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Introduction

When a man lies he murders some part

of the world.

These are the pale deaths which men

miscall their lives.

Cli�ord Lee Burton.

At the beginning of the XX century, P. Fatou in [Fa1] and G. Julia in [Ju] de-
veloped, independently, the theory of iteration of rational functions, as part
of the competition for the Great Prize of Mathematical Science of 1918, see
[Au]. After his treatment on rational functions, Fatou in [Fa], noticed that
the ideas in the rational iteration theory, could be applied to the iteration
of entire functions (this class of functions is closed under composition).
Given the function

f(z) = z + 1 + e−z,

he proved that the right half-plane is contained in an invariant Fatou com-
ponent U where fn → ∞ as n → ∞, proving in this way the existence
of a new type of Fatou component di�erent from those already existing for
rational functions, since ∞ ∈ Ĉ is an essential singularity for the function
f(z) = z + 1 + e−z (recall that there are no essential singularities for a ra-
tional function).
When the theory of iteration of rational functions was resumed decades later,
the ideas of Fatou were formalized creating the theory of iteration of entire
transcendental functions. Great part of this work was done by I.N. Baker
(1932 - 2001) in [Ba2] and [Ba4]. Because of this, Eremenko and Lyubich, in
a treatment of iteration of entire functions [EL1], called this kind of Fatou
components Baker domains, where the essential singularity (the point at in-
�nity) acts as attracting boundary point of the Fatou component.
When the theory of iteration was extended to transcendental meromorphic
functions, the existence of Baker domains was a question mark. Some ex-
amples of transcendental entire and meromorphic functions have been given
along the last decades. One interesting example is the one given by Baker
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xii Introduction

et. al. in [BKL], where the authors show that the Fatou set of the function

f(z) =
1

z
− ez

contains a 2-periodic Baker domain. In this case, since there are two Baker
domains in the cycle, the point at in�nity is not the only attracting boundary
point, also the origin is an attracting boundary point and it is an essential
singularity for the second iterate f2(z) = f(f(z)). If we consider the new
function given by the second iterate of the above function

f2(z) = f2(z) =
1

1/z − ez
− exp

(
1

z
− ez

)
,

we notice that there are two essential singularities: one at the origin and
other one at the point at in�nity. Using the ideas in [BKL] there exist two
Baker domains for the function f2: one associated to the origin and other
one associated to the point at in�nity, thus the function f2 is no longer a
transcendental meromorphic function in the classical sense.
In the last decades, functions in the class K of general meromorphic functions
are studied in iteration theory. In general terms, a function in class K has
more than one essential singularity (for a formal de�nition see De�nition
1.4.3 in Section 1.4). The iteration theory of this class of functions was
formalized in the dissertations [Bo] and [Her], where the authors extend the
results of the Fatou-Julia theory.
Some examples of this kind of functions are the Bara«ski maps studied in
[KU] and the parametric family studied in [DH].
In the present work, we investigate a subclass of functions in K with two or
more essential singularities where each essential singularity is associated to
a family of di�erent Baker domains. Moreover, the dynamics inside these
domains, near the boundary point can be semi-conjugated to a translation.
We resume the result in the following theorem.

Theorem (Main Theorem). Let g : C→ Ĉ be a transcendental meromorphic
or rational function, such that

f(z) = z + exp(g(z))

belongs to class K of general meromorphic functions, where A(f) = g−1(∞) =
{poles of g}. If z0 ∈ g−1(∞) is a pole of g of order p ≥ 1, then f has p-
families of in�nitely many di�erent Baker domains with z0 as its Baker point.
Each family lies in a sector of angle 2π/p of the disc D(z0, δ) for some δ > 0.
Moreover, each Baker domain can be classi�ed as parabolic type I according
to the Cowen and König classi�cation.

The text is divided in four chapters in the following way. In Chapter 1,
we recall the fundamental concepts and results in the iteration of meromor-
phic functions. A new class of general meromorphic functions is de�ned and
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the fundamental concepts and results are then extended to this new class
of functions (see [BDH]). In Chapter 2 we give the principal properties of
Baker domains including its classi�cation according to its dynamics near the
attracting boundary point. In Chapter 3 we present the proof of the Main
Theorem mentioned above as well as some examples with interesting dy-
namical properties. Finally, in Chapter 4 lines of future work are presented,
together with open questions related to the general functions that appear
in the Main Theorem and examples studied in Chapter 3. In particular, for
the function f0(z) = z + exp(1/z) a conjecture about the dimension of its
Teichmüller space is presented.
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Chapter 1

Preliminaries

Although the iteration theory of rational functions dates back to the late
19th century with works of Cayley, Schröeder and others [Au], the funda-
mental concepts and theorems in the theory are attributed to Pierre Fatou
(1878-1929) and Gaston Julia (1893-1978). Fatou himself, in [Fa], in part
of his work, extends some results for the rational case to transcendental en-
tire functions. Decades later, the theory of rational functions was extended
formally to transcendental entire and meromorphic functions. For further
references [Ber1] and [Sc] are surveys in this subject.
In the present chapter, we consider some of the fundamental and more im-
portant results of iteration theory for transcendental meromorphic functions,
which are extensions of the rational case, and carry on these results to a more
general class of functions considered in this work.

1.1 Classes of functions R, E, P1 and M

We recall the de�nition of a transcendental meromorphic function in the
classical sense. For a deep analysis, the most prevalent references are [Ah],
[Con] and [SS].

De�nition 1.1.1. Let f be a nonconstant mapping, de�ned in a domain
U ⊂ C except perhaps in a point z0 ∈ U . If there exists R > 0 such that
f is analytic in a punctured disc D∗(z0, R) ⊂ U , then we say that z0 is an
isolated singularity of f . If also,

lim
z→z0

f(z) (1.1.1)

exists in C, then we call z0 a removable singularity of f . If

lim
z→z0

f(z) =∞, (1.1.2)

then we call z0 a pole of f . If such a limit does not exist, we say that z0 is
an essential singularity of f .

1



2 Preliminaries

When z0 is a pole of f , we can think of f as a function with values in
the Riemann sphere f : U → Ĉ, and de�ne in this case f(z0) =∞. Then we
can consider the following de�nition.

De�nition 1.1.2. We say that f : U → Ĉ is a meromorphic function in
U if the only singularities of f are poles.

In the case U = C, we say only �f is meromorphic�. In this context, it
is valid to ask if there exists a way, at least continuous, to de�ne f in the
point z0 =∞. For this, we can consider the following limit:

lim
z→0

[f(1/z)]−1. (1.1.3)

De�nition 1.1.3. If f is a meromorphic function and limit (1.1.3) exists
in Ĉ, then f is in fact a rational function f : Ĉ → Ĉ. In other cases, f is
called a transcendental meromorphic function.

In this sense, the Laurent Expansion Theorem, allows us to have a local
representation of f with respect to a pole z0 in the following way: if z0 is a
pole of a transcendental meromorphic function f , then there exists R > 0
such that f can be written as

f(z) =

p∑
m=1

cn(z − z0)−m +

∞∑
n=0

an(z − z0)n,

where both series are convergent in the punctured disc D∗(z0, R). From the
above expression it is clear that limit (1.1.2) holds. The �rst sum in the right
side of the above expression is called Principal Part of f with respect to
z0. The natural number p in this term is called order of z0.
The above leads us to consider the poles of functions, as pre-images of the
point at in�nity of the Riemann sphere: {poles of f}=f−1(∞).
There exists a classi�cation over the meromorphic functions f : C → Ĉ
depending on the limit (1.1.3) and the nature of pre-images of in�nity as
follows:

• R :={f : Ĉ→ Ĉ: f is rational}

• E :={f : C → C: f has no poles in C and (1.1.3) does not exist, f is
transcendental entire}

• P1 :={f : C → Ĉ: f has a pole z0 ∈ C which is an omitted value and
limit (1.1.3) does not exist}

• M :={f : C→ Ĉ: f has at least one pole in C which is not an omitted
value and limit (1.1.3) does not exist}.

In the last two cases, the point z0 is an omitted value if z0 /∈ f(C). These
are the classes of functions where the classical theory of iteration of functions
is based.
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1.2 Results in iteration theory

In this section, we give some preliminary results on meromorphic functions.
We consider especially those results that we would like to extend for a more
general class of functions, the surveys [Ber1] and [Sc] mentioned at the be-
ginning of the chapter are again good references. For the rest of this chapter,
we will refer to a meromorphic function as a function belonging to any of the
above classes and when necessary we will mention the class to which belongs.
Let f : Ω→ Ĉ be a meromorphic function (where Ω ∈ {C, Ĉ} depending on
the class), we de�ne the n-iterated fn inductively as

f0(z) = z and fn(z) = f(fn−1(z)), n ≥ 1, (1.2.1)

always this is well de�ned. We are interested in the behavior of the discrete
dynamical system generated by f . The study of this behavior generates a
dichotomy in the Riemann sphere given by the Fatou and Julia sets of the
function f , denoted by F(f) and J (f) respectively. In general terms, the
�rst set is where the family of iterates behaves in a predictable way, while in
the second, we have a behavior of chaotic type. Formally we write

F(f) := {z ∈ Ĉ : {fn}n∈N is well de�ned and normal

in a neighborhood of z}
and

J (f) := Ĉ\F(f),

where normal is taken in the sense of Montel. From the above de�nition we
have that F(f) is open while J (f) is closed.
Note that for f ∈ R, fn is well de�ned in the whole Riemann sphere, so this
condition can be omitted in the de�nition of F(f). In other cases, we can see
that ∞ ∈ J (f) (which is not necessary the case when f ∈ R, for example
if f is a polynomial then ∞ ∈ F(f)). From the above and the de�nition of
Fatou set F(f), we can obtain the following theorem.

Theorem 1.2.1. If f is a meromorphic function, then J (f) 6= ∅.

For the case f ∈ R, using an argument by contradiction, it is enough to
consider the normality in the Montel sense and the Argument Principle, and
then conclude that F(f) cannot be the whole sphere Ĉ.

For a point z0 ∈ Ĉ we de�ne the positive orbit as

O+(z0) =
⋃
n≥0

fn(z0),

when this is well de�ned. We de�ne the negative orbit as

O−(z0) =
⋃
n≥1

f−n(z0),
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when this is well de�ned. Finally, we de�ne the orbit of z0 as

O(z0) = O+(z0) ∪O−(z0).

We say that a point z0 is exceptional if |O−(z0)| < ∞. Denote by Ef
the set of exceptional points of f . Note that in the case f ∈ M, applying
Picard's Great Theorem (PGT), |O−(∞)| = ∞, in fact f−3(∞) is already
a set of in�nite cardinality. In this case fn is well de�ned in Ĉ, except in
a countable set determined by the poles of f , f2,..., fn−1. Hence, {fn}n≥0
is well de�ned in the open set Ĉ\O−(∞). Since f(Ĉ\O−(∞)) ⊂ Ĉ\O−(∞)
and |O−(∞)| =∞, by Montel's Theorem we have

F(f) = Ĉ\O−(∞) and J (f) = O−(∞). (1.2.2)

This is a particular characteristic of functions f ∈ M, which does not hold
in cases E and P1. When f ∈ R, this characteristic may be possible, in fact,
in general terms, we have the following theorem.

Theorem 1.2.2. If f is a meromorphic function and z0 ∈ J (f) is not an
exceptional value, then J (f) = O−(z0).

Some other properties of the Fatou and Julia sets, that can be derived
directly from the de�nitions are the following.

Theorem 1.2.3. If f belongs to class R, E or P1, then F(f) = F(fn) and
J (f) = J (fn) for every n ≥ 2.

In the case f ∈M, this property is not well de�ned, since fn is no longer
a meromorphic function. This is one of the reasons to consider an extension
of this theory to more general functions, where fn still belongs to the same
class. In the other cases, we say that these classes are closed under compo-
sition.

We say that a set A ⊂ Ĉ is completely invariant (with respect to a
function f) if and only if, for z ∈ A, f−1(z) ⊂ A and f(z) ∈ A unless f(z)
is not de�ned.

Theorem 1.2.4. If f is meromorphic, then F(f) and J (f) are completely
invariant.

Although we know that J may not be empty while F may be.

Theorem 1.2.5. If the interior of J (f) is not empty, then J (f) = Ĉ.

1.3 Julia set and periodic points

One of the greatest contributions of Fatou and Julia (done independently),
was to give a dynamical characterization of the Julia set in terms of the
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repelling periodic points.

De�nition 1.3.1. Let f : C→ Ĉ be a meromorphic function and z0 ∈ C. If
there exists a positive integer p ≥ 1 such that fp(z0) = z0, we say that z0 is
a periodic point of f , the minimal p with this property is called the period
of z0. If p = 1, we just say that z0 is a �xed point of f .

There exists a classi�cation of periodic points as follows:

De�nition 1.3.2. Let z0 be a periodic point of period p and λ = (fp)′(z0),
called the multiplier of z0. Then

• if (0 =)0 < |λ| < 1, we say that z0 is a (super)attracting periodic

point,

• if |λ| > 1, we say that z0 is a repelling periodic point,

• if |λ| = 1 and λn = 1 for some n ∈ N, we say that z0 is a rationally

indi�erent periodic point,

• if |λ| = 1 and λn 6= 1 for every n ∈ N, we say that z0 is an irrationally
indi�erent periodic point.

