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Abstract

Let us consider the class of Lévy processes X = {X(t),t > 0} defined by the equation
X(t) = ct +B(t) + Z(t) = S(t), v >0,

where ¢ > 0 is a drift term, B = {B(¢),t > 0} is a brownian motion with zero mean, Z =
{Z(t),t > 0} is a compound Poisson process whose jumps have a probability distribution
with rational Laplace transform and & = {S(t),t > 0} is a pure positive jumps Lévy process.

The processes B, Z and S are assumed to be independent.

We study the Wiener-Hopf factorization of this class of processes, particularly focusing
on the distribution of the negative Wiener-Hopf factor (the factor given by the infimum of X
stopped at a random exponential time). We present explicitly a subordinator such that the
negative Wiener-Hopf factor is equal in distribution to this subordinator, and then use this
result to obtain an expression for the Laplace transform of this negative Wiener-Hopf factor.
We invert this Laplace transform to obtain an explicit expression for its probability density.
This probability density is in terms of functions which depend only on the parameters of
the process, and in terms of the derivative of a g-scale function of an associated spectrally
negative Lévy process. Due to the importance of g-scale functions, we apply our techniques
to study two important cases of spectrally negative Lévy processes and obtain explicit

expressions for their corresponding g¢-scale functions.

Furthermore, we use our result about the density of the negative Wiener-Hopf factor
to obtain an explicit expression for the Generalized Expected Discounted Penalty Function
(Generalized EDPF, for short) of a process of the form u + X, where u > 0. This model
corresponds to a two-sided jumps Lévy risk process with rational positive jumps and general
negative jumps, allowing the case when there exists a random factor (a perturbation) which
models random gains or losses. The two-sided jumps Lévy risk process with an a-stable
perturbation, which generalizes the model in Furrer [1998], arises as a particular case. This
model is studied in full detail and we present several results about its corresponding EDPF.
We also obtain asymptotic expressions for its corresponding ruin probability and the joint
tail of the severity of ruin and the surplus prior to ruin for this case. The asymptotic
results for this joint tail are also stated for the classical risk process perturbed by an a-

stable motion.
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Introduction

Lévy processes are one of the most studied class of stochastic processes in several
branches of applied probability, such as Mathematical Finance, Theory of Branching

Processes, Insurance Mathematics and many others.

In particular, their Wiener-Hopf factors, which represent the supremum and the
infimum of the Lévy process stopped at an independent exponential time, have been
intensively studied. These factors are called, respectively, the positive and the nega-
tive Wiener-Hopf factor. The positive Wiener-Hopf factor, for instance, allows one to
solve the optimal stopping problem corresponding to the pricing of a perpetual call
option, in the case when the market model is generated by a Lévy process. Similarly,
the negative Wiener-Hopf factor is useful in solving the optimal stopping problem
corresponding to the pricing of a perpetual put option, when the market model is
generated by a Lévy process. This negative Wiener-Hopf factor can also be applied

in Insurance Risk Mathematics to study the classical ruin problem.

While the distribution of the positive Wiener-Hopf factor has been studied by
many authors (see, for instance, Kuznetsov [2010b], Kuznetsov and Peng [2012], Lewis
and Mordecki [2008] and the references therein), the distribution of the negative one
has been studied only in a few particular cases (see, for instance, Kuznetsov [2010a]

and the references therein).

In this thesis we obtain the probability density of the negative Wiener-Hopf factor

for the following class of Lévy processes:

Let us take X = {X(t),t > 0} as processes defined by the equation
X(t) =ct+ 2(t) +yB(t) = S(t), t,7 =0, (1)

where ¢ > 0 is a drift term, B = {B(t),t > 0} is a Brownian motion with zero mean,
S = {S(t),t > 0} is a pure jumps Lévy process with only positive jumps (therefore,
its dual —S has only negative jumps) and Z = {Z(t),t > 0} is a compound Poisson
process with Lévy measure A\ fi(z)dz, such that f; is a probability density with
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Laplace transform
filr) = ———, (2)

where N, m; € Nwith my+ma+---+my =mand 0 < ¢ < g2 < ...¢nand Q(r)is a
polynomial function of degree m—1 or less. The processes B, S and Z are all assumed
to be independent. Since every nonnegative distribution can be obtained as a limit
of a sequence of combinations of exponential distributions (see Dufresne [2007]), the
restriction imposed on f; allows for numerical approximations of the general case of
f1. We point out that the explicit distribution of the positive Wiener-Hopf factor of

this class of Lévy processes was obtained in Lewis and Mordecki [2008].

In Insurance Mathematics, a process of the form of u + X, for u > 0 represents
the surplus of an insurance company up to time ¢, in the case when its initial capital
is u. The classical risk model, which is an spectrally negative Lévy risk process with
negative jumps given by the dual of a compound Poisson process, only models the
case when the insurance company begins its service with initial capital u, earns a
fixed amount of money per time unit (modeled by the drift term ¢ > 0) and has to
pay for random claims that appear at random times (these are modeled by the dual

of a compound Poisson process).

A process with the structure of X is more realistic than the classical risk model,
since it allows the possibility that the insurance company earns money, for instance by
investing in the stock market (this is modeled by the process Z) and it also considers
the case when there are random fluctuations corresponding to gains or losses. These
random fluctuations are represented by the brownian component B and the process S,
when § has unbounded variation. When S is a subordinator other than a Compound
Poisson Process, we have the case of random claims which appear very often in each

time interval.

We also study the Expected Discounted Penalty Function (EDPF for short) of
the class of two-sided jumps Lévy processes defined by equation (1). The standard
version of this function was introduced by Gerber and Shiu [1998] and it is defined

as follows:
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We let 79 = min{t > 0 : u + X(¢f) < 0} be the first passage time of u + X
below zero. In the classical ruin problem studied in Insurance Mathematics, this
first passage time is known as the time to ruin of the process u + X. We consider
a function w : Ry x Ry — R, which is nonnegative, real-valued and such that
w(0+,0+) = lim w(zx,y) exists. Then, the EDPF for u + X, denoted by ¢(u), is

(2,4)—(0,0)
defined as

¢(U) = E, [6_6Tow (’X(TO)|> X(TO_)1{70<OO})] ) (3)

where § > 0 represents a discounted force of interest, |X(79)|, X' (70—) are known
in Insurance Mathematics, respectively, as the severity of ruin (overshoot at first
passage) and the surplus prior to ruin (undershoot at first passage). The function w

is known as a penalty function.

The EDPF presented above renders as particular cases many important risk mea-
sures, which arise by changing the choose of § and w. For instance, for 6 = 0 and
w(z,y) = 1forall z,y > 0, the EDPF reduces to the probability of ruin of the process
u+ X. If w(z,y) =1 and § > 0, ¢ reduces to the Laplace transform of the time to
ruin 79. This EDPF has been widely studied, specially in the case when X is spec-
trally negative (see, for instance, Gerber and Shiu [1998] and Biffis and Kyprianou
[2009]). There are also some results on the case when X is a two-sided jumps Lévy

risk process, for instance in Albrecher et al. [2010] (and the references therein).

In general, the study of the aforementioned class of two-sided jumps Lévy processes
is not easy. For instance, standard tools such as first step analysis cannot be applied
when the process S has unbounded variation, because of the infinite jumps that occur
in § in any finite interval. Moreover, the fact that many unbounded variation Lévy
processes do not have a probability density with closed form (for instance, the a-stable
motion) also makes the analysis much harder than in the case when S is simply a
compound Poisson process. Another difficulty to study this kind of processes comes
from the positive jumps process Z. Many of the results for the spectrally negative
case, even when & has unbounded variation, are in terms of the recently studied ¢-
scale functions, which are known to exist only in the spectrally negative case, and so

far, there is no analogue of them for the two-sided jumps case.
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In this thesis we obtain a series of results that solve this problem. First we study
in great detail the EDPF of an important particular case of the process u + X': we
suppose X has no brownian component and take S as the sum of a compound Poisson
process and an a-stable motion with only positive jumps (again, this implies that —S
has only negative jumps). We refer to this process as the classical two-sided jumps risk
process perturbed by an a-stable motion. We deal with the lack of a closed expression
for the a-stable density by constructing approximating sequences based on compound
Poisson processes such that they converge weakly to the a-stable process of interest.
This approach allows us to use first step analysis, and other techniques, to study our
process of interest. In Theorem 7, Chapter 2 we obtain an expression for the Laplace
transform of the EDPF for the classical two-sided jumps risk process perturbed by
an a-stable motion. In Theorem 8, Chapter 2, we invert this Laplace transform and
present a renewal equation satisfied by ¢. This results provide a natural extension of
a celebrated result by Furrer [1998], which was stated and proved only for the ruin
probability of a classical risk process perturbed by an a-stable motion, which is a

particular case of a spectrally negative Lévy risk process.

In Theorem 9, Chapter 2 we obtain the asymptotic behavior of the ruin probability
corresponding to the classical two-sided jumps risk process perturbed by an a-stable
motion, while in Theorem 10, Chapter 2, we obtain asymptotic formulae for the joint
bivariate tail of the overshoot and undershoot at first passages below zero of the
classical two-sided jumps risk process perturbed by an a-stable motion, i.e. the joint
bivariate tail of the severity of ruin and the surplus prior to ruin. We also present
the corresponding asymptotic formula for the joint bivariate tail of the surplus prior
to ruin and the severity of ruin in the case of a classical risk process with an a-stable

perturbation.

In Chapter 3 we consider the more general case of X when we have a brownian
component and S is any pure positive jumps Lévy process, other than a compound
Poisson process, and study the Wiener-Hopf factorization of this kind of processes.
In Theorem 13, we present an explicit expression for the probability density of the

negative Wiener-Hopf factor for the class of two-sided jumps Lévy risk processes
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defined by (1). The result in this theorem is in terms of known functions, which
depend only on the parameters of the process, and also in terms of the ¢-scale function
of an associated spectrally negative Lévy processes, which is given explicitly. This
complements a previous result given in Lewis and Mordecki [2008], where only the

distribution of the positive Wiener-Hopf factor is obtained.

In Theorem 14 we obtain an expression for a generalized version of the EDPF
defined in 3. This Generalized EDPF was introduced and studied in Biffis and Morales
[2010] and Biffis and Kyprianou [2009], only for the spectrally negative case. Hence,
our result in Theorem 14 extends these previous results to the two-sided jumps case.
Finally, we apply the techniques developed in the previous chapters to study two
important cases of spectrally negative Lévy processes, and obtain explicit expressions

for their corresponding ¢-scale functions.

This work is organized as follows: in Chapter 1 we give some preliminary concepts
and notation that are used throughout this thesis, and introduce the concept of
weak convergence of stochastic processes. In Chapter 2 we study the EDPF of the
particular case of X when & equals the sum of a compound Poisson process and an
a-stable process, and there is no brownian component. This chapter also contains

our asymptotic results.

In Chapter 3 we study the more general case of X in which there is a brown-
ian component and S is a general pure positive jumps Lévy process, other than a
compound Poisson process. We provide explicit expressions for the density of the
corresponding negative Wiener-Hopf and also present explicitly a Lévy subordinator
which is equal in distribution to the aforementioned negative Wiener-Hopf factor.
We use this result, among others, to obtain an explicit expression for the Generalized
EDPF associated to this class of Lévy processes, from which we get to see that, as
in the spectrally negative case, such Generalized EPDF is strongly related to the
positive and negative Wiener-Hopf factors of the corresponding Lévy process. In the
final section of this chapter, we present a few important and non trivial examples of

the application of our results.

Finally, in Chapter 4 we obtain explicit expressions for the g-scale functions of
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two important cases of spectrally negative Lévy processes.

Many technical proofs are given in an Appendix.



Chapter 1

Preliminaires

In this section we present some basic tools and notation that are used in the next
chapters. In general we use the notations i = /—1, C, := {z € C : Re(z) > 0},
Ciy :={z € C: Re(z) > 0} and denote by | -| the usual norm of complex numbers.

1.1 Laplace transforms, convolutions, Dickson and

Hipp operator and a-stable distribution

We denote the Laplace transform of a measurable function f as

o0

f(r) = / e " f(x)dx, r > 0.

—00

for each 7 (real or complex) such that the integral above exists and is finite. If
F' is a distribution function with finite first moment u, and F(0) = 0, we define its

integrated tail distribution £} by
1 [
Fi(z) = —/ F(y)dy, x > 0.
0

Clearly this function has a density given by f;(z) = F(z), and it is easily proved

that, if F' has a density f, then

1
I

- J(r)

pfi(r) = (1.1)

For any two nonnegative measurable functions h, g, we define its convolution h * g

as
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for each x when the integral above exists.

We denote by ¢*", the nth-convolution of the function g with itself, with g*°(z) =
Loy ().

We use the property m(r) = ]/‘\(r)ﬁ(r) for all » > 0 for which the latter Laplace
transforms exist. If ' and G are two distribution functions such that F'(0) = G(0) =
0, its convolution F' * G(x) is defined as F x G(z) = fF(:c —y)G(dy).

0

The following is a translation operator introduced in Dickson and Hipp [2001].

Definition 1. For any integrable function f > 0 and r € C., the Dickson-Hipp

translation operator T, f is defined by the equation

o

ﬂf@%i/fwﬁV@M%x>0 (1.2)

T

It can be easily proved that T, f satisfies the equalities

~ ~

T.1(0) = F(r) and Ty fry) = L0 =S r2) (13)

ro —7

for r,ry,ro € C,. We can also define the operator above when f(z)dz is replaced by

a measure v(dz). In this case we have

oo

T.v(x) = /e’"(y“)y(dy),x > 0. (1.4)
and -
J (e — o) (da)
T v(r) =2 : (1.5)

ra —"T1
Now let us denote by S, (o, 3, 1), the a-stable distribution with parameters 0 < a < 2
(index of stability), o > 0 (scale), —1 < § < 1, (skewness) —oo < pu < oo (shift), and
density gago.u(z). According to Theorem C 3 in Zolotarev [1986], this probability
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density has characteristic function given by

E[ wX} = e0® (iu8—10|exp{—i(m/DBK (@)sgn®)})  for o £ 1,
€ o ea[iu@—\9|(7T/2+i5109|9|59"(9))] for a = 1,

where K(a) = a — 1+ sgn(1 — o) and sgn(0) = Lyp=o0y + 01gp=0) — l{o<0y-

It is known (see Zolotarev [1986]) that the a-stable density gq.1,., has a Laplace

transform given by

o [-pr—sgn(l—a)r®] # 1,

Jar.0n(1) = { (1.7)

eo[fwﬂrrlogr} a=1.

In what follows, we denote by g, 3 the a-stable density gn 51,1, and we write g, s

for its corresponding Laplace transform.

1.2 Lévy processes, Wiener-Hopf factors and scale

functions

A stochastic process X = {X(¢),t > 0} is a Lévy process if it satisfies the following

conditions:

e X(0)=0 a.s.
e X has P-a.s. right-continuous paths with left limits (cadlag trajectories)

e For 0 < s <t, X(t)— X(s) £ X(t —s) and X(t) — X(s) is independent of
{X(u),u < s}

where £ denotes equality in distribution.

In the particular case when

X(t) = X(s) ~ Sa [(t =) B, ]
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for 0 < s <t < oo, X is called a-stable Levy motion. It is called standard
a-stable motion when 0 = 1,4 = 0. If 1 < a < 2, the moments of X with order
smaller than «, are finite, and when 5 = 1, only positive jumps of W, are possible.
For a = 2, we obtain the Brownian motion {v/2B5(t),t > 0}.

From the Lévy-Khintchine formula, if X is a real-valued Lévy process, we can

write its characteristic exponent \Il[;(](r) = log E[e"* (V)] as

c . 1 4 )
Wi (r) = air — So%? - / (1= €™ +irylyy<ay) vx(dy), reR,
R\{0)

where vy is a measure such that [ (y* A1l)vx(dy). This formula characterizes
R\{0}
Lévy processes as a Brownian motion with variance o2 plus a drift « € R and a pure

jumps process with characteristic measure vy. Let S = {S(t),t > 0} be a spectrally

positive Lévy process with ¢ = 0 with characteristic exponent \If‘[gd(r). We call S a

subordinator if S has nondecreasing paths. In this case we have [ (y A 1) vx(dy) < oo
0+

and QJE] (r) can be written as:

oo

\I/g:] (r)(r) = agpir + / (1 — e"y) vs(dy),

1 1
where a9 = a + [ yvs(dy) < 0. In the case when [ yvs(dy) = oo, we say that the
0+ 0+

process S has paths of unbounded variation. For further information and properties

about Lévy processes, we refer the reader to Bertoin [1996] and Kyprianou [2006].

Now we let X be a Lévy process with characteristic exponent \IJ[)?] (r), and set

Sy = sup X(s) and I; = inf X(s).

0<s<t 0<s<t
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According to Bertoin [1996], the Wiener-Hopf factors of X are given by E[e"] and
Ele~ea], and satisfy the equalities

E[eirXe)] = 9 _ g [eirSeq| g [e=iTea] | q >0, (1.8)
gy TR

where ¢, is an exponential random variable with mean 1/¢ independent of X.

We end this section with the definition of ¢-scale function for a spectrally negative
Lévy process (i.e. a Lévy process with only negative jumps). These class of functions

is used in the statement of two of our main results.

Let Y be a spectrally negative Lévy process with Laplace exponent Wy (r) =
log E[e"YM]. Tt is known (see, for instance, Kyprianou [2006]) that for any ¢ > 0,
there exists a function 20 : R — [0, 0o) such that 25(@ (x) = 0 for # < 0 and 20 is
characterized on [0, 00) as the unique strictly increasing and right-continuous function

whose Laplace transform satisfies:

oo

1
e (2)de = —————, for all r > v(q). 1.9
O/ (€)ds = G (@ (1.9

where v(q) is the biggest solution of Wy (r) — g = 0. The case when ¢ = 0 is
denoted as 20(z).

As stated and proved in Cohen et al. [2012], this scale function is C'(0, c0) when
the process Y has unbounded variation, it has a nonzero Gaussian component or the

tail of its Lévy measure is continuous. In the case of unbounded variation, it satisfies
2@ (0) = 0 for all ¢ > 0.

Assuming that Y has unbounded variation, we write 25(@" () for the derivative
of W@ (with respect to ) for ¢ > 0 and W' (x) when ¢ = 0. Using 20(0) = 0 we
obtain for ¢ = 0:

W (r) = ;7> 0. (1.10)
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1.3 Divided differences

Let us consider a function f which is m-times differentiable.

Definition 2. We define the divided differences of f at m different points x1, ..., x,,

as
flod] = fz1), floy, x2] = 7]0(%2) —~ f(xl), flen, 2, 23] = flrz,aa] = Tl o]
To — T1 T3 — T
flza, . szm] — flz, -, Tm—1

flz1, .. zm) =
Tm — L1

Under certain assumptions, the divided differences can be extended to the case

when some of the zy,...,x,, are repeated, and they satisfy the following prop-
erty: we suppose we have different numbers x1, x1, 2o, ...,z repeated, respectively
may, Mo, ..., my times, and define for each : = 0,1, ..., k:

(wz)m, = (fﬂi, Liyown ,ili‘i) .
N—————

m; —times

We let a1, 2l(n). .. ,xinj(n) for j = 1,2,...,k be m = ) m,; distinct numbers
J
such that lim a7 (n) — 7 for each j = 1,2,...,k and [; = 2,...,m;, then the
n—oo

divided differences with repeated numbers, denoted by f [(#])m,, .-, (2§)m, ], satisfy

the equalities

f [(az%)ml, e (x’f)mk} = nlgr;o flot, . ap,, (n), 25, ... a0, (n), ... LA ,xﬁlk(n)]
(1.11)
and (see, for instance Labbé et al. [2011], Corollary A.2):

. .

m— (=1)m=ma gmaTt | f(s)(z — s)™
f[(x%)mua(xlf)?mc] :(_1) 12_: (m—l)' Hsmi—1 k !

=t (] — s)m

=1 s::c{

(1.12)
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The formula above also implies the following equality for the case of different numbers
T1,T2y...,Tk:

k-1
iy )
f[xla7$k]_( 1) Zl H(Il*x]) (113)

T

1.4 Weak convergence and the space Dg|0, c0)

Let us take a metric space (S,d) with Borel o-algebra S := B(S), and define P(S)
as the family of Borel probability measures on S. We also define Cy,(S) as the set of
continuous and bounded functions f : S — R. If {P,} is a sequence of probability
measures in P(.S), we say that P, converges weakly to a probability measure P € P(S)
if for all f € Cy(S), we have the equality nh_)rgo P,f = Pf, where Pf = [ fdP. The
space of probability measures P(S) can be topologized using Prohorov’s metric (see,
for instance, Billingsley [1999]), which we denote by p. In the case when (S,d) is
separable, it can be proved (see Ethier and Kurtz [1986]) that (P(S), p) is separable.
If, in addition, (S, d) is complete, then (P(S), p) is also complete.

It is proved in Ethier and Kurtz [1986], Theorem 3.1, Chapter 3, that if (S, d)
is separable and X, Xy, X5, ... are S-valued random variables defined on the same
probability space, with distributions P, Py, P, ..., then the weak convergence X,, =
X is equivalent to nhﬁlglo p(P,, P) = 0, where again p is the Prohorov’s metric. If we

do not have separability, then we only have that lim p(P,, P) = 0 implies X,, = X.
n—oo

We denote by Dg := Dg|0, 00) the space of all the functions z : [0,00) — E such

that lirtn+ z(s) = z(t) and the limit lirtn x(s) = z(t—) exists. This is the space of all
S—r S—t—

cadlag functions from [0,00) to E. It can be proved that if x € Dpg, then the set of

discontinuities of z is at most countable.

Now we consider the space (Dg,ds), where dg is Skorokhod’s metric (see, for
instance, Billingsley [1999], Ethier and Kurtz [1986], and the references therein). It
is proved, for instance, in Ethier and Kurtz [1986] that if E is separable then Dp is

separable, and furthermore, if (E,r) is complete then (Dg, dg) is complete.

If {X,,n > 1} is a sequence of stochastic processes such that their trajectories
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are elements of D, we say that X, converges weakly to some X with trajectories in
Dg, denoted by X,, = X, if lim E[f(X,)] = E[f(X)] for any f : E — R continuous,
n—oo

bounded and measurable.

There are many criteria for this weak convergence to hold. We refer to Ethier and
Kurtz [1986] and Billingsley [1999] for further reading on this topic. Here we only
present the following result, which is used in the next chapter. The standard notations
2 and 5 are used to denote, respectively, equality in distribution and convergence

in probability.

Theorem 1. Let X, X1, Xs,..., X,,... be Lévy processes in R d > 1 such that
Xn(1) KN X (1), then there exists processes X, 2 X, such that (X, — X); L0, for
all t > 0, where (X); = sup X(s).
0<s<t
For the proof of the above theorem, we refer the reader to Theorem 15.17 in
Kallenberg [2002]. We also need the following result, which can be found in Billings-
ley [1999], page 26. This is the corresponding Mapping Theorem for sequences of

stochastic processes.

Theorem 2. Let X, Xq,...,X,,... be stochastic processes taking values on some
measurable space (R, R). Let h : R — R’ be R/R'-measurable, where R' denotes the
o-algebra associated to the space R'. Let Dy, be the set of discontinuity points of h.
Then, if X,, = X and P[X € Dy] =0, we have h(X,) = h(X).



Chapter 2

EDPF for the a-stable case

In this chapter we consider a particular case of the process defined in (2.1). Let
Vo = {VL(t),t > 0} be the Lévy risk process defined by

Valt) = u+ et + Zi(t) — Zo(t) — nWalt),n > 0, (2.1)

where u,c > 0, Z; = {Z(t),t > 0} is a compound Poisson process with Lévy
measure Ay fi(z)dz, \y > 0, Zy = {Z5(t),t > 0} is an independent compound Poisson
process with Lévy measure Ay fo(z)dz, Ao > 0, where f5 is the density function of a
nonnegative random variable, and W, = {W,(t),t > 0} is an a-stable process with

a € (1,2) and only positive jumps. Z;, Z, and W, are assumed to be independent.

2.1 Weak approximations of V,, and convergence of

Lundberg equations

We construct a sequence of classical two-sided jumps risk processes which converges
weakly to V,, in the Skorokhod space Dg, and then prove that the corresponding
EDPF converge to the EDPF of V,,. We assume the following;:

Hypothesis 1.
a) E[V,(1) —u] > 0.
b) The upward density fi has a Laplace transform of the form (2).

¢) There exists a positive constant B such that w(z,y) < B for all x,y > 0.
d) If D,, denotes the set of discontinuities of the function w(x,y), then

P

(Walmo)l:Valro-)) € Dw] o

Condition b) will be relaxed later. Many relevant penalty functions which satisfy

the above assumptions arise as particular instances of w in the following way:

15
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1. If w(z,y) = a for some constant a > 0 we obtain that ¢(u) = aps(u), where
@s(u) = E(e°1ry<o0y) is the Laplace transform of the time to ruin when

d >0, and if 6 = 0 we obtain ¢(u) = ay)(u), where 1(u) is the ruin probability.

2. Putting w(z,y) = 1{zsay>py for some constants a,b > 0 and 6 = 0, we obtain
that ¢ is the joint tail of the severity of ruin |V, (7)| and the surplus prior to

ruin V,(7o—).

3. When 6 > 0 and w(z,y) = e ** % for fixed constants s,¢ > 0, then ¢ is the
trivariate Laplace transform of the time of ruin 7y, the severity of ruin |V, ()|

and the surplus before ruin V,,(7p—).

4. If § = 0 and w(x,y) = l{z4+y>a} for some constant a > 0, then ¢ is the tail of

the distribution of the claim that causes ruin.

5. Ifw(z,y) = max{K —e*¥,0} for some constants K, a > 0, then ¢ is a particular

case of a payoff function in option pricing.

The penalty functions in examples 1, 3 and 5 are continuous, hence they satisfy
Hypothesis 1 d) and they are clearly bounded. The penalty functions in examples 2
and 4 are also bounded, and it can be proved that P[|V,(70)| = a, Va(10—) = b] = 0,
for any a,b > 0 and P[|V,(70)| + Va(70—) = a] = 0 for any a > 0.

