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Abstract

This work deals with the oscillatory behavior around 0 of the stochastic coupled oscillators
driven by random forces. We focus on three main aspects: 1) the analysis of this oscillatory
behavior for the case of coupled harmonic oscillators, a property that has only been demostrated
for simple harmonic oscillators; 2) the capability of some numerical integrators for reproducing
this dynamical property; and 3) the identi�cation of some classes of coupled nonlinear oscillators
that can be shown to have this oscillatory dynamics by reducing their analysis to equivalent linear
oscillators.

1 Introduction

Motivated by their capability to describe the time evolution of complex random phenomena, models
of nonlinear oscillators driven by random forces have become a focus of intensive studies (see, e.g.,
[4],[14],[7],[8]). Naturally, the added noise modi�es the dynamics of the deterministic oscillators and
so new distinctive dynamical features arise in these random systems. Since the complexity of the
random dynamics depends on the type of nonlinearity and the level of noise, many of the results on
this matter have been achieved for speci�c classes of stochastic oscillators. In particular, a number
properties have been studied for the simple harmonic oscillator such as the stationary probability
distribution, the linear growth of energy along the paths, the oscillatory behavior around 0, and the
symplectic structure of Hamiltonian oscillators, among other (see, e.g., [9]).

On the other hand, demanded by an increasing number of practical applications, the numerical
simulations of stochastic oscillators has also a high interest. In particular, it is required specialized
numerical integrators that preserve the dynamics of the oscillators since general multipurpose inte-
grators fail to achieve this target. Consequently, speci�c oriented integrators for stochastic oscillators
have also been proposed, for instance, in (see, e.g., [10],[2],[11],[13]). Distinctively, in [3], the family
of the Locally Linearized methods have been proved to simultaneously reproduce various dynamical
properties of the stochastic harmonic oscillators.

In this work, we are interested in the study of the oscillatory behavior around 0 of the stochastic
coupled oscillators driven by random forces. We focus on three main aspects: 1) the analysis of
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this oscillatory behavior for the case of coupled harmonic oscillators, a property that has only been
demonstrated for simple harmonic oscillators ([9],[8]); 2) the capability of the Locally Linearized
methods for reproducing this dynamical property; and 3) the identi�cation of some classes of coupled
nonlinear oscillators that display this dynamics.

2 The in�nitely many zeros of the coupled harmonic oscillators

Let us consider the undamped harmonic oscillator de�ned by the 2d-dimensional Stochastic Di¤er-
ential Equation (SDE) with additive noise

dx (t) = Ax (t) dt+Bdwt; (1)

for t � 0, with initial condition x(t0) = (x0; y0) 2 Rd � Rd and d > 1. Here,

x(t) =

�
x(t)
y(t)

�
; A =

�
0 I
��2 0

�
, and B =

�
0
�

�
;

being � 2 Rd�d a nonsingular symmetric matrix, � 2 Rd�m a matrix, I the d�dimensional identity
matrix, and wt an m-dimensional standard Wiener process on the �ltered complete probability space�

;F; (Ft)t�t0 ;P

�
.

The following lemma will be useful.

Lemma 1 Let �1; :::; �n; ::: be independent Gaussian random variables with zero mean and variance

1. Let f�nrg be a bounded triangular array of real numbers. Set Sn =
nP
r=1
�nr�r and s2n =

nP
r=1
�2nr: If

lim inf
n!1

s2n
n > 0; then

P

�
lim sup
n!1

Sn
2s2n log log s

2
n

� 1
�
= 1 (2)

and

P

�
lim inf
n!1

Sn
2s2n log log s

2
n

� �1
�
= 1: (3)

Proof. This is a direct consequence of Corollary 1 of Theorem 2 in [12].
The following theorem shows the in�nitely many oscillations of the paths of coupled harmonic

oscillators (1), which extends the Theorem 4:1 in [8] (Section 8:4) that refers to the paths of simple
harmonic oscillators (i.e., those de�ned by (1) with d = 1).