There exists a linearization for fp, locally with respect to z0, depending
on the nature of z0 and its multiplier λ (see [CG] and [Mi]).
Meromorphic functions may have no �xed points (for example, f(z) = z+ez),
for periods of large order, we have the following result, see [Ber1] as reference.

Theorem 1.3.3. If f ∈ M and n ≥ 2, then f has in�nitely many periodic
points of minimal period n.

If a set is nonempty, closed and contains no isolated points, then we call
it perfect.

Theorem 1.3.4. If f is a meromorphic function, then J (f) is perfect.

The above results, serve as tools to prove the dynamical characterization
theorem of the Julia set.

Theorem 1.3.5. If f is a meromorphic function, then J (f) is the closure
of the repelling periodic points.

1.4 K, a more general class

We recall that the extension of the theory of iteration of meromorphic func-
tions (in the classical sense) to this new class of meromorphic functions, was
given �rst by Bolsch [Bo] and Herring [Her] in their respective dissertations.
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As we saw in the previous section, there exists a property that classM does
not hold as in the other classes, class M is not closed under composition,
i.e. its iterates no longer belong to this class. Take the function f : C → Ĉ
as an example (studied in [BKL]) given by

f(z) =
1

z
− ez.

In this case, we have z1 = 0 is a pole of f and z0 = ∞ is an essential
singularity. If we compute the second iterate of f

f2(z) = f(f(z)) =
1

1
z − ez

− exp

(
1

z
− ez

)
,

from the last term of the above expression, we have that f2 has two essen-
tial singularities z0 = ∞ and z1 = 0, the poles have turned into essential
singularities. From the �rst term of the right side of the last equality and
solving the equation

0 =
1

z
− ez

we have that f2 has in�nitely many poles. Consequently, f3 will have in-
�nitely many essential singularities.
Keeping in mind the ideas behind the de�nition of a meromorphic function
in the classical sense, we consider the following de�nitions.

De�nition 1.4.1. Let f be a nonconstant mapping de�ned over a domain
U ⊂ Ĉ, except perhaps at a point z0 ∈ U . If there exists R > 0 such that f
is analytic in the punctured disc D∗(z0, R) ⊂ U , then we say that z0 is an
isolated singularity of f . Also, if the limit

lim
z→z0

f(z) (1.4.1)

exists in Ĉ, we say that z0 is a removable singularity of f in U . If such
a limit does not exist in the sense that it is not well de�ned, we say that z0
is an essential singularity of f . We denote by Ess(f) the set of essential
singularities of f in Ĉ.

We leave the concept of pole only for classical meromorphic functions,
where it makes more sense. The above de�nition is almost the same as the
one used in the previous sections. The di�erence lies now in the fact that we
only ask if the limit (1.4.1) exists. In the classical de�nition of a meromorphic
function∞ ∈ Ĉ is the only possible essential singularity. In De�nition 1.4.1,
which is more general, essential singularities may be any point in Ĉ (recall
that in the above example, f3 has in�nitely many essential singularities in
Ĉ).
In the case that the limit (1.4.1) exists, we extend f to z0 as

f(z0) = lim
z→z0

f(z). (1.4.2)
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In this way, we are able to consider the following de�nition.

De�nition 1.4.2. We say that f : U ⊆ Ĉ→ Ĉ is a general meromorphic

function in U if the only isolated singularities in U are removable. Moreover,
we said that f is general transcendental meromorphic if

Ess(f) 6= ∅.

We are now in position to de�ne the class of functions we will work on.

De�nition 1.4.3. We say that a function f belongs to class K of general
meromorphic functions if there exists a countable compact set A(f) ⊂ Ĉ such
that f is an analytic function in Ĉ\A(f) but in no other superset.

From the above de�nitions we have the following characterization for
A(f).

Theorem 1.4.4 (Bolsch [Bo], Theorem 1.2). If f ∈ K, then A(f) is the
closure of isolated essential singularities of f .

We are able to characterize the following sub-classes of functions depend-
ing on the nature of the set A(f):

• R = {f ∈ K: A(f) = ∅}.

• E = {f ∈ K: A(f) = {∞} and f−1(A(f)) = ∅}.

• P1 = {f ∈ K: A(f) = {∞}, f−1(A(f)) = {z0} and z0 is omitted}.

• P2 = {f ∈ K: A(f) = {z0,∞} and f−1(A(f)) = ∅}.

• M = {f ∈ K: A(f) = {∞} and some z0 ∈ f−1(A(f)) 6= ∅ is not
omitted}.

The more general case to consider is when |A(f)| ≥ 2 and f−1(A(f)) 6= ∅.
We know that in the above sub-classes, the theory of iteration is well de�ned,
as it was seen in the previous sections.
Given f ∈ K, we de�ne the n-th iterate inductively as

f1 = f := Ĉ\A(f)→ Ĉ, and fn := f(fn−1) : Ĉ\
n−1⋃
j=0

f−j(A(f))→ Ĉ.

The following result is fundamental for the extension of iteration theory.

Theorem 1.4.5 (Herring [Her], Theorem 3.1.1). If f ∈ K, then for each
n ≥ 1, fn is single valued and general meromorphic in

Rn = Ĉ\
n−1⋃
j=0

f−j(A(f)),
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with a natural boundary of fn de�ned by

An(f) = A(fn) :=
n−1⋃
j=0

f−j(A(f)).

Moreover, every set An(f) is compact and countable.

Now, we are able to de�ne the fundamental set of iteration theory.

De�nition 1.4.6. Given f ∈ K, we say that a point z0 ∈ Ĉ, belongs to the
Fatou set of f , denoted by F(f), if there exists a neighborhood of z0 where
{fn}n≥0 is well de�ned and forms a normal family in the sense of Montel.

We de�ne the Julia set as the complement in Ĉ of the Fatou set, denoted
by J (f) = Ĉ\F(f).

In the same way, directly from the above de�nition, we have that F(f)
is open while J (f) is a closed set (in fact compact in Ĉ). Note that if
f /∈ {R, E ,P1,P2}, then |O−(A(f))| =∞, hence (as in the case for f ∈M)
we have

F(f) = Ĉ\O−(A(f)) and J (f) = O−(A(f)). (1.4.3)

So, in view of Theorem 1.4.5, we have the property about iterates of f that
we do not have in the classical meromorphic caseM.

Proposition 1.4.7 (Bolsch [Bo], Proposition 1.3). If f ∈ K, then f2 ∈ K
with A(f2) = A2(f) = A(f) ∪ f−1(A(f)).

Inductively, if f ∈ K, then fn ∈ K for n ≥ 2.
A great part of Herring's work in [Her], was to prove that properties of
Fatou and Julia sets mentioned in the previous section hold for functions
in the class K in the general setting (in fact, Herring's de�nition of class K
considers A(f) as a totally disconnected compact set, instead of a countable
compact set). Such properties are listed in the following theorem.

Theorem 1.4.8 (Herring [Her], Theorem 3.1.3). If f ∈ K, then the following
statements hold:

1. F(f) is completely invariant, i.e. z ∈ F(f) if and only if f(z) ∈ F(f);
so, z ∈ J (f)\A(f) if and only if f(z) ∈ J (f) and J (f) is completely
invariant also.

2. For each positive integer p, F(fp) = F(f) and J (fp) = J (f).

3. If φ is a Möbius transformation and fφ = φfφ−1, then F(fφ) =
φ(F(f)) and J (fφ) = φ(J (f)).

4. J (f) is a perfect set.
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5. For every w ∈ J (f) with w /∈ Ef = {z : O−(z) is a �nite set}, the set
O−(w) is dense in J (f).

6. If J (f) contains a nontrivial disc, then F(f) = ∅.

Since iteration is well de�ned in class K, the concepts of periodic (�xed)
points are directly extended to this class of functions, as well as its classi�-
cation.
As was mentioned before, one of the most important contribution of Fatou
and Julia, was the description of the Julia set for rational functions in a
dynamical sense, involving repelling periodic points. Baker in [Ba1], covers
the transcendental entire case, while Baker, Kotus and Lü did the same for
the meromorphic (classical) case in [BKL].
The following result was prove by Bolsch in his Dissertation.

Theorem 1.4.9 (Bolsch [Bo], Theorem 1.12). If f ∈ K, then J (f) is the
closure of its repelling periodic points.

For completeness we give a brief sketch of the proof of Theorem 1.4.9.

Sketch of proof. First, using Marty's criterion it is proved that repelling
periodic points belong to J (f). The proof is now divided in two cases:

a. O−(A(f)) contains at most two points, this is the case for f ∈ {R, E ,-
P1,P2}. For a disc D meeting J (f), using Zalcman's lemma, it is
possible to �nd a sequence {wn} tending to some z∗ ∈ D ∩ J (f), and
subsequence {fnm} with

fnm(wn) = wn and (fnm)′(wn)→∞, as n→∞.

The �rst condition of the above conclusion, de�nes a sequence of peri-
odic points, while the second condition states that these periodic points
are repelling.

b. O−(A(f)) contains at least three points. First, using Montel's Theo-
rem, we have that

J (f) = O−(A(f)).

So, it is enough to prove that for each essential singularity z∗ ∈ O−(A(f)),
there are repelling periodic points tending to it. This is possible with
the following lemma.

Lemma 1.4.10 (Bolsch [Bo], Lemma 1.9). Let g be meromorphic in
{0 < |z| < r} for some r > 0, with an essential singularity at 0. Then
there are {w1, w2, w3, w4} ∈ Ĉ:
If h is meromorphic in any open subset G of Ĉ, ψ analytic in any
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neighborhood of 0 and w ∈ G\{w1, ..., w4}, h(w) = ψ(0), h′(w) 6= 0,
then there is a sequence {ωn}, 0 < |ωn| < r, such that

(h ◦ g)(ωn) = ψ(ωn), for all n,

ωn → 0, (h ◦ g)′(ωn)→∞, as n→∞.

Taking h(z) := f(z) − z∗, g(z) := fm(z + z∗) and ψ(z) = z, we have
that

fm+1(ωn+z∗) = ωn+z∗ with (fm+1)′(ωn+z∗)→∞, as n→∞.

Since ωn → 0, we construct a sequence of repelling periodic points
(zn = ωn+z∗) tending to z∗ which concludes the proof of the theorem.

The proof of Theorem 1.4.9 for the case f ∈ M is based on Ahlfors' Five
Island Theorem, Bolsch uses Marty's criterion and the Zalcman Lemma as
fundamental tools for his proof, we refer to Appendix B for more details on
this results. Both results play an important role in the modern theory of
normal families.



Chapter 2

Baker domains

Fatou, in part of his work, discovered that iteration theory for rational func-
tions may be extended to transcendental entire functions (entire functions
are closed under composition). In fact, he showed that the function

f(z) = z + 1 + e−z

has an invariant component U , containing the right half-plane, where

fn(z)→∞, for all z ∈ U.

Dynamics seems to be similar to Leau domains, but in this case, the limit
point is an essential singularity instead of a periodic point.
When iteration theory is extended formally to entire functions, this kind of
components may exist (as well as wandering domains, absent in the rational
case). Baker, in [Ba2] and [Ba3], proved several properties that this kind of
domains possess. Because of this, A. Eremenko and M. Lyubich were �rst
to call them Baker domains to these kind of Fatou components, see [EL1].
In this chapter we consider the classi�cation of Fatou components in the
general meromorphic case K, focusing our attention in Baker domains. We
present results of Cowen and König related with the classi�cation of Baker
domains depending on the local semi-conjugacy near the essential singularity,
as it is the case for the other Fatou components. Also, we consider the
condition of Rippon and Stallard in [RS] for the existence of families of
Baker domains.

2.1 Fatou components

Let f ∈ K and U ⊂ F(f) a connected component of the Fatou set of f . From
Theorem 1.4.8 (Conclusion 1), there exists U1 ⊂ F(f) connected component
such that f(U) ⊂ U1. In general, there exists a connected component Un ⊂
F(f) such that fn(U) ⊂ Un. Analogously to the periodic point de�nition,
it is possible to classify the Fatou components in the following way.

11
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De�nition 2.1.1. Let f ∈ K and U ⊂ F(f) be a connected component. If
there exists p ∈ N such that fp(Um) ⊂ Um for some m ≥ 0, we say that U
is a pre-periodic component of f . If in addition m = 0, U is called a
periodic component of f and {U = U0, U1, ..., Up−1} is called cycle of
U . If p = 1, we called U forward invariant component. Otherwise, we
called U a wandering domain.

Since J (f) is always a nonempty and perfect set, each connected com-
ponent U ⊂ F(f) is a hyperbolic domain, that is, its universal covering
is conformal to the unit disc D. Hence, the action of fp : U → U over
a periodic component is lifted to an action F : D → D. In this way, the
following classi�cation on periodic components of the Fatou set, is extended
directly from the rational and meromorphic case (through the Denjoy-Wol�
Theorem, which will be stated in Section 2.4). See [CG] and [Mi] for fur-
ther reference. From Theorem 1.4.8 (conclusion 2), we may assume U is an
invariant component.

Theorem 2.1.2 (Herring [Her], Theorem 4.1.1). Let f ∈ K and U ⊂ F(f)
be an invariant component. Then, the following (mutually disjoint) cases
occur:

• There exists an (super)attracting �xed point z0 ∈ U , such that fn(z)→
z0 for all z ∈ U . U is called (super)attracting component.

