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Abstract

In this thesis, we discuss invariants in prime characteristic inspired by objects in bira-
tional complex geometry. We study the test ideal, the F -jumping exponent, and the
F -threshold of an ideal. The F -jumping exponents are the points where the test ideal
change. We discuss the proof that the F -jumping exponents are rational numbers and
there are finitely many in every bounded interval for polynomial rings. We also in-
troduce the F -thresholds for every Noetherian ring. We compute the F -threshold of
a maximal ideal in a Stanley-Riesner ring using properties of combinatorial commu-
tative and integral closure.
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Chapter 1

Introduction

The purpose of this thesis is to provide some concepts of commutative alge-
bra which are related to geometry. The main tool that we use is the F - thresh-
old of an ideal in a ring with prime characteristic p. This concept is worked with
the use of a Frobenius map (see Chapter 2). This map gives a vast arsenal of
techniques in commutative algebra, algebraic geometry, and representation theory.

Let us discuss a relationship between algebra and geometry. Suppose that we are
working in the complex space Cn. We define V(f1, ..., f`) as the set of all solutions
to the system of polynomial equations f1(x) = 0, ..., f`(x) = 0. This set is called
algebraic variety. We can make sense of the concepts of dimension, irreducibility,
and smoothness of V(f1, . . . , f`) by using the algebra associated to f1, . . . , f`. The
mathematical area that studies this interaction is algebraic geometry, and its algebraic
side is dominated by commutative algebra.

We consider, for instance, a polynomial f over a real field, f vanishes at x0 ∈ Cn.
We say that x0 has a mutiplicity of at least n in f if (∂

α1f

∂x
α1
1
· · · ∂αnf

∂xαnn
)(x0) = 0 for every

α1 + . . .+αn ≤ n− 1. We say that x0 is a singular point in V(f) if all the derivations
of f vanish at x0; in particular, x has multiplicity at least 2. If x0 is not singular, we
say that it is smooth or regular.

f smooth at (0, 0) f singular at (0, 0)

There are several invariants used to detect the singularity, notably the Hilbert-
Samuel multiplicity (which was described above using differential operators). How-
ever, this method is not good for measuring a singularity. For example, the polyno-
mials y2 − x3 − x2, y2 − x3 and y2 − x9 have multiplicity 2, but the shape of curves
is very different.
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y2 − x3 − x2 = 0 y2 − x3 = 0 y2 − x9 = 0

In order to measure the singularity, we use an analytic approach. We study the
following function changes

ϕ : CN \ V (f) −→ R

z −→ 1

| f(z) |2λ
,

where f is a polynomial and λ ∈ R≥0. We observe that ϕ1 does not belong to L2

because its integral in the neighborhood of the vanishing point is not convergent.
In this set, we look for a positive large value one λ in which the

∫
1
|f |2λ is finite in

some neighborhoods of the vanishing point of f . This value is called the log-canonical
threshold or the complex singularity exponent of f at a vanishing point x0 and is
defined by

lctx0(f) = sup{λ ∈ R| there exists a neighborhood B at x such that

∫
B

1

| f |2λ
<∞}.

These invariants measure the sharpness of a curve at a point x0. For instance, the
log-canonical thresholds of the curves above are 1, 5/6 and 11/18. The previous def-
inition can be extended to any ideal I ⊆ C[x1, . . . , xn]. Furthermore, one can use
the resolution of singularities to define the log canonical threshold over other fields
with characteristic zero. However, we can use neither integrals nor the resolution of
singularities in prime characteristic.

In order to study singularities in prime characteristic, one turns to the Frobenious
map. This is motivated by Kunz’s Theorem [Kun69], which states that a ring is
regular if and only if the Frobenius map is faithfully flat. Let R denote a finitely
generated K-algebra over a field of prime characteristic. The F -threshold of an ideal

(f) is defined by cm(f) = lime→∞
νmf (pe)

pe
where νmf (pe) = max{r ∈ N| f r * m[pe]}

and m is the maximal ideal which defines a point. If R = K[x1, . . . , xn], then the
F -threshold is called the F -pure threshold and denoted by fpt(I). If the ideal I comes
from an ideal defined over Z[x1, . . . , xn], the F -pure thresholds and the log canonical
thresholds can be compared as follows limp→∞ fpt(I mod p) = lct(I) [MTW05, HY03].

One can study higher F -thresholds via a class of ideals called the test ideals.
These have become a fundamental tool in the study of birational geometry in prime
characteristic [ST12]. The generalized test ideals τ(aλ) are defined via Frobenius

fractional powers, a[ 1
pe

]. Since τ(aλ) is parameterized by a real number λ, we can
consider the points where they change. These are called the F -jumping exponents of
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an ideal. It tuns out that the F -thresholds and F -jumping exponents coincide with
a polynomial ring.

Motivated by the behavior over polynomial rings, one may wonder if this can be
resembled over rings with mild singularities. It turns out that the F -thresholds are
defined in great generality. The only assumption needed is that the ring is Noethe-
rian. In this manuscript, we discuss examples related to combinatorial commutative
algebra.

In summary, in this work we work with the test ideals, the F -jumping exponents,
and the F -thresholds of a ring in prime characteristic motivated which is by invariants
used in birational geometry in characteristic zero. In addition, we discuss computa-
tions of these invariants for a combinatorial setting and discuss open questions. We
now give a brief description of each chapter in this thesis.

Chapter 2 gives an introduction to the Frobenius map. In particular, we show
how it works and state a few basic properties. The chapter also contains material
about integral closure of ideals. We also discuss a few properties that are crucial
for the study of F -thresholds. In particular, this closure operation is very helpful
to prove the main theorem in Chapter 5. The main reference for methods in prime
characteristic is Huneke’s book on tight closure [Hun96] and the main reference for
integral closure is Swanson and Huneke’s book [HS06].

Chapter 3 gives the introduction and properties for the generalized test ideals,
F -jumping exponents and F -thresholds in a polynomial ring. Our study is based
on the work of Blickle, Mustata and Smith [BMS08]. At the end of the chapter, we
conclude that in the polynomial ring, F -jumping exponents and F -threshold values
are the same. Furthermore, we discuss the proof that the set of F -jumping exponent
numbers is a discrete subset of the rational numbers.

Chapter 4 extends the notion of F -thresholds to any Noetherian ring with prime
characteristic. We define the F -threshold for an ideal a with respect to any ideal J
where a ⊆

√
J . In particular, we focus on F -thresholds with respect to a maximal

ideal. In addition, we give the F -threshold properties as the techniques to compute
the F -threshold values. The main references are [DSNBP, MTW05].

Chapter 5 gives examples of F -thresholds which are related to combinatorial com-
mutative algebra. We give an introduction to Stanley-Reisner theory based on the
book by Miller, Sturmfels [MS05]. In particular, we point out a correspondence
between simplicial complexes and squarefree monomial ideals. In this chapter, we
explicitly compute the diagonal F -threshold, cm(m), of a Stanley-Reisner ring. This
result may already be known to the experts, but it has not been recorded in the
literature.

In this thesis is assumed basic knowledge of commutative algebra (eg [Eis95,
AM69]).
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Chapter 2

Background

In this chapter we introduce the basic regarding the Frobenius map. This is the main
tool to study singularities in prime characteristic. We also discuss integral closure.
This is an important operation on ideals, which will be helpful for the main theorem
in Chapter 5.

All rings in this manuscript are commutative, Noetherian, and of the prime char-
acteristics p.

2.1 Frobenius map

Since our ring has prime characteristic p, we have that

(r1 + r2)p = (r1)p + (r2)p & (r1 · r2)p = r1
p · r2

p.

We define the Frobenius map by

F : R 7−→ Rp

r 7−→ rp.

We denote F e by F ◦ F ◦ ... ◦ F , the e−iteration of the Frobenius map. Then,
F e(r) = rp

e
. If R is reduced, then R and Im(F e) are isomorphic under eth-power of

the Frobenius map.
Let I and J be two ideals of R, then their ideal quotient is defined by

(I : J) = {r ∈ R| rJ ⊆ I},

for any R-algebra S. Since R is Noetherian, J is finitely generated so we suppose
that J = (g1, ..., gl).

Claim 2.1.1. Let S be an R-algebra. If S is free as an R-module, then (I : J)S =
(IS : JS).

Proof. Define a morphism

ϕ : R −→ (R/I)`

r −→ ([rg1], ..., [rgl]).
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If ϕ(r) = 0 then ([rg1], ..., [rgl]) = 0. This means that rgi ∈ I for all i = 1, ..., `.
We have that kerϕ = (I : J). Then we obtain a natural exact sequence

0 7−→ (I : J) 7−→ R 7−→ (R/I)`.

Since S is a free R-module, we obtain an exact sequence

0 7−→ (I : J)S
Id⊕n7−→ S

ϕ⊕n7−→ ((S/IS)`).

From the last exact sequence, we obtain (I :R J)S = (IS :S JS).

We set q = pe where e is a positive integer. If J is an ideal of R, we denote that
J [q] is an ideal of R that is generated by the qth- power of the elements in J ,

J [q] = (f q|f ∈ J).

