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Abstract

We study the Yamabe Problem in a special class of Riemannian manifolds, the Ricci
solitons. We also explore contact and symplectic manifolds admitting a compatible Ricci
soliton, where we obtain some observations. With respect to Poissons geometry, we pro-
vide local expressions for Poisson bivectors and the corresponding symplectic forms with
broken Lefschetz and wrinkled singularities in dimensions 4, and 6, and discuss the higher
dimension case.

With respect to the Yamabe Problem on compact Ricci solitons the main result that
we obtained is:

Theorem There exists a unique U(2)-invariant solution to the Yamabe equation on
CP2#CP2 with the Koiso-Cao metric.

We also explore the Ricci soliton equation. We use Hamiltonian and Liouville vec-
tor �elds to derive some results concerning a Ricci soliton with a compatible symplectic
structure. The main result obtained:

Theorem Let (M,ω) be a symplectic manifold of dimension n ≥ 4. If ω has compatible
Ricci soliton g determined by a Hamiltonian or a Liouville holomorphic vector �eld, then
g is Einstein.

We also constructed singular Poisson structures on manifolds of dimension 4 and 6,
where the singularties are given by a broken Lefschetz �bration or a wrinkled �bration.
The main results are:

Theorem A closed, orientable, smooth 4−manifold equipped with a wrinkled �bration ad-
mits a complete Poisson structure. The �bres of the �bration are leaves of the symplectic
foliation and both structures share the same singularities.

Theorem A generalized broken Lefschetz �bration admits a Poisson structure compatible
with the �bration structure. Also, generalized wrinkled �brations in dimension 6 admit
compatible Poisson structures.
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Chapter 1

Introduction

A fundamental problem in geometry is the study of special distinguished structures on
geometric manifolds. In particular to search for interesting metrics on a �xed manifold.
There are di�erent points of view to look at this problem.

The topology of a space creates restrictions on the geometry of metrics on it. For
instance, in dimension 2, Gauss-Bonnet Theorem establishes a connection between the
Euler characterisc and the Gaussian curvature of metrics on it: the integral of the cur-
vature is independent of the metric. Also in dimension 2, the Uniformization Theorem
states that in a given conformal class one can �nd a metric of constant curvature. For a
proof see [51]. In higher dimiensions one would consider the scalar curvature, which is the
average curvature of the metric at a point. In general, the integral of the scalar curvature
is not constant, and it is known as the Hilbert-Einstein functional. It plays a fundamental
role in studying the existence of constant scalar curvature metrics in a conformal class.
This is known as the Yamabe Problem.

On the other hand, given a topological space we are interested in some special struc-
ture on it, then look for the most prevalent geometric structure in each dimension. For
closed, orientable manifolds the existence of a symplectic form on a given manifold follows
easily only in dimension 2, such structure always exists. In dimension 4 there are some
known cases, but in higher dimension is more complicated, it is essentially unknown. A
more general structure can be considered such as a Poisson structure. It can be regarded
as a generalization of a symplectic structure. Every oriented 2-manifold admits a sym-
plectic structure, and hence a Poisson structure. Every closed oriented 3-manifold admits
a regular Poisson structure of rank 2 [33]. In dimension 4 only symplectic manifolds can
have Poisson structures of rank 4. We will study singular Poisson manifolds in dimension
4 and 6 in Chapters 6 and 7.

This thesis is about these two topics: Yamabe Problem and Poisson structures. We
study the Yamabe Problem in a special class of Riemannian manifolds, the Ricci solitons.
We also explore contact and symplectic manifolds admitting a compatible Ricci soliton,
where we obtain some observations. With respect to Poissons geometry, we provide local
expressions for Poisson bivectors and the corresponding symplectic forms with broken
Lefschetz and wrinkled singularities in dimensions 4 and 6, and discuss the higher dimen-
sional case.
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Chapter 1. Introduction

We now give a few more details on these subjects.

The Yamabe Problem

The Yamabe Problem consists in �nding constant scalar curvature metrics in the confor-
mal class of a given Riemannian manifold (M, g) of dimension n, n ≥ 3. Consider the
Hilbert�Einstein functional S de�ned in the space of Riemannian metrics on a smooth
manifold M :

S(g) =

∫
M
Sgdvg

Vol(M, g)
n−2
n

where dvg is the volume element induced by g, Vol(M, g) =
∫
M
·dvg is the volume of (M, g)

and Sg is the scalar curvature of (M, g). The power n−2
n

is chosen so that Sg is invariant
by homothecies.

The Yamabe invariant is de�ned as:

Y (M) = sup
{[g]}

inf
h∈[g]
S(h)

where [g] is the conformal class of the Riemannian metric g.

Existence of constant scalar curvature metrics in a conformal class is equivalent to the
existence of a smooth positive function f on M , and a constant λ such that the Yamabe
equation holds:

−an4gf + Sgf = λfp−1

where an = 4(n−1)
n−2

, and p = 2n
n−2

.

If f satis�es the Yamabe equation, then fp−2 · g has constant scalar curvature with
value λ ∈ R.

On the other hand, if we write S(fp−2 · g), we obtain:

Yg(f) := S(fp−2 · g) =

∫
M

(an|∇f |2 + Sgf
2)dvg

||f ||2p
.

The Euler-Lagrange equation of Yg(f) is exactly the Yamabe equation, and therefore
critical points of S|[g] are metrics of constant scalar curvature in [g].

The Yamabe constant of the conformal class [g] is de�ned as:

Y (M, [g]) = inf
h∈[g]
Yg(h)

The Yamabe constant is �nite and a fundamental theorem of Yamabe-Trudinger-
Aubin-Schoen ([63, 58, 1, 50]) asserts that the in�mum is always achieved. Then, the
Yamabe equation has at least one solution: there exists at least one constant scalar cur-
vature metric in every conformal class.
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When Y (M, [g]) ≤ 0, it is elementary to see that there is only one unit volume metric
of constant scalar curvature in [g]. It is therefore a minimizer for Yg. For Einstein metrics
di�erent from the round metric on Sn, Obata's Theorem [43] gives uniqueness if the given
Riemannian manifold is not the sphere with the standard metric. Hence, in this sense it is
interesting to study uniqueness of the Yamabe problem in other more general situations.
For this purpose we will focus on Ricci solitons. We would like to understand Yamabe
metrics on the conformal class of non-Einstein Ricci solitons of positive scalar curvature.

Ricci solitons

A Ricci soliton is a n-dimensional Riemannian manifold (M, g) whose Ricci curvature
satis�es the di�erential equation

−2Ric(g) = LXg + 2µg

for some complete vector �eld X and a scalar µ. Here LXg is the Lie derivative of the
metric in the direction of X.

The study of Ricci solitons has increased considerably in order to obtain a complete
classi�cation, and a better understanding of higher dimension geometry. There are few
examples of non-trivial Ricci solitons. The only known compact non-trivial Ricci soli-
tons are rotationally symmetric Kähler metrics. For real dimension 4 the �rst one was
constructed by Koiso [36], and independently by Cao [10]. It is a non-Einstein shrinking

soliton on CP2#CP2 with symmetry U(2) and positive Ricci curvature. In fact, Cao give
a family of homothetically gradient Kähler-Ricci solitons on Cn which includes the Hamil-
ton soliton in case n = 1. The other example in dimension 4 was found by Wang-Zhu

[61]. They proved the existence of a gradient Kähler-Ricci soliton on CP2#2CP2 with
U(1)× U(1) symmetry.

Compact homogeneous Ricci solitons are Einstein. Thus, next case to study are co-
homogeneity one Ricci solitons, studied for instance by Dancer, Hall and Wang [19], [20].
The only known 4−dimensional non-trivial metric of cohomogeneity one is the example,

mentioned above, constructed by Koiso and by Cao on CP2#CP2.

With respect to the Yamabe Problem on compact Ricci solitons the main result that
we obtained is [57]:

Theorem There exists a unique U(2)-invariant solution to the Yamabe equation on
CP2#CP2 with the Koiso-Cao metric.

Contact and Symplectic solitons

One may plug into the Ricci soliton equation di�erent vector �elds. For closed manifolds,
if the associated scalar is positive or zero, a soliton must be Einstein. But in general,
there is no special behavior of the soliton for a �xed vector �eld. In order to explore
other directions we discuss an idea about contact manifolds admitting a soliton [12]. Cho
de�nes a contact soliton as a contact manifold with a metric structure given by a Ricci
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Chapter 1. Introduction

soliton. Cho studied Ricci solitons determined by the Reeb vector �eld. In dimension 3
Cho proved that any contact soliton has constant curvature, and that any contact Ricci
soliton is a shrinking soliton. He also introduced transversal solitons. Given a contact
soliton, those solitons are de�ned by orthogonal vector �elds to the Reeb �eld, where he
proved a rigidity result.

These ideas are explored here for a symplectic structure, and carried to extend Cho's
results to higher dimensions. In the case of symplectic manifolds we use Hamiltonian
and Liouville vector �elds. On the other hand, Bowden-Crowley-Stipsicz proved that if
M is a contact manifold, then M × S2 also admits a contact structure. Then we have
obtained some results regarding M a contact soliton and S2 as a shrinking soliton. Our
contributions here are resumed in the following theorems.

Theorem Let (M,ω) be a symplectic manifold of dimension n ≥ 4. Any Ricci soliton g
on M compatible with ω, determined by a Hamiltonian or a Liouville vector �eld is an
Einstein metric.

In the statement we consider the vector �elds to be holomorphic.

There is an easy way to construct a symplectic manifold from a contact manifold, it
is known as symplectization. In this case we obtained:

Theorem The symplectization of a contact soliton manifold admits a shrinking Ricci
soliton.

Poisson structures

The study of smooth manifolds of dimension 4 has led to various interesting types of �bra-
tions. Donaldson established a correspondence between Lefschetz pencils and symplectic
4-manifolds [22]. Since then, Lefschetz �brations and their generalizations have been vital
in symplectic geometry. These are maps to the 2-sphere with a �nite number of isolated
singular points where the rank of the derivative is zero.

In 2005, Auroux, Donaldson, and Katzarkov generalized this approach, introducing
what is now known as a broken Lefschetz �bration [3]. There is an additional component
in the singularity set of broken Lefschetz �brations, a 1-submanifold of inde�nite folds.
Recently, near-symplectic structures and generalized broken Lefschetz �brations have been
studied in higher dimensions [60].

By a stable map it is understood one such that any nearby map in the space of
smooth mappings can be perturbed to the original map after a change of coordinates in
the domain and codomain. Broken Lefschetz �brations are not stable. Lekili showed that
the unstable Lefschetz singularities of a broken Lefschetz �bration can be substituted by
cusps, then a stable map is obtained, with only folds and cusps as elements of its critical
set [39]. These mappings are known as wrinkled �brations.

A Poisson manifold is a pair (M, {·, ·}), where M is a smooth manifold and {·, ·} is a
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bracket that de�nes a Lie algebra on C∞(M) and it is a derivation in each factor:

{gh, k} = g{h, k}+ h{g, k}

for any g, h, k ∈ C∞(M).

The Symplectic Strati�cation Theorem states that a Poisson manifold can be decom-
posed into a disjoint union of symplectic manifolds. The symplectic form is the restriction
of the Poisson bracket to each leaf [23].

Poisson geometry has been important, in particular in dimension 4. In [25] Suárez-
Serrato, García-Naranjo and Vera exhibited a Poisson structure whose symplectic leaves
coincide with the �bres of a broken Lefschetz �bration, and the singular sets of both
structures coincide. The proof also implies that on any homotopy class of maps from a
4-manifold to S2 there is such a singular Poisson structure. In a collaboration work with
Suárez-Serrato [54] we showed:

Theorem A closed, orientable, smooth 4−manifold equipped with a wrinkled �bration ad-
mits a complete Poisson structure. The �bres of the �bration are leaves of the symplectic
foliation and both structures share the same singularities.

On the other hand, in collaboration with Suárez-Serrato and Vera [55] we studied
higher dimensionnal broken Lefschetz �brations, we de�ne a generalized wrinkled �bra-
tion where we obtained a similar result.

Theorem A generalized broken Lefschetz �bration admits a Poisson structure compatible
with the �bration structure. Also, generalized wrinkled �brations in dimension 6 admit
compatible Poisson structures.

This thesis is organized as follows. In Chapter 2 we introduce the background needed
to follow each part of the thesis. Section 2.1 contains notation and results concerning the
curvature of a Riemannian manifold. In Section 2.2 we show that the critical points of the
Hilbert-Einstein functional are the Einstein metrics. The Yamabe constant is introduced
in Section 2.3, where we discuss the uniqueness of solutions to the Yamabe equation.
Obata's Theorem is presented here. We dedicate Section 2.5 to the basics facts about
Poisson geometry, since one part of the work is about of the construction of Poisson man-
ifolds. Following the de�nition and the Symplectic Strati�cation Theorem, we give the
most known criterion used to decide when a Poisson manifold is linearizable or integrable.
At the end of the chapter we present Broken Lefschetz and Wrinkled �brations. These
�brations are the setting where singular Poisson structures are constructed in Chapters 6
and 7.

We give the de�nition of a Ricci soliton in Chapter 3, and review some properties and
examples. In Chapter 4 we present some preliminary results on symplectic and contact
manifolds with a compatible Ricci soliton. We prove that solitons generated by Hamilto-
nian or Liouville vector �elds are Einstein metrics. Also we extend some results of Cho
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Chapter 1. Introduction

([12, 13]) of contact solitons to certain Riemannian products.

The Chapter 5 is dedicated to prove the uniqueness of invariant solutions to the Yam-
abe equation on the Koiso-Cao soliton. The proof is given in detail in Section 5.3. Sections
5.1, 5.2 contain a di�erent approach of the construction of the Koiso-Cao soliton, and we
prove that the scalar curvature is a decreasing function on the orbit space. Also we were
able to prove that it has positive Ricci curvature with our coordinates.

In Chapter 6 we provide a local formulæ for Poisson bivectors and symplectic forms on
the leaves of Poisson structures associated to wrinkled �brations on smooth 4�manifolds
[54]. Following the construction given in [25] we use the Flaschka-Ratiu formula to produce
a Poisson bracket with prescribed Casimirs. We use the coordinates of the local expression
of each singularity as a Casimir for the Poisson structure that we want to construct. The
singularities coincide precisely with those of a wrinkled �bration. The Poisson structure
approaches zero near the singularities, so the corresponding symplectic forms approach
in�nity.

In Chapter 7 we show that generalized broken Lefschetz �brations in arbitrary dimen-
sions admit rank-2 Poisson structures. After extending the notion of wrinkled �bration
to dimension 6 we prove that these wrinkled �brations also admit compatible Poisson
structures. We also discuss the case for other dimensions, where we describe a general
procedure to construct similar Poisson structures, and their corresponding symplectic
forms. Then we provide local expressions for each generalized �bration and their cor-
responding Lekili move. We discuss the linearization and integrability of the structures
constructed.
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Chapter 2

Preliminaries

2.1 Curvature

Let (M, g) be a Riemannian manifold of dimension n. We will denote by χ(M) the space
of smooth vector �elds on M . Let ∇ be the Levi-Civita connection of (M, g), the unique
torsion-free connection, that is:

[Y, Z] = ∇YZ −∇ZY,

which is compatible with g:

Zg(X, Y ) = g(∇ZX, Y ) + g(∇ZY,X).

It is is determined by the Koszul formula:

2g(∇XY, Z) = Xg(Y, Z)+Y g(X,Z)−Zg(X, Y )+g([X, Y ], Z)−g([Y, Z], X)+g([Z,X], Y )
(2.1.1)

for every X, Y, Z ∈ χ(M).

De�nition 2.1.1 A tensor T of order k is a k−multilinear mapping over C∞(M):

T : χ(M)× . . . χ(M)︸ ︷︷ ︸
k-times

→ C∞(M).

The Levi-Civita connection gives a covariant derivative for tensors. Let T be a tensor
of order k. The covariant derivative ∇T of T is a tensor of order (k + 1) given by the
formula:

∇T (X1, . . . , Xk, Xk+1) =Xk+1(T (X1, . . . , Xk))− T (∇Xk+1
X1, . . . , Xk)− ...

− T (X1, . . . ,∇Xk+1
Xk)

De�nition 2.1.2 Let f ∈ C∞(M), the Hessian of f is de�ned by:

∇(∇f) = Hess(f).

That is:

Hess(f)(X, Y ) = Y (∇f(X))−∇f(∇YX)

= Y (X(f))− (∇YX)(f).

7



Chapter 2. Preliminaries

Note that the Hessian is symmetric, since ∇ is a free-torsion connection.

De�nition 2.1.3 The Laplacian of a smooth function f associated to g is:

4g(f) = −trace(Hess(f))

If {ei}ni=1 is an orthonormal basis of TpM , we extend it to a orthonormal frame {Ei}ni=1,
and we obtain:

4gf(p) = −

(
n∑
i=1

Ei(Ei(f))− (∇EiEi)f

)
(p)

De�nition 2.1.4 The curvature tensor

R : χ(M)× χ(M)× χ(M)→ χ(M)

is de�ned by the formula:

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z

for every X, Y, Z in χ(M).
If T is another vector �eld on M , the Riemann curvature tensor R is de�ned by:

R(X, Y, Z, T ) := g(R(X, Y )Z, T )

Let X, Y, Z, T,W be vector �elds. The Riemann tensor satis�es the following proper-
ties:

1. R(X, Y, Z, T ) = −R(Y,X,Z, T ) = −R(X, Y, T, Z)

2. R(X, Y, Z, T ) = R(Z, T,X, Y )

3. First Bianchi Identity:

R(X, Y, Z, T ) + R(Y, Z,X, T ) + R(Z,X, Y, T ) = 0

4. Second Bianchi Identity:

∇R(X, Y, Z,W, T ) +∇R(X, Y,W, T, Z) +∇R(X, Y, T, Z,W ) = 0

The Ricci curvature, Ric, is de�ned as the trace of the curvature tensor:

Ric(X, Y ) =
n∑
i=1

g(R(X, ei)Y, ei).

The scalar curvature, Sg, is the trace of the Ricci tensor:

Sg =
n∑
j=1

Ric(ej, ej).
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2.1. Curvature

De�nition 2.1.5 A Riemannian manifold (M, g) is Einstein if it has constant Ricci
curvature:

Ric(g) = λg

for some scalar λ ∈ R.

If we take take traces we see that an Einstein metric has constanct scalar curvature

Sg = nλ.

De�nition 2.1.6 The trace-free Ricci tensor is the symmetric tensor of order two of
zero trace

T := Ric(g)− 1

n
S · g.

If (U,ϕ) is a chart, we have a coordinate system {x1, ..., xn} in p ∈M . Denote by gij
the components of the metric g, and gij the components of the inverse matrix g−1. The
vectors { ∂

∂xj
|p}nj=1 form a basis of the tangent space TpM at the point p ∈ M . Then we

have the local expression of the Christo�el symbols of the Levi-Civita connection:

Γkij =
1

2
gkl(∂igjl + ∂jgil − ∂lgij).

Thus the curvature tensor in coordinates is described by:

Rl
ijk =

∂

∂xj
Γlik −

∂

∂xi
Γljk − ΓsikΓ

l
js − ΓsjkΓ

l
is.

The Riemann curvature tensor is expressed:

Rijkl = Rm
ijkglm.

Contracting in the last expression, we obtain the Ricci tensor:

Rik = Rijklg
jl = Rj

ijk.

Hence, the scalar curvature is:

Sg = Rijg
ij.

Note that for a 2−dimensional Riemannian manifold T = 0, but Sg is not necessarily
constant. In this case g is Einstein if and only if Sg is constant.

We point out that Einstein summation convention is used to simplify notation of local
expressions. We also denote: ∇k := ∇ ∂

∂xk

(·).

Proposition 2.1.7 Let (M, g) be a Riemannian manifold of dimension n ≥ 3 such that
T = 0. Then g is Einstein (i.e., Sg is constant)

9



Chapter 2. Preliminaries

Proof: The Second Bianchi identity in local coordinates reads as follows:

∇mRijkl +∇kRijlm +∇lRijmk = 0.

Contracting in the indices j and m, i.e. multiplying by gjm:

gjm(∇mRijkl +∇kRijlm +∇lRijmk) = 0.

Since covariant derivatives and contractions commute:

gjm∇mRijkl +∇kg
jmRijlm +∇lg

jmRijmk = 0.

From the symmetries of the Riemann tensor, the expression becomes:

gjm∇mRijkl +∇kg
jmRijlm −∇lg

jmRijkm = 0

gjm∇mRijkl +∇kRil −∇lRik = 0

Contracting in the indices i, l we obtain:

gjm∇mg
ilRijkl +∇kg

ilRil −∇lg
ilRik = 0

−gjm∇mg
ilRjikl +∇kg

ilRil −∇lg
ilRik = 0

−gjm∇mRjk +∇kSg − gil∇lRik = 0.

Since the �rst and third term are equal we have that:

∇kSg = 2gik∇kRil. (2.1.2)

In local coordinates the fact that T vanishes is given by:

nRil = Sggil.

We take covariant derivative and use the compatibility of ∇, that is ∇g = 0:

n∇kRil = ∇kSggil.

Contracting:
ngik∇Ril = ∇kSg.

Hence, if T = 0, replacing it in the last equation and using again that ∇g = 0:

∇kSg =
2

n
gikgil∇kSg.

In consequence:

∇kSg =
2

n
∇kS.

Thus, for n 6= 2, S is constant. Therefore g has constant Ricci curvature, and it is
Einstein. �

The converse is also true, it follows from de�nition of the tensor T .

10



2.2. The Hilbert-Einstein functional

2.2 The Hilbert-Einstein functional

De�nition 2.2.1 Let M be a smooth compact oriented manifold of dimension n. The
Hilbert-Einstein functional in the space of Riemannian metrics is de�ned as:

g → S(g) =

∫
M
Sgdvg

Vol(M, g)
n−2
n

. (2.2.1)

The term Vol(M, g)
n−2
n is used to normalize.

We will assume n ≥ 3. Note that when n = 2, S(g) is constant, by Gauss-Bonnet
Theorem.

The critical points of S are the Einstein metrics on M . To see this, let (M, g) be
a �xed Riemannian metric. Normalize it so that Vol(M, g) = 1. Then we consider a
variation of metrics gt. If we write gt := g + th, for any bilinear symmetric form h, we

will compute ∂tS :=
∂

∂t
S(gt)|t=0.

Recall that the �rst variation of the volume is:

∂tVol(M, gt) =

∫
M

1

2
trg(h)dωg.

Since we restricted to the class of unitary volume metrics, we regard volume preserv-
ing variations, that is, ∂tVol(M, gt)|t=0 = 0. Then the volume is preserved if and only if∫
M
trg(h) = 0.

On the other hand, if we have a normal coordinate system around a point p ∈M , the
Christo�el symbols vanish at p and their �rst variation is:

∂

∂t
Γkij|t=0 =

∂

∂t
|t=0

(
1

2
gkl(∂igjl + ∂jgil − ∂lgij)

)
=

1

2
gkl

∂

∂t
|t=0(∂igjl + ∂jgil − ∂lgij) +

1

2

(
∂

∂t
|t=0g

kl

)
Γkij

=
1

2
gkl(∇ihjl +∇jhil −∇lhij).

