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Abstract

Let us consider the class of Lévy processes X = {X (t), t ≥ 0} defined by the equation

X (t) = ct+ γB(t) + Z(t)− S(t), γ ≥ 0,

where c ≥ 0 is a drift term, B = {B(t), t ≥ 0} is a brownian motion with zero mean, Z =

{Z(t), t ≥ 0} is a compound Poisson process whose jumps have a probability distribution

with rational Laplace transform and S = {S(t), t ≥ 0} is a pure positive jumps Lévy process.

The processes B, Z and S are assumed to be independent.

We study the Wiener-Hopf factorization of this class of processes, particularly focusing

on the distribution of the negative Wiener-Hopf factor (the factor given by the infimum of X
stopped at a random exponential time). We present explicitly a subordinator such that the

negative Wiener-Hopf factor is equal in distribution to this subordinator, and then use this

result to obtain an expression for the Laplace transform of this negative Wiener-Hopf factor.

We invert this Laplace transform to obtain an explicit expression for its probability density.

This probability density is in terms of functions which depend only on the parameters of

the process, and in terms of the derivative of a q-scale function of an associated spectrally

negative Lévy process. Due to the importance of q-scale functions, we apply our techniques

to study two important cases of spectrally negative Lévy processes and obtain explicit

expressions for their corresponding q-scale functions.

Furthermore, we use our result about the density of the negative Wiener-Hopf factor

to obtain an explicit expression for the Generalized Expected Discounted Penalty Function

(Generalized EDPF, for short) of a process of the form u + X , where u ≥ 0. This model

corresponds to a two-sided jumps Lévy risk process with rational positive jumps and general

negative jumps, allowing the case when there exists a random factor (a perturbation) which

models random gains or losses. The two-sided jumps Lévy risk process with an α-stable

perturbation, which generalizes the model in Furrer [1998], arises as a particular case. This

model is studied in full detail and we present several results about its corresponding EDPF.

We also obtain asymptotic expressions for its corresponding ruin probability and the joint

tail of the severity of ruin and the surplus prior to ruin for this case. The asymptotic

results for this joint tail are also stated for the classical risk process perturbed by an α-

stable motion.
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dia Vega, Tulio Gaxiola, Rosa Inés Hernández, Eric Santiago, Eduardo Álvarez, Leonardo
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Luis Blanco and Raymundo Rojas for all the help to take care of Harry and Fabiana when I

had to travel outside Guanajuato.

• All the students in Stochastic Models 1, who I was glad to meet and support as Professor’s

assistant. I thank you all for making this last semester something I truly enjoyed and will

always treasure in my memories and heart, and also everything I learned from all of you,

• My advisor, Prof. Ekaterina Todorova Kolkovska, for believing in me and accepting me as

her student, for being the best and most patient advisor I could have ever asked for, for all

her support and advices and for giving me the great topic that made this thesis possible.

vii



viii



Contents

1 Preliminaires 7

1.1 Laplace transforms, convolutions, Dickson and Hipp operator and α-

stable distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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Introduction

Lévy processes are one of the most studied class of stochastic processes in several

branches of applied probability, such as Mathematical Finance, Theory of Branching

Processes, Insurance Mathematics and many others.

In particular, their Wiener-Hopf factors, which represent the supremum and the

infimum of the Lévy process stopped at an independent exponential time, have been

intensively studied. These factors are called, respectively, the positive and the nega-

tive Wiener-Hopf factor. The positive Wiener-Hopf factor, for instance, allows one to

solve the optimal stopping problem corresponding to the pricing of a perpetual call

option, in the case when the market model is generated by a Lévy process. Similarly,

the negative Wiener-Hopf factor is useful in solving the optimal stopping problem

corresponding to the pricing of a perpetual put option, when the market model is

generated by a Lévy process. This negative Wiener-Hopf factor can also be applied

in Insurance Risk Mathematics to study the classical ruin problem.

While the distribution of the positive Wiener-Hopf factor has been studied by

many authors (see, for instance, Kuznetsov [2010b], Kuznetsov and Peng [2012], Lewis

and Mordecki [2008] and the references therein), the distribution of the negative one

has been studied only in a few particular cases (see, for instance, Kuznetsov [2010a]

and the references therein).

In this thesis we obtain the probability density of the negative Wiener-Hopf factor

for the following class of Lévy processes:

Let us take X = {X (t), t ≥ 0} as processes defined by the equation

X (t) = ct+ Z(t) + γB(t)− S(t), t, γ ≥ 0, (1)

where c ≥ 0 is a drift term, B = {B(t), t ≥ 0} is a Brownian motion with zero mean,

S = {S(t), t ≥ 0} is a pure jumps Lévy process with only positive jumps (therefore,

its dual −S has only negative jumps) and Z = {Z(t), t ≥ 0} is a compound Poisson

process with Lévy measure λ1f1(x)dx, such that f1 is a probability density with

1
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Laplace transform

f̂1(r) =
Q(r)

N∏
i=1

(qi + r)mi
, (2)

where N,mi ∈ N with m1 +m2 + · · ·+mN = m and 0 < q1 < q2 < . . . qm and Q(r) is a

polynomial function of degree m−1 or less. The processes B, S and Z are all assumed

to be independent. Since every nonnegative distribution can be obtained as a limit

of a sequence of combinations of exponential distributions (see Dufresne [2007]), the

restriction imposed on f1 allows for numerical approximations of the general case of

f1. We point out that the explicit distribution of the positive Wiener-Hopf factor of

this class of Lévy processes was obtained in Lewis and Mordecki [2008].

In Insurance Mathematics, a process of the form of u + X , for u ≥ 0 represents

the surplus of an insurance company up to time t, in the case when its initial capital

is u. The classical risk model, which is an spectrally negative Lévy risk process with

negative jumps given by the dual of a compound Poisson process, only models the

case when the insurance company begins its service with initial capital u, earns a

fixed amount of money per time unit (modeled by the drift term c ≥ 0) and has to

pay for random claims that appear at random times (these are modeled by the dual

of a compound Poisson process).

A process with the structure of X is more realistic than the classical risk model,

since it allows the possibility that the insurance company earns money, for instance by

investing in the stock market (this is modeled by the process Z) and it also considers

the case when there are random fluctuations corresponding to gains or losses. These

random fluctuations are represented by the brownian component B and the process S,

when S has unbounded variation. When S is a subordinator other than a Compound

Poisson Process, we have the case of random claims which appear very often in each

time interval.

We also study the Expected Discounted Penalty Function (EDPF for short) of

the class of two-sided jumps Lévy processes defined by equation (1). The standard

version of this function was introduced by Gerber and Shiu [1998] and it is defined

as follows:
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We let τ0 = min{t ≥ 0 : u + X (t) < 0} be the first passage time of u + X
below zero. In the classical ruin problem studied in Insurance Mathematics, this

first passage time is known as the time to ruin of the process u + X . We consider

a function ω : R+ × R+ → R+, which is nonnegative, real-valued and such that

ω(0+, 0+) = lim
(x,y)→(0,0)

ω(x, y) exists. Then, the EDPF for u+X , denoted by φ(u), is

defined as

φ(u) = Eu
[
e−δτ0ω

(
|X (τ0)|,X (τ0−)1{τ0<∞}

)]
, (3)

where δ ≥ 0 represents a discounted force of interest, |X (τ0)|,X (τ0−) are known

in Insurance Mathematics, respectively, as the severity of ruin (overshoot at first

passage) and the surplus prior to ruin (undershoot at first passage). The function ω

is known as a penalty function.

The EDPF presented above renders as particular cases many important risk mea-

sures, which arise by changing the choose of δ and ω. For instance, for δ = 0 and

ω(x, y) ≡ 1 for all x, y > 0, the EDPF reduces to the probability of ruin of the process

u + X . If ω(x, y) ≡ 1 and δ > 0, φ reduces to the Laplace transform of the time to

ruin τ0. This EDPF has been widely studied, specially in the case when X is spec-

trally negative (see, for instance, Gerber and Shiu [1998] and Biffis and Kyprianou

[2009]). There are also some results on the case when X is a two-sided jumps Lévy

risk process, for instance in Albrecher et al. [2010] (and the references therein).

In general, the study of the aforementioned class of two-sided jumps Lévy processes

is not easy. For instance, standard tools such as first step analysis cannot be applied

when the process S has unbounded variation, because of the infinite jumps that occur

in S in any finite interval. Moreover, the fact that many unbounded variation Lévy

processes do not have a probability density with closed form (for instance, the α-stable

motion) also makes the analysis much harder than in the case when S is simply a

compound Poisson process. Another difficulty to study this kind of processes comes

from the positive jumps process Z. Many of the results for the spectrally negative

case, even when S has unbounded variation, are in terms of the recently studied q-

scale functions, which are known to exist only in the spectrally negative case, and so

far, there is no analogue of them for the two-sided jumps case.
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In this thesis we obtain a series of results that solve this problem. First we study

in great detail the EDPF of an important particular case of the process u + X : we

suppose X has no brownian component and take S as the sum of a compound Poisson

process and an α-stable motion with only positive jumps (again, this implies that −S
has only negative jumps). We refer to this process as the classical two-sided jumps risk

process perturbed by an α-stable motion. We deal with the lack of a closed expression

for the α-stable density by constructing approximating sequences based on compound

Poisson processes such that they converge weakly to the α-stable process of interest.

This approach allows us to use first step analysis, and other techniques, to study our

process of interest. In Theorem 7, Chapter 2 we obtain an expression for the Laplace

transform of the EDPF for the classical two-sided jumps risk process perturbed by

an α-stable motion. In Theorem 8, Chapter 2, we invert this Laplace transform and

present a renewal equation satisfied by φ. This results provide a natural extension of

a celebrated result by Furrer [1998], which was stated and proved only for the ruin

probability of a classical risk process perturbed by an α-stable motion, which is a

particular case of a spectrally negative Lévy risk process.

In Theorem 9, Chapter 2 we obtain the asymptotic behavior of the ruin probability

corresponding to the classical two-sided jumps risk process perturbed by an α-stable

motion, while in Theorem 10, Chapter 2, we obtain asymptotic formulae for the joint

bivariate tail of the overshoot and undershoot at first passages below zero of the

classical two-sided jumps risk process perturbed by an α-stable motion, i.e. the joint

bivariate tail of the severity of ruin and the surplus prior to ruin. We also present

the corresponding asymptotic formula for the joint bivariate tail of the surplus prior

to ruin and the severity of ruin in the case of a classical risk process with an α-stable

perturbation.

In Chapter 3 we consider the more general case of X when we have a brownian

component and S is any pure positive jumps Lévy process, other than a compound

Poisson process, and study the Wiener-Hopf factorization of this kind of processes.

In Theorem 13, we present an explicit expression for the probability density of the

negative Wiener-Hopf factor for the class of two-sided jumps Lévy risk processes
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defined by (1). The result in this theorem is in terms of known functions, which

depend only on the parameters of the process, and also in terms of the q-scale function

of an associated spectrally negative Lévy processes, which is given explicitly. This

complements a previous result given in Lewis and Mordecki [2008], where only the

distribution of the positive Wiener-Hopf factor is obtained.

In Theorem 14 we obtain an expression for a generalized version of the EDPF

defined in 3. This Generalized EDPF was introduced and studied in Biffis and Morales

[2010] and Biffis and Kyprianou [2009], only for the spectrally negative case. Hence,

our result in Theorem 14 extends these previous results to the two-sided jumps case.

Finally, we apply the techniques developed in the previous chapters to study two

important cases of spectrally negative Lévy processes, and obtain explicit expressions

for their corresponding q-scale functions.

This work is organized as follows: in Chapter 1 we give some preliminary concepts

and notation that are used throughout this thesis, and introduce the concept of

weak convergence of stochastic processes. In Chapter 2 we study the EDPF of the

particular case of X when S equals the sum of a compound Poisson process and an

α-stable process, and there is no brownian component. This chapter also contains

our asymptotic results.

In Chapter 3 we study the more general case of X in which there is a brown-

ian component and S is a general pure positive jumps Lévy process, other than a

compound Poisson process. We provide explicit expressions for the density of the

corresponding negative Wiener-Hopf and also present explicitly a Lévy subordinator

which is equal in distribution to the aforementioned negative Wiener-Hopf factor.

We use this result, among others, to obtain an explicit expression for the Generalized

EDPF associated to this class of Lévy processes, from which we get to see that, as

in the spectrally negative case, such Generalized EPDF is strongly related to the

positive and negative Wiener-Hopf factors of the corresponding Lévy process. In the

final section of this chapter, we present a few important and non trivial examples of

the application of our results.

Finally, in Chapter 4 we obtain explicit expressions for the q-scale functions of
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two important cases of spectrally negative Lévy processes.

Many technical proofs are given in an Appendix.



Chapter 1

Preliminaires

In this section we present some basic tools and notation that are used in the next

chapters. In general we use the notations i =
√
−1, C+ := {z ∈ C : Re(z) ≥ 0},

C++ := {z ∈ C : Re(z) > 0} and denote by | · | the usual norm of complex numbers.

1.1 Laplace transforms, convolutions, Dickson and

Hipp operator and α-stable distribution

We denote the Laplace transform of a measurable function f as

f̂(r) =

∞∫
−∞

e−rxf(x)dx, r ≥ 0.

for each r (real or complex) such that the integral above exists and is finite. If

F is a distribution function with finite first moment µ, and F (0) = 0, we define its

integrated tail distribution FI by

FI(x) =
1

µ

∫ x

0

F (y) dy, x ≥ 0.

Clearly this function has a density given by fI(x) = 1
µ
F (x), and it is easily proved

that, if F has a density f , then

µf̂I(r) =
1− f̂(r)

r
. (1.1)

For any two nonnegative measurable functions h, g, we define its convolution h∗ g
as

h ∗ g(x) =

x∫
0

h(x− y)g(y)dy =

x∫
0

g(x− y)h(y)dy,

7
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for each x when the integral above exists.

We denote by g∗n, the nth-convolution of the function g with itself, with g∗0(x) =

1{0}(x).

We use the property f̂ ∗ g(r) = f̂(r)ĝ(r) for all r ≥ 0 for which the latter Laplace

transforms exist. If F and G are two distribution functions such that F (0) = G(0) =

0, its convolution F ∗G(x) is defined as F ∗G(x) =
x∫
0

F (x− y)G(dy).

The following is a translation operator introduced in Dickson and Hipp [2001].

Definition 1. For any integrable function f ≥ 0 and r ∈ C+, the Dickson-Hipp

translation operator Trf is defined by the equation

Trf(x) =

∞∫
x

e−r(y−x)f(y)dy, x > 0. (1.2)

It can be easily proved that Trf satisfies the equalities

Trf(0) = f̂(r) and T̂r2f(r1) =
f̂(r1)− f̂(r2)

r2 − r1

, (1.3)

for r, r1, r2 ∈ C+. We can also define the operator above when f(x)dx is replaced by

a measure ν(dx). In this case we have

Trν(x) =

∞∫
x

e−r(y−x)ν(dy), x > 0. (1.4)

and

T̂r2ν(r1) =

∞∫
0+

(e−r1x − e−r2x) ν(dx)

r2 − r1

, (1.5)

Now let us denote by Sα(σ, β, µ), the α-stable distribution with parameters 0 < α ≤ 2

(index of stability), σ > 0 (scale), −1 ≤ β ≤ 1, (skewness) −∞ < µ <∞ (shift), and

density gα,β,σ,µ(x). According to Theorem C 3 in Zolotarev [1986], this probability
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density has characteristic function given by

E[eiθX ] =

{
eσ

α(iµθ−|θ|αexp{−i(π/2)βK(α)sgn(θ)}) for α 6= 1,

eσ[iµθ−|θ|(π/2+iβlog|θ|sgn(θ))] for α = 1,
(1.6)

where K(α) = α− 1 + sgn(1− α) and sgn(θ) = 1{θ>0} + θ1{θ=0} − 1{θ<0}.

It is known (see Zolotarev [1986]) that the α-stable density gα,1,σ,µ has a Laplace

transform given by

ĝα,1,σ,µ(r) =

{
eσ

α[−µr−sgn(1−α)rα] α 6= 1,

eσ[−µr+rlogr] α = 1.
(1.7)

In what follows, we denote by gα,β the α-stable density gα,β,1,1, and we write ĝα,β

for its corresponding Laplace transform.

1.2 Lévy processes, Wiener-Hopf factors and scale

functions

A stochastic process X = {X(t), t ≥ 0} is a Lévy process if it satisfies the following

conditions:

• X(0) = 0 a.s.

• X has P-a.s. right-continuous paths with left limits (càdlàg trajectories)

• For 0 ≤ s ≤ t, X(t) − X(s)
d
= X(t − s) and X(t) − X(s) is independent of

{X(u), u ≤ s}

where
d
= denotes equality in distribution.

In the particular case when

X(t)−X(s) ∼ Sα
[
(t− s)1/α, β, µ

]
,
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for 0 ≤ s < t < ∞, X is called α-stable Levy motion. It is called standard

α-stable motion when σ = 1, µ = 0. If 1 < α < 2, the moments of X with order

smaller than α, are finite, and when β = 1, only positive jumps of Wα are possible.

For α = 2, we obtain the Brownian motion {
√

2B(t), t ≥ 0}.

From the Lévy-Khintchine formula, if X is a real-valued Lévy process, we can

write its characteristic exponent Ψ
[c]
X (r) = logE[eirX(1)] as

Ψ
[c]
X (r) = air − 1

2
σ2r2 −

∫
R\{0}

(
1− eiry + iry1{|y|<1}

)
νX(dy), r ∈ R,

where νX is a measure such that
∫

R\{0}
(y2 ∧ 1) νX(dy). This formula characterizes

Lévy processes as a Brownian motion with variance σ2 plus a drift a ∈ R and a pure

jumps process with characteristic measure νX . Let S = {S(t), t ≥ 0} be a spectrally

positive Lévy process with σ = 0 with characteristic exponent Ψ
[c]
S (r). We call S a

subordinator if S has nondecreasing paths. In this case we have
∞∫

0+

(y ∧ 1) νX(dy) <∞

and Ψ
[c]
S (r) can be written as:

Ψ
[c]
S (r)(r) = a0ir +

∞∫
0+

(
1− eiry

)
νS(dy),

where a0 = a +
1∫

0+

yνS(dy) ≤ 0. In the case when
1∫

0+

yνS(dy) = ∞, we say that the

process S has paths of unbounded variation. For further information and properties

about Lévy processes, we refer the reader to Bertoin [1996] and Kyprianou [2006].

Now we let X be a Lévy process with characteristic exponent Ψ
[c]
X (r), and set

St = sup
0≤s≤t

X(s) and It = inf
0≤s≤t

X(s).
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According to Bertoin [1996], the Wiener-Hopf factors of X are given by E[eirSeq ] and

E[e−irIeq ], and satisfy the equalities

E
[
eirX(eq)

]
=

q

q −Ψ
[c]
X (r)

= E
[
eirSeq

]
E
[
e−irIeq

]
, q > 0, (1.8)

where eq is an exponential random variable with mean 1/q independent of X.

We end this section with the definition of q-scale function for a spectrally negative

Lévy process (i.e. a Lévy process with only negative jumps). These class of functions

is used in the statement of two of our main results.

Let Y be a spectrally negative Lévy process with Laplace exponent ΨY (r) =

logE[erY (1)]. It is known (see, for instance, Kyprianou [2006]) that for any q ≥ 0,

there exists a function W(q) : R→ [0,∞) such that W(q)(x) = 0 for x < 0 and W(q) is

characterized on [0,∞) as the unique strictly increasing and right-continuous function

whose Laplace transform satisfies:

∞∫
0

e−rxW(q)(x)dx =
1

ΨY (r)− q
, for all r > v(q). (1.9)

where v(q) is the biggest solution of ΨY (r) − q = 0. The case when q = 0 is

denoted as W(x).

As stated and proved in Cohen et al. [2012], this scale function is C1(0,∞) when

the process Y has unbounded variation, it has a nonzero Gaussian component or the

tail of its Lévy measure is continuous. In the case of unbounded variation, it satisfies

W(q)(0) = 0 for all q ≥ 0.

Assuming that Y has unbounded variation, we write W(q)′(x) for the derivative

of W(q) (with respect to x) for q > 0 and W
′
(x) when q = 0. Using W(0) = 0 we

obtain for q = 0:

Ŵ
′
(r) =

r

ΨY (r)
, r > 0. (1.10)



12 CHAPTER 1. PRELIMINAIRES

1.3 Divided differences

Let us consider a function f which is m-times differentiable.

Definition 2. We define the divided differences of f at m different points x1, . . . , xm
as

f [x1] = f(x1), f [x1, x2] =
f(x2)− f(x1)

x2 − x1
, f [x1, x2, x3] =

f [x2, x3]− f [x1, x2]

x3 − x1
...

f [x1, . . . , xm] =
f [x2, . . . , xm]− f [x1, . . . , xm−1]

xm − x1

Under certain assumptions, the divided differences can be extended to the case

when some of the x1, . . . , xm are repeated, and they satisfy the following prop-

erty: we suppose we have different numbers x1, x1, x2, . . . , xk repeated, respectively

m1,m2, . . . ,mk times, and define for each i = 0, 1, . . . , k:

(xi)mi = (xi, xi, . . . , xi)︸ ︷︷ ︸
mi−times

.

We let xj1, x
j
2(n) . . . , xjmj(n) for j = 1, 2, . . . , k be m =

∑
j

mj distinct numbers

such that lim
n→∞

xjlj(n) → xj1 for each j = 1, 2, . . . , k and lj = 2, . . . ,mj, then the

divided differences with repeated numbers, denoted by f
[
(x1

1)m1 , . . . , (x
k
1)mk

]
, satisfy

the equalities

f
[
(x1

1)m1 , . . . , (x
k
1)mk

]
:= lim

n→∞
f [x1

1, . . . , x
1
m1

(n), x2
1, . . . , x

2
m2

(n), . . . , xk1, . . . , x
k
mk

(n)].

(1.11)

and (see, for instance Labbé et al. [2011], Corollary A.2):

f [(x11)m1
, . . . , (xk1)mk ] = (−1)m−1

k∑
j=1

(−1)m−mj

(mj − 1)!

∂mj−1

∂smj−1

f(s)(xj1 − s)mj
k∏
l=1

(xl1 − s)ml


s=xj1

(1.12)
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The formula above also implies the following equality for the case of different numbers

x1, x2, . . . , xk:

f [x1, . . . , xk] = (−1)k−1
k−1∑
j=1

f(xj)∏
l 6=j

(xl − xj)
(1.13)

1.4 Weak convergence and the space DE[0,∞)

Let us take a metric space (S, d) with Borel σ-algebra S := B(S), and define P(S)

as the family of Borel probability measures on S. We also define Cb(S) as the set of

continuous and bounded functions f : S → R. If {Pn} is a sequence of probability

measures in P(S), we say that Pn converges weakly to a probability measure P ∈ P(S)

if for all f ∈ Cb(S), we have the equality lim
n→∞

Pnf = Pf , where Pf =
∫
fdP . The

space of probability measures P(S) can be topologized using Prohorov’s metric (see,

for instance, Billingsley [1999]), which we denote by ρ. In the case when (S, d) is

separable, it can be proved (see Ethier and Kurtz [1986]) that (P(S), ρ) is separable.

If, in addition, (S, d) is complete, then (P(S), ρ) is also complete.

It is proved in Ethier and Kurtz [1986], Theorem 3.1, Chapter 3, that if (S, d)

is separable and X,X1, X2, . . . are S-valued random variables defined on the same

probability space, with distributions P, P1, P2, . . . , then the weak convergence Xn ⇒
X is equivalent to lim

n→∞
ρ(Pn, P ) = 0, where again ρ is the Prohorov’s metric. If we

do not have separability, then we only have that lim
n→∞

ρ(Pn, P ) = 0 implies Xn ⇒ X.

We denote by DE := DE[0,∞) the space of all the functions x : [0,∞)→ E such

that lim
s→t+

x(s) = x(t) and the limit lim
s→t−

x(s) ≡ x(t−) exists. This is the space of all

càdlàg functions from [0,∞) to E. It can be proved that if x ∈ DE, then the set of

discontinuities of x is at most countable.

Now we consider the space (DE, dS), where dS is Skorokhod’s metric (see, for

instance, Billingsley [1999], Ethier and Kurtz [1986], and the references therein). It

is proved, for instance, in Ethier and Kurtz [1986] that if E is separable then DE is

separable, and furthermore, if (E, r) is complete then (DE, dS) is complete.

If {Xn, n ≥ 1} is a sequence of stochastic processes such that their trajectories
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are elements of DE, we say that Xn converges weakly to some X with trajectories in

DE, denoted by Xn ⇒ X, if lim
n→∞

E [f(Xn)] = E [f(X)] for any f : E → R continuous,

bounded and measurable.

There are many criteria for this weak convergence to hold. We refer to Ethier and

Kurtz [1986] and Billingsley [1999] for further reading on this topic. Here we only

present the following result, which is used in the next chapter. The standard notations
d
= and

P→ are used to denote, respectively, equality in distribution and convergence

in probability.

Theorem 1. Let X,X1, X2, . . . , Xn, . . . be Lévy processes in Rd, d ≥ 1 such that

Xn(1)
d→ X(1), then there exists processes X̃n

d
= Xn such that (X̃n − X)∗t

P→ 0, for

all t ≥ 0, where (X)∗t = sup
0≤s≤t

X(s).

For the proof of the above theorem, we refer the reader to Theorem 15.17 in

Kallenberg [2002]. We also need the following result, which can be found in Billings-

ley [1999], page 26. This is the corresponding Mapping Theorem for sequences of

stochastic processes.

Theorem 2. Let X,X1, . . . , Xn, . . . be stochastic processes taking values on some

measurable space (R,R). Let h : R→ R′ be R/R′-measurable, where R′ denotes the

σ-algebra associated to the space R′. Let Dh be the set of discontinuity points of h.

Then, if Xn ⇒ X and P[X ∈ Dh] = 0, we have h(Xn)⇒ h(X).



Chapter 2

EDPF for the α-stable case

In this chapter we consider a particular case of the process defined in (2.1). Let

Vα = {Vα(t), t ≥ 0} be the Lévy risk process defined by

Vα(t) = u+ ct+ Z1(t)− Z2(t)− ηWα(t), η ≥ 0, (2.1)

where u, c ≥ 0, Z1 = {Z1(t), t ≥ 0} is a compound Poisson process with Lévy

measure λ1f1(x)dx, λ1 > 0, Z2 = {Z2(t), t ≥ 0} is an independent compound Poisson

process with Lévy measure λ2f2(x)dx, λ2 > 0, where f2 is the density function of a

nonnegative random variable, and Wα = {Wα(t), t ≥ 0} is an α-stable process with

α ∈ (1, 2) and only positive jumps. Z1, Z2 and Wα are assumed to be independent.

2.1 Weak approximations of Vα and convergence of

Lundberg equations

We construct a sequence of classical two-sided jumps risk processes which converges

weakly to Vα in the Skorokhod space DR, and then prove that the corresponding

EDPF converge to the EDPF of Vα. We assume the following:

Hypothesis 1.

a) E [Vα(1)− u] > 0.

b) The upward density f1 has a Laplace transform of the form (2).

c) There exists a positive constant B such that ω(x, y) ≤ B for all x, y ≥ 0.

d) If Dω denotes the set of discontinuities of the function ω(x, y), then

P

[(
|Vα(τ0)|, Vα(τ0−)

)
∈ Dω

]
= 0.

Condition b) will be relaxed later. Many relevant penalty functions which satisfy

the above assumptions arise as particular instances of ω in the following way:

15
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1. If ω(x, y) ≡ a for some constant a > 0 we obtain that φ(u) = aϕδ(u), where

ϕδ(u) = E(e−δτ01{τ0<∞}) is the Laplace transform of the time to ruin when

δ > 0, and if δ = 0 we obtain φ(u) = aψ(u), where ψ(u) is the ruin probability.

2. Putting ω(x, y) = 1{x>a,y>b} for some constants a, b > 0 and δ = 0, we obtain

that φ is the joint tail of the severity of ruin |Vα(τ0)| and the surplus prior to

ruin Vα(τ0−).

3. When δ > 0 and ω(x, y) = e−sx−ty for fixed constants s, t ≥ 0, then φ is the

trivariate Laplace transform of the time of ruin τ0, the severity of ruin |Vα(τ0)|
and the surplus before ruin Vα(τ0−).

4. If δ = 0 and ω(x, y) = 1{x+y>a} for some constant a > 0, then φ is the tail of

the distribution of the claim that causes ruin.

5. If ω(x, y) = max{K−ea−y, 0} for some constants K, a > 0, then φ is a particular

case of a payoff function in option pricing.

The penalty functions in examples 1, 3 and 5 are continuous, hence they satisfy

Hypothesis 1 d) and they are clearly bounded. The penalty functions in examples 2

and 4 are also bounded, and it can be proved that P [|Vα(τ0)| = a, Vα(τ0−) = b] = 0,

for any a, b > 0 and P [|Vα(τ0)|+ Vα(τ0−) = a] = 0 for any a > 0.

Now we proceed to construct the sequence {Vn, n ≥ 0} of two-sided jumps classical

risk processes such that Vn ⇒ Vα, and prove afterward that the EDPF of Vn converges

to the corresponding functional of Vα.

First, in order to avoid unnecessary technical complications due to the drift c ≥ 0,

we construct a sequence of processes {Vn,k, n, k ≥ 0} for which the prime c is 0, and a

sequence of processes {Vn, n ≥ 0} with prime c ≥ 0, such that Vn,k ⇒ Vn for each fixed

n. Next, we prove that the constructed sequence {Vn, n ≥ 1} satisfies the convergence

Vn ⇒ Vα.

The sequence {Vn,k(t), t ≥ 0} comes from the following result.

Theorem 3. Let Z1(t) =
∑N1(t)

i=1 Yi1 and Z2(t) =
∑N2(t)

i=1 Yi2. For each k ∈ N and

any fixed constant c > 0, let us define A(k) = 1− (k + 1)−1, λ1(k) = λ1/(1− A(k)),



2.1. WEAK APPROXIMATIONS OF Vα 17

b(k) = λ1/[c(1− A(k))] and

p∗k(x) =

{
A(k)b(k)e−b(k)x + (1− A(k))f1(x) for x > 0,

0 for x ≤ 0.

Consider the sequence of processes

V
[c]
k (t) = u+

N1,k(t)∑
i=1

Y ∗ik −
N2(t)∑
i=1

Yi2 := u+ Z1,k(t)− Z2(t), k = 1, 2, . . . , (2.2)

where {Z1,k(t), t ≥ 0} is a compound Poisson process with intensity λ1(k), which is

independent of Z2, and {Y ∗ik, i = 1, 2, . . . } is a sequence of independent and identically

distributed random variables with common density function p∗k. Then, as k → ∞,

V
[c]
k ⇒ u+ ct+ Z1(t)− Z2(t).

Proof. For fixed t, let ξ1,k, ξ1 and ξ2 be the characteristic functions of the random

variables V
[c]
k (t), X11, and X12, respectively. Then,

ξ1,k(s) = exp

{
uis+ λ1(k)t

(
A(k)b(k)

b(k)− is
+ (1−A(k))ξ1(s)− 1

)
+ λ2t (ξ2(−s)− 1)

}
,

Since A(k) = 1− (k + 1)−1 = k(k + 1)−1, we have:

lim
k→∞

λ1(k)

(
A(k)b(k)

b(k)− is
− 1

)
=

λ1

1−A(k)

(
A(k) λ1

c(1−A(k))

λ1
c(1−A(k)) − is

− 1

)
(2.3)

= lim
k→∞

λ1

(k + 1)−1

(
k
k+1

λ1(k+1)
c

λ1(k+1)
c − is

− 1

)

= lim
k→∞

λ1

(k + 1)−1

(
λ1k

λ1(k + 1)− ics
− 1

)
= lim

k→∞

λ1

(k + 1)−1

(
λ1k − λ1(k + 1) + ics

λ1(k + 1)− ics
−
)

= lim
k→∞

λ1

(k + 1)−1

(
−λ1 + ics

λ1(k + 1)− ics
−
)

= lim
k→∞

λ1

(
−λ1 + ics

λ1 − ics(k + 1)−1
−
)

= cis− λ1. (2.4)
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Hence we obtain lim
k→∞

ξ1,k(s) = exp {uis+ ctis+ λ1t (ξ1(s)− 1) + λ2t (ξ2(−s)− 1)} ,
which is the characteristic function of u + ct + Z1(t) − Z2(t). Now the result follows from

Theorem 15.17 in Kallenberg (2002).

Now we construct a sequence of processes {Vn,k, n, k ≥ 0} for which the prime c

is 0, and a sequence of processes {Vn, n ≥ 0} with prime c ≥ 0, such that Vn,k ⇒ Vn

for each fixed n and prove that Vn ⇒ Vα.

Theorem 4. For any fixed n ∈ N, we set cn = c+ n1−1/αηα, and let the sequence of

risk processes Vn,k = {Vn,k(t), t ≥ 0} be defined by

Vn,k(t) = V
[cn]
k (t)− 1

n1/α

M(nt)∑
i=1

Wi,

where {V [cn]
k , k = 1, 2, . . . } is defined as in (2.2) with b(k) = λ1/[cn(1− A(k))] :=

bn(k) and
∑M(nt)

i=1 Wi is a compound Poisson process independent of V
[cn]
k . The Pois-

son process M has intensity ηα and W1,W2, . . . are independent and identically dis-

tributed random variables with common distribution Sα(1, 1, 1). We also define the

sequence of processes Vn = {Vn(t), t ≥ 0} by

Vn(t) = u+ cnt+ Z1(t)− Z2(t)− 1

n1/α

M(nt)∑
i=1

Wi. (2.5)

Then Vn,k ⇒ Vn for each n ∈ N, and Vn ⇒ Vα.

Proof. The first convergence follows from Theorem 3 and the independence of {Wi},
{Z1,k} and Z2. For the proof of the second convergence, we note that since Wi, i =

1, 2, ... have common distribution Sα(1, 1, 1), from (1.6) it follows that for each n ≥ 1,
1

n1/α

∑n
k=1(Wk−1)

d
= Wα(1, 1, 0). Hence equality (3) in Furrer et al. (1997) holds with

φ(n) = n1/α, and since in our case c(n) = c+ηαn1−1/α, λ = ηα, the hypothesis in Theo-

rem 1 in Furrer et al. (1997) are fulfilled, and it follows u+ cnt− n−1/α
∑M(nt)

i=1 Wi ⇒
u+ct−ηW (t). Using now the independence of W , Z1 and Z2, we obtain the result.

For any 1 < α ≤ 2, let us denote by φn,k, φn and φ the EDPF of the processes
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Vn,k, Vn and Vα, respectively, with corresponding Laplace transforms φ̂n,k, φ̂n and φ̂.

The following result can be proved similarly as in Furrer (1998).

Theorem 5. Under Hypothesis 1, limk→∞ φn,k(u) = φn(u) for all u ≥ 0, and each

n ∈ N. Moreover, limn→∞ φn(u) = φ(u).

Using partial fraction decomposition, it can be proved that, when f1 satisfies (2),

it admits the representation

f1(x) =

N∑
i=1

mi∑
j=1

βij
xj−1qji e

−qix

(j − 1)!
, x > 0, where βij = 1

qji (mi−j)!
dmi−j

drmi−j

{
N∏

k=1,k 6=i

Q(r)
qk+r

}∣∣∣∣∣
r=−qi

,

hence

f̂1(r) =
N∑
i=1

mi∑
j=1

βijq
j
i

(qi + r)j
. (2.6)

We also consider the following interpolation identity:

Lemma 1. For each m ≥ 1 and for any different non-zero complex numbers x1, . . . , xm+1,

m+1∑
j=1

x−1
j

m+1∏
l=1,l 6=j

(xl − xj)
=

1∏
j
xj
.

For r 6= qi we define the Generalized Lundberg functions associated to the pro-

cesses Vn,k, Vn and Vα, respectively by

Lα,n,k(r) = λ2f̂2(r) + λ1(k)A(k)
bn(k)

bn(k)− r
+ λ1(k) (1−A(k))

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

+nηα exp

{
− r

n1/α
+
rα

n

}
− (λ1(k) + λ2 + nηα + δ), r 6= bn(k), (2.7)

Lα,n(r) = λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+
(
c+ ηαn1−1/α

)
r (2.8)

+nηα exp

{
− r

n1/α
+
rα

n

}
− (nηα + λ1 + λ2 + δ) , (2.9)

Lα(r) = λ2f̂2(r) + λ1

n∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr + (ηr)α − (λ1 + λ2 + δ). (2.10)
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We denote

Q1(r) =

N∏
k=1

(qi − r)mi , C+ = {z ∈ C : Re(z) ≥ 0}, and C++ := {z ∈ C : Re(z) > 0}.

For ρ ∈ C+ and d > 0 we put

Bd(ρ) = {r ∈ C+ : |r − ρ| ≤ d}. (2.11)

Recall that s ∈ C+ is a root of a function L of multiplicity m ≥ 1 if L(s) = dL
dr

(s) =

· · · = dm−1L
drm−1 (s) = 0 and dmL

drm
(s) 6= 0. We have the following results.

Lemma 2. The function P (r) = ar + brα − c, for a ≥ 0, b, c > 0 and α ∈ (1, 2), has

exactly one positive and real root.

Proof. Let us suppose that there exists a root s of P (r) such that Re(s) ≥ 0, Im(s) 6=
0 and arg(s) = θ. Then by De Moivre’s formula we obtain

a|s| cos(θ) + b|s|α cos(αθ)− c = 0,

a|s| sin(θ) + b|s|α sin(αθ) = 0. (2.12)

We will see that (2.12) is only possible for θ = 0. By the assumption that Re(s) ≥ 0,

we have θ ∈ [−π/2, π/2], hence if 0 < θ ≤ π/2 we obtain αθ ∈ (0, π), which implies

sin(αθ) > 0, hence a|s| sin(αθ) > 0, and analogously for the case θ ∈ (−π/2, 0).

Hence all the possible roots of P are real. Since for r ≥ 0 we have

d

dr
P (r) = a+ bαrα−1 > 0 and

d2

dr2
P (r) = bα(α− 1)rα−2 > 0, for all r > 0,

P (r) is strictly increasing in the nonnegative real line, and noting that P (0) = −c < 0,

we obtain the result.

Proposition 1. a) For all sufficiently large n ∈ N and r 6= bn(k), lim
k→∞

Lα,n,k(r) =

Lα,n(r) uniformly in r in sets of the form (2.11).

b) Moreover, lim
n→∞

Lα,n(r) = Lα(r), uniformly in sets of the form (2.11).
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c) For δ ≥ 0, the functions Lα, Lα,n and Lα,n,k have exactly one root of multiplicity

one in the interval [0, q1), which is equal to zero if and only if δ = 0. We denote

these roots by ρ1,δ, ρ1,δ(n) and ρ1,δ(n, k), respectively.

d) For δ ≥ 0 and c+η > 0, the function Lα has exactly m+1 roots ρ1,δ, ρ2,δ, . . . , ρm+1,δ

in C+. For δ > 0 these roots are in C++, and if δ = 0, ρ1,δ = 0 is the only root on

the imaginary axis. Moreover, for all sufficiently large n and k, and all δ ≥ 0, the

functions Lα,n and Lα,n,k also have m+1 roots in C+, which we denote respectively

by ρ1,δ(n), . . . , ρm+1,δ(n) and ρ1,δ(n, k), . . . , ρm+1,δ(n, k). When δ > 0 all these roots

are in C++, and when δ = 0, ρ1,0(n, k) = ρ1,0(n) = 0 are the only roots of Ln,k and

Ln, respectively, lying on the imaginary axis.

e) Let c+ η > 0. For any j ∈ {1, 2, . . . ,m+ 1} there exists l ∈ {1, 2, . . . ,m+ 1} such

that lim
k→∞

ρj,δ(n, k) = ρl,δ(n) and lim
n→∞

ρj,δ(n) = ρl,δ.

f) We have lim
δ→0

ρ1,δ = ρ1,0 = 0 .

Proof. a) It suffices to consider the closed complex semicircle Bd := Bd(0). For any

r 6= bn(k) and n ∈ N, limk→∞ Lα,n,k(r) = Lα,n(r) due to (2.4). We will show that

this convergence is uniform in Bd.

For r ∈ Bd and k > cnd− λ1 we have λ1(k + 1)− cnr > 0, and since∣∣∣∣cnr − λ1 − λ1(k)A(k)
bn(k)

bn(k)− r
+ λ1(k)

∣∣∣∣ =

∣∣∣∣cnr − λ1 + λ1
λ1(k + 1)− cn(k + 1)r

λ1(k + 1)− cnr

∣∣∣∣
=

∣∣∣∣ cnr(λ1 − cnr)
λ1(k + 1)− cnr

∣∣∣∣ ,
we obtain ∣∣∣∣cnr − λ1 − λ1(k)A(k)

bn(k)

bn(k)− r
+ λ1(k)

∣∣∣∣ ≤ cnd|λ1 − cnr|
|λ1(k + 1)− cnr|

≤ cndλ1 + c2
nd

2

λ1(k + 1)− cnd
,

and the result follows.



22 CHAPTER 2. EDPF FOR THE α-STABLE CASE

b) First we prove that lim
n→∞

Lα,n(r) = Lα(r). Using the series expansion of the expo-

nential function, it follows that

nηαĝα,1(r/n1/α) = nηα exp{−r/n1/α + rα/n} = nηα − n1−1/αηαr + ηαrα + an(r),

where an(r) = nηα
∞∑
k=2

(
− r

n1/α
+ rα

n

)k
k!

. Hence we have

Lα,n(r) = λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr + ηαrα + an(r)− (λ1 + λ2 + δ).

For sufficiently large n and r ∈ Bd, we have

|an(r)| = nηα

∣∣∣∣∣∣∣
∞∑
k=2

(
− r
n1/α + rα

n

)k
k!

∣∣∣∣∣∣∣ < nηα
∞∑
k=2

|rα + r|k

nk/α
≤ nηα

∞∑
k=2

C(d)k

nk/α

= nηα
C(d)

n1/α

∞∑
k=1

C(d)k

nk/α
= ηα

C(d)2/n2/α−1

1− C(d)/n1/α
,

where C(d) = 2 max{dα, d} is a constant depending on d. Since α ∈ (1, 2), the

right-hand side in the above inequality converges to 0 as n→∞ uniformly in Bd,

and the result is obtained.

c) We will prove that Lα,n has one real nonnegative root in [0, q1]; the cases for the

functions L and Lα,n,k can be handled in a similar way. We compute d
dr
Lα,n(r):

d

dr
Lα,n(r) = −λ2

∞∫
0

xe−rxf2(x)dx+ λ1

N∑
i=1

mi∑
j=1

βijjq
j
i

(qi − r)j+1
+ c+ n1−1/αηα

+ nηα
(
− 1

n1/α
+
αrα−1

n

)
exp

{
− r

n1/α
+
rα

n

}
.

From the equality above Hypothesis 1 we get dLα,n
dr

(0) = c + n1−1/αηα + λ1µ1 −
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λ2µ2 > 0. Moreover,

d2Lα,n
dr2

(r) = λ2

∞∫
0

x2e−rxf2(x)dx+ λ1

N∑
i=1

mi∑
j=1

βijj(j + 1)qji
(qi − r)j+2

+ nηα

[(
− 1

n1/α
+
αrα−1

n

)2

+
α(α− 1)rα−2

n

]
exp

{
− r

n1/α
+
rα

n

}
> 0,

for r < q1, hence Lα,n(r) is increasing in [0, q1) with Lα,n(0) = −δ, and the result

follows.

d) Let us define the functions L∗(r) = Q1(r)Lα,δ(r) and

L∗∗(r) = Q1(r) [cr + ηαrα − (λ1 + λ2 + δ)] .

Now we take δ > 0 and consider, for fixed s > 0, the contour Cs as the imaginary

axis together with a semicircle of radius s, moving clockwise from −is to is. We

note that

|L∗(r)− L∗∗(r)| =

∣∣∣∣∣∣Q1(r)

λ2f̂2(r) + λ1

n∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∣∣∣∣∣∣ .
Since lim

|r|→∞
|L∗∗(r)| = ∞ for any c ≥ 0, for r in the semicircle and s sufficiently

large, we have∣∣∣∣∣∣λ2f̂2(r) + λ1

n∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∣∣∣∣∣∣ ≤ λ1 + λ2 < |cr + ηαrα − (λ1 + λ2 + δ)| , (2.13)

for c ≥ 0. For r in the imaginary axis, we have r = i|r| sin(π/2) and rα =

|r|α [cos(απ/2) + i sin(απ/2)]. Using that α ∈ (1, 2), it follows that cos(απ/2) =

cos(−απ/2) < 0 and

|cr + ηαrα − (λ1 + λ2 + δ)|

=

√
(ηα |Re (rα)|+ λ1 + λ2 + δ)2 + (cIm(r) + ηαIm (rα))2

> λ1 + λ2. (2.14)
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which holds for c ≥ 0. From (2.13) and (2.14) we obtain for sufficiently large s that

|L∗(r)−L∗∗(r)| < |L∗∗(r)|. Now for r ∈ R\{0}, using that sin(θ) = −sin(−θ) we

obtain for c ≥ 0:

|L(ir)| =
√

[R0 − λ1 − λ2 − δ + ηα|r|αcos(απ/2)]2 + [c|r|+ ηα|r|αsin(απ/2) + I0]2,

(2.15)

where

R0 = Re(λ2f̂2(ir)) +Re

λ1

N∑
j=1

mj∑
k=1

βjk

(
qj

qj − ir

)k ,

I0 = Im(λ2f̂2(ir)) + Im

λ1

N∑
j=1

mj∑
k=1

βjk

(
qj

qj − ir

)k .

Since λ1 + λ2 ≥ |R0| and cos(απ/2) < 0 for α ∈ (1, 2), it follows that the right-

hand side of (2.15) equals λ1 + λ2 + δ−R0− ηα|r|αcos(απ/2) and this is bounded

from below by λ1 + λ2 + δ − R0 − ηα|r|αcos(απ/2) > 0. Hence we conclude that

|Lα,δ(ir)| > 0 for all r 6= 0 and for δ ≥ 0, which implies that there are no roots on

the imaginary axis when δ > 0 and using c) we conclude that, when δ = 0, the

only root on the imaginary axis is ρ1,δ = 0, and such a root has multiplicity one.

Now applying Rouche’s theorem we conclude that L∗(r) has the same number of

roots as L∗∗(r) in Cs. Letting s tend to infinity we obtain the result for C++.

Taking P (r) = cr + ηαrα − λ1 − λ2 − δ, by Lemma 2 we conclude that L∗∗(r) has

m+ 1 roots in C++ for c ≥ 0.

Now we prove the result about the number of roots of Lα,n(r). We take L∗∗(r) as

before and

L∗n(r) = Q1(r)

λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr + ηαn1−1/αr + nηαe

− r

n1/α
+ rα

n

− nηα − (λ1 + λ2 + δ)

]
.

Then, for r in a semicircle with sufficiently large radius s, 0 < ε < δ and n
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sufficiently large:

|L∗n(r)− L∗∗(r)| = |Q1(r)|

∣∣∣∣∣∣λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ ηαn1−1/αr

+nηαe
− r

n1/α
+ rα

n − nηα − ηαrα
∣∣∣∣

≤ |Q1(r)|

∣∣∣∣∣∣λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∣∣∣∣∣∣+ |Q1(r)|
∣∣∣ηαn1−1/αr

+nηαe
− r

n1/α
+ rα

n − nηα − ηαrα
∣∣∣∣

≤ |Q1(r)| (λ1 + λ2 + ε) < |Q1(r)| |cr + ηαrα − (λ1 + λ2 + δ)|

= L∗∗(r), (2.16)

where the last inequality follows for sufficiently large n using the uniform conver-

gence of ηαn1−1/αr + ηαe
− r

n1/α
+ rα

n − nηα to ηαrα in Bd.

Now for r in the imaginary axis we use (2.14) to obtain

|L∗∗(r)| > |Q1(r)| (λ1 + λ2 + δ) > |Q1(r)| (λ1 + λ2 + ε)

> |Q1(r)|

∣∣∣∣∣λ2f̂2(r) + λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j
+ cr

+ ηαn1−1/αr + ηαe
− r

n1/α
+ rα

n − nηα − (λ1 + λ2 + δ)

∣∣∣∣∣
= |L∗n(r)− L∗∗(r)| ,

and the result follows by Rouche’s theorem. The proof for Lα,n,k is analogous.

e) If limk→∞ ρj,δ(n, k) = rj then from part a), limk→∞ Lα,n,k(ρj,δ(n, k)) = Lα,n(rj) =

0, hence rj is a root of Lα,n(r). The second limit is obtained in the same way.

f) By the weak convergence of the stochastic processes with Laplace exponent Lα(r)

with δ > 0, to the stochastic process with Laplace exponent Lα(r) when δ = 0,

we know that lim
δ→0

ρ1,δ exists. Let us suppose that lim
δ→0

ρ1,δ = s0 ∈ [0, q1). Since
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Lα,δ(r) → Lα,0(r) uniformly when δ → 0 on r ∈ [0, q1), we obtain s0 = 0 since

ρ1,0 = 0 is the only root of Lα in [0, q1).

2.2 The Laplace Transform of φ

The following lemmas are needed.

Lemma 3. For each n ∈ N and r ∈ C+, the integral

In = n1+1/α

∫ 0

−∞

(
1− e−rx − rx

)
gα,1(n1/αx) dx

exists and satisfies lim
n→∞

|In| = 0.

Proof. See Appendix A.

Lemma 4. Under Hypothesis 1, the integral K0(n, k, r) = λ1(k)
∫∞

0

∫∞
0
e−ruφn,k(u+

x)p∗k(x) dx du is finite for all r > 0, and has the equivalent expression

K0(n, k, r) =
P1,k(r)

Q1,k(r)
φ̂n,k(r)−

P2,k(r)

Q1,k(r)
,

where

P1,k(r) = Q1,k(r)

[
λ1(k)A(k)bn(k)

bn(k)− r
+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

]
,

P2,k(r) = Q1,k(r)

[
λ1(k)(1− A(k))bn(k)

bn(k)− r
φ̂n,k(bn(k))

+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

j−1∑
l=0

(qi − r)lγl,i(n, k)

l!(qi − r)j

]
,

γl,i(n, k) =

∫ ∞
0

φn,k(z)e−qizzldz, Q1,k(r) = (bn(k)− r)
N∏
j=1

(qj − r)mj .
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Proof. See Appendix A.

Let us define

Mα,n(r) = n1+1/αηα
∫ ∞

0

∫ ∞
u

e−ruω(x− u, u)gα,1(n1/αx)dxdu,

Mα(r) =
ηαα(α− 1)

Γ(2− α)

∫ ∞
0

∫ ∞
u

e−ruω(x− u, u)x−1−αdxdu, 1 < α < 2,

Nω(r) = λ2

∫ ∞
0

∫ ∞
u

e−ruω(x− u, u)f2(x)dxdu, (2.1)

and note that 1
λ2
Nω(r) = ξ̂ω(r), where ξω(u) =

∞∫
u

ω(x− u, u)f2(x)dx.

Lemma 5. For any two complex numbers r1, r2 ∈ C+ with r1 6= r2, there holds

lim
n→∞

Mα,n(r1)−Mα,n(r2) = Mα(r1)−Mα(r2) (2.2)

and

lim
α→2

Mα(r1)−Mα(r2)

r2 − r1
= ω(0, 0). (2.3)

Proof. See Appendix A.

In order to obtain simpler expressions for the Laplace transforms φ̂n,k and for φ̂,

we impose the following condition.

Hypothesis 2. For any δ ≥ 0 and c ≥ 0, all roots of Lα(r) in C+ have multiplicity

1.

Due to Proposition 1 e), Hypothesis 2 implies that, for all sufficiently large n and

k, the roots of Lα,n,k and Lα,n have multiplicity 1.

We need the following functions:

ĝ−α,1(r/n1/α) =

∫ 0

−∞
e−rx/n

1/α

gα,1(x)dx,
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ĝ+
α,1(r/n1/α) =

∫ ∞
0

e−rx/n
1/α

gα,1(x)dx,

T (φn,k) = n1+1/αηα
∫ 0

−∞

∫ −x
0

φn,k(z)gα,1(n1/αx)dzdx,

An(r) = n1+1/αηα
∫ 0

−∞

∫ −x
0

(
e−r(x+z) − 1

)
φn,k(z)gα,1(n1/αx)dzdx (2.4)

K(n, r) = n1+1/αηα
∫ 0

−∞

∫ ∞
−x

e−r(x+z)φn,k(z)gα,1(n1/αx)dzdx.

Notice that φn,k(r) ≤ B due to Hypothesis 1 c), hence

An(r) ≤ B
n1+1/αηα

r

0∫
−∞

(
1− e−rx − rx

)
gα,1(n1/αx)dx,

and from by Lemma 2 it follows that lim
n→∞

An(r) = 0.

In the next theorem we obtain an expression for φ̂n,k.

Theorem 6. Assume that Hypothesis 1 holds and that (c, η) 6= (0, 0). Then the

Laplace transform of the EDPF φn,k of Vn,k admits the representation

Lα,n,k(r)φ̂n,k(r) =
P1,k(r)

Q1,k(r)
−Nω(r)−Mα,n(r)− T (φn,k)− An(r). (2.5)

Moreover, under Hypothesis 1 and 2, we have for all δ ≥ 0,

Lα,n,k(r)φ̂n,k(r)

=
m+1∑
l=1

Q1(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

[
(bn(k)− ρl,δ(n, k))Nω(ρl,δ(n, k))

− (bn(k)− r)Nω(r) + (bn(k)− ρl,δ(n, k))An(ρl,δ(n, k))− (bn(k)− r)An(r)

+ (bn(k)− ρl,δ(n, k))Mα,n(ρl,δ(n, k))− (bn(k)− r)Mα,n(r)

]
, (2.6)
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Proof. We consider a small time interval (0, h) and condition on the first jump time

and first claim size of Vn,k. This gives the equation

φn,k(u) = e−(λn+δ)hφn,k(u) + λ1(k)

h∫
0

∞∫
0

e−(λ1(k)+δ)tφn,k(u+ x)p∗k(x)dxdt

+ λ2

h∫
0

u∫
0

e−(λ2+δ)tφn,k(u− x)f2(x)dxdt

+ λ2

h∫
0

∞∫
u

e−(λ2+δ)tω(x− u, u)f2(x)dxdt

+ n1+1/αηα
h∫

0

u∫
0

e−(nηα+δ)tφn,k(u− x)gα,1(n1/αx)dxdt

+ n1+1/αηα
h∫

0

0∫
−∞

e−(nηα+δ)tφn,k(u− x)gα,1(n1/αx)dxdt

+ n1+1/αηα
h∫

0

∞∫
u

e−(nηα+δ)tω(x− u, u)gα,1(n1/αx)dxdt,

where λn = λ1(k) + λ2 + nηα.

Using a Taylor expansion in the exponential function in e−(λn+δ)hφn,k(u), we ob-

tain:

φn,k(u)

h

=
1

h

(1− (λn + δ)h+ o(h))φn,k(u) + λ1(k)

h∫
0

∞∫
0

e−(λ1(k)+δ)tφn,k(u+ x)p∗k(x)dxdt
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+ λ2

h∫
0

u∫
0

e−(λ2+δ)tφn,k(u− x)f2(x)dxdt+ λ2

h∫
0

∞∫
u

e−(λ2+δ)tω(x− u, u)f2(x)dxdt

+ n1+1/αηα
h∫

0

u∫
0

e−(nηα+δ)tφn,k(u− x)gα,1(n1/αx)dxdt

+ n1+1/αηα
h∫

0

0∫
−∞

e−(nηα+δ)tφn,k(u− x)gα,1(n1/αx)dxdt

+n1+1/αηα
h∫

0

∞∫
u

e−(nηα+δ)tω(x− u, u)gα,1(n1/αx)dxdt

 .

Letting h→ 0 and taking Laplace transforms, we obtain

(λn + δ)φ̂n,k(r)

= λ1(k)

∞∫
0

∞∫
0

e−ruφn,k(u+ x)p∗k(x)dxdu+ λ2

∞∫
0

u∫
0

e−ruφn,k(u− x)f2(x)dxdu

+ λ2

∞∫
0

∞∫
u

e−ruω(x− u, u)f2(x)dxdu+ n1+1/αηα
∞∫

0

u∫
−∞

e−ruφn,k(u− x)gα,1(n1/αx)dxdu

+ n1+1/αηα
∞∫

0

∞∫
u

e−ruω(x− u, u)gα,1(n1/αx)dxdu

= K0(n, k, r) + λ2φ̂n,k(r)f̂2(r) +Nω(r) + nηαφ̂n,k(r)ĝ
+
α,1(r/n1/α) +K(n, r) +Mα,n(r).

(2.7)

Next, we obtain a more explicit expression for the function K(n, r) defined in

(2.4). Changing the order of integration and setting z = u− x in (2.4) yields
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K(n, r) = n1+1/αηα
0∫

−∞

∞∫
−x

e−r(x+z)φn,k(z)gα,1(n1/αx)dzdx

± n1+1/αηα
0∫

−∞

−x∫
0

e−r(x+z)φn,k(z)gα,1(n1/αx)dzdx

= nηαφ̂n,k(r)ĝ
−
α,1(r/n1/α)

− n1+1/αηα
0∫

−∞

−x∫
0

e−r(x+z)φn,k(z)gα,1(n1/αx)dzdx

= nηαφ̂n,k(r)ĝ
−
α,1(r/n1/α)− An(r)− T (φn,k).

From the last equality we get

nηαφ̂n,k(r)ĝ
+
α,1(r/n1/α) +K(n, r) = nηαφ̂n,k(r)ĝα,1(r/n1/α) + T (φn,k) + An(r),

which, together with (2.7) and Lemma 4, yields

(λn + δ)φ̂n,k(r) =
P1,k(r)

Q1,k(r)
φ̂n,k(r)−

P2,k(r)

Q1,k(r)
+ λ2φ̂n,k(r)f̂2(r) (2.8)

+Nω(r) + nηαφ̂n,k(r)ĝα,1(r/n1/α)

−Mα,n(r)− T (φ̂n,k)− An(r).

Since the function Lα,n,k has the equivalent expression

Lα,n,k(r) = λ2f̂2(r) +
P1,k(r)

Q1,k(r)
+ nηαĝ(r/n1/α)− (λn + δ),

then (2.5) follows from (2.8).

Because of Hypothesis 2, all roots ρj,δ(n, k), j = 1, . . . ,m+ 1, have multiplicity 1.

Hence, substituting r = ρj,δ(n, k) in (2.8) and using Lagrange interpolation we get
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P2,k(r) =
m+1∑
l=1

Q1,k(ρl,δ(n, k))
m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

[Nω(ρl,δ(n, k)) +Mα,n(ρl,δ(n, k))

+T (φ̂n,k) + An(ρl,δ(n, k))
]
.

Hence from (2.5),

Lα,n,k(r)φ̂n,k(r)

=
m+1∑
l=1

Q1,k(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

(Nω(ρl,δ(n, k)) +Mα,n(ρl,δ(n, k)))

+
m+1∑
l=1

Q1,k(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

(
T (φ̂n,k) + An(ρl,δ(n, k))

)

−
(
Nω(r) +Mα,n(r) + T (φ̂n,k) + An(r)

)
.

Using Lagrange interpolation and recalling that Q1,k(r) = (bn(k) − r)Q1(r), we

get

m+1∑
l=1

(bn(k)− ρl,δ(n, k))Q1(ρl,δ(n, k))

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

= (bn(k)− r)Q1(r).

Plugging this into the above equality we obtain
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Lα,n,k(r)φ̂n,k(r)

=
m+1∑
l=1

Q1(ρl,δ(n, k))

Q1,k(r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− r)

m+1∏
i=1,i 6=l

(ρi,δ(n, k)− ρl,δ(n, k))

[
(bn(k)− ρl,δ(n, k))Nω(ρl,δ(n, k))

− (bn(k)− r)Nω(r) + (bn(k)− ρl,δ(n, k))An(ρl,δ(n, k))− (bn(k)− r)An(r)

+ (bn(k)− ρl,δ(n, k))Mα,n(ρl,δ(n, k))− (bn(k)− r)Mα,n(r)

]
,

and (2.6) follows.

From Theorem 6 we obtain our main result in this section:

Theorem 7. (Main Theorem I). Suppose Hypothesis 1 and 2 hold, and (c, η) 6= (0, 0).

Then for all δ ≥ 0 the Laplace transform of the EDPF of the perturbed risk process

Vα is given by

φ̂(r) =

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ−r)

m+1∏
i=1,i6=j

(ρi,δ−ρj,δ)
[Nω(ρj,δ)−Nω(r) +Mα(ρj,δ)−Mα(r)]

Lα(r)

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ−r)

m+1∏
i=1,i 6=j

(ρi,δ−ρj,δ)

 , (2.9)

or equivalently, by

φ̂(r) =

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ−ρj,δ)

[
Nω(ρj,δ)−Nω(r)

ρj,δ−r
+

Mα(ρj,δ)−Mα(r)

ρj,δ−r

]

Lα(r)

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ−ρj,δ)(ρj,δ−r)

 . (2.10)
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Proof. From Theorem 5, in order to obtain an expression for φ̂(r) we have to take

limits in (2.6) firstly when k →∞ and afterward when n→∞. Since limk→∞ bn(k) =

∞ implies

lim
k→∞

Q1(ρj,δ(n))(bn(k)− ρj,δ(n))

Q1,k(r)
= lim

k→∞

Q1(ρj,δ(n))(bn(k)− ρj,δ(n))

Q1(r)(bn(k)− r)
=
Q1(ρj,δ(n))

Q1(r)
,

from (2.6) and Proposition 1 we get

Lα,n(r)φ̂n(r) =

m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))

[
Nω(ρj,δ(n)) +Mα,n(ρj,δ(n))

]
m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi,δ(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))



−

m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))

[
Nω(r)−Mα,n(r)

]
m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi,δ(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))



−

m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))

[
An(ρi,δ(n, k))− An(r)

]
m+1∑
j=1

Q1(ρj,δ(n))

m+1∏
i=1,i 6=j

(ρi,δ(n)−r)

m+1∏
i=1,i 6=j

(ρi,δ(n)−ρj,δ(n))

 .

Identity (2.9) follows now by letting n → ∞ in the above equality, and using

Proposition 1e) and (2.2). The equality (2.10) follows immediately from (2.9) after

multiplying and dividing by ρj,δ − r the j-th term in the sums in the numerator and

denominator of (2.9).
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Remark 1. Let us suppose that f1 is the hyperexponential distribution with density

f1(x) =
m∑
l=1

Alqle
−qlx, x > 0,

with Al > 0 and
∑m

l=1Al = 1. In this case the roots of the Lundberg function Lα are

all real and different; the proof of this fact is similar to that in Bowers et al. (1997),

p. 422. If in addition η = 0, Theorem 7 above gives the result in Albrecher et al.

(2010). In the case when f̂1(r) = qm/(q + r)m and η = 0, Theorem 7 gives Corollary

6.2 in Labbé et al (2011) when c > 0.

2.3 A Renewal Equation for φ

In this section we obtain expressions for the EDPF φ by inverting its Laplace trans-

form, given in Theorem 7. The expressions we obtain are in terms of the operator Tr

introduced in Dickson and Hipp [2001], defined in (1.2). This allows us to obtain a

renewal equation for φ, which is of interest in Actuarial Mathematics.

For r1, r2 ∈ C++ and r1 6= r2 we have:

Mα(r1)−Mα(r2)

r2 − r1

= ηαT̂r2mα(r1) (2.1)

where mα(u) = α(α−1)
Γ(2−α)

∫∞
u
ω(x− u, u)x−1−α dx. We also define

E(ρj,δ) =
Q1(ρj,δ)∏

l 6=j
(ρl,δ − ρj,δ)

, j = 1, 2, . . . ,m+ 1.

The following corollary is a direct consequence of (2.10) and the definition of

Nω(r).

Corollary 1. Assume that Hypothesis 1 and 2 hold. Then

φ(r) = hα,δ,ω ∗Wδ(u), u > 0, (2.2)
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where

hα,δ,ω(u) =
m+1∑
j=1

E(ρj,δ)Tρj,δ [λ2ξω + ηαmα] (u) (2.3)

and Wδ(u), u > 0 is the function with Laplace transform

Ŵδ(r) =

−Lα(r)
m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ − ρj,δ)(ρj,δ − r)


−1

. (2.4)

Our next step is to show that the function Ŵδ(r) is related to the Laplace trans-

form of the time to ruin when δ > 0 and to the ruin probability when δ = 0, and that

it is the Laplace transform of some function Wδ(u) whose explicit form is given in

Proposition 3 below. We recall that for c > 0 and α ∈ (1, 2), the tail of the extremal

stable distribution ζα,c is given by

ζα,c(x) =
∞∑
n=0

(−c)n

Γ(1 + {α− 1}n)
xn(α−1), x > 0,

and denote the density of ζα,c by zα,c. Due to Lemma 1 in Furrer (1998), ẑα,c(r)

exists for all r ≥ 0 and is given by

ẑα,c(r) = c/(c+ rα−1).

Since ρj,δ, j = 1, 2, . . . ,m + 1 appear in conjugate pairs, it follows that for δ > 0

we have
∏m+1

j=2 ρj,δ > 0. Using the change of variables ρ∗j,δ(r) = ρj,δ − r and Lemma

1, one can show that if ρ1,δ, . . . , ρm+1,δ are different complex numbers, and Pl(x) =
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alx
l + al−1x

l−1 + · · ·+ a1x+ q0 is a polynomial of degree l, then for all l ≥ 1,

m+1∑
j=1

Pl(ρj,δ)∏m+1
l=1,l 6=j(ρl,δ − ρj,δ)

=


0 if l = 0, 1, . . . ,m− 1

(−1)mam if l = m.

(2.5)

The following two lemmas can be proved using Lemma 1 and (2.5), and the fact

that the roots {ρj,δ} of Lα are in conjugate pairs.

Lemma 6. For δ > 0,

m+1∑
j=1

E(ρj,δ) = 1 and
m+1∑
j=1

E(ρj,δ)ρ
−1
j,δ =

∏N
l=1 q

ml
l∏m+1

k=1 ρk,δ
.

Lemma 7. For any function K : (0,∞)→ [0,∞) and all δ ≥ 0 the functions

x 7→
m+1∑
j=1

E(ρj,δ)Tρj,δK(x), and x 7→
m+1∑
j=1

E(ρj,δ)ρj,δTρj,δK(x), x > 0,

are real-valued.

We define the function

`α(u) :=
(α− 1)u−α

Γ(2− α)
, u > 0.

Although `δ(u) is not integrable, the function Tr`α(x) exists and is finite for all

x > 0 and r > 0.

For all complex numbers r1, r2 ∈ C+, such that r1 6= r2 and α ∈ (1, 2), (see

Zolotarev (1989), p. 10) it can be proved by integration by parts that∫ ∞
0

[
e−r1x − e−r2x

]
x−αdx =

Γ(2− α)

α− 1

[
rα−1

2 − rα−1
1

]
. (2.6)
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It follows that

T̂r1`α(r2) =

∫ ∞
0

e−r2x
∫ ∞
x

e−r1(y−x)`δ(y)dydx =
rα−1

1 − rα−1
2

r1 − r2

, r1 6= r2,

and

T̂r1`α(r1) =

∫ ∞
0

e−r1x
∫ ∞
x

e−r1(y−x)`δ(y)dydx = (α− 1)rα−2
1 , r1 6= 0.

Let us define fα,δ(x) =
m+1∑
j=1

E(ρj,δ)ρj,δTρj,δ`α(x) and gδ(x) = λ2

m+1∑
j=1

E(ρj,δ)Tρj,δf2(x),

for x > 0. Due to Lemma 7 the functions hα,δ,ω, fα,δ and gδ are real-valued. In the

sequel we assume the following condition.

Hypothesis 3. The functions hα,δ,ω, fα,δ and gδ defined above are nonnegative.

It is straightforward to prove that Hypothesis 3 holds in the case when f1 is a

hyperexponential distribution and f2 is a general density function, because in such

case E(ρj,δ) and ρj,δ are nonnegative numbers.

In the following proposition we obtain an alternative representation of Ŵδ, which

allows us to calculate its inverse Laplace transform.

Proposition 2. Under Hypothesis 1, 2 and 3, we have

a) For η > 0 and c ≥ 0,

Ŵδ(r) =

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[κδν̂α,δ(r) + η−αĝδ(r)ν̂α,δ(r)]
, (2.7)

where κδ = 1
ηα
ĝδ(0) + f̂α,δ(0) and θδ = c/ηα + κδ are constants, and

ν̂α,δ(r) =
ẑα,θδ(r)

1 + 1
θδ
f̂α,δ(r)ẑα,θδ(r)

. (2.8)

b) The function Ŵδ(r) is related to the time to ruin and the probability of ruin ψ(u)
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by the following equalities:

ϕ̂δ(r) =
1

r
− δ

r

∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ
Ŵδ(r), δ > 0, (2.9)

and

ψ̂(r) =
1

r
− c+ λ1µ1 − λ2µ2

r

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0
Ŵ0(r), δ = 0, (2.10)

where ϕδ(u) = E
[
e−δτ01{τ0<∞}|Vα(0) = u

]
is the Laplace transform of the ruin

time for δ > 0.

Proof. See Appendix A.

Corollary 2. We also note from the results in Proposition 2 b) that, for u > 0,

both ψ(u) and ϕδ(u) are tails of probability distributions with respective densities

ψ′(u) = (c + λ1µ1 − λ2µ2)

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0
W0(u) and ϕ′δ(u) = δ

∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ
Wδ(u). Hence,

from (2.2) the EDPF is given by the expressions

φ(u) =


[
(c+ λ1µ1 − λ2µ2)

∏N
i=1 q

mi
i∏m+1

j=2 ρj,0

]−1

hα,0,ω ∗ ψ′(u) for δ = 0,[
δ
∏N
i=1 q

mi
i∏m+1

j=1 ρj,δ

]−1

hα,δ,ω ∗ ϕδ(u) for δ > 0.

Now we are ready to give a representation of Wδ as a series of convolutions of the

functions fα,δ, gδ, να,δ defined above.

Proposition 3. Under Hypothesis 1, 2 and 3 the following properties hold.

a) For r ≥ 0, the function ν̂α,δ(r) defined in (2.8) is the Laplace transform of the

function

να,δ(u) = zα,θδ ∗
∞∑
n=0

[
− 1

θδ

]n
[fα,δ ∗ zα,θδ ]

∗n (u). (2.11)
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b) For u ≥ 0, the function Ŵδ(u) defined in (2.4) is the Laplace transform of the

functions

Wδ(u) =
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n [κδνα,δ + η−αgδ ∗ να,δ

]∗n
(u),

c) να,δ(u) and 1
θδηα

gδ ∗ να,δ(u) + κδ
θδ
να,δ(u) are defective density functions.

Proof. a) Since 0 <
f̂α,δ(0)

θδ
< 1, Hypothesis 3 implies 0 <

f̂α,δ(r)

θδ
< 1 for all r ≥ 0.

Hence the series

ẑα,θδ(r)
∞∑
n=0

[
− 1

θδ

]n [
f̂α,δ(r)ẑα,θδ(r)

]n
(2.12)

is absolutely convergent for r ≥ 0, and it equals (2.8). We set

I(u) :=

∞∫
0

∞∑
n=0

[
1

θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n (u)du,

and apply monotone convergence theorem to obtain:

I(u) = lim
m→∞

m∑
n=0

∞∫
0

[
1

θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n (u)du

≤ lim
m→∞

m∑
n=0

∣∣∣∣[− 1

θδ

]n
ẑα,θδ(0)

[
f̂α,δ(0)ẑα,θδ(0)

]n∣∣∣∣
=
∞∑
n=0

∣∣∣∣[− 1

θδ

]n
ẑα,θδ(0)

[
f̂α,δ(0)ẑα,θδ(0)

]n∣∣∣∣ <∞.
This implies that the series

∞∑
n=0

[
− 1

θδ

]n
zα,θδ ∗ [fα,δ ∗ zα,θδ ]

∗n (u)

converges absolutely. Hence, we obtain (2.11) by inverting (2.12).
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b) By Hypothesis 3 and the definition of ν̂α,δ we have ν̂α,δ(0) < 1, hence να,δ is a

defective density function. From Proposition 2 and (2.7) we obtain

φ̂(r) =
1

ηαθδ
ν̂α,δ(r)

−Lα(r)

[∑m+1
j=1

Q1(ρj,δ)∏m+1
i=1,i 6=j(ρi,δ−ρj,δ)(ρi,δ−r)

]
ν̂α,δ(r)

ηαθδ

=

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[κδν̂α,δ(r) + η−αĝδ(r)ν̂α,δ(r)]
.

Hence, for all r ≥ 0 we obtain the equality of denominators:

−Lα(r)
m+1∑
j=1

Q1(ρj,δ)∏m+1
i=1,i 6=j(ρi,δ − ρj,δ)(ρi,δ − r)

ν̂α,δ(r)

ηαθδ
= 1− κδν̂α,δ(r) + η−αĝδ(r)ν̂α,δ(r)

θδ
.

Putting r = 0 in the above equality and using the second equality in (2.5), it

follows that

1− 1

θδ

[
η−αĝδ(0) + κδ

]
ν̂α,δ(0) = −Lα(0)ν̂α,δ(0)

ηαθδ

m+1∑
j=1

Q1(ρj,δ)∏m+1
i=1,i 6=j(ρi,δ − ρj,δ)ρj,δ

=
ν̂α,δ(0)

ηαθδ

δ
∏N

i=1 q
mi
i∏m+1

j=1 ρj,δ
> 0,

From the inequality above and the fact that ν̂α,δ(0) and ĝδ(0) + κδ are always

positive, it follows that 1
θδ

[η−αĝδ(0) + κδ] ν̂α,δ(0) < 1. Now using Hypothesis 3 we

obtain
1

θδ

[
η−αĝδ(r) + κδ

]
ν̂α,δ(r) < 1

for all r ≥ 0, which implies that 1
θδηα

gδ ∗ να,δ(u) + κδ
θδ
να,δ(u) is a defective density

function. The proof of this result for να,δ(u) is analogous.

From (2.2) and Proposition 3 we obtain the main result in this section, in which



42 CHAPTER 2. EDPF FOR THE α-STABLE CASE

we give a representation of φ(u) in terms of an infinite series of convolutions of hα,δ,ω

and the functions gδ and να,δ defined above, and the corresponding defective renewal

equation for φ.

Theorem 8. (Main Theorem II). Assume Hypothesis 1, 2 and 3. Then, for η > 0,

the EDPF satisfies the defective renewal equation

φ(u) =
1

θδ

∫ u

0

φ(u− y)

[
κδνα,δ(y) +

1

ηα
gδ ∗ να,δ(y)

]
dy +

1

ηαθδ
hα,δ,ω ∗ να,δ(u),

whose solution is given by

φ(u) =
1

ηαθδ
hα,δ,ω ∗

∞∑
n=0

ν
∗(n+1)
α,δ ∗

[
κδ
θδ

+
1

ηαθδ
gδ

]∗n
(u).

We note from Corollary 1 that the only dependence of φ on the penalty function ω

appears in hα,δ,ω(u), hence in order to obtain a formula for φ(u) for different penalty

functions, we only need to calculate the corresponding function hα,δ,ω. Let us take

ω(x, y) = e−sx−ty for s, t ≥ 0. Using (2.6), we obtain that, in this case, the function

hα,δ,ω defined before has the form

hα,δ,ω(u) =
m+1∑
j=1

E(ρj,δ)Tρj,δ (ηαf1,s,t + λ2f2,s,t) (u),

where f1,s,t(x) = e−tx`α(x)− se−txTs`α(x) and f2,s,t(x) = e−txTsf2(x).

Since − ∂

∂s
e−sx−ty|s=t=0 = x, − ∂

∂t
e−sx−ty|s=t=0 = y and

∂2

∂s∂t
e−sx−ty|s=t=0 = xy,

for δ > 0 the results of the previous theorem can be extended to the cases of penalty

functions

ω(x, y) = x, ω(x, y) = y and ω(x, y) = xy, (2.13)

which are not bounded. This can be shown by applying the dominated convergence
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theorem and calculating the corresponding derivatives of hα,δ,ω. In this way we obtain

the following result.

Corollary 3. Let δ > 0 and

hα,δ,ω(u) =



m+1∑
j=1

E(ρj,δ)Tρj,δ
(
ηαΛα + λ2µ2F 2,I

)
(u) if ω(x, y) = x,

m+1∑
j=1

E(ρj,δ)Tρj,δ ((α− 1)ηαΛα + λ2G) (u) if ω(x, y) = y,

m+1∑
j=1

E(ρj,δ)Tρj,δ (ηαΛ∗α + λ2G
∗) (u) if ω(x, y) = xy,

(2.14)

where G(u) = uF2(u), Λα(u) =
∫∞
u
`δ(x)dx, Λ∗α(u) = uT0`δ(u), G∗(u) = u

∫∞
u

(z −
u)f2(z)dz and F2,I is the integrated tail distribution of F2. Then Theorem 8 holds also

for the penalty functions (2.13), with the same functions gδ and να,δ, and correspond-

ing functions hα,δ,ω given by (2.14)

2.4 Examples and conclusions

Here we illustrate how to obtain the above results for two particular cases of risk

processes. We assume that λ1 = λ2 = η = 1, c > 0, 1 < α ≤ 2, the penalty function

ω is such that Hypothesis 1 holds.

Example 1. For given positive constants a, b,, let f1(x) = ae−ax, x > 0 and

f2(x) = be−bx, x > 0. In this case the Lundberg’s equation Lα(r)− δ = 0 is given by
b
b+r

+ a
a−r + cr + rα − 2− δ = 0, and it has two roots in C++, denoted by ρ1 and ρ2.

These roots are real and satisfy the inequalities ρ1 < a < ρ2 < b. In order to

obtain the EDPF φ for general penalty function ω from (2.2), we need to calculate

the functions hα,δ,ω and Wα,δ. We have
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hα,δ,ω(u) =
a− ρ1

ρ2 − ρ1

∞∫
u

e−ρ1(x−u)

∞∫
x

ω(y − x, x)

(
λ2be

−by +
α(α− 1)

Γ(2− α)
y−1−α

)
dydx

+
ρ2 − a
ρ2 − ρ1

∞∫
u

e−ρ2(x−u)

∞∫
x

ω(y − x, x)

(
λ2be

−by +
α(α− 1)

Γ(2− α)
y−1−α

)
dydx,

(2.15)

and from (A.19) we obtain

Ŵδ(r)

=
1

c+ rα−1 − b
b+r

a+b
(b+ρ1)(b+ρ2)

+ a−ρ1

ρ2−ρ2
ρ1

ρα−1
1 −rα−1

ρ1−r + ρ2−a
ρ2−ρ1

ρ2
ρα−1

2 −rα−1

ρ2−r

. (2.16)

Since α < 2, the above formula does not admit a simple decomposition in partial

fractions as in the case when when α = 2. However, using the formula in Proposition

3 b) we obtain an expression for the inverse of Ŵδ. This results to:

Wδ(u) =
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n

κδνα,δ +

·∫
0

e−bxνα,δ(· − x)dx

∗n (u),

where κδ = a+b
(b+ρ1)(b+ρ2)

+ a−ρ1

ρ2−ρ1
ρα−1

1 + ρ2−a
ρ2−ρ1

ρα−1
2 , θδ = c + a+b

(b+ρ1)(b+ρ2)
+ a−ρ1

ρ2−ρ1
ρα−1

1 +
ρ2−a
ρ2−ρ1

ρα−1
2 , and by Proposition 3 the function να,δ is given by

να,δ(u)

= zα,θδ ∗
∞∑
n=0

[
− 1

θδ

]n [ a− ρ1

ρ2 − ρ1
ρ1

·∫
0

zα,θδ(· − y)

∞∫
y

e−ρ1(z−y) (α− 1)z−α

Γ(2− α)
dzdy

+
ρ2 − a
ρ2 − ρ1

ρ2

·∫
0

zα,θδ(· − y)

∞∫
y

e−ρ2(z−y) (α− 1)z−α

Γ(2− α)
dzdy

]∗n
(u). (2.17)

Note that using (2.16), the formulae for the Laplace transforms of the ruin probability and

of the Laplace transform of the ruin time given in Proposition 2b) are simple in this case.
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Example 2. Now we assume that f1(x) is as in the previous example, and

f2(x) = b2e−bxx, x > 0 (f2 is an Erlang density with shape parameter k = 2 and scale

parameter b > 0). In this case the Lundberg’s equation is
(

b
b+r

)2
+ a
a−r+cr+r

α−2−δ =

0, which has two roots in C++, denoted as ρ1, ρ2, which are real and satisfy the

inequalities ρ1 < a < ρ2. In this case Ŵδ(r) = 1

L̃α(r)
, where

L̃α(r) = c+ rα−1 −
{
a− ρ1
ρ2 − ρ1

[
b2

b+ ρ1

1

(b+ r)2
+

b2

(b+ ρ1)2
1

b+ r

]
+
ρ2 − a
ρ2 − ρ1

[
b2

b+ ρ2

1

(b+ r)2
+

b2

(b+ ρ2)2
1

b+ r

]}
+

a− ρ1
ρ2 − ρ1

ρ1
ρα−11 − rα−1

ρ1 − r
+

ρ2 − a
ρ2 − ρ1

ρ2
ρα−12 − rα−1

ρ2 − r
(2.18)

Again, this expression does not admit a partial fraction decomposition as in the case

when α = 2. Hence we use Proposition 3 b) to obtain:

Wδ(u)

=
1

ηαθδ
να,δ ∗

∞∑
n=0

θδ
−n

κδνα,δ +

·∫
0

(
a− ρ1

ρ2 − ρ1

[
b2

b+ ρ1
e−bxx+

b2

(b+ ρ1)2
e−bx

]

+
ρ2 − b
ρ2 − ρ1

[
b2

b+ ρ2
e−bxx+

b2

(b+ ρ2)2
e−bx

])
να,δ(· − x)dx

}∗n
(u),

where κδ = a−ρ1

ρ2−ρ1

[
1

b+ρ1
+ b

(b+ρ1)2

]
+ ρ2−a

ρ2−ρ1

[
1

b+ρ2
+ b

(b+ρ2)2

]
+ a−ρ1

ρ2−ρ1
ρα−1

1 + ρ2−a
ρ2−ρ1

ρα−1
2 and

θδ = c + a−ρ1

ρ2−ρ1

[
1

b+ρ1
+ b

(b+ρ1)2

]
+ ρ2−a

ρ2−ρ1

[
1

b+ρ2
+ b

(b+ρ2)2

]
+ a−ρ1

ρ2−ρ1
ρα−1

1 + ρ2−a
ρ2−ρ1

ρα−1
2 . The

functions hα,δ,ω and vα,δ have the same expressions as in (2.15) and (2.17), with the

corresponding roots ρ1 and ρ2.

Although the formulae for Wδ(u) presented in these two examples are difficult

to work with in general, the formulae for Ŵδ(r) are rather simple and their inverse

Laplace transforms can be calculated by using numerical methods.

Since hα,δ,ω and the constants in the formulae above can be calculated explicitly

by knowing the process Vα and choosing δ and ω, the function Wδ becomes the most

interesting object of study. For instance, the formulae given in Proposition 3 a) and

b) allow the use of theoretical tools to obtain asymptotic expressions for να,δ and Wδ.
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These results can be used to obtain asymptotic expressions for the ruin probability,

the Laplace transform of the time to ruin, the joint tail of the severity of ruin and

the surplus prior to ruin and some other important cases of EDPFs. The asymptotic

expressions for the ruin probability and the joint tail of the severity of ruin and the

surplus prior to ruin are the main topic in the next section.

Finally, the function Wδ is related to the density of the negative Wiener-Hopf

factor of the Lévy process Vα, which we study in further detail in Chapter 3.

2.5 Asymptotic results

We begin this section recalling some notation and results from previous sections.

Again, ψ(u) denotes the probability of ruin P[τ0 <∞|Vα(0) = u].

We denote by Υa,b(u) the joint tail of the severity of ruin and surplus prior to ruin

of Vα, i.e. Υa,b(u) = P[Vα(τ0)| > a, Vα(τ0−) > b, τ0 < ∞|Vα(0) = u] for u ≥ 0, a, b >

0.

We recall that ψ(u) and Υa,b(u) are particular cases of φ(u) when δ = 0 and,

respectively, ω(x, y) = 1 and ω(x, y) = 1{x>a,y>b}. We also recall, as it was proved in

the previous section, that the Generalized Lundberg equation

cr + ηαrα + λ1f̂1(−r) + λ2f̂2(r)− (λ1 + λ2) = 0,

has exactly m + 1 roots in the right-half complex plane {z ∈ C : Re(z) > 0}, and

ρ1 = 0 is a root of the above equation with multiplicty 1.

Again we impose the conditions

a) The upward distribution F1 has a density f1, whose Laplace transform has the

form (2).

b) For c ≥ 0 we have the Net Profit Condition E[Vα(1)− u] > 0.

c) The m + 1 roots of the Generalized Lundberg equation when δ = 0, denoted by
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ρ1, . . . , ρm+1, are all different.

For a > 0, we denote again by zα;a(u) the density of the Mittag-Leffler distribution

with tail ζα,a(u) and Laplace transform ẑα;a(r) = a
a+rα−1 . We recall that

E(ρj,0) :=
∏N
l=1(ql−ρj,0)ml∏
l6=j(ρl−ρj,0)

and g0(u) = λ2

∑m+1
j=1 E(ρj,0)Tρj,0f2(x)

where Trf is the Dickson-Hipp operator defined in (1.2), We denote by fα(u) the

function with Laplace transform

f̂α(r) =
m+1∑
j=2

E(ρj,0)ρj,0
ρα−1
j,0 − rα−1

ρj,0 − r
,

and να(u) is the function whose Laplace transform satisfies the equality

ν̂α(r)

(
1 +

1

θ
f̂α(r)ẑα,θ(r)

)
= ẑα,θ(r), (2.19)

where θ = c/ηα + κ and κ = 1
ηα
ĝ0(0) + f̂α(0).

We assume fα, g0 and να are nonnegative. This follows at least in the case of a

convex sum of exponential densities with positive coefficients, as it was mentioned in

the previous section.

From Proposition 2 b) we have the the Laplace transform of the ruin probability

ψ(u) satisfies the equality

ψ̂(r) =
1

r
− (c+ λ1µ1 − λ2µ2)

r

∏N
j=1 q

mj
j∏m+1

j=2 ρj,0
Ŵδ(r). (2.20)

where Wδ(u) is the function with Laplace transform given in (2.7)

Since the roots of Lundberg’s equation appear in conjugate pairs, we obtain that∏N
j=1 q

mj
j∏m+1

j=2 ρj,0
> 0.

We recall the following definitions:

Let F be a distribution such that F (0) = 0, If there exist c1, c2 > 0 such that
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F (x) ≤ c1e
−c2x for all x > 0, we say that F is a light-tailed distribution. Otherwise,

we say that F is a heavy-tailed distribution and write F ∈ H.

If lim
x→∞

F ∗2(x)

F (x)
= 2, we say that F belongs to the class of subexponential distribu-

tions, denoted by F ∈ S.

We say that F belongs to the class L if for any y ≥ 0, we have lim
x→∞

F (x−y)

F (x)
= 1.

F belongs to the class Rc for c ≥ 0 if F has a density f and lim
x→∞

f(x)

F (x)
= c.

We say that f : R+ → R+ is a regularly varying function of x at ∞, with order

a ∈ R, if lim
x→∞

f(xt)
f(x)

= ta, and write f ∈ RVa. In the particular case when a = 0, we

say that f is a slowly varying function of x at ∞.

If f is regularly varying of order a, then it can characterized as f(x) = xaL(x),

for some slowly varying function L(x).

If F is a distribution function such that F (x) ≈ xaL(x), we write F ∈ RV a and

we have the inclusions (see Rolski et al. [1999]):

RV a ⊂ S ⊂ L ⊂ H and R0 ⊂ L.

For given functions f : R→ R, g : R→ R, we say that f(x) ≈ cg(x) if lim
x→∞

f(x)
g(x)

= c

for some c ∈ (0,∞). We write f(x) = o(g(x)) if lim
x→∞

f(x)
g(x)

= 0.

The following result is required.

Lemma 8. Let H = F1 ∗F2 be the convolution of two distribution functions such that

Fi(0) = 0, i = 1, 2.

a) If F2 ∈ S and F 1(x) = o(F 2(x)) as x → ∞, then H ∈ S. Moreover, H(x) ≈
F 2(x).

b) If F i(x) ≈ x−δLi(x) for i = 1, 2, where L1(x), L2(x) are slowly varying functions,

then H(x) ≈ x−δ (L1(x) + L2(x)) as x→∞.

c) If F 2(x) ≈ cF 1(x) for some c ∈ (0,∞), then F1 ∈ S if and only if F2 ∈ S and

H ≈ (1 + c)F 2(x).
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d) If β ∈ (0, 1) and K(x) = (1−β)
∑∞

n=0 β
nF ∗n1 (x) then the following are equivalent:

K ∈ S, F1 ∈ S, K(x) ≈ β
1−βF 1(x).

Proof. For a) and d), see Proposition 1a) and Theorem 3, respectively, in Embrechts

et al. [1979]. For b) see Feller [1971], p. 278. The proof of c) is given in Lemmas

2.5.2. and 2.5.4. in Rolski et al. [1999].

We also need the following result which can be found, for instance, in Feller [1971].

Lemma 9. Let `(x) be a slowly varying function and U(x) a nondecreasing right-

continuous function on R with density u(x) and such that U(x) = 0 for all x < 0. If

c ≥ 0, β ≥ 0 and u(x) is monotone in some interval (x0,∞), then:

lim
x→∞

u(x)

`(x)xβ−1
=

c

Γ(β)
if and only if lim

r↓0

rÛ(r)

`(1/r)r−β
= c

The case c = 0 is equivalent to

u(x) = o
(
`(x)xβ−1

)
if and only if lim

r↓0

rÛ(r)

`(1/r)r−β
= 0 (2.21)

2.5.1 Asymptotic behavior of the ruin probability

For x > 0 we define the functions

Fα(x) =
1

CF

x∫
0+

fα(y)dy, Fα(x) = 1− Fα(x) =
1

CF

∞∫
x

fα(y)dy,

G0(x) =
1

CG

x∫
0+

g0(y)dy, G0(x) = 1−G0(x) =
1

CG

∞∫
x

g0(y)dy,
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Uα(x) =
1

CU

x∫
0+

να(y)dy, Uα(x) = 1− Uα(x),

where CF = f̂α(0), CG = ĝ0(0) and CU = ν̂α(0).

Let F be any distribution function with density f and tail F . Throughout this

section we will use the equalities

F̂ (r) =
f̂(r)

r
and F̂ (r) =

1− f̂(r)

r
(2.22)

In what follows, F2,I(x) denotes the tail distribution of F2 defined as F2,I(x) =

1
µ2

x∫
0

F 2(y)dy.

We use Lemma 8 and Lemma 9 to prove the following result.

Proposition 4. Fα, Uα ∈ S and

a) We have

lim
x→∞

Fα(x)
x1−α

Γ(2−α)

=
1

CF

1−

N∏
i=1

qmii

m+1∏
j=2

ρj,0

 . (2.23)

b) If F2 ∈ R0, then

lim
x→∞

G0(x)

F 2,I(x)
=
λ2µ2

CG

N∏
i=1

qmii

m+1∏
j=2

ρj,0

. (2.24)

Moreover, if F2,I ∈ S, then G0 ∈ S.

c) If F 2(x) = o(x−α), then G0(x) = o(x1−α).
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d) There holds

lim
x→∞

Uα(x)

ζα,θ(x)
= CU

N∏
i=1

qmii

m+1∏
j=2

ρj,0

. (2.25)

Proof. See Appendix A.

Throughout this section we consider the following cases for the claims distribution

F2 :

Case 1 : F 2(x) = o(x−α),

Case 2 : F 2(x) ≈ κx−α for some κ > 0,

Case 3 : x−α = o
(
F 2(x)

)
for F2,I ∈ S and F2 ∈ R0.

(2.26)

Now we are ready to obtain the asymptotic expressions for the probability of ruin.

Theorem 9.

a) In case 1:

ψ(u) ≈ ηα

(c+ λ1µ1 − λ2µ2) Γ(2− α)
u1−α, (2.27)

b) In case 2:

ψ(u) ≈ 1

c+ λ1µ1 − λ2µ2

[
ηα

Γ(2− α)
+

λ2κ

α− 1

]
u1−α, (2.28)

c) In case 3:

ψ(u) ≈ λ2µ2

c+ λ1µ1 − λ2µ2

F 2,I(u), (2.29)

and in all cases Φ ∈ S.

Proof. Case 1. We define the function G∗0(x) =
x∫
0

G0(y)dy, x > 0. By (2.22) we have

Ĝ∗0(r) = 1−ĝ0(r)
r2 . By Proposition 4 c) and the assumption that F 2(x) = o(x−α)
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we have G0(x) = o
(
ζα,θ(x)

)
, hence (2.21) and the equality Ĝ∗0(r) = 1−ĝ0(r)

r2

imply

0 = lim
r↓0

rĜ∗α(r)

rα−2
= lim

r↓0

1− ĝ0(r)

CG
rα−1

. (2.30)

Let us denote by ψ(∞) the limit lim
u→∞

ψ(u). By the final value theorem for

Laplace transforms we have ψ(∞) = lim
r↓0

rψ̂(r), which, by (2.20), implies

ψ(∞) = 1−
∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

Ŵδ(0).

Since ψ(u) is the tail of a probability distribution, we know that ψ(∞) = 0,

hence the equality above implies Ŵδ(0) = 1∏N
j=1

q
mj
j∏R

j=1
ρ
kj
j,δ

. Setting r = 0 in (2.7) we

obtain

1∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

=

1
ηαθ

ν̂α(0)

1− 1
θ

[
κν̂α(0) + 1

ηα
ĝ0(0)ν̂α(0)

] =

1
ηαθ

CU

1− 1
θ

[
κCU + 1

ηα
CGCU

] .

or equivalently

∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

=
1− 1

θ

[
κCU + 1

ηα
CGCU

]
1
ηαθ

CU
. (2.31)

Now we set ψ∗(u) =
u∫
0

ψ(y)dy. By (2.22), (2.20) and (2.31) we have

ψ̂∗(r) =

1−
[

1− 1
θ [κCU+ 1

ηα
CGCU ]

1
ηαθ

CU

]
1
ηαθ

ν̂α(r)

1− 1
θ [κν̂α(r)+ 1

ηα
ĝ0(r)ν̂α(r)]

r2
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=

1− 1
θ

[
κν̂α(r) + 1

ηα
ĝ0(r)ν̂α(r)

]
−
[

1− 1
θ [κCU+ 1

ηα
CGCU ]

CU

]
ν̂α(r)

r2
(

1− 1
θ

[
κν̂α(r) + 1

ηα
ĝ0(r)ν̂α(r)

]) (2.32)

It follows that:

lim
r↓0

rψ̂∗(r)

rα−2

= lim
r↓0

1

rα−1

1− κν̂α,0(r)+η−αĝ0(r)ν̂α,0(r)

θ
−
[

1− 1
θ [κCU+η−αCGCU ]

CU

]
ν̂α,0(r)

1− 1
θ

[κν̂α,0(r) + η−αĝ0(r)ν̂α,0(r)]



= lim
r↓0

1

rα−1

1− ν̂α,0(r)

CU
+ CG

ηαθ

[
1− ĝ0(r)

CG

]
ν̂α,0(r)

1− 1
θ

[κν̂α,0(r) + η−αĝ0(r)ν̂α,0(r)]

 (2.33)

=

1

θ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

CU

1− 1
θ

[κCU + η−αCGCU ]
.

where the last equality follows from (A.37), (A.39) and (2.30).

From (2.31) we obtain

1

θ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

CU

c+ λ1µ1 − λ2µ2

ηαθ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

CU

=
ηα

c+ λ1µ1 − λ2

,

and hence equality (2.33) is equivalent to lim
r↓0

rψ̂∗(r)

rα−2
=

ηα

c+ λ1µ1 − λ2

.

Now the asymptotic formula (2.27) follows from Lemma 9. Since (2.27)
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implies that Φ(u) has a regularly varying tail, we conclude Φ(u) ∈ S in this

case.

Case 2. We consider ψ∗(u) and G∗0(x) as before. Since F2 ∈ RV −α, and we also have

F2 ∈ R0, hence we obtain from Proposition 4 b) thatG0(x) ≈ λ2µ2

CG

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

F 2,I(x).

By the assumption that F 2(x) ≈ κx−α, an application of L’Hopital’s rule to

lim
x→∞

F 2,I(x)

x1−α yields F 2,I(x) ≈ κ x1−α

(α−1)µ2
. Hence

G0(x) ≈ λ2κ

CG(α− 1)

N∏
i=1

qmii

m+1∏
j=2

ρj,0

x1−α (2.34)

By (2.34) and Lemma 9 applied to G∗0(x), it follows that

λ2µ2κ

CG(α− 1)

N∏
i=1

qmii

m+1∏
j=2

ρj,0

= lim
r↓0

rĜ∗α(r)

rα−2
= lim

r↓0

1− ĝ0(r)

CG
rα−1

. (2.35)

From (2.33), we have:

lim
r↓0

rψ̂∗(r)

rα−2
= lim

r↓0

1

rα−1

1− ν̂α,0(r)

CU
+ CG

ηαθ

[
1− ĝ0(r)

CG

]
ν̂α,0(r)

1− 1
θ

[κν̂α,0(r) + η−αĝ0(r)ν̂α,0(r)]

 ,

hence, we apply (A.37), (A.39) and (2.35) in the above equality, and obtain

lim
r↓0

rψ̂∗(r)

rα−2
=

1

θ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

CU

1− 1
θ

[κCU + η−αCGCU ]

[
1 +

λ2κΓ(2− α)

ηα(α− 1)

]
=
ηα(α− 1) + λ2κΓ(2− α)

(c+ λ1µ1 − λ2µ2)(α− 1)
.



2.5. ASYMPTOTIC RESULTS 55

Applying Lemma 9 again and using that Φ(u) has a regularly varying tail in

this case, we obtain the result.

Case 3. We define β = 1
θ

[κCU + η−αCGCU ] and

K(x) = (1− β)
∞∑
n=0

βn
(

1

θβ

[
κCUUα + η−αCGCUG0 ∗ Uα

])∗n
(x)

= (1− β)
∞∑
n=0

βnK∗n0 (x).

where K0(x) =
(

1
θβ

[κCUUα + η−αCGCUG0 ∗ Uα]
)

(x).

By Proposition 3 b) we have the equality

Wδ(x) =
1

ηαθ
να ∗

∞∑
n=0

1

θn

[
κνα +

1

ηα
g0 ∗ να

]∗n
(x).

From (2.20) we note that
∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

Wδ(x) is the density of the probability of

survival Φ(x), hence it is integrable and by dominated convergence theorem

we can show that

Φ(x) =
1

ηαθ

∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

CUUα ∗
∞∑
n=0

1

θn

(
κCUUα +

1

ηα
CGCUG0 ∗ Uα

)∗n
(x)

Using β = 1
θ

[κCU + η−αCGCU ] and (2.31) in the equality above, we obtain

Φ(x) = (1− β)Uα ∗
∞∑
n=0

βn

θn

[
1

β

(
κCUUα +

1

ηα
CGCUG0 ∗ Uα

)]∗n
(x)

= Uα ∗K(x) (2.36)

This implies that Φ(x) is the convolution of the distribution functions Uα(x)

and K(x). In view of this, we need to study the asymptotic behaviour of
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K(x). The assumption that x−α = o(F 2(x)) and an application of L’Hopital’s

rule, imply that x1−α = o
(
F 2,I(x)

)
. Assuming that F2 ∈ R0, Proposition

4 b) yields G0(x) ≈ λ2µ2

CG

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

F 2,I(x), hence x1−α = o
(
G0(x)

)
and by

Proposition 1d) Uα(x) = o
(
G0(x)

)
.

Since Uα and G0 are distribution functions and β = 1
θ

[κCU + η−αCGCU ],

we have that K0(x) =
(

1
θβ

[κCUUα + η−αCGCUG0 ∗ Uα]
)

(x) is a distribution

function.

Then, it t follows from the equalities above and Lemma 8 a) that 1−K0(x) ≈
η−αCGCU

θβ
G0(x).

By the assumption that F2,I ∈ S and Proposition 4 b), we have G0 ∈ S,

hence Lemma 8 d) gives:

K(x) ≈ β

1− β
η−αCGCU

θβ
G0(x) ≈

λ2µ2
CU
ηαθ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

c+ λ1µ1 − λ2µ2

ηαθ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

CU

F 2,I(x). (2.37)

Simplifying the coefficient in the right-hand side of (2.37) results to:

K(x) ≈ λ2µ2

c+ λ1µ1 − λ2µ2

F 2,I(x). (2.38)

Using (2.36) together with Uα(x) = o(F 2,I(x)), (2.38) and Lemma 8 a), we

obtain (2.29) and Φ ∈ S.

The following lemma is immediate.
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Lemma 10. Let f1, f2 be two nonnegative functions such that f1 ≈ g1 and f2 ≈ g2,

for some functions g1, g2 such that lim
x→∞

g1(x)

g2(x)
= c ∈ [0,∞]. Then

a) f1 + f2 ≈ g1 + g2,

b) If c 6= 1, f1 − f2 ≈ g1 − g2.

Theorem 9 and Lemma 10 give the following corollary.

Corollary 4. For all the cases in (2.26) the ruin probability ψ(u) has the asymptotic

expression:

ψ(u) ≈ ηα

(c+ λ1µ1 − λ2µ2) Γ(2− α)
u1−α +

λ2µ2

c+ λ1µ1 − λ2µ2

F 2,I(u) (2.39)

In particular, if F 2(u) ≈ L1(u)u−α for some slowly varying function L1, and F 2

satisfies any of the cases in (2.26), we have:

ψ(u) ≈ 1

c+ λ1µ1 − λ2µ2

[
ηα

Γ(2− α)
+

λ2

α− 1
L1(u)

]
u1−α (2.40)

Proof. We obtain (2.39) from Theorem 9 and Lemma 10 a). To obtain (2.40) we

consider the three cases in (2.26)

Case 1. We have lim
u→∞

L1(u)u−α

u−α
= lim

u→∞
F 2(u)
u−α

L1(u)u−α

F 2(u)
= 0. Hence:

lim
u→∞

ψ(u)

1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2µ2

α−1
L1(u)

]
u1−α

= lim
u→∞

ψ(u)
u1−α

1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2µ2

α−1
L1(u)u1−α

u1−α

] = 1

where in the last equality we used (2.27).

Case 2. We set C = 1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2κ

α−1

]
.
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Using the equality lim
u→∞

L1(u) = κ and (2.28) we obtain:

lim
u→∞

ψ(u)

1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2

α−1
L1(u)

]
u1−α

= lim
u→∞

ψ(u)
Cu1−α

1
C

1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2

α−1
L1(u)u1−α

u1−α

] = 1

Case 3. We have that u−α = o
(
F 2(u)

)
implies u1−α = o

(
F 2,I(u)

)
. Now, using

Karamata’s theorem (see, for instance, Bingham et al. [1987], Proposition

1.5.10) we obtain lim
u→∞

F 2,I(u)

L1(u)u1−α = α−1
µ2

. Hence

lim
u→∞

ψ(u)

1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2µ2

α−1
L1(u)

]
u1−α

= lim
u→∞

ψ(u)
λ2µ2

c+λ1µ1−λ2µ2
F 2,I(u)

ηα

Γ(2−α)
u1−α

λ2µ2F 2,I(u)
+ 1

α−1
L1(u)u1−α

F 2,I(u)

= 1

2.5.2 Asymptotic behavior of Υa,b(u)

Now we study the asymptotic behavior of Υa,b(u), defined as

Υa,b(u) = P [|Vα(τ0)| > a, Vα(τ0−) > b, τ0 <∞|Vα(0) = u] .

For fixed β > 0 and a ≥ 0, we define the function:

B(x; β, a) :=

∞∫
x

e−β(y−x)

(
λ2F 2(y + a) +

ηα(α− 1)

Γ(2− α)
(y + a)−α

)
dy. (2.41)

In order to obtain the corresponding asymptotic expressions for Υa,b(u) when
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∆ = max{u, b} → ∞, the following three results are needed.

Lemma 11.

a) B(x; β, a) ≤ λ2µ2 + ηα

Γ(2−α)
a1−α

b) In any of the cases considered in (2.26) we have B(x; β, a) = o(ψ(x+ a)).

Proof. a) Since e−β(y−x) ≤ 1 for every y ≥ x and F 2(y + a) ≤ F 2(y), we have

B(x; β, a) ≤
∞∫
x

(
λ2F 2(y + a) +

ηα(α− 1)

Γ(2− α)
(y + a)−α

)
dy

≤
∞∫
x

(
λ2F 2(y) +

ηα(α− 1)

Γ(2− α)
(y + a)−α

)
dy

≤ λ2µ2 +
ηα

Γ(2− α)
a1−α.

b) Using F 2(y + a) ≤ F 2(x+ a) and (y + a)−α ≤ (x+ a)−α, for all y ≥ x, we obtain:

B(x; β, a) ≤
∞∫
x

e−β(y−x)

(
λ2F 2(x+ a) +

ηα(α− 1)

Γ(2− α)
(x+ a)−α

)
dy

≤
(
λ2F 2(x+ a) +

ηα(α− 1)

Γ(2− α)
(x+ a)−α

) ∞∫
x

e−β(y−x)dy

=
1

β

(
λ2F 2(x+ a) +

ηα(α− 1)

Γ(2− α)
(x+ a)−α

)
(2.42)

In cases 1 and 2, the limit lim
x→∞

F 2(x)
x−α

equals a constant d ∈ [0,∞), hence in any of

these two cases we obtain:
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lim
x→∞

1
β

(
λ2F 2(x+ a) + ηα(α−1)

Γ(2−α)
(x+ a)−α

)
(x+ a)1−α = lim

x→∞

1
β

(
λ2
F 2(x+ a)

(x+ a)−α
+ ηα(α−1)

Γ(2−α)

)
x+ a

= 0.

(2.43)

By (2.27) and (2.28), in cases 1 and 2 we also have ψ(u) ≈ Au1−α, for some

constant A > 0. This and (2.43) imply:

lim
x→∞

1
β

(
λ2F 2(x+ a) + ηα(α−1)

Γ(2−α)
(x+ a)−α

)
ψ(x+ a)

= lim
x→∞

1
β

(
λ2F 2(x+ a) + ηα(α−1)

Γ(2−α)
(x+ a)−α

)
(x+ a)1−α

ψ(x+ a)

(x+ a)1−α

= 0.

Hence we obtain the result in these two cases by dividing by ψ(x + a) both sides

of (2.42), and letting x→∞.

In case 3, the assumption that F2 ∈ R0 and L’Hopital’s rule imply that F 2,I ∈ R0.

We also have in this case that ψ(u) ≈ A2F 2,I(u) for some constant A2 > 0, and

from the proof of Theorem 9 c), x1−α = o(F 2,I(x)). Using these two results

together with F 2,I ∈ R0 we obtain:

lim
x→∞

1
β

(
λ2F 2(x+ a) + ηα(α−1)

Γ(2−α)
(x+ a)−α

)
ψ(x+ a)

= lim
x→∞

1
β

(
λ2F 2(x+ a) + ηα(α−1)

Γ(2−α)
(x+ a)−α

)
F 2,I(x+ a)

ψ(x+ a)

F 2,I(x+ a)

= 0. (2.44)
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Hence the result follows again dividing by ψ(x+a) and taking limits when x→∞
in (2.42).

Lemma 12. For ω(x, y) = 1{x>a,y>b} and δ = 0 we have

Υa,b(u) = hα ∗Wδ(u), (2.45)

where

hα(u) =

N∏
i=1

qmii

m+1∏
j=2

ρj,0

∞∫
u

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
1{z>b}dz + Ia,b(u),

and

Ia,b(x) =
m+1∑
j=2

E(ρj,0)

∫ ∞
x

e−ρj,0(y−x)

(
λ2F 2(y + a) +

ηα(α− 1)

Γ(2− α)
(y + a)−α

)
1{y>b}dy.

Moreover, if F2 and F2,I satisfy cases 1, 2 or 3, then

u∫
0

Ia,b(u− y)Φ(dy) = o(ψ(u)). (2.46)

Proof. Formula (2.45) follows from Corollary 1. To prove (2.46) we first note that

|Ia,b(x)| ≤
m+1∑
j=2

|E(ρj,0)|
∫ ∞
x

e−Re(ρj,0)(y−x)

(
λ2F 2(y + a) +

ηα(α− 1)

Γ(2− α)
(y + a)−α

)
dy,
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which by (2.41), is equivalent to:

|Ia,b(x)| ≤
m+1∑
j=2

|E(ρj,0)|B [x;Re(ρj,0), a] (2.47)

By Lemma 11 b), there exists an u0 such that for all u > u0 we have the inequality∑m+1
j=2 |E(ρj,0)|B [u;Re(ρj,0), a] < εψ(u).

Hence using this and (2.47), we obtain

∣∣∣∣∣∣∣∣
u∫
0

Ia,b(u− y)Φ(dy)

ψ(u)

∣∣∣∣∣∣∣∣ <
ε
u−u0∫

0

(1− Φ(u− y))Φ(dy)

ψ(u)
+

u∫
u−u0

|Ia,b(u− y)|Φ(dy)

ψ(u)

≤
ε
u∫
0

(1− Φ(u− y))Φ(dy)

ψ(u)
+

u∫
u−u0

|Ia,b(u− y)|Φ(dy)

ψ(u)
.

By Lemma 11 a), the right-hand side of (2.47) is bounded above by

c0 =
m+1∑
j=2

|E(ρj,0)|
(
λ2µ2 +

ηα

Γ(2− α)
a1−α

)
.

Hence

∣∣∣∣∣∣∣∣
u∫
0

Ia,b(u− y)Φ(dy)

ψ(u)

∣∣∣∣∣∣∣∣ <
ε (Φ(u)− Φ ∗ Φ(u))

ψ(u)
+ c0

Φ(u)− Φ(u− u0)

ψ(u)

=
ε (1− Φ ∗ Φ(u))− ψ(u))

ψ(u)
+ c0

ψ(u− u0)− ψ(u)

ψ(u)

Using that Φ(u) ∈ S, we obtain the result by letting u→∞ (and ε ↓ 0).
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The asymptotic expressions for Υa,b(u) are given in the next result.

Theorem 10. The joint tail of the severity of ruin and the surplus prior to ruin,

Υa,b(u), has the following asymptotic expressions.

a) In case 1:

Υa,b(u) ≈ ηα

(c+ λ1µ1 − λ2µ2) Γ(2− α)
(a+ ∆)1−α

b) In case 2:

Υa,b(u) ≈ 1

c+ λ1µ1 − λ2µ2

[
ηα

Γ(2− α)
+

λ2κ

α− 1

]
(a+ ∆)1−α

c) In case 3:

Υa,b(u) ≈ λ2µ2

c+ λ1µ1 − λ2µ2

F 2,I(a+ ∆)

Proof. Since

hα,δ,ω(u) =

N∏
i=1

qmii

m+1∏
j=2

ρj,0

∞∫
u

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
1{z>b}dz + Ia,b(u),

by (2.45) and (2.20), we have:

Υa,b(u) =
1

c+ λ1µ1 − λ2µ2

u∫
0

∞∫
u−y

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
1{z>b}dzΦ(dy)

+

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

c+ λ1µ1 − λ2µ2

u∫
0

Ia,b(u− y)Φ(dy) (2.48)

By (2.46) we only need to study the asymptotic behavior of
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Υ∗(u, a, b) :=

u∫
0

∞∫
u−y

[
λ2F 2(a+ z) + ηα(α−1)

Γ(2−α)
(a+ z)−α

]
1{z>b}dzΦ(dy)

c+ λ1µ1 − λ2µ2

with respect to ψ(u+ a). First we suppose ∆ = u, and define

Υ0(u, a) :=

u∫
0

[
λ2µ2F 2,I(a+ u− y) + ηα

Γ(2−α)
(a+ u− y)1−α

]
Φ(dy)

c+ λ1µ1 − λ2µ2

.

We have:

Υ∗(u, a, b) ≤ 1

c+ λ1µ1 − λ2µ2

u∫
0

∞∫
u−y

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
dzΦ(dy)

= Υ0(u, a) (2.49)

and

Υ∗(u, a, b) ≥ 1

c+ λ1µ1 − λ2µ2

u∫
0

∞∫
u

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
dzΦ(dy)

=
λ2µ2F 2,I(a+ u) + ηα

Γ(2−α)
(a+ u)1−α

c+ λ1µ1 − λ2µ2

Φ(u). (2.50)

Clearly, (2.50) implies that

lim
u→∞

Υ∗(u, a, b)

ψ(u+ a)
≥ 1, (2.51)

because ψ(u + a) ≈
λ2µ2F 2,I(a+ u) + ηα

Γ(2−α)
(a+ u)1−α

c+ λ1µ1 − λ2µ2

and lim
u→∞

Φ(u) = 1. Now

we will prove that

lim
u→∞

Υ0(u, a)

ψ(u+ a)
= 1, (2.52)
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for all the claim distributions considered in Theorem 9. Indeed, from (2.52) to-

gether with (2.49), (2.51), (2.48) and (2.46) we obtain the result.

Now we note that

Υ0(u, a) =
1

c+ λ1µ1 − λ2µ2

[
λ2µ2F 2,I(a)

u∫
0

(1− Fa,I(u− y)) Φ(dy)

+
a1−αηα

Γ(2− α)

u∫
0

(1− Pa,α(u− y)) Φ(dy)

]

where Fa,I(u) = 1− F 2,I(u+ a)

F 2,I(a)
and Pa,α(u) = 1−

(
au

a+ u

)α−1

u1−α.

Hence we obtain:

Υ0(u, a) =
1

c+ λ1µ1 − λ2µ2

(
λ2µ2F 2,I(a) [Φ(u)− Fa,I ∗ Φ(u)]

+
a1−αηα

Γ(2− α)
[Φ(u)− Pa,α ∗ Φ(u)]

)

=
1

c+ λ1µ1 − λ2µ2

(
λ2µ2F 2,I(a) [Φ(u)− 1 + 1− Fa,I ∗ Φ(u)]

+
a1−αηα

Γ(2− α)
[Φ(u)− 1 + 1− Pa,α ∗ Φ(u)]

)

=
1

c+ λ1µ1 − λ2µ2

(
λ2µ2F 2,I(a) [1− Fa,I ∗ Φ(u)−Ψ(u)]

+
a1−αηα

Γ(2− α)
[1− Pa,α ∗ Φ(u)−Ψ(u)]

)
(2.53)

Case 1. By Theorem 9 a) we have Φ ∈ S and ψ(u) ≈ ηα

(c+ λ1µ1 − λ2µ2)Γ(2− α)
u1−α,

hence by Lemma 8 c) and the assumption F 2,I(u) = o(u1−α), we obtain

1− Fa,I ∗ Φ(u) ≈ ηα

(c+ λ1µ1 − λ2µ2)Γ(2− α)
u1−α.
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This implies

λ2µ2F 2,I(a)

c+ λ1µ1 − λ2µ2

[ 1− Fa,I ∗ Φ(u)− ψ(u)] = o(u1−α). (2.54)

By Lemma 8 b),

1− Pa,α ∗ Φ(u) ≈

[(
au

a+ u

)α−1

+
ηα

(c+ λ1µ1 − λ2µ2)Γ(2− α)

]
u1−α,

which by (2.27) and Lemma 10 b) implies:

1− Pa,α ∗ Φ(u)− ψ(u) ≈
(

a

a+ u

)α−1

. (2.55)

Using the expression for Υ0(u, a) given in (2.53) together with (2.54), (2.55)

and Lemma 10 a) we obtain

Υ0(u, a) ≈ 1

c+ λ1µ1 − λ2µ2

[
λ2µ2F 2,I(a+ ∆) +

ηα

Γ(2− α)
(a+ ∆)1−α

]
,

and (2.52) follows.

Case 2. Since F 2(u) ≈ κu1−α by assumption, by L’Hospital’s rule we obtain F 2,I(u) ≈
κ

µ2(α−1)
u1−α. Hence F a,I(u) ≈ κ

µ2(α−1)F 2,I(a)
u1−α.

By (2.28) we have Ψ(u) ≈ Cu1−α, where C = 1
c+λ1µ1−λ2µ2

[
ηα

Γ(2−α)
+ λ2κ

α−1

]
.

Using this and Lemma 8 b) we obtain 1− Fa,I ∗ Φ(u) ≈
[
C + κ

µ2(α−1)

]
u1−α,

and applying Lemma 10 b) it follows that

1− Fa,I ∗ Φ(u)− ψ(u) ≈ κ

µ2(α− 1)
u1−α ≈ κ

µ2(α− 1)
(a+ u)1−α (2.56)

By Lemma 8 b) and (2.28), it follows that:
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1− Pa,α ∗ Φ(u) ≈

[(
au

a+ u

)α−1

+
ηα

(c+ λ1µ1 − λ2µ2)Γ(2− α)

+
λ2κ

c+ λ1µ1 − λ2µ2

]
u1−α. (2.57)

This together with (2.28) and Lemma 10 a) implies:

1− Pa,α ∗ Φ(u)− ψ(u) ≈
(

a

a+ u

)α−1

. (2.58)

Now using (2.56), (2.58) and Lemma 10 b), again, we obtain

Υ0(u, a) ≈ 1

c+ λ1µ1 − λ2µ2

[
ηα

Γ(2− α)
+

λ2κ

α− 1

]
(a+ u)1−α.

Case 3. By the assumption that u−α = o
(
F 2(u)

)
, we apply L’Hospital’s rule to obtain

u1−α = o
(
F 2,I(u)

)
.

Since P a,α(u) =
(
au
a+u

)α−1
u1−α and lim

u→∞

( auy
a+uy )

α−1

( au
a+u)

α−1 = 1 for all y > 0, we have

P a,α(u) ≈ u1−α.

Hence P a,α(u) = o
(
F 2,I(u)

)
, and by Corollary 8 and (2.29) we obtain 1 −

Pa,α ∗Φ(u) ≈ λ2µ2

c+λ1µ1−λ2µ2
F 2,I(u). By (2.29) and Lemma 10, we conclude that

1− Pa,α ∗ Φ(u)− ψ(u) = o(F 2,I(u)).

By Lemma 8 b),

1− Fa,I ∗ Φ(u) ≈
(

1

F 2,I(a)
+

λ2µ2

c+ λ1µ1 − λ2µ2

)
F 2,I(a+ u),

and by Lemma 10 b), this implies 1− Fa,I ∗ Φ(u)− ψ(u) ≈ F a,I(u). Hence,

by Lemma 10 a) we obtain (2.52) again.
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If ∆ = b we have:

Υ∗(u, a, b) =
1

c+ λ1µ1 − λ2µ2

u∫
0

∞∫
u−y

[
λ2F 2(a+ z) +

ηα(α− 1)

Γ(2− α)
(a+ z)−α

]
1{z>b}dzΦ(dy)

=
1

c+ λ1µ1 − λ2µ2

u∫
0

[
λ2µ2F 2,I(a+ b) +

ηα

Γ(2− α)
(a+ b)1−α

]
Φ(dy)

=
λ2µ2F 2,I(a+ b) + ηα

Γ(2−α)(a+ b)1−α

c+ λ1µ1 − λ2µ2
Φ(u).

Hence the result follows dividing Υa,b(u) by
λ2µ2F 2,I(a+ b) + ηα

Γ(2−α)
(a+ b)1−α

c+ λ1µ1 − λ2µ2

, then

letting u→∞ and applying cases 1,2,3 with u replaced by b.

Finally, as in the case of Corollary 1, Lemma 10 gives the following result.

Corollary 5. For any of the cases in (2.26), the joint tail Υa,b(u) has the asymptotic

expression:

ψ(u) ≈ ηα

(c+ λ1µ1 − λ2µ2) Γ(2− α)
(a+ ∆)1−α +

λ2µ2

c+ λ1µ1 − λ2µ2

F 2,I(a+ ∆)

In particular, if F 2(u) ≈ L1(u)u−α for some slowly varying function L1, and F 2

satisfies any of the cases in (2.26), we have:

ψ(u) ≈ 1

c+ λ1µ1 − λ2µ2

[
ηα

Γ(2− α)
+

λ2

α− 1
L1(a+ ∆)

]
(a+ ∆)1−α

2.5.3 Asymptotic behavior of Υa,b(u) in the spectrally nega-

tive case

This final subsection aims to provide the corresponding result for the joint tail of the

time to ruin, the severity of ruin and the surplus prior to ruin, for the case of the

Lévy risk process studied in Furrer [1998].

The approach is the same as in the previous section, and all results are stated
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without proofs. Instead, we refer to Kolkovska and Mart́ın-González [2016] for the

fully detailed proofs.

We begin with some basic notation: throughout this section, X = {X (t), t ≥ 0}
is the classical risk process with an α-stable perturbation, defined by the equation

X (t) = u+ ct− S(t)− ηWα(t), (2.59)

where u ≥ 0 is the insurance company’s initial capital, c ≥ 0 is a premium per unit

time, S = {S(t), t ≥ 0} is a compound Poisson process with Lévy measure λf(x)dx,

such that f is a probability density, and Wα = {Wα(t), t ≥ 0} is an α-stable process

with only positive jumps, with α ∈ (1, 2), independent of S.

In this case, Υa,b(u) is defined analogously as in the previous section, as

Υa,b(u) = P [|X (τ0)| > a,X (τ0−) > b, τ0 <∞|X (0) = u] ,

where τ0 is the first passage time below zero of X (time to ruin of X).

Notice that Υ(u, a, b) is the EDPF of the process X in the particular case ω(x, y) =

1{x>a,y>b} and δ = 0. Hence using Theorem 1 in Biffis and Kyprianou [2009], for

ω(x, y) = 1{x>a,y>b} we obtain:

φ(u) =

u∫
0

(
W(q)′(u− y)− ρW(q)(u− y)

) ∞∫
y

e−ρ(v−y)×

[
ηα

α− 1

Γ(2− α)

1

(v + a)α
+ λF (v + a)

]
1{v>b}dvdy

If we set q = 0, the formula above yields:

Υ(u, a, b) =

u∫
0

W′(u− y)

∞∫
y

[
ηα

α− 1

Γ(2− α)

1

(v + a)α
+ λF (v + a)

]
1{v>b}dvdy
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=

u∫
0


∞∫

u−y

[
ηα

α− 1

Γ(2− α)

1

(v + a)α
+ λF (v + a)

]
1{v>b}dv

W ′(y)dy (2.60)

Now we consider the same three cases from the previous section. For this, we

denote by F I(u) the integrated tail corresponding to f .

Case 1. F I(u) = o(u1−α)

Case 2. F ∈ RV−α

Case 3. FI ∈ S and u1−α = o(F I(u))

Theorem 11. Let F satisfy one of the cases above, where in case 2 we assume that

F (x) = x−αL(x) with lim
x→∞

L(x) = CL ∈ [0,∞]. If b is fixed and u → ∞, or if both

u, b→∞, then

Υ(u, a, b) ≈ λµ

c− λµ
F I(a+ ∆) +

η

(c− λµ)Γ(2− α)

(
η

a+ ∆

)α−1

,

where ∆ = max {u, b}. In cases a) and c) we have, respectively, the approximations

Υ(u, a, b) ≈ η

(c− λµ)Γ(2− α)

(
η

a+ ∆

)α−1

and Υ(u, a, b) ≈ λµ

c− λµ
F I(a+ ∆).

An application of the theorem above yields the following expressions for the tail

of the severity of ruin Υ(u, a, 0), and the tail of the surplus prior to ruin Υ(u, 0, b).

Corollary 6. Under the conditions of Theorem 11, we have

Υ(u, a, 0) ≈ λµ

c− λµ
F I(a+ u) +

η

(c− λµ)Γ(2− α)

(
η

a+ u

)α−1

, when u→∞,

Υ(u, 0, b) ≈ λµ

(c− λµ)
F I(∆) +

η

(c− λµ)Γ(2− α)

( η
∆

)α−1

, when u, b→∞.



Chapter 3

Wiener-Hopf factorization

In this chapter we study the negative Wiener-Hopf factor for two-sided jumps Lévy

risk processes X , defined by the equation

X (t) = ct+ γB(t) + Z(t)− S(t), , t ≥ 0, (3.1)

where c ≥ 0 is a drift term, Z = {Z(t), t ≥ 0} is a compound Poisson process with

Lévy measure λ1f1(x), where f1 is a probability density with Laplace transform given

by (2), B = {B(t), t ≥ 0} is a Brownian motion and S = {S(t), t ≥ 0} is a pure jumps

Lévy process with positive jumps. This process X includes, as a particular case, the

process Vα considered in the previous section in the case when u = 0.

We use the results obtained about these Wiener-Hopf factors to calculate the

generalized version of the EDPF associated to u+ X , for u ≥ 0.

We also make use of the known result for the probability density of the positive

Wiener-Hopf factor for the class of processes defined by X . Such probability density

has been previously studied in Lewis and Mordecki [2008].

3.1 Notation and preliminary results

Before proceeding with the statement and proofs of our results, we point out some

basic properties of Lévy processes and define some recquired notation.

We set ΨS(r) =
∞∫

0+

(
1− e−rx − rx1{x<1}

)
νS(dx) and assume that E[X (1)] > 0.

This condition implies that the process X drifts to infinity and, as stated in Biffis and

Kyprianou [2009], besides the usual condition on Lévy measures
∞∫

0+

(x2 ∧ 1) νS(dx) <

∞, we have
∞∫

0+

(x2 ∧ x) νS(dx) <∞.

In the case when S is a subordinator, we also have
∞∫

0+

(x ∧ 1) νS(dx) <∞, meaning

that the Lévy measure of S has a finite mean in this case. In the sequel, we denote

71
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this mean by µS =
∞∫

0+

xνS(dx).

The inequality
∞∫

0+

(x2 ∧ x) νS(dx) <∞ implies that we can rewrite ΨS(r) without

using the indicator function 1{x<1}. Hence, if S is a subordinator we have cr−ΨS(r) =

(c+ µS)r−GS(r), where GS(r) =
∞∫

0+

(1− e−rx) νS(dx). In view of this, we define the

Generalized Lundberg Function associated to X as

LX (r) = cr + γ2r2 + λ1

(
Q(−r)∏N

j=1(qj − r)mj
− 1

)
−ΨS(r). (3.2)

when S is a pure positive jumps process but not a subordinator and

LX (r) = cr + γ2r2 + λ1

(
Q(−r)∏N

j=1(qj − r)mj
− 1

)
−GS(r). (3.3)

when S is a subordinator, assuming that in this case the drift c is of the form c0 +µS

for some c0 such that c0 + µS ≥ 0.

We let Ψ
[c]
X (r) = − logE

[
eirX (1)

]
denote the characteristic exponent of X . Hence,

the GLF above is related to Ψ
[c]
X (r) by the equality

−Ψ
[c]
X (−ir) = LX (r). (3.4)

Moreover, we also obtain the equality LX (r) = logE[erX (1)] for r < q1, which means

that the GLF coincides with the exponent of the moment generating function of X (1)

for all r for which this moment generating function exists.

Let us set VS(u) =
∞∫
u

νS(dx). We shall use the following property valid when S is

a subordinator (see, for instance, exercise 2.11 in Kyprianou [2006]):

GS(r) = rV̂(r). (3.5)

We also recall the following property (see Kyprianou [2006], Chapter 7): the

Wiener-Hopf factors can be identified through their Laplace exponents by the relations
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E
[
e−rS

X
eq

]
= κA(q,0)

κA(q,r)
and E

[
e−r(−I

X
eq)
]

= κD(q,0)
κD(q,r)

(3.6)

where 1
κA(s,r)

and 1
κD(s,r)

are the respective bivariate Laplace transforms of the func-

tions UA(dx, dy) and UD(dx, dy). These functions are, respectively, the potential

measures of the associated ascending and descending ladder processes (see Kypri-

anou [2006], Chapter 7 for further information on this). In Section 3.3 (specifically,

in the proof of the main result of this section), we identify two functions related to

these potential measures, which are closely related to the distributions of the positive

and negative Wiener-Hopf factors.

We denote the q-scale functions for spectrally negative Lévy process as W(q),

as we did in Chapter 1, and recall the notation C+ = {z ∈ C : Re(z) ≥ 0} and

C++ = {z ∈ C : Re(z) > 0}. For a given function L : C → C, we also recall that

s ∈ C is a root of the function L, with multiplicity m ≥ 1, if L(s) = 0, dj

drj
L(r)|r=s = 0

for all j = 1, 2, . . . ,m− 1 and dm

drm
L(r)|r=s 6= 0.

We consider the following three cases:

Case A. c = γ = 0 and S is a driftless subordinator (other than a compound Poisson

process),

Case B. c > 0, γ = 0 and S is any subordinator,

Case C. Any other case except when c = γ = 0 and S is a compound Poisson process.

We use the following result, which follows from Lemma 1.1 in Lewis and Mordecki

[2008] and (3.4)

Lemma 13. If δ > 0:

a) In case A, LX (r)− δ = 0 has m roots in C++,

b) In cases B and C, LX (r)− δ = 0 has m+ 1 roots in C++.
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In all the cases above, there is exactly one root ρ1,δ in the interval (0, q1). This

root is such that lim
δ↓0

ρ1,δ = 0 and ρ1,0 = 0, in cases A, B and C. In all these cases,

ρ1,0 = 0 is a simple root.

In what follows we denote by βA the function whose value is 1 in case A, and

0 otherwise. We assume that the equation LX (r) − δ = 0 has R different roots in

C++, denoted respectively by ρ1,δ, . . . , ρR,δ with multiplicities k1, k2, . . . , kR such that
R∑
j=1

kj = m+ 1−βA. We let ρ1,δ be the real root such that ρ1,δ ∈ [0, q1), which implies

k1 = 1.

It can be proved that, for all j, the roots ρj,δ have a limit when δ ↓ 0. We denote

this limits as ρj, i.e.

ρj := lim
δ↓0

ρj,δ (3.7)

Using LX (ρ1,δ) = δ, lim
δ↓0

ρ1,δ = 0 and the fact that ρ1,δ and 0 are simple roots, respec-

tively, of LX (r)− δ = 0 and LX (r) = 0, we obtain by L’Hopital’s rule

lim
δ↓0

δ

ρ1,δ

= lim
δ↓0

LX (ρ1,δ)

ρ1,δ

= lim
ρ1,δ→0

LX (ρ1,δ)

ρ1,δ

= L′X (0+) = E[X (1)], (3.8)

where LX (0+) := d
dr
LX (r)|r=0.

Now we define an operator which is required in our main results.

For a = 0, 1, . . . ,m+ 1, we define Ts;a by the equation

Ts;af(u) =

∞∫
u

(y − u)ae−s(y−u)f(y)dy,

for each measurable f and complex s such that the integral above exists and is finite.

Clearly this operator is linear. If ν is a measure such that
∞∫
u

(y − u)ae−s(y−u)ν(dy)

exists, we define

Ts;aν(u) =

∞∫
u

(y − u)ae−s(y−u)ν(dy) (3.9)
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for a = 0, 1, . . . ,m + 1. We denote the corresponding Laplace transforms as T̂s;af(r)

and T̂s;aν(r), for all r ∈ C+ such that these Laplace transforms exist.

In the case when a = 0, we obtain the operators Tsf(x) and Tsν(x) defined in (1.2)

and (1.4). The following lemma is easy to prove and it relates the Laplace transforms

of T and T .

Lemma 14. Let f be a function (or a measure) such that Ts,kf(u) exists for every

s ∈ C++, k ∈ N ∪ {0} and u > 0, then for each r ∈ C+, s ∈ C++ and k ∈ N ∪ {0},
we have ∂k

∂sk
T̂sf(r) = (−1)kT̂s,kf(r).

For each j = 1, 2, . . . , R and δ ≥ 0 we set

E(j, a, δ) =

(
kj − 1

a

)
(−1)1−kj+a

(kj − 1)!

∂kj−1−a

∂skj−1−a


N∏
l=1

(ql − s)ml(ρj,δ − s)kj

R∏
l=1

(ρl,δ − s)kl


s=ρj,δ

,

E∗(j, a, δ) =

(
kj − 1

a

)
(−1)1−kj+a

(kj − 1)!

∂kj−1−a

∂skj−1−a


N∏
l=1

(ql − s)ml(ρj,δ − s)kj

R∏
l=1

(ρl,δ − s)kl
s


s=ρj,δ

,

and define, for δ ≥ 0, the functions

`δ(u) =
R∑
j=1

kj−1∑
a=0

E(j, a, δ)Tρj,δ ;aνS(u), (3.10)

Lδ(u) =
R∑
j=1

kj−1∑
a=0

E∗(j, a, δ)Tρj,δ;aVS(u) (3.11)

We have the following technical lemma.

Lemma 15. Let νS be the Lévy measure of a spectrally positive pure jumps Lévy
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process. Then

ΨS(r1)−ΨS(r2)

r2 − r1

= r2T̂r2VS(r1)− ΨS(r1)

r1

= r1T̂r2VS(r1)− ΨS(r2)

r2

(3.12)

for any r1, r2 ∈ C+ such that r1 6= r2.

Additionally, if the condition
∞∫

0+

(x2 ∧ x) νS(dx) <∞ holds, then

−ΨS(r) = r

∞∫
0+

(
1− e−rx

)
VS(x)dx (3.13)

Proof. See Appendix A.

3.2 The Wiener-Hopf factors of X

In this section we obtain an explicit expression for the probability density of the

negative Wiener-Hopf factor IXeδ .

In order to simplify our notation, we define the constants

aδ = δ
∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

when δ > 0, and a0 = Ψ′X (0+)
∏N
j=1 q

mj
j∏R

j=2 ρ
kj
j,0

when δ = 0.

We also recall the following notation from Chapter 2: Q1(r) =
N∏
i=1

(qi − r)mi and

ê+
δ (r) =

∏N
j=1(qj−r)mj∏R
l=1(ρl,δ−r)kl

, for r 6= ρj,δ, j = 1, 2, . . . , R.

The following lemma is key for our main result.

Lemma 16. The term [δ − LX (r)] ê+
δ (r) has the following equivalent representations,

for δ ≥ 0.

aδ +GS(r) + ̂̀δ(0)− ̂̀δ(r), in Case A,

aδ + ̂̀δ(0)− ̂̀δ(r), in Case B,

aδ + γ2r − ΨS(r)
r
−
[
L̂δ(0)− L̂δ(r)

]
, in Case C.

(3.14)
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Proof. For the proof of the case δ > 0, see Appendix A. The case δ = 0 follows by

taking limits when δ ↓ 0 and using (3.7) and (3.8).

Let us consider the following functions, for j = 1, 2, 3:

χj,S(x; δ)dx =



νS(dx) + `δ(x)dx j = 1,

`δ(x)dx j = 2,

[
VS(x)− Lδ(x)

]
dx j = 3.

(3.15)

defined for x > 0 and δ ≥ 0.

We have the following important result.

Proposition 5. The function χj,S(y; δ) satisfies the equality

∞∫
0+

(
1− e−ry

)
χj,S(y; δ)dy =

∫
(0,∞)2

(
1− e−ry

)
e−δxΛj(dx, dy),

for j = 1, 2, 3, where Λj(dx, dy) is the Lévy measure of a bivariate subordinator.

Therefore, χj,S(x; δ)dx is the marginal Laplace transform
∫

(0,∞)

e−δxΛj(dx, dy) and it

is also the Lévy measure of some univariate subordinator.

Proof. By Theorem 2.2 in Lewis and Mordecki [2008], we have

E
[
eirS

X
eδ

]
= δ−1

∏R
j=1 ρ

kj
j,δ∏N

j=1 q
mj
j

ê+
δ (ir),

for s ∈ R. Therefore (1.8) gives: E
[
eirI

X
eδ

]
=

δ

∏N
j=1 q

mj
j∏R

j=1
ρ
kj
j,δ[

δ+Ψ
[c]
X (r)

]
ê+δ (ir)

.
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An application of the relation −Ψ
[c]
X (−ir) = LX (r), for r ≥ 0, yields:

E
[
e−r[−I

X
eδ

]
]

=

δ
∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

[δ − LX (r)] ê+
δ (r)

(3.16)

Since −IXeδ is a nonnegative random variable, it suffices to work with its Laplace

transform, as given in (3.16). Now by Lemma 16, (3.16) and the definition of aδ, we

have:

E
[
e−r[−I

X
eδ

]
]

=


aδ

aδ+GS(r)+̂̀δ(0)−̂̀δ(r) , in Case A,

aδ
aδ+̂̀δ(0)−̂̀δ(r) , in Case B,

aδ

aδ+γ2r−ΨS (r)

r
−
[
L̂δ(0)−L̂δ(r)

] , in Case C.

(3.17)

We apply (3.13) in case C to obtain −ΨS(r)
r

=
∞∫

0+

(1− e−rx)VS(x)dx. This and

the equality L̂δ(0) − L̂δ(r) =
∞∫

0+

(1− e−rx)Lδ(x)dx give −ΨS(r)
r
−
[
L̂δ(0)− L̂δ(r)

]
=

∞∫
0+

(1− e−rx)χ3,S(x; δ)dx. Hence, from (3.17) and (3.15) we obtain

E
[
e−r[−I

X
eδ

]
]

=



aδ

aδ+
∞∫

0+

(1−e−rx)χ1,S(x;δ)dx
, in case A,

aδ

aδ+
∞∫

0+

(1−e−rx)χ2,S(x;δ)dx
, in case B,

aδ

aδ+γ2r+
∞∫

0+

(1−e−rx)χ3,S(x;δ)dx
, in case C.

(3.18)

We note that −IXeδ is the positive Wiener-Hopf factor of −X , therefore, by the

arguments in Kyprianou [2006], p. 165, there exist bivariate Lévy measures Λj(dx, dy)

and subordinators Hj = {Hj(t), t ≥ 0}, for j = 1, 2, 3 such that

bjr +

∞∫
0+

(
1− e−ry

) ∞∫
0+

e−δxΛj(dx, dy) = κD(δ, r)− κj,D(δ, 0), (3.19)
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and

E
[
e−r[−I

X
eδ

]
]

=



E
[
e
−rH1

(
eκ1,D(δ,0)

)]
=

κ1,D(δ,0)

κ1,D(δ,0)+[κ1,D(δ,r)−κ1,D(δ,0)]
in case A

E
[
e
−rH2

(
eκ2,D(δ,0)

)]
=

κ2,D(δ,0)

κ2,D(δ,0)+[κ2,D(δ,r)−κ2,D(δ,0)]
in case B

E
[
e
−rH3

(
eκ3,D(δ,0)

)]
=

κ3,D(δ,0)

κ3,D(δ,0)+[κ3,D(δ,r)−κ3,D(δ,0)]
in case C

where eκj,D(δ,0), for j = 1, 2, 3, are exponential random variables with mean 1/κj,D(δ, 0),

independent of Hj.

From (3.18) we identify

κj,D(δ, r)− κj,D(δ, 0) =



∞∫
0+

(1− e−rx)χ1,S(x; δ)dx for j = 1 in case A

∞∫
0+

(1− e−rx)χ2,S(x; δ)dx for j = 2 in case B

γ2r +
∞∫

0+

(1− e−rx)χ3,S(x; δ)dx for j = 3 in case C

Comparing this with (3.19) and using the unicity of the Wiener-Hopf factorization,

we conclude that b3 = γ2, b1 = b2 = 0, and
∞∫

0+

e−δxΛj(dx, dy) = χj,S(y; δ)dy for

j = 1, 2, 3, hence the result follows.

Definition 3. For j = 1, 2, 3 we denote by Nj,δ = {Nj,δ(t), t ≥ 0}, δ ≥ 0, the subordi-

nator with Lévy measure χj,S(x; δ)dx, and define, or δ ≥ 0, the function Wδ(u), u > 0

through its Laplace transform:

Ŵδ(r) =
1

[δ − LX (r)] ê+
δ (r)

. (3.20)

Remark 2. We note that N2,δ is a compound Poisson process.

It is easy to prove that IXeδ
d→ IX∞ when δ ↓ 0. With this in mind, when we refer

to the case δ ≥ 0 we understand the case δ = 0 as a limit case. The following is our
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first main result in this section. It summarizes the results obtained previously.

Theorem 12. For δ ≥ 0, the following assertions hold:

a) The random variables −IXeδ for δ > 0 and −IX∞ satisfy the equalities in distribution:

−IXeδ
d
=


N1,δ(eaδ) in case A

N2,δ(eaδ) in case B

γ2eaδ +N3,δ(eaδ) in case C

(3.21)

where eaδ is an exponential random variable with mean 1/aδ, for δ ≥ 0, indepen-

dent of Nj,δ for j = 1, 2, 3.

b) We have

E
[
e−r[−I

X
eδ

]
]

= aδŴδ(r).

c) The function Ŵδ(r) satisfies the following equalities:

aδŴδ(r) =



E[e−rS(eaδ
)]

1+ 1
aδ

E[e−rS(eaδ
)][̂̀δ(0)−̂̀δ(r)] , in Case A,

aδ
aδ+̂̀

δ(0)

1− 1

aδ+̂̀
δ(0)

̂̀
δ(r)

, in Case B,

aδŴ
′
Y (r)

1−Ŵ′Y (r)
[
L̂δ(0)−L̂δ(r)

] , in Case C,

(3.22)

where Ŵ′
Y(r) is given by

Ŵ′
Y(r) =

r

aδr + γ2r2 −ΨS(r)
, r, δ ≥ 0

In particular, Ŵ′
Y(r) is the Laplace transform of the derivative of the scale function

(for q = 0) of the spectrally negative Lévy process Yδ = {Yδ(t), t ≥ 0} given by

Yδ(t) = aδt+ γB(t)− S(t), δ ≥ 0, γ ≥ 0.

Proof. The statements in b) follow from (3.20) and (3.16). For a) and c) we prove all

the results for δ > 0. The results for δ = 0 follow by taking limits.
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Case A: From (3.20) and Lemma 16 we obtain:

aδŴδ(r) =
aδ

aδ +GS(r) + ̂̀δ(0)− ̂̀δ(r) =

aδ
aδ+GS(r)

1 + 1
aδ

aδ
aδ+GS(r)

[̂̀
δ(0)− ̂̀δ(r)] . (3.23)

Substituting the equality E
[
e−rS(eaδ )

]
= aδ

aδ+GS(r)
in (3.23), we obtain c). The

result in a) follows from E
[
e−r(N1,δ(eaδ ))

]
= aδ

aδ+GS(r)+̂̀δ(0)−̂̀δ(r) , and (3.23).

Case B: From (3.20) and Lemma 16 we obtain aδŴδ(r) = aδ
aδ+̂̀δ(0)−̂̀δ(r) , which

implies c). The result in b) follows from the equality E
[
e−rN2,δ(eaδ )

]
= aδ

aδ+̂̀δ(0)−̂̀δ(r) .
Case C: Now we let Yδ = {Yδ(t), t ≥ 0} be as in the statement of this theorem.

By (1.9), the q-scale function (for q = 0) WY of Y has Laplace transform

ŴY(r) =
1

aδr + γ2r2 −ΨS(r)
.

In case C there is at least one process with unbounded variation (either the Brownian

motion or the claim process S), hence WY ∈ C1(0,∞) and W′
Y(0) = 0. Therefore, by

(1.10) we have

Ŵ′
Y(r) =

r

aδr + γ2r2 −ΨS(r)
.

Using (3.20), Lemma 16 and the equality Ŵ′
Y(r) = r

aδr+γ2r2−ΨS(r)
, it follows that:

aδŴδ(r) =
aδ

aδ + γ2r − ΨS(r)
r
−
[
L̂δ(0)− L̂δ(r)

]
=

aδ
1

aδ+γ2r−ΨS (r)

r

1− 1

aδ+γ2r−ΨS (r)

r

[
L̂δ(0)− L̂δ(r)

] (3.24)

=
aδ

r
aδr+γ2r2−ΨS(r)

1− r
aδr+γ2r2−ΨS(r)

[
L̂δ(0)− L̂δ(r)

]
=

aδŴY(r)

1− ŴY(r)
[
L̂δ(0)− L̂δ(r)

] (3.25)
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This proves c). Now we note that:

E
[
e−r(γ

2eaδ+N3,δ(eaδ ))
]

=
aδ

aδ + γ2r − ΨS(r)
r
−
[
L̂δ(0)− L̂δ(r)

] .
Therefore (3.24) gives the result in a).

We let Θδ(x), δ ≥ 0 be the distribution of the random variable S(eaδ). For sim-

plicity, we assume that this distribution has a density θδ, although an extension for

the case when such a density does not exist is simple. Under this assumption we have

θ̂δ(r) = aδ
aδ+GS(r)

. We are now ready to state and prove our main result, in which we

invert Ŵδ(r) for cases A, B and C.

Theorem 13. (Main Theorem III).

For δ ≥ 0, the random variable −IXeδ has density function aδWδ(u), u > 0, where:

Wδ(u) =



1
aδ
θδ(u) + 1

aδ
θδ ∗

∞∑
n=1

(
− 1

aδ

)n(̂̀
δ(0)θδ − `δ ∗ θδ

)∗n
(u) in Case A,

1

aδ + ̂̀δ(0)
δ0 +

1

aδ + ̂̀δ(0)

∞∑
n=1

(
1

aδ + ̂̀δ(0)

)n
`∗nδ (u), in Case B,

W′Y(u) + W′Y ∗
∞∑
n=1

(
L̂δ(0)W′Y −W′Y ∗ Lδ

)∗n
(u) in Case C,

(3.26)

where δ0 is Dirac’s delta function.

Proof. By Theorem 12 c) and the definition of θδ, we have:

In case A:

Ŵδ(r) =
1

aδ
θ̂δ(r)

∞∑
n=0

(
− 1

aδ
E
[
e−rS(eaδ )

] [̂̀
δ(0)− ̂̀δ(r)])n

=
1

aδ
θ̂δ(r) +

1

aδ
θ̂δ(r)

∞∑
n=1

(
− 1

aδ
E
[
e−rS(eaδ )

] [̂̀
δ(0)− ̂̀δ(r)])n (3.27)
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In case B:

Ŵδ(r) =
1

aδ + ̂̀δ(0)

∞∑
n=0

(
1

aδ + ̂̀δ(0)
̂̀
δ(r)

)n

=
1

aδ + ̂̀δ(0)
+

1

aδ + ̂̀δ(0)

∞∑
n=1

(
1

aδ + ̂̀δ(0)
̂̀
δ(r)

)n

(3.28)

and, in case C:

Ŵδ(r) = Ŵ′
Y(r)

∞∑
n=0

(
Ŵ′
Y(r)

[
L̂δ(0)− L̂δ(r)

])n
= Ŵ′

Y(r) + Ŵ′
Y(r)

∞∑
n=1

(
Ŵ′
Y(r)

[
L̂δ(0)− L̂δ(r)

])n
(3.29)

Now the result follows inverting the formulae in the second equality in (3.27),

(3.28) and (3.29) for the case δ > 0. The result for δ = 0 follows by taking limits.

3.2.1 Two particular cases

We study two important particular subcases of case C. First we show that our formula

in Theorem 12 has an alternative expression in the following subcase: Let us suppose

that the negative jumps in the process X are given by the process −(S +M), where

S = {S(t), t ≥ 0} is a subordinator and M = {M(t), t ≥ 0} is a pure jumps process

with unbounded variation and only positive jumps.

This means we work with the process X whose GLF is given by

LX (r) = λ1

(
Q(−r)∏N

j=1(qj − r)mj
− 1

)
+ γ2r2 + cr −GS(r)−ΨM(r), (3.30)

where −ΨM(r) = −
∞∫

0+

(1 − e−rx − rx)νM(dx) is the Laplace exponent of M and

νM(dx) is its corresponding Lévy measure, c ≥ 0 and λ1,
Q(−r)∏N

j=1(qj−r)mj
, γ2 and GS(r)

are as before. Again we suppose that E [X (1)] > 0.
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The case we now study includes, as a particular case, the process studied in

Chapter 2 where S is a compound Poisson process andM is an α-stable process with

only positive jumps and α ∈ (1, 2).

In view of Theorem 14 and Corollary 7, we only need to study the measure

aδWδ(du) corresponding to the distribution of the corresponding negative Wiener-

Hopf factor.

Since the case we are considering is a particular case of Case 3 (as defined before),

we work with the function Lδ(u) defined in (3.11). We denote by νS and νM the Lévy

measures of S and M, respectively, and define the function

Lδ,M(u) =
R∑
j=1

kj−1∑
a=0

E∗(j, a, δ)Tρj,δ ;aVM(u)

We have the following result.

Lemma 17. Suppose that X = {X (t), t ≥ 0} is given by

X (t) = ct+ Z(t) + γB(t)− S(t)−M(t), (3.31)

where S is a subordinator andM is a pure jumps Lévy process with unbounded varia-

tion and positive jumps. Then, for δ ≥ 0, the term [LX (r)− δ] ê+
δ (r) has the equivalent

representation:

[LX (r)− δ] ê+
δ (r) = c+ γ2Dδ + γ2r − ̂̀δ(r)− ΨM(r)

r
+ L̂δ,M(r), (3.32)

where

Dδ =
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


R∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)
s


s=ρl,δ

.

Proof. From (A.51) we obtain
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[δ − LX (r)] ê+
δ (r) = c+ γ2Dδ + γ2r − ΨS+M(r)

r

+
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
sT̂sVS+M(r)


s=ρl,δ

(3.33)

Since ΨS+M(r) = GS(r) + ΨM(r), we deduce that T̂sVS+M(r) = T̂sVM(r) +

T̂sVS(r).

The two equalities above and (3.56) imply that the expression in (3.33) is equi-

valent to

[δ − LX (r)] ê+
δ (r)

= c+ γ2Dδ + γ2r − ΨM(r)

r

+

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj

(
sT̂sVM(r) + sT̂sVS(r)− GS(r)

r

)
s=ρl,δ

(3.34)

Now we have

sT̂sVS(r)− GS(r)

r
= s

∞∫
0+

(e−rx − e−sx)
∞∫
x
νS(dy)dx

s− r
−

∞∫
0+

(1− e−rx)νS(dx)

r

= s

∞∫
0+

y∫
0

(e−rx − e−sx)dxνS(dy)

s− r
−

∞∫
0+

(1− e−rx)νS(dx)

r

= s

∞∫
0+

[
1
r (1− e−rx)− 1

s (1− e−sx)
]
νS(dx)

s− r
−

∞∫
0+

(1− e−rx)νS(dx)

r
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Simplifying the right-hand side in the third equality above we obtain:

s

∞∫
0+

[
1
r (1− e−rx)− 1

s (1− e−sx)
]
νS(dx)

s− r
−

∞∫
0+

(1− e−rx)νS(dx)

r

= s

∞∫
0+

[
1
r (1− e−rx)− 1

s (1− e−sx)
]
νS(dx)

s− r
− (s− r)

∞∫
0+

(1− e−rx)νS(dx)

(s− r)r

=

∞∫
0+

[
s
r (1− e−rx)− (1− e−sx)

]
νS(dx)− s

r

∞∫
0+

(1− e−rx)νS(dx) +
∞∫

0+

(1− e−rx)νS(dx)

s− r

=

∞∫
0+

[e−sx − e−rx] νS(dx)

s− r
= −T̂sνS(r)

where the last equality follows from (1.5).

Applying the equality above and the linearity of the partial derivatives we obtain:

[δ − LX (r)] ê+
δ (r) = c+ γ2Dδ + γ2r − ΨM(r)

r

−
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
T̂sνS(r)


s=ρl,δ

+
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
sT̂sVM(r)


s=ρl,δ

(3.35)

By definition of `δ(u) and Lδ,M(u), the equality above gives the result.

In the next result we show that the function Ŵδ(r), r ≥ 0, admits an alternative

representation.

Proposition 6. Suppose X is the process given in (3.31). Let κδ = ̂̀
δ(0) + L̂δ,M(0).
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Then

Ŵδ(r) =
ϑ̂δ(r)

1−
[
κδϑ̂δ(r) + ̂̀δ(r)ϑ̂δ(r)]

where

ϑ̂δ(r) =
Ŵ′
M−(r)

1 + L̂δ,M(r)Ŵ′
M−

,

is the Laplace transform of the function

ϑδ(u) = W′
M−(u) + W′

M− ∗
∞∑
n=1

(−1)n (Lδ,M ∗W′
M−)

∗n
(u), u > 0

and

Ŵ′
M−(r) =

r

(c+ γ2Dδ + κδ) r + γ2r2 −ΨM(r)
(3.36)

is the Laplace transform of the first derivative of the scale function WM−(x), x > 0

corresponding to the spectrally negative process M− = {M−(t), t ≥ 0} defined as

M−(t) =
(
c+ γ2Dδ + κδ

)
t+ γB(t)−M(t).

Moreover, the function Ŵδ(r) is the Laplace transform of the function

Wδ(u) = ϑδ(u) + ϑδ ∗
∞∑
n=1

(κδϑδ + `δ ∗ ϑδ)∗n (u), u > 0

Proof. By Lemma 17 and (3.20) we have

Ŵδ(r) =
1

c+ γ2Dδ + γ2r − ̂̀δ(r)− ΨM(r)
r

+ L̂δ,M(r)
.

We add and subtract kδ as defined in the statement of this proposition and apply

some basic algebra to obtain:

Ŵδ(r) =
1

c+ γ2Dδ ± κδ + γ2r − ̂̀δ(r)− ΨM(r)
r

+ L̂δ,M(r)
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=

1

c+γ2Dδ+κδ+γ2r−ΨM(r)

r
+L̂δ,M(r)

1−
[
κδ + ̂̀δ(r)] 1

c+γ2Dδ+κδ+γ2r−ΨM(r)

r
+L̂δ,M(r)

=

1

c+γ2Dδ+κδ+γ2r−ΨM(r)

r

1

1+L̂δ,M(r) 1

c+γ2Dδ+κδ+γ2r−ΨM(r)
r

1−
[
κδ + ̂̀δ(r)] 1

c+γ2Dδ+κδ+γ2r−ΨM(r)

r

1

1+L̂δ,M(r) 1

c+γ2Dδ+κδ+γ2r−ΨM(r)
r

=

r
(c+γ2Dδ+κδ)r+γ2r2−ΨM(r)

1

1+L̂δ,M(r) r

(c+γ2Dδ+κδ)r+γ2r2−ΨM(r)

1−
[
κδ + ̂̀δ(r)] r

(c+γ2Dδ+κδ)r+γ2r2−ΨM(r)
1

1+L̂δ,M(r) r

(c+γ2Dδ+κδ)r+γ2r2−ΨM(r)

The result follows applying (1.10) and the definition of ϑ̂δ(r), and then inverting the

resulting Laplace transform.

In the following proposition we consider another particular subcase of case C, in

which we can find an expression for W′
Y .

Proposition 7. Let X satisfy case C in the situation when its negative jumps are

given by −S, where S is a driftless subordinator. Suppose also that γ > 0, then:

W′
Y(u) =

1

aδ + µS
e(aδ+µS)/γ2(u) +

1

aδ + µS
e(aδ+µS)/γ2 ∗

∞∑
n=1

(
e(aδ+µS)/γ2 ∗ VS

)∗n
(u),

where VS(x) =
∞∫
x

νS(dy), µS =
∞∫
0

xνS(dx) and e(aδ+µS)/γ2(u)du, u > 0 is an expo-

nential density with mean γ2/(aδ + µS),

Proof. From (3.22) we have that Ŵ′
Y(r) = r

aδr+γ2r2−ΨS(r)
, or equivalently

Ŵ′
Y(r) =

1

aδ + γ2r − ΨS(r)
r

.

We recall that ΨS(r)
r

= µS+
∞∫
0

e−rxVS(x)dx = µS+V̂S(r), and that µS <∞ because of

the assumption that E [X (1)] > 0. Using the last equality together with the definition
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of ê(aδ+µS)/γ2 we obtain:

Ŵ′
Y(r) =

1

aδ + µS + γ2r − V̂S(r)
=

1
aδ+µS

aδ+µS
aδ+µS+γ2r

1− 1
aδ+µS

aδ+µS
aδ+µS+γ2r

V̂S(r)

=
1

aδ + µS
ê(aδ+µS)/γ2

∞∑
n=0

(
1

aδ + µS
ê(aδ+µS)/γ2V̂S(r)

)n
=

1

aδ + µS
ê(aδ+µS)/γ2 +

1

aδ + µS
ê(aδ+µS)/γ2

∞∑
n=1

(
1

aδ + µS
ê(aδ+µS)/γ2V̂S(r)

)n
(3.37)

where in the fourth equality we have used that 1
aδ+µS

V̂S(r) ≤ 1
aδ+µS

V̂S(0) = µS
aδ+µS

< 1,

for δ ≥ 0. The result now follows by inverting the Laplace transform in the right-hand

side of (3.37).

The result above provides an explicit expression for the q-scale function, for q =

0 of an spectrally negative Lévy process with nonnegative drift, nonzero brownian

component and negative jumps given by the dual of a subordinator. In Chapter 4 we

use this technique to obtain explicit expressions for q-scale functions for a wider class

of spectrally negative Lévy processes.

3.3 The Generalized EDPF

In this section we show how the Wiener-Hopf factors SXeδ and IXeδ to derive formulae

for the expected discounted penalty function (EDPF for short) for the class of Lévy

risk processes X u = {X u(t), t ≥ 0} defined as X u(t) = u + X (t), u ≥ 0, where X
is defined in (3.1). The approach presented here is the natural adaptation of the

one used in Biffis and Morales [2010], where the case of spectrally negative Lévy risk

processes was considered. The main result in this section strongly depends on our

result for the probability density of IXeδ , which was obtained in the previous section.

In this setting, the value u ≥ 0 represents the initial capital of the risk process,
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the constant c and the process Z1 represent, respectively, a fixed amount that the

insurance company gets at each unit of time and a random amount of gains up to

time t. The brownian component represents a perturbation due, for instance, to

investment in the insurance market or random events which may mean either gains

or losses for the insurance company. Finally, the process S represents the aggregate

claim amount that the insurance company has to pay up to time t in the case when

S is a subordinator. In the case when S does not have mononote paths, it can be

interpreted as a the claims that the insurance company has to pay up to time t,

perturbed by some random component whose interpretation is similar to that of the

brownian component.

We consider the following generalized version of the Expected discounted penalty

function (EDPF for short) associated to X u, considered in Biffis and Kyprianou [2009]

and Biffis and Morales [2010].

We set τ−0 = inf{t ≥ 0 : X u(t) < 0} and define the Generalized EDPF associated

to X u as

φ(u; δ, ω) = E
[
e−δτ

−
0 ω
(
|X u(τ−0 )|,X u(τ−0 −), IX

u

τ−0 −

)
1{τ−0 <∞}

∣∣∣X u(0) = u
]
, u ≥ 0

where δ ≥ 0 represents a discounted force of interest, ω : R3
+ → R+ is a function

known as penalty function such that ω0 = ω(0+, 0+, 0+) exists, and the quantities

|X u(τ−0 )|,X u(τ−0 −) represent, respectively, the severity of ruin and the surplus imme-

diate before ruin. The quantity IX
τ−0 −

is the last infimum before the ruin, as defined

before.

Let us consider the dual process X ∗ = {X ∗(t) = −X (t), t ≥ 0} and its first passage

time above level u τ+
u = {t ≥ 0 : X ∗(t) > u}, for u ≥ 0.

We define the following random variables associated to τ+
u .

• Gτ+
u

= sup
{
s < τ+

u : SX
∗

s = X ∗(s)
}

: the time of the last maximum prior to

first passage,

• τ+
u − Gτ+

u
: the length of the excursion making the first passage,



3.3. THE GENERALIZED EDPF 91

• X ∗(τ+
u )− u: the overshoot at first passage,

• u−X ∗(τ+
u −): the undershoot at first passage,

• u− SX ∗
τ+
u −

: the undershoot of the last maximum at first passage.

By definition of X u and X ∗, we note that

X ∗(τ+
u )− u = |X u(τ−0 )|, u−X ∗(τ+

u −) = X u(τ−0 −), u− SX ∗
τ+
u −

= IX
u

τ−0 −
,

and Gτ+
u

+ τ+
u − Gτ+

u
= τ+

u = τ−0 . Hence we can rewrite φ as

φ(u; δ, ω) = E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
ω
(
X ∗(τ+

u )− u, u−X ∗(τ+
u −), u− SX ∗

τ+
u −

)
1{τ+

u <∞}

]
.

To deal with the function above we consider the case in which the process X ∗ passes

above u by a jump or under the event {X ∗(τ+
u ) = u}. This last possibility is known

as creeping, and is due to the presence of the brownian component. It is known

that, in this case, we have the equality(
X ∗(τ+

u )− u, u−X ∗(τ+
u −), u− SX ∗

τ+
u −

)
= (0, 0, 0).

With this in mind, we split the above expression for φ(u; δ, ω) as

φ(u; δ, ω)

= E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
ω
(
X ∗(τ+

u )− u, u−X ∗(τ+
u −), u− SX ∗

τ+
u −

)
1{τ+

u <∞,X ∗(τ+
u )−u>0}

]
+ ω0E

[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
, u ≥ 0. (3.38)

In order to deal with the two expressions in the right-hand side of (3.38) we use

the following lemmas. The first one is merely technical and it is proved in Appendix

A.

The first part of the second lemma is due to exercise 6.7 i) in Kyprianou [2006]

and the equality SX
∗

eq = −IXeq , and the second part is the joint law of the random
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variables Gτ+
u
, τ+
u −Gτ+

u
,X ∗(τ+

u )−u, u−X ∗(τ+
u −), u−SX ∗

τ+
u −

, a result which was stated

and proved in Doney and Kyprianou [2006]. The version we present here is rewritten

analogously to the version presented in Biffis and Morales [2010].

Lemma 18. The function ê+
δ (r) =

∏N
l=1(ql−r)ml∏R
j=1(ρj,δ−r)kj

has the equivalent expression

βA +
R∑
j=1

kj−1∑
a=0

E(j, a, δ)
a!

(ρj,δ − r)a+1
.

Therefore, for r < min{Re(ρj,δ), j = 1, 2, . . . , R}, we have ê+
δ (r) =

∞∫
0

erxg∗(x)dx,

where

g∗(x) = δ0(x)βA +
R∑
j=1

kj−1∑
a=0

E(j, a, δ)xae−ρj,δx1{x>0},

and δ0(x) is the Dirac delta function.

Proof. See Appendix A.

Lemma 19. Let X and X ∗ be as before.

a) We have E
[
e−qτ

+
u 1{τ+

u <∞}

]
= P

[
−IXeq > u

]
.

b) Suppose X ∗ is not a compound Poisson process. Then, for each u > 0, the following

holds for all s, t ≥ 0, x > 0, v ≥ y and y ∈ [0, u].

P
[
Gτ+

u
∈ dt, τ+

u − Gτ+
u
∈ ds,X ∗(τ+

u )− u ∈ dx, u−X ∗(τ+
u −) ∈ dv, u− SX ∗

τ+
u −
∈ dy

]
= U∗A(ds, u− dy)U∗D(dt, dv − y)νX ∗(dx+ v).

Here, νX ∗(dx) denotes the Lévy measure of X ∗ and the functions U∗A(ds, u −
dy),U∗D(ds, u − dy) are defined (see Kyprianou [2006] eq. 6.18 and 7.10) through

the bivariate Laplace transforms:

∫
[∞,0)2

e−rx−syU∗A(dx, dy) = 1
κ∗A(r,s)

,
∫

[∞,0)2

e−rx−syU∗D(dx, dy) = 1
κ∗D(r,s)

, (3.39)
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where κ∗A and κ∗D are identified through the Wiener-Hopf factors of X ∗ by the

equalities

E
[
e−rS

X∗
eq

]
=

κ∗A(q,0)

κ∗A(q,r)
and E

[
e−r(−I

X∗
eq )
]

=
κ∗D(q,0)

κ∗D(q,r)
. (3.40)

We recall cases A, B and C considered in the last section and the equation LX (r)−
δ = 0, where LX is the GLF corresponding to X , which is assumed to have R roots

ρj,δ ∈ C++, j = 1, 2, . . . , R with their multiplicities k1 ≡ 1, kj, j = 2, 3, . . . , R, such

that
∑R

j=1 kj = m+ 1− βA.

Remark 3. Due to the restriction that X ∗ cannot be a compound Poisson process,

we exclude the case in which, according to (3.1), we have c = γ = 0 and both Z and S
are compound Poisson processes. However, explicit expressions for φ under this case

have been already obtained in Labbé et al. [2011] for the standard EDPF, when both

Z and S are compound Poisson processes.

We are now ready to state and prove the main result of this section.

Theorem 14. (Main Theorem IV)

For δ ≥ 0, the Generalized EDPF φ associated to X u = u+X has the expression

φ(u; δ, ω) = ω0γ
2Wδ(u) +Hδ,ω ∗Wδ(u), (3.41)

where aδWδ(u) is the density of the Wiener-Hopf factor −IXeδ , given explicitly in Theo-

rem 13, and Hδ,ω is defined as

Hδ,ω(u) = Kω(u)βA +
R∑
j=1

kj−1∑
a=0

E(j, a, δ)Jω,δ,a,j(u), (3.42)

where

Kω(y) =

∞∫
y+

ω(x− y, y, y)νS(dx)
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and

Jω,δ,a,j(y) =

∞∫
y+

(v − y)a e−ρj,δ(v−y)

∞∫
v

ω(x− v, v, y)νS(dx)dv.

Proof. We prove the result for δ > 0 and obtain the corresponding formulae for δ = 0

by taking limits when δ ↓ 0. We proceed by steps.

Step 1: We identify the functions

U∗A,δ(dy) =

∞∫
0

e−δxU∗A(dx, dy) and U∗D,δ(dy) =

∞∫
0

e−δxU∗D(dx, dy).

For this, we note that SX
∗

eδ
= −IXeδ and IX

∗
eδ

= −SXeδ . Therefore

κ∗A(q,0)

κ∗A(q,r)
= E

[
e−rS

X∗
eq

]
= E

[
e−r(−I

X
eq)
]

and
κ∗D(q,0)

κ∗D(q,r)
= E

[
e−r(−I

X∗
eq )
]

= E
[
erS

X
eq

]
(3.43)

By Theorem 12 a) we have:

E
[
e−r(−I

X
eq)
]

=


aδ

aδ+ΨN1,δ(r)
in case A,

aδ
aδ+ΨN2,δ(r)

in case B,

aδ
aδ+γ2r+ΨN3,δ(r)

in case C,

(3.44)

where eaδ is, again, an exponential random variable with mean 1/aδ independent of

Nj,δ and ΨNj,δ(r) is the Laplace exponent of Nj,δ, j = 1, 2, 3. Hence, in view of

(3.44), we identify κ∗A(δ, r) = aδ + ΨNj,δ(r) in cases A (j = 1) and B (j = 2) and

κ∗A(δ, r) = aδ + γ2r + ΨNδ(r) in case C j = 3. In all these cases, κ∗A(δ, 0) = aδ.

From (3.39), we note that the function U∗A,δ(dy) has Laplace transform
∞∫
0

e−ryU∗A(dy) = 1
κ∗A(δ,r)

, hence, from (3.44) we deduce that

∞∫
0

e−ryU∗A(dy) =
1

aδ
E
[
e−r(−I

X
eq)
]
.
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By the first equality in Theorem 12 b) we have 1
aδ
E
[
e−r(−I

X
eq)
]

= Ŵδ(r), and this

Laplace transform has an inverse given in Theorem 13. Therefore:

U∗A,δ(dy) = Wδ(y)dy. (3.45)

By Theorem 2.2 in Lewis and Mordecki [2008] and the second pair of equalities in

(3.43) we also deduce that κ∗D(δ, r) =
∏R
j=1(ρj,δ−r)kj∏N
l=1(ql−r)ml

and κ∗D(δ, 0) =

(∏N
j=1 q

mj
j∏R

j=1 ρ
kj
j,δ

)−1

. Now

we note that U∗D,δ(dy) has Laplace transform

∞∫
0

e−ryU∗D(dy) =
1

κ∗D(δ, r)
=

∏N
l=1(ql − r)ml∏R
j=1(ρj,δ − r)kj

= ê+
δ (r).

Therefore, using Lemma 18 we obtain:

U∗D,δ(dy) =

δ0(y)βA +
R∑
j=1

kj∑
a=1

E(j, a, δ)yae−ρj,δy

 dy. (3.46)

Step 2: We define φ∗(u) as

φ∗(u) = E

[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
ω
(
X ∗(τ+

u )− u, u−X ∗(τ+
u −), u− SX ∗

τ+
u −

)
× 1{τ+

u <∞,X ∗(τ+
u )−u>0}

]
,

and set Lu(ds, dt, dx, dv, dy) = U∗A(ds, u− dy)U∗D(dt, dv − y)νX ∗(dx+ v). Now we use

Lemma 19 b) to obtain:

φ∗(u) =

u∫
0+

∞∫
y

∞∫
0+

∞∫
0+

∞∫
0

e−δ(s+t)ω(x, v, y)Lu(ds, dt, dx, dv, dy)

(3.47)
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=

u∫
0+

∞∫
y

∞∫
0+

ω(x, v, y)νX ∗(dx+ v)U∗D,δ(dv − y)U∗A,δ(u− dy)

=

u∫
0+

∞∫
y

∞∫
v+

ω(z − v, v, y)νX ∗(dz)U∗D,δ(dv − y)U∗A,δ(u− dy), (3.48)

where in the third equality we used the change of variable z = x+ v.

Since X ∗ = −X by definition, its Lévy measure νX ∗(dx) is given by

νX ∗(dx) = νS(dx)1{x>0} + νZ(dx)1{x<0}.

Using that z = x + v in (3.48) moves from v ≥ y > 0 to ∞, the right-hand side of

(3.48) becomes

φ∗(u) =

u∫
0+

∞∫
y

∞∫
v+

ω(z − v, v, y)νS(dz)U∗D,δ(dv − y)U∗A,δ(u− dy).

Substitution of (3.46) in the above equality yields:

φ∗(u) = βA

u∫
0+

∞∫
y

∞∫
v+

ω(z − v, v, y)νS(dz)δ0(v − y)dvU∗A,δ(u− dy)

+
R∑
j=1

kj∑
a=1

E(j, a, δ)

u∫
0+

∞∫
y

∞∫
v+

ω(z − v, v, y)νS(dz)(v − y)ae−ρj,δ(v−y)dvU∗A,δ(u− dy)

= βA

u∫
0+

U∗A,δ(u− dy)

∞∫
y+

ω(z − y, y, y)νS(dz)

+
R∑
j=1

kj∑
a=1

E(j, a, δ)

u∫
0+

U∗A,δ(u− dy)

∞∫
y

∞∫
v+

ω(z − v, v, y)(v − y)ae−ρj,δ(v−y)νS(dz)dv
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= βA

u∫
0+

U∗A,δ(u− dy)Kω(y) +
R∑
j=1

kj∑
a=1

E(j, a, δ)

u∫
0+

U∗A,δ(u− dy)Jω,δ,a,j(y)

=

u∫
0+

U∗A,δ(u− dy)Hδ,ω(y)dy,

where in the third and fourth equality we used the definitions of Kω, Jω,δ,a,j and Hδ,ω.

Finally we substitute (3.45) in the equality above to obtain

φ∗(u) =

u∫
0+

Wδ(u− y)Hδ,ω(y)dy = Hδ,ω ