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Abstract

This work deals with the oscillatory behavior around 0 of the stochastic coupled oscillators
driven by random forces. We focus on three main aspects: 1) the analysis of this oscillatory
behavior for the case of coupled harmonic oscillators, a property that has only been demostrated
for simple harmonic oscillators; 2) the capability of some numerical integrators for reproducing
this dynamical property; and 3) the identification of some classes of coupled nonlinear oscillators
that can be shown to have this oscillatory dynamics by reducing their analysis to equivalent linear
oscillators.

1 Introduction

Motivated by their capability to describe the time evolution of complex random phenomena, models
of nonlinear oscillators driven by random forces have become a focus of intensive studies (see, e.g.,
[4],[14],[7],[8]). Naturally, the added noise modifies the dynamics of the deterministic oscillators and
so new distinctive dynamical features arise in these random systems. Since the complexity of the
random dynamics depends on the type of nonlinearity and the level of noise, many of the results on
this matter have been achieved for specific classes of stochastic oscillators. In particular, a number
properties have been studied for the simple harmonic oscillator such as the stationary probability
distribution, the linear growth of energy along the paths, the oscillatory behavior around 0, and the
symplectic structure of Hamiltonian oscillators, among other (see, e.g., [9]).

On the other hand, demanded by an increasing number of practical applications, the numerical
simulations of stochastic oscillators has also a high interest. In particular, it is required specialized
numerical integrators that preserve the dynamics of the oscillators since general multipurpose inte-
grators fail to achieve this target. Consequently, specific oriented integrators for stochastic oscillators
have also been proposed, for instance, in (see, e.g., [10],[2],[11],[13]). Distinctively, in [3], the family
of the Locally Linearized methods have been proved to simultaneously reproduce various dynamical
properties of the stochastic harmonic oscillators.

In this work, we are interested in the study of the oscillatory behavior around 0 of the stochastic
coupled oscillators driven by random forces. We focus on three main aspects: 1) the analysis of
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this oscillatory behavior for the case of coupled harmonic oscillators, a property that has only been
demonstrated for simple harmonic oscillators ([9],[8]); 2) the capability of the Locally Linearized
methods for reproducing this dynamical property; and 3) the identification of some classes of coupled
nonlinear oscillators that display this dynamics.

2 The infinitely many zeros of the coupled harmonic oscillators

Let us consider the undamped harmonic oscillator defined by the 2d-dimensional Stochastic Differ-
ential Equation (SDE) with additive noise

dx (t) = Ax (t) dt + Bdwy, (1)

for ¢ > 0, with initial condition x(tg) = (20,%0) € R? x R? and d > 1. Here,

w-ffl] e[S w wf)

being A € R¥? a nonsingular symmetric matrix, I € R?*™ a matrix, I the d—dimensional identity
matrix, and w; an m-dimensional standard Wiener process on the filtered complete probability space

(25, Bz,  P)-
The following lemma will be useful.

Lemma 1 Let 1y, ..., 0y, ... be independent Gaussian random variables with zero mean and variance

n n
1. Let {on.} be a bounded triangular array of real numbers. Set Sy, = 3. 0pnr and 82 = Y. o2, . If
r=1 r=1
lim inf% > 0, then
n—oo
Sn
Pl ——2>1) =1 2
(lgljolip%% loglog s2 — ) (2)
and
P (minf—2" < _1) =1 (3)
iminf ———— < -1) =1.
n—oo 28% log log S% B

Proof. This is a direct consequence of Corollary 1 of Theorem 2 in [12]. =

The following theorem shows the infinitely many oscillations of the paths of coupled harmonic
oscillators (1), which extends the Theorem 4.1 in [8] (Section 8.4) that refers to the paths of simple
harmonic oscillators (i.e., those defined by (1) with d = 1).

Theorem 2 Consider the coupled harmonic oscillator (1). Then, almost surely, each component of
the solution x(t) has infinitely many zeros on [tg o) for every tg > 0.

Proof. Let us start considering the first component x! of the solution of (1). By the spectral theorem
for the real nonsingular symmetric matrix A we have the factorization

A= Pdiag[)\l, cee ,)\d]PT,
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were Aq,...,Aq are the eigenvalues of A, and P is a real orthogonal matrix with entries [P, ;] for all

k,j=1,...,d. Then, for f(A)=sin(A) and for f(A) = cos(A), we have (see, e.g., [5])

f(A) = Pdiag[f(X1), ..., f(Aa)]PT
Since the solution of (1) satisfies (see, e.g., [8])