Theorem 2 Consider the coupled harmonic oscillator (1). Then, almost surely, each component of
the solution x(t) has in�nitely many zeros on [t0 1) for every t0 � 0:

Proof. Let us start considering the �rst component x1 of the solution of (1). By the spectral theorem
for the real nonsingular symmetric matrix � we have the factorization

� = Pdiag[�1; : : : ; �d]P
|;
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were �1; : : : ; �d are the eigenvalues of �, and P is a real orthogonal matrix with entries [Pk;j ] for all
k; j = 1; : : : ; d. Then, for f(�) = sin(�) and for f(�) = cos(�), we have (see, e.g., [5])

f(�) = Pdiag[f(�1); : : : ; f(�d)]P
|:

Since the solution of (1) satis�es (see, e.g., [8])�
x (t)
y (t)

�
=

�
cos(�t) ��1sin(�t)
��sin(�t) cos(�t)

� �
x0
y0

�
+

tZ
t0

�
��1 sin(� (t� s))
cos(� (t� s))

�
�dws;

x1(t) = D(t) + V (t); (4)

where

D(t) =

dX
k=1

�
P1k cos(�kt) < Pk; x0 > +P1k�

�1
k sin(�kt) < Pk; y0 >

�
and

V (t) =
mP
l=1

 
tR
t0

�
dP
k=1

clk sin (�k (t� s))
�
dwls

!
; (5)

being clk = P1k�
�1
k < Pk;�l > and Pk; �l the column vectors of P and �, respectively.

Without loss of generality, let us assume that �k > 0 and �k 6= �j for all k 6= j. Indeed, when
there are only d� < d di¤erent values ��j of j�kj, the expression (5) can be rewritten as

V (t) =
mP
l=1

 
tR
t0

 
d�P
j=1
elj sin

�
��j (t� s)

�!
dwls

!
;

where elj =
dX
k=1

clk�
j�kj
��j
(1�k>0 � 1�k<0), and � is the Kronecker delta. For this expression the analysis

below would be the same.
Consider an arbitrary � > 0 and the time instants tn = t0 + n�, with n = 1; 2:::;. In addition,

for all n, de�ne

Sn := V (tn) =
nP
r=1
Vnr; (6)

where V (tn) is de�ned in (5), and

Vnr =
mP
l=1

 
t0+r�R

t0+(r�1)�

�
dP
k=1

clk sin (�k(tn � s))
�
dwls

!
for all n; r = 1; 2:::. Because the independence of w1s ; :::;w

m
s and the independence of the increments

of wls on disjoint intervals, fVnrgr�1 de�nes a sequence of independent Gaussian random variables
with zero mean and variance

�2nr = E(V
2
nr)

=
t0+r�R

t0+(r�1)�

mP
l=1

�
dP
k=1

clk sin (�k (tn � s))
�2
ds: (7)
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In this way, (6) can be written as

Sn =
nP
r=1
�nr�r;

where �1; :::; �n are independent N (0; 1) random variables. On the other hand,

s2n =
nP
r=1
�2nr:

The expression (7) and the identity sin(�) = (exp(i�)� exp(�i�)) =(2i) (where i =
p
�1) imply that

s2n = �
1

2

mP
l=1

dP
k;j=1

clkc
l
j Re

(
exp(i(�j + �k)tn)

tnR
t0

exp(i(�j + �k)s)ds� exp(i(�j � �k)tn)
tnR
t0

exp(i(�j � �k)s)ds
)
;

where Re denotes the real part of a complex number. Since
tnR
t0

exp(i�s)ds =

�
n� if � = 0 mod 2�

(exp(i�tn)� exp(�i�tn)) =(i�) otherwise
;

s2n =
1

2

mP
l=1

dP
k=1

�
clk

�2
n�+ Cn;

where Cn is uniformly bound for all n. Thus,

lim
n!1

s2n
n
=
1

2

mP
l=1

dP
k=1

�
clk

�2
� > 0:

In addition, since

�2nr � 2d
t0+r�R

t0+(r�1)�

mP
l=1

dP
k=1

�
clk

�2
ds

� 2d�
mP
l=1

dP
k=1

�
clk

�2
for all n and r, the Law of the Iterated Logarithms of Lemma 1 holds for Sn. Thus, for 0 < " < 1,
(2) implies that

Sn > (1� ") 2s2n
�
log log s2n

�
for in�nitely many values of n (a.s.).