Now we proceed to construct the sequence {V,,,n > 0} of two-sided jumps classical
risk processes such that V,, = V,,, and prove afterward that the EDPF of V,, converges

to the corresponding functional of V,.

First, in order to avoid unnecessary technical complications due to the drift ¢ > 0,
we construct a sequence of processes {V,, x, n, k > 0} for which the prime c is 0, and a
sequence of processes {V,,,n > 0} with prime ¢ > 0, such that V,, , = V,, for each fixed
n. Next, we prove that the constructed sequence {V},,n > 1} satisfies the convergence
Vi, = Va.

The sequence {V,,x(t), t > 0} comes from the following result.

Theorem 3. Let Z;(t) = Z].\Ql(t) Yii and Zy(t) = Zé\fl(t) Yio. For each k € N and

(2

any fized constant ¢ > 0, let us define A(k) =1 — (k+1)71, M (k) = M\ /(1 — A(k)),
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b(k) = M/[e(1 — A(k))] and

() = A(k)b(k)e™ "™ 4 (1 — A(K)) fi(x)  for x>0,
P 1o for x < 0.

Consider the sequence of processes

N1k (t) Na(t)
Vi) =u+ Y Vi =Y Yor=mut Ziglt) - Ze(t), k=1,2,..., (22)
=1 =1

where {Zyx(t), t > 0} is a compound Poisson process with intensity Ai(k), which is
independent of Zs, and {Yi;, i = 1,2, ...} is a sequence of independent and identically
distributed random wvariables with common density function p;. Then, as k — oo,
VIT = u et + Z0(t) — Zo(t).

Proof. For fixed t, let &k, & and & be the characteristic functions of the random
variables Vk[c] (t), X11, and X7, respectively. Then,

&1 k(s) = exp {uis + M (k)t (M + (1 — A(k))&i(s) — 1) + Aot (&2(—s) — 1)} ,

Since A(k) =1— (k+1)"' = k(k+ 1)~!, we have:

, A(Kk)b(k) A Ak) 72y
Jdm A (k) (b(k) —is 1> T1- /ll(k) ((I_AA}(H) s (23)

A _k M(k+1)
= lim - 1 ,(Hli 1 : -1
e e 1)L \ MG

c

~ lim 21 < Ak —1)
k—o0 (k? + 1)_1 )\1([(3 + 1) —ics

Y <)\1k—)\1(k—|—1)+z’cs_>
k—oo (k+1)71 A(k+1) —des

~ im A1 —A1 +ics B
koo (K1) \ N\ (k+ 1) —ics
—M +ics
= lim A -
e <)\1 —ics(k+ 1)1 >
= cis — A1. (2.4)
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Hence we obtain klirn &1x(s) = exp{uis+ ctis + Mt (§1(s) — 1) + Aot (§2(—s) — 1)},
—00

which is the characteristic function of u + ¢t + Z1(t) — Z2(t). Now the result follows from

Theorem 15.17 in Kallenberg (2002). L]

Now we construct a sequence of processes {V,,x,n,k > 0} for which the prime ¢
is 0, and a sequence of processes {V,,,n > 0} with prime ¢ > 0, such that V,,, = V,
for each fixed n and prove that V,, = V.

1-1/a,,a

Theorem 4. For any fired n € N, we set ¢, =c+n N, and let the sequence of

risk processes Vi = {Var(t), t > 0} be defined by

o 1
Vi) = Vi) = =2 D Wi

where {Vk[c"],k: = 1,2,...} is defined as in (2.2) with b(k) = A /[cn(1 — A(K))] =
b, (k) and Zf\i(l"t) W; is a compound Poisson process independent of Vk[c”]. The Pois-
son process M has intensity n® and Wy, Ws, ... are independent and identically dis-
tributed random variables with common distribution S,(1,1,1). We also define the

sequence of processes V,, = {V,(t),t > 0} by

M (nt)
1
Va(t) = u+ ent + Z2(t) = Zo(t) = — > W (2.5)
=1

Then V,,, = V,, for each n € N, and V,, = V.

Proof. The first convergence follows from Theorem 3 and the independence of {W;},
{Zy 1} and Z,. For the proof of the second convergence, we note that since W;,i =
1,2, ... have common distribution S, (1,1, 1), from (1.6) it follows that for each n > 1,
— don (W —1) L W,(1,1,0). Hence equality (3) in Furrer et al. (1997) holds with
#(n) = n/*, and since in our case ¢ = c+n*n'~Y* X\ = n, the hypothesis in Theo-
rem 1 in Furrer et al. (1997) are fulfilled, and it follows u + ¢,t — n=/ Z?i(lm) W; =
u+ct—nW (t). Using now the independence of W, Z; and Z,, we obtain the result. m

For any 1 < o < 2, let us denote by ¢, x, ¢, and ¢ the EDPF of the processes
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Vi, Vi and V,,, respectively, with corresponding Laplace transforms ggn,k, ggn and <$

The following result can be proved similarly as in Furrer (1998).
Theorem 5. Under Hypothesis 1, limg_,o0 ¢ r(u) = ¢n(u) for all u > 0, and each
n € N. Moreover, lim,,_,o. ¢n(u) = ¢(u).

Using partial fraction decomposition, it can be proved that, when f; satisfies (2),

it admits the representation

N my
¢ =1 Je gz —_ N
ﬂ , , x>0, where 3;; = — L 4" I Q) ,
hence
N N m; ﬁq]
hr)=>" e (2.6)
i=1 j=1 (i +7)
We also consider the following interpolation identity:
Lemma 1. For eachm > 1 and for any different non-zero complex numbers x1, . .., Tpi1,
m—+1 —1
> 1
¢ m+1 H T
N I
I=1,1#5

For r # ¢; we define the Generalized Lundberg functions associated to the pro-

cesses V, 1, Vi, and V,, respectively by

Los(®) = afolr) + MlyAW) 25y (1 - g 3030 o
a,n,k 2J2 1 bn(k) — 1 L (C_h' — ’I“)j
Fnn® exp {—nl’“/a n 7:} (k) + Xo +nn® +68), 7 #bu(k), (2.7)
Lan(r) = Xafalr +)\122 f”q; : (c—l—na - 1/0‘)7‘ (2.8)
=1 j=1
+nn°‘exp{—nlr/a+7:}—(m7“+)\1+>\2+5), (2.9)
La(r) = Xfor)+A ) Z Bwa o+ () = (A + A2 +0). (2.10)

lel



20 CHAPTER 2. EDPF FOR THE a-STABLE CASE

We denote
N

Qi(r) = l_I(qZ —r)", Cy={2€C:Re(z) >0}, and C,;:={z€C: Re(z)> 0}.
k=1

For p € C, and d > 0 we put
By(p) ={r e Cy :|r—p| < d}. (2.11)

Recall that s € Cy is a root of a function L of multiplicity m > 1 if L(s) = 4(s) =
=" L(g) = 0 and 47L(s) # 0. We have the following results.

drm—1

Lemma 2. The function P(r) = ar +br® —c, fora >0, b,c >0 and « € (1,2), has

exactly one positive and real root.

Proof. Let us suppose that there exists a root s of P(r) such that Re(s) > 0, Im(s) #
0 and arg(s) = 0. Then by De Moivre’s formula we obtain

als| cos(€) + b|s|“ cos(af) — ¢ =0,

als|sin(f) + b|s|“ sin(ad) = 0. (2.12)

We will see that (2.12) is only possible for # = 0. By the assumption that Re(s) > 0,
we have 6§ € [—7/2,7/2], hence if 0 < § < 7/2 we obtain af € (0, 7), which implies
sin(ad) > 0, hence als|sin(ad) > 0, and analogously for the case 6 € (—7/2,0).

Hence all the possible roots of P are real. Since for » > 0 we have

d a—1 d2 a—2

JP(T) =a+bar* " >0 and WP(T) =ba(a—1)r* >0, for all r > 0,
P(r) is strictly increasing in the nonnegative real line, and noting that P(0) = —c < 0,
we obtain the result. [

Proposition 1. a) For all sufficiently large n € N and r # b,(k), klim Lonk(r) =
—00
Lo (7) uniformly in r in sets of the form (2.11).

b) Moreover, lim L, (1) = Lo(r), uniformly in sets of the form (2.11).
n—oo
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c) For 6 > 0, the functions Ly, Loy and Le .,k have exactly one root of multiplicity
one in the interval [0, q1), which is equal to zero if and only if 6 = 0. We denote

these roots by p1s, p1s(n) and p1s(n, k), respectively.

d) Ford >0 and c+n > 0, the function L, has ezactly m~+1 1oots p1 s, pas, - - - Pm+1.5
in C. For 6 > 0 these roots are in Co, and if 6 =0, p15 = 0 is the only root on
the imaginary azis. Moreover, for all sufficiently large n and k, and all 6 > 0, the
functions Ly, and L, p i also have m+1 roots in C, which we denote respectively
by p1s(n)s ..., pmr1s(n) and prs(n, k), ..., pms1s(n, k). When § > 0 all these roots
are in C4 1, and when § = 0, p1o(n, k) = p1o(n) = 0 are the only roots of L, x and

L,,, respectively, lying on the imaginary axis.

e) Letc+n>0. Foranyj€{1,2,...,m+ 1} there exists | € {1,2,...,m+ 1} such

that I}ggo pis(n, k) = ps(n) and Jim pis(n) = prs-
f) We have lim py 5 = p1o=0 .
0—0
Proof. a) It suffices to consider the closed complex semicircle By := B,4(0). For any

r # by(k) and n € N, limy00 Lank(r) = Lan(r) due to (2.4). We will show that

this convergence is uniform in By.

For r € By and k > ¢,d — \; we have A\{(k + 1) — ¢,r > 0, and since

by (k ME+T1) —c B+ 1D)r
2 — A — AM(B)AK)———— 4+ M (k)| = |co,r — M+ A
el =M 1(F) (>bn()—r+ i )‘ G — Mt M M(E+1)—cpr
| enr(M = enr)
Mk —cnr)’
we obtain
b, (k Cnd| Ny — curl
2 — A — M (k)A(K M (k)| <
et = A1 = M(R)A( >bn(k‘)—r+ 1 )' T M(kE+1) = cr|

Cnd Ay + A2
=Mk +1) — cnd’

and the result follows.
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b) First we prove that lim L, ,(r) = L.(r). Using the series expansion of the expo-

n—oo
nential function, it follows that

nn“”g\%l(r/nl/o‘) =nn® exp{—r/nl/a +7rY/n} =nn® — n'~ l/an"‘r + 0% + a,(r),

+ I
n

ank
where a,(r) = nn® Z M Hence we have

Lan(r) = Ao fo(r +>\IZZ 5”% +c7‘+770‘7‘°‘—|—an() (A + Ao +6).

For sufficiently large n and r € By, we have

k
fe'e) __r + re o) - o) k
o nl/a n a T —1—7‘ a C d
lan(r)] = 1 Z< . ) < ST ey €W
k=2 ) k=2 k=2
Cll) S5 CQt _ L, Op e
e pkia 1 1—C(d)/nt/’

where C'(d) = 2max{d*,d} is a constant depending on d. Since a € (1,2), the
right-hand side in the above inequality converges to 0 as n — oo uniformly in By,

and the result is obtained.

c) We will prove that L, , has one real nonnegative root in [0, ¢;]; the cases for the

functions L and L, , can be handled in a similar way. We compute 7 La n(r):

00 N my;

d —r Bzg.?qz 1-1/a, «
ﬂLa’"(” = —)\2/936 fa(z dx—l—)\lzz +c+n n

1
4 lelqirj+

g 1 +ar°‘_1 r +T°‘
i nl/a n exp nl/a n |

From the equality above Hypothesis 1 we get lon —=2(0) = c+ n'en® £ Xy —
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Aofto > 0. Moreover,

Lo i ; ¢
At (r) = )\g/a:e " fy(z)dz + M ZZW

0 i=1 j=1 (g —7
o 1 N are—1\? n ala — 1)7“0‘_2 r n ro -0
™ nl/e n n P nlt/a  n ’

for r < ¢, hence L, () is increasing in [0, ¢;) with L, ,(0) = —¢, and the result

follows.

Let us define the functions L*(r) = Q1(r)L4s(r) and

L™(r) = Qu(r) [er + n*r® — (A 4+ A2 4+ 0)].

Now we take § > 0 and consider, for fixed s > 0, the contour Cy as the imaginary
axis together with a semicircle of radius s, moving clockwise from —is to is. We
note that

Zl]].

L(r) — 1(r)| = |@i(r) (Am +Alzi fBiq; )

Since ‘llnn |L**(r)| = oo for any ¢ > 0, for r in the semicircle and s sufficiently
T|—00

large, we have

n m;

>\2f2 )+ A1 Z Z ﬂ”ql

7,1]1

<M+ N< |C’I°—|—’l7 ()\1—1—)\2—{—5”, (2.13)

for ¢ > 0. For r in the imaginary axis, we have r = i|r|sin(n/2) and r® =
|r|* [cos(am/2) + isin(an/2)]. Using that o € (1,2), it follows that cos(an/2) =
cos(—am/2) < 0 and

ler +n%r® — (A + Ao + 0)|

= 0 [Re (r2) + Ay + Do+ 0)° + (cIm(r) + noIm ()
> A1+ Ao (2.14)
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which holds for ¢ > 0. From (2.13) and (2.14) we obtain for sufficiently large s that
|L*(r) — L**(r)| < |L**(r)|. Now for r € R\{0}, using that sin(f) = —sin(—0) we
obtain for ¢ > 0:

|L(ir)| = \/[Ro — A1 — Ap — 8 +nor|ecos(an/2)] + [c|r| + no|r|@sin(ar/2) + To)?,
(2.15)

where

Ry = Re(A falir)) +Re( ) % < ZT)k) |

Bjk
7=1 k=1
/8]]{3(

J

N m;
I[):Im()\gfg(z'r) +Im( ZZ

=1 k=1

Since A\; + Ay > |Ry| and cos(an/2) < 0 for a € (1,2), it follows that the right-
hand side of (2.15) equals A\; + Xy + 6 — Ry — n®|r|*cos(am/2) and this is bounded
from below by Ay + Ao + 6 — Ry — n*|r|“cos(an/2) > 0. Hence we conclude that
|Los(ir)| > 0 for all r # 0 and for § > 0, which implies that there are no roots on
the imaginary axis when § > 0 and using c¢) we conclude that, when § = 0, the

only root on the imaginary axis is p; 5 = 0, and such a root has multiplicity one.

Now applying Rouche’s theorem we conclude that L*(r) has the same number of
roots as L**(r) in C,. Letting s tend to infinity we obtain the result for C,.
Taking P(r) = cr +n*r® — Ay — Ay — 0, by Lemma 2 we conclude that L**(r) has

m + 1 roots in C, 4 for ¢ > 0.

Now we prove the result about the number of roots of L, , (). We take L**(r) as

before and

N m;

L) = Qi) [w? RT3 pie L

21]1 B

—nna—()\1+)\2+§) .

Then, for r in a semicircle with sufficiently large radius s, 0 < ¢ < § and n
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sufficiently large:

N m;
L3 = 17 0] = Q0] Pafar) + MDD @i% yenl-Vay
=1 j= 1 ’I”
—|—n170‘e_nlr/a+% —nn® —
p _
<1Q1()] [Aafalr +)\122 ”ql S|+ Qi) [ 1-1/a,
i=1 j= 1
+n17a6_nlr/a+r7 _ nna _ na,ra

<1Qu(r)[ (A + A2+ ) <[Qu(r)[|er +nr® — (A1 + A2 4 9)]
= L**(r), (2.16)

where the last inequality follows for sufficiently large n using the uniform conver-
1-1/a

r

gence of n“n T+ 770‘67711%JFT —nn® to n®r® in By.

Now for r in the imaginary axis we use (2.14) to obtain

L ()] > 1Q1(r) (A1 + A2 +6) > [Q1(r)[ (A + A2 +€)
N m;

> |Q1( ) )\2f2 —}—Alzz /Bquz

7,1]1

N LI s v S (A1 + Ao +6)

= Ly (r) = L™ (r)],

and the result follows by Rouche’s theorem. The proof for L, . is analogous.

e) If limy_ o pjs(n, k) = 7; then from part a), limy_oo Lani(pjs(n, k) = Lan(r;) =

0, hence r; is a root of L, ,(r). The second limit is obtained in the same way.

f) By the weak convergence of the stochastic processes with Laplace exponent L, ()
with & > 0, to the stochastic process with Laplace exponent L,(r) when 6 = 0,

we know that (lsin(l) p1,s exists. Let us suppose that (lsin% p1s = So € [0,q1). Since
— —
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Los(r) = Lao(r) uniformly when § — 0 on r € [0,¢1), we obtain s; = 0 since

p10 = 0 is the only root of L, in [0, ¢).

m
2.2 The Laplace Transform of ¢
The following lemmas are needed.
Lemma 3. For eachn € N and r € C,, the integral
0
I, = n”l/o‘/ (1 —e " — T:U) gml(nl/ax) dx
exists and satisfies lim |I,,| = 0.
n—oo
Proof. See Appendix A. [

Lemma 4. Under Hypothesis 1, the integral Ko(n, k,r) = A (k) [~ [;° € ™ ¢nr(u+
x)pi(z) de du is finite for all v > 0, and has the equivalent expression

Pl,k(r) -~

B PQ,]C (7“)
Quelr) )

Qui(r)’

KO(n7 k? T) -

where
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Proof. See Appendix A. n

Let us define

Mo n(r) ) = nltt/e a/ / (x —u,u)ga,1(n Vegydadu,

-1)
M, (r) = 7704204_a // e "z —u,u)z T %rdu, 1< a <2,

—)\2/ / e~ o(x — u, u) fol) dzdu, (2.1)

and note that +~N,(r) = fw( ), where &, (u) =

=g

w(xr — u,u) fo(x)d.

Lemma 5. For any two complex numbers ry,ro € C, with ry # ry, there holds

nh_>m Mon(r1) — Mo n(r2) = Mo(r1) — Mo (r2) (2.2)
and
lim Malr) = Ma(ra) _ ). (2.3)
a—2 ro — 171
Proof. See Appendix A. n

In order to obtain simpler expressions for the Laplace transforms ank and for &E,

we impose the following condition.

Hypothesis 2. For any 6 > 0 and ¢ > 0, all roots of L, (r) in C, have multiplicity
1.

Due to Proposition 1 e), Hypothesis 2 implies that, for all sufficiently large n and
k, the roots of Ly and L, have multiplicity 1

We need the following functions:

0
~ e —ra/nl/
uar/n/*) = [ e g, (@)

—00
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s/t = [ e g e
0
16w =0 [ [ bus@gasn¥ea) e,
Ap(r) = ntt e /0 /x (e’r(x“) — 1) qbn,k(z)ga,l(nl/ax)dzdx (2.4)
K(n,r) = nlti/e C“/ / e @) b 1 (2)gan (Y Ox)dzdzr.

Notice that ¢, x(r) < B due to Hypothesis 1 ¢), hence

n1+1/a e

A,(r) < pt / (1—e" —ra) Ga1(n* ) dz,
r

—00

and from by Lemma 2 it follows that lim A,(r) = 0.

n—oo

In the next theorem we obtain an expression for ¢y, k.

Theorem 6. Assume that Hypothesis 1 holds and that (c¢,n) # (0,0). Then the
Laplace transform of the EDPF ¢, 1, of V,, . admits the representation

Plyk(”f’)

ank( )¢nk< ) Ql,k(r)

— Ny(r) = Mon(r) = T(Pni) — An(r). (2.5)
Moreover, under Hypothesis 1 and 2, we have for all § > 0,

ank( )¢nk( )

m+1

TR | TG R
R T [
711_[7&5(,01-,5(7% k) = prs(n, k)

= (bn(k) = )N (r) + (b (k) = prs(1, k) An(p1(n, k) = (bn(k) — 1) An(r)

+ (bn(k) = prs(n, k) Man(prs(n, k) — (bn(k) — T)Ma,n(r)] : (2.6)
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Proof. We consider a small time interval (0, k) and condition on the first jump time

and first claim size of V,, ;. This gives the equation

h oo
Pni(u) = e PTG 4 (w) + Ay (k) / / e~ WEN g L (u + x)p) () dadt
00
+ Ao / (/\2+5)t¢n (u— ) fox)dxdt

/ ~C2 Dt (1 — i, ) fo(x)dadt

u

O\v O\m

4 pltl/epa e~ 4t G (u — 1) g1 (N ) dadt

3

o\;: O\w

4 plHl/ae e (nna+5)t¢n7k(u — x)gml(nl/o‘a:)dxdt

8\0 o\ﬁ

“”ana/ / (@ — 1, 1) g (0 2 dd,
0

u

where A, = A1 (k) + A2 + nn®.

Using a Taylor expansion in the exponential function in e*(A"M)hgbn,k(u), we ob-

tain:

Pk (1)

=

S= &

h oo
(1= (O + 8)h + 0()) b (1) + Aa (k) / / OB V() dadt
0 0
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u h oo

h
Ao / / e~ 2ty L (u — ) fo(x)dadt + Ny / / e~ P2ty (1 — ) fo(x)dadt
00 0

u

+ nl—i—l/a o

n /6_(nna+5)t¢n,k<u - [E)g%l(nl/al’)dl’dt
0

+ nl—f—l/ana

T\: St~

0
/ 6_("”a+5)t¢n7k(u — x)ga,l(nl/o‘x)dxdt

_|_n1+1/a o

n /e_("”wr‘s)tw(x — , u)gon (nV/x)dadt

u

o\b

Letting h — 0 and taking Laplace transforms, we obtain

(A + 8)e(r)

// T r(u+ x)py(z dxdu+)\2// T Onk(u — ) f2(w)dzdu

+)\2//e (z — u, u) fo(z)drdu + n*T/oy a// "G k(U — ) g1 (Y x)ddu

u

1+1/0‘7)‘)‘//6’"“w(a:—u,u)goé’l(nl/a:c)d:cdu
0

u

0 —o0

= Ko(n, k,7) + Aot o(r) fa(r) + Nu(r) + nn (1), (r/nt/) + K (n,7) + Mo (7).
(2.7)

Next, we obtain a more explicit expression for the function K(n,r) defined in

(2.4). Changing the order of integration and setting z = u — x in (2.4) yields
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—T

/ 'rm—l—z gal( l/al,’)dZdI
(&

+pl oo / _T(x+2)¢n,k(z>ga,l(nl/ “z)dzdz

0
K(n r _nl—l-l/a,r}a/
0
oo 0

= 10" G ()G (/)
0

xT

- n1+1/ana / /eT(Hz)qbn,k(z)gml(nl/a:c)dzdx
—o0 0
= 10 G (1) Gy (/%) = Ap(r) = T ().
From the last equality we get
0% Gne ()G (/0 %) + K (n,1) = 1% Gy (1) G (r/10®) + T () + An(r),

which, together with (2.7) and Lemma 4, yields

P1 k(?“) (7“) _ PQ’]g(T)
Q1 k(T’) Ql,k(T’)

Nao(r) + 1% G (1) Gt (/)

— Man(r) — (an k) — An(r).

()‘n =+ 6)$n,k( )

Since the function L, , has the equivalent expression

Pl,k(r)

La,n,k(r) - )\QfQ(T) + QLk(T)

+ g (r/nt*) — (A, +6),

then (2.5) follows from (2.8).

Because of Hypothesis 2, all roots p;s(n,k),j =1,...,m+ 1, have multiplicity

Hence, substituting r = p; s(n, k) in (2.8) and using Lagrange interpolation we get

31

+ Ao i (r) fa(r) (2.8)

1.
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i @il ) T (pis(n ) =)
Pou(r) =Y — T N (pra (1, k) + Mo (prs(n., k)
=1 IT (pis(n, k) — prs(n, k))

i=1,i#l

+T($n,k> + An(prs(n, k)| -

Hence from (2.5),

Loy (7)o i (7)

m+1 .mﬁl (pis(n, k) =)
_ Z Ql,k(l)l,é((:b), k)) m+z1=1,zaél (No(prs(n, k) + Mo n(prs(n, k)))

=1 Lk ‘:H#I(Pi,é(na k) — prs(n, k))

m+1

mal ' H (pi,é(nu k) - T’) N
+ZQM@$@%Jw# (T@ur) + Aulpraln. )

=1 .:11_[#1(&,5(%, k) = prs(n, k))

— (Nolr) + Mo () + T(Bu) + Au(r))

Using Lagrange interpolation and recalling that Q x(r) = (bn(k) — 7)Q1(r), we

get
m—+1
m-+1 '_11—1 l(pi,d(na k) - T)
> (k) = prs(n, k) @Qu(prs(n, k) — s = (bn(k) = 7)Qu(r).
=1 :11_[#(%’6(”’ k) — pis(n, k))

Plugging this into the above equality we obtain
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m+1 0 n, k) ‘mljl l(Pi,&(n, k) —r)
B> 15” - [(b (k) = pus(n, k) N (pra(n, 1))
e T (sl k) = puon )

— (bn(k) = 7)Nyy(r) + (bn (k) — prs(n, k) An(pr,s(n, k) — (bn(k) — 1) An(r)

+ (0n(k) = pro(n, k) Man(prs(n, k) = (bn(k) — T)Ma,n(r)] :

and (2.6) follows. m

From Theorem 6 we obtain our main result in this section:

Theorem 7. (Main Theorem I). Suppose Hypothesis 1 and 2 hold, and (¢,n) # (0,0).
Then for all 6 > 0 the Laplace transform of the EDPFE of the perturbed risk process
V., 1s given by

m+1 Q1(pj,6) jﬁ; (pis—T)
Z T : [Nw(pjﬁ) — Ny(r) + Ma(pjﬁ) - Ma(r)]
N Jj=1 p¢ (pl §—Pj, 5)
i=1,i#£]
¢(7ﬂ) = m+1 ? (29>

m+1 Q1(pj,6) ,_}_[# (pi,s—)
La(r) | X2 — =

Jj=1 IT (pi,s—pjs)
i=1,i#j
or equivalently, by
”il Q1(p1.5) Nepp5)=Nor) | Ma(py5)=Ma(r)
m—+1 S L

. j=1 .7}—1 (pi,s—pj,6) P P

o(r) = ——7 . (2.10)
m—+1

La(r) | 3 —r— 2!

i=1 II (pis—rjs)(pjs—T)
i=1,i#]
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Proof. From Theorem 5, in order to obtain an expression for ¢(r) we have to take
limits in (2.6) firstly when & — oo and afterward when n — co. Since limy_,, b, (k) =

oo implies

Q1(pj.s(n))(bn (k) — pjs(n))

Q1(pjs(n)(bn(k) = pjs(n)) _ Qi(pjs(n))

k—o00 Q1,k(r) k—o0 Q1(r)(bn(k) — 1) Q1(r)
from (2.6) and Proposition 1 we get
m—+1
m+1 '_}_[75 (pi(n)—r)
> Qu(pja(n)) == No(pjs(n)) + Man(pjs(n))
j=1 _ ﬂy{(ﬂi,é(")_ﬂj,é(n))
i=1,i#£j
La,n(r)qbn(r) = m+1
m+1 [T (pi,s(n)—r)

> Qilpjs(n) ==
= I (pia(m)—ps5(m)

i=1,i%]

m—+1
m—+1 , }T#.(pi(”)”)
> Qu(pjs(n)) No(r) = Mo n(r)
J=1 T (pis(n)—pj,6(n))
i=1,i#j
- m+1
m+1 [T (pi,s(n)—)

i=1,i#j
> Qilpjs(n) ==
j=1 T (pis(n)—pj6(n))
i=1,i#j
m—+1
m+1 IT (pi(n)—r)

; Q1(pjs(n)) mﬁla#j

) H _(ﬂi,a(n)—Pj,a(n))
i=1,i#j

A (pis(n k) — An(r)

m—+1
m+1 IT (pis(n)—r)

> Qilpjs(n)) 2
= I (pusm)—pss(m)

i=1,i%j

Identity (2.9) follows now by letting n — oo in the above equality, and using
Proposition le) and (2.2). The equality (2.10) follows immediately from (2.9) after
multiplying and dividing by p;s — r the j-th term in the sums in the numerator and

denominator of (2.9). m
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Remark 1. Let us suppose that fy is the hyperexponential distribution with density

file) =) Age™, x>0,
=1

with A; > 0 and )", Ay = 1. In this case the roots of the Lundberg function L, are
all real and different; the proof of this fact is similar to that in Bowers et al. (1997),
p. 422. If in addition n = 0, Theorem 7 above gives the result in Albrecher et al.
(2010). In the case when fi(r) = ¢™/(q+r)™ and n =0, Theorem 7 gives Corollary
6.2 in Labbé et al (2011) when ¢ > 0.

2.3 A Renewal Equation for ¢

In this section we obtain expressions for the EDPF ¢ by inverting its Laplace trans-
form, given in Theorem 7. The expressions we obtain are in terms of the operator 7,
introduced in Dickson and Hipp [2001], defined in (1.2). This allows us to obtain a

renewal equation for ¢, which is of interest in Actuarial Mathematics.

For ry,ry € C,, and ry # ry we have:

Mo (r1) — Ma(r9)

ro—7

= ﬁafmma(h) (2.1)

where m,(u) = % fuoow(ﬂﬁ —u,u)z "% dz. We also define

Q1(pjs)
[1(ps— Pj,é)’

i£]

E(p;s) = ji=12,....,m+ 1.

The following corollary is a direct consequence of (2.10) and the definition of
N, (r).

Corollary 1. Assume that Hypothesis 1 and 2 hold. Then

O(r) = hasw* Ws(u), u>0, (2.2)
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where

m+1

hasw() =Y E(pis) Ty, s [Nk + 1°ma) (u) (2.3)

j=1
and Ws(u),u > 0 is the function with Laplace transform

-1

m+1
F Ql(Pj,a)

Ws(r) = | —La(r) Z — . (2.4)

IT (pis — pis)(pjs — 1)
i=1,i#j

Our next step is to show that the function W\g(r) is related to the Laplace trans-
form of the time to ruin when 6 > 0 and to the ruin probability when é = 0, and that
it is the Laplace transform of some function Ws(u) whose explicit form is given in
Proposition 3 below. We recall that for ¢ > 0 and « € (1,2), the tail of the extremal
stable distribution (, . is given by

Caclt) =2 (1 —|—({_of)— T w >0,

n=0

and denote the density of (.. by za.. Due to Lemma 1 in Furrer (1998), Z,.(r)

exists for all » > 0 and is given by
Zue(r) =c/(c+r*7h).

Since pjs, j = 1,2,...,m + 1 appear in conjugate pairs, it follows that for 6 > 0
we have H;n:; pjs > 0. Using the change of variables p s(r) = pjs — r and Lemma

1, one can show that if p15,..., pmt1,s are different complex numbers, and Pj(z) =
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axt + a2+ - 4 a1z + qo is a polynomial of degree [, then for all [ > 1,

- 0 if 1=0,1,...,m—1

Z P)l(pjﬁ) _ (25>

m+1
— Llimi0z(00s — pjs i
=1 iz (Prs = pis) (=1D)"ay, if I =m.

The following two lemmas can be proved using Lemma 1 and (2.5), and the fact

that the roots {p;s} of L, are in conjugate pairs.

Lemma 6. For ¢ > 0,

m—+1 m+1 HN qml
Y BElpis)=1 and Y Elpis)ps = —opir—
j=1 [Ty prs

j=1

Lemma 7. For any function K : (0,00) — [0,00) and all 6 > 0 the functions

m+1 m+1
x = Z E(pj,(s)ijﬁK(I), and  x— Z E(pjﬁ)pj’(sij’&K(l‘), x>0,
j=1 j=1

are real-valued.

We define the function

(a0 —1Du™®

balw) =T

u > 0.

Although /s5(u) is not integrable, the function T,.¢,(z) exists and is finite for all
x> 0andr > 0.

For all complex numbers 71,75 € C,, such that r # r and a € (1,2), (see

Zolotarev (1989), p. 10) it can be proved by integration by parts that

/o [6_”‘” — e_”‘”] x %dr = —F(Q —a) [7’3‘1 — r‘f‘_l] . (2.6)

a—1
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It follows that

a—1
e
a(72) / _rﬂ/ e W) gy ( )dydx— . L £,
1

and

T, lo(r1) = / e”x/ e W5 (y)dyde = (o — 1)1r$72, ry # 0.
0 T

m—+1 m+1

Let us define fos5(x) = > E(pjs)p;, 5T, sla(® () and gs(z) = X2 > E(pjs) pjéfg( x),
j=1 j=1

for x > 0. Due to Lemma 7 the functions hq 5., fas and gs are real-valued. In the

sequel we assume the following condition.

Hypothesis 3. The functions ha 5., fas and gs defined above are nonnegative.

It is straightforward to prove that Hypothesis 3 holds in the case when f; is a
hyperexponential distribution and f5 is a general density function, because in such

case E(p;s) and p; s are nonnegative numbers.

In the following proposition we obtain an alternative representation of Wg, which

allows us to calculate its inverse Laplace transform.

Proposition 2. Under Hypothesis 1, 2 and 3, we have

a) Forn >0 and c >0,

Voo (1)

W r) = — — , 2.7
) T ) £ 1 7] =0

where kg = % 5(0) + fas(0) and 05 = ¢/n™ + ks are constants, and
Das(r) = Zatsr) (2.8)

1+ & fas () a0, (1)

b) The function /VIZ;(T) is related to the time to ruin and the probability of ruin 1 (u)
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by the following equalities:

-~ 19 H]\i1 g" =
o5(r) = - — —=="—W;s(r), 6>0, (2.9)
rer Hj:tl Pijé
and N
~ 1 A — A N g
D) = < — C+ Aty 242 HT’Ln:-‘rl].ql Wo(r), &6=0, (2.10)
" " [T% pio

where @s(u) = E [e7 1 co0}|Va(0) = u] is the Laplace transform of the ruin
time for 6 > 0.

Proof. See Appendix A. [

Corollary 2. We also note from the results in Proposition 2 b) that, for u > 0,
both ¥(u) and ps(u) are tails of probability distributions with respective densities

m; N mg
V' (u) = (¢ + M — )\QMQ)%—llquO(u) and ¢5(u) = 51_[;:+—11q’W5(u). Hence,
szz Pj,0 Hj:l Pj.é
from (2.2) the EDPF is given by the expressions

-1

N my
{(C + A — Azl@)%] haow*Y'(u)  for§ =0,

¢(u) = N w1l T
[5%} hosw * @s(u) for 6 > 0.

Now we are ready to give a representation of Wy as a series of convolutions of the

functions fu5, gs, Va,s defined above.

Proposition 3. Under Hypothesis 1, 2 and 3 the following properties hold.

a) For r > 0, the function v, s(r) defined in (2.8) is the Laplace transform of the

function

Vosl) = 70+ 3 {_giJ s * e (). (2.11)

n=0
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b) For uw > 0, the function Wg(u) defined in (2.4) is the Laplace transform of the

functions

1 > n —a *n
Ws(u) = MVWS * Z Os [’%Va,é +1 gs* Va,é] (w),
n=0
c) Vas(u) and 4 ag(; * Vas(1) + 52vas(u) are defective density functions.

Proof. a) Since 0 < ( ) < 1, Hypothesis 3 implies 0 < ( ) < 1 for all ¥ > 0.

Hence the series

203 [ ] estrzen)]” 21

n=0

is absolutely convergent for r > 0, and it equals (2.8). We set

n=

fi [gérzaes [fos * 2aps) " (w)du,

and apply monotone convergence theorem to obtain:

=0

3

&Y .
Z(u) = lim > / H 200y * [fos # 7o, ™ (u)du
0
L
< >

1

Qan 05(0 )[faé( )zaﬁ&(o)]

n

3

n

| a0 [Fes020,0)

< 00.

| —

0
n=0

This implies that the series

Z {_9%} Ra,b5 * [fa,& * Zoc,O(;]*n (u)

n=0

converges absolutely. Hence, we obtain (2.11) by inverting (2.12).
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b) By Hypothesis 3 and the definition of 7, s we have 7, 5(0) < 1, hence v,s is a

defective density function. From Proposition 2 and (2.7) we obtain

o(r) =
770‘#96/”\‘)‘750”) _ ﬁﬁa,é(r)
— — L .
B iy 91(ps0) Pas(r) 1 — g [KeVa,s(r) + 7G5 (r)Va,s(r)]
-La(r) {E:jl IIZIb¢jUM6—P@5Xp@5—r) n*0s 0

Hence, for all » > 0 we obtain the equality of denominators:

L) "i Qi(ps) Das(r) _ | _ FaBs(r) + 0~ Gs(r)Pis(r)
) H;Tl,li#j (pis — pjs)(pis —1) 10 05

Putting 7 = 0 in the above equality and using the second equality in (2.5), it
follows that

m+1

L o - La(0)V4,5(0) Q1(pjs)
1— — [17°G5(0) 4 k5] Da,s(0) = — - m S
05 105 ; 1 (pis — pis)pis
_ Va,5(0) 5H£\;1 g >
n*0s H;:;l Pj.5

0,

From the inequality above and the fact that 7,s(0) and gs(0) + ks are always
positive, it follows that % [17G5(0) + k5] Vas(0) < 1. Now using Hypothesis 3 we
obtain

1 N ~
0 [n’ag(;(r) + li(s] Vas(r) <1

1
Osn*
function. The proof of this result for v, s(u) is analogous.

G5 * Vo 5(u) + Z—jya,g(u) is a defective density

for all » > 0, which implies that

From (2.2) and Proposition 3 we obtain the main result in this section, in which
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we give a representation of ¢(u) in terms of an infinite series of convolutions of A, s,
and the functions gs and v, s defined above, and the corresponding defective renewal

equation for ¢.

Theorem 8. (Main Theorem II). Assume Hypothesis 1, 2 and 3. Then, for n > 0,
the EDPF satisfies the defective renewal equation

I 1 1
(b(U) = _/ (b(u - y) |:’16Va,§<y) + — 95 * Va,5<y):| dy + a_ha,é,w * Va,5(u)7
05 Jo n n*0s

whose solution is given by

o(u) = ﬁhm&w ) nz% ) {Z_j + naleg g(;} ().

We note from Corollary 1 that the only dependence of ¢ on the penalty function w
appears in h, s, (1), hence in order to obtain a formula for ¢(u) for different penalty
functions, we only need to calculate the corresponding function h,g,,. Let us take
w(z,y) = e W for s,t > 0. Using (2.6), we obtain that, in this case, the function
has. defined before has the form

m—+1

ha,5,W<u> - Z E(pj,ts)TPj,zs (nafl,s,t + )\2f2,s,t> <u>7

=1

where f154+(2) = el (x) — se T ly(x) and fos(x) = e T, fo(x).

0 0 2
Since ——e S| _,_y =2, ——e "W _,_y = y and e g = TV,
P |s t=0 @t |s t=0 ) 835% s=t=0 )
for & > 0 the results of the previous theorem can be extended to the cases of penalty

—s:c—ty’

functions

wz,y) =z, wl,y)=y and w(z,y) =1y, (2.13)

which are not bounded. This can be shown by applying the dominated convergence
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theorem and calculating the corresponding derivatives of h, .. In this way we obtain

the following result.

Corollary 3. Let 6 > 0 and

( m+1

'231 E(ﬂj,&)Tp]‘,a (naAa + >\2ﬂ2f2,1) (u) thd(l’, y) =,

m+1

oo (1) = z E(pya) Ty, (0 — DifAa + 0G) () ifwley) =y, (2.14)
m+1

S E(py)T,,, (104 + 2G") (1) if w(z, ) = 2,

\ J=1

where G(u) = uFy(u) = [Zls(x)dx, AL (v) = uTols(u), G*(u) = u [, (
u) fa(z)dz and Fy g is the mtegmted tail distribution of Fy. Then Theorem 8 holds also
for the penalty functions (2.13), with the same functions gs and v, s, and correspond-

ing functions ha.s. given by (2.14)

2.4 Examples and conclusions

Here we illustrate how to obtain the above results for two particular cases of risk
processes. We assume that Ay = s =n =1, ¢ >0, 1 < a < 2, the penalty function
w is such that Hypothesis 1 holds.

Example 1. For given positive constants a,b,, let fi(z) = ae *,x > 0 and

fg( ) = be‘b”", x > 0. In this case the Lundberg’s equation L,(r) —J = 0 is given by

T M denoted by p; and ps.

These roots are real and satisfy the inequalities p; < a < ps < b. In order to
obtain the EDPF ¢ for general penalty function w from (2.2), we need to calculate
the functions h, 5. and W, s. We have
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a — p1 (- —b Oz(Oé - 1) —1l—a
hoso(t) = /epl( )/w —x,T ()\be Yy —= dydzx
sw(W) s — 1 (y ) { Az F(2—a)y Y
y 2= /6_02(x_“) /w(y —,T) ()\gbe_by + My_l_o‘) dydzx,
P2 — P1 ['(2-—a)
(2.15)
and from (A.19) we obtain
Wi(r)
1
- . - . (2.16)
a1 _ _b _  atb a—p1 o PYToreTl  pyea pgtorent
ctr b+r (b+p1)(b+p2) + P2—P12 p1= p1—Tr P22—P1 p2~ p2—T

Since a < 2, the above formula does not admit a simple decomposition in partial
fractions as in the case when when a = 2. However, using the formula in Proposition

3 b) we obtain an expression for the inverse of /I/IZ;. This results to:

*n

1 > '
Ws(u) = ——1,5 * O0s™" | ksVos + /e_bxva(; - —x)dx ),
0= gyt D , o=y ()
= 0
_ a+b a—p a—1 p2—a a—1 o a+b a—p a—1
where ks = ERICTS I pg_pllpl + p;_pl/b 05 =c+ GG pQ_Pllpl .
ﬁpg_l, and by Proposition 3 the function v, s is given by
Va,5(u)
. " a— p1 . r —p1(z—y) (ai ]‘)Z_a
. 1 o= M ed
Z’eé*nz_:o{ 95] [m—plpl/z"%( y)/e re—a)
- ] ;
Lo p2/za (- _y)/e—pz(z—w(a—l)z_adzdy (u). (2.17)
pr=pr ) I'(2-a)
y

Note that using (2.16), the formulae for the Laplace transforms of the ruin probability and

of the Laplace transform of the ruin time given in Proposition 2b) are simple in this case.
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Example 2. Now we assume that fi(z) is as in the previous example, and
fa(z) = b?e %2, 2 > 0 (f, is an Erlang density with shape parameter k = 2 and scale
parameter b > 0). In this case the Lundberg’s equation is ( ) +ter+rt—2-4 =
0, which has two roots in C,, dengied as pi, P2, Wthh are real and satisfy the

inequalities p1 < a < po. In this case Wis(r) = %(T), where

~ _ a— p1 b2 1 b2 1 }
La —c4 a—1 4
() =ctr {Pz— [b+P1 (b+r)?  (b+p)?b+r

P2 —a { b2 1 N b2 1 }}
p2—p1 [b+p2(b+7)2  (b+p2)2b+r
a—p1 P?_I—Ta_l_i_ pr—a pyt—rot

P1 P2
P2 — P1 pL—r P2 — P1 p2—r

(2.18)

Again, this expression does not admit a partial fraction decomposition as in the case

when a = 2. Hence we use Proposition 3 b) to obtain:

Wi(u)
1 - a—p [ 0 b b
= ——Vus * 0s™ " < ks, ,5+/( [ e r+ —-se ”
n°6s nZ:;) " ) \p2=pLbtm (b+p1)?

P2 — b b2 —bx b2 —bm:|> "
+ e tr+ ——e Vos(-—x)dx u),
p2 — p1 [bJrPQ (b + p2)? al~2) (u)

where k5 = =5 [ 1 +(b+p1>z]+p2 ? [ = T o }Jr“’“pl + L= “p and

p2—p1 | b+p1 p2—p1 | b+p2 b+p2)? p2—p1 pP2—p1
a—p1 1 p2—a 1 b a—p1 a—1 p2—a
05 ¢+ P2—P1L [b-l-m T (b+P1) :| + p2—p1 [b-i—pz + (b+p2)2:| + pa— p1p + p2—p1 ,02 . The

functions h,s. and v, s have the same expressions as in (2.15) and (2.17), with the

corresponding roots p; and ps.

Although the formulae for Ws(u) presented in these two examples are difficult
to work with in general, the formulae for Wg(T) are rather simple and their inverse

Laplace transforms can be calculated by using numerical methods.

Since hg 5., and the constants in the formulae above can be calculated explicitly
by knowing the process V, and choosing § and w, the function W5 becomes the most
interesting object of study. For instance, the formulae given in Proposition 3 a) and

b) allow the use of theoretical tools to obtain asymptotic expressions for v, s and Wj.
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These results can be used to obtain asymptotic expressions for the ruin probability,
the Laplace transform of the time to ruin, the joint tail of the severity of ruin and
the surplus prior to ruin and some other important cases of EDPFs. The asymptotic
expressions for the ruin probability and the joint tail of the severity of ruin and the

surplus prior to ruin are the main topic in the next section.

Finally, the function Wy is related to the density of the negative Wiener-Hopf
factor of the Lévy process V,,, which we study in further detail in Chapter 3.

2.5 Asymptotic results

We begin this section recalling some notation and results from previous sections.

Again, 1 (u) denotes the probability of ruin P[ry < 00|V, (0) = u].

We denote by T, () the joint tail of the severity of ruin and surplus prior to ruin
of Vy,, ie. Top(u) =P[Vo(m0)| > a, Va(ro—) > b, 19 < 00|V,(0) = u] for u >0, a,b >
0.

We recall that ¢(u) and Y,;(u) are particular cases of ¢(u) when § = 0 and,
respectively, w(z,y) = 1 and w(z,y) = Lizsay>sy- We also recall, as it was proved in

the previous section, that the Generalized Lundberg equation
cr +n%r* + )\1]/”\1(—7’) + )\2]?2(7“) — (M + X)) =0,

has exactly m + 1 roots in the right-half complex plane {z € C : Re(z) > 0}, and

p1 = 0 is a root of the above equation with multiplicty 1.

Again we impose the conditions

a) The upward distribution F; has a density f;, whose Laplace transform has the
form (2).

b) For ¢ > 0 we have the Net Profit Condition E[V, (1) —u] > 0.

¢) The m + 1 roots of the Generalized Lundberg equation when 6 = 0, denoted by
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Pls- -, Pmait, are all different.

For a > 0, we denote again by z,.,(u) the density of the Mittag-Leffler distribution

with tail ¢, ,(u) and Laplace transform Z,,(r) = —ra=1- We recall that

N —pji0)™ m
Blpjo) = st and  go(u) = Ao 74 E(pj0) T faa)

where T, f is the Dickson-Hipp operator defined in (1.2), We denote by f,(u) the

function with Laplace transform

R m—+1 pqal_,,,a—l
falr) = E(pjo)pjo=
(r) 2 (Pr0)pio™=

and v,(u) is the function whose Laplace transform satisfies the equality
~ L~ ~
Va(T) (1 + gfa(r)za,e(ro = Zao(r), (2.19)

where § = ¢/n® + k and Kk = n%ﬁo(O) + fa(0).
We assume f,, go and v, are nonnegative. This follows at least in the case of a

convex sum of exponential densities with positive coefficients, as it was mentioned in

the previous section.

From Proposition 2 b) we have the the Laplace transform of the ruin probability

1 (u) satisfies the equality

N m;
- 1 _ Vo
= Lo et —do) it g ) (2.20)
r r Hj:2 P3j,0

where Wy(u) is the function with Laplace transform given in (2.7)

Since the roots of Lundberg’s equation appear in conjugate pairs, we obtain that

N
Hj:l d; ’
1
I1725" pio

We recall the following definitions:

Let F be a distribution such that F'(0) = 0, If there exist ¢;,c; > 0 such that
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F(r) < cre=® for all # > 0, we say that F is a light-tailed distribution. Otherwise,
we say that F'is a heavy-tailed distribution and write F' € H.

If lim ??(f) = 2, we say that F belongs to the class of subexponential distribu-
T—00 T

tions, denoted by F' € S.

We say that F' belongs to the class L if for any y > 0, we have lim Fa-y) _

F belongs to the class R, for ¢ > 0 if F' has a density f and lim 1@ _

T—00 F(x)

We say that f: R, — R, is a regularly varying function of x at oo, with order

a € R, if lim };(é t)) = t*, and write f € RV,. In the particular case when a = 0, we
Tr—r00

say that f is a slowly varying function of x at co.

If f is regularly varying of order a, then it can characterized as f(x) = z°L(z),

for some slowly varying function L(x).

If F is a distribution function such that F(z) ~ 2%L(x), we write F € RV, and
we have the inclusions (see Rolski et al. [1999]):

RV, CcSCcLCHand Ry C L.

For given functions f : R — R, ¢: R — R, we say that f(z) ~ cg(x) if lim o =€

)
for some ¢ € (0,00). We write f(z) = o(g(x)) if lim % =0.
T—00

The following result is required.

Lemma 8. Let H = F % F5 be the convolution of two distribution functions such that
F;(0)=0,i=1,2.

a) If F, € S and F1(z) = o(Fy(z)) as x — oo, then H € S. Moreover, H(x) ~
FQ(ZE)

b) If Fi(z) = 2 °L;(x) fori= 1,2, where Li(x), Ly(x) are slowly varying functions,
then H(x) ~ 27° (Li(2) + Ly(x)) as x — o0o.

¢) If Fy(x) =~ cFi(z) for some ¢ € (0,00), then Fy € S if and only if F, € S and
H =~ (1+c)Fy(x).
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d) If 6 € (0,1) and K(z) = (1 =) >~ B"F;"(z) then the following are equivalent:
KeS, FeS, K ~ZF ().

Proof. For a) and d), see Proposition 1a) and Theorem 3, respectively, in Embrechts
et al. [1979]. For b) see Feller [1971], p. 278. The proof of c) is given in Lemmas
2.5.2. and 2.5.4. in Rolski et al. [1999].

We also need the following result which can be found, for instance, in Feller [1971].

Lemma 9. Let {(x) be a slowly varying function and U(x) a nondecreasing right-
continuous function on R with density u(z) and such that U(z) =0 for all x < 0. If
c¢>0, >0 and u(z) is monotone in some interval (zo,00), then:

u(z) c , rU(r)

lim = if and only if lim——— =c¢

T—00 é(x)xb’*l F(ﬁ) 710 6(1/7")7"7’8

The case ¢ = 0 is equivalent to

u(zr) =o (f(m)xﬁfl) if and only if lim ru(r)

it -7y =0 (2.21)

2.5.1 Asymptotic behavior of the ruin probability

For z > 0 we define the functions

amzé/mw%mmzummzé/mm%

x oo

%mzé/wm%awzh%wzé/mw%

0+ T
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Un(z) = ~ / va(y)dy, Ta(z) = 1 — Ua(z),

where Cp = f.(0), Ca = Go(0) and Cy = D, (0).
Let F be any distribution function with density f and tail F. Throughout this

section we will use the equalities

Fir) = ) F(r) = 1= (2.22)

In what follows, F5;(z) denotes the tail distribution of F defined as Fy (z) =
L
s of Fy(y)dy.

We use Lemma 8 and Lemma 9 to prove the following result.

Proposition 4. F,, U, € S and

a) We have

IJ—V[ m
q;
F, 1 =1
Tim xl,(f) ol R (2.23)
[(2=a) " [T o
j=2
b) If F5 € Ry, then
N
a0(@ Aaflg =i @
lim — - = (2.24)
T—00 F27I(l‘) Cqo ™t

H P3,0
j=2

Moreover, if Fo; € S, then Gy € S.

c¢) If Fo(z) = o(z™%), then Go(x) = o(x'™®).
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d) There holds

77 [1q
lim ZU "‘(f)) o=t (2.25)
T—00 €T
“ 1 pjo
=2
Proof. See Appendix A. n

Throughout this section we consider the following cases for the claims distribution
FQ .

Case 1: Fy(x) = ( @),
Case 2: Fy(z) ~ k™™ for some k > 0, (2.26)
Case3: z7%=o0 (Fg(x)) for F5; € S and F» € Ry.

Now we are ready to obtain the asymptotic expressions for the probability of ruin.

Theorem 9.

a) In case 1:

(e

Ui l1-o
u) & w7, 2.27
v (@) (4 Aipr = Agpin) (2 — ) (227)
b) In case 2:
1 77a Aok 1—
~ * 2.28
vlw) 4 Mg — Aops [T(2 —a) L (2.28)
¢) In case 3:
Aoflo =
~ For(u), 2.29
e e (229
and in all cases ® € S.
Proof. Case 1. We define the function G§(z f Go(y)dy, > > 0. By (2.22) we have

@3(7‘) = 1%3(7«). By Proposition 4 ¢) and the assumption that Fy(z) = o(x~?)
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we have Go(z) = 0((,4(x)), hence (2.21) and the equality Gi(r) = 1*7?13(”
imply

N 1— 9o(r)
0= tim "Ca") _y— Co (2.30)
rlo  ro—2 rlo pro—l

Let us denote by 1(oc0) the limit lim ¥ (u). By the final value theorem for
U—00
Laplace transforms we have ¥(0c0) = hgl ri(r), which, by (2.20), implies

P(oo) = 1 — Li=% g,

H;‘%:l Pj,Ja
Since 1(u) is the tail of a probability distribution, we know that ¢(c0) = 0,
hence the equality above implies /V[Z;(O) =3 L. Setting r = 0 in (2.7) we

N
J=17J
ML, 055
obtain
1 _ #ﬁaa)) B ﬁCU
N g =~ ~ NS a ’
Woan 1 - [62a0)+ 3% o(07a(0)] 1= [nCy + L CaCy
j=1Pjs

or equivalently

i=19

ki 1
[ 7 Cu

J=1174,6

HN mj 1-— % [F&CU + 77LOLCGC'U

(2.31)

Now we set ¢*(u) = | ¥(y)dy. By (2.22), (2.20) and (2.31) we have

Ot—e

1_ 1-4 [sCu+75CaCu| —EgPa(r)

0
N —5Cu 1= 1 [wDa (r)+ 50 (1) Pa (1)
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1= &[5 (r) + A r)Pa(r)] - {W[“CUC*UT#CGCU]} Pa(r)

_ —— . (2.32)
r2(1— 7 [fwa(r) + P O(T)Va(T)D
It follows that:
lim ry (z)
r{0 7o
~ —an = — 114 @ ~
] 1 — fPao(r)+n 690(7‘)1’%0(” — {1 il CU:; CGCU]] Va,o(T)
= lim = Ta(r\D
rl0 o=l 1 — 5 [620,0(r) +17°Go(r)Vao(r)]
Vao(r) | ¢ 9(r)] -
1 1-— C—U + nTGB |:1 - CG Voz,O(/r)
P — —— (2.33)
rl0 7 — 5 [AVa,0(1) +07%G0(7)Va,0(7)]
1
1 e
—Cy

T1- 5 [Cy +n=CaCy]’

where the last equality follows from (A.37), (A.39) and (2.30).

From (2.31) we obtain

N m

1 e

_7;_+1 U
JI;IZ Pr0 n®

C+ Apn — Aafio Zglqln’ ct+ A — A
e m U
n*o0 jl:[:lpjo
and hence equality (2.33) is equivalent to lim re*(r) _ N

rl0 re—2 n c+ )\1/14 — /\2.
Now the asymptotic formula (2.27) follows from Lemma 9. Since (2.27)
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implies that ®(u) has a regularly varying tail, we conclude ®(u) € S in this

case.

Case 2. We consider 1*(u) and Gj(z) as before. Since F;, € RV _,, and we also have
: o = Aapip L0
F, € Ry, hence we obtain from Proposition 4 b) that Gy(x) ~ =L

By the assumption that Fy(z) ~ kx~%, an application of L'Hopital’s rule to
fQJ(CE)

l—«

Ih_)rgo 2o yields Fy 1) =~ K o Hence
N .
g
Go(r) =~ Aok 21;11 i (2.34)
Cg(a/ _ 1) m+1
I rio
j=2

By (2.34) and Lemma 9 applied to G§(z), it follows that

N .
ms R B 9o(r)
e L% i PG00 e (2.35)
Cola—1)mil Mo ra 2 g0 pacl '
pj70
j=2
From (2.33), we have:
/I/\a 0(7”) I |: §0(T>:| >
- 1— 22 4 Loy — Vao(7)
* 1 U 7
lim Ty EZ) = lim — 1CU = ACG 7 ’
rl0 ¢ rl0 re 1— 9 [FLVQ,OO’) + U_QQO(T)VQ,0<r)]

hence, we apply (A.37), (A.39) and (2.35) in the above equality, and obtain

Il
1
R 8
i ) _ o2 {1 + Aorl(2 - a)]
T 1 - % [kCy +n~*CaCy] n*(a—1)

~n*a—1)+ Xkl(2 - a)
(e M — Aap)(a — 1)
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Case 3.

Applying Lemma 9 again and using that ®(u) has a regularly varying tail in

this case, we obtain the result.

We define § = % [kCu + n~*CeCy| and
K(l‘) = (1 — 6) Z G" (% [KCUUQ + 10 *CaCyGy * Ua]) (l’)
n=0
—B)Y  BE; ()
n=0

where Ko(z) = (% [KCyUq +n~*CaCyGo * Ua]) ().
By Proposition 3 b) we have the equality

[e.9]

1 1 1 n
Ws(z) = — v * Z o [/wa + n—ago * Va} (x).

n=0

N
Hjlj

] 1 p] )
survival ®(z), hence it is integrable and by dominated convergence theorem

From (2.20) we note that —W;(z) is the density of the probability of

we can show that

1 Hj\[:l g ok 1 B
O(z) = Tg—-CUUa * Z — | KCyUq + n_aCGCUGO Uy | (2)

Rk
U Hj:l 7,0 n=0 0
Using 8 = 3 [kCu +n~*CCy) and (2.31) in the equality above, we obtain
d(z) = Zﬁ““%%+ﬁ%%%“@ (z)

— U, K(z) (2.36)

This implies that ®(z) is the convolution of the distribution functions U, (x)
and K(x). In view of this, we need to study the asymptotic behaviour of
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K (z). The assumption that 2= = o(F5(z)) and an application of L’Hopital’s
rule, imply that 7% = o (Fg,[(x) . Assuming that Fy € R, Proposition
N .

_ Aot 1@+ _
4 b) yields Go(x) ~ é/f ;13[11 Fy (), hence z'=* = 0(Go(x)) and by
Pj0

j=2

Proposition 1d) Uqs(z) = 0 (Go()).

Since U, and Gy are distribution functions and f = %[/{CU + n~*CeCyl,
we have that Ky(z) = <$ [(kCyUy + 1~ *CaCu Gy * Ua]> (x) is a distribution
function.

Then, it t follows from the equalities above and Lemma 8 a) that 1 — Ky(z) ~

155 Go ().

By the assumption that F,; € S and Proposition 4 b), we have Gy € S,

hence Lemma 8 d) gives:

N

o 4o
)\2N2nTUgrlnl}[11
— “*CaCy— 11 pj.0 _
K(z) ~ 1f577 95 UGo(x) ~ = ——Fy(w). (2:37)
c+ At — Aafio il;llqi ' C
= U
77'19 _ﬁlpj,o
j=2

Simplifying the coefficient in the right-hand side of (2.37) results to:

N7 Aafla i
K(x) ~ F : 2.38
O N —ana 1 (239

Using (2.36) together with U, (z) = o(Fqr()), (2.38) and Lemma 8 a), we
obtain (2.29) and ® € S.

The following lemma is immediate.
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Lemma 10. Let fi, fo be two nonnegative functions such that fi ~ g1 and fs =~ go,

for some functions g1, go such that lim ()

=c € [0,00]. Then

a) fr+ fam g1+ 9o,

b) Ifc#1, fi — fa= g1 — g2
Theorem 9 and Lemma 10 give the following corollary.

Corollary 4. For all the cases in (2.26) the ruin probability 1 (u) has the asymptotic

exTPTession:

/i 1-a Aaflo —
W T Fyr(u 2.39
w( ) (C + /\l,U/l — )\2”2) F(? — a) c+ )\l,ul . )\Q,LLQ 2,[( ) ( )

In particular, if Fo(u) ~ Ly(u)u™® for some slowly varying function Ly, and Fs
satisfies any of the cases in (2.26), we have:
1 n A2

~ L - 2.4
P(u) c+ A — Aapo | I(2 — ) +oz—1 () (2.40)

Proof. We obtain (2.39) from Theorem 9 and Lemma 10 a). To obtain (2.40) we

consider the three cases in (2.26)

Case 1. We have lim M = lim F%(Z)M = 0. Hence:
u—oco ¥ u—oo ¢ Fa(u)

lim ¥(u)

U—00 1 ne A2p12 l1—a
A1 —A2 2 |:1"(2—a) + a—1 Ll(u) u

L)

11—«
Uu — 1

= lim
U—00 1 ne + Aopg L1 (w)ul—e
ctAip1—A2pe | T'(2—a) a—1 ul—o

where in the last equality we used (2.27).

@

— 1 U} A2k
Case 2. We set C' = P vy vy [F(Q_a) + of_l}
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Using the equality lim L;(u) = x and (2.28) we obtain:
U—00

lim ()

U—00 1 ne A2 -«
A1 p1—Aap2 [F(Z—a) + Ll(u)] U

= lim =
u—oco 1 1 ne + Ao Li(uw)ul—«
C r'2—a) ul—e

cHA1p1—A2p2

Case 3. We have that u™® = o (F(u)) implies u'™® = o (Fy(u)). Now, using

Karamata’s theorem (see, for instance, Bingham et al. [1987], Proposition

. . F _
1.5.10) we obtain lim LQ—I(QQ = 2=L Hence
wsoo L1(u)u B2
lim ()
U—»00 1 ne A2p42 1—a
A1 1 —A2pu2 |:F(270{) + a—1 Ll(u) u
p(u)
Ao Ko T
_ hm c+>\1u1—/\2u2F2'I(u) —_ 1
u—oo __N% ul-e 1 Li(wul==

I'(2—a) AopaFa 1(u) a—1 Fj1(u)

u
2.5.2 Asymptotic behavior of T, ;(u)
Now we study the asymptotic behavior of T, ;(u), defined as
Top(u) =P[|Va(ro)| > a, Valro—) > b, 70 < 00|Va(0) = u] .
For fixed > 0 and a > 0, we define the function:
[eS) B N _q
B(z; 8, a) := /eﬁ(yx) ()\QFQ(y +a)+ %(y + a)o‘) dy. (2.41)

T

In order to obtain the corresponding asymptotic expressions for Y, ,(u) when
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A = max{u, b} — oo, the following three results are needed.

Lemma 11.

a) B(r;f,a) < Aopia + F—(;t—a)al_a

b) In any of the cases considered in (2.26) we have B(x;3,a) = o(¢(x + a)).

Proof. a) Since e #=%) <1 for every y > x and Fa(y + a) < Fy(y), we have

[e.e]

B(z; 8, a) g/(AQFQ(y+a)+

T

n®(a—1)

r2—a) (y + a)‘°“> dy

< 7 (Aﬁz(w ¥ %@ n >) dy

x
«

T] 11—«
<\ - )
< 2'M2+I‘(2—a)a

b) Using Fy(y +a) < Fo(x +a) and (y +a)™ < (z+a)~%, for all y > , we obtain:

o0 B . B 1
< | AoFy(z 4 a) + M(m +a)™ /e_ﬁ(y_x)dy
B ['2—-a)
_l )\F(x—i—a)—i—M(x_i_a)—a (2.42)
=5 | 2 o) '
In cases 1 and 2, the limit lim F;_(i;) equals a constant d € [0, 00), hence in any of

T—00
these two cases we obtain:
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FQ (:I; + CL) fo _
_ (g o 1 n*(a—1)
AR i) 3 (e )
lim = lim = 0.
T—+00 (ZL‘ —+ a)lia T—00 T+a

(2.43)

By (2.27) and (2.28), in cases 1 and 2 we also have ¥(u) ~ Au'"® for some
constant A > 0. This and (2.43) imply:

L (MFaole +a) + 5ED (@ +a) )

.
e U(z + a)
% <)\2F2($ +a)+ n:(gci;l)) (x + a)*a>
L (x4 a)l-@ B
= 9z +a) -
(x 4+ a)l—@

Hence we obtain the result in these two cases by dividing by ¢ (z + a) both sides
of (2.42), and letting = — oo.

In case 3, the assumption that Fy € R and L’Hopital’s rule imply that Fs; € Rp.
We also have in this case that ¢ (u) ~ AQFQ, 7(u) for some constant As > 0, and
from the proof of Theorem 9 c), 2!™% = o(Fy(z)). Using these two results

together with FQ’ 1 € Ry we obtain:

L (AFola +a) + He=l (o +a) )

lim

. Wt a)
5 ()\272(33 +a)+ 7’;(20‘_;1)) (z + a)‘a>
L Fys(z+ a) B
=i Ut a) =0 (244

F27[(:L‘ + a)
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Hence the result follows again dividing by ¢(x +a) and taking limits when x — oo
in (2.42).

]
Lemma 12. For w(z,y) = lizsay>ey and 6 =0 we have
Top(u) = ho * Ws(u), (2.45)
where
14"
q; " % a
=1 = n(a—1) —a
ha(U) = 1 )\2F2(a+2’) + F<2—_a>(a+z) 1{Z>b}dz+la,b(u),
H P50 u
j=2
and
Lo p(z) = J; E(pjo) /r e pioly=) (Aze(y +a)+ m(y + a)_a> Liy>opdy.
Moreover, if Fy and Fy 1 satisfy cases 1, 2 or 3, then
[ Lusta = 9)(ay) = ofw (). (2.46)

0

Proof. Formula (2.45) follows from Corollary 1. To prove (2.46) we first note that

m—+1

> N — Yo —1 _a
Lop(z) <) |E(pj,0)|/ e~ Felps0)y=2) (Ang(va a) + M(y +a) ) dy,

J=2



62 CHAPTER 2. EDPF FOR THE a-STABLE CASE

which by (2.41), is equivalent to:

m+1

Las(@)] < Y 1E(pj0)| Bl; Re(pjo). a] (2.47)

Jj=2

By Lemma 11 b), there exists an uq such that for all u > uy we have the inequality
S B (pi0)| B [u; Re(po), a] < eo(u).

Hence using this and (2.47), we obtain

[ Lstu=natdy)| e [ 0= ou—y)at) T Maw—y)le
oW |T o) " o(w)
J -t p)otn) T Huau—w)le@w)
: o) W

By Lemma 11 a), the right-hand side of (2.47) is bounded above by

m+1

_ noz -«
Co = ]; |E(pjo)l ()\2M2 + mﬁ ) :

Hence

Using that ®(u) € S, we obtain the result by letting v — oo (and € | 0). ]
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The asymptotic expressions for T, ;(u) are given in the next result.

Theorem 10. The joint tail of the severity of ruin and the surplus prior to ruin,

Y. p(u), has the following asymptotic expressions.

a) In case 1:

(67

Tupl(u) ~ "

a+ A
(c+ Apr — Aapg) I'(2 — oz)( )

b) In case 2:

1 7’]a )\2/1 1—
~~ AV S
4+ A1 — Aopin F(2—04)+0z—1 (a+4)

Ta,b(u)

¢) In case 3:

Aafio -
T ~ F A
oo(t) C+ Aipn — Aapla 21(a+ 4)

Proof. Since

N
ITa™ <
i= ! — Y —1 —a
ha,(g’w<u) = m+11 / |:/\2F2(a + Z) + 1}_‘((2—_a))(a + Z) :| 1{z>b}dz + ]a,b(u),
HZ P50 u
]:

by (2.45) and (2.20), we have:

1 - Pla—1),
T, = Mo F L - N 1apndz®(d
o) C+MM_AWL//"[2xw+@+F@_a¢a+@ ]{M}z<w
0 u—y

N

14"

=1

m—+1 u

'1;[2 Pi0

/uAu—w¢ww (2.48)

0

+
c+ Ap — Aafho

By (2.46) we only need to study the asymptotic behavior of
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J PeFala+2) + R (at 2) 70| 1 dz0(dy)
T*(u,a,b) = —

Ct—g

C+ Apn — Agpin

with respect to ¥(u + a). First we suppose A = u, and define

i |:)\2,U2F2[ a+u—y)+ F(g—ja)(a +u— y)l“‘] P (dy)
0

To(u,a):=
0( ) c+ )\1,ul — )\QIILQ
We have:
T*(u,a,b) < // [AQFQ(G‘FZ)‘FM(G—FZ)_Q} dz®(dy)
C+>\1M1 Aaflo ['(2-a)
u—y
= To(u,a) (2.49)
and
1 - Pa=1),
T*(u,a,b) > Ao Fo(a + —_— | dz®(d
(u,a,b) HMI_M?//[ Tofat2) + =l +2) ] 20 (dy)
)\,uF a+u +—(a—|—u) o
vaFar(a ) + i ®(u). (2.50)
C+ Apin — Agpin
Clearly, (2.50) implies that
T*(u, a,b)
lim — %% 5 2.51
wooe Pluta) (231)

)\2#27271((14‘10 + a+u) ¢
e- )( ! and lim ®(u) = 1. Now

because ¥ (u + a) = c+ M1 — Nofis umree

we will prove that

lim Yo(u,a)
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for all the claim distributions considered in Theorem 9. Indeed, from (2.52) to-

gether with (2.49), (2.51), (2.48) and (2.46) we obtain the result.

Now we note that

Yo(u,0) = s MaaFale) [ (1= Futu - ) 0(dy)
g [ 0= Pl y))@(dm]

0

F a—1
where F, ;(u) =1 — M and P, ,(u) =1— ( a ) ul=e.
FQy](a)

Hence we obtain:

Yo(u,a) = — Mi — (Am?ﬂ(a) [®(u) — Fy % ®(u)
.+§;¥gﬂ@wy—&@*®wﬂ>
+ % [@(u) —1+1— Py <I><u>]>
S (mn,m) 1= Fo o ®(a) — W(u)
n % [1— Pyo# ®(u) — U(u)] ) (2.53)

(67

Ui l1—a
u Y
(e Apn = Aop2)T(2 — )
hence by Lemma 8 ¢) and the assumption Fa;(u) = o(u'~*), we obtain

Case 1. By Theorem 9 a) we have ® € S and ¢(u) ~

na l—a
1—F,;%x® ~ )
T N T2 )
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This implies

AafioF'y 1(a)

C+Amy—km[1_FW*®@”_¢W”:0WP%' (2.54)

By Lemma 8 b),

1= Poox®(u) ~

( au )a_l n n" yl-
a+u (c+ Apr — dopo)T(2 — ) ’

which by (2.27) and Lemma 10 b) implies:

1—&w¢@—wmz(“ yl. (2.55)

a—+u

Using the expression for Yo(u,a) given in (2.53) together with (2.54), (2.55)

and Lemma 10 a) we obtain

(67

1
c+ Apn — Agfio

n
['2-a)

To(’u, a) ~ |i>\2,LLQF2,[(OJ -+ A) + (CL + A)lia ,

and (2.52) follows.

Since F'y(u) &~ ku'~® by assumption, by L’'Hospital’s rule we obtain Fy ;(u) =

K 11—« K 11—«
u' ™% Hence F, ;(u) 8 ——L——u""%.
pi2(a—1) a1 (u) pz(a—1)Fz,1(a)

By (2.28) we have ¥(u) ~ Cu'~, where C' = 5 |:F(;7ia) T %}

Using this and Lemma 8 b) we obtain 1 — F,  * ®(u) = [C’ + m} ul=e,

and applying Lemma 10 b) it follows that

1= Forx®(u) —p(u) = ﬁula A ﬁ(a +u)'"*  (2.56)

By Lemma 8 b) and (2.28), it follows that:
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Case 3.

1= Pox®(u) ~

( au )a 1+ na
a+u (c+ Mpg — Aop2)[(2 — )

+ u°, 2.57
c+ A\py — )\2M2] ( )

This together with (2.28) and Lemma 10 a) implies:

a—1
a
1—P,o*xP(u) — ~ : 2.58
o) = o)~ () (2.58)
Now using (2.56), (2.58) and Lemma 10 b), again, we obtain
1 n* Aok 1
T ~ a
olu,a) C+ A — Aafi [F(2 —a) T 1} (@)

By the assumption that 4= = o (Fg(lt)), we apply L’Hospital’s rule to obtain
Ul_a =0 (FQJ(U)) .

auy

Since ]_Da,oz<u> — (a‘j:‘u)a_l uw' ™ and 1}1_{20 % =1 for all y > 0, we have

Py o(u) ~ul=

Hence P, (u) = o (Far(u)), and by Corollary 8 and (2.29) we obtain 1 —
P,o*x®(u) = Wl’\:l—“_aMFZ[(u). By (2.29) and Lemma 10, we conclude that

1= Poo*®u) —(u) = o(Faz(u)).

By Lemma 8 b),

1—Fa71*®(u)%( L Aaft )_

— + Fs(a+u),
Faor(a) ¢+ Apn — Aapiz 2.( )

and by Lemma 10 b), this implies 1 — F, ; * ®(u) — ¥ (u) ~ F, (u). Hence,
by Lemma 10 a) we obtain (2.52) again.
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If A = b we have:

u o0

* _ na(a — 1) —a
(w0 = ¢+ >\1M1 Ao p2 / / [)\2F2 at2) F(Q —a) @+2) } Hend0(dy)
u—y

1 _
= XopoFo r(a+b —|—a—|—b1_a]¢>d
T oS 0/ apaFasa+ )+ a0 | @)

NopoF r(a+b) + F(giia)(a + b))~
N c+ Aip1 — Aapio

D (u).

)\Q/LQFQJ(CL + b) F(2 (CL + b)

' _ ' c+ A — )\2,U2
letting © — oo and applying cases 1,2,3 with u replaced by b. [

Hence the result follows dividing Y, ,(u) by , then

Finally, as in the case of Corollary 1, Lemma 10 gives the following result.

Corollary 5. For any of the cases in (2.26), the joint tail Y, ,(u) has the asymptotic

ETPTESSION.:

(e}

~ n l—«a
LA TS W v s NGRS L

)\2,u2
c+ Apn — Agfio

Fg}[(a + A)

In particular, if Fo(u) ~ Ly(u)u™ for some slowly varying function Ly, and Fs
satisfies any of the cases in (2.26), we have:
1 T]a )\2

~ 1-
(u) ~ i = T2 = a) + a—lLl(a+A) (a+ A)

2.5.3 Asymptotic behavior of T,;(u) in the spectrally nega-

tive case

This final subsection aims to provide the corresponding result for the joint tail of the
time to ruin, the severity of ruin and the surplus prior to ruin, for the case of the

Lévy risk process studied in Furrer [1998].

The approach is the same as in the previous section, and all results are stated
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without proofs. Instead, we refer to Kolkovska and Martin-Gonzélez [2016] for the
fully detailed proofs.

We begin with some basic notation: throughout this section, X = {X(t),t > 0}

is the classical risk process with an a-stable perturbation, defined by the equation
X(t) =u+ct—S(t) —nWa(t), (2.59)

where u > 0 is the insurance company’s initial capital, ¢ > 0 is a premium per unit
time, S = {S(¢),t > 0} is a compound Poisson process with Lévy measure Af(z)dz,
such that f is a probability density, and W, = {W,(t),t > 0} is an a-stable process
with only positive jumps, with o € (1,2), independent of S.

In this case, T, (u) is defined analogously as in the previous section, as
Yop(u) =P[|X(70)] > a, X(10—) > b, < 00| X(0) = u],

where 79 is the first passage time below zero of X (time to ruin of X).

Notice that T (u, a, b) is the EDPF of the process X in the particular case w(z,y) =
liz>ay>py and 6 = 0. Hence using Theorem 1 in Biffis and Kyprianou [2009], for

w(r,y) = L{zsay>ps} We obtain:

olu) = / (20 (u = ) = p2 D (u = ) 7 eV

a—1 1 —
* AF 1 dvd
[7] I'(2—-a)(+a) tAF+ a)] (=Y

If we set ¢ = 0, the formula above yields:

T(u,a,b) = / W' (u—y) / {”aré__la) e ja)a + A\F(v+ a)] 1oy dody
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u o0

o a—1 1 — ,
— / / [77 NCETSICENIT +AF(v+a)| Lpspydv p Wi(y)dy (2.60)

0 u—y

Now we consider the same three cases from the previous section. For this, we

denote by F;(u) the integrated tail corresponding to f.

Case 1. Fr(u) = o(u!™®)
Case 2. F € RV_,,
Case 3. F; € S and u'™ = o(F(u))

Theorem 11. Let F' satisfy one of the cases above, where in case 2 we assume that

F(r) = 27*L(x) with lim L(x) = Cp, € [0,00]. If b is fived and u — oo, or if both
T—00

u,b — 0o, then

)\lu B 77 77 a—1
T b) ~ F A
(u,a,b) c— 1la+ )+(c—>\u)F(2—a) (GJVA) ’

where A = max {u,b}. In cases a) and c¢) we have, respectively, the approximations

a—1
N Ui A —
T b) ~ a T b) ~ F A).
(U,CL, ) (C— /\,U)F(Q _ Oé) (CL+ A> an ('LL,CL, ) c— )\M I(a+ )

An application of the theorem above yields the following expressions for the tail

of the severity of ruin Y(u,a,0), and the tail of the surplus prior to ruin Y(u,0,b).

Corollary 6. Under the conditions of Theorem 11, we have

At 0 n "
T R F h
(u,a,0) p—v I(a+u)+(c—)\u)F(2—a) (a—{—u) , when u — 00,
T(u,0,b) = /\—’uf (A) + d <E>a_1 when u,b — oo
T o= ) (c=A)l2—a) A/~ ’ '



Chapter 3

Wiener-Hopf factorization

In this chapter we study the negative Wiener-Hopf factor for two-sided jumps Lévy
risk processes X', defined by the equation

X(t) = ct +vB(t) + Z(t) — S{t), ,t >0, (3.1)

where ¢ > 0 is a drift term, Z = {Z(t),t > 0} is a compound Poisson process with
Lévy measure \; f1(z), where f; is a probability density with Laplace transform given
by (2), B = {B(t),t > 0} is a Brownian motion and S = {S(¢),t > 0} is a pure jumps
Lévy process with positive jumps. This process X includes, as a particular case, the

process V,, considered in the previous section in the case when u = 0.

We use the results obtained about these Wiener-Hopf factors to calculate the

generalized version of the EDPF associated to u 4+ X, for u > 0.

We also make use of the known result for the probability density of the positive
Wiener-Hopf factor for the class of processes defined by X'. Such probability density
has been previously studied in Lewis and Mordecki [2008].

3.1 Notation and preliminary results

Before proceeding with the statement and proofs of our results, we point out some

basic properties of Lévy processes and define some recquired notation.

We set Ws(r) = [ (1 —e™™ —ralg<yy) vs(dz) and assume that E[X(1)] > 0.
0+
This condition implies that the process X drifts to infinity and, as stated in Biffis and

Kyprianou [2009], besides the usual condition on Lévy measures [ (2% A1) vs(dz) <

0+
oo

oo, we have [ (2% A x)vs(dz) < oco.
0+

oo
In the case when S is a subordinator, we also have [ (z A1)vs(dz) < oo, meaning
0+
that the Lévy measure of S has a finite mean in this case. In the sequel, we denote

71
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this mean by ps = [ zvs(dz).
o+

o0
The inequality | (22 A ) vs(dz) < oo implies that we can rewrite Ws(r) without
0+
using the indicator function 1y,.1). Hence, if S is a subordinator we have cr—Vg(r) =
o0

(c+ ps)r — Gs(r), where Gs(r) = [ (1 — e ") vs(dz). In view of this, we define the
0+
Generalized Lundberg Function associated to X as

Q(—r)
H;'V:1 (g —r

when S is a pure positive jumps process but not a subordinator and

Lx(r) =cr+~*r* + X\ ( = — 1) — Us(r). (3.2)

Lx(r) =cr +9%r* + )\ (HN Cifb_i)r)m] - 1) — Gs(r). (3-3)

j=1

when § is a subordinator, assuming that in this case the drift ¢ is of the form ¢y + ps

for some ¢ such that ¢y + us > 0.

We let \IIE\CJ(T) = —logE [e"X (1)} denote the characteristic exponent of X'. Hence,
the GLF above is related to \IJEE](T) by the equality

— Ul (—ir) = La(r). (3.4)

Moreover, we also obtain the equality Ly (1) = log E[e"*(] for r < ¢, which means
that the GLF coincides with the exponent of the moment generating function of X'(1)

for all r for which this moment generating function exists.

Let us set Vs(u) = [ vs(dx). We shall use the following property valid when S is

a subordinator (see, for instance, exercise 2.11 in Kyprianou [2006]):

Gs(r) = rV(r). (3.5)

We also recall the following property (see Kyprianou [2006], Chapter 7): the
Wiener-Hopf factors can be identified through their Laplace exponents by the relations
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E [e_rsé] = % and E [e_T(_I‘fz)] = ”D(qio) (3.6)
where ﬁ and ﬁ are the respective bivariate Laplace transforms of the func-
tions Us(dzx,dy) and Up(dx,dy). These functions are, respectively, the potential
measures of the associated ascending and descending ladder processes (see Kypri-
anou [2006], Chapter 7 for further information on this). In Section 3.3 (specifically,
in the proof of the main result of this section), we identify two functions related to
these potential measures, which are closely related to the distributions of the positive

and negative Wiener-Hopf factors.

We denote the g¢-scale functions for spectrally negative Lévy process as 205,
as we did in Chapter 1, and recall the notation C; = {z € C : Re(z) > 0} and
Ciy = {2z € C: Re(z) > 0}. For a given function L : C — C, we also recall that
s € Cis aroot of the function L, with multiplicity m > 1, if L(s) = 0, %L(T)\Tzs =0
forall j =1,2,...,m—1 and %L(T)‘T:S £ 0.

We consider the following three cases:

Case A. ¢ =~ =0and S is a driftless subordinator (other than a compound Poisson

process),
Case B. ¢ >0, v=0 and § is any subordinator,

Case C. Any other case except when ¢ = v = 0 and § is a compound Poisson process.

We use the following result, which follows from Lemma 1.1 in Lewis and Mordecki

[2008] and (3.4)

Lemma 13. If 6 > 0:

a) In case A, Lx(r) —0 =0 has m roots in C,,

b) In cases B and C, Ly(r) —9d =0 has m + 1 roots in C,.
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In all the cases above, there is exactly one root pys in the interval (0,q1). This
root is such that lgg)lpm =0 and p1p =0, in cases A, B and C. In all these cases,

p1o = 0 15 a simple root.

In what follows we denote by (4 the function whose value is 1 in case A, and
0 otherwise. We assume that the equation Ly (r) — 0 = 0 has R different roots in

C, 4, denoted respectively by pi s, ..., prs With multiplicities kq, ko, . . ., kg such that
i kj =m+1— 4. We let py 5 be the real root such that p; 5 € [0, ¢1), which implies
Y

It can be proved that, for all j, the roots p;s have a limit when § | 0. We denote
this limits as pj, i.e.

pi = limpjs (3.7)

Using Lx(p1,5) = 6, 1&101 p1,5 = 0 and the fact that p; 5 and 0 are simple roots, respec-
tively, of Ly(r) —0 = 0 and Lx(r) = 0, we obtain by L’Hopital’s rule

lim = = g 220000 o ExPe) g0 D), (38)

00 prs 00 prs PLs=0  Pis
where Ly(0+) := L Ly(r)| 0.
Now we define an operator which is required in our main results.
For a =0,1,...,m+ 1, we define 7, by the equation

[e.e]

Teuf(u) = / (v — u)e = £ (y)dy,

u

for each measurable f and complex s such that the integral above exists and is finite.
o

Clearly this operator is linear. If v is a measure such that [(y — u)%e *0="y(dy)

exists, we define
oo

Toat(u) = [ (g = e () (3.9

u
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fora =0,1,...,m+ 1. We denote the corresponding Laplace transforms as ﬁ;af(r)
and ’t;au(r), for all » € C, such that these Laplace transforms exist.

In the case when a = 0, we obtain the operators T f (z) and Tyv(x) defined in (1.2)
and (1.4). The following lemma is easy to prove and it relates the Laplace transforms

of T'and T.
Lemma 14. Let f be a function (or a measure) such that Ty f(u) exists for every
s € Cyy, ke NU{0} and u > 0, then for each r € C,, s € Cy, and k € NU {0},

we have %ﬁf(r) = (—1)k'tkf(r)

For each j =1,2,..., R and 6 > 0 we set

((Jl —8)™(pjs — 8)%

==

kj _ 1> (_1)17kj+a akjflfa
a

E(ja,0) = < (k; — 1) gski—1-a

ky

=

(P15 — 5)

L 5=pj,s

N
Il
fa

k.

E.(j,a,0) = <kj - 1> (=1)1-kita gki—l-a | 1 (Ql — 8)™(pjs — s)ki S

«\J, &, - a ki — 1) 9ski—1-a |
" | (15— s)k

==

=

T
~
Il
—
0
Il
S
<.
>

and define, for 6 > 0, the functions

R kj—1

ZZE 7, a,0) Ty, savs(u), (3.10)

o
[
|

—_

M=

Ls(u) = B.(j,0,0)T,, o Vs(u) (3.11)

1 a=0

<.
Il

We have the following technical lemma.

Lemma 15. Let vs be the Lévy measure of a spectrally positive pure jumps Lévy
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process. Then

) - ~ — ) — v

S(Tl) S(T2> = TQTTQVS(rl) - S(Tl) = TlTTQVcS(rl) S(T2) (312)
To—" A1 )
for any ri,m9 € Cy such that r1 # rs.
Additionally, if the condition [ (2* A x)vs(dz) < oo holds, then
0+
—Us(r) = 7"/ (1—e7) Vs(z)da (3.13)
0+

Proof. See Appendix A. [

3.2 The Wiener-Hopf factors of X

In this section we obtain an explicit expression for the probability density of the

negative Wiener-Hopf factor .

In order to simplify our notation, we define the constants

—(51_[3 1q When(5>0 and ag = V' (O—i-)HJ;q when § = 0.

] lp]5 ]2930

N
We also recall the following notation from Chapter 2: Qq(r) = [[(¢; — )™ and
i=1

ooy I (g—r)™
es (r) = . (= for r # p;s, 7 =1,2,..., R.

The following lemma is key for our main result.

Lemma 16. The term [0 — Lx(r)] €5 (r) has the following equivalent representations,
ford > 0. ~ ~
as + Gs(r) + €5(0) — £5(r), in Case A,
as + £5(0) — C5(r), in Case B, (3.14)
as +y*r — \PS Esr) [ﬁa( ) — 25(7“)], in Case C.
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Proof. For the proof of the case 6 > 0, see Appendix A. The case 6 = 0 follows by
taking limits when § | 0 and using (3.7) and (3.8). ]

Let us consider the following functions, for j = 1,2, 3:

(

vs(dx) + ls(x)de  j =1,

Xjs(@;d)de = § Ls(x)dx j=2, (3.15)

| s(e) — Lo(a)] dx j=3

defined for x > 0 and ¢ > 0.

We have the following important result.

Proposition 5. The function x;s(y;d) satisfies the equality

/ (1 =) xjs(y; 0)dy = / (1—e™) e Ay(dz, dy),
0+ (0,00)2
for j = 1,2,3, where Aj(dx,dy) is the Lévy measure of a bivariate subordinator.

Therefore, xj.s(z;8)dx is the marginal Laplace transform [ e °®A;(dx,dy) and it
(0,00)
is also the Lévy measure of some univariate subordinator.

Proof. By Theorem 2.2 in Lewis and Mordecki [2008], we have

N ’an
sHi=1%
k

for s € R. Therefore (1.8) gives: E [emﬂ = M
[awlﬁ(r)]a;(m
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An application of the relation —\Ifgé](—ir) = Lx(r), for r > 0, yields:

.
H;‘V:l 4; ’
05

B [e )] - er&ff% m (3.16)

Since —1 e)g is a nonnegative random variable, it suffices to work with its Laplace

transform, as given in (3.16). Now by Lemma 16, (3.16) and the definition of as, we

have:
as .
as+Gs(r)+0s(0)—Ls(r)’ in Case A,
—r| =I5 ]| = _as :
K [e | 5]} - as+05(0)—Ls(r)’ in Case B, (3.17)

as :
— —~ in Case C.
as+y2r—280 [ Z5(0)~Ls(r)] |

We apply (3.13) in case C to obtain —‘IJST(T) = [ (1 —e ) Vs(x)dz. This and

0+
the equality £5(0) — Ls(r) = [ (1— ™) Ly(x)dx give —L) — [25(()) ~ Ls(rn)] =
0+

o0

[ (1—e) xs.s(x;0)dz. Hence, from (3.17) and (3.15) we obtain
0+

as

oo
as+ [ (1—e~"%)x1 s (w;0)dx
0+

E [e—r[—fe’é]} iy - : in case B, (3.18)

as+ [ (1—e7"%)x2 s(w;0)dx
0+

, in case A,

as

— , in case C.
as+y2r+ [ (1—e7")x3,s(2;6)dx
0+

\

We note that —1 3; is the positive Wiener-Hopf factor of —X', therefore, by the
arguments in Kyprianou [2006], p. 165, there exist bivariate Lévy measures A;(dz, dy)
and subordinators H; = {H,(¢),t > 0}, for j = 1,2, 3 such that

o0 o0

bjr + / (1—e) /eaxAj(dl', dy) = kp(d,7) — K;,p(6,0), (3.19)

0+ 0+
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and

( E _e_rHl <e“1vD(‘s'0’)_ = #1.0(5,0) in case A

Hl,D(5»0)+[51,D(57T)—K1,D(570)]

X —

E [64[71&5]] =4 Ele TH2<6”2’D(‘5’°’) = 2.0(,0) in case B

k2,0 (6,0)+ k2,0 (8,r) —k2,p(6,0)]

—rHs <€K 5,0 ) x3,D(6,0) ;

Ele " 3,000/ — ’ in case C

L k3,0 (8,0)+ k3,0 (8,7) — k3, p(5,0)]

where e, ,,(5,0), for j = 1,2, 3, are exponential random variables with mean 1/x; (6, 0),

independent of H;.

From (3.18) we identify

( OO

f (1—e™) x1,s(z;0)dx for =1 in case A
0+
k;p(0,7) — Kkjp(d,0) = of (1—e") x25(x;0)dx for j = 2 in case B
+
YVr+ [(1—e ™) xss(z;0)dr  for j =3 in case C
\ 0+

Comparing this with (3.19) and using the unicity of the Wiener-Hopf factorization,
we conclude that by = 7%, by = by = 0, and [ e %%A;(dz,dy) = x;s(y;0)dy for
0+

j =1,2,3, hence the result follows. n

Definition 3. For j = 1,2,3 we denote by N5 = {N,;s(t),t > 0}, 6 > 0, the subordi-
nator with Lévy measure x;s(x;0)dx, and define, or § > 0, the function Ws(u),u > 0

through its Laplace transform:

1
[6 — La(r)]ey (r)

Wi(r) = (3.20)

Remark 2. We note that Ny is a compound Poisson process.

It is easy to prove that I 4 & when § | 0. With this in mind, when we refer

to the case § > 0 we understand the case § = 0 as a limit case. The following is our
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first main result in this section. It summarizes the results obtained previously.

Theorem 12. For § > 0, the following assertions hold:

a) The random variables —Ié’g ford >0 and —I% satisfy the equalities in distribution:

/\/‘1,5(6@5) i case A
—f§§ < Nos(eas) i case B (3.21)
Y2eqs + Nas(eq;) in case C

where eq, is an exponential random variable with mean 1/as, for § > 0, indepen-
dent of Njs for j =1,2,3.

b) We have
E [e_r[_lgg]] = CL(;/W(;(T).

c) The function Wg(’f’) satisfies the following equalities:

E[67T5<6a5> '
1+%E[677l8(ea5)][26(0)—25(7‘)] 3 m CCLS@ A,
aj
asWs(r) = ¢ —=0 in Case B, (3.22)

*m%(ﬂ
2+l (0)
= aﬂﬁy(r) —, in Case C,

| 194, [2(0)- 25 ()]
where @’y(r) is given by
Wy, (r) = ; r820

asr + 2?2 — Ug(r)

In particular, @’y(r) 1s the Laplace transform of the derivative of the scale function

(for ¢ = 0) of the spectrally negative Lévy process Vs = {Vs(t),t > 0} given by
Vs(t) = ast +~B(t) — S(t), 6 > 0,7 > 0.

Proof. The statements in b) follow from (3.20) and (3.16). For a) and c¢) we prove all
the results for § > 0. The results for 6 = 0 follow by taking limits.
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Case A: From (3.20) and Lemma 16 we obtain:

asWs(r) = a5 _ _ 7 0s0) . (3.23)
a5 + Gs(r) + 0(0) — Gy(r) 1 Lot [ 56(0) = ()]

Substituting the equality IE([erS(ea;)] = %+“T5$(T) in (3.23), we obtain ¢). The
~ —r( N s(as) } _ asg
result in a) follows from E [e 5 pRYE R ATt and (3.23).

Case B: From (3.20) and Lemma 16 we obtain a(;W(;(r) = m, which

. . . . _rN’ (ea ) — a
implies ¢). The result in b) follows from the equality E [e=V24(¢as)] Py Y o (0‘;_% ok

Case C: Now we let Vs = {Vs(t),t > 0} be as in the statement of this theorem.

By (1.9), the g-scale function (for ¢ = 0) 20y of ) has Laplace transform

1

Wy(r) = asr + 22 — Wg(r)

In case C there is at least one process with unbounded variation (either the Brownian
motion or the claim process S), hence 20y, € C'(0, 00) and 20%,(0) = 0. Therefore, by

(1.10) we have
,

W (r) = .
»(7) asr 4+ v2r? — Ug(r)

Using (3.20), Lemma 16 and the equality @’y(r) = it follows that:

r
asr+y2r2—Vg(r)’

— as
asWi(r) = vst) _ [75(0) £
as + ’7 r— £5(0) ﬁg(?“)
1
g 2,_ ¥s()
= LA i el (3.24)
1—W[£6<> Ls(r)]
_ a‘satsr—l—'y 7"7; Ws(r)
- m[ﬁa( ) = ﬁa(?“)]
=— a‘smiy(r) (3.25)

1= 20y (r) [ £5(0) = Z5(r)]
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This proves c¢). Now we note that:

E 677”(726@54’]\73,5(6(15)) —

as +y°r = 20— | 2,(0) = L5(r)|
Therefore (3.24) gives the result in a). ]

We let ©5(z),d > 0 be the distribution of the random variable S(e,,). For sim-
plicity, we assume that this distribution has a density s, although an extension for
the case when such a density does not exist is simple. Under this assumption we have

@\5 (r) = m We are now ready to state and prove our main result, in which we
invert Wg( ) for cases A, B and C.

Theorem 13. (Main Theorem III).

For 6 > 0, the random variable —Ie)g has density function asWs(u),u > 0, where:

L0s(u) + L5 * i < - 1) (Zg(())e(g — U5 * 95) (u) in Case A,
s @ n=1 as
Ws(u) = ! do + ! § _ nﬁ*”(u) in Case B
’ as 1+ 05(0) a5+ 05(0) it \ag + L5(0) ) 0 ’
WY, (u) + W, * n§1 (Zg(O)Qﬁ’y — Y, * £5> (u) in Case C,
(3.26)
where & is Dirac’s delta function.
Proof. By Theorem 12 c) and the definition of 5, we have:
In case A:
1~ - 1 —rS(e 7 !
Wi(r) = —05(r) Y ( ——E [e7r5)] [75(0) - T5(r)|
a5 n=0 as
_ L5+ L) S [~ LE [erstens] EORAG] T )
as as as
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In case B:

= 30}, (r) + Wy(r) > (Wy(r) [£5(0) = £5(r)] )" (3:29)

Now the result follows inverting the formulae in the second equality in (3.27),
(3.28) and (3.29) for the case 6 > 0. The result for 6 = 0 follows by taking limits. m

3.2.1 Two particular cases

We study two important particular subcases of case C. First we show that our formula
in Theorem 12 has an alternative expression in the following subcase: Let us suppose
that the negative jumps in the process X are given by the process —(S + M), where
S ={S(t),t > 0} is a subordinator and M = {M(t),¢ > 0} is a pure jumps process

with unbounded variation and only positive jumps.

This means we work with the process X whose GLF is given by

Lx(r) =X\ <HN Ci;j_i)r)mj — 1> + 9% +er — Gs(r) — Uaq(r), (3.30)

J=1

where =W (r) = — [(1 — e™ — ra)up(dz) is the Laplace exponent of M and
0+

vpm(dzx) is its corresponding Lévy measure, ¢ > 0 and \q, %,72 and Gs(r)
j=1\a;=") -

are as before. Again we suppose that E [X'(1)] > 0.



84 CHAPTER 3. WIENER-HOPF FACTORIZATION

The case we now study includes, as a particular case, the process studied in
Chapter 2 where S is a compound Poisson process and M is an a-stable process with
only positive jumps and « € (1,2).

In view of Theorem 14 and Corollary 7, we only need to study the measure
asWs(du) corresponding to the distribution of the corresponding negative Wiener-

Hopf factor.

Since the case we are considering is a particular case of Case 3 (as defined before),
we work with the function Ls(u) defined in (3.11). We denote by vs and v the Lévy

measures of S and M, respectively, and define the function

R kj—1
Lsm(u ZZ (Jy a,0)Tp, 50V m(u)
j=1 a=0
We have the following result.
Lemma 17. Suppose that X = {X(t),t > 0} is given by

X(t) = ct + Z(t) +vB(t) — S(t) — M(1), (3.31)

where S is a subordinator and M is a pure jumps Lévy process with unbounded varia-
tion and positive jumps. Then, for 6 > 0, the term [Lx(r) — 8] €f (1) has the equivalent

representation:

[La(r) — 0] (r) = ¢+ 4 Ds + 7°r — ls(r) — () + L (1), (3.32)

R
B (_1)1—k‘l akl_l j=1
Di=), (k; — 1)! 9ski—1 R °

j=1 s=pus

Proof. From (A.51) we obtain
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v
[0 — La(r)]ef (r) = c++*Ds +~v°r — Ysim(r)
IZ_V“ = )™ (prs — 8™
ul R L et 9 PLs o
+Z kz— 1)! Oski—1 R . STsVsypm(r)
[1 (s — )"
= $=PL,5

(3.33)

Since Ws,p((r) = Gs(r) + Ua(r), we deduce that T,Vsinm(r) = TVm(r) +
ﬁv‘g(?”).
The two equalities above and (3.56) imply that the expression in (3.33) is equi-

valent to

[6 — L (r)] & ()

Waq(r
:c—i—'yQD(;—i—’yQT—M

N A ! - - Gs(r)
+ STV pm(r) + sTsVs(r) —
; CE I (55— 9" (4 057
i=1 s=p1,5
(3.34)
Now we have
T et — eS8 Oo1/ dy)dx T — e "™vs(dx
P GST(T) ) 0{( s)r”[ s(dy) _O[F(l T )vs(dx)
[ fte = e)davs(ay) [ (1— e rws(da)
_ 80+ 0 B 0+
J 1= ey~ 11— e )] vs(dz) [ (1 - e )ws(de)
0+ 0+
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Simplifying the right-hand side in the third equality above we obtain:

70 [%(1 —e ) — %(1 — e*sx)] vs(dz) }O(l — e ")ys(dx)
SOt 0+
J 20— &) = 1(1 — e=57)] vs(da) J (= s (do)

0+ 0+

=s — —(s—r) —
s—r (s—mr)r

JEQ—e) =1 —e)]vs(dz) =2 [(1—e " vs(dz) + [(1—e")vs(dz)
9 "ot 0+

T[e‘sx — e "lvs(dr) ~
=% = —Tsvs(r)

sS—T
where the last equality follows from (1.5).

Applying the equality above and the linearity of the partial derivatives we obtain:

5~ Lar)] 23 (r) = e+ 2D + 7 — 2240

N
R )ik ghi-1 [1( $)™ (prs — s)*
j:l T
Y i B ws(r)
= H (pjs— 8)ks
- =t S=p1,5
I k
R 1-k ak—1 (g5 —8)™ (prs — )"
(ky — 1)! Qski—1 R STV m(r)
= H (pjs — )i
- = S$=p1,6
(3.35)
By definition of {5(u) and L5 (u), the equality above gives the result. -

In the next result we show that the function Wg(T’), r > 0, admits an alternative
representation.

Proposition 6. Suppose X is the process given in (3.81). Let ks = 25(0) + E(;VM(O).
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Then R
Wylr) = ———80
1= [rsds(r) + T(r)ds(r)]
where .
Bi(r) = — (1)

1+ Ls pa(r) 20,
1s the Laplace transform of the function

Os(w) = Wy () + W+ > (=1)" (Lo x W)™ (u),u >0

n=1

and
T

W, (r) =
e () (¢ +72Ds + ks) 7+ 7°r? = Upy(r)

(3.36)

is the Laplace transform of the first derivative of the scale function DWp-(z),x > 0

corresponding to the spectrally negative process M~ = {M~(t),t > 0} defined as
M~ (t) = (c++*Ds + ks) t +vB(t) — M(t).

Moreover, the function /W(;(r) is the Laplace transform of the function

Wi(u) = 05(u) + U5 % Y _ (ks + L5 % U5)™ (), u > 0

n=1

Proof. By Lemma 17 and (3.20) we have

1
¢+ 2 D5+ 2 — ls(r) — 2240 4 7 (r)

Wi(r) =

We add and subtract ks as defined in the statement of this proposition and apply

some basic algebra to obtain:

1
¢+ 72D5 £ kg + 2 — Ls(r) — 220 4 Fp ()

Wi(r) =
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1
472 Dsrg4y2r— MO L 7o ()

1— [/4;5 + Zg r ] ! =
( ) c+’yQD5+f$5+’Y2T_M+‘C5,M(T)

1 _ 1
o412 Dstrgty2r— 220 14 Lo pa(7)

1

o c+72D5+K5+W2T—4LW T(T>
I [“6"'@\6(7")] ) @) —
472 Dst+rstry2r— MU 14 L5 g (r) @

c+'y2D5+;45+'y2r—EM—
1

T
(c+72Ds+rs)r+72r2 =V (1) 14-L5 pq(r)

T
(c+72Dg+rg)r+r2rZ—W pq(r)
1

1-— [/‘?6 + 65(7")] (c+72D5+H5)7‘T+"/27‘2—‘1’M(7’) 14+Ls ()

T
(c+v2Ds+rg)r+72r2 =T pq(r)

The result follows applying (1.10) and the definition of 1/9\5(7“), and then inverting the

resulting Laplace transform. [

In the following proposition we consider another particular subcase of case C, in

which we can find an expression for 20),.

Proposition 7. Let X satisfy case C' in the situation when its negative jumps are

giwen by —S, where § s a driftless subordinator. Suppose also that v > 0, then:

oo

1 1

!

= a - a [ V 9
(W) = o Clastue) (W) s a7 ¢ ; (C(astusyn * Vs) ™ (w)
where Vs(x fl/g dy), ps = fxyg dz) and ey )42 (uw)du, u > 0 is an expo-

nential density wzth mean v*/(as + ,ug)

Proof. From (3.22) we have that @’y('r) = or equivalently

T
G P (1)

1
as + y*r —

?ZI]/y(r) = T

We recall that \IIST(T) =pus+ [ e " Vs(x)dr = pus+Vs(r), and that ps < oo because of
0
the assumption that E [X'(1)] > 0. Using the last equality together with the definition
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of €(ay+ps)/72 We obtain:

1 1 a5+u32
G — _ as+ps astus+y°r
SZUy(r) N 2 S B 1 ast+ps i

as +ps + 7 = Vs(r) 1 — e S Vs (r)

1 > 1 = "
= ——€ €(a Vs(r
a5 T pig Clastus)? ;0 (a5+us (as+us)/2 Vs ))

1 1 > 1 =~ n
= ——¢ +——Ca > |———Fw Vs(r
as + s It o S Clerus) i 2 <aa+us (astus)/12 Vs ( ))

(3.37)

~

where in the fourth equality we have used that aﬁlﬂs Vs(r) < aéius Vs(0) = 15 < 1,

for § > 0. The result now follows by inverting the Laplace transform in the right-hand
side of (3.37). n

The result above provides an explicit expression for the g-scale function, for ¢ =
0 of an spectrally negative Lévy process with nonnegative drift, nonzero brownian
component and negative jumps given by the dual of a subordinator. In Chapter 4 we
use this technique to obtain explicit expressions for ¢g-scale functions for a wider class

of spectrally negative Lévy processes.

3.3 The Generalized EDPF

In this section we show how the Wiener-Hopf factors S and ;¥ to derive formulae
for the expected discounted penalty function (EDPF for short) for the class of Lévy
risk processes A" = {X"(t),t > 0} defined as X“(t) = u + X(t),u > 0, where X
is defined in (3.1). The approach presented here is the natural adaptation of the
one used in Biffis and Morales [2010], where the case of spectrally negative Lévy risk
processes was considered. The main result in this section strongly depends on our

result for the probability density of I ef, which was obtained in the previous section.

In this setting, the value u > 0 represents the initial capital of the risk process,
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the constant ¢ and the process Z; represent, respectively, a fixed amount that the
insurance company gets at each unit of time and a random amount of gains up to
time ¢t. The brownian component represents a perturbation due, for instance, to
investment in the insurance market or random events which may mean either gains
or losses for the insurance company. Finally, the process S represents the aggregate
claim amount that the insurance company has to pay up to time ¢ in the case when
S is a subordinator. In the case when & does not have mononote paths, it can be
interpreted as a the claims that the insurance company has to pay up to time t,
perturbed by some random component whose interpretation is similar to that of the

brownian component.

We consider the following generalized version of the Expected discounted penalty
function (EDPF for short) associated to X, considered in Biffis and Kyprianou [2009]
and Biffis and Morales [2010].

We set 7, = inf{t > 0 : X*%(t) < 0} and define the Generalized EDPF associated
to X as

05 6,w) =B [0 w (1204(75) [, 2" (7 =), IE) T oy |X"(0) = ] u = 0

where § > 0 represents a discounted force of interest, w : R3 — Ry is a function
known as penalty function such that wg = w(0+,0+,0+) exists, and the quantities
| X" (14 )|, X*(15 —) represent, respectively, the severity of ruin and the surplus imme-
diate before ruin. The quantity [ fo,_ is the last infimum before the ruin, as defined

before.

Let us consider the dual process X* = {X*(t) = —X(t),t > 0} and its first passage
time above level u 7,F = {t > 0: X*(t) > u}, for u > 0.

We define the following random variables associated to 7.’

® G+ =sup {S <7h:SY = X*(s)}: the time of the last maximum prior to

first passage,

o 7.1 — GTJ: the length of the excursion making the first passage,
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o X*(1;7) — u: the overshoot at first passage,
e u— X*(7,/—): the undershoot at first passage,

o U — Sf: : the undershoot of the last maximum at first passage.

By definition of X" and X, we note that

() —u = X))l w— XN o) = X ), w- SE =1

e +_ G =gt = ;
and G + + 7, — G + =7, =17,. Hence we can rewrite ¢ as

b(u; 6,w) = E |t 5(rf=0.4) (x*(T;) = X () u— S;"fb) 1{Tu+<oo}} :

To deal with the function above we consider the case in which the process X* passes
above u by a jump or under the event {X*(7,7) = u}. This last possibility is known
as creeping, and is due to the presence of the brownian component. It is known
that, in this case, we have the equality

(X*(T;) oy — XM ) u— Sji_*_) — (0,0,0).

u

With this in mind, we split the above expression for ¢(u;d,w) as

¢(u; 6, w)
—6G +—6(rd -G " N *
= |:@ g-r;r ( grﬁ[)w (X (Tj) —UuU,u — X ( J_)7 u — S‘Ifj*) 1{TJ<OO,X*(TJ)*U>O}
-G

In order to deal with the two expressions in the right-hand side of (3.38) we use

the following lemmas. The first one is merely technical and it is proved in Appendix

A.

The first part of the second lemma is due to exercise 6.7 i) in Kyprianou [2006]

and the equality Sg‘;* = —1 g‘; , and the second part is the joint law of the random



92 CHAPTER 3. WIENER-HOPF FACTORIZATION

variables G+, 70 —G ¢+, X*(1,]) —u, u— X* (1) =), u— Sjg_? a result which was stated
and proved in Doney and Kyprianou [2006]. The version we present here is rewritten

analogously to the version presented in Biffis and Morales [2010].

er(r) = T (@)™

Lemma 18. The function e; 0% (s has the equivalent expression
j=1\P5,6 T

R k?j—l

Ba+Y > E(ja,0)
0

j:l a=

al

(pjs —r)ott

Therefore, for r < min{Re(p;s),j = 1,2,..., R}, we have €5 (r) = [e“g.(z)dz,
0
where
R kj—l

g*<l’) = 50(:5)6A + Z Z E(]? a, 5)‘raeipj76x1{m>0}7

j=1 a=0

and 0o(x) is the Dirac delta function.

Proof. See Appendix A. n

Lemma 19. Let X and X* be as before.

a) We have E [e_qﬁ[l{ﬂj@o}] =P [—Ig‘; > u] :

b) Suppose X* is not a compound Poisson process. Then, for eachu > 0, the following
holds for all s,t > 0,2 > 0,v >y and y € [0, u].
P [ETJ € dt,,; _ETJ €ds, X* (1)) —u € dv,u — X*(1) ) € dv,u — Sﬁ, € dy}
= U (ds,u — dy)Up(dt, dv — y)vy-(dx + v).
Here, vy«(dz) denotes the Lévy measure of X* and the functions U}(ds,u —

dy), U5, (ds,u — dy) are defined (see Kyprianou [2006] eq. 6.18 and 7.10) through

the biwariate Laplace transforms:

[ e s (da, dy) 1 [ e s (de, dy) =

[00,0)2 AT oy

1
KT, (r,8)” (339)
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where k% and K}, are identified through the Wiener-Hopf factors of X* by the

equalities

E[eS5 ] =209 gna R [ (2] = 22 (3.40)

K (gr)

We recall cases A, B and C considered in the last section and the equation Ly (r)—
0 = 0, where Ly is the GLF corresponding to X', which is assumed to have R roots
pis € Ciy,j = 1,2,..., R with their multiplicities k; = 1,k;, 7 = 2,3,..., R, such
that 21 kj =m+1— fa.

Remark 3. Due to the restriction that X* cannot be a compound Poisson process,
we ezclude the case in which, according to (3.1), we have ¢ = vy = 0 and both Z and S
are compound Poisson processes. However, explicit expressions for ¢ under this case
have been already obtained in Labbé et al. [2011] for the standard EDPF, when both

Z and S are compound Poisson processes.

We are now ready to state and prove the main result of this section.

Theorem 14. (Main Theorem 1V)

For § > 0, the Generalized EDPF ¢ associated to X* = u + X has the expression
o(u; §,w) = woy* Ws(u) + Hs,, * Ws(u), (3.41)

where asWs(u) is the density of the Wiener-Hopf factor _Ié\;; gien explicitly in Theo-

rem 13, and Hs,, is defined as

R k].,l

H; (1) = Ky(u)Ba+ > > E(j,a,6)Jupa;(w), (3.42)

j=1 a=0

where
o

Ko(y) = / (e — g,y y)vs(de)
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and . N
Josaj(y) = /(U —y)* e Pis(v=y) /w(x —v,v,y)vs(dx)dv.
y+ )

Proof. We prove the result for 6 > 0 and obtain the corresponding formulae for 6 = 0
by taking limits when ¢ | 0. We proceed by steps.

Step 1: We identify the functions
U s(dy) = / —0%14% (dz, dy) and Up 5(dy) = / —0TYx (dx, dy).
0 0

For this, we note that S = —I* and I;\" = —S.X. Therefore

FaAlel) _ g [e_rsgq*] =E [e_r(_lgz)] and 220 _| [e_r(_Iqu*)] =E [er‘gﬂ
D

w4 (g.r) w5 (@)
(3.43)
By Theorem 12 a) we have:
as :
TN o) in case A,
—r(—I& a i
E [6 ( eq)i| = W\I}—ff/m 1n case B, (344)
N in case C,

a5+ + U 50r)

where e, is, again, an exponential random variable with mean 1/as independent of
N, s and Wy, 5(r) is the Laplace exponent of Ns, 7 = 1,2,3. Hence, in view of
(3.44), we identify x%(d,7) = as + Wu,,(r) in cases A (j = 1) and B (j = 2) and
k5(0,7) = as +v*r 4+ Uu, (r) in case C j = 3. In all these cases, k% (d,0) = as.

From (3.39), we note that the function U} ;(dy) has Laplace transform
T —r * _ 1
Ofe YU (dy) = AL hence, from (3.44) we deduce that

o0

/e_rybl;}(dy) = algE [e_r<_1§2>} :

0
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By the first equality in Theorem 12 b) we have a—lé]E [e_r(_lexq)] = W(;(T), and this

Laplace transform has an inverse given in Theorem 13. Therefore:
Us 5(dy) = Wi(y)dy. (3.45)

By Theorem 2.2 in Lewis and Mordecki [2008] and the second pair of equalities in
-1
R Mk N i
(3.43) we also deduce that £73,(0,7) = M and £7,(0,0) = (Hj‘;qjk) . Now

Hl\i (q—r)™ Hf:l pj,]6
we note that U}, ;(dy) has Laplace transform

[ S | AUt LI
0/ ot = 3(5’T> H] 1(pjs— )k o

Therefore, using Lemma 18 we obtain:

R k;
Up 5(dy) = | o(m)Ba+ DD E(j,a,8)ye " | dy. (3.46)
j=1 a=1
Step 2: We define ¢*(u) as
o*(u) = | e (T T, (2 () = ww— 2 =) u— 8% )

X 1{7'u+<oo,X*(Tu+)—u>0}] ’

and set L, (ds,dt,dx, dv,dy) = U} (ds, u — dy) U} (dt, dv — y)vy-(dx 4+ v). Now we use
Lemma 19 b) to obtain:

u o0 o0 oo o0

://///6_5(s+t)w(x,v,y)ﬁu(ds,dt,d;p,dv,dy)

0+ y 0+ 0+ 0
(3.47)
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u o0 o0

= [ [ [ oo (o -+ ottt = ) s~ )
0+ y 0+
/ / / — 0,0,y (U, 5 (dv — U 5 — dy), (3.48)
04+ y v+

where in the third equality we used the change of variable z = = + v.

Since X* = —X by definition, its Lévy measure vy (dx) is given by
Uy (dx) = Vs(d$)1{$>0} + Vz(dl')l{m«]}.

Using that z = x 4+ v in (3.48) moves from v > y > 0 to oo, the right-hand side of
(3.48) becomes

u oo oo

/ / / = 0,0, y)s(d2)Up o(dv — y)Uy 5(u — dy).

0+ y vt

Substitution of (3.46) in the above equality yields:

ﬁA/// —v,v,y)vs(dz)do(v — y)dvldy 5(u — dy)
0+ y v+
+ ZZE J,a,9) /// — 0,0,y )vs(dz)(v — y)“e_"fvé(”_y)dvuzﬁ(u — dy)
j=la 0+ y ot

— / U — dy) / w(z — .9, y)vs(d2)

0+ y+

+ Z Z E(j,a,6) /L{Z’(S(u — dy) / /w(z —v,0,y)(v —y)%e P Vg (dz)dv
j=1 a=1

00
0+ y v+
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:ﬁ,/uhwfdwKuw+§j§}mzm®/u%W—dw@MAw

0+ =t a=l 0+
u

=/mww@WM@m
0+

where in the third and fourth equality we used the definitions of K, J,, 54 and Hs,.
Finally we substitute (3.45) in the equality above to obtain

¢ (u) = / Wis(u — y)Hse(y)dy = Hsp * Ws(u). (3.49)

—6G ,—o(rF—C
Step 3: We calculate E [e % (e gri) 1{Tj<oo,x*(nf)=u}] '

5G4 —6(rt-T
First we note that E {e 9, =0( 0 .) Ly + o x+(rt)=uy | does not depend on the

penalty function w(z,y, z), therefore we consider ¢ when w(z,y,2) = 1 and use the

result in Step 2. For this choice of w, using (3.38) and Step 2 we obtain

o(u;0,w) =E [6_5731{{[@0}}

which yields
—6G +—b6(rd -G _
E {e (0 )y (rF <o0. " w)_u}] —E [e iE| w@o}} — Hyy % W(u).

By Lemma 19 a), the above equality is equivalent to

E |:e§gﬁf 75(75{7?{[) 1{¢j<oo,X*(Tu+)U}] =P [_]e)a( > u} o H‘;’w * Wg(U)
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= as / W(;(y)dy — H&w * W(;(u), (351)

where we have used that asWs(u)du is the probability density of —1 e)g . Taking

Laplace transforms in both sides of the equality above yields:

r

I —ru *56 -6 T:r g 1 —Qa /W T ~ o~
/6 E |:6 o ( >1{Tu <00 X*(T )=u} du = 5—5() - H&w(?”)Wg(T)
0

1 Wslr ~
=L (4 4 r )
r r
(3.52)
Now we calculate PAL;,W(T) for w(z,y,2) = 1.
First we note that the term E [ -9 +_6(Tu v +) Lt coo e (ri)= u}} is not zero only
R kj—1
in Case C, and in this case we have Hs,(u) = ) Z E(j,a,0)Jus,4,(w). With this
7=1 a=
in mind, we obtain for w(z,y, z) = 1:
R kj—1 [ 00
Hs ., (y Z Z (J,a,9) / (v —y)* e Pis(v=Y) /Vg(dl‘)d’u
R kj—1 o0
= Z Z (4,a,0) / — ) e PP g (v)do, (3.53)
j=1 a=0 Yy

where Vs (v) is the tail on v of vs(dz).

Using the definition of 7, Vs(v) given in (3.9) and then taking Laplace trans-

forms in the equality above, we obtain

kj—1

ng E j,a 5 7;J5av$( ) (354)

M:u

7j=1 a=
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Now we note that

N
)ik ghi—1 jl;[( i — )" (s — )M

R
kl - 1 ! §shi—1
=1

Eory — 28U) _

= sTsVs(r) -
1;[ (pj s — 3)

5=p1,8

Our goal now is to prove that (3.55) equals Cs + rﬁfm(r) for some Cj.
Using Hermite interpolation polynomials it can be proved that:

N
Yi=ks ghy—1 [T (a — )™ (pj,s — )"

R
pppe =
k: —1)! 9ski—1 R
]:1 [1(p's — s)™

=1

5=pj,6

N

1ymt1—ks ak —1 HI(QZ — )™ (pj,5 — )"

R
mz k e | B — (-1)™(~1)" =1. (3.56)
=1 (pl's — s)ki

I

=1 §=0j,5

Hence the expression in the right-hand side of (3.55) can be rewritten as

N
R Y-k ki1 jl;[l(%' —8)™i(ps — s)k

Z kl—l'askl

=1

R
I (pj.s — 8%
i=1 S$=pi,s

By the second equality in (3.12), the expression above is equivalent to

N
g™ — s)k
R 1 Ky akl jl;ll(q] ) (Pl,é ) j:’ \IJS(S)
Z kl—llask: ] R T Vs(r) = —
=1 [1(pjs — )k
i=1 $=p1,5
N
R Jiki g [T (aj — )™ (prs — 5)*
rz A T.Vs(r) —C (3.57)
kl — 1 ! Qski— R VS o '
= [T (py — 51"
=1 5=p1,8

N
i—s)™d —s)k
Where 05 g f: ((_1)17]” ki1 jl;ll(q] ) j(plﬁ ) l (_ \IIS(S)>

kl—l)! oski—1 R ks S
=1 I1 (pj,5—5)"7
j=1

S=p1,s
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This gives:
ﬁ (45— 5™ (prg — )t
B o(C1)tk gkt | 45 = 8)" (prs — )™ v
: = Y s(s)
Ls(r Z k:z —1)! dski— R <TTsVs(r) - )
- I (1.5 — 8%
= S=p1,8
N . i
R YLk gt jl;[l((b' —8)™ (prs — s)™ R
:rz kl—l‘as’ﬂ R sVs(r) +Cj
- [T (ps.5 — )%
= S=pi,s
N . i
a ) sh=1=a (k —1)! shi—1 R
o 1 (pjs — s)ki
=t S=p1,8
0% R k-1
X 0s% |:T3VS(T):| + C(S = ’I"Z Z E(jva,é)ﬁj,d;avgg(?") + C(; = TH&W(T') + C(;’
SThe I=1 a=0

where in the third equality we used Leibniz rule. Setting » = 0 in the equality
above, we obtain L£5(0) = Cs5. Therefore Ls(r) — ‘I’ST(T) — rHy,(r) + L5(0). This
implies
~ \\/J ~ ~
P (r) = —2st) |Z5(0) = £5(r)] (3.58)

r

On the other hand, we know from (3.24) that:

Wi(r) =

as + 7*r — \I’S( ) [A _y ] (3:59)

Now we substitute (3.58) and (3.59) in (3.52), and obtain:

o

/e—mnz[ R +) Lt cos,a(rif)=u }] du
0

_}_} 1 a_‘Ifs(r)_A _ Py
= g o2 \I,S()_ [/35(0)—/:’5(7“)} (5 - [Ea(O) Ls( )D
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where in the last equality we used (3.59) again. Inverting the equality above yields

E e_@nf ﬂs(ﬁ_gnﬁ ) —ora

1{7'u+<oo,/\’*(7'u+):u}] = 72W5<U’)
(3.60)

1{Tu+<oo,/\’*(‘ru+):u}:| =E |:6

Step 4: We substitute (3.49) and (3.60) in (3.38). This completes the proof. =

Lemma 19 a) and Theorem 14 give the following corollary.

Corollary 7. Let
®(u) :=1-P[r; <oolX"(0) =u]
and

os(u) =1 —E [e—To’ L <oy X(0) = u] 0> 0,

denote respectively, the survival probability of X* and one minus the Laplace transform

of the time to ruin of X", then ®(u) and ps(u) are distribution functions with densities
Q' (u) and @j(u).

Moreover, for any penalty function w we have the equalities:
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and

P(u; 0,w) =

where Hj,,(u) is given in Theorem 14.

Proof. We only need to prove that Wy(u) = égpg(u) a.s. for 6 > 0 and Wy(u) =

%@’ (u) a.s., both for all u > 0. Clearly, the second equality follows from the first by

taking limits when ¢ | 0, which implies we only need to prove the first equality.

For this we recall that 1 — ¢s(u) = ¢(u;d,w) in the case when w = 1. Therefore
by Lemma 19 a) and the fact that the first passage of X* below zero (time to ruin)
equals the first passage of —X above u, we obtain 1 — @s(u) =P [—Igg > u} Now we

a

use the equality as [ Ws(y)dy = P [—Ijg > u], and conclude that Ws(u) = légog(u)

a.s. ]

3.4 Examples

In this final section we present a few particular examples of the function Ws(u) under

cases A, B and C. Here we take as case C1 the one considered in Proposition 6.

We make use of the two-parameter Mittag-Leffler function, denoted by &, s(z)
and defined as:

o0
:En

Forc > 0, a € (1,2) and 8 = 1, we recall that the Mittag-Leffler function &, 1(—cz®™!)
is the tail of the extremal stable distribution, which has a density denoted by z, .(u)

for w > 0. The function z,.(u) has a Laplace transform Zz, .(r) given by

C

c+ro-l

(3.62)

Zae(r) =

The proof of the equality above can be found in Furrer [1998]. These properties are

used in many of the examples presented below.
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Example 1 (Case A): Let us suppose that Gs(r) = v/b + r—b (this is a particular
case of an Inverse Gaussian subordinator). We focus our attention in the function
0s(u), whose Laplace transform is, by defitinion, given by In this case we

have 55(7") =

as
as+Gs(r)”

aggb%_bi(};jﬂm, hence if a; > b, by (3.62) it follows that

O5(u) = 5 e_b“zma&,b(u),u >0,
where in this case a = 3/2. Using Theorem 13 we obtain:

Ws(u)
1 b

e aé — be_ uza,%_b(u)

o0

1 - n *1,
+ w5 —b /e—b(u v) Zaas— b u — Z ( > ( )95 —Ls * 95) (y)dy, (3.63)
0

where the function f5(u) is given in (3.10). Let us consider the particular case
when b=1,A, = 2,6 = 0.5 and f1(r) =

1
(14r)2
We have

1/2
s+1—(1+r)2—2-05,

In this case the two different roots are 0.1154509835 and 1.794106343, which gives
as = 2.413927106 > 1 = D.

In the particular case when S is a compound Poisson process with Laplace expo-
(o]

nent Gs(r) = Ay [(1 — ™) fo(x)dz, where fy(z) is a density function and Ay > 0,
0
we have that

o0

~ - as o as )\2 " n
Os5(r) = st Ay — )\21?2(7“) TS ; (% +)\2) <f2(7’)> .

Inverting the above Laplace transform yields

Os(u) = — 20 §o(u) + —2 f:l( a8 >n (), u > 0,

as + Ao as + A £= \as + Ao
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Example 2 (Case B): Let us suppose that Gs(r) = Apfa(r) — Ay, ie. S is a
compound Poisson process with Lévy measure A fo(x) for Ay > 0. In this case the

resulting Lévy risk process is the classical two-sided jumps risk process.

kj—1
Then l5(u) = As Z Z E(j,a,9) f(y — )% P W= fo (y)dy, and using (A.56) we

7=1 a=
obtain as + (,(0) = ¢, where ¢ is the drift of the process X in this case. Hence by

Theorem 13 we have

W():—éo Z() ), u > 0.

In this case we have the following equivalent representation for £s:

Let us consider the probability P [Sg‘; -Y > —u} , where Y has probability density
fo and it is independent of S e"; We can think of Y as one of the claims associated to

the spectrally negative Lévy process S.

R kj—1 0o
Then P[SY -V > —u] = Z Z E(j,a,0) [(y — u)e W= fo(y)dy and it
J 1a= u
follows that £s(u) = A0~ tasP [Sg"; Y > —u}.
Example 3 (Case C): Let us suppose now that Ly(r) — 0 = )\11_[1\,(—_7")). +
1 -Tr

cr+ 0T (—a)r — 0T (—a)(b+7)*r — Ay — 6, where a € (0,1), ¢,b > 0 and v = 0. This
is a particular case of the process considered in Section 6 in Hubalek and Kyprianou
[2011]. It follows from Theorem 12 that:

1
(as + T (—a))r — boT(—a)r(b+ r)>’

Wy (r) =

Hence, by Theorem 6.2 in Hubalek and Kyprianou [2011] we have

where &, () is defined in (3.61). This yields:

1 I'(—a)b*u®
Wy (u) = o) e Pyt <a5 + [(=a)bu ) yu> 0.
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Hence, in view of Theorem 13, we have

B 1 by a1 as + T'(—a)b*u®
- e (U

u

S S Y DA Ve D 1 e N ) L A D B )
+ “T(-a) 0/ Pu—y)* Eaa ( T(—a) >; 5.0 (¥)dy,

for u > 0, where

- _ o, o
Os.ap(u) = 56(0)e—buua—1ga’a (@6 + (—a)b%u >

['(-a)
_ _ —by, a—1 as + F(_a)baya

/E(g(u y)e My Eaa( '(—a) dy

0

and
(i T T br + (a + 1)
= j ) tePisly—u) [ o=be (VT TAXT )
Ls(u) = ; ; E.(j,a,96) /(?J u)te Pty /e ( ) ) dxdy.

u Y

Example 4: As a particular case of Proposition 6, we set v = 0 and take M as an
a-stable process with a € (1, 2), only positive jumps and —W y((r) = n*r®. This gives
—2ulr) _ pape=l Hence, using (3.36) and (3.62), we obtain:

r =

1 1 L

—~ a 1
Qn/ T)= — U — 2 ctk T).
() ¢+ kg +nore-l c+ Kg 7‘3;;’55 + ra—1 c+ Kg a,n—a‘s( )

The equality above implies that:

1
w, — ct+K 5 > O
i (1) = 2, et ()

a—1
r2—a)

Recalling that, in this case, we have Vy(z) = n® x~* and using the equality

above and Proposition 6, we obtain

Cc+ Kg

050) = —zaal) + a3 (<) (a2 )
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where in this case b = C:;% and

R kj—1 00
a—1
= o E* ] - @ 7P'75(y*u) @ .
Lsm(u) =1 T@—a) ;:1 a§:0 (J,a,0) / (y —u)e Py~ dy

u

Recalling Proposition 6, the density of the negative Wiener-Hopf factor is given

by the expression:

o0

Wi(u) = Os(u) + U5 % Y _ (kss + Ly % U5)™" (u),u > 0,
n=1
R k;j—1 0
where (5(u) = Y > E(j,a,6) [(y — u)®e Ps@=ys(dy). Hence, we can obtain an

j=1 a=0 u
explicit formula for Wy(u) above by substitution of ¢5; and 5. Since the expression

for ¥ also involves an infinite sum of convolutions, the resulting expression for Wy(u)

is too large, and therefore we omit it.

From the above calculations we note that, in the case when all the roots p;s,7 =
1,2,...,m+ 1 are assumed to be different and S is a compound Poisson process, we
obtain the particular case of the process studied in Chapter 2. Moreover, we also
obtain the density of the negative Wiener-Hopf factor of the process studied in the
aforementioned chapter, in the more general case when the roots p;; are allowed to

have multiplicities greater than 1 and S is a subordinator.



Chapter 4

Examples of g-scale functions

In this final chapter we use the techniques developed previously to obtain explicit

expressions for some cases of ¢-scale functions. First we consider the case when

X ={X(t),t > 0} is given by
X(t) =ct+nWV,(t) = S(t), n>0 (4.1)

where ¢ > 0, W, = {W,(t),t > 0} is an a-stable process with a € (1,2), only
negative jumps and Lévy measure vy (dz), and S = {S(t),¢ > 0} is an independent
subordinator with Laplace exponent —Gg(r) = — T(l — e " )vg(dx). This process is
a generalization of the one studied in Kolkovska e(i;d Martin-Gonzélez [2016], where

S is taken as a compound Poisson process.

We let Vyy(z) denote the tail of 14y (dz) and denote again the Generalized Lund-
berg function of X' as Lx(r) (which, in this case, coincides with the Laplace exponent
of X'). We assume that E[X'(1)] > 0. Under this assumption, it can be proved that
the equation Ly(r) — g = 0 has exactly one nonnegative root (see, for instance, Biffis
and Kyprianou [2009]), which equals zero when ¢ = 0. We denote this root by p. The

following two results are needed.

Proposition 8. Forr > p and ¢ = ¢/n®, the function

5 /Z\c’,oz (T)
Va,(r) =

= —— — (4.2)
L+ 22TV (r)Ze ofr)

is the Laplace transform of a function V, , which admits the series representation

Vi) = 20 % 3 (~1)" (%) (T, V)" * 22 (u), u>0,
n=0

where Z o (1) is defined in (3.62).

Proof. We have

< 1. (4.3)
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Hence, for r > p,

Vaslr) = — e = Sy (L) (T0) 220, (0

1+ 2T, V0(r) 2 a(r)

Let us define S, (u) := 2o * Y p_g (ﬂ)k (T,Vw) ok z3F,(u). Using the monotone

c

convergence theorem we get, for r > 0,

oo ) o k
~(r+p)u, e Vo)™ 5 2k
/e zc7a>|<2( . ) (TPVW) * 20 (1) du
: k=0
= lim [ e "FPUS, (u) du
n—oo
0
n a k o0
. n-p —(r+0)u 5 \*k *(k+1
= Jm 3 (TE) [ mmn) e

(T Vwlr + p))k (B alr + p))*

k=0
o0 a k o k
= > (n_cp) (TPVW(T + p)> (Zealr+p)" < oo,
k=0

where in the last inequality we used (4.3). This implies that the series in the right-
hand side of (2.8) is absolutely convergent, and shows that the Laplace transform of

that series equals the right-hand side of (4.4), which proves the result. [

Corollary 8. If p =0, we have the equality Vo o(u) = 2z o(u) for u > 0.

Proof. This follows from Proposition 8 by setting p = 0 in (4.2). m

Now we are ready to state and prove our result for the g-scale function of the

process X.
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Proposition 9. The g-scale function of the process X defined in (4.1) is given by

1 X - 1 " *M *(n
QUSE)(x) = Ee" * nz% (E) (Tyvs)™ = Vaﬁ, (z), ¢>0, (4.5)
and
We(z) 1§: L nZ V' w2 (1) 0 (4.6)
Xr) = — - .o * X* 2 xXr 3 — , .
X c ~ c , S c« q

where Zy o(x) = [ 2e.a(y)dy.
0

Proof. Since Ly(r)—q = cr+n*r*—Gs(r) —q, it follows that cp+n*p*+Gs(p) = q.
These equalities imply that:

o0 1
/e_mﬁﬁgg)(x)dx = o .
, Oﬁ(e_mfe_‘”)'/s(dw)
paffr-a
c+n® ( p—r ) B p—r
By (3.12) we have % = 7““_1+,0% — 1o~ pT,Vyy(r). Hence we obtain,
for r > p,
o0 1
/e_mﬁﬁgz)(:c)dx = —— =
) ¢+ neremt +nept—=— — T,vs(r)
1 1
r—p C+77a7«a—1+nappa_;::a_1
1-T L
pl/s(r) C+7’]O‘7‘0‘71+7]O‘ppa72::a71
1 Va.p(r)
c r—p
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where in the last equality we used (4.2). This gives:

1 Ty 5 N i
BY(r) = o= S () (Fasr) i) 1)

Since for r > p we have that ﬁ is the Laplace transform of e”*, with the help
of Proposition 8 we can invert (4.7) and obtain (4.5). To obtain (4.6), we set p = 0
in (4.7) and use Corollary 8 and the equalities 7"20/,&(7“) = Zw o(r) and T\pug(r)| p=0 =
ﬁg(?‘). This results to:

Balr) =Lt =Z”“mi<1>n(§s<r>zc,,a<r>)n.

1— %Vs(r)’z\d’a(r) ¢ Lo \€
Now (4.6) follows by inverting the expression above. [

From the proposition above we obtain the following corollary.

Corollary 9. Suppose that nW,, in (4.1) is replaced by vB, where B = {B(t),t > 0}
s a brownian motion with zero mean and variance 2, then the q-scale function of the

resulting spectrally negative Lévy process X is given by

U SR o Y AN S m  nt)
20 (m)—mep *nz:<c+’yz,0) (T,vs) " xe, " 7(x), ¢>0,

and

1= /1\" —n
Qﬁx(ﬂ?) = EZ (E) EC/*VS * € ('r>7 q:O’
n=0

T

where in this case ¢ = c/v* + p, e.(x) = ae”*, x> 0 and E,(x) = [ eq(y)dy.
0
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Proof. In this case we have

s 1 1
/ e WY (a)dw = .- = 7
J (e —e=P®)yg(dx) c+ "}/2(7“ + p) — pU3<T>
0 ¢+ ~2 <p277‘2> 0+
g p—r p—r
1 1 11~
_ ot __ amre(n)
1-— TpVS(T)m 1-— r}ﬂprV‘g(T)/@\C/ (7”)
The rest of the proof is analogous to that of Proposition 9. n

The second formula in the Corollary above clearly gives the result in Proposition

7 by taking derivatives and considering ¢ = as + us.
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Appendix A

Proofs of technical results

Proof of Lemma 3. The existence of the integral I,, follows from the existence of

1/

both, g, and the first moment of g, for a € (1,2). Setting y = —n'/*z we obtain

_ oo _ry/nlle Ty ) _
[n /0 n<1 € +n1/a ga,l( y)dy7

and putting [ (y,r) =n (1 —eru/mt 4 1/a> Ja1(—y) gives

oo

Z k/a 19041

k=2

L (y,r

o0
< > Iy gan(=y) = (1 =1~ Irly) gat ().
k=2

00 0
Since [ (e —1—|rly) gaa(—y)dy = [ (e =1+ |r|y) gaa(y)dy < oo, we
0

—00

use the inequality |I,| < [° |I;(x,7)| dz and apply the dominated convergence theo-

rem, and the result follows. m

Proof of Lemma 4. Hypothesis 1 implies that ¢, x(u) is bounded for all u > 0,
hence Ky(n, k,r) is finite. Using integration by parts it follows that

k—1_k —q;y k-1 —q;T
Ty gge . Ze o
=0

and performing the change of variables z = u 4+ x we obtain

Ko(n, k,r) = M (k / / e P i (2)b (k)"0 DT g2y

N m; .I"J 1q (r—qi)x
7,

NS [ e T e

=1 j=1

=\ (k)A(K) / e i (2) /0 by (k)e™Cr =12

0

113
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N my; i j -
i Z i lqzj (r—qi)z

+MD Y By / e hni(2) / (j'_—el)!dxdz. (A.2)

i=1 j=1 0

Using (A.1) we get

b”(k> OO —rz
m /0 € (bmk(Z)dZ

— (k)1 - A(k))% OOO Gui(2)e P dz

+ A Z Z Bi—q;y /Ooo e b p(2)dz (A.3)

d .. ] oo J—1 qiz+rz
_)\122(6%/0 e—ngbn’k(Z) {Ze T (qi—T)lZl}dZ

Ko(n, k,r) = M (k)A(k)

A (k) A(K)b, (k) Y& By |~

[bam—r MZ;ZQ%—WI%“>

M (k) (1 — A(K))b, (k) ~ Y& (@ — ), k)
B b(k) —r Prbn(k)) = X ;;Bﬁ]qz Z Mg —r)y

and the result follows. =

Proof of Lemma 5. We set e(u;ry,re) = e ™% — e " and recall that d(a) =

?E;‘ 1; Hence

0 (Man(r1) — Man(rs)) = IHM/ / e (13 1, 12)0( — 4, 4) gt (V) dlu
(A.4)

By formula (14.37), p. 89 in Sato (1999), we get lim, o0 7255 12 — 1. Hence, for



115

every € > (0 there exists a positive number A, > 1 such that for all u > A.,

ga,l(x)

dale e < (1+e). (A.5)

We take A = A, and n > A“, and split (A.4) as

1 () = Ma(r2)] = [ [ e rats = wga (n ) dedu
1 u
1 e’}
+ an/a/ / e(u;ry,r9)w(x — u, u)ga,l(nl/o‘x)dxdu
A/ntle Jy

A/nt/e 9)
+ an/a/ / e(u;r1, m9)w(x — u, u)ga (nV/*x)drdu.
0 u

(A.6)

Since u > 1 and x > u imply n'/®z > A, from (A.5) we obtain that the first term
in (A.6) is bounded above by

e, 2d(a)B(1 +¢)
2d(a)B(1 + 5)/1 /u x dxdu = ca—1)

Hence, using dominated convergence it follows that

n—oo

lim an/a/ / e(u; 1, m2)w(x — U, 1) ga (n'/%2) do du (A.7)
1 u

= d(a)/ / e(u; 71, mo)w(z — u,u)z ™~ dr du.
1 U

Now we consider the second term in (A.6). In this case n'/®z > A, hence
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1 e’}
n'He / / e(us 1, m2)w(x = u,u)ga (n'/*a)dxdu
A/ntle Jy

1/a
// e(u;ry, 1) d<ga’1<n :i)l_ad(a)x_l_adxdu

a) [nt/ex]

_ k 1
< d(a )B(1+5)/ Z‘T?k—fllu/ —radadu

2d(c)) B <|7“1 —ral i, e|rz|) |

Using again dominated convergence yields

lim n1+1/a
n—00

/ e(u;ry,ro)w(x — u,u)ga,l(nl/o‘x)dxdu

u

S

1 oo
a)// e(u;r1, mo)w(z — u,u)r ™ *drdu. (A.8)
0

u

For the third term in (A.6) we use the change of variables y = n'/®u and z = n'/*z.
This yields

A/ nl/e
1+1/a/ / e(u;ry, ro)w(x — u,u)ga1(n 1o x)dzdu

nt= l/a/ / —my/nl/o‘ _ pray/nt/e <—Z_y, Y )ga 1(z)dzdy

nl/a nl/a
e 1 B 4 | iralg\ 73
< B/ / k‘n k+1 a)/aga 1( )dzdy S n(2_a)/a o (6 1y + e 2 y) Ga,l(y>dy

A( rald \7‘2\14)6 ( )

— n(Q—a)/a
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where the last inequality follows using that n > A® > 1, which implies n=?-®/e >
n~(ktI=a)/e for all k > 2. The last inequality renders

n—o0

A/nt* oo
lim n1+1/0‘/ / e(u; 1, m2)w(x — 1, 1) o (n'/*z)dzdu = 0,
0 U

and using (A.8) and (A.8), we obtain (2.2).

Now we will prove (2.3). First we note that

M,(r1) — My(r2) :wgrd(al / / e(u; 7«1’7~2)x‘1‘“dxdu
2— 11 Jo u

T2 —T

+ M/ / e(u; 71, mo)w*(x — u, u)r " *drdu, (A.9)
r2—="Jo Ju

where w*(x,y) = w(r,y) — wg. Using (2.6), we have that the first term in (A.9)

ro1 .
equals wj 2——2— which converges to wi when o — 2.
0 ro—r1 ) 0

Hypothesis 1 implies that, for any ¢ > 0, there exists a § < /2 such that
|w(z,y) —wi| < e for all (z,y) with |(z,y)| < d. Let us split the second double

integral in (A.9) as follows:

d o o0
ﬂ/ / e(u;ry, ro)w*(x — u,u)z ™ *dedu (A.10)
r2—="T1J1 Ju
d(O[) ' OO * —1-a
+ — le(u; 71, 72) — ru + rou] w*(x — u, u)zx dxdu (A.11)
r2—=T1Jo Ju
+ d(a)/ / uw*(z — u, u)r " “drdu (A.12)
o Ju
1 oo
+ d(o) / / uw*(x — u, w)r ' drdu (A.13)
0 o
vz
+ d(a)/ / uw*(z — u, u)r " *dzdu. (A.14)
0 U
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For (A.10) we have

[ 2Bd(a
dla) //eurl,rg o —u,u)z” Y drdu| < // 1 dydu
2—7"11 T2 —T1

' _ 2BI'(a+ 1) sin [7(2 — )]
N mo(a—1)(re — 1)

Using the continuity of the function I'(x) at the positive integers and the equality
lim, 9 sin[7(2 — )] = 0, we obtain that (A.10) tends to zero as oo — 2.

We have for (A.11):

9 — T

1 oo
// [e™% — ryu — 7" + rou| w(z — u, w)r ™ " *dedu
u

B(1/m)T(a + D)sin[r(2 — )] |

o —T

—riu —Trou

+ rou| u”“du

‘e —ru—e

0

B(1/m)'(«a+ 1) sin[r(2 — «)] 7’1—7" —a
(1/m)T(a + 1) /21

ro—T

du

0 =

1 [ee]
< B(1/m)T(a+ 1) sin[m /Z 71| + |r2|k
0

o —T1 o

B(1/m)'(«a+ 1) sin[n(2 — «)] (

6|T1| _|_6‘T2‘)
o —T

where the second last equality follows using that £ — « > 0 for k£ > 2, which gives
ub=® < 1 for w € [0,1]. Using the continuity of the function I'(z) at the positive

integers and lim, o sin[7(2 — a))] = 0, this gives:
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lim
a—2 ’I"Q — 7”1

// T — —e 4 rgu] w(r —u,u)r " drdul =0

This implies that (A.11) tends to zero as a — 2.

Since lim  w(z,y) = wy, for ¢ > 0 there exists a § < /2 such that
(2,y)—(0+,0+)

|w(z,y) — w(ﬂ < g, for all (z,y) such that |(z,y)| <.

We take | - | as the euclidean distance and note that, for the right-hand side of
(A.14), we have (z —u)? < % and u? < %, which implies \/(x — u)? + u? < §. Hence,
for each 1 < a < 2 we obtain:

S 5 S 5
V2 V2 V2 V2

a)//uw T —u,u)r T drdu| < d(a 6//ux_1_o‘dxdu (A.15)
0 0

u u

M)

Now we note that the right-hand side of (A.15) satisfies the equalities:

F ra
vz V2 V2

a)e//uxlo‘d:ch— F(oz—{—lsm (2=0)] /u[u (62) ]du
0

’ :gr<a+1>sm (2 — o)) i21a(\j§> a‘%(%)za]
_%F(er)% (ﬁ) (2_22;@)

Using the continuity of the gamma function at the positive integers and the equal-
sin[m(2—a)]
2—a

£/2 as a — 2. Applying this to (A.15) we obtain:

ity lir% = 7, we see that the right-hand side of the equality above tends to
a—
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lim sup |d(« //uw r—u,u)r T %drdu| < €. (A.16)
a—2
0 wu

The inequality |w(z,y) — wy | < B gives for (A.12) and (A.13) as before:

//uw T — U, U)T 1 drdu

s (3
< . 2

s\%

:BF(a—l—l sinfr(2 — a) Tl (6/v2)"
2-a
S ()
_plle +7T1as2m_a [1 5/\/_ }
ottt (4", (4)]

and

1

a)//uw*@ —u,u)xr T drdu
0

6
2

< Bd(«) /1 ]Oux_l_o‘dxdu _plletl S:;[”(Z — ) /u (%)a du
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Since lim BW/mE et sinr(2—a)] [1 - (5/\/5)2704} = (, we obtain:

a—2 a(2-a)

2

\ %
lim sup |d(« //uw T —u,u)r T *drdu] =0

a—2

and

a—2

1 o

lim sup |d(«a //uw r—u,u)r T dedu| = 0.
i
V2

Hence using these equalities together with (A.16), the triangle inequality and

properties of the limit superior, we obtain:

1 o
lim sup |d(« //uw T —u,u)r " drdul < €.
a—2

u

Since ¢ is arbitrary, we obtain

lim |d(« //uw T —u,u)r " *dwdu| = 0. (A.17)

a—2

Hence
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d(a)

o —T

o o0
/ / e(u; 7y, mo)w* (z — u, w)r " drdu| < ¢,
0 u

lim sup
a—2

and (2.3) follows. m

Proof of Proposition 2.

a) We set
Q(=r) Q(=pus)

N ) N )

m+1 1 I1 (=)™ 1 (g=p1.6)™
J= J=

r) =M Z Q1(Pi6) pis—T
j=1 IT (pis —pis) 8
i=1,i#j

First we prove that Jo(r) = 0 for all # > 0. From (2.6) we get —x2"0 __ —
HJ 1(g+m)™

Z Z ikff Now, for any fixed r > 0 we define p;’é(r) = pjs—r and g (r)=q—r.
k=11=1

This gives:

e T1@GE) — 035)™ v (1) — 05} — (i)'

. h=1 -
U epe—L GG

i=1,i#]

m+1 ﬁ(qZ(m_p;&(r))m N Pr(p;s(r))

:)‘12 hnil Zzﬁquk < ()
T (pr) = p3p0r0) 1T 15 PG = 254

i=1,i#]

(A.18)

where P/ is a polynomial of degree [ —1. We note that for each j € {1,...,m+1},

N P (35(r) P (p5s(r)
Z Brad, k Lo « G0 N - ’
1 =1 Qk;( ) pj,é( ))l (QZ(T) _ P;(g('r))mh
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where P**(pj 5(r)) is a polynomial on p 5(r) of degree at most m — 1. Using the
above equality in (A.18) gives

due to (2.5). From the equality A\; + Ao+ = )\2f2(pj s5)+ Al((u—pigé))ml +cpjs+

n“p§s, we obtain that the denominator of the right-hand side of (2.4) is given by

m—+1

Ql Pj,6 )
. Lo(r
2 T = r20)(rs5 ) )
m+1
Q1(pjs > =~ o
LR (MalBolr) = Foos)) — clpss — 1) (35 — 1))
=1 T (pis— pjs)(pjs —)
i=1,i#j
ro 04*1 7,,0471
From the equality above, (2.4) and 355 = pj(s p](s — + 77, we have
— 1
Wg(?‘) - m+1 I
Z m+f?l(ﬂj,5) <_)‘2(f2(27 f2(rp]5)) + e+ ne P;a T)
=t Il (pis—rjs) 0 o
i=1,i#]
! A
= ’ITL+1 [2 1 _po ( 19)
'21 E(pjs) ( p75f2( r)+c+n* Pgdﬁ‘*'n e 1)
j:
1
= m+1 m+1 D‘*lfroz 1

cH+mneremt — Xy Z E(pjs)T,,  fo(r) + 1 Z E(PM)PJ&—

Jj=
_ n%ea’/w( )
1 — - [n7°Gs(r) + 5] Vas(r)

where the last equality is obtained by dividing the nominator and the denominator
by ¢+ 1%ks + 10" 4+ 0 ST B 6)psaT, 5 la(r).
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b) We define the function 7 4(r) = 1

Pt From (2.2) and (A.19) we obtain

~— : A20
T 37,407 A2
First we consider the case when 6 > 0. We will show in this case that if w(x,y) = 1

then

1= Gs)725(1) — 6 RPas ()] = P70, (A.21)

q; ¢
where R = =5

. Using that L,(p;s) = 0 and Lemma 6 we get
H Pj,é

m+1
Z E pjé
p]5
mil [\ (J?z(/?j,a) - 1) A (% - 1)
=Y Elps) o pgyt 4 il
= Pj,8 Pj,8
e [elben )
> Elpss) + e+ %5
= Pj,s
m+1 Q(— Pj, s) m+1
1
S By Mtz 5 2A0) Epso) (A.22)
j=1 p]» j=1 p]>
From Lemma 6 it follows that A\; Z;ntl Eip ];) = M R. From the definition of
75
E(p;s) we obtain:
otns (o o15)
Q(=pj,6) — . <)M
m41 J, m+1 qr — Py o
/\1ZE p;s) Hz 1(2 :]a /\12 ;:1 - Q(=pjs)
=1 g =t T (pes = pis) (@ — pis)™pjs
k=1k#j =1
m+1

=M Z m+1 ps)

I1 (Pka Pj,é)/)j,é
k=1,k+#j
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Since () is a polynomial in p;s of degree at most m — 1 and constant term

N N
I1¢"™, it follows that Q(—pjﬁ)pj_’; = (pjs) " TL @™ + Qo(—pjs), where Qo(r)
i=1 i=1

is a polynomial of degree at most m — 2. Hence, applying (2.5), we obtain

mal NQ(—ﬁj,a) -
A1 2:1 E(pj’(;)r[’:ﬂ;l];;m = M R, and (A.22) simplifies to
]:
e [elBew 1)
OR = Z E(pjs) o +e+npis | - (A.23)
j=1 Js

On the other hand, from the definition of gs;(z) and Lemma 6 it follows that

m—+1
L= ()7 5() = 1 - (Az ) E<pj,a>ifpj,5f2<r>> 74(r)

m+41

=" Blosa) (1= 2T (0705(r)) . (A20)

and due to (A.23) and (A.24),

Lo o . 1ER S
- [1 - gé(T)Va,é(T) - 5RVa,5(7")} = - Z E(pj,(;){l - A2ij,af2(7")Va,5(7’)
j=1
A2 (ﬁ(ﬂj,é) - 1) , )
- +e+npis | vhs(r) e
p‘jﬁ n p],é 0
(A.25)
. .~ 1
Using the equality V7 5(r) = — and Lemma 6, we get:
) c+ nara—l + nafa,5(r)
m+1 a—1 a—1
a,a—1 o pj,5 - ~x
> E(pjs) |c+ 0 + 1 e — Ugo(r) = 1. (A.26)
j=1 Js
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From (A.26) and (A.25) we obtain, for r # p;:

1 %
L1 ()P (r) — R ()]
m+1 a—1 a—1
o, .o— o p'75 —-r ~x
= ZE pis) |+ 4 pj,aj—] U 5(r)
Pjs —T
m+1
——AzzEpjé 2 (1)U 5(r)
m+1
5 1 o O— Sk
——ZEm Vllabs0) =) ot 1 )
P, ’
m+1 poﬁl _ o1 1-fa(r) 1-f2(pj.5)
-, Z Eps) § | nr=2  dar 2 ()
Pjs —T pis—T ’
m—+1

= Z E(pjs) (nafpj,afa(r) + >‘2T FQ( )> 0,5(T)'

Since &,(u) = Fy(u) when w(z,y) = 1, from (2.3), (2.1) and the above equality

we obtain

m+1

hasul) = 32 Eps) (1T} alr) + XoT,,  Falr)

1 [1—95( )0 (1) — ORD 5(r)]

i /\* )

r Va,é (T)

and (A.21) is proved. From (A.21) and (A.20) it follows that

LGP — SRR 1 1] RDL)
) T )t | T,
R
1 1 770‘

TT s+ rot 4 fus(r) —n7ogs(r) — ks
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R =
1 1 ap. Va,6\T 1 1. —~
== R —— ) — = — —6RWj(r),
roor | 1= [nm0gs(r) + Kol Vas(r) | r

where the last equality follows from (2.7). This proves d).

Proof of Proposition 4.

1 fa(r)

r2

a) Let us define F*(u) = ffa(:c)dx. From (2.22) we obtain P (r) =
0

The idea now is to use Lemma 9 to prove the assertion in a). For this, we consider

Fer) | - 1= faolr)
5~ which by the equality above is equivalent to hg)l —

the limit lim

rl0  reT rafl

By definition of Cr it follows that 1 — CLF]/”;(O) = 0, hence we use LHopital’s rule

to obtain:
1 _— ;1 1 Ta—l
— oty Mg s Bedn
lim £ - = lim - J
rl0 re- rl0 re-
1 1 p;yil —r (a— 1)re?
i W R
= lim
r}0 (Oé 1)7‘0472
i m+1 E( ) TQ_apJa_l ro (04 - 1)
o R W Ve N R
= lim
r}0 (Oé — 1)
N m.
i=1
:_aZE@j):E 1=
=2 IT rjo
j=2

where the fifth equality follows by taking limits as ¢ | 0 in Z;n:ﬁl E(pj(0)) =1. By
Lemma 9 we obtain (2.23). Since (2.23) implies that F, () is regularly varying,
and all regularly varying distributions are also subexponential, we also obtain that

F.(x) €S.
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b) For any p;,j =2,3,...,m+ 1, we have

f y)dy J [ e e fo(2)dedy
lim = —— | < lim *¥ (A.27)
T—$00 F2,I (3;) T—00 F271 (gj)
Taking limits when x — oo in the right-hand side of (A.27) yields:
feRe(pJ f sz fy(2)dzdy [ e~ Relei)z £, (2)dzdy
. xT Yy o . x
i For(2) = M R, 2)
— Lm 7Ri( ) fo(x)
T—00 Re(p]-)e*Re(Pj) F2( )-}- e Re(Pj)xf2<x)
Jo(z)
= lim (@) (A.28)

where the first and second equalities follow by L’Hopital’s rule. Using the assump-
tion that Fy € Ry, we obtain from (A.28) and (A.27) that

T, hw)dy

T—$00 F2’I<x)

Since [ go(y)dy — )\ U=’ Hm“ ugFg 1(z) — A ZmH (pj fT fay), the triangle
inequality yields:

N
>\2,L52 ZI—[l qz B Ca =2 p] f < GO(.T) (A 30)
Ce mxt Fou(z ) T ()

H P35,0
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and
o do 5t ooy T d
’ Go(z) < Ao pla zl;[l K n - g =2 <pj)zf i 20)y (A.31)
7271(.1') o CG mil FQJ(QZ‘) ' '

H P30
j=2

Taking limits when  — oo in (A.30) and (A.31) and using (A.29), we obtain
(2.24). Assuming that Fy; € S, we obtain Gy € S from Lemma 8 c).

c¢) Let us assume that Fy(z) = o(x~*), hence L’Hospital’s rule implies that

F
lim Zf(@ =0 (A.32)
r—o00 LT
This yields
[ fe—Re(Pj)(Z—y)fQ(Z)dzdy [ [ fa(2)dzdy -
lim =~ — < lim &2 — =g li 21_(I) =0,
T—00 rl-a T—00 rl-a r—oo il
so we obtain from (A.32):
pr]fQ(y)dy
lim | — = 0. (A.33)
T—00 ri—o

Replacing Fy;(z) by 217 in (A.30) and (A.31) we obtain the inequalities:

N )

m; 1 m+1

mi —= S FE(p:) [T, d —
Iu2 Z];Il qz FQ’I(,’L') Ca 7=2 (p]) mf Pj fQ(y) y - GO(I) A 34
@m—&—l rl-o - rl-o | gl-o ( ’ )

H P3,0
j=2
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and
i m; 1 m-+1 o0
Gow)| o L Ty |7 202 Bea) [ T fa0)dy
S 1~ Z:1 b + X (A‘35)
xl—oc CG’ m—+1 Jfl_a xl—a
Pj,0
j=2

Hence, the result follows by taking limits when z — oo in (A.34) and (A.35), and
applying (A.32) and (A.33).

Putting r = 0 in (2.19) we obtain Cyy = —%—. Multiplying both sides in (2.19)

1+5E
Vao(T)

Cu (1 t %ﬁw(r)ga,eo (r)) =

Zo0 (T)

Cu

by Cy we obtain

<1 _ Va,colfr)) (1 + %.ﬁx,O(T)/Z\aﬂo (7‘)) =14 %ﬁﬂ(r)/z\m% (r) — ZQZ—Z(T)

— 14 a0z ()~ (14 5) 2 )

0 0
=1- a,0g - 5 <o, 1__01,
Zaoo) ~ L) (1= g Faol?)

(A.36)

We define the function U (z) = [U,(y)dy,z > 0. By (2.22), the Laplace trans-
0

form of this function satisfies the equalities:

Oalr) = =57 = ——. (A.37)
Hence (A.36) yields:

1) () (1= A Fao)

rUa(r) _ — ol 0 _ ro! (A.38)
Ta—? 1 + %fap(r)/z\aﬂo (T)
1-— /2\04,9 (T)

Using that z, ¢(r) = M% we obtain lim, g = lim, o Mﬁ = %, and

Ta—l
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Lo N
B Efa’()(T) _ 1 z‘l;llqi
- 4 T o+l

Cr IT pio
Jj=2

from the proof of a) we have lim -
rl0 reT

Letting r | 0 in (A.38) and using the two equalities above, we obtain

N TTL/L'
1_1+1g%
~ 0 0 emlj[rlp . C H q
* ) s
lim e ") _ =2 “Ua (A.39)
TOL—Q 1 + C_F 9 m+1 )
0 .
I1 P30
j=2

rl0
1

where in the last equality we used that Cy =
Since U (x) has the monotone density U, (), Lemma 9, gives (2.25). This implies

that the tail of U, is asymptotically regularly varying with index 1 — «, hence we

conclude that U, € S
(A.40)

[ |
Proof of Lemma 15. First we prove that
/ 11— e Vs(z)dz < oo
0+

for any r € C,. We have

7‘1 _T”D|Vg(:r:)dx—/l|1 _M}Vg

00
fm: /
1

00

1
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i_o:k_k/xvs da;+/?s(x)dx
= (el = 1) /lxvs( )daz+77 (z)dz (A.41)

Since 2Vs(z) > 0, by Fubini’s theorem we have

1
/x?s(:v)d:v —/ /VS dy)dxr = //xdxl/g dy) + //Zlfdl'l/g dy)

0+ 0+ 0 1 0+
1

:/gys(dy)Jr%/Vs(dy),

0+ 1

where both integrals are finite because of condition [ (2? A ) vs(dz), which implies

0+
1 oo o0
[ 2?vs(dz) < oo and [vs(dr) < [avs(dx) < oo.
0+ 1 1

Now we consider the integral [ Vs(z)dr. We apply integration by parts and
1

obtain:

/Vg(x)dx = 2Vs(z) . + /xug(dx)

1 B
We note that zVs(z f zvs(dy) < f yvs(dy), and since the right-hand side of this
inequality is finite for > 1 by the condition f (z? A z) vs(dz) and it tends to zero

0+
as x — 00, it follows that lim 2Vs(z) = 0. Hence
T—00

/Vs(x)dx _ /:Uyg(d:c) V(1) = /(w— Ds(dz) € [0, ).

1 1 1
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This proves that the right-hand side in (A.41) is finite. Therefore we obtain (3.13)

using Fubini’s theorem. To prove (3.12) we have

Us(ry) B Us(rs) _ / l—e ™ —rz 1—e % —ryx vs(dz)
™ T2 ™ T2 s

0+

= // [e7 —1— (e —1)] dyvs(dx)
0+ 0

= //l/g(d:v) [e Ty e_”y] dy
0+ y

= /Vg(y) [e™Y — ™| dy = Vs(r1) — Vs(ra) (A.42)
0+

where the third equality follows by changing the order of integration, which is possible
because of (A.40). Now we note that:

Us(r) = Ws(ry) _ MR — e g B gy () B
ro — 1T T9 — 1T r2—"r1 i 2=
Ws(ry) Vs (r2)
= — ==
— 1y r1 re 5<T1> ) (A43)
T2 —7T1 ™
and analogously:
Ws(r1) Vs (ra)
Us(ry) — O e Y
s(r1) s(r2) oy r2 5(7“2). (A.44)

o —T o —7 ()

Hence the result follows substituting (A.42) in (A.43) and (A.44) and using (1.5). =

Proof of Lemma 16. We construct m + 1 different numbers depending on
e > 0 and such that k; of these numbers converge to p; s, k2 of these numbers,

different from the previous ki, converge to pas, ..., kg numbers different than the
R—1

previous m + 1 — > k; converge to prs. For this we take ¢ € (0, E), where E =
j=1
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min{|Rep; s — Rep;s| : Rep;s — Rep;s # 0} and consider the complex numbers

P1a(E) = pras P35(E) = prat g Ph () = prat
* * kl + 1 % kl + k’Q —1
Pk1+1,5(5) = 02,5, Pk1+2,5(5) = P25+ . 15, . aPk1+k2,5(5) = ps+ m——i—lg’ o
* * ngll kj +1
pk1+'"+ka1+175(5) = PR, pk1+"'+k/‘R—1+276(6) = PRS T m——f-l€7 Y
* ZR:1 kj -1
Prs15() = Prs + =, (A.45)

Clearly we have:
li_r}(l)p;;-i—aj,é(s) = pj,57j = 1727 s 7R7
for ll :O,lgzkl,...,lR:kR,1 and a; = 1,2,...,]{7]'.

This gives m + 1 distinct numbers pj 5(¢), p3 5(¢), - - -, Py, 11,5(€) such that, as € | 0,
the first k; converge to p; s, the next ks converge to py 5, etc. This construction plays a
critical role in the proof of Lemma 16. The following technical lemma is also required.
First we obtain the result for case C. Using the complex numbers pj 5(¢), ... oy, 11 5(€)

defined in (A.45), first we have the equality

Ly [p;5()] =6 == Vs [p}5(e)] + M= Q(—p; () |
-H1 (g5 — p35(e)™

=

* * 2
T epl5(e) +72 [55(0)]* = 5 — Av.

Therefore, for each 7 =1,2,...,m + 1 we obtain:

/\1 + 0= — \I/g [p;75<€)} + /\1 N

+opls(e) 72 [pis(e)]” — (L [5(e)] — 0) .
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This yields:

La(r) —0=—Vs(r) + A\ —x Q=r) ) +or + 947 + Uy [p](;( )}

Hj (g — 7)™
Q(—=p;5(c)) . 2 .
— Ay = T cpjs(e) — 7 [Pj,a(g)} + Lx [Pj,&(g)} — 0.
(% - p}f,a(s)) ’
j=1
(A.46)
N
First we prove the result for case C. Let us recall that Q(r) = [][(¢; — r)™ for
j=1

r € C,. Since this polynomial has degree m, it admits the equivalent representation

[ Pza( )]mj
— ()] [Ls) =1,

J#l

Pja

N
w1 g

AN

j2l
which follows from Lagrange interpolation. This and (A.46) give:

m+1 P s(€)
[Lx(r) Z { il } 11 [e5ste) =] { [—(pis(e) = 1)]

=1 P](; Pla( )} J#l

Q(—r) _ Q(pf,é(s)) ,
‘I’s plé( €)) T a (g™ T (407 5(0)
pis(e pis(e) —r
— c(ps(e Y (pis5(e) = r)(pis(e) + 1)

[Pz,5(5)]a —re i}
- T)W + [Lx(pis(e)) — 0] }

mal m+1 Q1 [pza(e)} { Us(r) — ¥s(p;s(e))
0;, B i ,
f:[ e ; 1 235(6) = pi5)] Plale) =

Q(—r) B Qp;5()

I (—)™  TI(a—pf 5(e)™
Pls () —r

—n*(pis(€)

+ M

—c—7(pis(e) +7)



136 APPENDIX A. PROOFS OF TECHNICAL RESULTS

. [p?,a(s)} e Lx(pjs(e)) — 0
e =N e - } (4-47)

Formula (2.5) and the first part of the proof of Proposition 2 imply, respectively:

m+1 «
@1 [Pl,g(a)]
2

= Oles@-eise)] -

and
A48
41 ] (110 ( )
b A eis(©)] (7)1 (i)™ | _
M 1:21 1;11[02,5(6)—/3?,5(5)] PisE)—T =0, reC,.
J

Hence, substituting these two equalities in (A.47) and applying the first equality

n (3.12) to \I/S(rl)):qu)(fi"s(g)), it follows that
7,0

[Lar) 3] @ur H NNy pQé o p)}é( )]{—pza(sﬁp;é(ﬂs(r)
r x |PL -0
*wsr()‘c‘ﬂ”ﬁm“ e }

Dividing both sides in the equality above by H;":ng [p;5() — r] we obtain

r[w(l )[p_ j( 6521 Z ,oQ j;(iw(p)}xsﬂ { ~ ae T Patr) + 55 =

Ly [Pf,a(g)] - 5}

pis(e) —

— 7 [+ pis(e)] +

m+1

‘Ifs( ) N - Z H Ql Piale )} {P?,a(f) pZ‘,a(a)VS(T)
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Taking limits as ¢ | 0 in both sides of the equality above, and using (1.12) yields:

[Lx(r) — o] &5 (r)

_ mj o k
\I/S(T) , R (_1)1—161 gki—1 jl;Il(qj 8) (IOZ,J S) T\—
— . —C_'}/?"_Z(kl_lﬂaskl_l R S sVS(T)
= H (Io] 5 — 3)
=t S=p1,6
N . .
gy guo | L0 ™ e =T
-7 Z s
(ki — 1) D51 7
= H (pj 5 — 8)
=t S=p1,6
1 XR: (=Dth ght Ql( )(prs — ) La(s) — 0
(ki — 1)1 D5k e
= H (/)J 5§ — S)
N S=p1,6
(A.50)

Since p;s for j =1,2,..., R are the roots of Ly(s) —0 = 0 in C,,, and they have
multiplicities k; for j = 1,2,...,m + 1, it follows that:

R

Z )ik a’ﬂ Ql( )(prs — 5) La(s) — 0 .
= H (p],E - S)
= S=P1,6
Hence, substituting this in the equality above, setting
N 4 .
i i g(% =)™ (g — 5)
s
]C — 1 'a j R ;
=1 M ™ H (pss — s)ki
7= S$=Pp1,5

and multiplying both sides by —1 we obtain:
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6= Lalr)] 2 (1) = 472Dy + 47r — 25U

2
[T (g — )™ (s — )t

R 3 3 q; —8)" (prs — )™

(_1)1 ky 3kl 1 j=1 o~
+ Z (ky — 1)1 Oski—1 R N sTsVs(r)
[T (ps5 — )"
=1 $=p15
(A.51)

Now we apply Leibniz rule and Lemma 14 to the last term in the equality above.

This gives:

R k-1 1k,
L ek D Ol A T

N
ohi—1-i H (qj — )™ (p15 — s)k

Jj=1 0% [=~—
X askl—l—i . asa [TSVS(T)] S=p1,5

Using L.’Hospital’s rule we obtain lim ‘IIST(T) = 0, hence setting » = 0 in both sides of

rl0

the equality above and using [§ — Lx(0)] €/ (0) = as, we obtain as = ¢+~2Dj+ L;(0).
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It follows that:

6~ La(r)] 25 1) = a5 — £4(0) +97r — 250 4 25

=as +V’r — \I/ST(T) — <25(0) - Eg('f’)) :

This gives the result for case C.

For case B, we use (A.47) replacing ¥s(r) by Gs(r) and setting v = 0. This gives:

[La(r) = 8] Qi (r)
:HWA_TZHQWMH {ﬁwt%mm>

Pga ) Pza( )] 01,5(5) -r
Q(=r) _ (pl,é(s)) _ .
T o™ T (—ris@)” N Lx(pis(e)) — 6
Pis(e) =7 prsle) =
m~+1 m+1
Ql pis(e )} = Lx(pjs(e)) — 6
/0 —7’ T« EVS(T)—C—F *’
H J6 Z H Pja £) — Pl&( )] Piste) /’1,5(5) -T
(A.52)
where in the second equality we used
e —1— (e — 1)] vs(dx)
Gs(r) — Gs(s) _ _0{
S—T s—r
[ le™ — e ] vs(dx)
— O — = —T,ws(r). (A.53)

and the second equality in (A.48). Using the first equality in (A.48) and dividing
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m+-1
both sides in (A.52) by — [] [p},(e) — 7], we obtain
j=1
Q1 (r
5 La(r)] g 2

H [p§,5(8 ) 7]

]:

B - ,<>} S L) — 0

P; s(e) — Pl,5<5>

(A.54)

Taking limits as € | 0 and using (1.12), we obtain:

R 1 k; akl j=1 ’ -

[5_LX( 6 - Z kl—l '8Skl R
= I (pjs — 8)%

j=

R k-1 B —1 ( 1)1 ki pki—1—i =1
_C_Z < a )(kl—l)!ﬁskl 1=

R
e [T (pjs — s)
=1 S=p1L,s
a R k—1
TS = — E a
% 0s? [ VS(T):| $=pi,6 ¢ ; = (l @, 5)77016 VS( )
:C_Z(S(T)v (A55)

where in the second equality we used Leibniz rule and in the third equality we used

Lemma 14. Setting 7 = 0 in the equality above and using [§ — Lx(0)] €5 (0) = as, we

obtain ¢ — Z;(O) = ag, or equivalently
¢ = as + U5(0). (A.56)

Therefore:
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This implies the result for case B. To obtain the result for case A, we suppose that

Lx(r)=X\ (% - 1) —Gs(r), and S is a subordinator but not a compound
j=1\4; =T
Poisson process. Note that we have also assumed that the drift term ¢ = ¢y + ps

equals zero.

In this case we know by Lemma 13 that Ly(r) —d = 0 has m roots in C,,. We
denote them again as pis,...,prs and assume that they have multiplicities k; =
1, ko, ..., kg such that ) k; = m. We consider the numbers pj 5(¢), ..., oy, 5(€)

J
defined before, and instead of p, ., 5(¢) we take poo(n) = y/n. We also take ¢, = +
Clearly lim ¢, =0 and lim ¢,p(n) = 0.

H

n—oo

Q

S

Note that, in this case, the function Ly(r) + ¢,r is exponent of the moment
generating function of some Lévy process of the form (3.1) with v = 0 and drift term
¢n. Hence we can use (A.47) with v = 0, Gs instead of Vs and ¢, instead of ¢. This
yields:

[La(r) 4 cpr — 0] Q1 (r)
T Q1 [pis(e)] {_ Gs(r) — Gs(pis(€))
. ()]

j=1 =1 H [p;,é(*g) PLs P7,5<5) -r
J#l
Q-r)  _ _ Qrs0) Lol 8
-1 T (4-6ia(0) 2 x(prs(e)) —
+A . | — =7 (pisle) + 1)+ ———
' pis(e) —r (pis(e) + 1) pis(e) —r
. Gs(r) — Gs(pis(€))
+ (pos(n) =7) | | 1Pjs(E) = 7] 4 — ; ’
Q(=r) _ __Q(=pc(n))
IT52, (qj—r)™ r m
g I (g5—poo(n))™ La( _
i=1 Poo(n)) — 6
+ A —c— 7 (poo(n) +7) + i A .57
By (A.48) we have
S oli] _, _ @bst)l __,

—1 PJ(S £) — Pla( )} H;n:1 [P}f,a(g) —Poo(n)] a

J#l
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and

" . Qer) Qi)
Z Q1 [Pz,(s(E)} Isi(@—n" THL (4-s() ™
I1 |} i

-1 [P;(s(g) — P 5(5)] Pf,cs(@) -
il
- Q(=r) — Q(=ps (1))
[T;21(g—m)"™ m;
J= I (g5—poo(n))™7
H1 [Pj,a(é) - poo(n)} P
]:

Applying the equalities above and w = —T,us(r) (which is due to (A.53)),
to (A.57), then dividing both sides by [ [pfs(¢) — r], we obtain:

j=1

Q1(r)
[T [;4(0) = 7]
S pelm) = Qu[pis(e)] {A*

[Lx(r)+ cor — 6]

= ~enlpln) =)+ ; Poo(n) — pis(€) 'l;lz 95.5(8) = pis(e)]

o)y LS Pe(n) =T Q1 [pise)] Bl
= el = = B T ) — s {T oretr)

J#l
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~

where in the second equality we have used the equality (poo(n) — 7)1, (n)Vs(r) =
_ —Gs(r)+Gs(po(n))
(poe(n) — 1) (FEszslentr))

Now we substitute Ly (pso(n)) = A\ (M - 1) — Gs(poo(n)) and ob-
[T (g —poo(n))™I
j=1

tain:

Q1(r)

[Lx(r) + cyr — 0] HTzl [p;’(;(é) — r]

. o) —r N poo(n) = Q1 [pis(e)] B elr

- W“)’+EWW%@gmﬁ%%@ﬂ%M“>

+a@ﬂ@+“@@@k”}+m O lpoe(n) {—Gdﬂ+@@dm>
2 11 (0 = et

Q (—pa(n))
CnPoo N )\1 GS o (T —>\1—5
*( pooln) + Hjm% potryy O 1Pl >}

oo - Q i - *
el = ; Poop )Pz Z( )11 [p; :([:)lﬁ_(éz; 5()] {T”z*,(;(e)VS(T) + Cnprs(€)
gA ’

Lx [pis(2)] — }_ Q1 [P ()]
111

+

- GS(T)
pisle) —r 03 5(8) = poo(n)]

1 [pOO< c A Q<_p00(n)>
[p] 5(€) = poc(n { peeln) H;VZI (¢ — poo(n))™

+

— (A +0) } (A.59)

3

1

J

Since @Q4(r) = H;V:l(qj — 7)™ and [/, (p35(e) —7) both have degree m, and

since in the quotient 521 ((Tr)), Q(r) is a polynomial of degree at most m — 1, it follows

that for any r, s such that r # po(n) and s # peo(n):

lim £l 7T

=1
n—00 poo(n) -5
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lim Q1(pso(n)) -1
nvoo TI7, (005(2) — poc(n))

1:111 — Q(_poo<n)) =0.
Ey%—pmmnw

We let n — oo in both sides of (A.59) and multiply the resulting equality by —1.
This gives:

H;'Vzl(%' — )™
HT=1 (0;75(5) - 7")
N Q1 [pis(e)] B elr L [pis(e)] =0
" 0 i) {T’Jw‘” O e

[0 = La(r)]

}+G5(7")—|—)\1 + 4.

Letting € | 0 in the equality above and using again (1.12) and that p,s for j =
1,2,..., R are roots of Ly(r) — ¢ in C,,, with multiplicities k;, j = 1,2,..., R we

obtain:

(6 — La(r)] =22 L~ Ge(r) + M +0

N
[1 (g5 — )™ (prs — 8)™

I ity = Tows(r)
(ki — 1)! Oski—1 R N 578
=1 [1(pjs — )%
J=1 S§=PpL,6
= Gs(r)+ A\ + 6 — ls(r) (A.60)

-~ ~

From this we obtain as = A\+Jd—£(0) by taking r = 0, or equivalently \;+d = as+£(0).
Substituting this in (A.60) results to:

ll[_[”il((jj . T)?’; = a5 + Gis(r) + 6(0) = G5(r). (A.61)
j=1\Pj6 =T

[0 = Lx(r)]

Proof of Lemma 18. We prove b). First we consider cases B and C, in which
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the roots in C, . are m + 1, and hence, Hle(pj,g —r)% has degree m + 1. We also
recall that Hl]\il(ql — 7)™ has degree m for cases A, B and C.

By (A.10) in Labbé et al. [2011] the polynomial ], (¢ — )™ has the equivalent
representation

R ~j N . R .
m 10" | Thy(a — )™ (s — pj.s)" [Ty (r = pus)®
e =323 4 2 [Tl e e,
- 8=pj,s

2

=1 Hz:1(3 - Pl,é)kl (r— Pj,é)k’_“ '

Hence, dividing both sides in the equality above by Hle(pjﬁ —r)% and factorizing
(—1)™*!, we obtain:

j_

e (r) i Z aii [Hz g =)™ (=1)% (pj.5 _s)kjl 7 ((_Uk)kaa

(=)™ L (s — 9)% Pis =T
k;

_ f: Z 10 [T (@ — )™ (pys — )" (-1)°
== al 9se Hl}il(pl-ﬁ — )k o (Pj,é — T)kj—a

We set b = kj — 1 — a and note that b moves from 0 to k; — a. We also use that
(—1)tkitt = (—1)%~1= and rewrite the equality above as

(kj —1—0b)l §ska—1-b Hil(ﬁl,é — s)k pj,s — 1)t

_ — (k= 110! (—1)P R gt LY (g — 9)™ (pys — 9)® 1
B | o

i’“i‘l (—1)i-ksitb ghi—1-b [Hl[\il(qz—S)ml(m,é—S)k"] 1
— s=pj.s (

(kj — 1)' E (/ﬂj —1- b)' Oski—1-b Hlel(pl,zs — S)kz Pj.s — r)b‘H

Jj=1 b=0
kj—1 o L . /.

= zR: Z (k‘j - 1) (—1)1 kit ghi—1-b H£1(QZ —8)™(pj5 — s)kJ #
J=1 b=0 b (kj —1)! Qski—1-b H;L(Pl,ﬁ — §)k o (prs —1)PH
R k;j—1 B

. RROTED A.62
jz:; b=0 ( )(Pj,a — r)bHl ( )

T |
Now we use that [ e™yPe Pio%dy = — B and the result follows in this case.
(P],é r)bt

In case A there are only m roots in C,,, hence Hfﬂ(ﬂjﬁ — )% has degree m.
We note that the term with degree m in this polynomial is given by (—1)™r™, and

also the term with degree m in [[;,(q — )™ is given by (—1)"r™. Therefore
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P(r) =TIN, (g —r)™ — Hle(pj,g — )% is a polynomial with degree m — 1. We apply
(A.10) in Labbé et al. [2011] to P(r) and obtain:

R k;j—1

P(r erIZ Z 1 9% | P(r)(—=1)*(pjs—s)k (—1)ki=a
ot al 9s@ —1)m+1 Hl prs — s)k s (pj,5 —r)kai—e
kj—1 . _ .
—y Lo w =y
=1 a=0 al 9s Hl 1(prs — s)k - (pj,5 —m)ki—e
kj—1 ks i _
_ Z (_1)1 kj+b  gkj—1-b P(T)(pjﬁ _ S)kJ ;
i (= L= DOsR T T (prs — s)M —ps (pjs — )0t
_ Zkrl (kj = D! (1)t ktb G104 P(r)(pj 5 —s)% 1
= (k= DU (ky = 1= 0)10s% =170 | T (py5 — )P e, , (Pis =)
_ i (’“ﬂ‘ - 1) (=) Rt k1 [ P(r) (s — 5)" bl
i AN (kj =1t OsH =10 T (prs — )b o,y Pi8~ )bl

b
_ Zkil kj — 1\ (=1)1katd ghi=1=b | TTN (g, — s)™ (pj 5 — 5% b!
: b (kj — 1)l dski—1-b (
S=pj,6

j=1 b=0 HZI;(PL& —s)k Pj6 — 7)ot
R k;i—1 . 1 )
-y X (kj - 1) (—1) kot gha=1=b TR (o5 — 5)*(pj5 — 5)* b!
J=1 b=0 b (kj — 1)1 dski=t=0 HzR:1(Pl,6 —s)k —p s (pj,s —r)ot1

where in the sixth equality we used the linearity of the partial derivatives. We note
that

( 1)1—k7+b Hki—1-b

R ki —1\ (— : J HR:l(Pz,é — sk (pjs — s)* ol
ZZ( b ) (kj — 1)1 Oski—1-b [ l s=p;

[T (o5 — )k (pj,s — 7)o+t

R - .
ki —1 (,1)17k]+b 9ki—1-b . bl
R ( K ) ORI LR P e 7l

5=Pis (pje — )01

k;—1—b

because all the derivatives L—— 5 — )k equal zero. Hence:
ds*i s 5=pj.s

& kij — 1\ (=1)1-ki+b ghj—1-0b 1\11 —8)™(pjs— s k; B!
Pir) :Z 2 ( b >((kj.)_1)! §ski—1-b [H" o — )™ (pss ) ] .

121 (prs — s)ke _,,, Pis = r)bt

(A.63)
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We note that € (r) can be rewritten as €} (r) = 1+ %. Therefore (A.63)
=1 ST
implies that €f (r) equals:
R kj—1 . _1y1—k;+b ak;—1—b N (. o K .
1+Z Z <k1 1)( 1) ' 81@.714; Hl:l(qu s)™ (pj.o — $) b! -
=S b (kj — 1)1 Oski 1L, (prs — s)k o (pjs—T1)

o0 o0
Usin e"ybePiotdy = —— — and [ e8y(z)dxr = 1 we obtain the result in this
S P J

case. m
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