[az(t) } :[ cos(Af) A~ sin(Ar) on]+ /t[ Cosm )] P

y (t) —Asin(At)  cos(At) s(A(t—s))

to
z!(t) = D(t) + V (1), (4)
where
d
= Z (Plk cos(Agt) < Py, a0 > +P1k)\,;1 sin(Agt) < P, Yo >)
k=1
and

m d
v =3 <tf (Scksin (e (e -0 dwi> , )

being ci = Plk)\,zl < Py, II; > and Py, II; the column vectors of P and II, respectively.
Without loss of generality, let us assume that A\;, > 0 and A\ # A; for all £ # j. Indeed, when
there are only d* < d different values A} of [Ax|, the expression (5) can be rewritten as

) (tf <§e Sln( (t—s))) dwé) ,

d
where eé- = Zcﬁcé"\;k‘(hpo — 1x,<0), and 0 is the Kronecker delta. For this expression the analysis
k=1
below would be the same.
Consider an arbitrary A > 0 and the time instants ¢, = to + nA, with n = 1,2...,. In addition,
for all n, define

NE

V)=

Sp 1= ( ) 2 nro (6)
where V' (t,,) is defined in (5), and

m tot+rA d
Vor = > <t f (Z ck sin (\g(t, — s))) dwé)

=1 0+(r—1)A k=1

for all n,7 = 1,2.... Because the independence of w!,...,w™ and the independence of the increments
of Wls on disjoint intervals, {V,,;},>1 defines a sequence of independent Gaussian random variables
with zero mean and variance
2 2
0’7’17’ = E(Vnr)

to+rA m

2
= [ > <i cic sin (g (tn, — S))> ds. (7)

to+(r—1)Al=1 \k=1
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In this way, (6) can be written as

n
Sn = Z OnrTlr,
r=1
where 71, ..., n,, are independent A/(0,1) random variables. On the other hand,
n
Sp = D Oy
r=1

The expression (7) and the identity sin(0) = (exp(if) — exp(—i6)) /(2i) (where i = /—1) imply that

tn
§2 = — 22 Z ckch Re{exp( (Aj + Me)tn) [ exp(i(N; + Ak)s)ds — exp(i(Nj — Ak)tn fexp (Aj — Ag)s)ds }
I=1k,j=1 to to

where Re denotes the real part of a complex number. Since

[ exp(i6s)ds = nA i = 0 mod 2
to P | (exp(ift,) — exp(—ibty)) /(i0) otherwise ’

2=135 (d) nav e,

==
where C,, is uniformly bound for all n. Thus,

52 d
*n z ) ( ) A > 0.
THOO no 2=
In addition, since
9 d to+trA m d
Onr <2 f Z Z <ck> ds
t0+(7' I)Al 1k=1
=1k=1
for all n and r, the Law of the Iterated Logamthms of Lemma 1 holds for S,,. Thus, for 0 < ¢ < 1,
(2) implies that
Sn > (1 —¢)2s2 (loglogs?) for infinitely many values of n (a.s.).
In addition, since
[D(tn)| < |PI* (ol + lyo| max {3 })
for all n, for the fist component (4) of the solution of (1) we have that
z*(t,) > 0 infinitely often as n — oo (a.s.).
Similarly, (3) implies that
S, < (—14¢)2s2 (loglog si) for infinitely many values of n (a.s.)
for 0 <e < 1, and so
x*(t,) < 0 infinitely often as n — oo (a.s.).

Thus, since the sample path of the solution to (1) is continuous, x!(#) must have, almost surely,
infinitely many zeros on [ty 00). For the rest of the components of the solution of (1) we can proceed
in a similar manner. This concludes the proof. m
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3 The infinitely many zeros of the Local Linearized schemes for
coupled harmonic oscillators

Let (t), = {tn : m» = 0,1,..., N} be a partition of the time interval [ty,T] with maximum stepsize

h defined as a sequence of times 0 = ¢y < t; < ... < ty = T such that h, = t,41 — t, < h for

n=0,...,N—1.
The Locally Linearized integrator for the equation (1) is defined by the recursive expression [3]

Xn+1 = Xp T Up + Znt1 (8)
forn =0,...,N — 1, where x,, = (2, yn), U, = LeC*"nr, and z, ;1 = QAw,, with
0, Iy Yn

Cn _ _A2 Od _AQJ/‘n c R(2d+1)><(2d+1),
01><cl 01><cl 0

L = [Ioq O4x1), = [O1x2q 1|7, Awy, = Wy, — Wy, and Q = | gl | a 2d x m matrix with Q1,
2

Q2 € Rxm,

Theorem 3 Let A1, ..., \g be the eigenvalues of A, and N}, = max (|A1],...,|Aq|). For the coupled

harmonic oscillator (1 ) each components of the Locally Linearized integrator switches signs infinitely

many times as n — oo, almost surely, for any integration stepsize h < w/X\% ...