We observe that J [q] ⊆ Jq for any ideal J . We note that J [q] = F e(J)R. Since F e is
an isomorphism between R and F e(R), we obtain

F e(I :R J) = (F e(I) :F e(R) F
e(J)).

Proposition 2.1.2. If R = K[x1, ..., xn], then R is Rpe-free.

Proof. For the sake of clarity, we assume that K is perfect. The general proof follows
from the fact that K is a Kpe-vector space.

We observe that R is an Rpe-module, because Rpe is a subring. Let e is a positive
integer and f =

∑
0≤αi≤mi aα1,··· ,αnx

α1
1 · · ·xαnn , where mi ∈ N and aα1,··· ,αn ∈ R .

If xα is a monomial term in f , such that αi ≥ pe, we can apply division algorithm
to obtain β ∈ peNn and θ ∈ Nn such that xα = xβxθ and θi ≤ pe − 1 for every i.

Then, we have

f =
∑

0≤αi≤pe−1

bα1,··· ,αnx
α1
1 · · · xαnn ,

where bα1,··· ,αn ∈ Rpe are uniquely determined by f . This implies that R is Rpe-free
with a basis

{xα1
1 · · ·xαnn | 0 ≤ αi ≤ pe − 1, for any i = 1, 2, ..., n}.

Proposition 2.1.3. If R is Rq-free, q = pe, then

(I :R J)[q] = (I [q] :Rq J
[q]).

In particular, this holds if R is a polynomial ring over the field with prime character-
istic.

Proof. We note that F e(I :R J) = (F e(I) :F e(R) F
e(J)). Since R is Rpe-free, then

it follows that F e(I : J)R = (F e(I) :F e(R) F
e(J))R = (F e(I)R : F e(J)R) by Claim

2.1.1. Hence, (I :R J)[q] = (I [q] :Rq J
[q]).
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2.2 Integral closure of ideal

In this section, we introduce the basic properties and definitions of integral closure.
The integral closure of an ideal is an important closure operation in commutative
algebra and algebraic geometry. We now recall a few definitions and result about
integral closure. We then use this construction to prove the main result in Chapter 5.
We refer to the book by Swanson and Huneke [HS06] for proofs and further details.

Definition 2.2.1. Let I be an ideal of ring R. An element r ∈ R is an integral over
I if there exist an integer n and an element ai ∈ I i, i = 1, 2, ..., n such that

rn + a1r
n − 1 + · · ·+ an−1r + an = 0.

The set of all elements that are integral over I is called integral closure of ideal,
denoted by I. In addition, I is said to be integrally closed if I = I.

Observation 2.2.2. Let I, J be ideals of R. Then,

(1) I ⊆ I;

(2) I · J ⊆ IJ ;

(3) if I ⊆ J , then I ⊆ J ;

(4) I = I.

Proposition 2.2.3. If I is radical, then I = I.

Proof. We observe that I ⊆ I. Let r ∈ I. Then there exists t ∈ N, ai ∈ I i such that

rt + a1r
t−1 + · · ·+ at−1r + at = 0.

It implies that
rt = −(a1r

t−1 + · · ·+ at−1r + at) ∈ I.
Then r ∈

√
I = I, and so I ⊆ I. This completes the proof.

Examples 2.2.4. Let R = K[x, y].

(1) (x) = (x) because it is a prime ideal.

(2) (x, y) = (x, y) because it is a maximal ideal.

(3) (xd, yd) ⊇ (x, y)d, because if r = xiyd−i, we take

ad = xidyd
2−id = (xd)i(yd)d−i ∈ (xd, yd)d

and aj = 0, j = 1, 2, ..., d− 1 to obtain rd + ad = 0. In fact, one can check that

(xd, yd) = (x, y)d.

Proposition 2.2.5. The integral closure of an ideal is an ideal.

Proposition 2.2.6. Let I be an ideal of R. Then there exists positive integer m such

that I
m+` ⊆ I` for every ` ∈ N.

Theorem 2.2.7. Let R be a d-dimensional standard graded K-algebra with K an
infinite field. Let m be a maximal homogeneous ideal. Then there exists J ⊆ R such
that J is generated by d elements and J = m.
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Chapter 3

F-threshold and Test ideal in
polynomial ring

In this chapter we review the definition and properties of test ideals. Our main
reference is the paper by Blickle, Mustata, and Smith [BMS08].

3.1 Generalized test ideals and F-thresholds

In this section we construct the generalized a test ideal in the form a[ 1
pe

]. This ideal
characterizes the F -thresholds for the ideals in a polynomial ring.

3.1.1 The ideals a[ 1q ]

Definition 3.1.1. Let a be an ideal of R and q = pe, and e be a positive integer. Let

a[ 1
q

] be the smallest ideal of J such that a ⊆ J [q].

By the definition of ideal which is generated by qth-power, a
[ 1
p0

]
= a[1] = a. The

following proposition shows that a[ 1
pe

] always exists.

Proposition 3.1.2. Given a that is an ideal of R, we have that a[ 1
pe

] =
⋂

a⊆J [q] J .

Proof. Since R is free over Rpe , we have

(
⋂

a⊆J [q]

J)[q] = F e(
⋂

a⊆J [q]

J)R = (
⋂

a⊆J [q]

F e(J))R =
⋂

a⊆J [q]

F e(J)R =
⋂

a⊆J [q]

J [q].

From the construction of a[ 1
pe

], we obtain the a ⊆
⋂

a⊆J [q] J [q] = (
⋂

a⊆J [q] J)[q]. Then,

a[ 1
q

] ⊆
⋂

a⊆J [q] J by Definition 3.1.1. In addition, a ⊆ (a[ 1
q

])[q], and so ∩a⊆J [q]J ⊆ a[ 1
pe

]

by Definition 3.1.1.

We note that a[ 1
q

] ⊇ a because a ⊆ J [q] ⊆ J and ∩a⊆J [q]J = a[ 1
q

].
We now present a result that gives a criterion, based on Frobenius, to decide

whether or not an element belongs to an ideal.
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Lemma 3.1.3.

(1) If u ∈ R, then up
e ∈ J [pe] if and only if u ∈ J .

(2) If ∃c 6= 0, u ∈ R, then cup
e ∈ J [pe] for e >> 0 if and only if u ∈ J .

Proof.

(1) To prove this is true we sufficiently prove that if up
e ∈ J [pe] implies that u ∈ J

is true. We pick a morphism of Rpe−modules

ϕ : R −→ Rpe

such that ϕ(1) = 1. This is possible because R is Rpe-free and 1 is part of the
basis.

Suppose that J = (g1, ..., gm). Now we see that, ϕ(up
e
) = up

e ∈ F e(R). Since
F e(J) is an ideal of Rpe , then

up
e

=
∑

1≤i≤m

bp
e

i g
pe

i ⇒ (u−
∑

1≤i≤m

bigi)
pe = 0,

where b ∈ R. Hence, u =
∑

1≤i≤m bigi ∈ J .

(2) To prove this argument is true we just prove that if cup
e ∈ J [pe] implies that

u ∈ J . Suppose that cup
e ∈ J [pe], c 6= 0. Let d = deg c < pe. Since R is free

over Rpe , then

c =
∑

0≤αi≤d

aαx
α1
1 · · ·xαnn ,

where aα ∈ k \ {0}. Define a morphism

π :R −→ Rpe

u −→ projection on xα1
1 · · ·xαnn

of Rpe-modules. Then,
π(cup

e

) = aαu
pe .

Moreover,

J [pe] = (gp
e

1 , ..., g
pe

m ) =
⊕

0≤αi<pe
F e(J)xα1

1 · · ·xαnn .

And π(gp
e

i x
α1
1 · · · xαnn ) = gp

e

i . This is, π(Jp
e
) = F e(J) ⊆ Rpe .

Then
π(cup

e

) = aαu
pe ∈ F e(J).

Since aα is a unit, then a−1
α · π(cup

e
) = up

e ∈ F e(J).

Then, u ∈ J because F e is injective.
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Lemma 3.1.4. Let a and b be the ideals of R. Let q = pe and q′ = pe
′
, where e, e’

are positive integers. Then the following statements hold.

(1) a ⊆ (a[ 1
q

])[q].

(2) If a ⊆ b, then a[ 1
q

] ⊆ b[ 1
q

].

(3) (a ∩ b)[ 1
q

] ⊆ a[ 1
q

] ∩ b[ 1
q

].

(4) (a + b)[ 1
q

] = a[ 1
q

] + b[ 1
q

].

(5) (a · b)[ 1
q

] ⊆ a[ 1
q

] · b[ 1
q

].

(6) (b[q′])[ 1
q

] = b[ q
′
q

] ⊆ (b[ 1
q

])[q′].

(7) b
[ 1
qq′ ] ⊆ (b[ 1

q
])

[ 1
q′ ].

(8) b[ 1
q

] ⊆ (bq
′
)
[ 1
q′q ]

.

Proof.

(1) Since R is Rpe-free, we have a ⊆
⋂

a⊆J [q] J [q] = (
⋂

a⊆J [q] J)[q] = (a[ 1
q

])[q].