In addition, since
jD(tn)j � jP j2 (jx0j+ jy0jmax

k

�
��1k

	
)

for all n, for the �st component (4) of the solution of (1) we have that

x1(tn) > 0 in�nitely often as n!1 (a.s.).

Similarly, (3) implies that

Sn < (�1 + ") 2s2n
�
log log s2n

�
for in�nitely many values of n (a.s.)

for 0 < " < 1, and so
x1(tn) < 0 in�nitely often as n!1 (a.s.).

Thus, since the sample path of the solution to (1) is continuous, x1(t) must have, almost surely,
in�nitely many zeros on [t0 1). For the rest of the components of the solution of (1) we can proceed
in a similar manner. This concludes the proof.
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 3 The in�nitely many zeros of the Local Linearized schemes for
coupled harmonic oscillators

Let (t)h = ftn : n = 0; 1; : : : ; Ng be a partition of the time interval [t0; T ] with maximum stepsize
h de�ned as a sequence of times 0 = t0 < t1 < : : : < tN = T such that hn = tn+1 � tn � h for
n = 0; : : : ; N � 1.

The Locally Linearized integrator for the equation (1) is de�ned by the recursive expression [3]

xn+1 = xn + un + zn+1 (8)

for n = 0; : : : ; N � 1, where xn = (xn; yn), un = LeCnhnr, and zn+1 = Q�wn, with

Cn =

24 0d Id yn
��2 0d ��2xn
01�d 01�d 0

35 2 R(2d+1)�(2d+1);
L = [I2d 02d�1], r = [01�2d 1]

|, �wn = wtn+1 � wtn , and Q = [
Q1
Q2

] a 2d �m matrix with Q1,

Q2 2 Rd�m.

Theorem 3 Let �1; : : : ; �d be the eigenvalues of �, and ��max = max (j�1j ; : : : ; j�dj). For the coupled
harmonic oscillator (1), each components of the Locally Linearized integrator switches signs in�nitely
many times as n!1, almost surely, for any integration stepsize h < �=��max.

Proof. Lemma 3.2 in [3] states that the Locally Linearized schemes (8) can be written as

xn+1 =M
n+1x0 +

nX
r=0

MrQ�wn�r;

where

Mr =

�
cos (r�h) ��1sin (r�h)
��sin (r�h) cos (r�h)

�
:

Likewise in the proof of Theorem 2, by using the Spectral Theorem, the �rst component x1n+1 of xn+1
can be written

x1n+1 = Dn+1 + Sn; (9)

where

Dn+1 =

dX
k=1

�
P1k cos((n+ 1)h�k) < Pk; x0 > +P1k�

�1
k sin((n+ 1)h�k) < Pk; y0 >

�
and

Sn =
nX
r=0

Vnr; (10)
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being

Vnr =

mX
l=1

dX
j=1

�
elj cos(r�jh) + (f

l
j�
�1
j ) sin(r�jh)

�
�wln�r; (11)

and elj ; f
l
j 2 R.

Without loss of generality, let us assume that �k > 0 and �k 6= �j for all k 6= j. Indeed, when
there are only d� < d di¤erent values ��j of j�kj, the expression (11) can be rewritten as

Vnr =

mX
l=1

d�X
j=1

�
Elj cos(r�

�
jh) + (F

l
j(�

�
j )
�1) sin(r�jh)

�
�wln�r;

where Elj =
dX
k=1

elk�
j�kj
��j
(1�k>0 � 1�k<0), F lj =

dX
k=1

f lk�
j�kj
��j
(1�k>0 � 1�k<0), and � is the Kronecker delta.