Proof. Lemma 3.2 in [3] states that the Locally Linearized schemes (8) can be written as

n
Xn+1 = Mn+1XO + ZMTQAanh
r=0

where
M — [ cos (rAh) A~ l'sin (TAh):|

—Asin (rAh)  cos(rAh)

Likewise in the proof of Theorem 2, by using the Spectral Theorem, the first component x> 11 0f X4
can be written

x}H—l = Dp41 + Sn, (9)
where
d
Dni1 =Y (Picos((n+ 1)hAg) < Pp,wo > + Py, sin((n + 1)hAg) < Pr,yo >)
k=1
and .
Sn="> Vur, (10)
r=0
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being
Vor = ZZ (eg- cos(rA;h) + (fjl/\j_l) sin(r)\jh)> Aw! (11)

and eé-, le eR.
Without loss of generality, let us assume that A\;, > 0 and A # A; for all £ # j. Indeed, when
there are only d* < d different values A7 of [Ax], the expression (11) can be rewritten as

m d*

= (E§. cos(rAth) + (FEA5) ™Y Sin(r)\jh)> Awl_
1=1j=1
d
where El~ = Zeﬁg(ﬂ\*’“‘(hpo 1x,<0), Z 55‘)"“| (Ix,50 — 1), <0), and ¢ is the Kronecker delta.

k=1
For this expression the analysis below would be the same.

Since Aw! _, are independent Gaussian random variables with zero mean and variance h, {V,,-}
defines a sequence of independent Gaussian random variable with zero mean and variance
2

m d
ZZeﬁ- cos(rAjh) + (f;)\j_l) sin(rA;h)
1=

1j=1
Thus, (10) can be rewritten as

n
Sn = Z Onrr,
r=1
where 71, ..., n,, are independent A (0, 1) random variables.
On the other hand, let us compute
n
s2 = ZO’ZT. (12)
r=0

First note that, for all j =1,...,d,

Zeé cos(rA;h) + Z f])\J sin(rA;h) = ¢jcos (rAjh — o),
=1

m 2 m m m m
where c? = (Z%) + <ijl')‘j1> , aj = arctan (Zf})\jl/zeé) for Zeé #0, and o = J for
1=1 1=1 =1 1=1 1=1

Zeg = 0. From this and by using the identity cos(6) = (exp(if) + exp(—if)) /2, we obtain that
=1

2
d
o2 =h ch cos (rAjh — o)
j=1
h 4 )
=3 ; cxcj Re{exp(ir(A + Aj)h) exp(—i(ay + a;)) + exp(ir(Ar — Aj)h) exp(i(o; — oy))},
jk=1

(13)
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where Re denotes the real part of a complex number. Under the assumption h < 7/A .., it holds that
0 # 0mod 27 for all @ = h (\j + Ap) with 1 < j,k <d, and for all # = h (A — A\j) with 1 < j # k < d.
Therefore, from (13) and the known expression of the partial sum of the geometric series,

n 0 n if @ = 0 mod 27
Z exp(irt)) = 71761"_1’6(;%?;3 D) _ g otherwise ’
it is obtained that

2 hd
n =g 2k + Cn

where (), is uniformly bound for all n. Thus, the assumption h < 7/A% . implies that

max
sy d
lim Z c; > 0.

Since o2, is bound for all n and r, the Law of the Iterated Logarithms stated in Lemma 1 holds for
Sp. Thus, for 0 < € < 1, (2) implies that

S, > (1—¢)2s? (loglog si) for infinitely many values of n (a.s.).

In addition, since
[Dosa| < PP (Jo] + [yo] max {2 })

for all n, the fist component (4) of the solution of (1) satisfies
z41 > 0 infinitely often as n — oo (a.s.).
Similarly, (3) implies that
Sn < (=1 +¢)2s?2 (loglogs2) for infinitely many values of n(a.s.).

for 0 < e < 1, and so
zph .1 < 0 infinitely often as n — oo (a.s.).

Similarly we can proceed to prove that the other components of x,, also change sign infinitely often.
This completes the proof. m

It was shown in [3] that, likewise the exact solution of the simple harmonic oscillator (equation
(1) with d = 1), the path of the Local Linearized integrator (8) switches signs infinitely many times
as n — oo almost surely for any integration stepsize h. However, according to Theorem 3, in the case
of the coupled oscillator (1), this dynamics of the Local Linearized integrator (8) is only guaranteed
for stepsizes h < 7w/ max (|A1],...,|Aq|), where A\i,..., A\g are the eigenvalues of A.

Theorem 3 complements the results obtained in [3] that demonstrate the capability of the Local
Linearized integrators for reproducing other essential dynamics of the coupled harmonic oscillators:
the mean value, the linear growth of energy along the paths, and the symplectic structure of Hamil-
tonian oscillators.