For variation of the inverse of the metric g−1 we compute:

0 = ∂t(δij) = ∂t(g
ij
t (gt)ij)

= gijhij +
∂

∂t
(gijt )gij.

Thus, we obtain:
∂t(g

ij
t ) = −gijhijgij.

The curvature tensor is Rl
ijk = ∂jΓ

l
ik − ∂iΓljk, then its �rst variation is:

∂tR
l
ijk =

1

2
glm (∇j∇khim −∇j∇mhik −∇i∇khjm

+ ∇i∇mhjk +∇j∇ihkm −∇i∇jhkm) .

11
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The Ricci tensor in local coordinates is given by:

Rij = ∂lΓ
l
ij − ∂iΓllj = Rl

ilj.

Hence, from the curvature tensor variation we have:

∂tRij =
1

2
gjm (∇j∇khim −∇j∇mhik −∇i∇khjm

+ ∇i∇mhjk +∇j∇ihkm −∇i∇jhkm)

=
1

2

(
∇j∇kg

jmhim −4ghik −∇i∇kg
jmhjm

+ ∇i∇mg
jmhjk +∇j∇ig

jmhkm −∇i∇jg
jmhkm

)
.

Since Sg = gijRij, we obtain that its �rst variation is

∂tS|t=0 = −gijhijgij + gij∂tRij,

and note that gij∂tRij vanishes after integration on M , since all terms involved are of
divergence type.

Therefore, all previous calculations give the �rst variation of the Hilbert-Einstein func-
tional:

∂tS =
∂

∂t

(∫
M

Sgtdωgt

)∣∣∣∣
t=0

=

(
−
∫
M

gt(h,Ric(gt))dωgt +
1

2

∫
M

Sgttrgt(h)dωg

)∣∣∣∣
t=0

=

(
−
∫
M

gt(h,Ric(gt)−
1

2
Sgtgt)dωgt

)∣∣∣∣
t=0

= −
∫
M

g

(
h,Ric(g)− 1

2
Sg

)
dωgt .

Hence, a Riemannian metric g is a critical point of S if∫
M

g

(
h,Ric(g)− 1

2
Sg

)
dωg = 0

for every h such that

∫
M

trg(h) = 0.

For a Riemannian metric g, set V (t) := Vol(M, g + th), then the normalized family

g̃t = V (t)−
2
n gt satis�es Vol(M, g̃t) = 1. The scalar curvature of g̃t is Sg̃t = V (t)

n
2 Sgt , then:

S(g̃t) =

∫
M

Sg̃tdωg̃t

= V (t)
2−n
n

∫
M

Sgtdωgt .

As before, we obtain:

∂

∂t
V (t) =

1

2

∫
M

trgt(h)dωgt

=
1

2

∫
M

gt(h, gt)dωgt .

12



2.3. Yamabe Problem

It follows that:

∂

∂t
S(g̃t) = V (t)

2−n
n
∂

∂t

∫
M

Sgtdωgt +
2− n

2n
V (t)

2−2n
n

(∫
M

gt(h, gt)dωgt

)
S(gt)

= −V (t)
2−n
n

∫
M

gt(h,Ric(gt)−
1

2
Sgtgt)dωgt

+
2− n

2n
V (t)

2−2n
n

(∫
M

gt(h, gt)dωgt

)
S(gt)

= −V (t)
2−n
n

∫
M

gt(h,Ric(gt)−
1

2
Sgtgt +

n− 2

2n
S(gt)gt)dωgt .

Therefore, a metric g with Vol(M, g) = 1 is a critical point of S if and only if:

Ric(g)− 1

2
Sgg +

n− 2

2n
S(g)g = 0

If we take traces in both sides,

Sg −
n

2
Sg +

n− 2

2
S(g) = 0,

and then:
Sg = S(g).

Then, g with Vol(M, g) = 1, is a critical point of S if and only if:

Ric(g)− 1

2
Sgg +

n− 2

2n
Sg = Ric(g)− 1

n
Sgg

= T (g) = 0.

Proposition 2.2.2 Let M be a closed oriented Riemannian manifold. A metric g is a
critical point of S, restricted to metrics with same volume as g, if and only if g is Einstein.

2.3 Yamabe Problem

Two metrics g, h on a smooth manifoldM are said to be conformal if there exists a smooth
positive function f : M → R>0 such that

h = f · g

If (M, g) is a Riemannian manifold, the conformal class [g] of the metric g is the family
of metrics conformal to g:

[g] = {f · g|f ∈ C∞(M), f > 0} = {e2ug|u ∈ C∞(M)}.

A well-known problem in Riemannian geometry is to �nd metrics g̃ of constant scalar
curvature in a given conformal class [g]. Existence of such a metric g̃ is known as the
Yamabe Problem. It was �rst considered by Yamabe in [63]. Actually Yamabe claims
to have solved the problem but his proof contained a mistake. The mistake was �xed in

13



Chapter 2. Preliminaries

a sequel of articles by Trudinger [58], Aubin [1] and Schoen [50].

Let (M, g) be a Riemannian manifold of dimension n ≥ 3. If we write g̃ = fp−2 · g,
with p = 2n

n−2
. Let Sg and Sg̃ be the scalar curvatures of g and g̃ respectively, then they

satisfy the following relation:

−4(n− 1)

n− 2
4gf + Sgf = Sg̃f

p−1.

Hence g̃ has constant scalar curvature λ if and only if f satis�es the Yamabe equation:

− an4gf + Sgf = λfp−1 (2.3.1)

where an = 4(n−1)
n−2

.

This says that we have an equivalent PDE formulation for the Yamabe Problem, which
leads to study existence and uniqueness of solutions to the Yamabe equation.

2.3.1 Yamabe constant

Let (M, g) be a closed Riemannian manifold of dimension n, with n ≥ 3, and p = 2n
n−2

.

Then dvfp−2·g = f
n
2

(p−2) dvg = fp dvg.
If we restrict the Hilbert-Einstein functional 2.2.1 to a conformal class we obtain:

S(fp−2 · g) =

∫
M
Sg̃ dvg̃

(Vol(M, g̃))
n−2
n

=

∫
M
f 1−p(−an4gf + Sgf)fp dvg

(
∫
M
fp dvg)

2
p

=

∫
M
f(−an4gf + Sgf) dvg

||f ||2p

=
(
∫
M
an|∇f |2 + Sgf

2) dvg

||f ||2p
.

De�nition 2.3.1 The Yamabe functional of a Riemannian manifold (M, g) of dimension
n ≥ 3 is de�ned as:

Yg(f) =
(
∫
M
an|∇f |2 + Sgf

2) dvg

||f ||2p
. (2.3.2)

If f is a smooth positive function and ϕ ∈ C∞(M),

∂

∂t
Yg(f + tϕ)

∣∣∣∣
t=0

=
∂

∂t

∫
M

(an|∇(f + tϕ)|2 + Sg · (f + tϕ)2) dvg

(
∫
M

(f + tϕ)pdvg)
2
p

∣∣∣∣∣
t=0

=

∫
M

(2ang(∇f,∇ϕ) + 2Sgfϕ)dvg

−
∫
M

(an|∇f |2 + Sgf
2)dvg

(∫
M

fp
) 2

p
−1

·
∫
M

fp−1ϕ.

14
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It follows that a function f ∈ C∞+ (M) is a critical point of Yg if and only if:

−an4gf + Sgf =
Yg(f)

||f ||p−2
p

fp−1.

Therefore, a function f ∈ C∞+ (M) is a critical point of Yg if and only if f satis�es the
Yamabe equation (2.3.1). That is, if and only if g̃ = fp−2 ·g has constant scalar curvature
λ, with λ = Yg(f)

||f ||p−2
p

. That means, the critical points of S|[g] are the metrics of constant

scalar curvature.

Proposition 2.3.2 The Yamabe functional is bounded from below.

Proof: We have that:

Yg(f) ≥
∫
M
Sgf

2dvg

||f ||2p

≥ (inf
M
Sg)
||f ||22
||f ||2p

.

If Sg ≥ 0, then Yg(f) ≥ 0. If inf
M
Sg < 0, we write f 2 = f 2 · 1, and then 2

p
+ 2

n
= 1.

Thus, by the Hölder inequality:

||f ||22 ≤ ||f 2|| p
2
||1||n

2
= ||f ||2p (Vol(M, g))

2
n . (2.3.3)

Thus, we obtain
Yg(f) ≥ (inf

M
Sg)(Vol(M, g))

2
n .

Therefore Yg(f) is bounded from below. �

The last proposition allows to de�ne:

De�nition 2.3.3 The Yamabe constant of a conformal class [g] is:

Y (M, [g]) = inf
h∈[g]
S(h).

If h ∈ [g] satis�es S(h) = Y (M, [g]), i.e. h realizes the in�mum, then h has constant
scalar curvature. These metrics are called Yamabe metrics.

Note that the in�mum can also be computed over all positive smooth functions on M ,

Y (M, [g]) = inf
f∈C∞+ (M)

Yg(f).

T. Aubin [1] proved that the Yamabe constant of the conformal class of the round
metric of the sphere is an upper bound for the Yamabe constant. Formally:

Theorem 2.3.4 Let (M, g) be a n-dimensional closed Riemannian manifold of dimension
n ≥ 3. Then:

Y (M, [g]) ≤ Yn.

Where Yn is the Yamabe constant of (Sn, gno ), the sphere with the standard metric,
Yn := Y (Sn, [gno ]) = n(n− 1)Vol(Sn, gno ).

15
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Proof: Let π : Sn → Rn be the stereographic projection. We consider the functions:

hλ(x) =

(
2λ

λ2||x||2 + 1

)n−2
2

.

Let Vn := Vol(Sn, gno ). Since (hλ)
4

n−2 〈, 〉 is isometric to gno , it follows that:∫
Rn

(
(hλ)

4
n−2

)n
2
dx = ||hλ||pp = Vn.

Consider in Rn a ball of radius ε > 0, Bε, and a dilation by λ, for λ big enough such
that the complement of its image under π−1 in Sn is small enough. Hence,∫

Bε

(hλ)
p = Vn − δ

for a small δ.

For λ �xed, we note that:∫
Rn
h2
λdx ∼

∫
||x||>>1

(
1

||x||2
)n−2dx ∼

∫
||x||>>1

||x||4−2n.

If n = 3, 4 the integral does not exist. Then, for n > 4:∫
Rn
h2
λdx ∼

∫ ∞
b>>1

rn−1r4−2ndr

=

∫ ∞
b>>1

r3−ndr

=
r4−n

4− n

∣∣∣∣∞
b>>1

and the limit goes to zero as r →∞.

Therefore, we are interested in computing
∫
Bε
h2
λ for a small ε. This is the same as a

big dilation.

Then for λ big enough:∫
B 1
λ

(
2/λ

||x||2 + 1/λ2

)n−2

dx ≤
(

2

λ

)n−2 ∫
B 1
λ

(
1

1/λ2

)n−2

dx

= 2n−2λn−2

(
1

λ

)n
Vol(Bn−1, 〈, 〉) ∼ 1

λ2
Vol(Bn−1, 〈, 〉).

The limit goes to zero, as λ→∞.
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On the other hand we have,∫
Bε−B 1

λ

(
2/λ

||x||2 + 1/λ2

)n−2

≤ (
2

λ
)n−2Vol(Bn−1, 〈, 〉)

∫
Bε−B 1

λ

(
1

r2
)n−2rn−1dr

= 2n−2λ2−n r4−n

4− n

∣∣∣∣ε
1
λ

= 2n−2λ2−n
(
ε4−n

4− n
− λ4−n

4− n

)
.

its limit goes to zero as λ→∞.

For n = 4 we obtain:

2n−2λ2−n log r|ε1
λ

= 4λ−2(log ε+ log λ).

It tends to zero as λ→∞. Therefore

∫
Rn
h2
λ → 0 as λ→∞.

Now, we choose at p ∈ M a normal neighborhood and ε > 0 small enough such that
dvg ∼ dx.

We can choose λ big enough such that hλ(r) be small enough. Furthermore, we can
deform it in a such way that within an interval I ⊂ (ε/2, ε) the function has slope 1.

Hence, we are building a function h̃λ with compact support contained inside Bε. Then,

||h̃λ||p ∼ ||hλ||p.

Also:
||∇h̃λ||22 ≤ ||∇hλ||22.

and ||h̃λ||2 → 0 as λ→∞.

Now, we use h̃λ to build a function onM with support inside a normal neighborhood of
p. Thus, we compute on M , since the volume elements are almost equal. In consequence
we obtain:

Yg(h̃λ) =
an
∫
M
|∇h̃λ|2 +

∫
M
Sgh̃

2
λ

||h̃λ||2p
−−→
t→0

an
||∇h||22
||hλ||2p

=
an

an/Yn
= Yn.

It means that at the limit, the left term is less than the right one, and it does not depend
on λ. �

Following arguments by Trudinger [58], Aubin proved that if Y (M, [g]) < Yn the
in�mum in the Yamabe constant is achieved. He also proved that this is the case if M
has dimension n ≥ 6 and is not locally conformally �at [1]. Finally, Schoen proved that
the strict inequality also holds in the remaining cases [50]. So the in�mum is achieved if
and only if Y (M, [g]) < Yn.
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2.3.2 Uniqueness of solutions to the Yamabe equation

Let h ∈ [g] be a metric such that Sh > 0, then for any g̃ ∈ [g] there exists a smooth
positive function f : M → R>0 such that g̃ = fp−2 ·h, and Y (M, [g]) > 0. The converse is
also true, that is, if Y (M, [g]) > 0, then there exists a metric h ∈ [g] with Sh > 0. In fact,
we have that Y (M, [g]) < 0 (or Y (M, [g])=0) if and only if there exists a metric h ∈ [g]
with Sh < 0 (or Sh = 0).

If Y (M, [g]) > 0 or Y (M, [g]) < 0, and h has constant scalar curvature λ, then λ > 0
or λ < 0, respectively. But if we have Y (M, [g]) = 0, then λ ≥ 0.

Uniqueness to the Yamabe problem holds when Y (M, [g]) ≤ 0.

Suppose that Y (M, [g]) < 0, and that there exists h ∈ [g] a constant scalar cuvature
metric, Sh = λ ∈ R, Sh < 0. Then as in the proof of Proposition 2.3.2 we have that:

Yg(f) ≥ λ
||f ||22
||f ||2p

and, again by the Hölder inequality, we have the inequality 2.3.3:

||f ||22 ≤ ||f ||2p (Vol(M, g))
2
n .

It follows that:

Yg(f) ≥ λ (Vol(M, g))
2
n

= S(h).

Since h is a minimizer, Yg(f) = S(h). This implies that the latter inequality is equal-
ity. Equality holds if and only if f is linearly independent to the constant function with
value 1, that is, if f is constant.

If Y (M, [g]) = 0, and there exists h ∈ [g] with Sh = 0 , then∫
M

an|∇f |2 = 0

and it follows that f has to be constant.

However, in general uniqueness does not hold in the positive case. Here we have a
simple example in case of positive scalar curvature. Take S2×S2 with the standard metric
on each factor g2

o + g2
o . It has positive scalar curvature. We change the radius of both

spheres. For a, b > 0:

ag2
o + bg2

o = b(
a

b
g2
o + g2

o)
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Then ag2
o + bg2

o is conformal to the metric gab := a
b
g2
o + g2

o . We compute:

S(gab) =

∫
S2×S2

2b+2a
a
dvgab

(Vol(S2 × S2, gab)1/2

=

(
2b+ 2a

a

)
Vol(S2 × S2, gab)

1/2

= a
(2b+ 2a)

b
Vol(S2, g2

o).

Therefore S(gab) > Yn, for b enough small, and so there exists more than one solution
to Yamabe equation.

Multiplicity of solutions has been obtained on more general cases. Brendle constructed
examples when the family of solutions to the Yamabe equation is not compact [9]. Petean
proved multiplicity on Riemannian products (N×Sn, gno +g), where g is a constant scalar
curvature metric on N , and gno is the round metric on Sn [47]. In [32] Henry and Petean
obtained multiplicity of solutions for spheres products by studying the isoparametric hy-
persufaces. De Lima, Piccione and Zedda [40] proved multiplicity on arbitrary products
with constant scalar curvature.

One also has uniqueness of solutions to the Yamabe Problem if g is Einstein and it is
not the round metric on the sphere, since the Yamabe equation on the round sphere has
in�nitely many solutions.

Theorem 2.3.5 (Obata [43]) Let (M,h) be a n-dimensional compact Einstein mani-
fold, n ≥ 3. If g ∈ [h] is a constant scalar curvature metric, then g is Einstein. Such
metric is unique unless (M,h) be isometric to the round sphere.

Secondly, there exists a unique constant scalar curvature metric in the sphere up to
conformal equivalences with its canonical metric go. In this case all constant curvature
metrics have constant sectional curvature.

2.4 Contact and symplectic manifolds

De�nition 2.4.1 A contact manifold (M, η) is a di�erentiable manifold M of dimension
2n+ 1 with a 1-form η such that η ∧ (dη)n 6= 0 in M .

The 2−form dη has rank 2n in the alternating algebra
∧
T ∗pM for each p ∈M . Thus,

given p ∈M there exists a 1−dimensional subspace:

{v ∈ TpM |dη(v, TpM) = 0}

where η does not vanishes, and which is complementary to the subspace de�ned by η = 0.
If we choose ξp in this subspace normalized by η(ξp) = 1, we obtain a global vector �eld
which satis�es:

dη(ξ,X) = 0 η(ξ) = 1
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for any vector �eld X on M . The vector �eld ξ is called the Reeb vector �eld of the
contact form η.

Let D be the distribution determined by:

Dp = {v ∈ TpM |η(v) = 0}.

The requirement of η ∧ (dη)n 6= 0 means that D is as far as possible from being
integrable, in the sense of Frobenius.

De�nition 2.4.2 A symplectic manifold (M,Ω) is a smooth manifold of dimension 2n
together with a closed 2-form Ω such that dΩ = 0 and Ωn 6= 0.

De�nition 2.4.3 Let H : M → R be a function in a symplectic manifold (M,Ω). We
de�ne the Hamiltonian vector �eld as the unique vector �eld XH given by

Ω(XH , Y ) = Y (H)

for every vector �eld Y on M .

Each function H : M → R gives a Hamiltonian �eld. Note also that, since Ω is closed,
the Lie derivative of Ω with respect to XH vanishes:

LXHΩ = diXHΩ + iXHdΩ

= d(iXHΩ) (2.4.1)

= d(dH) = 0

where iXH (·) is the inner product of Ω with XH .

A symplectic manifold has an associated metric, together with an almost-complex
structure, as in the previous case. For a proof of the statement see [6].

Theorem 2.4.4 Let (M,Ω) be a symplectic manifold. Then there exist a Riemannian
metric g and an almost complex structure J such that

g(X, JY ) = Ω(X, Y ) (2.4.2)

for all X, Y vector �elds. Such a metric is said to be compatible with the symplectic form
Ω.

De�nition 2.4.5 Let (M,Ω) be a symplectic manifold with a complex structure J . A
vector �eld X is holomorphic if it preserves J :

LXJ = 0
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2.5 Poisson geometry

In this section we include basic facts about Poisson geometry that we will use in the
construction of Poisson structures associated to singular �brations. For further details we
refer [23, 37, 59].

De�nition 2.5.1 A Poisson bracket (or a Poisson structure) on a smooth manifold M
is a bilinear operation {·, ·} on the set C∞(M) that satis�es:

(i) (C∞(M), {·, ·}) is a Lie algebra.

(ii) {gh, k} = g{h, k}+ h{g, k} for any g, h, k ∈ C∞(M).

A manifold M with such a Poisson bracket is called a Poisson manifold. Sometimes it
will be denoted by (M, {·, ·}).

Symplectic manifolds (M,ω) provide examples of Poisson manifolds. The bracket of
M is de�ned by

{g, h} = ω(Xg, Xh).

Property (ii) in De�nition 2.5.1 allows us to de�ne Hamiltonian vector �elds for Poisson
manifolds. For h ∈ C∞(M) we assign it the Hamiltonian vector �eld Xh, de�ned via

Xh(·) = {·, h}.

It follows from (ii) that a Poisson bracket {g, h} depends solely on the �rst derivatives
of g and h. Hence we may think of the bracket as de�ning a bivector �eld π de�ned by

{g, h} = π(dg, dh). (2.5.1)

A Poisson bivector π can be described locally, for coordinates (x1, . . . , xn), by

π(x) =
1

2

n∑
i,j=1

πij(x)
∂

∂xi
∧ ∂

∂xj
.

Here πij(x) = {xi, xj} = −{xj, xi}.

By (i) Poisson brackets satisfy the Jacobi identity, it implies that π satis�es an inte-
grability condition which in local coordinates is a system of �rst order semilinear partial
di�erential equations for πij(x) [37]. That is, the Jacobi identity is a local condition on
π.

Given a bivector π on M , a point q ∈ M , and αq ∈ T ∗qM it is possible to de�ne a
bundle map:

B : T ∗M → TM (2.5.2)

Bq(αq)(·) = πq(·, αq) (2.5.3)
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If π is a Poisson bivector, we have that Xh = B(dh).

We then de�ne the rank of π at q ∈ M to be equal to the rank of Bq : T ∗qM → TqM .
This is also the rank of the matrix πij(x).

For xo ∈M de�ne the linear subspace:

Σxo(M) = {v ∈ Txo(M)|∃ ∈ C∞(M), Xf (xo) = v}.

Note that, Σxo(M) = Im(Bxo).

The set Σ(M) = {Σxo(M)} is a di�erentiable distribution called the characteristic
distribution of the Poisson structure. If the rank of Σ(M) is constant, we call it a regular
distribution; else, it is called a singular distribution.

Theorem 2.5.2 (Symplectic Strati�cation Theorem) The characteristic distribution
Σ(M) of the Poisson manifold (M,π) is completely integrable, and the Poisson structure
induces symplectic structures on the leaves Σxo. This foliation is integrable in the sense
of Stefan-Sussman [23].

As a set Σq, the symplectic leaf ofM through the point q, is also the collection of points
that may be joined via piecewise smooth integral curves of Hamiltonian vector �elds.
Write ωΣq for the symplectic form on Σq. Observe that TqΣq is exactly the characteristic
distribution of π through p. Therefore, given uq, vq ∈ TqΣq there exist αq, βq ∈ T ∗qM that
under Bq go to uq and vq. Using this we can describe ωΣq :

ωΣq(q)(uq, vq) = πq(αq, βq) = 〈αq, vq〉 = −〈βq, uq〉. (2.5.4)

As the rank varies, so do the dimensions of the symplectic leaves of the foliation.

De�nition 2.5.3 A Poisson manifold M is said to be complete if every Hamiltonian
vector �eld on M is complete.

Notice that M is complete if and only if every symplectic leaf is bounded in the sense
that its closure is compact.

De�nition 2.5.4 Let M be a Poisson manifold. A function h ∈ C∞(M) is called a
Casimir if {h, g} = 0 for every g ∈ C∞(M). Equivalently B(dh) = 0.