For this expression the analysis below would be the same.
Since �wln�r are independent Gaussian random variables with zero mean and variance h, fVnrg

de�nes a sequence of independent Gaussian random variable with zero mean and variance

�2nr = h

0@ mX
l=1

dX
j=1

elj cos(r�jh) + (f
l
j�
�1
j ) sin(r�jh)

1A2 :
Thus, (10) can be rewritten as

Sn =
nP
r=1
�nr�r;

where �1; :::; �n are independent N (0; 1) random variables.
On the other hand, let us compute

s2n =
nX
r=0

�2nr: (12)

First note that, for all j = 1; :::; d,
mX
l=1

elj cos(r�jh) +
mX
l=1

(f lj�
�1
j ) sin(r�jh) = cj cos (r�jh� �j) ;

where c2j =

 
mX
l=1

elj

!2
+

 
mX
l=1

f lj�
�1
j

!2
, �j = arctan

 
mX
l=1

f lj�
�1
j =

mX
l=1

elj

!
for

mX
l=1

elj 6= 0, and �j = �
2 for

mX
l=1

elj = 0: From this and by using the identity cos(�) = (exp(i�) + exp(�i�)) =2, we obtain that

�2nr = h

0@ dX
j=1

cj cos (r�jh� �j)

1A2

=
h

2

dP
j;k=1

ckcj Re fexp(ir(�k + �j)h) exp(�i(�k + �j)) + exp(ir(�k � �j)h) exp(i(�j � �k))g ;

(13)
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where Re denotes the real part of a complex number. Under the assumption h < �=��max, it holds that
� 6= 0mod 2� for all � = h (�j + �k) with 1 � j; k � d, and for all � = h (�k � �j) with 1 � j 6= k � d.
Therefore, from (13) and the known expression of the partial sum of the geometric series,

nX
r=1

exp(ir�) =

(
n if � = 0 mod 2�

1�exp(i�(n+1))
1�exp(i�) � 1 otherwise

;

it is obtained that

s2n = n
h

2

dP
k=1

c2k + Cn;

where Cn is uniformly bound for all n. Thus, the assumption h < �=��max implies that

lim
n!1

s2n
n
=
h

2

dP
k=1

c2k > 0:

Since �2nr is bound for all n and r, the Law of the Iterated Logarithms stated in Lemma 1 holds for
Sn. Thus, for 0 < " < 1, (2) implies that

Sn > (1� ") 2s2n
�
log log s2n

�
for in�nitely many values of n (a.s.).

In addition, since
jDn+1j � jP j2 (jx0j+ jy0jmax

k

�
��1k

	
)

for all n, the �st component (4) of the solution of (1) satis�es

x1n+1 > 0 in�nitely often as n!1 (a.s.).

Similarly, (3) implies that

Sn < (�1 + ") 2s2n
�
log log s2n

�
for in�nitely many values of n(a.s.).

for 0 < " < 1, and so
x1n+1 < 0 in�nitely often as n!1 (a.s.).

Similarly we can proceed to prove that the other components of xn also change sign in�nitely often.
This completes the proof.

It was shown in [3] that, likewise the exact solution of the simple harmonic oscillator (equation
(1) with d = 1), the path of the Local Linearized integrator (8) switches signs in�nitely many times
as n!1 almost surely for any integration stepsize h. However, according to Theorem 3, in the case
of the coupled oscillator (1), this dynamics of the Local Linearized integrator (8) is only guaranteed
for stepsizes h < �=max (j�1j ; : : : ; j�dj), where �1; : : : ; �d are the eigenvalues of �.

Theorem 3 complements the results obtained in [3] that demonstrate the capability of the Local
Linearized integrators for reproducing other essential dynamics of the coupled harmonic oscillators:
the mean value, the linear growth of energy along the paths, and the symplectic structure of Hamil-
tonian oscillators.

In addition, it is worth to mention that, since the exponential and trigonometric integrators
considered in [11] and [2] reduce to the expression (8) when they are applied to equation (1), the
Theorem 3 can also be applied. In this way, these integrators with stepsize h < �=max (j�1j ; : : : ; j�dj)
also switch signs in�nitely many times as n!1 almost surely.
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 4 The in�nitely many zeros of coupled nonlinear oscillators

In what follows, j�j denotes the Frobenious norm for vectors and matrices.

Lemma 4 Let (x(t); y(t)) 2 R2d be the unique solution of the harmonic oscillator equation (1) on
[0; T ] for any T > 0. Suppose that �t := �(x(t); y(t)) : R ! Rm is a function satisfying the linear
growth condition

j�(x(t); y(t))j � K(1 + jx(t)j+ jy(t)j): (14)

Then, there is a probabilistic measure eP on (
;F) with the same null sets than P and an m-dimensional
standard Wiener process ewt on �
;F; (Ft)t�t0 ; eP� such that (x(t); y(t)) is also the unique solution of
the nonlinear equation

dx(t) = y(t)dt
dy(t) =

�
��2x(t) + ��t

�
dt+�dewt (15)

on [0; T ].