In addition, it is worth to mention that, since the exponential and trigonometric integrators
considered in [11] and [2] reduce to the expression (8) when they are applied to equation (1), the
Theorem 3 can also be applied. In this way, these integrators with stepsize h < 7/ max (|\1], ..., |A\d|)
also switch signs infinitely many times as n — oo almost surely.
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4 The infinitely many zeros of coupled nonlinear oscillators

In what follows, |-| denotes the Frobenious norm for vectors and matrices.

Lemma 4 Let (2(t),y(t)) € R?? be the unique solution of the harmonic oscillator equation (1) on
[0,T] for any T > 0. Suppose that ®; := ¢(x(t),y(t)) : R — R™ is a function satisfying the linear
growth condition

[o(x(t),y(1)] < K(L+[z(t)] + |y(@)])- (14)
Then, there is a probabilistic measure P on (Q,§) with the same null sets than P and an m-dimensional
standard Wiener process Wy on (Q,%, (8t) >0 ,Iﬁ) such that (z(t),y(t)) is also the unique solution of

the nonlinear equation
dx(t)
dy(t)

(t)dt
2

%—A z(t) + 11®,) dt + dw; (15)

on [0,T].

Proof. Let x; = (z(t),y(t)) be the solution of the equation (1) on [0,T]. From the condition (14) it
follows that
@? < C (1+]x)

where C' = 4K2.
Since x; is the solution of the linear SDE with additive noise (1), x; ~ Nog(u, >) for all ¢ € [0, T,
where the mean p; and the variance ¥; of x; are continuous functions on [0, 7] (see, e.g., [1]). Here,

Nyg denotes 2d—variate normal distribution. The random vector x; can be written as x; = ,ut—i—Eg /2 Zy,
where Ei /% is the symmetric squared root of ¥, and Z; ~ N94(0,I). Therefore,

£ (exp (|#1)) < exp () B (exp <C e + E§/2Zt)2>>

< exp (C +2C |,ut|2> E <exp (20 ‘Etl/zr |Zt|2>> .

Since |Z;|? is a random variable that has chi-squared distribution with 2d degrees of freedom,
E (exp (a |Zt|2)) <1/ (1 —2a)Y?for a < 1/2 ([6], pp. 420). Therefore, for alla < 1/ (8C maxepo 1 |5

it holds that
1
E (exp (a \<I>t|2>) <FE <exp (4 |Zt\2)>
< D22,

where D = exp <aC’ + 2aC maxyeo 1) ] utIQ). The proof is then completed as a direct consequence of

the Cameron-Martin-Girsanov theorem (see, e.g., [8], pp. 274). =
Let us consider the coupled nonlinear oscillator defined by the 2d-dimensional (d > 1) SDE with
additive noise
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dx(t) = y(t)dt
dy(t) = —f(z(t), y(¢))dt + Tdwy,

where IT € R¥"™ is a matrix, W; is a m-dimensional standard Wiener process, and f : R? x R* — R?
is a smooth function satisfying the linear growth condition

(16)

|f(z,y)| < Ki(1+ [z] + |yl) (17)
for some positive constant K.

Theorem 5 Let (x(t),y(t)) € R?? be the unique solution of the harmonic oscillator equation (1) on
[0,T] for T > 0. Suppose that there is a function ®; := ¢(x(t),y(t)) : R — R™ such that

e, = A%x(t) — f(a(t).y(t), (18)

where the function f satisfies the linear growth condition (17). Then, there is a probabilistic measure
P on (2,8) with the same null sets than P and an m-dimensional standard Wiener process w; on

Q, 8, (Ft) >4, ,]?’) such that (z(t),y(t)) is also the unique solution of the nonlinear oscillator equation
(16) on [0,T].

Proof. Since ®; solves the equation (18), ®; = II~ (A%z(t) — f(z(t),y(t))), where the matrix II™ is a
generalized inverse of II. This and condition (17) imply that ®; satisfies the linear growth condition
(14). Then, the assumptions of Lemma 4 are fulfilled, which completes the proof. m

Notice that the assumptions of Theorem 5 are directely fulfilled in the case that II in (1) is a
nonsingular d x d matrix.

The next theorem deals with the infinite oscillations of the paths of the coupled nonlinear oscillator

(16).

Theorem 6 Under condition of Lemma 4 (resp. Theorem 5), each component of the solution
(x(t),y(t)) of the coupled nonlinear oscillator (15) (resp. (16)) has infinitely many zeros on [tg
o0) for every to > 0 almost surely.

Proof. Lemma 4 states that, for properties holding almost surely, the analysis of the nonlinear
oscillator (15) with growth condition (14) reduces to that of the harmonic oscillator (1). In this way,
since by Theorem 2 the harmonic oscillator (1) has infinitely many zeros on [ty c0), the nonlinear
oscillator (15) will also has infinitely many zeros on [ty oo) for every to > 0. Likewise, the proof for
the nonlinear oscillators (16) can be derived. =
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