• There exists a rationally indi�erent (often called parabolic) �xed point
z0 ∈ ∂U , such that fn(z) → z0 for all z ∈ U . U is called a parabolic
component or Leau domain.

• There exists an irrationally indi�erent �xed point z0 ∈ U and a home-
omorphism ϕ : D→ U such that ϕ−1 ◦f ◦ϕ(z) = λz with λ = f ′(z0) =
e2πiθ, for some θ ∈ R irrational. U is called a Siegel disc.

• There exists a homeormorphism ϕ : A1,ρ → U , where A1,ρ = {z : 1 <
|z| < ρ}, such that ϕ−1 ◦ f ◦ϕ(z) = λz with λ = e2πiθ, for some θ ∈ R
irrational. U is called a Herman ring.

• There exists an essential singularity z0 ∈ ∂U , such that fn(z)→ z0 for
all z ∈ U . U is called a Baker domain. The essential singularity z0
is called the Baker point of U .

If f ∈ R, f has no Baker domains by de�nition. From now on we will
focus on the existence of Baker domains in class K.

2.2 Examples

We present now some examples of Baker domains and techniques to deter-
mine their existence under some conditions.
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Example 2.2.1. Let
f(z) = z + 1 + e−z.

As was mentioned before, this was the �rst example given by Fatou, where
it is possible to see that the right half-plane is contained in an invariant set
and fn(1) → ∞ as n → ∞. Hence, the right half-plane is contained in a
component U of F(f) (see Figure 2.1), using the Denjoy-Wol� Theorem, it
can be proved that fn(z) → ∞ for all z ∈ U . So U is a Baker domain of
the function. Since f is a transcendental entire function, we have that the
essential singularity is z0 =∞.

In fact, it can be shown that analytic variations of this function possess
a Baker domain containing some right half-plane HR = {z : R(z) > R > 0}
or part of it.

Figure 2.1: Dynamical plane for f(z) = z + 1 + e−z

Example 2.2.2. Let

f(z) =
1

z
− ez.

In [BKL], Baker et. al. show the existence of a 2-periodic Baker domain
with cycle {U0, U1} where f2n(z) → ∞ if z ∈ U0 and f2n(z) → 0 if z ∈ U1,
see Figure 2.2.

In the previous chapter, we showed that f2 has two essential singularities
at z0 = 0 and z1 =∞, which can be easily seen from the convergence on U0

and U1.

Example 2.2.3. Let

f(z) =
1

z
+ ae−z + b, a, b ∈ R.
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Figure 2.2: Dynamical plane for f(z) = 1
z − e

z

In [Ko], König shows that for suitable values of a and b, there exists a 3-
periodic Baker domain with cycle {U0, U1, U2} where f3n(z)→∞ if z ∈ U0,
f3n(z) → b if z ∈ U1 and f3n(z) → 0 if z ∈ U2. Besides, U0 contains an
invariant right half-plane under f3.

As in the previous example, there exist more than one essential sin-
gularity for f3. In general, if U is a p-periodic Baker domain with cycle
{U = U0, U1, ..., Up−1}, then p-Baker points for fp may exist, see Theorem
13 and Corollaries 1 and 2 in [Ber1] for a formal result on this.
The three examples above use the same technique to determine the existence
of a Baker domain, which are listed below.

• Determine the existence of an invariant hyperbolic component (under
f or fp in general).

• Show the existence of a convergent orbit to an essential singularity
(under f or fp in general).

Another technique to determine the existence of Baker domains, called log-
arithmic lift, see [Ber2] and [EL1], consists of the following steps:

• Let g : C∗ → C∗ be an analytic function, with a dynamical property
over 0 or ∞ (being attracting �xed point for example).

• Let π(z) = eaz, a 6= 0, be a projective mapping from C to C∗.

• There exists f : C→ C entire such that π(f(z)) = g(π(z)).

• In this setting J (f) = π−1(J (g)) and f is called the logarithmic lift
of g.
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Example 2.2.4. Let

g(w) = e2πiθwew,

for some suitable θ ∈ (0, 1), g has a Siegel disc around 0. If π(z) = ez, we
have

g(π(z)) = g(ez) = e2πiθezexp(ez) = exp(2πiθ + z + ez) = π(f(z)),

with f(z) = 2πiθ+ z+ ez. In this way, in [Hrm], Herman proves that f has
a Baker domain U where fn(z) → ∞ for z ∈ U . The domain U contains a
left half-plane.

2.3 Local linearization

If we observe the classi�cation of Fatou components, given in Theorem 2.1.2,
it is possible to observe that two domains have a predictable dynamic (up
to homeomorphic conjugation), these are: Siegel discs and Herman rings. In
fact, from this characteristic, both components are called rotation domains.
Since (super)attracting and parabolic domains are associated with a �xed
point, the Taylor Series Expansion about this point allow us to determine
a �local dynamic� for these kind of Fatou components also. This is usually
called linearization (except the case of a super-attracting domain, where the
local dynamic is not linear) and is given from the following theorems. We
cite the books [CG] and [Mi] as principal references.
The following theorem is due to G. Koenigs (1884).

Theorem 2.3.1. Suppose f has an attracting �xed point in z0 with multiplier
λ satisfying 0 < |λ| < 1. Then, there exists a conformal mapping ζ = ϕ(z)
from a neighborhood of z0 over a neighborhood of 0 conjugating f(z) with
linear mapping g(ζ) = λζ. Conjugation is unique up to multiplication by
scalar.

In other words, for some neighborhoods U of z0 and V of the origin, we
have the following commutative diagram.

U
f //

ϕ

��

U

ϕ

��
V

ζ 7→λζ // V

This way, we can think of f , locally around z0 as a mapping z 7→ λz.
The following theorem is due to L.E. Boettcher (1904).

Theorem 2.3.2. Suppose f has a superattracting �xed point in z0 with

f(z) = z0 + ap(z − z0)p + ..., ap 6= 0, p ≥ 2.
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Then there exists a conformal mapping ζ = ϕ(z) from a neighborhood of z0
over a neighborhood of 0 conjugating f(z) with g(ζ) = ζp. Conjugation is
unique up to multiplication by a (p− 1)-th root of unity.

In the same way as the previous case, we have the following commutative
diagram.

U
f //

ϕ

��

U

ϕ

��
V

ζ 7→ζp // V

For parabolic �xed points, the theorem is more elaborated: there exist
cases to consider, depending on the Taylor series expansion around the �xed
point z0. For this case, there is no neighborhood of conjugation around z0.
The conjugation is about mapping z 7→ z + 1 near ∞. So, there are two
directions to consider, one �attracting� and one �repelling�.
The following development is based on Milnor's book [Mi].
We take the basic case when z0 = 0 (which is possible after translation)
with the simplest form of its multiplier. Then, f has a local representation
around z0 = 0 given by

f(z) = z + azn+1 + ... a 6= 0, n ≥ 1. (2.3.1)

De�nition 2.3.3. A complex number v is called repelling vector for f at
the origin if nav = +1 and attracting vector for f if nav = −1. If vj is

an attracting vector at the origin for f , the open set P ⊂ Ĉ will be called
attracting petal for f about vector vj if

1. f maps P to itself, and

2. orbit w0 7→ w1 7→ ... under f is eventually absorbed by P if and only if
it converges to the origin in the vj direction.

So, we have the following linearization theorem due to L. Leau (1897).

Theorem 2.3.4 (Milnor [Mi], Theorems 10.7 and 10.9). If f has a �xed point
at z0 = 0 and its written in form (2.3.1) around the origin. Then, inside any
neighborhood of the origin there exist petals Pj, j = 0, 1, ..., 2n− 1, each Pj
being attracting or repelling if j is even or odd. Moreover, for each attracting
or repelling petal, there exists conformal embedding α : P → C conjugating
f(z) with g(ζ) = ζ + 1. Embedding is unique up to translation of the form
z 7→ z + b, b ∈ C.

Again, we have a commutative diagram. Recall we are considering a
particular case depending on the multiplier of the �xed point.
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U
f //

α
��

U

α
��

P ζ 7→ζ+1// P
Questions about Baker domains arise naturally: It is possible to linearize

Baker domains? What is the local behavior of f in a Baker domain near
an essential singularity? The answer to last question is not unique. For the
�rst question, there are some cases where a positive answer is possible, and
is based on Cowen's work [Cow]. In [Ko], König determines the necessary
conditions for the existence of linearization of Baker domain. So, we are able
to classify Baker domains according to its linearization.

2.4 Classi�cation of Baker domains

From Theorem 1.4.8 (Conclusion 2) of the previous chapter, we consider an
invariant Baker domain U of a mapping f ∈ K. After a Möbius transforma-
tion we may assume that the Baker point for U is z0 =∞. Then f : U → U
is analytic and fn(z) → ∞ as n → ∞. Moreover, since J (f) is nonempty
and uncountable, we have that U is hyperbolic, the action of f in U can be
lifted to an action in H+ = {z : R(z) > 0}. For actions on H+ to itself, we
have the celebrated Denjoy-Wol� Theorem (1926).

Theorem 2.4.1 ([CG], Theorem IV.3.1). Let f̃ : H+ → H+ be analytic, and
assume f̃ is not an elliptic Möbius transformation nor the identity. Then
there is α ∈ H+ such that f̃n(z)→ α as n→∞ for all z ∈ H+.

So, for an invariant Baker domain U of a mapping f , we have the follow-
ing semi-commutative diagram

H+
f̃ //

π
��

H+

π
��

U
f // U

Where π is a covering map of U from its universal covering H+. Since
fn(z) → ∞, the Denjoy-Wol� Theorem tells us (after a Möbius transfor-
mation) that f̃n(z) → ∞ also. When U is simply connected, π is actually
a Riemann map and f is conformally conjugated to f̃ . This is the case for
example when f is entire, since Baker in [Ba2] proves that Baker domains for
entire functions are simply connected. In general cases, U may be multiply
connected (in fact in�nitely connected [Bo]).
Cowen in [Cow], obtained a linearization for mappings g : H+ → H+. He
de�ned the following sets (called fundamental in his paper):
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De�nition 2.4.2. Let U be a domain in Ĉ and let f : U → U be a holomor-
phic map. A domain V ⊂ U is called absorbing in U for f if: f(V ) ⊂ V and
for every compact set K ⊂ U there exists N = N(K) such that fN (K) ⊂ V .

Note 2.4.3. Every immediate basin of attraction of a (super)attracting �xed
point is an absorbing domain, as well as attracting petals for parabolic �xed
points. In fact, even Siegel discs and Herman rings are absorbing domains.

Theorem 2.4.4 (Cowen [Cow], Theorem 3.2). Let g : H+ → H+ be a
holomorphic map such that gn →∞ as n →∞. Then there exists a simply
connected domain V ⊂ H+, a domain Ω ∈ {H+,C}, a holomorphic map
ϕ : H+ → Ω and a Möbius transformation T mapping Ω into itself, such
that:

a. V is absorbing in H+ for g,

b. ϕ(V ) is absorbing in Ω for T ,

c. ϕ ◦ g = T ◦ ϕ on H+,

d. ϕ is univalent on V .

Moreover, ϕ, T depend only on g. In fact (up to a conjugation of T by a
Möbius transformation preserving Ω), one of the following cases holds:

• Ω = C, T (w) = w + 1 (parabolic type I),

• Ω = H+, T (w) = w ± i (parabolic type II),

• Ω = H+, T (w) = aw, a > 1 (hyperbolic type).

Sometimes, the triple {ϕ, T, Ω} is called conformal conjugacy for g, de-
noted by g ∼ T .
So, in the case g is an entire function or the Baker domain U is simply con-
nected, the above theorem can be applied and the Baker domain is linearized
by ϕ in the three di�erent cases mentioned above, giving a classi�cation to
the Baker domains.
When U is an invariant Baker domain of a meromorphic function (inM for
example), U may not be simply connected, in [MSK] authors show examples
of functions inM with periodic multiply connected Baker domains. So, the
above theorem cannot be applied directly. In [Ko], König considers a more
general form of the above theorem and states some dynamical conditions for
classi�cation.

Theorem 2.4.5 (König [Ko], Theorem 3). Let U be a hyperbolic domain in
C and let g : U → U be a holomorphic map such that gn → ∞ as n → ∞.
Suppose that for every closed curve γ ⊂ U there exists n > 0 such that gn(γ)
is contractible. Then, the conclusion of Theorem 2.4.4 holds for U .
Moreover, if conformal conjugacy exists for g, then
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• U is parabolic type I if and only if

lim
n→∞

|gn+1(z)− gn(z)|
dist(gn(z), ∂U)

= 0, for every z ∈ U,

• U is parabolic type II if and only if

lim inf
n→∞

|gn+1(z)− gn(z)|
dist(gn(z), ∂U)

> 0, for every z ∈ U,

and

inf
z∈U

lim sup
n→∞

|gn+1(z)− gn(z)|
dist(gn(z), ∂U)

= 0,

• U is hyperbolic if and only if

inf
z∈U

inf
n≥0

|gn+1(z)− gn(z)|
dist(gn(z), ∂U)

> 0.