Proof. Let xt = (x(t); y(t)) be the solution of the equation (1) on [0; T ]. From the condition (14) it
follows that

j�tj2 � C
�
1 + jxtj2

�
;

where C = 4K2.
Since xt is the solution of the linear SDE with additive noise (1), xt � N2d(�t;�t) for all t 2 [0; T ],

where the mean �t and the variance �t of xt are continuous functions on [0; T ] (see, e.g., [1]). Here,
N2d denotes 2d�variate normal distribution. The random vector xt can be written as xt = �t+�1=2t Zt,

where �1=2t is the symmetric squared root of �t, and Zt � N2d(0; I). Therefore,

E
�
exp

�
j�tj2

��
� exp (C)E

�
exp

�
C
����t +�1=2t Zt

���2��
� exp

�
C + 2C j�tj2

�
E

�
exp

�
2C
����1=2t ���2 jZtj2�� :

Since jZtj2 is a random variable that has chi-squared distribution with 2d degrees of freedom,

E
�
exp

�
� jZtj2

��
� 1= (1� 2�)d=2 for � < 1=2 ([6], pp. 420). Therefore, for all a < 1=

�
8Cmaxt2[0;T ] j�tj

�
,

it holds that

E
�
exp

�
a j�tj2

��
� E

�
exp

�
1

4
jZtj2

��
� D2d=2;

where D = exp
�
aC + 2aCmaxt2[0;T ] j�tj2

�
. The proof is then completed as a direct consequence of

the Cameron-Martin-Girsanov theorem (see, e.g., [8], pp. 274).
Let us consider the coupled nonlinear oscillator de�ned by the 2d-dimensional (d > 1) SDE with

additive noise
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dx(t) = y(t)dt
dy(t) = �f(x(t); y(t))dt+�dewt; (16)

where � 2 Rd�m is a matrix, ewt is a m-dimensional standard Wiener process, and f : Rd�Rd ! Rd
is a smooth function satisfying the linear growth condition

jf(x; y)j � K1(1 + jxj+ jyj) (17)

for some positive constant K1.

Theorem 5 Let (x(t); y(t)) 2 R2d be the unique solution of the harmonic oscillator equation (1) on
[0; T ] for T > 0. Suppose that there is a function �t := �(x(t); y(t)) : R! Rm such that

��t = �
2x(t)� f(x(t); y(t)); (18)

where the function f satis�es the linear growth condition (17). Then, there is a probabilistic measureeP on (
;F) with the same null sets than P and an m-dimensional standard Wiener process ewt on�

;F; (Ft)t�t0 ;

eP� such that (x(t); y(t)) is also the unique solution of the nonlinear oscillator equation
(16) on [0; T ].

Proof. Since �t solves the equation (18), �t = ��
�
�2x(t)� f(x(t); y(t))

�
, where the matrix �� is a

generalized inverse of �. This and condition (17) imply that �t satis�es the linear growth condition
(14). Then, the assumptions of Lemma 4 are ful�lled, which completes the proof.

Notice that the assumptions of Theorem 5 are directely ful�lled in the case that � in (1) is a
nonsingular d� d matrix.

The next theorem deals with the in�nite oscillations of the paths of the coupled nonlinear oscillator
(16).

Theorem 6 Under condition of Lemma 4 (resp. Theorem 5), each component of the solution
(x(t); y(t)) of the coupled nonlinear oscillator (15) (resp. (16)) has in�nitely many zeros on [t0
1) for every t0 � 0 almost surely.

Proof. Lemma 4 states that, for properties holding almost surely, the analysis of the nonlinear
oscillator (15) with growth condition (14) reduces to that of the harmonic oscillator (1). In this way,
since by Theorem 2 the harmonic oscillator (1) has in�nitely many zeros on [t0 1), the nonlinear
oscillator (15) will also has in�nitely many zeros on [t0 1) for every t0 � 0. Likewise, the proof for
the nonlinear oscillators (16) can be derived.
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