Linearization of Poisson structures

De�nition 2.5.5 A mapping φ : (M1, {·, ·}1)→ (M2, {·, ·}1) between two Poisson mani-
folds is called a Poisson mapping if for every f, g ∈ C∞(M2):

{f ◦ φ, g ◦ φ}1 = {f, g}2 ◦ φ.

If φ is also a di�eomorphism it will be called a Poisson equivalence.
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2.5. Poisson geometry

De�nition 2.5.6 Let xo be a point in a Poisson manifold (M, {·, ·}) such that {f, g}(xo) =
0 for every f, g ∈ C∞(M). Then T ∗xo(M) becomes a Lie algebra with the Lie bracket:

[df, dg]xo := d{f, g}xo .

It is called the isotropy Lie algebra at xo, and will be denoted by gxo. This also induces
a Poisson structure on the tangent space Txo = g∗xo.

Note that at a point x ∈M , the isotroppy algebra coincides with Ker(Bx).

De�nition 2.5.7 A Poisson manifold (M, {·, ·}) is said to be linearizable at a point
xo ∈M if there is a Poisson equivalence φ : U → V from a neighborhood U ⊂M of xo to
a neighborhood V ⊂ Txo(M) of 0.

If such equivalence φ exists, the Poisson structure is said to be linearizable around xo.

Theorem 2.5.8 (Conn) [14] Let (M, {·, ·}) be a Poisson manifold with a point xo ∈M
where {f, g}(xo) = 0 for every f, g ∈ C∞(M). If the isotropy Lie algebra gxo is semisimple
of compact type, then {·, ·} is linearizable around xo.

Integrability of Poisson structures

Given a �nite dimensional real Lie algebra g the integrability problem was solved by Lie's
third Theorem [27]. It gives the existence of a Lie group G such that Lie(G) ∼= g.

For Poisson structures the integrability problem is the existence of a Lie group inte-
grating the Lie algebra given by the Poisson bracket. A Poisson bracket also gives an
structure of Lie algebroid to the cotangent bundle T ∗(M). The integrability of the Pois-
son manifold is then about the integrability of that Lie algebroid. We will not give a deep
exposition on this subject, we only set the idea of this problem. Roughly speaking, one
seeks an associating space that encodes all geometric information of the structure of the
Poisson manifold.

Denote by P : T ∗M → M the canonical projection. A cotangent path in M is a path
a : [0, 1]→ T ∗M such that:

d

dt
P (a(t)) = B(a(t)).

If x ∈M , the monodromy group is:

Nx = {v ∈ Z(gx)|a(t) = vis homotopic to the zero path}

where Z(gx) denotes the center of the isotropy Lie algebra.

The Weinstein grupoid is denoted by Σ(M,x), the set of equivalence classes of cotan-
gent paths with base points in M , starting at x.

M. Crainic and R. L. Fernandes found obstructions for the integrability of Lie alge-
broids. Their main theorem in [16] establishes that a Lie algebroid A over a manifold M
is integable if and only the monodromy groups are discrete and the inferior limit of the
distance of the monodromy groups to 0 is positive.
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Theorem 2.5.9 (Crainic-Fernandes) [16] Let (M, {·, ·}) a Poisson manifold. If Ker(Bq)
is a Lie semi-simple algebra, then M is integrable.

Following [17] we have a di�erent description of the integability given by Crainic-
Fernandes. There is a long exact sequence

... −→ π2(L, x) −→ G(νx(L)) −→ Σ(M,x) −→ π1(L, x)

where L denotes the symplectic leaf through x, G(gxo) the corresponding Lie group of the
isotropy Lie algebra at x.

Crainic and Fernandes showed that the monodromy groups are discrete if and only if
Σ(M,x) is a Lie group [16]. In particular a Poisson bracket is integrable (by a symplectic
Lie grupoid) if and only if the monodromy groups are locally discrete. They also proved
that this holds if and only if Σ(M,x) is a Lie group. They obtain in [16]:

Proposition 2.5.10 Any Poisson manifold where the symplectic leaves have vanishing
second homotopy groups is integrable.

2.6 Wrinkled and broken Lefschetz �brations

In this section we will give some preliminaries about singularity theory. In particular we
are interested in broken Lefschetz and wrinkled �brations.

Let f : M → X be a smooth map between two smooth manifolds with dim(M) ≥
dim(X) and di�erential map df : TM → TX. A point p ∈ M is called a regular point if
the rank of dfp is maximal. In this case f is a submersion at p. If Rank(dfp) < dim(X),
then a point p ∈ M is called a singularity of f . Let k = dim(X)− Rank(dfp) denote the
corank of f . The set:

Σk = {p ∈M | corank(dfp) = k ≥ 1}.

is known as the singularity set or singular locus of f . For generic maps, Σk are subman-
ifolds of M . As we can see from the de�nition, there can be di�erent singularity sets
depending on the corank of f . In this work we will focus on singularities of corank 1. The
elements of the set Σ1 satisfying TpΣ1(f)⊕ ker(dfp) = TpM are called fold singularities of
f .

A mapping f : M → X is then known as a submersion with folds, if it is a submersion
outside the set of fold singularities. In particular, a submersion with folds restricts to an
immersion on its fold locus (see Lemma 4.3 p.87 [26]). Submersions with folds are related
to stable maps. By a stable f we mean that any nearby map f̃ ∈ C∞(M,X) is equivalent
to f after a smooth change of coordinates in the domain and range. Folds are locally

modelled by real coordinate charts Rn → Rq with n > q and coordinates

(x1, . . . , xn)→
(
x1, . . . , xq−1,±x2

q ± x2
q+1 ± · · · ± x2

n

)
As we can see from the above parametrization, when q = 1, submersions with folds
correspond precisely to Morse functions on M . It is well known that Morse functions are
dense in the set of smooth mappings from any n-dimensional manifold M to R. There is
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2.6. Wrinkled and broken Lefschetz �brations

an equivalent statement for maps with a 2-dimensional target space. Assumming that f
is generic then Σ1 is a submanifold, and the restriction of f at Σ1 gives a smooth map
between manifolds that can also have generic singularities. When the target map is of
dimension 2, there is one extra type of generic singularity called cusp. Cusps are points
p ∈ Σ1 such that TpΣ1(f) = ker(dfp), and they are parametrized by real charts

Rn → R2 (x1, . . . , xn)→
(
x1, x

3
2 + x1 · x2 ± x2

3 ± · · · ± x2
n

)
.

De�nition 2.6.1 On a smooth 4�manifold X, a broken Lefschetz �bration is a smooth
map f : X → S2 that is a submersion outside a singularity set. The allowed singularities
are of the following type:

1. Lefschetz singularities: �nitely many points

{p1, . . . , pk} ⊂ X,

which are locally modelled by complex charts

C2 → C, (z1, z2) 7→ z2
1 + z2

2 ,

2. Inde�nite fold singularities, also called broken, contained in the smooth embedded
1-dimensional submanifold Γ ⊂ X \ {p1, . . . , pk}, which are locally modelled by the
real charts

R4 → R2, (t, x1, x2, x3) 7→ (t,−x2
1 + x2

2 + x2
3).

The term inde�nite in (ii) refers to the fact that the quadratic form −x2
1 + x2

2 + x2
3 is

neither negative nor positive de�nite. In the language of singularity theory, these subsets
are known as fold singularities of corank 1. Since X is closed, Γ is homeomorphic to a
collection of disjoint circles. On the other hand, we can only assert that f(Γ) is a union of
immersed curves. In particular, the images of the components of Γ need not be disjoint,
and the image of each component can self-intersect.

The existence of broken Lefschetz �brations has been proved by Baykur [4], by Akbu-
lut and Karakurt [2], and by Lekili [39] on any closed oriented smooth 4−manifold.

The notion of wrinkled �bration on a smooth 4-manifold was introduced by Lekili
[39]. He showed that these wrinkled �brations exist in every closed oriented smooth
4−manifold. Broken Lefschetz �brations are not stable maps. In contrast, wrinkled
�brations are stable. So if one is interested in perturbations of broken Lefschetz �brations,
one is led naturally to the study of wrinkled �brations.

De�nition 2.6.2 Let X be a closed 4�manifold, and Σ be a 2�dimensional surface. A
map f : X → Σ is said to have a cusp singularity at a point p in X, if around p, f is
locally modelled in oriented charts by the map:

(t, x, y, z) 7→ (t, x3 − 3xt+ y2 − z2).
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Chapter 2. Preliminaries

τ = τ0

Figure 2.1: A diagram depicting a �bration with a cusp singularity along the critical values depicted
in green, which is a subset of the base of this �bration. The black lines indicate the points over which
each of the �bres lie.

The critical point set is a smooth arc, {x2 = t, y = 0, z = 0}, the critical value set is
a cusp given by {(t, s) : 4t3 = s2} (see �gure 2.1).

Following Lekili we state:

De�nition 2.6.3 A wrinkled �bration on a closed 4�manifold X is a smooth map f to
a closed surface which is a broken �bration when restricted to X \ C, where C is a �nite
set such that around each point in C, f has cusp singularities. We say that a �bration is
purely wrinkled if it has no isolated Lefschetz-type singularities.

Note that folds and cusps are the singularities of a wrinkled �bration.

Wrinkled �brations may be obtained from broken Lefschetz �brations by performing
wrinkling moves. These eliminate a Lefschetz type singularity and introduce a wrinkled
�bration structure. Conversely, it is possible to modify a wrinkled �bration locally by
smoothing out the cusp singularity by introducing a Lefschetz type singularity, so obtain-
ing a broken �bration (see [39, 62]).

As Lekili, by a deformation of wrinkled �brations we mean a one-parameter family of
maps which is a wrinkled �bration for all but �nitely many values. One of Lekili's major
contributions in [39] was to show that any one-parameter family deformation of a purely
wrinkled �bration is homotopic (relative endpoints) to one which realizes a sequence
of births, merges, �ips, their inverses, and isotopies staying within the class of purely
wrinkled �brations. Moreover, these moves do not change the di�eomorphism type of the
4�manifold X on which they take place.

Let us brie�y describe these moves, readers may consult both [39, 62] for the cor-
responding descriptions in terms of how the �bres change and how these moves can be
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2.6. Wrinkled and broken Lefschetz �brations

described using handlebodies. The pictures what we present here originally appeared in
[53]. The moves we are interested in are to be considered as maps R×R3 → R, given by
the following equations, each depending on a real parameter s:

Move 1 (Birth, �g. 2.2)

bs(x, y, z, t) = (t, x3 − 3x(t2 − s) + y2 − z2)

α<0 α=0 α>0
s<0 s=0

s>0

Figure 2.2: Birth Move: bs(x, y, z, t) = (t, x3 − 3x(t2 − s) + y2 − z2). For s < 0 the critical set is
empty. Then when s = 0 the �bre above the critical point is shown to develop a singularity. As s becomes
postive the wrinkled critical set appears, here depicted by the green line, which is a subset of the base of
this �bration. The black lines indicate the points over which each of the �bres lies.

Move 2 (Merging, �g. 2.3)

ms(x, y, z, t) = (t, x3 − 3x(s− t2) + y2 − z2)
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α<0 α=0 α>0s<0 s=0 s>0

Figure 2.3: Merging Move: ms(x, y, z, t) = (t, x3 − 3x(s − t2) + y2 − z2). For s < 0 the critical set
shows two connected components. Then when s = 0 these two components touch, and the �bre above
the critical point is shown to develop a singularity. As s becomes postive the critical set (shown in green)
separates again. The black lines indicate the points over which each of the �bres lies.

α<0 α=0 α>0s<0 s=0 s>0

Figure 2.4: Flipping Move: fs(x, y, z, t) = (t, x4 − x2s + xt + y2 − z2). For s < 0 the critical set
corresponds to that of a broken Lefschetz �bration. As s becomes postive the critical set (shown in green)
crosses itself. The black lines indicate the points over which each of the �bres lies.

Move 3 (Flipping, �g. 2.4)

fs(x, y, z, t) = (t, x4 − x2s+ xt+ y2 − z2)

Move 4 (Wrinkling)

ws(x, y, z, t) = (t2 − x2 + y2 − z2 + st, 2tx+ 2yz)
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2.6. Wrinkled and broken Lefschetz �brations

The following theorem by Golubitsky and Guillemin shows that generic maps from any
n�dimensional manifold to a 2�dimensional base have folds and cusps.

Theorem 2.6.4 [26] A generic smooth map Mn → N2 has folds and cusps singularities.

In this context, wrinkled �brations are generic maps de�ned on a smooth 4-manifold
with image on the 2-sphere, and broken Lefschetz �brations are submersions with folds
and Lefschetz singularities. It was shown by Donaldson, there is a correspondence between
symplectic 4-manifolds and Lefschetz �brations. Yet, Lefschetz singularities are not stable
from the point of view of singularity theory. Lekili showed that Lefschetz singularities
can be transformed into cusps yielding to a wrinkled �bration. As a consequence, we can
modify a broken Lefschetz �bration into a submersion with folds and cusps, which are
stable and dense.
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Chapter 3

Ricci solitons

In the 1980's Richard Hamilton [28] introduced the Ricci Flow as an approach to prove
Thurston's Geometrization Conjecture. A solution to the Ricci �ow is a 1-parameter
family of Riemannian metrics g(t) satisfying the partial di�erential equation:

∂g(t)

∂t
=

2

n
rg − 2Ric(g), (3.0.1)

where r is the average of the scalar curvature R:

r =

∫
Rdµ∫
dµ

,

and Ric is the Ricci curvature on a Riemannian manifold (M, g).

Einstein metrics are �xed points for the Ricci �ow, since �xed points must have con-
stant average scalar and Ricci curvatures. In order to understand the deformation progress
under Ricci �ow research has focused on the singularities, due to the Hamilton short-time
existence theorem [28].

Among the di�erent types of solutions for the Ricci �ow we are interested in natural
generalizations of Einstein metrics, namely Ricci solitons. They often arise as dilation
limits of singularities in the Ricci �ow, they can also be viewed as generalized �xed
points of the Ricci �ow, on the space of Riemannian metrics modulo di�eomorphisms and
scalings.

Formally:

De�nition 3.0.5 (Ricci Soliton) Let (Mn, g) be a Riemannian manifold of dimension
n such that

− 2Ric(g) = LXg + 2λg (3.0.2)

holds for some constant λ and some vector �eld X on Mn. We say that g is a Ricci
soliton, where LXg is the Lie derivative of the metric in the direction of X.

Depends on the sign of λ, negative, zero or positive it corresponds to shrinking,
steady, or expanding Ricci soliton, respectively.
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If X ≡ 0, then Ric(g) = −λg. It means that any Ricci soliton may be regarded as a
generalization of an Einstein metric.

In [21] DeTurck proved short-time existence and uniqueness of solutions to the Ricci
�ow by a modi�ed Ricci �ow:

∂

∂t
g(t) = −2Ric(g(t)) + LXg(t)

where X is a certain vector �eld. This �ows is parabolic, and so admits solutions over
some short-time interval, given an initial metric go = g(0) (see Section 5.2 [56]). On a
closed manifold uniqueness also follows, and solutions for this �ow produces solutioins to
the Ricci �ow. In some sense the idea is to �ow along Ricci solitons to obtain existence
of solutions to the Ricci �ow. For a detailed and clear exposition we refer to [56].

Recall that the Hessian of a smooth function is given by:

Hess(f)(X, Y ) = Y (X(f))−∇XY (f).

If X = ∇(−f), i.e. X is the gradient of f ,

(LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX, Y )

= g(∇Y (∇(−f)), Z) + g(∇Z(∇(−f)), Y )

= Y g(∇(−f), Z)− g(∇YZ,∇(−f)) + Zg(∇(−f), Y )− g(∇ZY,∇(−f))

= −Y (Z(f)) +∇YZ(f)− Z(Y (f)) +∇ZY (f)

= [Y, Z](f)− 2Y (Z(f))− [Y, Z](f) + 2∇YZ(f)

= −2Y (Z(f)) + 2∇YZ(f)

= −2Hess(f)(Y, Z).

Hence, the equation (3.0.2) becomes:

Hess(f) = Ric(g) + λg

We say that g is a gradient Ricci soliton.

Hamilton [30] and Ivey [34] proved that in compact steady or expanding gradient Ricci
solitons are necessarily Einstein. Perelman showed that any compact Ricci soliton is a
gradient soliton [46]. Therefore, the study of compact Ricci non-Einstein solitons leads
to study potential functions which describe gradient shrinking solitons.

De�nition 3.0.6 Let M be a complex manifold. A Riemannian metric g on M is an
Hermitian metric if it is invariant under the almost complex structure J on M :

g(JX, JY ) = g(X, Y )

for every X, Y ∈ χ(M).

31



Chapter 3. Ricci solitons

There is an associated di�erential 2−form ωg to a Hermitian metric g,

ωg(X, Y ) = g(JX, Y ),

which is is closed if and only if J is parallel. That is, if ∇ is the Levi-Civita connection
of g

∇XJY = J∇XY.

De�nition 3.0.7 A Hermitian manifold M with Riemannian metric g and almost com-
plex structure J is called a Kähler manifold if its associated form ωg is closed.

De�nition 3.0.8 The Ricci form of a Kähler manifold is a closed form Ric(ωg) de�ned
by:

Ric(ωg) = Ricg(JX, Y )

Let us review known examples of Ricci solitons.

Examples

a) Hamilton's Cigar soliton [29]

Let g = dx2 + dy2 be the standard metric on R2. If gf is a conformal metric to g,
gf = e2f · g, recall that in dimension 2, their scalar curvatures are related by:

Sgf e
2f = Sg + 24gf

Let f = Log(ρ), where ρ2 =
1

1 + x2 + y2
. On R2 with the metric go = ρ2(dx2 +dy2).

It follows that the Gauss curvature is

Kg = − 1

ρ2
4Log(ρ)

Then Ric(go) = Kgo. Indeed, we compute K = 2
1+x2+y2

. If we de�ne a radial vector

�eld Y := −2(x
∂

∂x
+ y

∂

∂y
). We obtain:

LXgo = −2Ric(go)

Hence go is a steady soliton, called Hamiltons Cigar Soliton. Historically it has
been distinguished as part of one of the posible limits that we can �nd after scaling
the Ricci �ow in dimension 3 near singularities that appear in �nite time.

The Cigar soliton is the unique gradient soliton that is rotationally symmetric, up
to homothetical changes. It has positive curvature and is asymptotic at in�nity to
a cylinder of �nite circumference.
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b) Gaussian soliton

Consider (Rn, go) with the Euclidean metric. We may construct a gradient expand-
ing or shrinking soliton.

If we take as potential function f =
||x||2

4
, we obtain the shrinking Gaussian soliton.

If f = −||x||
2

4
, we obtain the expanding Gaussian soliton.

c) Bryant soliton [8]

Let gno be the round metric n−sphere. Let g be the warped product metric g =
dr2 + φ(r)gno de�ned on (0,∞) × Sn, with ϕ a radial function on Sn. The Bryant
soliton is a rotationally symmetric gradient steady soliton in Rn (n ≥ 3) of positive
sectional curvature. If f is the potential function, then a complete soliton is obtained
by the solution to the system:

f ′′ = (n− 1)
φ′′

φ
, φφ′f ′ = −(n− 2)(1− (φ′)2) + φφ′′.

d) Koiso-Cao soliton

Koiso, and independently Cao constructed a non-Einstein shrinking soliton in CP2#CP2

with symmetry U(2) and positive Ricci curvature ([36, 10]). It is the only known
cohomogeneity one Ricci soliton in dimension 4.

More generally, they constructed U(n)−invariant Kähler-Ricci solitons on twisted
projective line bundles over CPn−1, n ≥ 2. Cao's construction �nds a Kähler po-
tential U(n)−invariant, u : (−∞,∞) → R, and a U(n)−invariant smooth function
f : (−∞,∞)→ R such that:

Ric(ωg)− ωg = Hess(f − u).

It requieres additionally that ∇f is holomorphic, and u satis�es some asymptotic
conditions at −∞ and ∞. He proved that the existence of such a pair of functions
is equivalent to the existence of the following di�erential equation:

u′′′

u′′
+

(
n− 1

u′
+ c

)
u′′ = n− u′

for some constant −1 < c < 0.

e) Wang-Zhu soliton

Wang and Zhu found a gradient Kähler Ricci soliton on CP2#2CP2 with U(1)×U(1)
symmetry [61]. They determine the metric by solving a complex Monge-Ampère
equation.
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f) Since compact homogeneous Ricci solitons are Einstein, the next case to study are
cohomogeneity one Ricci solitons. They were studied by Dancer, Hall and Wang
in [19] and [20]. In fact, Dancer and Wang [19] produced examples of gradient
shrinking, steady and expanding Kähler solitons on bundles over the product Kähler-
Einstein manifolds of positive Chern class. Their construction generalizes Koiso and
Cao's examples.

34



Chapter 4

Contact and symplectic solitons

The aim of this and the following sections is to present some deductions based on Cho's
results on contact solitons. In particular, we discuss their extension to certain Riemannian
products and symplectic manifolds. It is a work in progress.

4.1 Contact solitons

If we �x some vector �eld, then we try to �nd a metric and a potential scalar which satisfy
the soliton equation. This idea has been explored for contact manifolds by J. T. Cho [12],
and previously by R. Sharma [52]. They used the Reeb vector �eld.

Recall that a contact manifold is denoted by (M, η, ξ), with η the contact form and ξ
the Reeb vector �eld.

Theorem 4.1.1 Let (M, η, ξ) be a contact manifold. Then there are a Riemannian metric
g and a (1, 1) tensor �eld ϕ : χ(M)→ χ(M) such that:

η(X) = g(X, ξ) dη(X, Y ) = g(X,ϕY ) ϕ2 = −I + η ⊗ ξ.

For all vector �elds X, Y .

For a proof we refer to[6].

Such a manifold (M, η, ξ) with a Riemannian metric g and a (1, 1)-tensor �eld ϕ is
called a contact metric manifold [6]. We will denote it by (M, η, ξ, g, ϕ).

De�nition 4.1.2 A contact metric manifold (M, η, ξ, g, ϕ) is Sasakian if and only if:

(∇Xϕ) = g(X, Y )ξ − η(Y )X

for every X, Y ∈ χ(M).

In the work of Cho [12, 13] he states:
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De�nition 4.1.3 A contact metric manifold (M, η, ξ, g, ϕ) is a contact soliton if g is a
Ricci soliton de�ned by ξ, and some scalar λ ∈ R:

−2Ric(g) = Lξg + 2λg.

It will be denoted by (M, g, ξ, λ).
A transversal soliton to a contact soliton is a Ricci soliton de�ned by ν, a complete

vector �eld orthogonal to ξ.

The following results appear on[12]. He proved that a compact Ricci soliton is Sasaki-
Einstein:

Theorem 4.1.4 A contact Ricci soliton is shrinking and is Einstein. The Reeb vector
�eld ξ is a Killing �eld.

Corollary 4.1.5 A compact contact soliton is Sasaki-Einstein.

