∈{1,2}

e((1+βi)κ3−i−κi)Wr−βi
(
λ+

κ2
i
2

)
r

 dr ≥ min
i∈{1,2}

{
1

βiL
βi
i ‖ψ‖

βi
∞

}
From the definition of τ∗, it is clear that the relation τ∗ ≤ τ holds.

Consider the random variable τ∗∗ defined by

τ∗∗ :=

inf

t ≥ 0 :

ˆ t

0

e
− min
i∈{1,2}

{
βi

(
λ+

κ2
i
2

)}
r

max
i∈{1,2}

¶
e((1+βi)κ3−i−κi)Wr

©
dr ≥ min

i∈{1,2}

{
1

βiL
βi
i ‖ψ‖

βi
∞

} .
It is easy to see that τ∗∗ ≤ τ∗. For simplicity we denote by

Λ := min
i∈{1,2}

®
βi

Ç
λ+

κ2
i

2

å´
a := min

i∈{1,2}
{(1 + βi)κ3−i − κi}

b := max
i∈{1,2}

{(1 + βi)κ3−i − κi}

M := min
i∈{1,2}

{
1

βiL
βi
i ‖ψ‖

βi
∞

}

Theorem 4. If α := 1−M−1E
î´∞

0
e−Λs max

¶
eaWs , ebWs

©
ds
ó
∈ (0, 1), then

P (τ <∞) ≤ 1− α. (1.7)

A condition under which α ∈ (0, 1) is given in the next theorem.

Theorem 5. If 2Λ > max {a2, b2} and M >
√

2

2
√

Λ(
√

2Λ+a)
+

√
2

2
√

Λ(
√

2Λ−b)
, then

α ∈ (0, 1).
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 4 Explosion in Lp (D)-norm

In this section we analyze another kind of explosion which was defined by

Chow (2011). We say that a solution u explodes in Lp (D)-norm if there exists

Tp ∈ R+
0 ∪ {∞} such that

lim
t→T−p

E
[
‖u (t, ·)‖Lp(D)

]
=∞. (1.8)

When Tp <∞, we say that u explodes in finite time in Lp (D)-norm and Tp is

called the explosion time. For (1.1) we say that the system explodes in Lp (D)-

norm if either u1 or u2 explodes in the Lp (D)-norm. For (1.1) we say that

the system explodes in finite time in Lp (D)-norm if u1 or u2 explode in finite

time in Lp (D)-norm. In this case, min
¶
T 1
p , T

2
p

©
is called the explosion time of

the system (1.1), where T ip is the explosion time of ui, i ∈ {1, 2}. The notion

of explosion in Lp (D)-norm was investigated by Chow for a single SPDE. In

order to prove explosion in Lp (D)-norm for all 1 ≤ p < ∞ of a system of

SPDEs, we follow the methodology of Dozzi et al. (2013).

Let ui (t, ψ) :=
´
D
ui (t, x)ψ (x) dx, i ∈ {1, 2}. Then

ui (t, ψ) = ui (0, ψ)+

ˆ t

0

ui (s,∆αψ) ds+

ˆ t

0

u1+βi
j (s, ψ) ds+

ˆ t

0

κiui (s, ψ) dWs.

(1.9)

Let us write µi (t) := E [ui (t, ψ)]. Using Fubini’s theorem and Jensen’s in-

equality we get from (1.9) that

µi (t) ≥ µi (0)− λ
ˆ t

0

µi (s) ds+

ˆ t

0

µ1+βi
j (s) ds

Now consider the system of ODEs:

d
dt
hi (t) = −λhi (t) + h1+βi

j (t) , t ∈ R+,

hi (0) = µi (0) ,
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 for i ∈ {1, 2}, j = 3 − i, and consider as before E (t) = h1 (t) + h2 (t), t ≥ 0.

We have the following theorem.

Theorem 6. 1. Assume that β1 = β2 > 0 and E (0) >
Ä
21+β1λ

ä1/β1. Then

there exists T ∗ ∈ R+ such that min
¶
T 1
p , T

2
p

©
≤ T ∗ for all p ∈ [1,∞).

2. Let β1 > β2 > 0, and let A0 =
(

1+β1
1+β2

)− 1+β2
β1−β2 β1−β2

1+β1
, and suppose that

there exists ε0 ∈ (0, 1] such that

C := 2−(1+β2)ε0E
1+β2 (0)− ε

1+β2
β1−β2
0 A0 > λE (0) .

Then there exists T ∗ ∈ R+ such that min
¶
T 1
p , T

2
p

©
≤ T ∗ for all p ∈

[1,∞).

9



 
 

Bibliography

P. Chow. Explosive solutions of stochastic reaction-diffusion equations in mean

lp-norm. Journal of Differential Equations, 250:2567–2580, 2011.

M. Dozzi and J. A. López-Mimbela. Finite-time blowup and existence of

global positive solutions of a semi-linear SPDE. Stochastic Processes and

their Applications, (120):767–776, January 2010.

M. Dozzi, E.T. Kolkovska, and J. A. López-Mimbela. Exponential Functionals

of Brownian Motion and Explosion Times of a System of Semilinear SPDEs.

Stochastic Analysis and Applications, 31:975–991, 2013.

10