Since the previous theorems consider holomorphic maps f : U → U over
a hyperbolic domain U , both can be applied for invariant Baker domains
U for a function f ∈ K (Theorem 2.4.4 if U is simply connected and The-
orem 2.4.5 in the other case). So, classi�cation of Baker domains exists if
they satisfy conditions in Theorem 2.4.5, and if such conformal conjugacy ex-
ists, we are able to classify them according to the conditions in this Theorem.

2.5 Families of Baker domains

Consider the function g(w) = we−w, in [BD], Baker and Domínguez proved
the following properties of g:

• g has a parabolic �xed point at z0 = 0 ∈ J (g),

• g has a parabolic component V ⊂ F(g) containing R+ and

• R− ⊂ J (g).

Applying the logarithmic lift technique mentioned above, we lift these prop-
erties of g by π(z) = ez, it can be deduced that π−1(V ) contains in�nitely
many components Uk, k ∈ Z, all congruent under translation by integer
multiples of 2πi, such that

Uk ⊂ {z : (2k − 1)π < I(z) < (2k + 1)π},

and ∂Uk is asymptotic to horizontal lines y = (2k ± 1)π. Also, for each
k ∈ Z, fn → ∞ and R(fn) → ∞ in Uk and lines y = (2k ± 1)π belongs to
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Figure 2.3: Dynamical plane for f(z) = z + e−z

J (f). Then each Uk is an invariant Baker domain of the lifted function (see
Figure 2.3)

f(z) = z + e−z,

In other words, f has a family of Baker domains Uk, in fact in�nitely
many di�erent Baker domains Uk, each one contained in a horizontal band
of width 2π.
In [RS], P. Rippon and G. Stallard show that there exists a larger class of
entire functions (even meromorphic) that exhibit a family of in�nitely many
Baker domains. Although examples in [RS] are entire functions, the theorem
applies to meromorphic functions in classM. The existence of these families
is based on the behavior of f over horizontal lines. This condition is stated
as follows:

sup{|Arg ((f(z)− z)ez)| : z ∈ R(t, s)} → 0, as t→∞, (2.5.1)

for each s > 0 where R(t, s) = {z : R(z) ≥ t > 0, |I(z)| ≤ s}, and Arg
denotes the principal argument.
The theorem is stated in the following form.

Theorem 2.5.1 (Rippon and Stallard [RS], Theorem 1). If f is a mero-
morphic function which satis�es Condition (2.5.1), then:

• for each k ∈ Z, there is an invariant Baker domain Uk of f such that,
for 0 < θ < π, Uk contains a set of the form

Vk(θ) = {x+ iy : x > vk(θ) > 0, |y − 2kπ| < θ},

• the Uk are distinct Baker domains,

• if z ∈ Uk, then |I(fn(z))− 2kπ| → 0 and R(fn(z))→∞ as n→∞,



Baker domains 21

• each Baker domain Uk contains at least one singularity of f−1.

See Appendix C for reference on singularities of f−1.
Note that function f(z) = z+e−z satis�es condition (2.5.1) trivially. In fact,
Theorem 2.5.1 can be generalized for a function f to have p-families of Baker
domains associated to ∞ (see Theorem 6.3 of [Ri]). With this theorem on
hand, it is proved that functions with asymptotic form

f(z) = z + azke−z(1 + o(1)), as R(z)→∞, (2.5.2)

k ∈ Z and a > 0, contain a family of Baker domains. As a corollary, they
obtain the following.

Corollary 2.5.2. For p ∈ N, let f(z) = z(1 + e−z
p
), then f has in-

�nitely many Baker domains in each sector {z : |Arg z − 2jπ/p| < π/p},
j = 0, 1, ..., p− 1.

For completeness we give a sketch of the proof of the Theorem 2.5.1. The
proof is based on a sequence of lemmas determining conditions listed in the
theorem.
Sketch of proof. Put h(z) = (f(z)− z)ez, from condition (2.5.1), we have
that |Arg h(z)| → 0 as R(z) → ∞ in R(s, t). From here, we deduce that
|f(z)− z| = eu(z)−R(z) for some bounded harmonic function u(z).

Lemma 2.5.3. For each s > 0

sup{|f(z)− z| : z ∈ R(t, s)} → 0 as t→∞.

With the above lemma, it is easy to prove the following result.

Lemma 2.5.4. For each s > 0 there exists t > 0 such that f is univalent in
R(t, s).

Figure 2.4: Set Vk(θ) contained in Tk(θ), which is symmetric with respect
y = (2k + 1)π.

For 3π/4 < θ < π, and k ∈ Z, de�ne the set

Tk(θ) = {x+ iy : x > tk(θ), |y − 2kπ| < min{π/4 + (x− tk) cot(θ/2), θ}}.
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From Condition (2.5.1) and previous lemmas, we have

|f(z)− z| < π/8 and

|arg (f(z)− z) + I(z)− 2kπ| < (π − θ)/2, z ∈ Tk(θ),

with these conditions, we can prove that f(z) ∈ Tk(θ). Figure 2.4 shows the
shape of sets Tk(θ) and Vk(θ).

Lemma 2.5.5. For each k ∈ Z and 3π/4 < θ < π, there exists t(θ) such
that f is univalent in Tk(θ) and f(Tk(θ)) ⊂ Tk(θ).

The following lemma, allows us to prove that Tk(θ) is contained in a
Baker domain Uk.

Lemma 2.5.6. If z ∈ Tk(7π/8) for some k ∈ Z, then |I(fn(z))− 2kπ| → 0
and R(fn(z))→∞ as n→∞.

Finally, with the above lemma (using hyperbolic metric arguments),

Lemma 2.5.7. The Baker domain Uk contains a singularity of f
−1, for each

k ∈ Z.

Note 2.5.8. One interesting question after the existence of Baker domains is
on the relation of Baker domains and the set of singularities of f−1. Lemma
2.5.7 gives us this relation in this case. See Appendix C for more details on
the set of singularities of f−1.



Chapter 3

Results

At the end of the previous chapter, we consider conditions for the existence
of families of Baker domains for meromorphic functions for both classes E
andM. In the present chapter we present a generalized condition for The-
orem 2.5.1 which can be applied to functions in the more general class K.
Also, the proof of the Main Theorem is given, which uses asymptotic analysis
techniques (see Appendix A for basic concepts).
For completeness, at the end of the chapter we present some examples con-
sidering two special cases: when |A(f)| = 1 (then f ∈ M up to a Möbius
transformation) and |A(f)| = 2 with a one-parametric family, in this case
A(f) depends on the parameter. Since f ∈ M for the �rst case, we studied
this function in detail proving some interesting properties about it.

3.1 Preliminary results

If we analyze thoroughly the proof of Theorem 2.5.1, it is not di�cult to
observe that f should not necessary be a meromorphic function (in the clas-
sical sense), since conditions are of �local� type. We use quotations to denote
that �local� actually means near ∞ in the Riemann sphere Ĉ.
In Remark after Theorem 6.1 of [Ri], Rippon considers the possibility that
the real axis is not the bisector of the central Baker domain, after a change
of variable. This possibility can be consider without a change of variable.
Thus, Theorem 2.5.1 is then written in the following form.

Theorem 3.1.1. Let f be a nonconstant complex valued function, analytic
in the right half plane H0 = {x+ iy : x > x0 > 0} and suppose that, for each
s > 0

sup{|Arg((f(z)− z)ezeiα)| : z ∈ R(t, s)} → 0, as t→∞, (3.1.1)

α ∈ R, where R(t, s) = {z : R(z) ≥ t, |I(z)| ≤ s} and Arg denotes the
principal argument in (−π, π]. If ∞ ∈ Ĉ is an essential singularity of f ,
then

23
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a) for each k ∈ Z, there exists a Baker domain Uk of f such that, for each
0 < θ < π, Uk contains a set of the form

Vk(θ) = {x+ iy : x > vk(θ) > 0, |y − (2kπ − α)| < θ};

b) the Uk are di�erent Baker domains,

c) if z ∈ Uk, then |I(fn(z))− (2kπ − α)| → 0,
(fn+1(z)− fn(z))→ 0 y R(fn(z))→∞ as n→∞;

d) each Uk contains a singularity of f−1.

In this general setting, the real number α is the bisector for the central
Baker domain.
By the time Theorem 3.1.1 was published in [RS], there was no centainty
of the existence of simply connected absorbing domains (see Section 2.4) for
Baker domains of this type. Recent work, especially [BFJK], has considered
conditions for the existence of absorbing domains for analytic automorphisms
of a domain U ⊂ C with ∞ ∈ ∂U .
We present now some results from [BFJK], which allow us to classify Baker
domains obtained from Theorem 3.1.1.

De�nition 3.1.2. Let ζ be an isolated point of the boundary of a domain
U in Ĉ, i.e. there exists a neighborhood V of ζ such that V \{ζ} ⊂ U . If
f(U) ⊂ U , from Picard's Theorem, f extends to V ∪{ζ} holomorphically. If
f(ζ) = ζ we say that ζ is an isolated �xed point of f .

Theorem 3.1.3 (Bara«ski et. al. [BFJK], Theorem A). Let U be a hy-
perbolic domain in C and let f : U → U be a holomorphic map without
�xed points and without isolated boundary �xed points. Then the following
statements are equivalent:

a. U is parabolic type I.

b. ρU (fn+1(z), fn(z))→ 0 as n→∞ for some z ∈ U .

c. ρU (fn+1(z), fn(z))→ 0 as n→∞ almost uniformly on U .

d. |fn+1(z)− fn(z)|/dist(fn(z), ∂U)→ 0 as n→∞ for some z ∈ U .

e. |fn+1(z)− fn(z)|/dist(fn(z), ∂U)→ 0 as n→∞ almost uniformly on
U .

Where ρU (·, ·) denotes the hyperbolic metric on U .
Part of the proof of the Main Theorem is based on asymptotic analysis. We
refer for Appendix A to basic concepts and results.
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3.2 Main result

Given a general meromorphic function f ∈ K, we know that there may be
several essential singularities for f in Ĉ. For Examples 2.2.2 and 2.2.3, it
was necessary to consider iterations of f and establish conditions for the
existence of Baker domains for the given iteration of f . It is possible to give
conditions for an essential singularity z0 ∈ Ĉ of a function f ∈ K to be a
Baker point?
In this section we present the Main Theorem, which establish the form of a
function in K containing a family of Baker domains over each of its essential
singularities. We now provide the setting for the proof of the Main Theorem.

Given p ≥ 1, we de�ne the following sectors

Aj := {z ∈ C∗ :
(2j − 1)π

p
≤ arg z <

(2j + 1)π

p
}, j = 0, 1, ..., p− 1,

(�arg� not necessary on the principal branch, but the branch such that A0 has
the positive real axis as its bisector) and rectangular semi-bands contained
in each Aj

Rj(t, s) := {e
2πj
p
i
z : R(z) ≥ t > 0, |I(z)| ≤ s and tan s/t = π/p},

as Figure 3.1 shows.

Figure 3.1: Sectors and semi-bands for the case p = 3.

Proposition 3.2.1. Let G be a rational or transcendental meromorphic
function, with the following representation in a neighborhood of ∞

G(w) = −wp + bp−1w
p−1 + ...+ b1w + b0 + c1w

−1 + c2w
−2 + ...



26 Results

Then in each sector Aj and for each 0 < s <∞

lim
Rj(t,s)3w→∞

R(G(w)) = −∞.

Proof. First, note that

lim
w→∞

G(w)

−wp
= 1

that is, G(w) ∼ −wp as w →∞.
Let w ∈ Rj(t, s) ⊂ Aj and θ = arg w. Since the width of semi-bands Rj(t, s)
is bounded by 2s <∞, we have arg w = θ → 2πj

p as w →∞ over semi-band
Rj , but

wp = (|w|eiθ)p = |w|pepiθ,

hence, arg wp = pθ. So, if w → ∞ in Rj , then arg wp = p · arg w → 2πj.
The above relation and the fact that G(w) ∼ −wp as w → ∞ gives the
assertion on the limit and the proposition is proved. �

The following lemma is also needed for the proof of the main theorem.

Lemma 3.2.2. Let f(z) = z+ exp(g(z)) be a function in the class K, where
g : C→ Ĉ is a transcendental meromorphic or rational function, then f has
no isolated boundary �xed points.

Proof. It is clear that f has no �xed points, except when g(∞) ∈ C. In
this case we have

lim
z→∞

f(z) =∞,

so z1 =∞ is a �xed point. After conjugation with z 7→ 1/z, the function f
becomes

F (w) =
w

1 + wexp(g(1/w))
, with F ′(w) =

1 + g′(1/w)exp(g(1/w))

(1 + wexp(g(1/w))2
.

Since g(∞) ∈ C, g is rational. If g(z) = P (z)
Q(z) , where P and Q are polynomials

without common factors, then deg P ≤ deg Q (1 ≤ deg Q), so g′(∞) = 0
and we have that∞ is a parabolic �xed point for F , which is not an isolated
point in the boundary of the Leau domain. Then, f has no isolated boundary
�xed points. �

Theorem 3.2.3 (Main Theorem). Let g : C → Ĉ be a meromorphic or
rational function, such that

f(z) = z + exp(g(z))

belongs to class K of general meromorphic functions, where A(f) = g−1(∞) =
{poles of g}. If z0 ∈ g−1(∞) is a pole of g of order p ≥ 1, then f(z) has p-
families of in�nitely many di�erent Baker domains with z0 as its Baker point.
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Each family lies in a sector of angle 2π/p of the disc D(z0, δ) for some δ > 0.