(2) Since a ⊆ b ⊆ (b[ 1
q

])[q]. This implies that a[ 1
q

] ⊆ b[ 1
q

].

(3) The statements immediately follow from (2).

(4) For the containment, we have to prove that (a + b)[ 1
q

] ⊆ a[ 1
q

] + b[ 1
q

]. We apply
(1) to be obtained that

a + b ⊆ (a[ 1
q

])[q] + (b[ 1
q

])[q] = (a[ 1
q

] + b[ 1
q

])[q].

By the definition, (a + b)[ 1
q

] ⊆ a[ 1
q

] + b[ 1
q

]. For now we show that a[ 1
q

] + b[ 1
q

] ⊆
(a + b)[ 1

q
]. By using (ii) we have (a + b)[ 1

q
] ⊇ a[ 1

q
] + b[ 1

q
].

(5) We apply (1), then a · b ⊆ (a[ 1
q

])[q] · (b[ 1
q

])[q] = (a[ 1
q

] · b[ 1
q

])[q]. Hence,(a · b)[ 1
q

] ⊆
a[ 1

q
] · b[ 1

q
].

(6) Suppose that q = pe, q′ = pe
′

with e >> e′. By (1) then

b ⊆ (b[ 1
q

])[q] = (b[ 1
pe

])[pe] = (b[ 1
pe

])
[ p
e+e′

pe
′ ]

= ((b[ 1
pe

])[pe
′
])[pe−e

′
].

We obtain that, b[ q
′
p

] ⊆ (b[ 1
q

])[q′].

By Definition 3.1.1, we recall (b[pe
′
])[ 1

pe
] is the smallest ideal of J such that

b[pe
′
] ⊆ J [pe].
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We now show that b[pe
′
] ⊆ J [pe] if and only if b ⊆ J [pe−e

′
].

Let f ∈ b. We have that fp
e′ ∈ J [pe] and so f ∈ J [pe−e

′
]. So this means that

b ⊆ J [pe−e
′
]. It is also true for the inverse because if b ⊆ J [pe−e

′
] implies that

b[pe
′
] ⊆ J [pe]. For this reason, we may say that b

[ 1

pe−e′
]

is the smallest ideal in

J . Therefore, (b[q′])[ 1
q

] = b[ q
′
q

].

(7) By (1) and (6), we obtain

b ⊆ (b[ 1
q

])[q] = (b[ 1
pe

])[pe] = (b[ 1
pe

])
[ p
e+e′

pe
′ ] ⊆ ((b[ 1

pe
])

[ 1

pe
′ ])[pe+e

′
].

Hence, b
[ 1
qq′ ] ⊆ (b[ 1

q
])

[ 1
q′ ].

(8) By (6), it follows that

b = b
[ q
′
q′ ] = (b[q′])

[ 1
q′ ] ⊆ (bq

′
)
[ 1
q′ ] = (bq

′
)
[ q
qq′ ] ⊆ ((bq

′
)
[ 1
qq′ ])[q].

Then b[ 1
q

] ⊆ (bq
′
)
[ 1
qq′ ].

Proposition 3.1.5. Let e1, e2, ..., eN be a free basis of R over Rq. Let h1, h2, ..., hs be
the generators of an ideal b of R, and for every i=1,...,s

hi =
∑

1≤j≤N

aij
qej

with aij ∈ R. Then b[ 1
q

] = (aij|i ≤ s, j ≤ N).

Proof. We first show that b[ 1
q

] ⊆ (aij|i ≤ s, j ≤ N). From the hypothesis, we have
hi ∈ (aqij|i ≤ s, j ≤ N) = (aij|i ≤ s, j ≤ N)[q] , ∀i. Then b = (h1, h2, ..., hN) ⊆
(aij|i ≤ s, j ≤ N)[q] and by the Definition 3.1.1, we have

b[ 1
q

] ⊆ (aij|i ≤ s, j ≤ N).

We now show that (aij|i ≤ s, j ≤ N) ⊆ b[ 1
q

]. Recall that b[ 1
q

] is the smallest of J such

that b ⊆ J [q] and by Proposition 3.1.2, b[ 1
q

] = ∩b⊆J [q]J . So now from these we have
b ⊆ J [q] and let J = (f1, f2, ..., fm), we get J [q] = (f1

q, f2
q, ..., fm

q). Then we express

hi =
∑

1≤j≤m

cijfj
q

for all i = 1, ..., N with cij ∈ R.
We consider in the dual space HomRq(R,R

q) which has e∗1, e
∗
2, ..., e

∗
N as a basis.

We know that
e∗j(ei) = δij.
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Then, e∗j(hi) = aqij. On the other hand,

e∗j(hi) =
∑

1≤j≤m

e∗j(cij)f
q
j ∈ J [q], for all J such that b ⊆ J [q].

Hence, aqij ∈ J [q] for all J and from the Lemma 3.1.3, aij ∈ J for all J such that

b ⊆ J [q]. Then,

(aij|i ≤ s, j ≤ N) ⊆ ∩b⊆J [q]J = b[ 1
q

],

which completes the proof.

3.1.2 Generalized test ideals

Lemma 3.1.6. Let a be an ideal of R. If r, r′, e and e′ are positive integers such
that r

pe
≥ r′

pe′
and e′ ≥ e, then

(ar)[ 1
pe

] ⊆ (ar
′
)
[ 1

pe
′ ].

Proof. From the hypothesis, we have r
pe
≥ r′

pe′
and e′ ≥ e, then we obtain r′ ≤ rpe

′

pe
=

rpe
′−e. Then

ar = (ar)
[ p
e′−e

pe
′−e ]

= (ar[p
e′−e])

[ 1

pe
′−e ] ⊆ (arp

e′−e
)
[ p
e

pe
′ ]

⊆ ((arp
e′−e

)
[ 1

pe
′ ])[pe] ⊆ ((ar

′
)
[ 1

pe
′ ])[pe].

By Lemma 3.1.4, we obtain (ar)[ 1
pe

] ⊆ (ar
′
)
[ 1

pe
′ ].

We observe that for any e that is a positive integer and c > 0,

dcpee
pe

=
dcpee p
pep

≥ dcp
e+1e

pe+1
.

Now we apply Lemma 3.1.6, we obtain a sequence of ideals of R as follows

(adcp
ee)[ 1

pe
] ⊆ (adcpe+1e)[ 1

pe+1 ] ⊆ (adcpe+2e)[ 1
pe+2 ] ⊆ · · ·

Definition 3.1.7. Let a be an ideal of R and c > 0, we define the generalized test
ideal of a with an exponent c as follows

τ(ac) =
⋃
e∈N

(adcp
ee)[ 1

pe
].

Since R is a Noetherian ring then when e >> 0 the sequence {(adcpee)[ 1
pe

]}e∈N
stabilizes. Therefore, τ(ac) = (adcp

ee)[ 1
pe

], for e >> 0.

Proposition 3.1.8. Let a and b be two ideals of R.

(1) If c1 < c2, then τ(ac2) ⊆ τ(ac1).

17



(2) If a ⊆ b, then τ(ac) ⊆ τ(bc).

(3) τ((a
⋂

b)c) ⊆ τ(ac)
⋂
τ(bc) and τ(ac) + τ(bc) ⊆ τ((a + b)c).

(4) τ((a · b)c) ⊆ τ(ac) · τ(bc).

Proof.

(1) By definition of generalized test ideal, we have

τ(ac1) =
⋃
e>0

(adc1p
ee)[ 1

pe
] and τ(ac2) =

⋃
e>0

(adc2p
ee)[ 1

pe
].

By (2) of Lemma 3.1.4, we have (adc2p
ee)[ 1

pe
] ⊆ (adc1p

ee)[ 1
pe

] for all e. Thus,
τ(ac2) ⊆ τ(ac1).

(2) Since a ⊆ b, then adcp
ee ⊆ bdcp

ee. Applying Lemma 3.1.4 (2), we have⋃
e>0

(adcp
ee)[ 1

pe
] ⊆

⋃
e>0

(bdcp
ee)[ 1

pe
],

which completes the proof.

(3) We apply (2) to obtain τ((a ∩ b)c) ⊆ τ(ac)
⋂
τ(bc). Moreover,

τ(ac) ⊆ τ((a + b)c) and τ(bc) ⊆ τ((a + b)c).

Thus, τ(ac) + τ(bc) ⊆ τ((a + b)c).

(4) Since a · b ⊆ a and a · b ⊆ b, then we use (2) to obtain

τ((a · b)c) ⊆ τ(ac) and τ((a · b)c) ⊆ τ(bc).

Hence,
τ((a · b)c) ⊆ τ(ac) · τ(bc).

Proposition 3.1.9. If a is a ideal of R and c is a non-negative real number, there

exists an ε > 0 such that τ(ac) = (ar)[ 1
pe

] whenever c < r
pe
< c + ε. This is, τ(ac) =

τ(ac
′
) where c′ is a rational number of the form r

pe
that approximates c from above

sufficiently well.

Proof. By definition of the generalized test ideal, τ(ac) =
⋃
e>0(adcp

ee)[ 1
pe

] and

(adcp
ee)[ 1

pe
] ⊆ (adcpe+1e)[ 1

pe+1 ]
, for all e.