On the other hand, in [13] Cho proved:

Theorem 4.1.6 A contact 3-manifold M admitting a transversal Ricci soliton (g, ν, λ) is
either Sasakian or locally isometric to one of the following Lie groups with a left invariant
metric: SU(2), SL(2,R), E(2)(the group of rigid motions of the Euclidean 2-space),
E(1, 1)(the group of rigid motions of the Minkowski 2-space).

De�nition 4.1.7 Let (M, gM) and (N, gN) be Riemannian manifolds. Let π and σ the
respective projections of M ×N to M and N. Over M ×N we put the product metric:

g = π∗(gM) + σ∗(gN)

We say that (M ×N, g) is a Riemannian product.

Let B = M ×N be a product manifold. The tangent space of B splits as:

TbB = TpM ⊕ TqN

for every b ∈ B, b = (p, q). Hence, a vector �eld X on B can be written uniquely as a
horizontal vector �eld, which pointwise is the lift of a tangent vector in a horizontal di-
rection to the product, plus a vertical vector �eld, the lift of a tangent vector in a vertical
direction. We write this as X = Xh +Xv.

We follow [44], where further facts about Riemannian products can be consulted.

Proposition 4.1.8 Let (M, gM , X, λ1) and (N, gN , Y, λ1) be two Ricci solitons. Then
M ×N is a Ricci soliton with constant λ if and only λ1 = λ2 = λ.
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Proof: Let g = gM + gN and. The Ricci curvature on a Riemannian product is the sum
of the Ricci curvatures: Ricg = RicgM +RicgN . Since gM and gN are Ricci solitons:

LX+Y g = LXgM + LY gN
= −2RicgM + 2λ1gM − 2RicgN + 2λ2gN

= −2Ricg + 2λ1gM + 2λ2gN

In order to obtain a soliton on the Riemannian product M ×N , the equation

LX+Y g = −2Ricg + λg

must holds. It implies that:

(λ− λ1)gM + (λ− λ2)gN = 0.

Therefore λ = λ1 = λ2. �

Proposition 4.1.9 Let (N, gN) a Ricci soliton and (M, gM) a Riemannian manifold. If
gM × gN is a Ricci soliton, then gM is a Ricci soliton.

Proof: Let X1, X2 ∈ χ(M). Then RicgN (X1, X2) = LY gN(X1, X2) = gN(X1, X2) = 0.
It follows that:

LX+Y g(X1, X2) = LXgM(X1, X2) + LY gN(X1, X2)

= LXgM(X1, X2)

= − 2RicgM+gN (X1, X2) + 2λ(gM + gN)(X1, X2)

= −2RicgM (X1, X2) + 2λg(X1, X2).

Therefore gM is a soliton. �

Let (Y, g, ξ, λ) be a contact soliton. We want to extend Cho's results to dimension 4.
Begin with Y 3×S1. It is natural to take the vector �eld of rotations θ on S1. Nevertheless,
the vector �eld ξ + θ does not produce a soliton.

Since S1 is Ricci �at, and θ is a Killing vector �eld, then S1 is a steady soliton. If
Y 3 × S1 were a soliton with the vector �eld ξ + θ, the equation:

Ricg+dθ2 = 2λg = 0

must hold.
This implies that the contact soliton must be Ricci �at. But 3−contact metric mani-

folds whose Reeb vector �eld ξ is Killing must satisfy Ric(ξ, ξ) = 2 (See Theorem 7.1 in
[6]). In fact, Y 3 × S1 doest not admit a Ricci soliton metric.

We have that S1 has to be a soliton of the same type as Y 3, that is, a shrinking soliton,
with associated constant λ < 0, and

Hessg1o(f) = λg1
o .

But it was proven that this implies that f = λ|x|2
2

([48] Proposition 3.1). Then
Hess(f) = 0.

By theorem 4.1.4 we obtain the following:
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Chapter 4. Contact and symplectic solitons

Proposition 4.1.10 Let (M, g, ξ, λ) be a contact soliton of dimension n, for n ≥ 3.
Consider the euclidean metric on R and the vector �eld ζ = d

dt
λ|x|2

2
. Then M × R is a

Ricci soliton with the vector �eld ξ + ζ.
If in addition M admits a transversal soliton, with transversal vector �eld τ , then M

is a product of a Sasakian manifold with R or locally isometric to a product of R with
some of the following Lie groups: SU(2), SL(2,R), E(2) y E(1, 1).

On (S2, go), the round sphere de�ne g(t) = r(t)2go, where r is a positive function.
Then g(t) is a solution to the unormalized Ricci �ow

∂

∂t
g(t) = −2Ric(g(t))

with initial condition g(0) = go if and only if r(t) =
√

1− 2t. Note that the solution exists
for any t ∈ (−∞, 1/2).

Let λ̃ = d
dt
r2(t)

2
= −1. Take θ the vector �eld of rotations on S2. It is a Killing vector

�eld. Therefore:

Lθgo + 2Ric(go) + 2λ̃go = 2Ric(g) + 2λ̃g

= 2− 2 = 0.

Therefore, it de�nes a shrinking soliton on S2.

On the other hand, Bowden-Crowley-Stipsicz [7] proved that if a closed manifold M
admits a contact structure, so does the productM×S2. This allows us to think in extend
Cho's results for these products.

By the Proposition 4.1.8 and Cho theorem 4.1.6 we obtain:

Proposition 4.1.11 Let (M, g, ξ, λ) be a contact soliton. Let (S2, go), with go be the
shrinking soliton determined by the vector �eld of rotations θ. Then B = M × S2 is a
contact manifold that admits a soliton determined by the vector �eld (ξ, θ).

If M also admits a transversal soliton with transversal vector �eld τ , then B is a
product of a Sasakian manifold with S2 or locally isometric to a product of S2 with some
of the Lie groups: SU(2), SL(2,R), E(2) and E(1, 1).

4.2 Symplectic solitons

4.2.1 Hamiltonian case

We want to proceed analogously to the contact case. We will study symplectic manifolds
with a Ricci soliton structure determined by Hamiltonian vector �elds. We introduce
Hamiltonian solitons, those solitons determined by Hamiltonian vector �elds.

De�nition 4.2.1 Let (M,ω) be a symplectic manifold with a Riemannian metric com-
patible with ω, with almost complex structure J . Let XH be a Hamiltonian vector �eld as-
sociated to a smooth function H : M → R. Suppose that XH is holomorphic (LXHJ = 0).
We will say XH determines a Hamiltonian soliton if there exists a scalar λ such that:

−2Ric(g) = LXHg + 2λg.
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Lemma 4.2.2 Let (M,ω) be a symplectic manifold compatible with a metric g. Let X be
a holomorphic vector �eld on M . If Z ∈ χ(M), write W = JZ. Then:

(LXω)(Y, Z) = (LXg)(Y,W ).

Proof: Let X1, X2 ∈ χ(M). Recall that the Lie derivative of the complex structure J
is given by:

(LX1J) (X2) = LX1J(X2)− J(LX1X2)

= [X1, JX2]− J([X1, X2]).

Then, if X is holomorphic:
[X, J(Y )]− J([X, Y ]) = 0

for any Y ∈ χ(M). We compute:

(LXω)(Y, Z) = XHω(Y, Z)− ω([X, Y ], Z) + ω([X,Z], Y )

= Xω(Y, Z)− ω([X, Y ], Z)− ω(Y, [X,Z])

= Xg(Y,W )− g([X, Y ],W )− g(Y, J([X,Z]))

= g(∇XY,W ) + g(∇XW,Y )− g([X, Y ],W )− g(Y, J([X,Z]))

= g(∇XY − [X, Y ],W ) + g(∇XW − J([X,Z]), Y )

= g(∇YX,W ) + g(∇XW − J([X,Z]), Y )

= g(∇YX,W ) + g([X,W ] +∇WX − J([X,Z]), Y )

= g(∇YX,W ) + g(∇WX, Y )

= (LXg)(Y,W ).

�

Proposition 4.2.3 A Hamiltonian soliton g is Einstein.

Proof: Let Y,W,Z ∈ χ(M) with J(Z) = W . Then, since XH is holomorphic by the
previous lemma 4.2.2 we have that:

(LXHω)(Y, Z) = (LXHg)(Y,W ).

By 2.4.1, LXHg = 0. Thus, g is Einstein. �

4.2.2 Liouville case

De�nition 4.2.4 Let (M,ω) be a symplectic manifold. A vector �eld V is a Liouville
�eld if:

LV ω = ω

Hence, analogous to the previous case we de�ne:

De�nition 4.2.5 Let (M,ω) be a symplectic manifold with a Riemannian metric com-
patible with ω, with almost complex structure J . Let V be a holomorphic Liouville vector
�eld. We say V determines a Liouville soliton if there exists a scalar λ such that:

−2Ric(g) = LV g + 2λg

Proposition 4.2.6 Liouville solitons are Einstein metrics
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Proof: Let Y,W,Z ∈ χ(M) with J(Z) = W . Since V is a holomorphic Liouville vector
�eld, by the Lemma 4.2.2:

(LV ω)(Y, Z) = ω(Y, Z)

= g(Y,W )

= (LV g)(Y,W ).

Then:

(LV g)(Y,W ) = ω(Y, Z) = g(Y,W ).

If g is a soliton it follows:
−2Ric(g) = (1 + 2λ)g

�

It is known that one may �simplectize� a contact manifold and that it admits a canon-
ical Liouville vector �eld. Formally:

Lemma 4.2.7 [6] Let (M, η, ξ) be a contact 3− manifold. Let B = M×R and ω = d(etη).
Then ω is a symplectic form and ∂

∂t
is a Liouville vector �eld for ω.

Therefore we obtain:

Proposition 4.2.8 Let (M, g, η, λ) be a contact soliton of dimension 3. Then λ = −1.
Consider the euclidean metric on R and the vector �eld ζ = − d

dt
|x|2
2
. Then M × R is a

trivial Ricci soliton with the vector �eld ∂
∂t

+ ζ.
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Chapter 5

Yamabe equation of the Koiso-Cao

soliton

5.1 Construction of the Koiso-Cao soliton

Koiso [36] and Cao [10] constructed U(n)−invariant gradient shrinking Kähler-Ricci soli-
tons on twisted projective line bundles over CPn−1 for n ≥ 2. Cao's construction consists
in giving conditions of the Kähler potential corresponding to a U(n)−invariant Kähler
metric de�ned on Cn \ {0} to obtain a compact shrinking Ricci soliton. The Kähler po-
tential is a smooth function de�ned on (−∞,∞) with certain asymptotic conditions at
−∞ and ∞.

In this section we will review this construction from a di�erent point of view for n = 2,
which is the Koiso-Cao soliton. This will help us to study the Yamabe equation. For fur-
ther details see [35], where a similar construction is performed for the Page metric. For

n = 2, the Koiso-Cao construction give a soliton on CP2#CP2 (which is a S2−bundle
over S2).

De�nition 5.1.1 Let (M, g) be a Riemannian manifold which admits a compact Lie
group action by isometries. The action is said to be of cohomogeneity one if the principal
orbits are hypersurfaces in M , that is, the codimension of the principal orbits is one.

All cohomogeneity one actions in dimension 4 are class�ed by J. Parker [45]. Fur-
thermore, in this case it is known that the orbit space is the circle S1, or an interval I.
The only singular orbits appear at the endpoints of I. When the underlying manifold has
�nite fundamental group, the orbit space is an interval.

Shrinking Ricci solitons have �nite fundamental group [24]. Thus, the orbit space of
a cohomogeneity one shrinking Ricci soliton is an interval.

The Page metric was the �rst non-homogeneous Einstein metric constructed. It is a

cohomogeneity one Einstein metric on CP2#CP2, with the action of the unitary group of
dimension 2, U(2), with positive Ricci curvature λo. The orbit space is an interval, we
denote the parameter of the orbits by t. An explicit construction can be found in [5]. This
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Chapter 5. Yamabe equation of the Koiso-Cao soliton

metric can be obtained using the Hopf �bration as a Riemannian submersion, by making
a conformal change of the spheres. It is not a Kähler metric.

It is obtained from the solution of the equations for the functions f and h:

− f ′′

f
− 2

h′′

h
= λo,

− f ′′

f
− 2

f ′h′

fh
+ 2

f 2

h4
= λo,

− h′′

h
− f ′h′

fh
− h′2

h2
+

4

h2
− 2

f 2

h4
= λo.

The metric can be written as:

g = dt2 + f 2θ2 +
1

4
h2g2

o

for a 1-form θ on S1.

By numerical computations one may obtain that λo = 3.73282 and that the Yamabe

constant is Y (CP2#CP2, g) = 2.829 < Y (Sn, go) = 8π
√

6.

A U(2)−invariant metric (CP2#CP2,g) can be described in the following way. The
regular orbits of the U(2)−action is an open dense subset di�eomorphic to S3 × (α, β),
and U(2) acts on S3. There are two singular orbits di�eomorphic to S2. The invariant
metric g on S3 × (α, β) is written as g = dt2 + gt, where gt is a U(2)−invariant metric on
S3.

Let f and h be positive smooth functions de�ned on (α, β). For each t ∈ (α, β) the
U(2)−invariant metric gt is such that the principal (S1, f 2(t)go)−bundle with projection
π : (S3, gt) −→ (S2, h2(t)g2

o) is a Riemannian submersion. Here π : S3 −→ S2 is the Hopf
�bration, and go and g

2
o are the round metrics on S1 and S2, respectively.

The metric g can be extended to a smooth metric g on CP2#CP2 provided the following
asympthotic conditions hold:

f(α) = f(β) = 0, f ′(α) = −f ′(β) = 1,

h(α) 6= h(β) 6= 0, h′(α) = h′(β) = 0, (5.1.1)

f 2k(α) = f 2k(β) = h2k+1(α) = h2k+1(β) = 0.

If we let X, Y and Z be SU(2)�left invariant vector �elds on S3 given by:

X :

(
v
w

)
→
(

iv
−iw

)
, Y :

(
v
w

)
→
(

w
−v

)
, Z :

(
v
w

)
→
(
iw
iv

)
.

Let H = ∂
∂t
, then E =

{
H,

X

f
,
Y

h
,
Z

h

}
is an orthonormal frame on (S3 × (α, β), g).

We have the following commuting relations:

[X, Y ] = 2Z [Y, Z] = 2X [Z,X] = 2Y [H,T ] = 0
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5.1. Construction of the Koiso-Cao soliton

for every T ∈ E. Then the Levi-Civita connection induced by g can be computed using
Koszul's formula:

2g(∇AB,C) = Ag(B,C)+Bg(A,C)−Cg(A,B)+g([A,B], C)−g([B,C], A)+g([C,A], B).

We start by computing ∇XY. For any T :

2g(∇XY, T ) = Xg(Y, T )+Y g(X,T )−Tg(X, Y )+g([X, Y ], T )−g([Y, T ], X)+g([T,X], Y ).

Note that X, Y , Z and H are orthogonal, and g(Y, Y ) and g(X,X) are constant in
the direction of X and Y respectively. It follows that the �rst three terms of the Koszul's
formula vanish. Then we obtain:

2g(∇XY, T ) = g([X, Y ], T )− g([Y, T ], X) + g([T,X], Y ).

We use the relations (5.1). Put T = X, then:

2g(∇XY,X) = g([X, Y ], X)− g([Y,X], X) + g([X,X], Y )

= g(2Z,X)− g(−2Z,X) + g(0, Y ) = 0.

If T = Y :
2g(∇XY, Y ) = g(2Z, Y )− g(0, X) + g(−2Z, Y ) = 0.

Similarly, if T = Z:

2g(∇XY, Z) = g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )

= g(2Z,Z)− g(2X,X) + g(2Y, Y )

= 2(h2 − f 2 + h2) = −2f 2 + 4h2.

Finally, if T = H

2g(∇XY,H) = g([X, Y ], T )− g([Y, T ], X) + g([T,X], Y )

= g(2Z, Y )− g(0, X) + g(0, Y ) = 0.

Therefore ∇XY is parallel to Z. Since g(Z,Z) = h2 then:

∇XY =
2h2(t)− f 2(t)

h2(t)
Z.

In order to compute ∇YX we use that ∇YX = ∇XY − [X, Y ]. Then:

∇YX =
2h2(t)− f 2(t)

h2(t)
Z − 2Z = −f

2(t)

h2(t)
Z.

Now, to compute ∇XZ. We have that:

2g(∇XZ, T ) = Xg(Z, T )+Zg(X,T )−Tg(X,Z)+g([X,Z], T )−g([Z, T ], X)+g([T,X], Z).

Note that g(Z,Z) = h2(t) y g(X,X) = f 2(t) are constant in the direction of X and
Z respectively. We then obtain:

2g(∇XZ, T ) = g([X,Z], T )− g([Z, T ], X) + g([T,X], Z).
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If T = Y :

2g(∇XZ, Y ) = g([X,Z], Y )− g([Z, Y ], X) + g([Y,X], Z)

= g(−2Y, Y )− g(−2X,X) + g(−2Z,Z)

= 2(−h2 + f 2 − h2) = 2f 2 − 4h2.

For the remaining cases, all of the terms in Koszul's formula vanish. Since g(Y, Y ) =
h2(t), if follows:

∇XZ =
f 2(t)− 2h2(t)

h2(t)
Y.

Similarly, to compute ∇ZX:

∇ZX = ∇XZ − [X,Z]

=

(
f 2(t)− 2h2(t)

h2(t)
+ 2

)
Y

=
f 2(t)

h2(t)
.

To compute ∇HX, begin with:

2g(∇HX,T ) = Hg(X,T )+Xg(H,T )−Tg(H,X)+g([H,X], T )−g([X,T ], H)+g([T,H], X).

Proceeding as before, we have that g(H,X) = 0, and Xg(H,T ) = 0 for every T . Since
we also have that [H,T ] = 0 for any T :

2g(∇HX,T ) = Hg(X,T )− g([X,T ], H) + g([T,H], X).

If T = X:

2g(∇HX,X) = Hg(X,X)− g([X,X], H) + g([X,H], X)

= Hg(X,X) = 2ff ′.

If T = Y :

2g(∇HX, Y ) = Hg(X, Y )− g([X, Y ], H) + g([Y,H], X)

= −g(2Z,H) = 0.

If T = Z:

2g(∇HX,Z) = Hg(X,Z)− g([X,Z], H) + g([Z,H], X)

= −g(−2Y,H) = 0.

If T = H:

2g(∇HX,T ) = Hg(X,H)− g([X,H], H) + g([H,H], X) = 0.

Since g(X,X) = f 2:

∇HX =
f ′

f
X.
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By the commutation relations (5.1), ∇XH −∇HX = [X,H] = 0:

∇XH =
f ′

f
X.

Now, for ∇YZ. Koszul's formula says that for any T :

2g(∇YZ, T ) = Y g(Z, T ) +Zg(Y, T )−Tg(Y, Z) + g([Y, Z], T )− g([Z, T ], Y ) + g([T, Y ], Z).

First three terms are zero. Then:

2g(∇YZ, T ) = g([Y, Z], T )− g([Z, T ], Y ) + g([T, Y ], Z).

If T = X:

2g(∇YZ,X) = g([Y, Z], X)− g([Z,X], Y ) + g([X, Y ], Z)

= g(2X,X)− g(2Y, Y ) + g(2Z,Z)

= 2(f 2 − h2 + h2) = 2f 2.

If T = Y :

2g(∇YZ, Y ) = g([Y, Z], Y )− g([Z, Y ], Y ) + g([Y, Y ], Z)

= g(2X, Y )− g(−2X, Y ) = 0.

If T = Z:

2g(∇YZ,Z) = g([Y, Z], Z)− g([Z,Z], Y ) + g([Z, Y ], Z)

= g(2X,Z) + g(−2X,Z) = 0.

If T = H:

2g(∇YZ,H) = g([Y, Z], H)− g([Z,H], Y ) + g([H,Y ], Z)

= g(2X,H) = 0.

Since g(X,X) = f 2, we obtain:

∇YZ = X.

From ∇ZY = ∇YZ − [Y, Z], it follows:

∇ZY = −X.

To compute ∇YH, we have in this case that:

2g(∇YH,T ) = Y g(H,T )+Hg(Y, T )−Tg(Y,H)+g([Y,H], T )−g([H,T ], Y )+g([T, Y ], H).

Then:
2g(∇YH,T ) = Hg(Y, T )− g([H,T ], Y ) + g([T, Y ], H).

If T = X:

2g(∇YH,X) = Hg(Y,X)− g([H,X], Y ) + g([X, Y ], H)

= g(2Z,H) = 0.
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If T = Y , similarly as before, we obtain:

2g(∇YH, Y ) = Hg(Y, Y )− g([H,Y ], Y ) + g([Y, Y ], H)

= Hg(Y, Y ) = 2hh′.

If T = Z:

2g(∇YH,Z) = Hg(Y, Z)− g([H,Z], Y ) + g([Z, Y ], H)

= g(−2X,H) = 0.

If T = H:

2g(∇YH,H) = Hg(Y,H)− g([H,H], Y ) + g([H,Y ], H) = 0.

Therefore:

∇YH =
h′

h
Y.

Then:

∇HY =
h′

h
Y.

Similarly, to compute ∇ZH. We have

2g(∇ZH,T ) = Zg(H,T )+Hg(Z, T )−Tg(Z,H)+g([Z,H], T )−g([H,T ], Z)+g([T, Z], H).

It is the same as:

2g(∇ZH,T ) = Hg(Z, T )− g([H,T ], Z) + g([T, Z], H).

The only non-vanishing term is obtained if T = Z:

2g(∇ZH,Z) = Hg(Z,Z)− g([H,Z], Z) + g([Z,Z], H)

= Hg(Z,Z) = 2hh′.

It follows:

∇ZH =
h′

h
Z.

Then:

∇HZ =
h′

h
Z.

It remains to compute ∇XX,∇YY,∇ZZ and ∇HH. For both cases Koszul's formula
reads, for a �xed S, and for any T :

2g(∇SS, T ) = Sg(S, T ) + Sg(S, T )− Tg(S, S) + g([S, S], T )− g([S, T ], S) + g([T, S], S).

Then:

2g(∇SS, T ) = Sg(S, T ) + Sg(S, T )− Tg(S, S)− g([S, T ], S) + g([T, S], S).

There are two cases. First, if T = S:

2g(∇SS, S) = Sg(S, S) + Sg(S, S)− Sg(S, S)− g([S, S], S) + g([S, S], S)

= Sg(S, S) = 0.
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If T 6= S:

2g(∇SS, T ) = Sg(S, T ) + Sg(S, T )− Tg(S, S)− g([S, T ], S) + g([T, S], S)

= −Tg(S, S)− 2g([S, T ], S).

In the special case S = X, we obtain that when T = H:

2g(∇XX,H) = −Hg(X,X)− 2g([X,H], X)

= −Hg(X,X) = −2ff ′.

The other products are zero. Hence

∇XX = −ff ′H.

In the case S = Y , when T = H

2g(∇Y Y,H) = −Hg(Y, Y )− 2g([Y,H], Y )

= −Hg(Y, Y ) = −2hh′.

and the other products are zero. Hence:

∇Y Y = −hh′H.

Similarly, we have:
∇ZZ = −hh′H.

and:
∇HH = 0.