Moreover, each Baker domain can be classi�ed as parabolic type I accord-
ing to the Cowen and König classi�cation.

Proof. We start by analyzing the function g(z).
Since z0 is a pole of order p ≥ 1, from Laurent expansion of g around z0, we
have

g(z) = bp(z − z0)−p(1 + a1(z − z0) + a2(z − z0)2 + ...), (3.2.1)

where bp is the p−th coe�cient of the Principal Part of Laurent expansion.
From the above expression it is clear that

g(z) = bp(z − z0)−p(1 + o(1)), z → z0. (3.2.2)

Consider the Möbius transformation M(z) = − b
z−z0 (⇒ M−1(w) = z0 −

b/w), and set

G(w) = g ◦M−1(w) and F (w) = M ◦ f ◦M−1(w).

Calculating G(w), we obtain

G(w) = g ◦M−1(w)
= g(z0 − b/w)
= bp(−b/w)−p(1 + a1(−b/w) + a2(−b/w)2 + ...)

=
bp

(−b)pw
p(1 + a1(−b/w) + a2(−b/w)2 + ...),

if we choose b such that
bp(−b)p = −1 (3.2.3)

(using the principal branch of argument), then

G(w) = −wp(1 + a1(−b/w) + a2(−b/w)2 + ...), (3.2.4)

which yields
G(w) = −wp(1 + o(1)) w →∞. (3.2.5)

Note that the above relation is the analogous of (3.2.2) for g in a neighbor-
hood of in�nity.
On the other hand, the computation for F becomes

F (w) = M ◦ f ◦M−1(w)

= M ◦ f(z0 − b
w )

= M(z0 − b
w + exp(g ◦M−1(w)))

= M(z0 − b
w + exp(G(w)))

= − b
z0− b

w
+exp(G(w))−z0

= w
1−w

b
exp(G(w)) .
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We know from Proposition 3.2.1, that over each sector Aj , and for every
0 < s <∞, we have

lim
Rj(t,s)3w→∞

R(G(w)) = −∞.

Hence, given r < 1 �xed, for each 0 < s <∞, there exists ts = t(s) > 0 such
that ∣∣∣w

b
exp(G(w))

∣∣∣ < r, w ∈ Rj(ts, s).

So, we de�ne the subset Vj :=
⋃
s>0Rj(ts, s) ⊂ Aj and then

Vj ⊂ {w ∈ Aj :
∣∣∣w
b
exp(G(w))

∣∣∣ < r < 1}.

Also, it is clear that Vj is nonempty and with an unbounded real part along
Aj . The geometric series for w

b exp(G(w)) is uniformly convergent inside Vj ,
thus we can express F (w) as

F (w) = w
1−w

b
exp(G(w))

= w(1 + (wb exp(G(w))) + (wb exp(G(w)))2 + ...

= w + w2

b exp(G(w))(1 + (wb exp(G(w))) + (wb exp(G(w)))2 + ...),

for w ∈ Vj . In this way, we have the following asymptotic form of F in
Rj(t, s) ⊂ Aj

F (w) = w +
w2

b
exp(G(w))(1 + o(1)), Rj(t, s) 3 w →∞. (3.2.6)

We �x a region Aj under the following consideration:
If θj = 2πj

p represents the argument of the bisector of Aj with respect to

the real axis, then the change of variable w 7→ eiθjw, which is conformal,
transforms A0 into Aj . With this in mind, we focus on the �xed sector

A = A0 = {w ∈ C∗ :
−π
p
≤ arg w <

π

p
},

the region

V = V0 ⊂ {w ∈ A :
∣∣∣w
b
exp(G(w))

∣∣∣ < r < 1},

and the semi-band

R(t, s) = R0(t, s) = {w : R(w) ≥ t, |I(w)| ≤ s, and tan
s

t
=
π

p
} ⊂ A.

So, we rewrite (3.2.6) as

F (w) = w +
w2

b
exp(G(w))(1 + o(1)), R(w)→∞, w ∈ R(t, s). (3.2.7)
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Let φ−1(z) = z1/p be the unbranched inverse of wp = φ(w) de�ned in the
interior of sector A. Recall that in A we have

lim
R(t,s)3w→∞

R(G(w)) = −∞. (3.2.8)

Since V ⊂ A, φ is well de�ned and single valued in V , so we consider the
following conjugation

F := φ ◦ F ◦ φ−1 : V = φ(V )→ C\R−,

which is well de�ned and single valued. Now, we de�ne rectangular semi-
band R(t, s) analogously as R(t, s) by

R(t, s) = {z ∈ V : R(z) ≥ t > 0, |I(z)| ≤ s}.

First, note that since R(t, s) ⊂ V, then φ−1(R(t, s)) ⊂ V , so, for z ∈ R(t, s)

F (φ−1(z)) = z1/p + z1/pH(z)(1 +H(z) + (H(z))2 + ...),

where H(z) = ( z
1/p

b exp(G(z1/p))). Also, we have

G(z1/p) = −z(1− a1bz−1/p + a2bz
−2/p ∓ ...)

consequently

G(z1/p) = −z(1 + o(1)) R(z)→∞, z ∈ R(t, s). (3.2.9)

Combining (3.2.7), (3.2.8) and (3.2.9) we obtain

F (φ−1(z)) = z1/p +
z2/p

b
exp(−z(1 + o(1))(1 + o(1)).

Then, for z ∈ R(t, s)

F(z) =
(
z1/p + z2/p

b exp(−z(1 + o(1))(1 + o(1))
)p

= z + z2

bp exp(−pz(1 + o(1))(1 + o(1))p+1

= z + z2

bp exp(−pz(1 + o(1))(1 + o(1)), R(z)→∞.

Since p ∈ N, the mapping z 7→ pz does not change the form of R(t, s), we
can consider the conjugation pF ( zp), denoted again by F for simplicity. We
obtain

F(z) = z +
z2

pbp
exp(−z(1 + o(1))(1 + o(1)), (3.2.10)

as R(z)→∞, z ∈ R(t, s). So, we have

(F(z)− z)ez =
z2

pbp
exp(zo(1))(1 + o(1)).
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Calculating its argument

arg (F(z)− z)ez = arg

(
z2

pbp
exp(zo(1))(1 + o(1))

)
.

If α = −arg b−p, rewriting the last expression, we obtain

arg (F(z)− z)ezeiα = arg
(
z2exp(zo(1))(1 + o(1))

)
,

which implies

arg (F(z)− z)ezeiα = (2arg z + I(z)o(1))(1 + o(1))→ 0,

as R(z)→∞, z ∈ R(t, s) (I(z) is bounded). Taking supremum, we conclude
that F satis�es condition (3.1.1) of Theorem 3.1.1. Then F possesses a family
of in�nitely many di�erent Baker domains with ∞ as its Baker point, each
element of the family is contained in the half-plane H+. Also, each Baker
domain satis�es the properties listed in Theorem 3.1.1.
Now, to prove that each Baker domain Uk is parabolic type I, note that,
from Property (c) of Theorem 3.1.1,

Fn+1(z)− Fn(z)→ 0 and |I(Fn(z))− (2kπ − α)| → 0,

also, by Property (a) of Theorem 3.1.1 each Baker domain contains a set of
the form

Vk(θ) = {x+ iy : x > vk(θ) > 0, |y − (2kπ − α)| < θ},

which implies that dist(Fn(z), ∂Uk) is bounded away from 0. Then

|Fn+1(z)− Fn(z)|
dist(Fn(z), ∂Uk)

→ 0 as n→∞.

So, by Theorem 3.1.3, we conclude that each Baker domain is parabolic type
I.
Now, we return to f in the following way:
Since

F(z) = φ ◦ F ◦ φ−1(z),
and φ−1(z) is conformal over C\R−, F also satis�es conclusions of F over
the interior of sector A.
In the same way, the map w 7→ eiθjw is conformal between A and each Aj ,
so F satis�es the same in each of the sectors.
Finally, since

F (w) = M ◦ f ◦M−1(w),

and M(z) is a Möbius transformation, f also satis�es the arguments of the
proof, and then f has p-families of in�nitely many di�erent Baker domains,
all of them with z0 as their Baker point. Each family contained in a sector of
angle 2π/p of a small disc around z0, this sectors correspond to the sectors
Aj through M(z).

�
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3.3 Example: a uni-parametric family

We now present an example of a family of functions (over a parameter c ∈ C),
with the property that one of the elements of the family belongs to classM,
while all other elements belong to class K. In this way we can think of a
function fc ∈ K (c 6= 0) as a complex perturbation of a �xed function f0 in
classM.
For c ∈ C, we consider the rational function

Rc(z) =
z

z2 − c2
. (3.3.1)

Note that for c = 0 we have the rational function (actually a Möbius trans-
formation)

R0(z) =
1

z
. (3.3.2)

We take Rc as the function g in Theorem 3.1.1, obtaining in this way the
function

fc(z) = z + exp

(
z

z2 − c2

)
, (3.3.3)

in class K, with A(fc) = {±c}, which are the poles of the function Rc.

Note 3.3.1. For c = 0 we have the function f0(z) = z + exp(1/z), which
technically belongs to class K, but, since Rc ∈ R, the limit

lim
z→∞

fc(z) =∞

is well de�ned, then fc has only one essential singularity. So, after conjuga-
tion by z 7→ −1/z, we obtain a function in classM.

3.3.1 The case in M

We start by proving that the initial function f0 ∈ M possesses in�nitely
many Baker domains. For c = 0 we have the function

f0(z) = z + exp(1/z). (3.3.4)

Since f0(z) has only one essential singularity, we consider the conformal
conjugation byM(z) = −1/z setting f0(z) as a transcendental meromorphic
mapping F0 : C→ Ĉ. We obtain:

F0(z) = M ◦ f0 ◦M−1(z)
= M ◦ f0(−1/z)
= M(−1/z + exp(−z))
= − 1

−1/z+exp(−z) .
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Function F0 is then given by

F0(z) =
z

1− ze−z
. (3.3.5)

If z := x+ iy, then |ze−z| = |z|e−x, so it is clear that |ze−z| < 1 in the open
region V = {x+ iy : |y| <

√
e2x − x2}. Moreover, it is also clear that

|ze−z| → 0, R(z)→∞, I(z) bounded. (3.3.6)

From the above equation, it is clear that V is contained in a right half-plane
with unbounded real part, see Figure 3.2. So, for 0 < r < 1 there exists a
region Vr = {z : |ze−z| < r} ⊂ V , and then for z ∈ Vr we can express F0(z)
as uniformly convergent series

F0(z) =
z

1− ze−z
= z(1 + ze−z + (ze−z)2 + ...).

Hence,

F0(z) =
z

1− ze−z
= z + z2e−z(1 + o(1)), (3.3.7)

as R(z)→∞, I(z) bounded. If we consider

(F0(z)− z)ez = z2(1 + o(1)), as R(z)→∞, z ∈ V.

Then F0 satis�es Condition (3.1.1) of Theorem 3.1.1. We conclude that F0

Figure 3.2: Region V for the case c = 0.

contains a family of in�nitely many di�erent Baker domains. Since M(z) =
−1/z is a Möbius transformation, then f0 contains a family of Baker domains
with z = 0 as its Baker point, as Figure 3.3 shows. From Theorem 3.1.1 we
know that each Baker domain is parabolic type I.
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Figure 3.3: Family of Baker domains in z0 = 0 (left) and the conjugacy to
w =∞ (right).

3.3.2 The case in K

We consider now the case when c 6= 0. The function

fc(z) = z + exp

(
z

z2 − c2

)
,

may be thought of as a complex singular perturbation of the mapping f0
studied above. We know that such a function has essential singularities at
the points {±c} ⊂ C, so fc ∈ K.
As in the previous case, we consider the conjugacy of fc(z) mapping one of
the essential singularities to in�nity, via a Möbius transformation sending
(−c, c,∞) 7→ (1/4c,∞, 0). Then M(z) = − 1

2(z−c) and M
−1(w) = c− 1

2w . So

Fc(w) = M ◦ f ◦M−1(w)
= M ◦ f(c− 1

2w )

= M(c− 1
2w + exp(

c− 1
2w

(c− 1
2w

)2−c2 )

= −1
2
(
c− 1

2w
+exp

(
2w(2cw−1)

1−4cw

)) .
Hence

Fc(w) =
w

1− 2wexp
(
2w(2cw−1)

1−4cw

) . (3.3.8)

We need to analyze the expression 2wexp
(
2w(2cw−1)

1−4cw

)
.

Let Q(w) = 2w(2cw−1)
1−4cw , setting w := u+ iv, we have:

R(Q(w)) =
4a(u2 − v2)− 8buv − 2u− 16|c|2|w|2u− 8a|w|2

1− 8R(cw) + 16|c|2|w|2
,

I(Q(w)) =
8auv − 12bv2 − 2v − 4bu2 − 16|c|2|w|2v

1− 8R(cw) + 16|c|2|w|2
.