Since R is a Noetherian ring and when e >> 0, this sequence is stabilized. This is,

τ(ac) = (adcp
ee)[ 1

pe
] = (ar)[ 1

pe
],

18



where e is a sufficient large. Now we check that there are ε > 0 and r is a positive
integer such that c < r

pe
< c + ε. If cpe is not an integer. From the properties of

integer part, we obtain

cpe � dcpee � cpe + 1.

c <
dcpee
pe

< c+
1

pe
.

Take ε > 0 when e is large enough c+ 1
P e
< c+ ε and r = dcpee.

If cpe is an integer, then dcpee = cpe and c < c+ 1
pe
< c+ ε, ε as the previous case

and r = cpe + 1. We now show that τ(ac) = (a(c+ 1
pe

)pe)[ 1
pe

].

I = (acp
e+1)[ 1

pe
] ⊆ (acp

e

)[ 1
pe

] = τ(ac)

For the reverse inclusion, we choose another positive integer e′ such that e′ ≥ e then

c < cpe
′
+1

pe′
= c+ 1

pe′
≤ c+ 1

pe
. Since R is Noetherian and in case e is large enough, we

have

(acp
e+1)[ 1

pe
] = (acp

e′+1)
[ 1

pe
′ ] and τ(ac) = (acp

e

)[ 1
pe

] = (acp
e′

)
[ 1

pe
′ ].

Now we have, acp
e′+1 ⊆ I [pe

′
] = (I [pe])[pe

′−e].

Let u ∈ acp
e
. Then for any v ∈ a, v 6= 0 we have vup

e′−e ∈ acp
e′+1 ⊆ (I [pe])[pe

′−e].
By Lemma 3.1.3, we obtain u ∈ I [pe], i.e. acp

e ⊆ I [pe]. Thus, τ(ac) ⊆ I.

Corollary 3.1.10. If m is a positive integer, then for every c ∈ R≥0 we have

τ((am)c) = τ(acm).

Proof. If c is an positive integer number, then this statement is true. If c is not an
integer, as R is a Noetherian ring, then

τ((am)c) = ((am)dcp
ee)[ 1

pe
] = (adcp

eem)[ 1
pe

] and τ(acm) = (adcmp
ee)[ 1

pe
],

where e is large enough. We choose e >> 0. Then there exists ε > 0 with cm <
dcpeem
pe

< cm+ε. When e is large enough then dcp
eem
pe

is closed to cm and by Proposition

3.1.9, we obtain τ(acm) = (adcp
eem)[ 1

pe
] = τ((ac)m).

Corollary 3.1.11. For every ideal a in R and a nonnegative real number c, there
exists ε > 0 such that τ(ac) = τ(ac

′
) for every c′ ∈ [c, c+ ε).

Proof. If e is large enough, τ(ac) = (adcp
ee)[ 1

pe
] and τ(ac

′
) = (adc

′pee)[ 1
pe

]. From the

previous proposition, take ε > 0 we have τ(ac) = (ar)[ 1
pe

] whenever c < r
pe
< c + ε.

By hypothesis c ≤ c′ < c+ ε then c ≤ dc′pee
pe

< c+ ε.
If c = c′ there is nothing to prove.
If c < dc′pee

pe
< c+ ε, then we apply Proposition 3.1.9 to obtain

τ(ac) = (adc
′pee)[ 1

pe
] = τ(ac

′
).

The proof is completed.
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3.1.3 Skoda’s theorem

Proposition 3.1.12. If a is an ideal of R which is generated by m elements, then
for every c ≥ m we have

τ(ac) = a · τ(ac−1).

Proof. Let e be large enough, we have

τ(ac) = (adcp
ee)[ 1

pe
] and τ(ac−1) = (ad(c−1)pee)[ 1

pe
] = (adcp

ee−pe)[ 1
pe

].

It is sufficient to show that (adcp
ee)[ 1

pe
] = a · (adcpee−pe)[ 1

pe
]. Let r = dcpee. We focus

on the first containment. We note that for all r ≥ pe,

ar−p
e · a[pe] ⊆ ar ⊆ ((ar)[ 1

pe
])[pe].

Then
ar−p

e ⊆ (((ar)[ 1
pe

])[pe] : a[pe]) = ((ar)[ 1
pe

] : a)[pe].

It follow that,

(ar−p
e

)[ 1
pe

] ⊆ ((ar)[ 1
pe

] : a).

This says that,

a · (ar−pe)[ 1
pe

] ⊆ (ar)[ 1
pe

].

For the reverse inclusion, suppose that a = (f1, ..., fm). We have r = dcpee ≥ mpe,
then r−1 ≥ m(pe−1). It is true that ar−p

e ·a[pe] ⊆ ar from the first proof. On the other
hand, ar = {fn1

1 · · · fnmm | n1 + ...+ nm = r ≥ m(pe − 1) + 1} and a[pe] = (fp
e

1 , ..., f
pe

m ).
Show that ar−p

e · a[pe] ⊇ ar it is sufficient to prove that there exists i ∈ {1, 2, ...,m}
such that ni ≥ pe.

Suppose ni ≤ pe − 1 for all i, then

m(pe − 1) + 1 ≤ n1 + ...+ nm < m(pe − 1).

It is equivalent to
m(pe − 1) + 1 ≤ m(pe − 1)⇒ 1 ≤ 0.

Then it is a contradiction. It follows that fn1
1 · · · fnmm = fn1

1 · · · f
ni−pe
i · · · fnmm · fp

e

i ∈
a[pe] · ar−pe . Now we have, ar ⊆ a[pe] · ar−pe . Observe that,

ar ⊆ a[pe] · ar−pe ⊆ a[pe] · ((ar−pe)[ 1
pe

])[pe] = (a · (ar−pe)[ 1
pe

])[pe]

Hence, (ar)[ 1
pe

] ⊆ a · (ar−pe)[ 1
pe

], which completes the proof.

Lemma 3.1.13. τ(ac) = τ(ac) for every c that is a positive real number.

Proof. Since a ⊆ a then τ(ac) ⊆ τ(ac). For reverse inclusion, we know that there
exists m a positive integer such that am+` ⊆ a` for every `. By Corollary 3.1.11, we
have τ(ac) = τ(ac

′
) and τ(ac) = τ(ac

′
) for every c′ ∈ [c, c+ ε). We see that

τ(ac) = τ(ac
′
) = τ((am+`)

c′
m+` ) ⊆ τ((a`)

c′
m+` ) ⊆ τ(ac),

for ` big enough such that c < `c′

m+`
. This is, τ(ac) ⊆ τ(ac).
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3.1.4 F-jumping exponent and F-thresholds

Definition 3.1.14. A positive real number c is a F − jumping exponent for ideal
a if τ(ac) 6= τ(ac−ε) for every positive ε.

Definition 3.1.15. Let a be an ideal of R. For a fixed ideal J in R such that a ⊆
√
J

and for an integer e > 0, we define νJa (pe) to be the largest nonnegative integer r such
that ar * J [pe].

Claim 3.1.16. If ar * J [pe], then arp * J [pe+1].

Proof. We suppose that there exists p which satisfies arp ⊆ J [pe+1] = (J [pe])[p]. Now
we have arp = (ar)p ⊆ (J [pe])p. Recall Lemma 3.1.3, for any u ∈ ar, we observe that
up ∈ (J [pe])p then u ∈ J [pe]. Hence, ar ⊆ J [pe] is a contradiction.

Using Definition 3.1.15, we have some properties of νJa (pe) as follows:

(1) aν
J
a (pe)+1 ⊆ J [pe].

(2) νJa (pe) ≤ νJa (pe+1) and p · νJa (pe) ≤ νJa (pe+1). Because aν
J
a (pe) * J [pe] by Claim

3.1.16, we obtain apν
J
a (pe) * J [pe+1].

(3) νJ
[p]

a (pe) = νJa (pe+1).

Now we have
νJa (pe)

pe
=
p · νJa (pe)

pe+1
≤ νJa (pe+1)

pe+1
.

The sequence {νJa (pe)}e∈N is increasing. Note that if a is generated by m elements,
then from the proof of Proposition 3.1.12, we have am(pe−1)+1 ⊆ a[pe]. Since a ⊆

√
J ,

there exists ` a positive integer such that a` ⊆ J . We have a`(m(pe−1)+1) ⊆ a`[p
e] ⊆ J [pe].

From Definition 3.1.15, we observe that νJa (pe) ≤ `(m(pe − 1) + 1) − 1 for every e.
Now we let e approach infinity, then the value of the sequence is closed to `m. We
define F -Threshold of a with respect to J as

cJ(a) = lim
e→∞

νJa (pe)

pe
= sup

e∈N

νJa (pe)

pe
.

Proposition 3.1.17. Let a be an ideal in R.

(1) If J is an ideal in R such that a ⊆
√
J , then

τ(ac
J (a)) ⊆ J.

(2) If c is a nonnegative real number, then a ⊆
√
τ(ac) and

cτ(ac)(a) ≤ c.

Proof.
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(1) By Corollary 3.1.11, there exists ε > 0 and c′ ∈ [cJ(a), cJ(a) + ε) we have
τ(ac

J (a)) = τ(ac
′
). We take e >> 0, such that

τ(ac
′
) = (adc

′pee)[ 1
pe

].

Since c′ > cJ(a) ≥ νJa (pe)
pe

for all e, dc′pee ≥ νJa (pe) + 1. We obtain

adc
′pee ⊆ aν

J
a (pe)+1 ⊆ J [pe].

Then, (adc
′pee)[ 1

pe
] ⊆ J which completes the proof.

(2) Since τ(ac) = (adcp
ee)[ 1

pe
] whenever e is large enough, then by Definition 3.1.1

we have adcp
ee ⊆ (τ(ac))[pe] ⊆ τ(ac). Then a ⊆

√
τ(ac).

We now show another claim, by the the property (i) of Lemma 3.1.4 we observe
that

adcp
ee ⊆ ((adcp

ee)[ 1
pe

])[pe] = τ(ac).

This means that, νJa (pe) ≤ dcpee − 1 < cpe. By the definition of F -threshold
then

cJ(a) = sup
e∈N

νJa (pe)

pe
≤ c.

Corollary 3.1.18. For every ideal a in R, the set of F-jumping exponents for a is
equal to the set of F- thresholds of a (as we range over all possible ideals J).

Proof. Let
A = {α| α is a F -jumping exponent for a}

and
B = {cJ(a)|J ⊆ R and a ⊆

√
J}.

We now show that A = B by double containment.
We first show that A ⊆ B. Take c ∈ A, then τ(ac) 6= τ(ac−ε) for every ε > 0. Let

J = τ(ac) then by (ii) of Proposition 3.1.17, a ⊆
√
J and cJ(a) ≤ c. So we have

τ(ac) ⊆ τ(ac
J (a)) ⊆ J = τ(ac).

By F -jumping, we get c = cJ(a), that is c ∈ B.
We now show that B ⊆ A. Let α = cJ(a) ∈ B is an F -threshold for an ideal J

of R such that a ⊆
√
J. Suppose there exists α /∈ A, then there exists α′ < α with

τ(aα
′
) = τ(aα) ⊆ J . If e is large enough, we have

τ(aα
′
) = (adα

′pee)[ 1
pe

] ⊆ J.

It means that,
adα

′pee ⊆ J [pe].
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By Definition 3.1.15, we have

νJa (pe) ≤ dα′pee − 1 < α′pe.

From the definition of F -threshold, we obtain that

α = cJ(a) = sup
e∈N

νJa (pe)

pe
≤ α′,

which is a contradiction. Hence, α ∈ A.

3.2 Discreteness and rationality

Proposition 3.2.1. Let a be an ideal in R = K[x1, ..., xn], where K is a field of
characteristic p such that [K : Kp] < ∞. If a can be generated by polynomials of
degree at most d then, for every non-negative real number c, the ideal τ(ac) can be
generated by polynomials of degree at most bcdc.

Proof. We note that when e is large enough, then τ(ac) = (adcp
ee)[ 1

pe
]. Let r =

dcpee. Suppose that a = (f1, ..., fm| deg (fi) ≤ d, ∀i = 1, 2, ...,m), then ar =
(f r1 , ..., f

r
m| deg (fi) ≤ d, ∀i = 1, 2, ...,m) = (h1, ..., hm) where deg(hi) at most rd.

Since [K : Kp] < ∞, we let b1, ..., bs to be a basic of K over Kpe . The polynomial R
can be expressed by

R =
∑
αl≥0

(
∑

1≤i≤s

Kpebi)x
α1
1 · · ·xαnn .

We consider R over Rpe , then

R =
∑

0≤i≤s
0<αj<p

e−1

Rpe · bi · xα1
1 · · ·xαnn .

Thus, the basic of R over Rpe is

{bixα1
1 · · ·xαnn |1 ≤ i ≤ s, 0 ≤ αj ≤ pe − 1}.

The generators of ar can be expressed as

hl =
∑

0≤i≤s
0<αj<p

e−1

cp
e

i,l,α1,...,αn
· bi · xα1

1 · · ·xαnn (1),

for all l = 1, 2, ...,m, with ci,l,α1,...,αn ∈ R. By Proposition 3.1.5, we have

(ar)[ 1
pe

] = (ci,l,α1,...,αn|1 ≤ s, 0 ≤ αj ≤ pe − 1,∀j, l = 1, 2, ...,m).

From (1), we see that
deg (cp

e

i,l,α1,...,αn
) ≤ deg(hl) ≤ rd.
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Then

deg (ci,l,α1,...,αn) ≤ rd

pe
=
dcpee d
pe

.

If cpe is an integer, then

deg (ci,l,α1,...,αn) ≤ rd

pe
=
cped

pe
= cd.

In this case, we have deg (ci,l,α1,...,αn) ≤ bcdc . If cpe is not an integer, then we obtain
that

deg (ci,l,α1,...,αn) ≤
⌊
rd

pe

⌋
=

⌊
dcpee d
pe

⌋
.

If e is large enough, τ(ac) = (adcp
ee)[ 1

pe
], where c < dcpee

pe
and dcpee

pe
is very close to c.

Hence, bcdc =
⌊
dcpeed
pe

⌋
, which is a contradiction.

Proposition 3.2.2. Let a be an ideal in a regular F -finite ring R.

(1) If α is an F -jumping exponent for a, then also pα is an F -jumping exponent.

(2) If a can be generated by m elements and if α > m is an F -jumping exponent
for a, then also α− 1 is an F -jumping exponent.

Proof.

(1) By Corollary 3.1.18 , there is an ideal J such that a ⊆ Rad(J) with α = cJ(a).

pα = pcJ(a) = lim
e→∞

pνJa (pe)

pe
= lim

e→∞

νJ
[p]

a (pe)

pe
= lim

e→∞

νJa (pe+1)

pe
= cJ [p](a).

By Corollary 3.1.18, pα is an F -jumping exponent for a.

(2) Suppose that α−1 is not an F -jumping exponent for a. Then there exists ε > 0
such that τ(aα−1) = τ(aα−1−ε) and α− ε > m. By Proposition 3.1.12,

τ(aα) = a · τ(aα−1) = a · τ(aα−1−ε) = τ(aα−ε).

This contradiction completes this proof.

Theorem 3.2.3. Let k be a field of characteristic p > 0 and let R be a regular F -finite
ring, essentially of finite type over k. Suppose that a is an ideal in R.

(1) The set of F -jumping exponents of a is discrete (i.e. in every finite interval
there are only finitely many such numbers).

(2) Every F -jumping exponents of a is a rational number.

Proof.
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(1) Let A be the set of F -jumping exponent of a. To prove that A is discrete
it just shows that A has no accumulation point. Suppose that there exists a
sequence {αn}n∈N converges to α ∈ A. Recall Corollary 3.1.11, there exists
ε > 0 such that τ(aα) = τ(aα

′
) for all α′ ∈ [α, α + ε). Then, αn < α for all

n ∈ N. Now we reduce this sequence to its subsequence {αm}m∈N such that
αm < αm+1 < α. Assume that a is finitely generated by polynomials with
degree at most d. By the Proposition 3.2.1, we obtain that τ(aαm) is finitely
generated by polynomials with degree at most bαmdc < bαdc. If e is large
enough, we observe that {τ(aαm)}m∈N is a strictly decreasing sequence. We
take V = {f ∈ R|deg(f) ≤ bαdc}; it is a vector subspace of R over k. Let
Vm = τ(aαm) ∩ V . It is a vector subspace of R and Vm with finite dimension.
We now have a sequence Vm ⊇ Vm−1 ⊇ · · · . By strictly decreasing of vector
subspace, then the dimension vector subspace is strictly decreasing, this is,
dimVm ≥ dimVm−1 ≥ .... Let e approach infinity, then the dimension of vector
subspace goes to negative. This is a contradiction.

(2) Let α ∈ A. Then by Proposition 3.2.2 (1) we have peα ∈ A. If peα ∈ N then
α ∈ Q. If peα /∈ N. Suppose that a is generated by m polynomials, there are
some e1 >> 0 such that pe1α > m. Then by Proposition 3.2.2 (2), we obtain
that pe1α−1 is an F -jumping exponent for a and pe1α−1 > m−1. In this case,
there exists ` ≥ 1 is a positive integer such that peα−`+1 > m is an F -jumping
exponent and pe1α− `1 ∈ [m− 1,m). By Proposition 3.2.2 (2), pe1α− `1 is also
an F -jumping exponent. Since e ∈ N, e >> 0 and from the previous (i), there
are finitely many F -jumping exponents in [m− 1,m). Then there exist `2 and
`1 are integers such that pe1α − `1 = pe2α − `2 ∈ [m − 1,m). We now obtain
that α = `2−`1

pe2−pe1 .

Hence, α ∈ Q+. These complete the proof of this theorem.

Corollary 3.2.4. Let a be an ideal of R. Then for every F -threshold element of a
is a rational number at any ideal J such that a ⊆

√
J , this is, cJ(a) ∈ Q+.

Proof. This proof follows from Corollary 3.1.18 and Theorem 3.2.3.

Proposition 3.2.5. Let a be an ideal of R which is generated by m polynomials of

degree at most d. If e0 is such that pe0 > md and N =

(
md+ n

n

)
, then for every

F -jumping exponent α of a we have pr(ps−1)α ∈ N for some r ≤ e0 +N and s ≤ N .

Proof. Take α as an F -jumping exponent of a. If α < 1
d
< m, then τ(aα) is generated

by polynomials of degree at most bαdc. Since αd < 1, we obtain bαdc = 0. Hence,
τ(aα) = (c1, ..., cn) = (1) = R or τ(aα) = 0 because ci ∈ k. In this case, we take
0 < ε < 1

d
, then τ(aα) = τ(aα−ε); it is a contradiction. Now we have α ≥ 1

d
, then

peα ≥ pe0 1
d
> m for all e ∈ [e0, e0 + N ]. By the proof of Theorem 3.2.3 (2), we have

pe1α− `1 = pe2α− `2 for e0 ≤ e1 < e2 ≤ e0 +N . Then pe1(pe2−e1 − 1)α = `2− `1 ∈ N.
This completes the proof.
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Example 3.2.6. Given R = K[x1, ..., xn], where K is a field with a prime character-
istic p. Show that

τ(mλ) =

{
R if λ < n

mbλc−n+1 if λ ≥ n
,

where m = (x1, ..., xn).

Proof. We note that τ(mλ) = ∪e>0(mdλp
ee)[ 1

pe
] = (mdλp

ee)[ 1
pe

], when e >> 0.

• Case λ < n: Take λe = n(1 − 1
pe

) < n, for e ∈ N. Then we have τ(mλ) =

(mn(1− 1
n

)pe)[ 1
pe

] = (mnpe−n)[ 1
pe

]. We realize that

mnpe−n = (xα1
1 · · ·xαnn |α1 + · · ·+ αn = n(pe − 1)).

Since mnpe−n ⊆ R and R is Rpe-free with a basis B = {xβ1

1 · · ·xβnn |0 ≤ βi ≤
pe − 1, for 1 ≤ i ≤ n}, then we observe that when αi = pe − 1 for all
i = 1, ..., n, xp

e−1
1 · · · xpe−1

n is an element of B. By Proposition 3.1.5, we have

1 ∈ (mnpe−n)[ 1
pe

]. Hence, τ(mλe) = R. We notice that for all λ < n, there
exists e ∈ N such that λ < λe < n. Then it follows that τ(mλe) ⊆ τ(mλ) by
Proposition 3.1.8 (i). Thus, τ(mλ) = R.

• Case λ = n: We obtain τ(mλ) = (mnpe)[ 1
pe

], and pe ≥ n for e >> 0 . It is
similar to the first case

mnpe = (xα1
1 · · ·xαnn |α1 + · · ·+ αn = npe).

If αi0 = 2pe − 1, αi0+1 = n− 1 and αi = pe − 1 for i 6= i0, i0 + 1. Then we have

xα1
1 · · ·xαnn = x2pe−1

i0
Πi 6=i0,i0+1x

pe−1
i · xn−1

i0+1 = xp
e−1
i0

Πi 6=i0+1x
pe−1
i · xn−1

i0+1.

Since Πi 6=i0+1x
pe−1
i · xn−1

i0+1 ∈ B, then xi0 ∈ (mnpe)[ 1
pe

]. We take ii0 ∈ {1, 2, ..., n},
it follows that m = (x1, ..., xn) ⊆ (mnpe)[ 1

pe
]. On the other hand, xα1

1 · · ·xαnn
where α1 + · · ·+αn = npe there exists αi ≥ pe. It concludes that mnpe ⊆m[pe].

Then (mnpe)[ 1
pe

] ⊆m. Hence, it holds for this case.

• Case λ > n: Let k ∈ N such that n+k−1 < λ ≤ n+k. We proceed by induction
on k. Suppose that k = 0. Then n < λ ≤ n+ 1, and τ(mλ) = m · τ(mλ−1). By
the second case τ(mλ−1) = R. We obtain τ(mλ) = mR = m = mbλc−n+1. We
now assume our claim for k and prove it is true for k+ 1. By Skoda’s theorem,
we observe that

(mλ) = m · τ(mλ−1)

= m ·mk , by hypothesis of induction

= mk+1

= mbλc−n+1.

Therefore, it completes the proof.
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Chapter 4

F-thresholds for all Noetherian
rings

In the previous sections, we have discussed the F-thresholds of an ideal in a polynomial
ring with prime characteristic p. Now in this section, we present the F- threshold of an
ideal for all Noetherian rings with prime characteristic p. In particular, for a singular
ring. Part of this work is based on a recent paper by De Stefani, Núñez-Betancourt,
and Pérez [DSNBP]. We also generalize some properties from the paper by Mustat,
Takagi, and Watanable [MTW05].

4.1 F-threshold of an ideal

Definition 4.1.1. Let R be a ring of prime characteristic p. Let a and J be ideals
of R such that a ⊆

√
J , we define

νJa (pe) = max{r ∈ N| ar * J [P e]}.

Notation 4.1.2. If a is an ideal of a ring R, we define µ(a) as the minimum number
of generators of a.

Lemma 4.1.3. Let R be a Noetherian ring with a prime characteristic p and a be an
ideal. Then for every r ≥ (µ(a) + s− 1)pe, we have that ar = ar−sp

e · (a[pe])s.

Proof. We proceed by induction. Let u = µ(a) and let a = (f1, ..., fu). We note that
ar = (fα1

1 · fα2
2 · · · fαuu | α1 + ...+αu = r). If s = 1, then r ≥ upe. Similar to the proof

in Proposition 3.1.12, there exists αi ≥ pe for some i ∈ {1, 2, ..., u}. This follows that

fα1
1 · fα2

2 · · · fαuu = fα1
1 · fα2

2 · · · f
αi−pe
i · · · fαuu · f

pe

i ∈ ar−p
e · a[pe].

Hence, ar ⊆ ar−p
e · a[pe] and we already have that ar = ar−p

e · ape ⊇ ar−p
e · a[pe].

Suppose that it is true for s ≥ 1. We now prove that it is true for s+ 1. In this case,
we have r ≥ (u+ (s+ 1)− 1)pe = (u+ s)pe. Then,

ar−(s+1)pe · (a[pe])s+1 = a(r−spe)−pe · (a[pe])s · a[pe]

= a(r−spe)−pe · a[pe] · (a[pe])s

= ar−sp
e · (a[pe])s = ar, by the induction hypothesis.
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Lemma 4.1.4. Let R be a Noetherian ring of prime characteristic p. Let a, J ⊆ R
be ideals such that a ⊆

√
J. Then

νJa (pe1+e2)

pe1+e2
− νJa (pe1)

pe1
≤ µ(a)

pe1
,

for every e1, e2 ∈ N.

Proof. It is sufficient to prove that νJa (pe1+e2) ≤ pe2 · νJa (pe1) + pe2 · µ(a). We apply
Lemma 4.1.3 by taking r = pe2 · νJa (pe1) + pe2 · µ(a) + 1 and s = νJa (pe1), then

ap
e2 ·νJa (pe1 )+pe2 ·µ(a)+1 = ap

e2 ·µ(a)+1 · (a[pe2 ])ν
J
a (pe1 ).

We now prove that ap
e2 ·µ(a)+1 ⊆ a[pe2 ]. Suppose that it fails. Then for any fα1

1 ·
fα2

2 · · · fαuµ(a) such that α1 + α2 + ...+ αµ(a) = pe2 · µ(a) + 1, we obtain αi < pe2 for all

i = 1, 2, ..., µ(a). Hence, α1 + α2 + ... + αµ(a) < µ(a)pe2 . It is a contradiction. For
now we have

ap
e2 ·νJa (pe1 )+pe2 ·µ(a)+1 ⊆ a[pe2 ] · (a[pe2])ν

J
a (pe1 )

= (a[pe2]

)ν
J
a (pe1 )+1

= (aν
J
a (pe1 )+1)[pe2] ∈ (J [pe1 ])[pe2 ] = J [pe1+e2 ].

Therefore, νJa (pe1+e2) ≤ pe2 · νJa (pe1) + pe2 · µ(a). It completes the proof.

Theorem 4.1.5. Let R be a ring of prime characteristic p. If a, J ⊆ R are ideals

such that a ⊆
√
J , then lime7−→∞

νJa (pe)
pe

exists.

Proof. From Lemma 4.1.4 we have

νJa (pe1+e2)

pe1+e2
≤ µ(a)

pe1
+
νJa (pe1)

pe1
,

for every e1, e2 ∈ N. Then,

lim
e 7−→∞

sup
νJa (P e)

pe
= lim

e2 7−→∞
sup

νJa (P e1+e2)

pe1+e2
≤ µ(a)

pe1
+
νJa (pe1)

pe1
for all e1 ∈ N.

Hence,

lim
e7−→∞

sup
νJa (pe)

pe
≤ lim

e1 7−→∞
inf(

µ(a)

pe1
+
νJa (pe1)

pe1
)

= lim
e1 7−→∞

inf
µ(a)

pe1
+ lim

e1 7−→∞
inf

νJa (pe1)

pe1

= lim
e 7−→∞

inf
νJa (pe)

pe
.

We include that lime7−→∞
νJa (pe)
pe

exists.
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After Theorem 4.1.5, we can define an F-threshold in full generality.

Definition 4.1.6. Let R be a ring of prime characteristic p. If a, J ⊆ R are ideals
such that a ⊆

√
J . We define the F-threshold of a with respect to J by

cJ(a) = lim
e→∞

νJa (pe)

pe
.

In what follows we fix the ideal a, and study the F -thresholds which appear for
various J . We record in the next propositions for some properties which deal with
the variation J .

Proposition 4.1.7. Let R be a ring of prime characteristic p. Let a, I, J be ideals
of R. Then

(1) If J ⊆ I, and a ⊆
√
J , then cI(a) ≤ cJ(a).

(2) If a ⊆
√
J , then cJ

[p]
(a) = p · cJ(a).

(3) If a = (f1, ..., fd), then ca(a) ≤ d.

Proof.

(1) We observe that aν
I
a(pe) * I [pe]. Since J ⊆ I, then aν

I
a(pe) * J [pe]. Hence,

νIa(pe) ≤ νJa (pe). By Definition 4.1.6, we have cI(a) ⊆ cJ(a).

(2) By Definition 4.1.1, we note that

νJ
[p]

a (pe) = max{r| ar * (J [p])[pe]}
= max{r| ar * J [pe+1]}
= νJa (pe+1).

By Definition 4.1.6, then

cJ
[p]

(a) = lim
e→∞

νJ
[p]

a (pe)

pe

= lim
e→∞

νJa (pe+1)

pe

= lim
e→∞

p · ν
J
a (pe+1)

pe+1

= p · cJ(a).

(3) We observe that

νaa(pe) = max{r ∈ N| ar * a[pe]}
= max{r ∈ N| (fα1

1 · · · f
αd
d ) * (fp

e

1 , ..., f
pe

d ), α1 + · · ·+ αd = r}.

We see that 0 ≤ αi ≤ pe − 1, then νaa(pe) ≤ d(pe − 1). Thus, it follows that
ca(a) ≤ d by definition of an F-threshold.
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Proposition 4.1.8. Let R be a Noetherian local ring of prime characteristic p. Let
a, b, J be ideals of R such that a, b ⊆

√
J .Then

(1) If a ⊆ b, then cJ(a) ≤ cJ(b).

(2) cJ(as) = cJ (a)
s

for every positive integer s.

(3) If a ⊆ Js and J can be generated by m elements, then cJ(a) ≤ m
s

.

(4) If a is the integral closure of a, then cJ(a) = cJ(a).

(5) cJ(a + b) ≤ cJ(a) + cJ(b).

Proof.

(1) By the previous definition, we have aν
J
a (pe) * J [pe]. Since a ⊆ b, then bν

J
a (pe) *

J [pe]. Then νJa (pe) ≤ νJb(pe). By Definition 4.1.6, we obtain cJ(a) ≤ cJ(b).

(2) Given s is a positive integer, we obtain (as)ν
J
as (pe) * J [pe]. Then s · νJas(pe) ≤

νJa (pe). Hence, νJas(p
e) ≤ νJa (pe)

s
. On the other hand, we have aν

J
a (pe) * J [pe],

which means that a
s·
⌊
νJa (pe)

s

⌋
* J [pe]. Hence, νJas(p

e) ≥
⌊
νJa (pe)
s

⌋
. By Definition

4.1.6, we have cJ(as) ≥ cJ (a)
s
.

(3) We have a ⊆ Js, then by (1) and (2) it follows that cJ(a) ≤ cJ
s
(pe) = cJ (a)

s
. For

all elements gα1
1 · · · gαmm in Jν

J
a (pe) such that α1 + ... + αm = νJa (pe), we observe

that αi ≤ pe − 1 for all i− 1, 2, ...,m. Then νJa (pe) ≤ m(pe − 1). We now apply
Definition 4.1.6 to obtain cJ(a) ≤ m. Therefore, cJ(a) ≤ m

s
.

(4) Since a ⊆ a, then it follows that cJ(a) ≤ cJ(a), from (1). On the other hand,
we note that there exists m ∈ N such that am+` ⊆ a` for any ` ∈ N. By (1),

we have cJ(am+`) ≤ cJ(a`). Use (2) to obtain that cJ (a)
m+`
≤ cJ (a)

`
for any ` ∈ N.

Then cJ(a) ≤ inf`∈N
m+`
`
cJ(a) = cJ(a).

(5) Let u = νJa (pe) + νJb(pe) + 1. Then (a + b)u =
∑

0≤i≤u aibu−i. There are two
cases.

Case 1: if i ≥ νJa (pe) + 1, then aibu−i ⊆ ai ⊆ J [pe].

Case 2: if i ≤ νJa (pe), then u−i ≥ νJb(pe)+1. Hence, aibu−i ⊆ bu−i ⊆ J [pe].

Therefore, (a + b)u ⊆ J [pe]. We now have νJa+b(pe) ≤ νJa (pe) + νJb(pe). By
Definition 4.1.6, it completes the proof.

30



Notation 4.1.9. If a = (f), we simply write νJf (pe) and cJ(f).

Proposition 4.1.10. If J =
⋂
λ∈Γ Jλ, then

cJ(a) = sup
λ∈Γ

cJλ(a).

Proof. We know that

νJa (pe) = max{r ∈ N| ar * J [pe] =
⋂
λ∈Γ

J
[pe]
λ }

= max{r ∈ N| ar * J
[pe]
λ , for some λ ∈ Γ}

≤ sup
λ∈Γ

max{r ∈ N| ar * J
[pe]
λ }

= sup
λ∈Γ

νJλa (pe).

Then, cJ(a) ≤ supλ∈Γ c
Jλ(a). On the other hand, since J ⊆ Jλ , by Proposition 4.1.7

(1), we have cjλ(a) ≤ cJ(a) for all λ ∈ Γ. The last statement follows that

sup
λ∈Γ

cJλ(a) ≤ cJ(a).

Proposition 4.1.11. If I,a, J are the ideals of R such that a ⊆
√
J . Let T = R/I

, then cJT (aT ) ≤ cJ(a).

Proof. We observe that

νJTaT (pe) = max{r ∈ N| (aT )r * (JT )[pe]}
= max{r ∈ N| (a + I)r * (J + I)[pe]}
= max{r ∈ N| (ar + I) * J [pe] + I}.

Now, we have ar + I * J [pe] + I, then ar * J [pe]. It implies that νJTaT (pe) ≤ νJa (pe).
Hence, cJT (aT ) ≤ cJ(a) by definition of an F -threshold.

Theorem 4.1.12. [HMTW08] Let I ⊆ S = K[x1, ..., xn] be a homogeneous prime
ideal and d = dim(R) where R = S/I. Let J = (x1, .., xd) be an ideal of S such that
dim(R/J) = 0. Then,

(1) cJ(I) < d if and only if I ⊆ J .

(2) If J ⊆ I, then I ⊆ J if and only if cJ(I) = d.
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Chapter 5

Examples and open questions

In this chapter we compute the diagonal F -threshold of a Stanley-Reisner ring. We
direct the interested reader to the book of Miller and Sturmfels [MS05] for details sur-
rounding the algebra of general monomial ideals as well as the combinatorial topology
of simplicial complex.

For the questions about determinental rings, we refer the interested reader to the
book of Bruns [BV88].

5.1 Squarefree monomial ideals

In this subsection K denotes a field of prime characteristic and S = K[x1, ..., xn]
denotes the polynomial ring over K.

Definition 5.1.1. A monomial in K[x1, ..., xn] is a product xα = xα1
1 x

α2
2 · · ·xαnn

for a vector α = (α1, α2, ..., αn) ∈ Nn of the non-negative integers. An ideal I ⊆
K[x1, ..., xn] is called a monomial ideal if it is generated by monomials.

Let Sα = Kxα be the a vector subspace of S spanned by the monomial xα. We
observe that S =

⊕
α∈N Sα and Sα · Sβ = Sα+β. Then we say that S is Nn-graded

K-algebra. Moreover, I can be expressed as a direct sum, namely I = ⊕xα∈IK{xα}.

Lemma 5.1.2. Every monomial ideal of S has a unique minimal set of monomial
generators, and this set is finite.

Proof. By the Hilbert Basis Theorem, we observe that S is a Noetherian ring. If I is
a monomial ideal of S, it follows that I = (xα1 , ..., xαm) where α1, ..., αm ∈ N. Since
I can be expressed by a direct sum, any polynomial f lies inside I if and only if each
term of f is divided by one of the given generators xαi . This is, I is generated by
minimal monomials.

Definition 5.1.3. A monomial xα is square free if every coordinate of α is 0 or 1. A
monomial ideal is square free if it is generated by square free monomials.

Definition 5.1.4. A simplicial complex ∆ on the vertex set {1, ..., n} is a collection
of subsets called faces or simplices, closed under talking subsets; that is, if σ ∈ ∆
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is a face and τ ⊆ σ, then τ ∈ ∆. An element σ ∈ ∆ is called facet or maximal if
it is not contained in the other faces. A simplex σ ∈ ∆ of cardinality |σ| = i + 1,
where dim ∆ = i, we say that σ is a maximal face of ∆. The dimension dim(∆) is the
maximum of the dimensions of its faces, or it is −∞ if ∆ = {} is the void complex,
which has no face.

Notation 5.1.5. The empty set {∅} is the only simplicial complex with dimension
−1, and the void complex ∅ has dimension −∞. We frequently identify the vertex set
{1, 2, ..., n} with the variable {x1, x2, ..., xn}, as our next example, or as {a, b, c, ...}.

Example 5.1.6. The simplicial complex ∆ on {1, 2, 3, 4, 5, 6, 7} consisting of all sub-
sets of the sets {1, 2}, {2, 3}, {3, 4}, {4, 2, 5},{1,5},{7} and {5, 6} is appears below:

x2

x4

x5

x6

x3

x1

x7

We observe that all the points, segments and an area of the picture are the faces of
simplicial complex ∆. Note that ∆ is completely specified by its facets or maximal
faces.

Remark 5.1.7. If ∆1 and ∆2 are simplicial complexes, then ∆1 ∪∆2 and ∆1 ∩∆2

are also simplicial complexes.

Notation 5.1.8. For each σ ∈ {1, 2, ..., n} we associate a square free monomial by
xσ = Πi∈σxi.

Definition 5.1.9. The Stanley-Reisner ideal of the simplicial complex ∆ is the square
free monomial ideal is defined by

I∆ = (xτ |τ /∈ ∆),

where τ is a nonface of ∆. In addition, the Stanley-Reisner ring of ∆ is the quotient
ring S/I∆.

Notation 5.1.10. We write pσ for the prime ideal (xi | i ∈ σ) and σ for the set
{1, 2, ..., n} \ σ.

Proposition 5.1.11. Let ∆1 and ∆2 be two simplicial complexes. Then

(1) I∆1∪∆2 = I∆1 ∩ I∆2.
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(2) I∆1∩∆2 = I∆1 + I∆2.

(3) If ∆ = ∆1 ∪ · · · ∪ ∆m, where ∆i = 2σi and σi is maximal, i ≤ m ∈ N, then
I∆ = I∆1 ∩ · · · ∩ I∆m and I∆i

= pσi .

Proof.

(1) By Definition 5.1.9, we have

I∆1∪∆2 = (xτ | τ /∈ ∆1 ∪∆2)

= (xτ | τ /∈ ∆1 and τ /∈ ∆2)

= (xτ | τ /∈ ∆1) ∩ (xτ | τ /∈ ∆2)

= I∆1 ∩ I∆2 .

(2) Similarly, we observe that

I∆1∩∆2 = (xτ | τ /∈ ∆1 or τ /∈ ∆2)

= I∆1 + I∆2 .

(3) It follows that I∆ = I∆1 ∩ · · · ∩ I∆m by (1). In the case ∆i = 2σi , σi is maximal,
we observe that I∆i

= (xτ | τ /∈ ∆i) = (xτ | τ ∩ σi 6= ∅) = pσi .

We note that the last part of the previous proposition is usually proven using that
I∆i

=
⋂
σ∈∆i

pσ..

Example 5.1.12. Let ∆ be a simplicial complex as in Example 5.1.6. We obtain

I∆ = ({x1x2x5, x2x3x4, x1x4, x3x5, x1x3} ∪ {xix6| i = 1, 2, 3, 4}
∪ {xix7| i = 1, 2, 3, 4, 5, 6}).

x2

x4

x5

x6

x3

x1

x7

Corollary 5.1.13. Every squarefree ideal is an intersection of monomial prime ideals.

Proof. This follows immediately from Proposition 5.1.11(4).
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Theorem 5.1.14. The correspondence ∆  I∆ constitutes a bijection from a sim-
plicial complex on the vertices {1, 2, ..., n} to squarefree monomial ideals inside S =
K[x1, ..., xn].

Proof. Given a square free monomial ideal I, we take

∆I = {σ ⊂ {1, . . . , n} | xσ /∈ I}.

Given a square free monomial ideal we have that We have that

I∆I
= (xσ | σ 6∈ ∆I) = (xσ | xσ ∈ I) = I

Given a simplicial complex ∆, we have that

∆I∆ = {σ ⊂ {1, . . . , n} | xσ 6∈ I∆} = {σ ⊂ {1, . . . , n} | xσ ∈ ∆} = ∆

Then, I  ∆I is the inverse function of ∆ I∆.

Proposition 5.1.15. Let R be a Stanley-Reisner ring with an infinite field and m
be the maximal homogeneous ideal. Then

cm(m) ≤ dim(R).

Proof. Let d = dim(R). By Theorem 2.2.7, we take I as an ideal of R which is
generated by d elements called f1, ..., fd such that I = m. By Proposition 4.1.7 (c)
and Proposition 4.1.8 (4), we have cm(m) = cm(I) = cm(I) ≤ d = dim(R).

Lemma 5.1.16. Let R be a finite generated K-algebra and S = R⊗KK. Let a, J be
ideals of R such that a ⊆

√
J . Then cJ(a) = cJ(R⊗KK)(a(R⊗K K)).

Proof. We first have to prove that νJa (pe) = νJSaS (pe). We observe that

νJSaS (pe) = max{r ∈ N| (aS)r * (JS)[pe]}
= max{r ∈ N| arS * J [pe]S}.

Since S is a free R-module, we deduce that ar ⊆ J [pe] if and only if arS ⊆ J [pe]S.
Then

νJSaS (pe) = max{r ∈ N| ar * J [pe]}
= νJa (pe).

Hence, cJ(a) = cJ(R⊗KK)(a(R⊗K K)) by the definition of F -thresholds.

Corollary 5.1.17. Let R be an Stanley-Reisner ring and m be the maximal homo-
geneous ideal. Then

cm(m) ≤ dim(R).
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Proof. We observe that

cm(m) = cm(R⊗KK)(m(R⊗K K)) by Lemma 5.1.16

≤ dim(R⊗K K) by Proposition 5.1.15

= dim(R).

Theorem 5.1.18. If R = K[x1,...,xn]
I

, where I is a squarefree monomial ideal and m
is a maximal ideal, then

cm(m) = dim(R).

Proof. By the Corollary 5.1.17, we have cm(m) ≤ dim(R). We now just prove that
cm(m) ≥ dim(R). By Proposition 5.1.11, there exists a simplicial complex ∆ of vertex
{1, 2, · · · , n} which satisfy I = I∆ =

⋂
σ∈∆ pσ. We note that pσ is a prime ideal

which is generated by variables. In this case, we observe that cmR (m) ≥ cmR/pσ(m) by

Proposition 4.1.11 for all σ ∈ ∆. Since R/pσ is isomorphic to a polynomial ring, then
cmR/pσ(m) = dim(R/pσ). We observe that the simplicial complex ∆ contains finitely
many simplices σ. Hence, there also are finite numbers of prime ideals pσ. Since
dim(R) = max{dim(R/pσ)| σ ∈ ∆}, there exists σ0 ∈ ∆ such that dim(R/pσ0

) =
dim(R). Therefore,

cmR (m) ≥ cmR/pσ0
(m) = dim(R).

This completes the proof.

5.2 Open questions

In the previpus subsection we computed the the F -threshold cm(m). We now discuss
a few open cases for rings that have a combinatorial structure. We first focus on rings
araising from determinental matices.

Let X = (xi,j) a matrix of n×m, where n ≤ m. We consider the polynomial ring
S = K[X]. Set t ∈ N such that t ≤ n. Let It(X) denote the ideal generated by the
t× t-minors of the matrix X. We set Rn,m,t = S/It(X).

Question 5.2.1. Is there a formula for cm(m) in terms of n,m and t?

In the case where t = 2, there exists a formula for cm(m) using the fact that Rn,m,t

is a toric variety [Hir09].
For the case where n = m = t computational evidence suggeste the following

conjecture.

Conjecture 5.2.2. If n = m = t, then cm(m) = n2 − n.

It is worth pointing out that this result is true if n = 2 [Hir09].
We now focus on ings defined by graphs. Given a simple graph G with vertex set

{1, . . . , n}, the binomial edge ideal [HHH+10, Oht11], JG ⊆ S = K[x1, . . . , xn, y1, . . . , yn],
associated to G is defined by

JG = (xiyj − xjyi | {i, j} ∈ G) ⊆ K[x1, . . . , xn, y1, . . . , yn].
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We set RG = S/JG.

Question 5.2.3. In RG is there a formula for cm(m) in terms of the structure of the
graph?

Motivated by recent result by on connectivity of graph and binomial edge idea
[BNnB17], we expect that the answer to the previous question will relate to the
connectivity of G.
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Johannes Rauh. Binomial edge ideals and conditional independence
statements. Adv. in Appl. Math., 45(3):317–333, 2010. 36

[Hir09] Daisuke Hirose. Formulas of F-thresholds and F-jumping coefficients on
toric rings. Kodai Math. J., 32(2):238–255, 2009. 36
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