The following Table contains the computations in terms of the functions f and h.

∇ X Y Z H

X −ff ′H 2h2−f2
h2

Z (f2−2h2)
h2

Y f ′

f
X

Y −f2

h2
Z −hh′H X h′

h
Y

Z f2

h2
Y −X −hh′H h′

h
Z

H f ′

f
X h′

h
Y h′

h
Z 0.

Table 5.1: Levi-Civita connection

On the other hand, the almost complex structure J of CP2#CP2 restricted to S3 ×
(α, β) is given by:

J(H) =
X

f
, J(

X

f
) = −H, J(Y ) = Z, J(Z) = −Y.

Recall that the Hermitian metric g is Kähler if and only if

∇XJY = J∇XY

for every X, Y vector �elds on S3× (α, β). From Table (5.1) we obtain the computations
of J∇AB, for every A,B ∈ E:
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J∇ X Y Z H

X −f ′X f2−2h2

h2
Y (f2−2h2)

h2
Z −f ′H

Y f2

h2
Y −hh′

f
X −fH h′

h
Z

Z f2

h2
Z fH −hh′

f
X −h′

h
Y

H −f ′H h′

h
Z −h′

h
Y 0.

Table 5.2: J∇AB

We also compute:

∇ JX = −fH JY = Z JZ = −Y JH = X
f

X −f ′X (f2−2h2)
h2

Y (f2−2h2)
h2

Z −f ′H
Y −fh′

h
Y X hh′H − f

h2
Z

Z −fh′

h
Z −hh′H X f

h2
Y

H −f ′H h′

h
Z −h′

h
Y 0.

Table 5.3: ∇AJ(B)

By comparing Tables (5.3) and (5.2) we obtain that the corresponding equation to
have a Kähler metric are the following:

−fh
′

h
= f2

h2

−f
2

h2
= fh′

h

−hh
′

f
= 1

−f = hh′

−hh′ = f.

We deduce that the metric g is a Kähler metric if:

f = −hh′. (5.1.2)

This and conditions (5.1.1) imply:

h(α)h′′(α) = −h(β)h′′(β) = −1. (5.1.3)

Therefore, for any positive function h de�ned on [α, β] satisfying h′(α) = h′(β) = 0,
and (5.1.3), (S3 × (α, β), g) is a Kähler metric which extends to a Kähler metric g on

CP2#CP2.

The constant λ for a soliton can be normalized to be 1, 0 or −1. We have that g is a
U(2)−invariant gradient shrinking Ricci soliton if there exists a U(2)−invariant function
u such that the equation

Ric(g) +Hess(u)− g = 0 (5.1.4)
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5.1. Construction of the Koiso-Cao soliton

holds.

Since the Kähler metric g is in particular Hermitian, it satis�es g(JU, JV ) = g(U, V )
for every U, V vector �elds, and Ric(JU, JV ) = Ric(U, V ). This implies that, if in addi-
tion g is a gradient Ricci soliton, Hess(u)(JU, JV ) = Hess(u)(U, V ).

Let ψ be a smooth function on S3× (α, β) invariant by the action of U(2), and simply
write ψ : (α, β) → R. We compute the Hessian of ψ using Table (5.1), since for any
A,B ∈ E, Hess(ϕ)(A,B) = A(B(ϕ))−∇AB(ϕ).

In the orthonormal basis

{
H,

X

f
,
Y

h
,
Z

h

}
, the Hessian of ψ diagonal and

Hess(ψ)

(
X

f
,
X

f

)
=

f ′ψ′

f

Hess(ψ)

(
Y

h
,
Y

h

)
=

h′ψ′

h

Hess(ψ)

(
Z

h
,
Z

h

)
=

h′ψ′

h
(5.1.5)

Hess(ψ)(H,H) = ψ′′.

If u is a potential function determining a gradient shrinking Ricci soliton g, the Hessian
of u is J−invariant. This happens if and only if

Hess(u)(H,H) = Hess(u)(JH, JH) = Hess(u)

(
X

f
,
X

f

)
Hess(u)

(
Y

h
,
Y

h

)
= Hess(u)

(
J
Y

h
, J
Y

h

)
= Hess(u)

(
J
Z

h
, J
Z

h

)
,

that is, if and only if

u′′ =
f ′u′

f
.

Solving for u′ we obtain:

u′ = cf

for some constant c. Note that c 6= 0, if g is a non-trivial Ricci soliton. Substituting
(5.1.2) we obtain:

u′ = −chh′ = − c
2

d

dt
h2.

Then

u =
−ch2

2
+ d

for some constants c, d, with c 6= 0. Without loss of generality, we may set d = 0, and so:

u =
−ch2

2
(5.1.6)
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Chapter 5. Yamabe equation of the Koiso-Cao soliton

On the other hand, the Ricci curvature is given by

Ric(H,H) = −f
′′

f
− 2

h′′

h
(5.1.7)

Ric

(
X

f
,
X

f

)
= −f

′′

f
− 2

f ′h′

fh
+ 2

f 2

h4
(5.1.8)

Ric

(
Y

h
,
Y

h

)
= Ric

(
Z

h
,
Z

h

)
= −h

′′

h
− f ′h′

fh
− h′2

h2
+

4

h2
− 2

f 2

h4
(5.1.9)

and Ric(A,B) = 0 whenever A 6= B, for every A,B ∈ E. Since also Ricci curvature has
to be J�invariant, Ric(H,H) = Ric(X

f
, X
f

). Hence:

h′′

h
− f 2

h4
− f ′h′

fh
= 0.

Now we write the soliton equation using the previous calculations for each direction,
for some constant c.

In the direction of H, by (5.1.2) we have:

0 = Ric(H,H) +Hess(u)(H,H)− g(H,H)

= −f
′′

f
− 2

h′′

h
+ u′′ − 1

= −f
′′

f
− 2

h′′

h
− ch′2 − chh′′ − 1

= −5h′′

h
− h′′′

h′
− 1− c(hh′′ + h′2).

Then we obtain the equation:

h′′′

h′
+

5h′′

h
+ 1 + c(hh′′ + h′2) = 0. (5.1.10)

Proceeding similarly in the direction of X,

0 = Ric(X,X) +Hess(u)(X,X)− g(X,X)

= f 2

(
−f

′′

f
− 2

f ′h′

fh
+ 2

f 2

h4

)
+ cf 2f ′ − f 2

= −5hh′2h′′ − h2h′h′′′ − h2h′2 − ch2h′2(hh′′ + h′2),

and then

h2h′h′′′ + 5hh′2h′′ + h2h′2(1 + c(hh′′ + h′2)) = 0, (5.1.11)

which is equivalent to the equation (5.1.10).

In the direction of Y ,
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5.1. Construction of the Koiso-Cao soliton

0 = Ric(Y, Y ) +Hess(u)(Y, Y )− g(Y, Y )

= h2

(
−h

′′

h
− f ′h′

fh
− h′2

h2
+

4

h2
− 2

f 2

h4

)
+ hh′u′ − h2

= h2

(
−h

′′

h
− f ′h′

fh
− h′2

h2
+

4

h2
− 2

f 2

h4

)
− ch2h′2 − h2

= −2hh′′ − 4h′2 + 4− ch2h′2 − h2.

We then obtain:

2hh′′ + 4h′2 − 4 + h2(1 + ch′2) = 0. (5.1.12)

If we di�erentiate equation (5.1.12) with respect to t, we obtain:

0 = 2(hh′′′ + h′h′′) + 8h′h′′ + h2(2ch′h′′) + 2hh′(1 + ch′2)

= 2hh′′′ + 10h′h′′ + 2ch2h′h′′ + 2hh′ + 2chh′3.

Then

hh′′′ + 5h′h′′ + hh′(1 + c(hh′′ + h′2)) = 0.

It follows that if h solves (5.1.12), it also solves (5.1.10) and (5.1.11). We have therefore
shown:

Proposition 5.1.2 The U(2)−invariant Kähler metric g = dt2+gt de�ned on S3×(α, β)

by the function h, extends to a gradient shrinking Kähler-Ricci soliton g on CP2#CP2 if
h is a smooth positive function which, for a constant c ∈ R, solves the equation:

2hh′′ + 4h′2 − 4 + h2(1 + ch′2) = 0 (5.1.13)

with h′(α) = h′(β) = 0, and h(α)h′′(α) = −h(β)h′′(β) = −1. It follows that h(α) =
√

6
and h(β) =

√
2.

Without loss of generality we may choose α = 0.

Proposition 5.1.3 There exists a unique constant co such that for the solution of (5.1.13)
satisfying hco(0) =

√
6, h′co(0) = 0 there exists β > 0 such that h′co < 0 on (0, β),

h′co(β) = 0 and hco(β) =
√

2. If there exists β > 0 for which h′c < 0 on (0, β), h′c(β) = 0

and hc(β) >
√

2 (or hc(β) <
√

2) then co < c (resp. c < co). The constant co can be
computed numerically, its aproximation is co = −0.5276195198969626.

Proof: Given a constant c 6= 0 and s > 0 we have a solution hc,s to (5.1.13) satisfying
hc,s(0) = s, hc,s

′(0) = 0. Note that if hc,s(t) is solution to (5.1.13), with hc,s
′(0) = 0, then

hc,s(−t) is also a solution. Or more generally, a solution to (5.1.13) will be symmetric
around any critical point.
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Chapter 5. Yamabe equation of the Koiso-Cao soliton

Let v = h′, then from equation (5.1.13) we obtain the following non-linear autonomous
system:

h′ = v

v′ =
2

h
− 2

v2

h
− h

2
(1 + cv2). (5.1.14)

We may depict its corresponding phase portrait in coordinates (h, v) in the right-half
plane R+ × R ⊂ R× R. Observe that (2, 0) is the only critical point of the system.

Note that if hc,s has a maximum and a minimum, then it is periodic and the corre-
sponding integral curve of (5.1.14) is closed. Note also that hc,s has a maximum at 0 if
s > 2, and if it has its �rst minimum at βc,s > 0, then 0 < hc,s(βc,s1) < 2. In this case
hc,s

′ < 0 on (0, βc,s).

Let d and c, with c < d, and s1, s2 > 2, such that the solutions hc,s1 and hd,s2 to
(5.1.13), with initial conditions hc,s1

′(0) = hd,s2
′(0) = 0, have �rst minimums at βc,s1 and

βd,s2 , respectively. Denote by γs1c and γs2d the corresponding integral curves, they are
closed curves.

If γs1c and γs2d intersect in the lower-half plane, there exist t1, t2 > 0 such that hc,s1(t2) =
hd,s2(t1) > 0, and hc,s1

′(t2) = hd,s2
′(t1) < 0. Then we have two equations:

2hc,s1(t2)h′′c,s1(t2) + 4h′2c,s1(t2)− 4 + h2
c,s1

(t2)(1 + ch′2c,s1(t2)) = 0, (5.1.15)

2hd,s2(t1)h′′d,s2(t1) + 4h′2d,s2(t1)− 4 + h2
d,s2

(t1)(1 + dh′2d,s2(t1)) = 0. (5.1.16)

Also we obtain:

2hd,s2(t1)h′′c,s1(t2) + 4h′2d,s2(t1)− 4 + h2
d,s2

(t1)(1 + ch′2d,s2(t1)) = 0. (5.1.17)

If we substract (5.1.17) from (5.1.16) we �nd:

2hd,s2(t1)(h′′d,s2(t1)− h′′c,s1(t2)) + h2
d,s2

(t1)h′d,s2(t2)(d− c) = 0.

Therefore, since hd,s2(t1) > 0 and h′d,s2(t2) < 0, we obtain h′′d,s2(t1) > h′′c,s1(t2). It
follows that, since

d

dt
γs1c = (h′c,s1 , h

′′
c,s1

) = (h′c,s1 ,
2

hc,s1
− 2

h′c,s1
2

hc,s1
− hc,s1

2
(1 + ch′c,s1

2
)),

and
d

dt
γs2d = (h′d,s2 , h

′′
d,s2

) = (h′d,s2 ,
2

hd,s2
− 2

h′d,s2
2

hd,s2
− hd,s2

2
(1 + dh′d,s2

2
)),

if γs1c and γs2d intersect in the lower-half plane, after the crossing point γs1c goes above γs2d .
It follows that if hc,s1 has a minimum, so does hd,s2 , and hd,s2(βd,s2) > hc,s1(βc,s1).

Now, take s1 = s2 =
√

6, c < d as before, and such that hc = hc,
√

6 and hd = hd,
√

6,
both have positive minimums mc and md, respectively. We have their corresponding
integral curves γc and γd.
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5.1. Construction of the Koiso-Cao soliton

Figure 5.1: A diagram depicting the behavior of three solutions of the system (5.1.14) with same initial
conditions. For c < co < d, the solid line corresponds to hco,

√
6, the dashed one to hd,

√
6 and the dotted

one to hc,
√
6.

De�ne the function min : (c, d) → (0, 2) which assigns to each a ∈ (c, d) the �rst

minimum value of the solution h
√

6
a . We will prove that the function min is well de�ned,

continuous and increasing.

If γc goes under γd, it has to intersect some γsd, with 2 < s <
√

6. But then γc

also intersects every integral curve γtd, with t < s. Take γ
s+
√

6
2

d , for instance. Since

d > c, by previous discussion, γc stays below γ
s+
√
6

2
d and cannot intersect γsd. Then, in

particular mc < md. Same argument applies to each a ∈ (c, d), the solution ha,
√

6 has

a minimum. Then the associated integral curve is closed, since
√

6 > 2. We have that
md < min(a) < mc.

Therefore, it can only exist one co ∈ (c, d) such that the solution hco,
√

6 to (5.1.13)

with h′
co,
√

6
(0) = 0 has as minimum value

√
2.

Finally, the value of co can be computed numerically by solving the equation (5.1.13)
for di�erent parameters c, and initial conditions h(0) =

√
6 and h′(0) = 0. By the claim,

if c < d are two values for which the solutions hc and hd each have minimums mc,md,
and md <

√
2 < mc then we know that c < co < d. Then co can be approximated by

interpolation.

Cao also obtained the value of co as root of the function:

k(x) = e2x(2− 4x+ 3x2)− 2 + x2.

See Lemma 4.1. in [10]. �
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Chapter 5. Yamabe equation of the Koiso-Cao soliton

5.2 Curvature of the Koiso-Cao soliton

In this section we will write the Yamabe equation on CP2#CP2 for a U(2)−invariant
function. Recall that g has positive Ricci curvature [10]. We will use this to see that Sg

is a decreasing function of t on S3 × (α, β). For the sake of completeness we give a proof
of the positivity of Ricci curvature using our description of g.

Proposition 5.2.1 The Koiso- Cao soliton g has positive Ricci curvature.

Proof: For a gradient shrinking soliton we have the equation (5.1.4). Note that since
Hess(u) is diagonal in the orthonormal basis E, the Ricci curvature of g is diagonal. If
g is Kähler the Ricci curvature is invariant by the action of J ,

Ric

(
X

f
,
X

f

)
= Ric(H,H)

Ric

(
Z

h
,
Z

h

)
= Ric

(
Y

h
,
Y

h

)
.

Then we only have to show that the functions Ric(H,H) and Ric(Y
h
, Y
h

) are positive.
Using the Hessian (5.1.5) and the expression of u (5.1.6) we obtain

Ric(H,H) = g(H,H)−Hess(u)(H,H)

= 1− u′′

= 1 + c(hh′′ + h′2),

and

Ric

(
Y

h
,
Y

h

)
= g

(
Y

h
,
Y

h

)
−Hess(u)

(
Y

h
,
Y

h

)
= 1− h′u′

h
= 1 + ch′2.

First we will lead with the Ricci curvature in the direction of Y . From equation
(5.1.13) we rewrite

(hh′′ + h′2) + h′2 − 2 +
h2

2
(1 + ch′2) = 0

which is the same as:

f ′ = h′2 − 2 +
h2

2
(1 + ch′2) (5.2.1)

Let A(x) = x− 2 + b2

2
(1 + cx). If we di�erentiate with respect to x,

d

dx
A = 1 + c

b2

2

The critical points of A occurs when b2

2
= −1/c.
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5.2. Curvature of the Koiso-Cao soliton

Claim: 1 + ch′2 > 0.

We have a critical point of the function (1 + ch′2) if h′ = 0 or h′′ = 0. Observe that
that h′ = 0 and h′′ = 0 can not happen simultaneously, else the value of the critical points
would be 2. This is not possible since critical values have to be

√
2 and

√
6. If h′ = 0, the

claim follows and then Ric(Y
h
, Y
h

) > 0 at 0 and β. For those points where h′′ = 0, from
equation (5.1.13):

h′2 =
4− h2

4 + ch2
. (5.2.2)

There are two cases.

i) If 3 > h2

2
≥ −1/c. Then, 4−h2 < 4+2/c. From the value of c = −0.5276195198969626

we have 4 + 2/c < 1. Also, 4 + 6c < 4 + ch2. If follows that

h′2 <
4 + 2/c

4 + 6c
<

1

4 + 6c
< −1/c,

and then 1 + ch′2 > 0.

ii) If 1 < h2

2
< −1/c, we have 4− h2 < 2 and 2 < 4 + ch2. Then:

h′2 =
4− h2

4 + ch2
< 1.

The claim is proved, and then Ric(Y
h
, Y
h

) > 0.

On the other hand, for the Ricci curvature in the direction of H, note that, since
−1 < c < 1 and h(0)h′′(0) = −h(β)h′′(β) = 1, Ric(H,H) is positive at 0 and β. Then it
remains to prove that 1 + c(hh′′ + h′2) > 0 for every t ∈ (0, β).

Since c < 0, we have to prove f ′ = (hh′′ + h′2) > 1/c ≈ −1.8. It is enough to see
f ′ > −1. Hence we will show the bound for f ′ in the two previous cases.

Using equation (5.2.1), the fact that Ric(Y
h
, Y
h

) > 0 and the value of c:

i) If h2

2
≥ −1/c we have,

f ′ = h′2 − 2 +
h2

2
(1 + ch′2)

≥ h′2 − 2− 1

c
(1 + ch′2)

= −2− 1/c > −1.

ii) If 1 < h2

2
< −1/c, �rst note that (1 + ch2

2
) > 0, and since 1 < h2

2
:

f ′ = h′2(1 +
ch2

2
) +

h2

2
− 2

>
h2

2
− 2 > −1.
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Chapter 5. Yamabe equation of the Koiso-Cao soliton

Therefore, f ′ > −1, and so Ric(H,H) > 0. �

Let ψ be a smooth function on S3 × (0, β) invariant by the action of U(2), then by
(5.1.5) we get

4gψ = −f
′ψ′

f
− 2

h′ψ′

h
− ψ′′

= −ψ′
(
hh′′ + h′2

hh′
+ 2

h′

h

)
− ψ′′

= −ψ′
(
h′′

h′
+ 3

h′

h

)
− ψ′′. (5.2.3)

Then for u = − ch2

2
we have:

4gu =
d

dt

(
ch2

2

)(
h′′

h′
+ 3

h′

h

)
+
d2

dt2

(
ch2

2

)
= chh′′ + 3ch′2 + chh′′ + ch′2

= 4ch′2 + 2chh′′.

Now, taking the trace of the soliton equation (5.1.4) we obtain

Sg −4gu = 4

and therefore the scalar curvature is:

Sg = 4ch′2 + 2chh′′ + 4. (5.2.4)

From Proposition 5.1.2 and Proposition 5.1.3 we obtain:

Sg(0) = 4− 2c > 0

Sg(β) = 4 + 2c > 0. (5.2.5)

Proposition 5.2.2 The scalar curvature of the Koiso-Cao soliton g is decreasing as a
function of t ∈ [0, β].

Proof: Take the derivative with respect to t of (5.2.4), then:

S ′ = 8ch′h′′ + 2c(hh′′′ + h′h′′) = 10ch′h′′ + 2chh′′′.

But,

Ricg(H,H) = −f
′′

f
− 2

h′′

h

= −hh
′′′ + 5h′h′′

hh′
.

Since Ricg(H,H) > 0, we have that hh′′′ + 5h′h′′ > 0. Therefore, since c < 0 , S ′ < 0
on (0, β). �
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We can also compute the volume of the soliton.

Vol(CP2#CP2,g) := Vol(g) = 2π2

∫ β

α

fh2dt

= 2π2

∫ β

α

(−h3h′)dt

= −2π2h
4

4
|βα

= 16π2.

Hence, the Hilbert-Einstein functional for the soliton is:∫ β
α
S

Vol(g)1/2
=

∫ β
α

(4u+ 4)fh2dt

Vol(g)1/2

=

∫ β
α

4fh2dt

Vol(g)1/2

= 16π ∼ 50.26548246

< 8π
√

6 ∼ 61.5624.

5.3 Uniqueness of invariant solutions to the Yamabe

equation

We have considered the non-trivial Ricci soliton on CP2#CP2 constructed by Koiso and

Cao. It was constructed as a Kähler metric invariant by the U(2) action on CP2#CP2.
Now we will study its Yamabe equation and prove it has exactly one U(2)−invariant
solution, up to homothecy.

Let ϕ be a smooth function invariant under the action of U(2) on CP2#CP2. Then
we identify ϕ with a function φ : [0, β]→ R such that φ′(0) = φ′(β) = 0. We use previous
calculation of the Laplacian (5.2.3) to obtain the Yamabe equation of the Koiso-Cao
soliton:

6φ′
(
h′′

h′
+ 3

h′

h

)
+ 6φ′′ + Sgφ = λφ3. (5.3.1)

Since the Koiso-Cao soliton has positive scalar curvature, then λ has to be positive.
We �x λ = 1.

Theorem 5.3.1 There exists a unique U(2)-invariant solution to the Yamabe equation
on CP2#CP2 with the Koiso-Cao metric.

Proof: Let φ be a positive U(2)−invariant function on S3 × (0, β) with the Kähler

metric g. In order to φ2 · g be a Riemannian metric on CP2#CP2 , φ must satisfy
φ′(0) = φ′(β) = 0. Additionally, the metric φ2 · g has constant scalar curvature equals 1
if φ satis�es the Yamabe equation (5.3.1):

6φ′
(
h′′

h′
+ 3

h′

h

)
+ 6φ′′ + Sgφ = φ3.
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Since:

lim
t→0

φ′
h′′

h′
= lim

t→0

(
φ′h′′′

h′′
+ φ′′

)
= φ′′(0)

then we have:
12φ′′(0) = φ(0)(φ2(0)− Sg(0)).

For t ∈ (0, β) with φ′(t) = 0,

6φ′′(t) = φ(t)(φ2(t)− Sg(t)).

Claim: φ2(0) ≤ S(0) = 4− 2c (by (5.2.5)).

If φ2(0) > S(0) then 0 is a local minimum. φ increases and S decreases. After 0, at
the next critical point of φ we would again have that φ2 > S and it would be a minimum,
which is a contradiction.

Then, same argument shows that there is no local minimums on [0, β). Therefore, 0
is a local maximum and β a local minimum, and there is no more critical points of φ on
(0, β). Then φ is decreasing.

We have: √
S(β) ≤ φ(β) ≤ φ(0) ≤

√
S(0).