From where the following limits hold for each |v| <∞:

lim
u→∞

R(Q(w)) = −∞, (3.3.9)
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lim
u→∞

I(Q(w)) = − b

4|c|2
− v. (3.3.10)

Hence, by Equation (3.3.9) there exists u(v) = uv > 0, such that

|2w · exp(Q(w))| = 2|w|exp(R(Q(w))) < r < 1, (3.3.11)

for w ∈ R(uv, v), and R(uv, v) is a semiband as de�ned in Theorem 3.1.1.
We de�ne

V ′r =
⋃
v>0

R(uv, v).

Now, analogously to the above case, from (3.3.11), for w ∈ V ′R (see Figure

Figure 3.4: Region V ′r for the case c = 3.

3.4) we can express Fc(w) as follows:

Fc(w) =
w

1− 2wexp
(
2w(2cw−1)

1−4cw

) = w

(
1 + 2weQ(w) +

(
2weQ(w)

)2
+ ...

)
.

So, we have

Fc(w) = w(1 + 2weQ(w) +
(
2weQ(w)

)2
+ ...)

= w + 2w2eQ(w) + w
(
2weQ(w)

)2
+ ...

= w + 2w2eQ(w)(1 + 2weQ(w) +
(
2weQ(w)

)2
+ ...)

= w + 2w2eQ(w)(1 + o(1))

as u→∞, v bounded.
Now, since I(Q(w))→ − b

4|c|2 − v, as u→∞, rewriting

Fc(w) = w + 2w2eQ(w)+we−w(1 + o(1)),

for φ(w) = (Fc(w)− w)ew = 2w2eQ(w)+w(1 + o(1)) we have that

arg φ(w) = arg
(

2w2eQ(w)+w
)

= 2arg (w) + I(Q(w) + w),
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since arg(w) → 0 and I(Q(w)) → − b
4|c|2 − v if R(w) → ∞, then it is clear

that arg φ(w)eα → 0 with b
4|c|2 = α.

So Fc(w) meets the hypothesis of the Theorem 3.1.1. Proving then that
Fc(w) (respectively fc(z)) possess in�nitely many di�erent Baker domains
associated to in�nity (respectively c ∈ C), as Figure 3.5 shows. For −c ∈ C
the approach is analogous.

Figure 3.5: Family of Baker domains for the parameter c = 2 (left) and the
conjugacy at w =∞ (right).

Note 3.3.2. From Equation (3.2.3), it is clear that the complex number b
for the Möbius transformation M(z) = − b

z−z0 , depends on the coe�cient bp
of the Laurent Series Expansion (3.2.1) of function g. In the case that the
pole z0 is simple (p = 1), this coe�cient bp is actually the residue of g with
respect to z0. For both examples above, function g is a rational function,
for which it is possible to compute this residue. Then, we obtain the Möbius
transformations M(z) = −1/z, for g(z) = 1/z, and M(z) = − 1

2(z−z0) for

g(z) = z
z2−c2 .

3.4 Distribution of critical points and connectivity

results

Given function f0(z) := z+e1/z we already know that this function contains
a family of Baker domains. Also, the point at in�nity is a parabolic �xed
point. One of the immediate questions about this function is: does there
exist another kind of Fatou component? In this case, it is not di�cult to see
that the only possible asymptotic value (see Appendix C, for basic concepts
on it) are the essential singularities themself, so there are no asymptotic
values for this functions. Then, one way to prove that the answer to the last
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question is no, is proving that each critical value is associated to each Baker
domain and Leau domain at in�nity, in this case sing(f−1) = V Crit(f).
In this section we prove that this is the case. We summarize this with the
following proposition.

Proposition 3.4.1. Let f0 ∈M be a function given by

f0(z) := z + e1/z.

Then the Fatou set F(f0) is composed only by

• the family {Uk}k∈Z of di�erent invariant Baker domains associated to
the Baker point z0 = 0, and

• the Leau domain associate to z1 =∞.

As well as all of its pre-images.

The proof of the above proposition will be a consequence of a lemma
on critical points, whose proof is based on the Rouché-Estermann Theorem
[Es].

Theorem 3.4.2 (Rouché-Estermann). Let f and g be analytic functions in
a neighbourhood of a domain U , without zeros over ∂U , if

|f(z)− g(z)| < |f(z)|+ |g(z)|, z ∈ ∂U,

then f and g have the same number of zeros in U .

3.4.1 Critical points

Proposition 3.4.3. Let f0 ∈M be a function given by

f0(z) := z + e1/z.

Then each critical point is associated to one and only one of the elements of
the family of Baker domains {Uk}k∈Z associate to z0 = 0 or the Leau domain
associate to z1 =∞.

Proof. We consider the function F0(z) = M ◦ f0 ◦M−1(z), instead of the
original function f0. Given

F0(z) =
z

1− ze−z
,

computing its derivative we obtain

F ′0(z) =
1− z2e−z

(1− ze−z)2
.
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From which it is clear that z = 0 is a parabolic �xed point with multiplier
λ = 1.
We want to compute the solutions of the following equation

F ′0(z) =
1− z2e−z

(1− ze−z)2
= 0, (3.4.1)

which is equivalent to solving

ez − z2 = 0. (3.4.2)

Let z := x+iy, expanding the real and imaginary parts of the above equation,
we obtain the following system of equations:

x2 + y2 = ex (3.4.3)

x2 − y2 = ex cos y (3.4.4)

2xy = ex sin y, (3.4.5)

where |ez| = ex.
First, note that if y = 0, the system is reduced to equation x2 = ex. If
h(x) = ex−x2, we have h′(x) = ex−2x > 0, which implies h(x) is increasing,
since h(0) = 1 > 0 and h(−1) = e−1 − 1 < 0, then h(x0) = 0 for a unique
x0 ∈ (−1, 0).
For R(z) < 0, from (3.4.3) we have |z| < 1. If in addition y > 0, from
(3.4.5) sin y < 0, so y ∈ ((2k − 1)π, 2kπ), k ≥ 1 and then y > π which
is a contradiction since |z| > 1. Analogously for y < 0 (this case y ∈
(2kπ, (2k + 1)π), k ≤ −1).
As a �rst conclusion, Equation (3.4.2) has only one (real) solution in the left
half-plane.
For R(z) = 0, combining equations (3.4.3)-(3.4.5) arises a contradiction. It
remains to consider the case R(z) > 0.
Now the case is reduced to R(z) > 0, we proceed to prove that equation
(3.4.2) has solutions distributed over the bands

Bk = {z : x > 0, |y − 2kπ| < π}, k ∈ Z.

We associate Equation (3.4.2) to another known equation using the Rouché-
Estermann Theorem.
We apply the theorem to functions f(z) = ez − z2 and g(z) = ez − z, which
reduce to prove

|z − z2| < |ez − z2|+ |ez − z| (3.4.6)

over the boundary ∂Rk where Rk = Bk ∩ {x+ iy : x ≤ Ck, 1 << Ck}.
Since

F0(z) =
z

1− ze−z
=

(
z

1− ze−z

)
= F0(z),
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i.e. F0 is symmetrical with respect to the real axis, it is enough to prove this
inequality in the �rst quadrant {x+ iy : x > 0, y > 0}.
First we prove that critical points are not on the boundary of each Bk.
Suppose that z0 = x0 + iy0 ∈ Crit(F0) and z0 ∈ ∂Rk. There are three cases.

1) x0 = 0,

2) y0 = (2k + 1)π, k ≥ 0 or y = 0,

3) x0 = Ck.

In case 1): from (3.4.3) we have y20 = 1, while from (3.4.5) sin y0 = 0, which
is a contradiction.
In case 2): if y0 = (2k + 1)π, from (3.4.5) x0 = 0, which has been proved
can not happen. In the above subsection, we see that if y0 = 0 then x < 0,
which is not the case.
In case 3): since |y| is bounded over each band Bk, it is enough to choose
Ck >> 1 such that eCk > C2

k + y2. So, from (3.4.3) the case is eliminated.
To prove (3.4.6) consider the function

h(z) = |ez − z2|+ |ez − z| − |z − z2|. (3.4.7)

Written in its real form:

h(x, y) =
√
e2x + 2(y2 − x2)ex cos y − 4xyex sin y + x4 + y4 + 2x2y2

+
√
e2x + x2 + y2 − 2xex cos y − 2yex sin y

−
√
x4 + y4 + x2 + y2 − 2x3 + 2x2y2 − 2xy2.

Then, we have to prove that h(x, y) is positive in the cases mentioned above:

1) x0 = 0,

2) y0 = (2k + 1)π, k ≥ 0 or y = 0 and

3) x0 = Ck.

In case 1): since x = 0,

h(0, y) = h(y) =
√
y4 + 2y2 cos y + 1 +

√
y2 − 2y sin y + 1−

√
y4 + y2.

Now,

h(y) >
√
y4 − 2y2 + 1 +

√
y2 − 2y + 1−

√
y4 + y2 = y2 + y− 2−

√
y4 + y2.
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Take g(y) = y2 + y − 2−
√
y4 + y2, then we have

g′(y) = 2y + 1− 2y2 + 1√
y2 + 1

> 2y + 1− y2 + 1√
y2 + 1

= 2y + 1−
√
y2 + 1

> 2y + 1− (y + 1)

= y > 0.

Hence, g(y) is increasing, since g(3) = 12 − 3
√

10 > 0, then h(y) > 0 for
y ≥ 3. Remains the case y ∈ [0, 3].
Since y ∈ [0, 3], by properties of trigonometric functions, it is easy to see
that a minimum value is close to y = π/2, and

h(π/2) =
√
π4/16 + 1 +

√
π2/4− π + 1− π/2

√
π2/4 + 1 ≈ 0.3 > 0.

From which follows that h(y) > 0 for y ∈ [0, 3]. Then, (3.4.6) holds in this
case.
In case 2): considering �rst y = 0,

h(x, 0) = h(x) =
√
e2x − 2x2ex + x4 +

√
e2x + x2 − 2xex −

√
x4 + x2,

on one hand, for x ∈ [0, 1] ∪ [2,∞], e2x − 2x2ex > 0 and e2x − 2xex > 0,
so h(x) > 0 in such intervals. Hence, for x ∈ [1, 2], if we consider g1(x) =
x4 − 2x2ex and g2(x) = x2 − 2xex, computing derivatives we have g′1(x) =
4x3 − 4xex − 2x2ex < 0 and g′2(x) = 2x − 2ex − 2xex < 0, hence g1 and g2
are decreasing in [1, 2], but h(1) ≈ 2 > 0 and h(2) ≈ 4.3 > 0, so h(x) > 0
for x ∈ [0,∞). Then (3.4.6) holds also in this case.
For y = (2k + 1)π, set K = (2k + 1)

h(x,Kπ) = h(x) =
√
e2x + 2(x2 −K2π2)ex + x4 +K4π4 + 2x2K2π2

+
√
e2x + x2 +K2π2 + 2xex

−
√
x4 +K4π4 + x2 +K2π2 − 2x3 + 2x2K2π2 − 2xK2π2.

Again, we have that h(x) is bounded below by

h(x,Kπ) = h(x) =
√
e2x + 2(x2 −K2π2)ex + x4 +K4π4 + 2x2K2π2

+
√
e2x + x2 +K2π2 + 2xex

−
√
x4 +K4π4 + x2 +K2π2 + 2x2K2π2.

Considering the argument of the last term of the above expression g(x) =
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Figure 3.6: Sketch of critical points distribution for F0(z). See Note 3.4.4.

x4 +K4π4 + x2 +K2π2 + 2x2K2π2, we have

g(x) = x4 +K4π4 + x2 +K2π2 + 2x2K2π2

= (x2 +K2π2)2 + (x2 +K2π2)

= (x2 +K2π2)(x2 +K2π2 + 1) < (x2 +K2π2 + 1)2.

Hence,

h(x) >
√
e2x + 2(x2 −K2π2)ex + x4 +K4π4 + 2x2K2π2

+
√
e2x + x2 +K2π2 + 2xex

− (x2 +K2π2 + 1)

> 0.

This way, (3.4.6) holds for this case.
In case 3), note that h(x, y) is bounded below by the function

h0(x, y) =
√
e2x + 2(y2 − x2)ex cos y − 4xyex sin y + x4 + y4 + 2x2y2

+
√
e2x + x2 + y2 − 2xex cos y − 2yex sin y

−
√
x4 + y4 + x2 + y2 + 2x2y2,

and for x = Ck >> 1, e2x + 2(y2 − x2)ex cos y − 4xyex sin y > 0 and e2x −
2xex cos y − 2yex sin y > 0, so h0(x, y) is also bounded below by

h1(x, y) =
√
x4 + y4 + 2x2y2 +

√
x2 + y2 −

√
x4 + y4 + x2 + y2 + 2x2y2,

which is strictly positive, then h(x, y) > 0 for this case.
So, applying the Rouché-Estermann Theorem, f(z) = ez − z2 and g(z) =
ez − z has the same number of zeros over each band Bk. Since we know g(z)
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has only one zero in each band Bk for kn 6= 0, and two zeros in B0, the same
happens for f(z).
Consequently, under the property d) of Theorem 3.1.1, we conclude that
each Baker domain Uk (k 6= 0) has one and only one critical point and then
one critical value. Meanwhile, U0 has two critical points (Figure 3.6). �

Proof. (of Proposition 3.4.1) By Proposition 3.4.3, each critical value is
contained in a Baker domain Uk or the Leau domain of z = 0, consequently,
by Theorem 7 in [Ber1], there is no other Fatou component. �

Note 3.4.4 (On Figures 3.6-3.8). In Figures 3.6-3.8, we can appreciate two
sets of curves (the real axis belongs to one of this sets). Each set represent
the cero-level lines for the real and imaginary part of function F ′0(z). So, the
points of intersection, represents each critical point of function F0(z).

3.4.2 Connectivity

Since there exists a uniform distribution of the critical values over the Fatou
components (Baker and Leau domains) for F0, it is possible to compute the
connectivity of invariant Fatou components through the Riemann-Hurwitz
Formula.

Theorem 3.4.5 (Steinmetz [St], Riemann-Hurwitz Formula). Suppose that
f is a proper map of degree k of some m-connected domain D onto some
n-connected domain G, f having exactly r critical points in D, counted with
multiplicities. Then

m− 2 = k(n− 2) + r.

The following results are also needed to compute the connectivity of the
Fatou components.

Proposition 3.4.6 (Beardon [Be], Proposition 5.1.7). Let {Dα} be a collec-
tion of simply connected domains that is linearly ordered by inclusion. Then⋃
αDα is a simply connected domain.

Since the ambiguity of the �rst de�nition of an absorbing domain (recall
that was �rst de�ned for mappings f : H+ → H+), a particular de�nition
was given in [BFJK].

De�nition 3.4.7. An absorbing domain W in a domain U in C for a holo-
morphic map f : U → U with fn →∞ as n→∞ is called nice if

a. W\{∞} ⊂ U ,

b. fn(W\{∞}) = fn(W )\{∞} ⊂ fn−1(W ) for every n ≥ 1,

c.
⋂∞
n=1 f

n(W\{∞}) = ∅.
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The following theorem will be used to prove the connectivity property
for this function.

Theorem 3.4.8 (Bara«ski et. al. [BFJK], Theorem B). Let U ⊂ C be a
hyperbolic domain and f : U → U be a holomorphic map, such that fn →∞
as n → ∞ in U and ∞ is not an isolated boundary �xed point of U in Ĉ.
If U is parabolic type I, then there exists a simply connected nice absorbing
domain W ⊂ U for f .

So, now we can use this to compute the connectivity of some of the Fatou
components of the function F0 (in fact, all of them except the Baker domain
U0).

Theorem 3.4.9. Let U ⊂ F(F0) be a forward invariant component, with
U 6= U0. Then U is simply connected.

Proof. We know that an attracting petal is a simply connected nice
absorbing domain for the Leau domain. Also, by Theorem 3.4.8, there exist
a simply connected nice absorbing domain for each Uk, k ∈ Z.
In this way, let V ⊂ U be a simply connected nice absorbing domain for F0

in U . From (c) of De�nition 3.4.7, we can take V (or an iterate F d0 (V ) for a
�nite d ≥ 0), such that F0 is univalent in V .
Set V0 = V and take V1 ⊂ F−10 (V0) such that V0∩V1 6= ∅. Inductively, de�ne
the subset Vl ⊂ F−10 (Vl−1), such that Vl ∩ Vl−1 6= ∅, l ≥ 2. Then, we can
apply the Riemann Hurwitz formula (3.4.5) to

F0 : Vl → Vl−1,

and we obtain

m− 2 = k(n− 2) + r.

where m is the connectivity of Vl, n is the connectivity of Vl−1, and r = 1
(the number of critical points on U , Theorem 3.4.3). For l = 1, we know
that n = 1, which implies

m− 3 = −k, (3.4.8)

but k ≥ 2, so m ≤ 1, which implies m = 1. Inductively, we have that Vl is
simply connected for l ≥ 1.
By de�nition U =

⋃
n Vn, then Proposition 3.4.6 implies that U is simply

connected. �

Note 3.4.10. For the case U = U0, it was shown in Proposition 3.4.3 the
existence of two critical points in U0. Using the same argument as in the
proof of Theorem 3.4.9, we will have the relation

m− 4 = −k
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instead of (3.4.8), which implies that m ≤ 2. So, in the following step of
induction, we will have m ≤ 4, so the connectivity of each Vl will be only
bounded, instead of be equal one. In other words, there is no control on the
connectivity of domains Vl, and then the proof cannot be applied in this case.

3.5 More examples

In this section we present some examples for di�erent type of functions g :
C→ Ĉ in the setting of the class of functions describe in this work, namely

f(z) = z + exp(g(z)) ∈ K.

Figure 3.7: Sketch of critical points distribution for F1(w). See Note 3.4.4.

Example 3.5.1 (A rational case). Previously in this chapter we proved
that the function fc ∈ K, c ∈ C∗ given by

fc(z) = z + exp

(
z

z2 − c2

)
,

with A(fc) = {±c}, has a family of Baker domains {Uk} for each essential
singularity in A(fc). As in the case for f0 ∈ M, f0(z) = z + exp(1/z), the
point at in�nity ∞ ∈ Ĉ is again a parabolic �xed point for fc, c 6= 0.
If we consider the conjugation Fc(w) = M ◦ fc ◦M−1(w), given by

Fc(w) =
w

1− 2w2exp
(
4cw2−2w
1−4cw

) ,
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setting Q(w) = 4cw2−2w
1−4cw , then

F ′c(w) =
1 + 2w2Q′(w)eQ(w)

(1− 2w2eQ(w))2
.

The �gures 3.7 and 3.8 show numerical experiments of the distributions
of critical points for c = 1 (associate to ∞ for F1 and thus associate to c = 1
for fc).
It seems that there is a nice distribution of critical points for the function F1.

Figure 3.8: Sketch of critical points distribution for F−1(w). See Note 3.4.4.

So we could assume (as a conjecture) that there is no other Fatou components
other than the parabolic basin and the families of Baker domains, as in the
case for f0.

Example 3.5.2 (An order 3 pole). The following example shows a con-
�guration for a pole of order 3 of a meromorphic function.
Consider the function g : C→ Ĉ given by

g(z) =
1

z3
+ e−z.

It is clear that z0 = 0 is a pole of order 3. Numerical experiments seems to
imply that there is no other Fatou components other than the 3-families of
Baker domains associated to the Baker point z0 = 0 for f(z) = z+exp(g(z)).
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Figure 3.9: Dynamical plane for g(z) = 1
z3

+ e−z.

Figure 3.10: Dynamical plane for g(z) = 1
z3

+ e−z.





Chapter 4

Future work and open

questions

4.1 Open questions

As it was mentioned at the end of the previous chapter, there are some as-
pects that have not been possible to determine about functions in the family
fc. In this section we set some open questions about Fatou components of
some functions studied in the previous chapter.
Given the function

f0(z) = z + exp(1/z), (4.1.1)

in classM, we proved in previous chapter that each invariant Fatou compo-
nent is simply connected except the Baker domain U0, the one with the real
axis as bisector. The existence of two critical points does not allow the use
of Riemann-Hurwitz formula for the computation of the connectivity.

Question 1. What is the connectivity of the Baker domain U0 of func-
tion (4.1.1)?

For each c ∈ C∗ the function

fc(z) = z + exp

(
z

z2 − c2

)
, (4.1.2)

belongs to class K with A(f) = {±c}. The one-parametric family {fc} can be
thought of as a complex singular perturbation of function f0 (4.1.1). Similar
to function f0 (4.1.1), each function fc has two families of di�erent Baker
domains Uc,k (since |A(f)| = 2), each one associated to essential singularity
c or −c. Since

g(z) =
z

z2 − c2

47
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is a rational function, the point at in�nity, is a parabolic �xed point, as in
the case for f0. Figures 3.7 and 3.8 show a numerical distribution of critical
points for c = 1. Since the distribution is similar to the one for the function
f0 (4.1.1), there are two direct questions.

Question 2. How many critical points has each invariant Fatou compo-
nent U ⊂ F(fc) for function (4.1.2)?

Question 3. Are there other Fatou components di�erent from the Leau
domain for the point at in�nity and the families of Baker domains associated
to each essential singularity?

More generally, for a function f ∈ K given by

f(z) = z + exp(g(z)), (4.1.3)

with g ∈M, the point at in�nity is no longer a parabolic �xed point but an
essential singularity.
Question 4. Are there other Fatou components U ⊂ F(f) di�erent from
the families of Baker domains associated to each essential singularity inA(f)?

4.2 Future work

4.2.1 The Teichmüller space

A great part of this work was inspired by Fagella and Henriksen's paper [FH1]
where one of the results is the existence of a rigid entire map f(z) = z+e−z,
i.e. any quasiconformal deformation of f is a�nely conjugated to f .
Since the work of D. Sullivan on the proof of non-existence of wandering do-
mains for rational functions [Su], quasiconformal mappings and Teichmüller
spaces have become a strong tool in the study of deformation spaces of dy-
namical systems.
The best way to study the deformation space of a given function f , is study-
ing its Teichmüller space. After the Sullivan's paper [Su] the most important
reference on Teichmüller spaces of rational functions is the framework by Mc-
Mullen and Sullivan [MS], where the Teichmüller space of a rational function
is de�ned. After that, Fagella and Henriksen in [FH2] use this ideas and re-
sults to de�ne the Teichmüller space of an entire function.
We give some results on Teichmüller spaces for rational and entire functions
that can be applied to our function f0(z) = z + exp(1/z) as in the example
in the previous chapter. We refer to frameworks [MS] and [FH2] and books
[Hu] and [IT] for basic concepts and fundamental theorems in the theory of
Teichm�muller spaces.



Future work and open questions 49

Although Teichmüller spaces were de�ned for Riemann surfaces, it is possible
to de�ne them for a function f in the following way.

Theorem 4.2.1 ([MS], Theorem 6.1). Suppose every component of the one-
dimensional manifold V is hyperbolic, f : V → V is a covering map, and
the grand orbit relation of f is discrete. If V/f is connected then V/f is a
Riemann surface and

T (f, V ) = T (V/f).

For a rational function R, we can take V ⊂ F(R). In the framework
[MS], the Teichmüller space of a rational function is then well de�ned (recall
that for rational functions there are no Baker domains).

Theorem 4.2.2 ([MS], Theorem 6.2). The Teichmüller space of a rational
function f of degree d is naturally isomorphic to

T (f,Ωfol)× T (Ωdisc/f)× B1(f,J (f)),

where Ωdisc/f is a complex manifold.

The idea in [FH2] is to extend all results in [MS] to entire functions with
Baker domains. Since every Baker domain for an entire function is simply
connected, they can be easily classi�ed. Then the Theorem 4.2.1 can be
applied to Baker domains.

From Theorem 3.1.1 we know that function f(z) = z + e−z has a family
of Baker domains. In fact, there are no other Fatou components. Moreover,
we know that each Baker domain is parabolic type I. Then, the following
theorem gives a characterization of Teichmüller space restricted to a Baker
domain of an entire function.

Theorem 4.2.3 (FH, Main Theorem). Let U be a proper Baker domain of
an entire function f and U its grand orbit. Denote by S the set of singular
values of f in U , and by Ŝ the closure of the grand orbit of S taken in U .
Then T (f,U) is in�nite dimensional except if U is parabolic type I and the
cardinality of Ŝ/f is �nite. In that case the dimension of T (f,U) equals
|Ŝ/f | − 1.

It is not di�cult to see that f(z) = z+ e−z is semi-conjugated to g(z) =
ze−z via the projective map π(z) = ez. So, it is possible to conclude that
J (f) has measure zero since the same happens for g (see [Ber2]). The proof
for the measure of J (g) is based on a theorem in [EL1].

Proposition 4.2.4. The map f(z) = z+e−z is rigid, i.e. if f̃ is a holomor-
phic map which is quasiconformally conjugated to f , then f is conjugated to
f̃ by an a�ne map.
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For k ∈ Z, let Uk ⊂ F(f) represent an element of the family of Baker
domains for function f(z) = z + e−z, and let Uk represent their grand orbit.
Then, for f(z) = z + e−z we have

T (f,C) = T (f,∪Uk)× B1(f,J (f)) =
∏
T (f,Uk)× B1(f,J (f)).

It follows from Theorem 4.2.1 that each T (f,Uk) is trivial. The measure
zero on J (f) implies B1(f,J (f)) is trivial, then the Teichmüller space of f
is trivial.

4.2.2 Conjecture

Given function

f0(z) = z + exp(1/z),

we know the following from the analysis in previous chapter:

• f0 contains a family of Baker domains Uk, k ∈ Z,

• each Uk is parabolic type I,

• each Uk, k 6= 0 contains only one singular value, and U0 contains two,

• f0 contains a Leau domain L at the parabolic �xed point z =∞,

• L contains one singular value,

• there are no other Fatou components.

So, if we de�ne the restricted Teichmüller space over each Fatou component,
it is easy to see that it would be trivial, except for U0, in which case we have

dim T (f, U0) = 1.

We can then split the Teichmüller space for f as follows

T (f0, Ĉ) =
∏
k 6=0

T (f0, Uk)× T (f0, U0)× B1(f,J (f0)). (4.2.1)

From the above relation, we have the following proposition.