It is known that on any compact Riemannian manifold (M, g) that admits the ac-
tion of a compact Lie group G, there exists a conformal G-invariant metric to g of
constant scalar curvature [31]. Hence, in the case of the Koiso-Cao soliton there ex-
ists a U(2)-invariant solution to the Yamabe problem. It remains to prove uniqueness.
If s ∈ (

√
S(β),

√
S(0)], let φs be a solution to the Yamabe equation (5.3.1) such that

φs(0) = s. Let s1, s2 ∈ (
√
S(β),

√
S(0)], s1 < s2. We have 0 is a local maximum for both

solutions φs1 and φs2 . De�ne F (t) := φs2 − φs1 .

Claim: F has a local minimum at 0.

Note that F (0) > 0. Since 0 is a critical point of φs1 and φs2 , so it is for F . Since φs1
and φs2 satisfy (5.3.1), it follows that:

F ′′(0) =
1

12

(
φ3
s2

(0)− φs2(0)S(0)− (φ3
s1

(0)− φs1(0)S(0)
)
.

Consider the function v(x) = x3 − S(0)x. Then:

v′(x) = 3x2 − S(0).

Note that xo :=
√

S(0)
3

is the only critical point, and v is increasing on (
√

S(0)
3
,
√
S(0)).
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5.3. Uniqueness of invariant solutions to the Yamabe equation

We have, by (5.2.5) and the value of c,

S(0) = 4− 2c = 5.0552 and S(β) = 4 + 2c = 2.9447.

then √
S(0) = 2.2483,

√
S(β) = 1.716, and

√
S(0)

3
= 1.2981.

Hence, since √
S(0)

3
<
√
S(β) < φs1(0) < φs2(0) ≤

√
S(0),

it follows that F ′′(0) > 0, and so 0 is a local minimum of F .

Hence, F is positive and increasing on (0, ε), for ε > 0 enough small. Assume that
there exists to ∈ (ε, β] such that F ′(to) = 0, and take the �rst critical point. The discussion
above applies for to, that is, we have:

F ′′(to) =
1

6

(
φ3
s2

(to)− φs2(to)S(to)− (φ3
s1

(to)− φs1(to)S(to)
)
.

Similarly as before, consider the function g(x) = x3 − S(to)x. Then x1 :=
√

S(to)
3

is

its only critical point, which is a minimum. From the choosing of to it follows :√
S(to)

3
< S(β) < φs1(to) < φs2(to).

Then to is a local minimum of F . But this implies there are another t1 ∈ (0, to) satis-
fying F ′(t1) = 0, which is a contradiction, since to was the �rst point.

We have proved that F ′ > 0 on (0, β] and in particular F ′(β) = φs2(β) − φs1(β)>0.
Then it cannot happen that φ′s1(β) = φ′s2(β) = 0. This proves uniqueness. �
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Chapter 6

Singular Poisson structures in Wrinkled

Fibrations in dimension 4

In this chapter we give explicit Poisson bivectors for a certain type of singular �brations.
We obtain Poisson structures whose characteristic distributions are singular.

The following Proposition was shown to hold by L. García-Naranjo, P. Suárez-Serrato
and R. Vera in [25]. It provides a way to construct Poisson integrable structures, and a
class of Poisson structures from a given one by multiplying with a non-vanishing function.

Proposition 6.0.2

1. If π is a bivector �eld on M whose characteristic distribution is integrable and has
rank less than or equal to two at each point, then π is Poisson.

2. Let π be a Poisson structure on M whose rank at each point is less than or equal to
two. Then π1 := kπ is also a Poisson structure where k ∈ C∞(M) is an arbitrary
non-vanishing function.

It was also shown in [25]:

Theorem 6.0.3 Let M be an orientable n-manifold, N an orientable n−2 manifold, and
f : M → N a smooth map. Let µ and Ω be orientations of M and N respectively. The
bracket on M de�ned by

{g, h}µ = k dg ∧ dh ∧ f ∗Ω (6.0.1)

where k is any non-vanishing function on M is Poisson. Moreover, its symplectic leaves
are

(i) the 2-dimensional leaves f−1(s) where s ∈ N is a regular value of f ,

(ii) the 2-dimensional leaves f−1(s) \ {Critical Points of f} where s ∈ N is a singular
value of f .

(iii) the 0-dimensional leaves corresponding to each critical point.

Formula (6.0.1) appeared in [18]. It is attributed to H. Flaschka and T. Ratiu.
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6.1. Poisson structures on wrinkled �brations in dimension 4

6.1 Poisson structures on wrinkled �brations in dimen-

sion 4

The aim of this section is to obtain:

Theorem 6.1.1 Let X be a closed, orientable, smooth 4-manifold equipped with a wrin-
kled �bration, or for a �xed s a �bration given by one of the birth, merging, �ipping, or
wrinkiling moves described above. Then there exists a complete Poisson structure whose
symplectic leaves correspond to the �bres of the given �bration structure, and the singu-
larities of both the �bration and the Poisson structures coincide.

The proof of the existence is given by explicit construction. It relies on the Flaschka-
Ratiu formula. We will give the local expressions for the Poisson bivectors for each type
of singularity and their corresponding symplectic forms.

Furtheremore by 2.5.10, since π2(S2) = Z, it directly follows:

Proposition 6.1.2 A Poisson structure associated to a wrinkled �bration structure as in
Theorem 6.1.1, or to a broken Lefschetz �bration as in [25], none of whose symplectic
leaves are, or contain, 2�spheres, is integrable.

The following result allows us to obtain algebraic conditions for the existence of Poisson
structures that can be fed to a computer.

Proposition 6.1.3 Let π be a bivector �eld in R4. Assume that in local coordinates we
can write πij = p(x, y, z, t)xij for a function p : R4 → R. Then the Jacobi identity for π
holds if and only if the following equation is satis�ed:

∇(pxij) · (x1k, x2k, x3k, x4k) +∇(pxjk) · (x1i, x2i, x3i, x4i) +∇(pxki) · (x1j, x2j, x3j, x4j) = 0
(6.1.1)

Proof: An equivalent formulation of the Jacobi identity for a Poisson bracket can be
given in local coordinates in the following way (see [37]):

4∑
l=1

(
πlk

∂πij

∂xl
+ πli

∂πjk

∂xl
+ πlj

∂πki

∂xl

)
= 0

For all i, j, and k. Here, the term xl stands for the l−th coordinate of {x, y, z, t}.
Since πij = p(x, y, z, t)xij, substituting in the previous equation we obtain:

4∑
l=1

p

(
xlk

∂xij

∂xl
+ xli

∂xjk

∂xl
+ xlj

∂xki

∂xl

)
+
∂p

∂xl

(
xlkxij + xlixjk + xljxki

)
= 0
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Chapter 6. Singular Poisson structures in Wrinkled Fibrations in dimension 4

Developing one of the terms we observe that:

4∑
l=1

p

(
xlk

∂xij

∂xl
+ xli

∂xjk

∂xl
+ xlj

∂xki

∂xl

)
= p((x1k, x2k, x3k, x4k) · ∇xij

+ (x1i, x2i, x3i, x4i) · ∇xjk

+ (x1j, x2j, x3j, x4j) · ∇xki)

A similar approach to the other term yields:

4∑
l=1

∂p

∂xl

(
xlkxij + xlixjk + xljxki

)
= xij∇p · (x1k, x2k, x3k, x4k)

+ xjk∇p · (x1i, x2i, x3i, x4i)

+ xki∇p · (x1j, x2j, x3j, x4j)

Therefore the following equality holds:

(p∇xij + xij∇p) · (x1k, x2k, x3k, x4k)+(p∇xjk + xjk∇p) · (x1i, x2i, x3i, x4i)

+(p∇xki + xki∇p) · (x1j, x2j, x3j, x4j) = 0

We �nd that the Jacobi identity will hold if and only if the next equation is satis�ed:

∇(pxij) · (x1k, x2k, x3k, x4k) +∇(pxjk) · (x1i, x2i, x3i, x4i) +∇(pxki) · (x1j, x2j, x3j, x4j) = 0
(6.1.2)

�

6.1.1 Local forumlæ for the Poisson bivectors.

We will now construct explicit expressions for the Poisson structure and the corresponding
symplectic forms in a neighbourhood of cusp singularities of wrinkled �brations X → Σ,
as well as for all the possible moves described above. All of the expressions that we will
give depend upon a choice of a non-vanishing function k ∈ C∞(X) (see [25]).

Before proceeding we will describe the general strategy employed to �nd the local
bivectors.

Step 1: Consider the coordinate functions C1, C2 that describe each �bration as
Casimir functions for the Poisson structure that we want to �nd.

Step 2: Calculate the di�erentials dC1, dC2 of the Casimirs C1, C2.

Step 3: We use formula 6.0.1 to compute the skew-symmetric matrix with entries:

πij = {xi, xj}µ = dxi ∧ dxj ∧ dC1 ∧ dC2.

This matrix will then annihilate dC1, dC2, as this matrix is to be the endomorphism
B associated to a Poisson structure with dC1 and dC2 as Casimirs. The components of
the bivector �eld will be given by:

{xi, xj} = det
(
εi, εj, dC1, dC2

)
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6.1. Poisson structures on wrinkled �brations in dimension 4

Here εi is the 4 × 1 canonical basis column vector, whose i-th component is 1 and all
others are zero.

For the cusp singularity and the birth, merging, and �ipping moves, t is a Casimir, so
we only have to compute

{x,y}, {x, z} and {y, z}.

In fact, for these four cases if we denote by dCi
2 the components of the column vector dC2

we obtain
{x, y} = −dC3

2

{x, z} = dC2
2

{y, z} = −dC1
2

Step 4: According to Proposition 6.0.2 (ii), we write the Poisson bivector using the
skew-symmetric matrix entries.

Near a wrinkling move the Poisson bivector will be obtained using formula 6.0.1. For
the other cases the bivector admits a general expression given by:

π = k(x, y, z, t)

[
−dC3

2

∂

∂x
∧ ∂

∂y
+ dC2

2

∂

∂x
∧ ∂

∂z
− dC1

2

∂

∂y
∧ ∂

∂z

]
(6.1.3)

for any non-vanishing smooth function k.

The corresponding results for neighborhoods of Lefschetz singularities and broken
singular circles were obtained in [25]. We proceed to describe the results this general
strategy yields for cusp singularities and the moves described above.

Local expressions near a cusp singularity.

The local coordinate model around a cusp singularity is given by:

(x, y, z, t) 7→ (C1(x, y, z, t), C2(x, y, z, t)) = (t, x3 − 3xt+ y2 − z2)

The di�erentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1)
dC2 = (3x2 − 3t 2y −2z −3x)

The following matrix annihilates dC1 and dC2 and its entries satisfy the Jacobi identity:
0 2kz 2ky 0
−2kz 0 k(3t− 3x2) 0
−2ky k(3x2 − 3t) 0 0

0 0 0 0


Which means that the Poisson bivector in the local coordinates of a cusp singularity

is described by:

π = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
+ (3t− 3x2)

∂

∂y
∧ ∂

∂z

]
(6.1.4)
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Chapter 6. Singular Poisson structures in Wrinkled Fibrations in dimension 4

Local expressions near a birth move.

The local coordinate model around a birth move is given by:

bs(x, y, z, t) = (C1(x, y, z, t), C2(x, y, z, t)) = (t, x3 − 3x(t2 − s) + y2 − z2)

The di�erentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1)
dC2 = (3x2 − 3(t2 − s) 2y −2z −6xt)

From which we can obtain the following matrix:
0 2kz 2ky 0
−2kz 0 k (3 (t2 − s)− 3x2) 0
−2ky k (3x2 − 3 (t2 − s)) 0 0

0 0 0 0


Hence the Poisson bivector near a birth move has the form:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− 3(s− t2 + x2)

∂

∂y
∧ ∂

∂z

]
(6.1.5)

Local expressions near a merging move.

The local coordinate model around a merging move is given by:

ms(x, y, z, t) = (C1(x, y, z, t), C2(x, y, z, t)) = (t, x3 − 3x(s− t2) + y2 − z2)

The di�erentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1)
dC2 = (3x2 − 3(s− t2) 2y −2z 6xt)

The associated matrix is then:
0 2kz 2ky 0
−2kz 0 k (3 (s− t2)− 3x2) 0
−2ky k (3x2 − 3 (s− t2)) 0 0

0 0 0 0


So the Poisson bivector in a neighbourhood of a merging move is described as:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− 3(s− t2 − x2)

∂

∂y
∧ ∂

∂z

]
(6.1.6)

64
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Local expressions near a �ipping move.

The local coordinate model around a �ipping move is given by:

fs(x, y, z, t) = (C1(x, y, z, t), C2(x, y, z, t)) = (t, x4 − x2s+ xt+ y2 − z2)

The di�erentials dC1 and dC2 are therefore:

dC1 = (0 0 0 1)
dC2 = (4x3 − 2xs+ t 2y −2z x)

The corresponding matrix is:
0 2kz 2ky 0
−2kz 0 k (−4x3 + 2sx− t) 0
−2ky k (4x3 − 2sx+ t) 0 0

0 0 0 0


The Poisson bivector in a neighborhood of a �ipping move can then be written in the

following way:

πs = k(x, y, z, t)

[
2z

∂

∂x
∧ ∂

∂y
+ 2y

∂

∂x
∧ ∂

∂z
− (t− 2sx+ 4x3)

∂

∂y
∧ ∂

∂z

]
(6.1.7)

Local expressions near a wrinkling move.

The local coordinate model around a wrinkling move is given by:

ws(x, y, z, t) = (C1(x, y, z, t), C2(x, y, z, t)) = (t2 − x2 + y2 − z2 + st, 2tx+ 2yz)

The di�erentials dC1 and dC2 are therefore:

dC1 = (−2x 2y −2z 2t+ s)
dC2 = (2t 2z 2y 2x)

The matrix we are interested in is given by:
0 k(sy + 2ty + 2xz) k(2xy − (s+ 2t)z) −2k (y2 + z2)

−k(sy + 2ty + 2xz) 0 k (st+ 2 (t2 + x2)) k(2tz − 2xy)
k((s+ 2t)z − 2xy) −k (st+ 2 (t2 + x2)) 0 2k(ty + xz)

2k (y2 + z2) 2k(xy − tz) −2k(ty + xz) 0


The expression for the Poisson bivector in a neighbourhood of a wrinkling move is

then:

πs = k(x, y, z, t)[(−2sy − 4ty − 4xz)
∂

∂x
∧ ∂

∂y
+ (−4xy + 2sz + 4tz)

∂

∂x
∧ ∂

∂z

+ (4y2 + 4z2)
∂

∂x
∧ ∂

∂t
(2st+ 4t2 + 4x2)

∂

∂y
∧ ∂

∂z

+ 4(xy − tz)
∂

∂y
∧ ∂

∂t
− 4(ty + xz)

∂

∂z
∧ ∂

∂t
] (6.1.8)
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Chapter 6. Singular Poisson structures in Wrinkled Fibrations in dimension 4

6.1.2 Linearization

We follow chapters 3 and 4 of [23], where more details and examples may be found. Let l
be a �nite-dimensional Lie algebra. Denote by r the radical of l, i.e., the maximal solvable
ideal of l. Then g = l/r is a semi-simple Lie algebra. The Levi-Malcev theorem states
that l can be decomposed as a semi-direct product:

l = gn r.

In analogy with this Levi-Malcev decomposition we have a Levi decomposition for Poisson
structures. Let π be a Poisson structure and denote by π0 its linear part. By de�nitions
we obtain that π0 generates a Lie algebra l. We take the Levi-Malcev decomposition
of l, with the previous notation. Let {x1, ..., xm, y1, ..., ym} be a basis for l, such that
Span{x1, ..., xm} = g, and Span{y1, ..., ym} = r, a complement of g with respect to the
adjoint action of g on l.

A Levi decomposition for π at 0, with π(0) = 0, provides local coordinates such that;

{xi, xj} ∈ g and {xi, yj} ∈ r.

Any analytic Poisson structure π, which vanishes at 0, admits a Levi decomposition
in a neighborhood of 0.

Now we will focus on the expressions for the bivectors obtained in equations (7.2.6),
(6.1.5), (6.1.6), (6.1.7), and (6.1.8). We �x k ≡ 1. It can be seen that in the case of cusp
singularities, the linear part of the corresponding Poisson structure (7.2.6) de�nes a Lie
algebra through the commutation relations:

[x, z] = 2y [x, y] = 2y [y, z] = 3t

For the Birth, Merge and Flipping moves, corresponding to the bivectors (6.1.5),
(6.1.6), and (6.1.7), respectively, their linear part in all these cases is generated by:

[x, z] = 2y [x, y] = 2z

Notice that this Lie algebra contains a nonzero Abelian ideal, hence it is not semi-
simple.

So in all these cases the linear part of the Poisson structure admits a decomposition
of the form R× L3, where L3 is a semi-direct product of Lie algebras:

L3 = RnA R2

Here R acts on R2 linearly by the matrix:

A =

(
2 0
0 2

)
For the case of wrinkled �brations, corresponding to (6.1.8), we see that all the com-

mutation relations are trivial. Therefore the corresponding linear part of its Poisson
structure spans an Abelian Lie algebra, which is not semi-simple.

We have that Conn's theorem 2.5.8 asserts that, provided the linear part of an ana-
lytic Poisson structure π that vanishes at 0, corresponds to a semi-simple Lie algebra, π
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admits a local analytic linearizaton at 0 [14]. Hence, in the spirit of Conn's theorem, the
linearization of all these Poisson structures is not guaranteed. Moreover, the semi-direct
product L3 is degenerate (formally, analytically, and smoothly).

When k is a non vanishing smooth function, we obtain other Poisson structures. Then
it is natural to ask:

Question 6.1.4 Does there exist a function k such that an expression given by one of
the bivectors (7.2.6), (6.1.5), (6.1.6), (6.1.7) or (6.1.8) is linearizable?

6.1.3 Equations for the symplectic forms on the leaves near sin-

gularities.

Proposition 6.1.5 Let q ∈ B4\{0} and let π be the Poisson structure near a cusp
singularity. Then the symplectic form induced by π on the symplectic leaf Σq through
q = (x, y, z, t) at the point q is given by

ωΣq =
1

3 (x2 − t)
ωArea(q) (6.1.9)

here ωArea is the area form on Σq induced by the euclidean metric on B4.

Proof: If uq, vq are tangent vectors to the leaves there exist co-vectors αq, βq ∈ T ∗qM
such that Bq(αq) = uq and Bq(βq) = vq, where Bq is given by the rule:

Bq(α)(·) = πq(·, α)

Finding two tangent vectors to the symplectic leaves is equivalent to detecting vectors
annihilated simultaneously by the di�erential of two Casimir functions for the correspond-
ing Poisson structure. Note that the characteristic distribution has rank 2.

In this case we �nd that the vectors:

uq = − 1

3 (t− x2)
(2z

∂

∂x
+ 3

(
t− x2

) ∂
∂z

)

vq =
1

3(t− x2)
(2y

∂

∂x
+ 3(t− x2)

∂

∂y
)

are tangent to Σq at q. Using the local expression of the Poisson structure for a cusp
singularity given by equation (7.2.6), one can check that Bq(αq) = uq, for

αq = − dy

k(x, y, z, t)3(t− x2)
.

Similarly, Bq(βq) = vq, for

βq =
1

k(x, y, z, t)
(− 1

2z
dx+

y

3(t− x2)z
dy).

A direct calculation now implies that the symplectic form is:

ωΣq(q)(uq, vq) = 〈αq, vq〉 =
1

3(x2 − t)
ωArea(q)

�

67



Chapter 6. Singular Poisson structures in Wrinkled Fibrations in dimension 4

Proposition 6.1.6 Let q ∈ B4\{0} and πs be the Poisson structure near a birth move.
The symplectic form induced by πs on the symplectic leaf Σq through q = (x, y, z, t) at the
point q is given by

ωΣq =
1

k(x, y, z, t)(3(s− t2 + x2)
ωArea(q) (6.1.10)

here ωArea is the area form on Σq induced by the euclidean metric on B4.

Proof: Making use of the corresponding Casimir functions for the Poisson structure
associated to a birth move we obtain that the vectors

uq =
1

3 (s− t2 + x2)
(2z

∂

∂x
+ 3

(
s− t2 + x2

) ∂
∂z

)

vq = − 1

3(s− t2 + x2)
(2y

∂

∂x
+ 3(s− t2 + x2)

∂

∂y
)

are tangent to Σq at q. Using the local expression (6.1.5) of the Poisson structure one
can check that Bq(αq) = uq, for

αq =
dy

k(x, y, z, t)3(s− t2 + x2)
.

Similarly, Bq(βq) = vq, for

βq =
1

k(x, y, z, t)
(− 1

2z
dx− y

3(s− t2 + x2)z
dy)

The expression for the symplectic form follows from:

ωΣq(q)(uq, vq) = 〈αq, vq〉 = −〈βq, uq〉

�

Proposition 6.1.7 Let q ∈ B4\{0} and let πs be the Poisson structure near a merging
move. The symplectic form induced by πs on the symplectic leaf Σq through q = (x, y, z, t)
at the point q is given by

ωΣq =
1

3(t2 − s+ x2)
ωArea(q) (6.1.11)

here ωArea is the area form on Σq induced by the euclidean metric on B4.

Proof: We proceed similarly to the previous cases above. We �nd that the vectors

uq =
1

3 (s− t2 − x2)
(−2z

∂

∂x
+ 3

(
s− t2 − x2

) ∂
∂z

)

vq =
1

3(s− t2 − x2)
(2y

∂

∂x
+ 3(s− t2 − x2)

∂

∂y
)
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are tangent to Σq at q. Using the local expression (6.1.6) of the corresponding Poisson
structure one can check that Bq(αq) = uq, for

αq = − dy

k(x, y, z, t)3(s− t2 − x2)
.

Similarly, Bq(βq) = vq, for

βq =
1

k(x, y, z, t)
(− 1

2z
dx+

y

3(s− t2 − x2)z
dy).

As before the symplectic form is obtained by computing:

ωΣq(q)(uq, vq) = 〈αq, vq〉 = −〈βq, uq〉

�

Proposition 6.1.8 Let q ∈ B4\{0} and let πs be the Poisson structure near a �ipping
move. The symplectic form induced by πs on the symplectic leaf Σq through q = (x, y, z, t)
at the point q is given by

ωΣq =
1

k(x, y, z, t)(t− 2sx+ 4x3)
ωArea(q) (6.1.12)

here ωArea is the area form on Σq induced by the euclidean metric on B4.

Proof: In this case, the following vectors:

uq =
1

t− 2sx+ 4x3
(2z

∂

∂x
+ t− 2sx+ 4x3 ∂

∂z
)

vq =
1

t− 2sx+ 4x3
(−2y

∂

∂x
+ t− 2sx+ 4x3 ∂

∂y
)

are tangent to Σq at q. Using equation (6.1.7) we can check that Bq(αq) = uq, for

αq = − dy

k(x, y, z, t)(−t+ 2sx− 4x3)
.

Similarly, Bq(βq) = vq, for

βq =
1

k(x, y, z, t)
(− 1

2z
dx− y

(t− 2sx+ 4x3)z
dy).