Proposition 4.2.5. For f0(z) = z + exp(1/z), the dimension of the Teich-
müller space is given by

dim T (f0, Ĉ) = 1 + dimB1(f0,J (f0)). (4.2.2)
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Several authors have proved that it is possible to approximate dynami-
cally the exponential function (see for example [BDHRGH] and [Kr]) through
polynomial functions of the form

Pd(z) =
(

1 +
z

d

)d
,

with the approximation given as d → ∞. In the same way, it is possible to
consider a rational approximation of the function f0(z) = z+exp(1/z) given
by

Rd(z) = z +

(
1 +

1

dz

)d
.

For the rational function Rd we have the following immediate properties:

• z0 =∞ is a parabolic �xed point of Rd with one attracting petal.

• zd = −1
d is a parabolic �xed point of Rd with d− 1 attracting petals

• There are no other Fatou components.

In this case, the parabolic �xed point zd → 0 as d → ∞ and the number
of petals converge to in�nity, also seems that these petals turn into Baker
domains of function f0 (another conjecture).
It is a well known conjecture (see Section 9 in [MS]) that

dimB1(Rd,J (Rd)) = 0, d <∞,

since Rd is a rational function. Then we consider the following conjecture.

Conjecture 4.2.6. For f0 as above,

dimB1(f0,J (f0)) <∞,

and then
dim T (f0, Ĉ) <∞.





Appendix A

Asymptotic analysis

The existence of an essential singularity, prevents the analytic representa-
tion for a function around it. When such an essential singularity is a Baker
point, we have uniform convergence on the iterates of a function f inside the
Baker domain U in the sphere. One way to have a local representation for a
function f is using asymptotic analysis.
The present appendix contains basic concepts and some results relevant in
the proof ot the Main Theorem 3.2.3 of this work. For further references see
[Mlr]

A.1 Big-oh

The principal idea is to compare general functions with known functions.

De�nition A.1.1. Let f and g be two complex-valued functions de�ned in
some set D of the complex plane. Then we write

f(z) = O(g(z)), z ∈ D,

if we can �nd a constant K > 0 such that

|f(z)| ≤ K|g(z)| whenever z ∈ D.

That is, f is bounded in magnitude by a �xed constant multiple of g for all
z in the set D.

The following is a local de�nition for the big-oh operator.

De�nition A.1.2. Let f and g be two complex-valued functions de�ned in
some set D of the complex plane and let z0 be a limit point of D. Then we
write

f(z) = O(g(z)), as z → z0 from D
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if there is a number δ > 0 such that

f(z) = O(g(z)), z ∈ D with 0 < |z − z0| < δ,

in the sense of De�nition A.1.1. That is, f is bounded in magnitude by a
�xed constant multiple of g for all z ∈ D that lie close enough to z0.

The same de�nition can be apply when point z0 is the point at in�nity,
in other words, if D is an unbounded set in the complex plane.

De�nition A.1.3. Let f and g be two complex-valued functions de�ned in
an unbounded set D of the complex plane. Then we write

f(z) = O(g(z)) as z →∞ from D

if there is a number M > 0 such that

f(z) = O(g(z)), z ∈ D with |z| > M,

in the sense of De�nition A.1.1. That is, f is bounded in magnitude by a
�xed constant multiple of f for all z ∈ D. that are large enough.

Example A.1.4. For any positive exponent p > 0, however small, we have

log(z) = O(zp) as z →∞ with z real and positive.

To prove this, suppose that we pick M = 1. Then for z > M ,

| log(z)| = log(z) =

∫ z

1

dt

t
≤
∫ z

1

tp

t
dt ≤

∫ z

0

tp

t
dt =

1

p
zp =

1

p
|zp|.

A.2 Little-oh

Instead of trying to bound f by a �xed multiple of |g|, we can try to bound
f by all constant multiples of |g|, at least if we look nearer to z0 (or in�nity)
whenever we wish to have a bound involving a smaller multiple of |g|.

De�nition A.2.1. Let f and g be two complex-valued functions de�ned in
some set D of the complex plane and let z0 be a limit point of D. Then we
write

f(z) = o(g(z)), as z → z0 from D

if for any given ε > 0, however small, we can �nd a corresponding δ(ε) > 0
such that

|f(z)| ≤ ε|g(z)| whenever z ∈ D and 0 < |z − z0| < δ(ε).

That is, f is smaller in magnitude than any multiple of g for z ∈ D close
enough to z0 (how close depends on which multiple of g is being considered
as the bound).
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Similarly for asymptotic near in�nity, we have the following.

De�nition A.2.2. Let f and g be two complex-valued functions de�ned in
an unbounded set D of the complex plane. Then we write

f(z) = o(g(z)) as z →∞ from D

if for any given ε > 0, however small, we an �nd a corresponding M(ε) > 0
such that

|f(z)| ≤ ε|g(z)| whenever z ∈ D and |z| > M(ε).

A.3 Operation rules

We now list some rules for manipulating oh-terms.

• Constants in oh-terms. If C is a positive constant, then the estimate
f(z) = O(Cg(z)) is equivalent to f(z) = O(g(z)). In particular, the
estimate f(z) = O(C) is equivalent to f(z) = O(1). The same holds
for o-estimates.

• Transitivity. O-estimates are transitive, in the sense that if f(z) =
O(g(z)) and g(z) = O(h(z)) then f(z) = O(h(z)) when the three
estimates are in the same domain and limit. The same holds for o-
estimates.

• Multiplication of oh-terms. If fi(z) = O(gi(z)), for i = 1, 2, then
f1(z)f2(z) = O(g1(z)g2(z)) when the three estimates are in the same
domain and limit. The same holds for o-estimates.

• Pulling out factors. If f(z) = O(g(z)h(z)) then f(z) = g(z)O(h(z)),
equivalently f(z)/g(z) = O(h(z)), when the three estimates are in the
same domain and limit. The same holds for o-estimates. This property
allow us to factor out main terms from oh-expressions.





Appendix B

Modern Trends in Complex

Analysis

For a rational function Theorem 1.4.9 was proved by Fatou and Julia. Al-
though methods in their proofs were di�erent, both use properties of rational
functions: existence of periodic points, existence of repelling or indi�erent
periodic points and the bounded number of nonrepelling periodic points for
example. Some of these properties can be applied to transcendental mero-
morphic functions, but not in general.
For transcendental meromorphic functions, several authors have had to use
other tools, one of these tools is the celebrated Ahlfors' Five Island Theorem.
The best reference for this, is the survey by W. Bergweiler in [Ber3].

Theorem B.0.1 (AFIT [Ber1], Lemma 5). Let f be a transcendental mero-
morphic function, and let D1, D2,..., D5 be �ve simply connected domains
in C with disjoint closures. Then there exists j ∈ {1, 2, ..., 5} and, for any
R > 0, a simply connected domain G ⊂ {z ∈ C : |z| > R} such that f is a
conformal map of G onto Dj. If f has only �nitely many poles, then ��ve�
may be replaced by �three�.

From which is possible to deduce the following.

Theorem B.0.2 ([Ber1] Lemma 6). Suppose that f ∈M and that z1, z2, ...,
z5 ∈ O−(∞)\{∞} are distinct. De�ne nj by fnj (zj) =∞. Then there exists
j ∈ {1, 2, ..., 5} such that zj is a limit point of repelling periodic points of
minimal period nj + 1. If f has only �nitely many poles then ��ve� may be
replaced by �three�.

Which leads us to the conclusion of Theorem 1.4.9 for f ∈M.
For function in class K, the existence of singularities di�erent from the point
at in�nity, makes the extension of Theorem B.0.1 complicated. Instead of
considering the complex plane C, it is possible to consider the extended
complex plane Ĉ. For this, we have the following derivative.
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Lemma B.0.3. Let f be meromorphic in a domain D. Then for all z0 ∈ D
the limit

f#(z0) := lim
z→z0

σ(f(z), f(z0))

|z − z0|
exists, where σ(·, ·) denotes the spherical distance, and we have

f#(z0) =

{ |f ′(z0)|
1+|f(z0)|2 if f(z0) 6=∞.

limz→z0
|f ′(z0)|

1+|f(z0)|2 if f(z0) =∞.

We call f# the spherical derivative of f . It is continuous on D. With
this on hand, we have the following criterion for normal families in Ĉ.

Theorem B.0.4 (Marty's Criterion). A family F of meromorphic functions
in a domain D is normal if and only if the family {f# : f ∈ F} of the
respective spherical derivatives is locally uniformly bounded, that is, if for
every z0 ∈ D there exists a neighborhood U ⊂ D of z0 and a constantM <∞
such that

f# ≤M for all z ∈ U and all f ∈ F .

Finally, we have the rescaling lemma used in the proof of Theorem 1.4.9,
which was prove by L. Zalcman in [Za] and extended by X.C. Pang in [Pa].

Theorem B.0.5 (Zalcman-Pang Lemma). Let F be a family of functions
meromorphic in the unit disc D all of whose zeros have multiplicity at least m
and all of whose poles have multiplicity at least p. Assume that −p < α < m.
If F is not normal at z0 ∈ D, then there exist sequences {fn}n ⊂ F, {zn}n ⊂
D and {%n}n ⊂ (0, 1) such that limn→∞ %n = 0, limz→z0 zn = z0 and the
sequence {gn}n de�ned by

gn(ζ) :=
1

%αn
· fn(zn + %nζ)

converges locally uniformly in C (with respect to the spherical metric) to a
nonconstant function g which is meromorphic in C and satis�es

g#(ζ) ≤ g#(0) = 1 for all ζ ∈ C.



Appendix C

Fatou components and

singularities of f−1

In general terms, the set of singularities of f−1 is the set of points where
each branch of the inverse function f−1 is not well de�ned. In the case
of a rational function, this set consists of the critical values of function f .
When we consider a transcendental meromorphic function (class E orM, for
example), since the point at in�nity is an essential singularity, we have to
add another points to this set. This points are the called �nite asymptotic
values.

De�nition C.0.1. Given a function f ∈ {E ,P1,M}, we called a point a ∈ C
a �nite asymptotic value of f if there exists a path γ : [0, 1) → C with
γ(t)→∞ as t→ 1, such that f(γ(t))→ a as t→ 1.

As a simple example consider the function

f(z) = ez,

and the path γ : [0, 1)→ C given by

γ(t) =
1

t− 1
.

It is clear that the point a = 0 is �nite asymptotic value for f(z) = ez. It is
well know that function log z (in any branch) it not analytic in z = 0.
In the case of class K, the de�nition needs to be modi�ed, since we have
more essential singularities. We have the following generalized de�nition.

De�nition C.0.2. Given a function f ∈ K, we called a point a ∈ Ĉ\Ess(f)
an asymptotic value of f if there exist a path γ : [0, 1)→ Ĉ and an essential
singularity e ∈ Ess(f) with γ(t) → e as t → 1, such that f(γ(t)) → a as
t→ 1.
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As an example, consider the function

f(z) = exp

(
z

z2 − 9

)
in class K. In this case Ess(f) = {±3}, and the only asymptotic value is
a = 0 (from the properties of the exponential function).
We denote by Asym(f) to the set of asymptotic values of a function f ∈ K.

De�nition C.0.3. Given a function f ∈ K, we de�ne the set of singularities
of f−1 as

sing(f−1) := V Crit(f) ∪Asym(f),

where naturally, V Crit(f) is the set of critical values of function f .
And the postcritical set of f by

P (f) =
∞⋃
n=0

fn(sing(f−1)\Ess(fn).

Some texts consider the closure of this set or the starting index n = 1.
In the case of rational maps, recall that there are no Baker domains in this
case, it is well know that attractive and rotation domains has a close relation
with the set of singularities of f−1. This relation is given in the following
result.

Theorem C.0.4 ([Ber1], Theorem 7). Let f be a meromorphic function and
let C = {U0, U1, ..., Up−1} be a periodic cycle of components of F(f).

• If C is a cycle of immediate attractive basins of Leau domains, then
Uj ∩ sing(f−1) 6= ∅ for some j ∈ {0, 1, ..., p− 1}. More precisely, there
exists j ∈ {0, 1, ..., p−1} such that Uj ∩sing(f−1) 6= ∅ contains a point
which is not preperiodic or such that Uj contains a periodic critical
point (in which case C is a cycle of superattractive basins).

• If C is a cycle of Siegel discs or Herman rings, then ∂Uj ⊂ P (f) for
all j ∈ {0, 1, ..., p− 1}.

From the above theorem we can deduce that the number of immediate
attractive basins or Leau domains does not exceed the number of singularities
of f−1. Which in the case of rational function is �nite, giving a bound for
the number of immediate attractive basins and Leau domains. The bound
for rotation domains was sharpened by M. Shishikura in [Sh].
For Baker domains the relation with singularities of f−1 is not clear. There
are examples of Baker domains without singularities of f−1 (univalent Baker
domains) and there are examples with in�nitely many singularities of f−1

in it (see Examples in [Ri]).
The more accurate relation is given by Bergweiler in [Ber4].
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Theorem C.0.5. Let f be a transcendental entire function with an invariant
Baker domain U and U ∩ sing(f−1) = ∅, then there exists a sequence {pn}n
such that pn ∈ O+(sing(f−1)), |pn| → ∞, |pn+1/pn| → 1 and dist(pn, U) =
o(|pn|) as n→∞.

The above theorem, tell us that a Baker domain cannot lie too far from
the set P (f).
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