A straightforward calculation shows that:

ωΣq =
1

k(x, y, z, t)(t− 2sx+ 4x3)z
ωArea(q)

�

Proposition 6.1.9 Let q ∈ B4\{0} and let πs be the Poisson structure near a wrinkling
move. The symplectic form induced by πs on the symplectic leaf Σq through q = (x, y, z, t)
at the point q is given by

ωΣq = − 1

2(ty + xz)
ωArea(q) (6.1.13)

here ωArea is the area form on Σq induced by the euclidean metric on B4.
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Proof: Using the corresponding Poisson structure for a wrinkling move given in equation
(6.1.8) we obtain:

uq = − 1

2(ty + xz)
((2xy − sz − 2tz)

∂

∂x
+ (st+ 2t2 + 2x2)

∂

∂y
− 2(ty + xz)

∂

∂t
)

vq = − 1

(ty + xz)
((y2 + z2)

∂

∂x
+ (xy − tz)

∂

∂y
− (ty + xz)

∂

∂z
)

and makes vq an unitary vector. These vectors are tangent to Σq at q. Using the local
expression of the Poisson structure in (6.1.8) we check that Bq(αq) = uq, for

αq =
1

k(x, y, z, t)
(

1

2(y2 + z2)
dx− −2xy + sz + 2tz

4(ty + xz)(y2 + z2)
dt)

Similarly, Bq(βq) = vq, for

βq =
dt

2(ty + xz)

The proposition is shown as in the previous cases by calculating the symplectic form
explicitly using the above equations. �
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Chapter 7

Singular Poisson structures in

Generalized Wrinkled Fibrations

We start by de�ning a generalization of wrinkled �brations on dimension 6 based on singu-
larity theory. As previously we construct Poisson structures that match the singularities
of the �bration and give their local models. Before presenting these constructions, we
brie�y recall the notion of a generalized broken Lefschetz �bration, which serves as a ref-
erence for the de�nition of generalized wrinkled �brations. Our �rst observation appears
after combining the de�nition of generalized broken Lefschetz �bration [60] together with
the results of [18] and [25] on Poisson structures.

De�nition 7.0.10 Let M,X be smooth manifolds of dimensions 2n and 2n − 2. By a
generalized broken Lefschetz �bration we mean a submersion f : M → X with two types
of singularities:

1. Inde�nite fold singularities, locally modeled by:

R2n → R2n−2

(t1, . . . , t2n−3, x1, x2, x3) 7→ (t1, . . . , t2n−3,−x2
1 + x2

2 + x2
3)

The fold locus is an embedded codimension 3 submanifold. We denote it by Z. Singular
�bres have again at most one singularity on each �bre, but this time crossing Z changes
the genus of the regular �bre by one.

Throughout this part of the work we assume that the singular �bres do not intersect
each other.

2. Lefschetz-type singularities, locally modelled by:

Cn → Cn−1

(z1, . . . , zn)→ (z1, . . . zn−2, z
2
n−1 + z2

n)

These singularities are contained in codimension 4 submanifolds cross a Lefschetz
singular point. We denote the set of Lefschetz-type singularities by C. Each singular
�bre presents at most one singularity on each �bre. On a piece of the �bre, this can be
depicted as a local cone that collapses at the origin where z2

n−1 + z2
n = 0. Nearby �bres are

71
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smooth. In the local description on a piece of a �bre, the cone opens up again and it is
convex.

Stable maps from Mn to Xq are dense in C∞(M,X) if and only if the pair (n, q)
satis�es certain conditions depending on the dimension q of the target manifold X and
the di�erence (n−q). We refer the reader to [26, 42] for a detailed account. In particular,
in the case of M6 → X4 we have the following characterization.

Theorem 7.0.11 [26, 42] A generic smooth mapM6 → N4 has folds, cusps, swallowtails,
and butter�ies singularities.

This suggests the following de�nition.

De�nition 7.0.12 On a smooth 6-manifold M a generalized wrinkled �bration f : M →
X is a submersion to a smooth closed 4-manifold X with the following four inde�nite
singularities each locally modelled by real charts R6 → R4

1. folds
(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3,−x2

1 + x2
2 + x2

3)

2. cusps
(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x

3
1 − 3t1 · x1 + x2

2 − x2
3)

3. swallowtails

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
4
1 + t1x

2
1 + t2x1 + x2

2 − x2
3)

4. butter�ies

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
5
1 + t1x

3
1 + t2x

2
1 + t3x1 + x2

2 − x2
3)

The aim of this section is to show the existence of Poisson structures on generalized
wrinkled �brations.

Theorem 7.0.13 Let M be a closed, orientable, smooth 6�manifold equipped with a gen-
eralized wrinkled �bration f : M → X over a smooth 4-manifold X. Then there exists a
complete Poisson structure whose symplectic leaves correspond to the �bres of the given
�bration structure, and the singularities of both the �bration and the Poisson structures
coincide. Moreover, for each singularity, the Poisson bivector are given by the following
equations:
Folds Poisson bivectors (7.2.1), (7.2.4), (7.2.5), (7.5.3),
Cusps Poisson bivector (7.2.6), (7.2.9), (7.2.10), (7.5.5),
Swallowtail Poisson bivector (7.2.11), (7.2.14), (7.2.15), (7.5.7),
Butter�y Poisson bivector (7.2.16), (7.2.19), (7.2.20), (7.5.9).

For each singularity, the induced symplectic form on the leaves are given by the fol-
lowing equations:
Folds Symplectic forms (7.5.1), (7.5.2), (7.5.3),
Cusps Symplectic forms (7.5.4), (7.5.5),
Swallowtail Symplectic forms (7.5.6), (7.5.7),
Butter�y Symplectic forms (7.5.8), (7.5.9).

If none of its symplectic leaves are, or contain, 2�spheres, then this Poisson structure is
integrable.
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Theorem 7.0.14 Let M and X be closed oriented smooth manifolds with dim(M) =
2n, dim(X) = 2n−2, and f : M → X a generalized broken Lefschetz �bration. Then there
is a complete singular Poisson structure of rank 2 whose associated bivector vanishes on
the singularity set of f . If none of its symplectic leaves are, or contain, 2�spheres, then
this Poisson structure is integrable.

The existence is given by a direct application of Theorem 6.0.3 proved in [25]. The
integrability follows from Proposition 2.5.10.

7.1 General criterion for constructing Poisson bivectors

on singularities

We will now give explicit local descriptions for the Poisson structures and the correspond-
ing symplectic forms in a neighbourhood singularities of generalized wrinkled �brations
in dimension 6. All of the expressions that we will give depend abstractly on an arbitrary
choice of a non-vanishing function k in C∞(M). See Proposition 6.0.2.

Before proceeding we will describe the general strategy employed to �nd the local
bivectors.

Step 1: Consider the coordinate functions C1, C2, C3, C4 that describe each �bration as
Casimir functions for the Poisson structure that we want to �nd.

Step 2: Calculate the di�erentials dCi, i = 1, 2, 3, 4.

Step 3: We use formula 6.0.1 to compute the skew-symmetric matrix with entries:

πij = {xi, xj}µ = dxi ∧ dxj ∧ dC1 ∧ dC2 ∧ dC3 ∧ dC4.

This matrix will then annihilate dCi, i = 1, 2, 3, 4. It will give the endomorphism B
associated to a Poisson structure with dCi, i = 1, 2, 3, 4, as Casimirs. The components of
the bivector �eld will be given by:

{xi, xj} = det
(
εi, εj, dC1, dC2, dC3, dC4

)
.

Here εi is the 6 × 1 canonical basis column vector, whose i-th component is 1 and all
others are zero.

Step 4: We then write the Poisson bivector using the skew-symmetric matrix entries.

We extend the previous strategy to manifolds of dimension 2n when we have a singular
submersion with singularities of corank 1. The following construction will describe a pro-
cedure that can be used to compute local expressions of Poisson structures and their cor-
responding symplectic forms. We will implement this scheme to study the 6−dimensional
case.

Proposition 7.1.1 Let q be a point that either has complex coordinates q = (z1, z2, . . . zn)
or real coordinates (t1, t2, . . . , t2n−4, t2n−3, x1, x2, x3). Let f be a smooth map given as either
f : Cn → Cn−1 or f : R2n → R2n−2 such that

f(q) = (z1, . . . , zn−2, fo(zn−1, zn))
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or

f(q) = (t1, t2, . . . , t2n−4, t2n−3, fo(t1, . . . , t2n−3, x1, x2, x3)) ,

respectively. Here fo is a smooth map which depends only on the last coordinates zn−1, zn
or x1, x2, x3. Then we can produce a Poisson structure associated to the local model given
by f . The Poisson bivector has the form:

π =



0 · · · 0 0 0 0 0
...

. . .
...

...
...

...
...

0 · · · 0 0 0 0 0
0 · · · 0 π11 π12 π13 π14

0 · · · 0 π21 π22 π23 π24

0 · · · 0 π31 π32 π33 π34

0 · · · 0 π41 π42 π43 π44


where πij is the Poisson bivector of the map fo. Then πii = 0 and πij = πji. Therefore
the Poisson bivector has the local form:

π(x) =
4∑

i,j=1

[
πij

∂

∂xi
∧ ∂

∂xj

]
.

Proof: In the case when f is a complex map we use the real and imaginary parts of
each coordinate function as a Casimir function for the Poisson structure that we want to
�nd. That is, we will have 2n− 2 Casimir functions:

Ci = Re(zi) 1 ≤ i ≤ n− 2

Ci+n−2 = Im(zi) 1 ≤ i ≤ n− 2

C2n−3 = Re(fo(zn−1, zn))

C2n−2 = Im(fo(zn−1, zn)).

Now we compute the di�erential matrix of the map. It gives a matrix with a 2 × 4-
block corresponding to the derivatives of the real and complex part of fo and ones on the
principal diagonal.

D =



1 . . . 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0

0 · · · 0 ∂C2n−3

∂t2n−3

∂C2n−2

∂t2n−3

0 · · · 0 ∂C2n−3

∂x1

∂C2n−2

∂x1

0 · · · 0 ∂C2n−3

∂x2

∂C2n−2

∂x2

0 · · · 0 ∂C2n−3

∂x3

∂C2n−2

∂x3


. (7.1.1)
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According to the formula (6.0.1) the coe�cients of the bivector matrix are given by

πij = Det





1 0 0 0 0 ε1i ε1j
...

. . .
...

...
...

...
...

0 · · · 1 0 0 ε2n−4
i ε2n−4

j

0 · · · 0 ∂C2n−3

∂t2n−3

∂C2n−2

∂t2n−3
ε2n−3
i ε2n−3

j

0 · · · 0 ∂C2n−3

∂x1

∂C2n−2

∂x1
ε2n−2
i ε2n−2

j

0 · · · 0 ∂C2n−3

∂x2

∂C2n−2

∂x2
ε2n−1
i ε2n−1

j

0 · · · 0 ∂C2n−3

∂x3

∂C2n−2

∂x3
ε2ni ε2nj




where εki and εkj are canonical basis column vectors, whose i−th and j−th component,
respectively is 1 and all others are zero. Note that it contains a identity matrix of di-
mension (2n − 4) × (2n − 4). Therefore the determinant is the same as of the following
matrix 

0 0 ε2n−4
i ε2n−4

j
∂C2n−3

∂t2n−3

∂C2n−2

∂t2n−3
ε2n−3
i ε2n−3

j
∂C2n−3

∂x1

∂C2n−2

∂x1
ε2n−2
i ε2n−2

j
∂C2n−3

∂x2

∂C2n−2

∂x2
ε2n−1
i ε2n−1

j
∂C2n−3

∂x3

∂C2n−2

∂x3
ε2ni ε2nj


which gives the coordinates of the Poisson bivector associated to fo. Recall that fo depends
only on the las coordinates.

When f is a real map, we take the coordinates functions as Casimir functions:

Ci = ti 1 ≤ i ≤ 2n− 3

C2n−2 = fo(t1, . . . , t2n−3, x1, x2, x3).

The di�erential matrix of the map is

1 0 0 0 ∂C2n−2

∂t1
...

. . .
...

...
...

0 · · · 1 0 ∂C2n−2

∂t2n−4

0 · · · 0 1 ∂C2n−2

∂t2n−3

0 · · · 0 0 ∂C2n−2

∂x1

0 · · · 0 0 ∂C2n−2

∂x2

0 · · · 0 0 ∂C2n−2

∂x3


. (7.1.2)

Then, the coe�cients of the corresponding bivector matrix are given by

πij = Det





1 0 0 0 ∂C2n−2

∂t1
ε1i ε1j

...
. . .

...
...

...
...

...

0 · · · 1 0 ∂C2n−2

∂t2n−4
ε2n−4
i ε2n−4

j

0 · · · 0 1 ∂C2n−2

∂t2n−3
ε2n−3
i ε2n−3

j

0 · · · 0 0 ∂C2n−2

∂x1
ε2n−2
i ε2n−2

j

0 · · · 0 0 ∂C2n−2

∂x2
ε2n−1
i ε2n−1

j

0 · · · 0 0 ∂C2n−2

∂x3
ε2ni ε2nj




.
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We note that πij = 0 for 1 ≤ i ≤ 2n−4 and 1 ≤ j ≤ 2n−4. The rest of the coe�cients
can be computed with the following

Det




1 0 ε2n−3
i ε2n−3

j

0 ∂C2n−2

∂x1
ε2n−2
i ε2n−2

j

0 ∂C2n−2

∂x2
ε2n−1
i ε2n−1

j

0 ∂C2n−2

∂x3
ε2ni ε2nj


 .

In fact, the only nonzero coe�cients are:

π23 =
∂C2n−2

∂x3

π24 =
∂C2n−2

∂x2

π34 =
∂C2n−2

∂x3

.

The result follows. �

7.2 Poisson structures on generalized wrinkled �bra-

tions in dimension 6.

We apply the general criterion presented above to the case of wrinkled �brations on
6-manifolds. Let q ∈ M be a point, and k : M → X, k(t1, t2, t3, x1, x2, x3), be a non-
vanishing smooth function.

Poisson bivector near a fold singularity.

Inde�nite fold
The local coordinate model around a fold singularity is given by the map:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3,−x2
1 + x2

2 + x2
3).

Considering each coordinate function as a Casimir function for the Poisson bivector
that we want to �nd, we compute the di�erential matrix of the map

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −2x1

0 0 0 2x2

0 0 0 2x3

 .

The resulting Poisson structure of a fold singularity is given by:

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

− 2x1
∂

∂x3

∧ ∂

∂x2

]
. (7.2.1)
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De�nite fold
In addition, we also compute the Poisson bivector for de�nite singularities for each wrin-
kled �bration. In this case, they are locally modeled by:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
2
1 + x2

2 + x2
3) (7.2.2)

and
(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3,−x2

1 − x2
2 − x2

3). (7.2.3)

In the �rst case 7.2.2, following the same computations as above, the Poisson matrix
is then: 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2x3 −2x2

0 0 0 −2x3 0 2x1

0 0 0 2x2 −2x1 0


It follows that the Poisson bivector is given by:

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ 2x1
∂

∂x3

∧ ∂

∂x2

]
. (7.2.4)

For the case when the map is 7.2.3 the Poisson bivector is given by:

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

+ 2x2
∂

∂x3

∧ ∂

∂x1

+ 2x1
∂

∂x3

∧ ∂

∂x2

]
. (7.2.5)

Poisson bivector near a cusp singularity.

Inde�nite cusp
The local coordinate model around a cusp singularity is given by:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
3
1 − 3t1x1 + x2

2 − x2
3).

The di�erential matrix of the map is
1 0 0 −3x1

0 1 0 0
0 0 1 0
0 0 0 3x2

1 − 3t1
0 0 0 2x2

0 0 0 −2x3

 .

Then, the Poisson bivector in the local coordinates of a cusp singularity is given by:

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ 3(x2
1 − t1)

∂

∂x3

∧ ∂

∂x2

]
. (7.2.6)

De�nite cusp
For de�nite singularities in cusps, we obtain in each case (7.2.7) and (7.2.8):

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
3
1 − 3t1x1 + x2

2 + x2
3), (7.2.7)
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(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
3
1 − 3t1x1 − x2

2 − x2
3). (7.2.8)

The corresponding bivectors are, respectively:

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ 3(x2
1 − t1)

∂

∂x3

∧ ∂

∂x2

]
(7.2.9)

and

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

+ 2x2
∂

∂x3

∧ ∂

∂x1

+ 3(x2
1 − t1)

∂

∂x3

∧ ∂

∂x2

]
. (7.2.10)

Poisson bivector near a swallowtail singularity.

Inde�nite swallowtail
The local coordinate model around a swallowtail singularity is given by the map:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
4
1 + t1x

2
1 + t2x1 + x2

2 − x2
3).

Its di�erential matrix is:
1 0 0 x2

1

0 1 0 x1

0 0 1 0
0 0 0 4x3

1 + 2t1x1 + t2
0 0 0 2x2

0 0 0 −2x3

 .

Then, the Poisson bivector in the local coordinates of a swallowtail singularity is
described by:

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ (4x3
1 + 2t1x1 + t2)

∂

∂x3

∧ ∂

∂x2

]
. (7.2.11)

De�nite swallowtail
For de�nite singularities:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
4
1 + t1x

2
1 + t2x1 + x2

2 + x2
3), (7.2.12)

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
4
1 + t1x

2
1 + t2x1 − x2

2 − x2
3). (7.2.13)

The corresponding bivectors are, respectively:

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ (4x3
1 + 2t1x1 + t2)

∂

∂x3

∧ ∂

∂x2

]
(7.2.14)

and

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

+ 2x2
∂

∂x3

∧ ∂

∂x1

+ (4x3
1 + 2t1x1 + t2)

∂

∂x3

∧ ∂

∂x2

]
. (7.2.15)
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Poisson bivector near a butter�y singularity.

Inde�nite butter�y
The local coordinate model around a buttter�y singularity is given by:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
5
1 + t1x

3
1 + t2x

2
1 + t3x1 + x2

2 − x2
3)

The di�erential of the map is given by:
1 0 0 x3

1

0 1 0 x2
2

0 0 1 x1

0 0 0 5x4
1 + 3t1x

2
1 + 2t2x1 + t3

0 0 0 2x2

0 0 0 −2x3

 .

The Poisson bivector in the local coordinates of a butter�y singularity is described by:

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ (5x4
1 + 3t1x

2
1 + 2t2x1 + t3)

∂

∂x3

∧ ∂

∂x2

]
.

(7.2.16)
De�nite butter�y The singularity is modeled by the coordinates:

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
5
1 + t1x

3
1 + t2x

2
1 + t3x1 + x2

2 + x2
3), (7.2.17)

(t1, t2, t3, x1, x2, x3) 7→ (t1, t2, t3, x
5
1 + t1x

3
1 + t2x

2
1 + t3x1 − x2

2 − x2
3). (7.2.18)

The corresponding bivectors are, respectively:

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ (5x4
1 + 3t1x

2
1 + 2t2x1 + t3)

∂

∂x3

∧ ∂

∂x2

]
(7.2.19)

and

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

+ 2x2
∂

∂x3

∧ ∂

∂x1

+ (5x4
1 + 3t1x

2
1 + 2t2x1 + t3)

∂

∂x3

∧ ∂

∂x2

]
.

(7.2.20)

7.3 Poisson bivectors on higher dimensional type 2n

generalized wrinkled �brations.

As we described, Lekili showed that any 1-parameter family deformation of a purely
wrinkled �bration is homotopic (relative endpoints) to one which realises a sequence
of births, merges, �ips, their inverses, and isotopies staying within the class of purely
wrinkled �brations. For higher dimensions, we will introduce a generalized form of the
deformations given by Lekili in dimension 4. We will use them to give local expressions
for the associated Poisson bivectors and symplectic forms near singularities described by
the deformations.
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Consider the following maps R × R2n−1 → R2n−2, given by the equations below, and
each depending on a real parameter s:

bs(t1, . . . , t2n−3, x1, x2, x3) = (t1, . . . , t2n−3, x
3
1 − 3x1(t22n−3 − s) + x2

2 − x2
3) (7.3.1)

ms(t1, . . . , t2n−3, x1, x2, x3) = (t1, . . . , t2n−3, x
3
1 − 3x1(s− t22n−3) + x2

2 − x2
3) (7.3.2)

fs(t1, . . . , t2n−3, x1, x2, x3) = (t1, . . . , t2n−3, x
4
1 − x2

1s+ x1t2n−3 + x2
2 − x2

3) (7.3.3)

ws(t1, . . . , t2n−3, x1, x2, x3) = (t1, . . . , t2n−4, t
2
2n−3−x2

1 +x2
2−x2

3 + st2n−3, 2t2n−3x1 + 2x2x3).
(7.3.4)

We will also need a generalized winkled �bration for dimensions greater than 6.

De�nition 7.3.1 Let M be a smooth 2n�manifold, and X be a smooth closed 2n − 2�
manifold. A type 2n-wrinkled �bration is a smooth map f : M → X that is a sumbersion
with the following four inde�nite singularities each locally modelled by real charts R2n →
R2n−2:

1. folds
(t1, . . . , t2n−3, x1, x2, x3) 7→ (t1, . . . , t2n−3,−x1 + x2

2 + x2
3),

2. cusps
(t1, . . . , t2n−3, x1, x2, x3) 7→ (t1, . . . , t2n−3, x

3
1 − 3t1x1 + x2

2 − x2
3),

3. swallowtails

(t1, . . . , t2n−3, x1, x2, x3) 7→ (t1, . . . , t2n−3, x
4
1 + t1x

2
1 + t2x1 + x2

2 − x2
3),

4. butter�ies

(t1, . . . , t2n−3, x1, x2, x3) 7→ (t1, . . . , t2n−3, x
5
1 + t1x

3
1 + t2x

2
1 + t3x1 + x2

2 − x2
3).

We use the general strategy to compute the Poisson structures associated to all these
di�erent singularity models. Then we obtain the following Corollary:

Corollary 7.3.2 For a non-vanishing smooth function k in C∞(M) we have the following
consequences:
(1) Let X be a closed smooth oriented and connected 2n-manifold, and f : M → X a
generalized broken Lefschetz �bration. The Poisson structures in a neighborhood of the
two type of singularities can be computed to obtain Poisson bivectors near the following
singularities:
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Lefschetz-type singularity

π = k

[
(x2

2 + x2
3)

∂

∂t2n−3

∧ ∂

∂x1

+ (x1x2 − t2n−3x3)
∂

∂t2n−3

∧ ∂

∂x2

− (t2n−3x2 + x1x3)
∂

∂t2n−3

∧ ∂

∂x3

+ (t2n−3x2 + x1x3)
∂

∂x1

∧ ∂

∂x2

+ (x1x2 − t2n−3x3)
∂

∂x1

∧ ∂

∂x3

+ (t22n−3 + x2
1)

∂

∂x2

∧ ∂

∂x3

]
.

Inde�nite fold singularity

π = k

[
x1

∂

∂x2

∧ ∂

∂x3

+ x2
∂

∂x1

∧ ∂

∂x3

− x3
∂

∂x1

∧ ∂

∂x2

]
.

(2) Let M be a closed, orientable, smooth 2n-manifold endowed with a type 2n-wrinkled
�bration f to a closed (2n− 2) manifold X. Then a complete Poisson structure is given
by the following bivectors near the corresponding singularities:

Fold

π = k

[
2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

− 2x1
∂

∂x3

∧ ∂

∂x2

]
Cusp

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ 3(x2
1 − t2n−5)

∂

∂x3

∧ ∂

∂x2

]
Swallowtail

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ 3(4x3
1 + 2t2n−5x1 + t2n−4)

∂

∂x3

∧ ∂

∂x2

]
Butter�y

π = k

[
−2x3

∂

∂x2

∧ ∂

∂x1

− 2x2
∂

∂x3

∧ ∂

∂x1

+ (5x4
1 + 3t2n−5x

2
1 + 2t2n−4x1 + t2n−3)

∂

∂x3

∧ ∂

∂x2

]
.

The following equations depend on a real parameter s. Near a singularity locally modeled
by the bs,ms, fs, and ws the corresponding Poisson bivectors are:
Map bs

πs = k

[
2x3

∂

∂x1

∧ ∂

∂x2

+ 2x2
∂

∂x1

∧ ∂

∂x3

− 3(s− t22n−3 + x2
1)

∂

∂x2

∧ ∂

∂x3

]
Map ms

πs = k

[
2x3

∂

∂x1

∧ ∂

∂x2

+ 2x2
∂

∂x1

∧ ∂

∂x3

− 3(s− t22n−3 − x2
1)

∂

∂x2

∧ ∂

∂x3

]
Map fs

πs = k

[
2x3

∂

∂x1

∧ ∂

∂x2

+ 2x2
∂

∂x1

∧ ∂

∂x3

− (t2n−3 − 2sx1 + 4x3
1)

∂

∂x2

∧ ∂

∂x3

]
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Map ws

πs = k

[
(−2sx2 − 4t2n−3x2 − 4x1x3)

∂

∂x1

∧ ∂

∂x2

+ (−4x1x2 + 2sx3 + 4t2n−3x3)
∂

∂x1

∧ ∂

∂x3

+(4x2
2 + 4x2

3)
∂

∂x1

∧ ∂

∂t2n−3

− (2st2n−3 + 4t22n−3 + 4x2
1)

∂

∂x2

∧ ∂

∂x3

+4(x1x2 − t2n−3x3)
∂

∂x2

∧ ∂

∂t2n−3

− 4(t2n−3x2 + x1x3)
∂

∂x3

∧ ∂

∂t2n−3

.

]

7.4 General criterion for constructing symplectic forms

on leaves of generalized wrinkled �brations

Theorem 7.4.1 Under the hypothesis of Proposition 7.1.1, the symplectic form induced
by the Poisson structure π on the symplectic leaf Σq through q 6= 0 is completely determined
by the Poisson structure of the map fo. That is, if uq, vq are tangent vectors to the leaves,
then:

ωΣq(uq, vq) = ωo(ũq, ṽq)

where ωo is the symplectic structure of fo, and ũq, ṽq are the tangent vectors uq and vq
restricted to the last 4 coordinates.

Proof: First, we have to obtain vectors tangent to the leaves. That is, we want to �nd
vectors such that they are annhilated simultaneously by the 2n − 2 Casimir functions.
Then we transpose the matrix and compute its null space.

In the case when f is a complex map, we used its real and imaginary parts of each
coordinate function as Casimir functions. We obtained the matrix (7.1.1) whose transpose
matrix is:

DT =


1 · · · 0 0 0 0 0
...

. . .
...

...
...

...
...

0 · · · 1 0 0 0 0

0 · · · 0 ∂C2n−3

∂t2n−3

∂C2n−3

∂x1

∂C2n−3

∂x2

∂C2n−3

∂x3

0 · · · 0 ∂C2n−2

∂t2n−3

∂C2n−2

∂x1

∂C2n−2

∂x2

∂C2n−2

∂x3

 .

Note that its left upper block is an identity matrix of dimension 2n− 4.
Let

∂C2n−3 : =

(
0, . . . 0,

∂C2n−3

∂t2n−3

,
∂C2n−3

∂x1

,
∂C2n−3

∂x2

,
∂C2n−3

∂x3

)
,

∂C2n−3 : =

(
0, . . . 0,

∂C2n−2

∂t2n−3

,
∂C2n−2

∂x1

,
∂C2n−2

∂x2

,
∂C2n−2

∂x3

)
.

Then a vector a = (a1, a2, . . . , a2n) belongs to Ker(DT ) if and only if:

〈∂C2n−3, a〉 = 0

〈∂C2n−2, a〉 = 0.
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Observe that the �rst 2n− 4 entries of a equal zero. Then, a ∈ Ker(DT ) if

a = (0, 0, . . . , 0, a2n−3, a2n−2, a2n−1, a2n),

where the coe�cients a2n−3, a2n−2, a2n−1, a2n are determined by the equations:{
a2n−3

∂C2n−3

∂t2n−3
+ a2n−2

∂C2n−3

∂x1
+ a2n−1

∂C2n−3

∂x2
+ a2n

∂C2n−3

∂x3
= 0

a2n−3
∂C2n−2

∂t2n−3
+ a2n−2

∂C2n−2

∂x1
+ a2n−1

∂C2n−2

∂x2
+ a2n

∂C2n−2

∂x3
= 0

. (7.4.1)

Since the rank of the matrix D is 2n − 2, it has nullity 2. Therefore there exist two
vectors uq and vq that generate all solutions to the previous system. We may assume
they are orthogonal. Now, we have to �nd vectors αq, βq such that Bq(αq) = uq and
Bq(βq) = vq.

To compute the symplectic form it is enough to �nd αq. In order to compute βq we may
proceed similarly. We know that α is the solution to the equation Bq(α)(·) = π(·, α) = uq.

It is equivalent to consider the system π · αq = uq and solve for αq. By the previous
discussion and recalling the form of the Poisson matrix, if uq, αq and vq have coordinates:

uq = (0, 0, . . . , u2n−3, u2n−2, u2n−1, u2n)

vq = (0, 0, . . . , u2n−3, v2n−2, v2n−1, v2n)

αq = (α1, α2, . . . , α2n).

This system is reduced to:
u2n−3 = α2n−2π

12 + α2n−1π
13 + α2nπ

14

u2n−2 = −α2n−3π
12 + α2n−1π

23 + α2nπ
24

u2n−1 = −α2n−3π
13 − α2n−2π

23 + α2nπ
34

u2n = −α2n−3π
14 − α2n−2π

24 − α2n−1π
34.

(7.4.2)

Therefore the symplectic form will be given by

ωΣq(q) = 〈αq, vq〉,

here αq is the solution to the system (7.4.2), and v satis�es the system (7.4.1). Note that
we may choose α with the �rst 2n− 4 coordinates equal zero.

When the map f is real we obtained the matrix (7.1.2). Its transpose is:

DT =


1 · · · 0 0 0 0 0

0
. . .

...
...

...
...

...
0 · · · 1 0 0 0 0
0 · · · 0 1 0 0 0

∂C2n−2

∂t1
· · · ∂C2n−2

t2n−4

∂C2n−2

t2n−3

∂C2n−2

x1

∂C2n−2

x2

∂C2n−2

x3

 .

Its left upper block is an identity matrix of dimension 2n − 3. Then a ∈ Ker(DT ) if
a = (0, 0, . . . , 0, 0, a2n−2, a2n−1, a2n), where the coe�cients a2n−2, a2n−1, a2n are determined
by the equation:

a2n−2
∂C2n−2

x1

+ a2n−1
∂C2n−2

x2

+ a2n
∂C2n−2

x3

= 0.
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Chapter 7. Singular Poisson structures in Generalized Wrinkled Fibrations

We can give the explicit solutions, they are generated by the vectors:

u = {0, 0, . . . , 0,−
∂C2n−2

x2
∂C2n−2

x1

, 1, 0}, v = {0, 0, . . . , 0,−
∂C2n−2

x3
∂C2n−2

x1

, 0, 1} (7.4.3)

Let uq = u and vq = proju(v), the orthogonal projection of v over u. Then uq and
vq are orthogonal and generate all solutions to the previous system. As before, we know
that αq is the solution to the equation Bq(α)(·) = π(·, α) = uq.

This is equivalent to solving the system π · αq = uq for αq. If αq has coordinates:

αq = (α1, α2, . . . , α2n)

this system is reduced to
−

∂C2n−2
x2

∂C2n−2
x1

= −α2n−3π
12 + α2n−1π

23 + α2nπ
24

1 = −α2n−3π
13 − α2n−2π

23 + α2nπ
34

0 = −α2n−3π
14 − α2n−2π

24 − α2n−1π
34.

(7.4.4)

Therefore the symplectic form will be given by

ωΣq(q) = 〈αq, vq〉

where αq is the solution to the system (7.4.4), and vq has the form (7.4.3). Note that we
may choose α with the �rst 2n− 4 coordinates equal zero. �

7.5 Symplectic forms on the leaves of generalized wrin-

kled �brations in dimension 6

As a corollary of the previous theorem we obtain the following result in dimension 6.

Corollary 7.5.1 . LetM be a closed, orientable, smooth 6�manifold equipped with a gen-
eralized wrinkled �bration f : M → X on a smooth 4-manifold X. Let (U, (t1, t2, t3, x1, x2, x3))
be a coordinate neighbourhood of q ∈ Critf , an element of the singularity set of f . Then,
there is a symplectic form on U induced by π on the symplectic leaf Σq through q near
each of the singularities of the �bration with the following expressions:

Folds
Inde�nite Fold

ωΣq =
x2

1

2k(q)(x2
1 + x2

3)1/2
ωArea(q) (7.5.1)

where ωArea is the area form on Σq induced by the euclidean metric on B6.

De�nite Fold
For the de�nite de�nite fold singularities described by the equations (7.2.2) and (7.2.3)

we obtain the symplectic forms

ωΣq = − x2
1

2(x2
1 + x2

3

)1/2ωArea(q) (7.5.2)
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and

ωΣq =
x2

1

2(x2
1 + x2

3

)1/2ωArea(q) (7.5.3)

respectively.

Cusps
Inde�nite Cusp

ωΣq =
3x2 (t1 − x2

1)

k(q)(9 (t1 − x2
1)

2
+ 4x2

3)1/2
ωArea(q) (7.5.4)

where ωArea is the area form on Σq induced by the euclidean metric on B6.

De�nite Cusps
The de�nite singularities modelled by the parametrizations (7.2.7) and (7.2.8) have

the corresponding symplectic form which coincides in both cases:

ωΣq =
3(t1 − x2

1)x2

(9(t1 − x2
1)2 + 4x2

3)1/2
ωArea(q). (7.5.5)

Swallotail
Inde�nite Swallowtail

ωΣq = − t2 + 2t1x1 + 4x3
1

k(q)((t2 + 2t1x1 + 4x3
1)2 + 4x2

3)1/2
ωArea(q) (7.5.6)

here ωArea is the area form on Σq induced by the euclidean metric on B6.

De�nite Swallowtail
The de�nite swallowtails modelled by the parametrizations (7.2.12) and (7.2.12) have

the corresponding symplectic form which coincides in both cases:

ωΣq = − (t2 + 2t1x1 + 4x3
1

((t2 + 2t1x1 + 4x3
1)2 + 4x2

3)1/2
ωArea(q). (7.5.7)

Butter�ies
Inde�nite Butter�y

ωΣq = − t3 + x1(2t2 + 3t1x1 + 5x3
1)

k(q)((t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3)1/2
ωArea(q) (7.5.8)

where ωArea is the area form on Σq induced by the euclidean metric on B6.

De�nite Butter�y

ωΣq = − (t3 + x1(2t2 + 3t1x1 + 5x3
1)

(t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3)1/2
ωArea(q). (7.5.9)
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Proof: As we described in the general proccedure, if uq, vq are tangent vectors to the
leaves there exist co-vectors αq, βq ∈ T ∗qM such that Bq(αq) = uq and Bq(βq) = vq, where
the map Bq is given by:

Bq(α)(·) = πq(·, α)

Therefore, if we want to �nd two tangent vectors to the symplectic leaves we have to
give vectors annihilated simultaneously by the di�erential of four Casimir functions for
the corresponding Poisson structure.
Folds
Inde�nite Fold

A straightforward calculation yields that the vectors,

uq =
x3

∂
∂x1

+ x1
∂
∂x3

(x2
1 + x2

3)1/2

vq =
x2

1x2
∂
∂x1

+ x1
∂
∂x2
− x1x2x3

∂
∂x3

(x2
1 + x2

3)1/2

are tangent to Σq at q, and orthogonal with respect to the euclidean metric

ds2 = dt21 + dt22 + dt23 + dx2
1 + dx2

2 + dx2
3

on B6. Using the local expression of the Poisson structure for a fold singularity given by
equation (7.2.1), one can check that Bq(αq) = uq, for

αq =
x3dx1 + x1dx2

k(q)(x2
1 + x2

3)1/2
.

Similarly, Bq(βq) = vq, for

βq =
−x1x2x3dx2 − x1(x2

1 + x2
3)

2k(q)(x2
1 + x2

3)
.

A direct calculation now implies that the symplectic form is given by 7.5.1.

De�nite Fold
For de�nite singularities described by the equations (7.2.2) and (7.2.3) we obtain the

symplectic forms 7.5.2 and 7.5.3respectively. This follows directly with the same compu-
tations of the previous case. Tangent vectors to the leaves uq and vq are slightly di�erent,
one component changes its sign. This creates a change of sign on one of the components
of the corresponding vectors αq and βq.

Cusps
Inde�nite Cusps

In this case we �nd that the vectors,

uq =
−2x3

∂
∂x1

+ 3 (t1 − x2
1) ∂

∂x3

(9 (t1 − x2
1)

2
+ 4x2

3)1/2
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vq =
(2x2 − 8x2x

2
3) ∂
∂x1

+ 3(t1 − x2
1)(9(t1 − x2

1)2 + 4x2
3) ∂
∂x2

+ 12(t1 − x2
1)x2x3

∂
∂x3

9(t1 − x2
1)2 + 4x2

3

are tangent to Σq at q, and orthogonal with respect to the euclidean metric

ds2 = dt21 + dt22 + dt23 + dx2
1 + dx2

2 + dx2
3

on B6. Using the corresponding local expression of the bivector (7.2.6), we check that
Bq(αq) = uq, for

αq =
3(t1 − x2

1)dx1 + x3dx3

2k(q)(9t21 − 18t1x2
1 + 9x4

1 + 4x2
3)1/2

.

Similarly, Bq(βq) = vq, for

βq =
6(t1 − x2

1)x2x3dx1 − 9(t1 − x2
1)2x2dx3

k(q)(9(t1 − x2
1)2 + 4x2

3)
.

Now a direct calculation gives that the symplectic form is 7.5.4.

De�nite Cusps
De�nite singularities modelled by the equations (7.2.7) and (7.2.8). The corresponding

symplectic forms on the leaves coincide with the previous one:

ωΣq =
3(t1 − x2

1)x2

(9(t1 − x2
1)2 + 4x2

3)1/2
ωArea(q).

This last equality follows from very similar computations as in the previous case, up
to a sign, as in the fold case.

Swallowtails
Inde�nite Swallowtail

We �nd that the vectors,

uq =
2x3

∂
∂x1

+ (t2 + 2t1x1 + 4x3
1) ∂
∂x3

((t2 + 2t1x1 + 4x3
1)2 + 4x2

3)1/2

vq =
(−2x2(t2 + 2t1x1 + 4x3

1)2 + 4x2
3 + 8x2

3) ∂
∂x1

+ (t2 + 2t1x1 + 4x3
1) ∂
∂x2

(t2 + 2t1x1 + 4x3
1)2 + 4x2

3

+
4(t2 + 2t1x1 + 4x3

1)x2x3
∂
∂x3

(t2 + 2t1x1 + 4x3
1)2 + 4x2

3

are tangent to Σq at q, and orthogonal with respect to the euclidean metric

ds2 = dt21 + dt22 + dt23 + dx2
1 + dx2

2 + dx2
3

on B6. Using the local expression of the Poisson structure for a fold singularity given by
equation (7.2.1), one can check that Bq(αq) = uq, for

αq =
(t2 + 2t1x1 + 4x3

1)dx1 − 2x3dx3

2x2k(q)((t2 + 2t1x1 + 4x3
1)2 + 4x2

3)1/2
.
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Similarly, Bq(βq) = vq, for

βq =
1

k

(
2x3(t2 + 2t1x1 + 4x3

1)dx1

t22 + 4t1t2x1 + 4t21x
2
1 + 8t2x3

1 + 16t1x4
1 + 16x6

1 + 4x2
3

+

(
1− 4x2

3

(t2 + 2t1x1 + 4x3
1)2 + 4x2

3

)
dx3

)
.

A direct calculation now implies that the symplectic form is 7.5.6.

De�nite Swallowtail
On de�nite singularities we obtain that the symplectic forms on the leaves coincide in

both cases (7.2.12) and (7.2.13):

ωΣq = − t2 + 2t1x1 + 4x3
1

((t2 + 2t1x1 + 4x3
1)2 + 4x2

3)1/2
ωArea(q).

Analogously to the last cases, we proceed changing the corresponding signs.

Butter�ies
Inde�nite Butter�y

We �nd that the vectors,

uq =
2x3

∂
∂x1

+ (t3 + x1(2t2 + 3t1x1 + 5x3
1)) ∂

∂x3

((t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3)1/2

vq =

(
8x2x

2
3

(t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3

− 2x2

)
∂

∂x1

+
(
t3 + x1(2t2 + 3t1x1 + 5x3

1)
) ∂

∂x2

+
4(t3 + x1(2t2 + 3t1x1 + 5x3

1))x2x3

(t3 + x1(2t2 + 3t1α1 + 5x3
1))2 + 4x2

3

∂

∂x3

are tangent to Σq at q, and orthogonal with respect to the euclidean metric

ds2 = dt21 + dt22 + dt23 + dx2
1 + dx2

2 + dx2
3

on B6. Using the local expression of the Poisson structure for a fold singularity given by
equation (7.2.1), one can check that Bq(αq) = uq, for

αq =
(t3 + 2t2x1 + 3t1x

2
1 + 5x4

1)dx1 − 2x3dx3

2x2k(q)((t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3)1/2
.

Similarly, Bq(βq) = vq, for

βq =
2x3(t3 + x1(2t2 + 3t1x1 + 5x3

1))

(t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3

dx1

+

(
1− 4x2

3

(t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3

)
dx3.
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A direct calculation now implies that the symplectic form is given by 7.5.8.

De�nite Butter�y
We have that for the corresponding butter�y de�nite singularities the symplectic form

is in both cases:

ωΣq = − (t3 + x1(2t2 + 3t1x1 + 5x3
1)

(t3 + x1(2t2 + 3t1x1 + 5x3
1))2 + 4x2

3)1/2
ωArea(q).

�

7.6 Symplectic forms on higher dimensional type 2n

generalized wrinkled �brations

Corollary 7.6.1 For a non-vanishing smooth function k ∈ C∞(M) we have the following
consequences:
(1) Let M be a closed smooth oriented and connected 2n-manifold, and f : M → X a
generalized broken Lefschetz �bration. The symplectic forms induced by the corresponding
Poisson structures on the symplectic leaves Σq through a point q = (t1, . . . , t2n−3, x1, x2, x3)
have the following local expressions:

Lefschetz-type singularity
Let q ∈ B2n\{0}. Near Lefschetz-type singularities the symplectic form is given by:

ωΣq =
1

k(q)(t22n−3 + x2
1 + x2

2 + x2
3)
ωArea(p).

Inde�nite fold singularity
Near inde�nite fold singularities Z the symplectic form is locally described by:

ωΣq =
1

k(q)
√
x2

1 + x2
2 + x2

3

ωArea(q).

where ωArea(q) is the area form on Σq induced by the metric

ds2 = dt21 + · · ·+ dt22n−3 + dx2
1 + dx2

2 + dx2
3

on Z ×B3.

(2) Let M be a closed, orientable, smooth 2n-manifold endowed with a type 2n-wrinkled
�bration f to a closed 2n−2 manifold X. Let q ∈ B2n\{0}. Then the symplectic forms
associated to the complete Poisson structure are given by the following expressions near
the corresponding singularities:

Fold

ωΣq =
x2

1

2k(q)(x2
1 + x2

3)1/2
ωArea(q)

Cusp

ωΣq =
3x2 (t2n−5 − x2

1)

k(q)(9 (t1 − x2
1)

2
+ 4x2

3)1/2
ωArea(q)
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Swallowtail

ωΣq = − t2n−4 + 2t2n−5x1 + 4x3
1

k(q)((t2n−4 + 2t2n−5x1 + 4x3
1)2 + 4x2

3)1/2
ωArea(q)

Butter�y

ωΣq = − t2n−3 + x1(2t2n−4 + 3t2n−5x1 + 5x3
1)

k(q)((t2n−3 + x1(2t2n−4 + 3t2n−5x1 + 5x3
1))2 + 4x2

3)1/2
ωArea(q)

The following equations depend on a real parameter s. Near a singularity locally mod-
eled by the maps bs (7.3.1), ms (7.3.2), fs(7.3.3), and ws (7.3.4) the corresponding sym-
plectic forms are
Map bs

ωΣq =
(s− t22n−3 + x2

1)

k(q)((s− t22n−3 + x2
1)2(9(s− t22n−3 + x2

1)2 + 4(x2
2 + x2

3)))1/2
ωArea(q)

Map ms

ωΣq = −
(s− t22n−3 − x2

1)

k(q)((s− t22n−3 − x2
1)2(9(s− t22n−3 − x2

1)2 + 4(x2
2 + x2

3)))1/2
ωArea(q)

Map fs

ωΣq =
(t2n−3 − 2sx1 + 4x3

1)

k(q)((t2n−3 − 2sx1 + 4x3
1)2((t2n−3 − 2sx1 + 4x3

1)2 + 4(x2
2 + x2

3)))1/2
ωArea(q)

Map ws

ωΣq =
1

2µk(q)
· (t2n−3x2 + x1x3)

((st2n−3 + 2(t22n−3 + x2
1))2 + (x3(s+ 2t2n−3)− 2x1x2)2 + 4(t2n−3x2 + x1x3))

((st2n−3 + 2(t22n−3 + x2
1))2 + (x3(s+ 2t2n−3)− 2x1x2)2 + 4(t2n−3x2 + x1x3)2)1/2

ωArea(q)

here ωArea is the area form on Σq induced by the euclidean metric on B2n, and

µ2 =(t2n−3x2 + x1x3)2(s2(t22n−3 + x2
2 + x2

3) + 4st2n−3(t22n−3 + x2
1 + x2

2 + x2
3)

+ 4(t22n−3 + x2
1 + x2

2 + x2
3)2)(s2(t22n−3 + x2

3) + 4(t22n−3 + x2
1)(t22n−3 + x2

1 + x2
2 + x2

3)

+ 4s(t32n−3 − x1x2x3 + t2n−3(x2
1 + x2

3))).

For all these cases ωArea(q) is the area form induced by the euclidean metric on B2n.
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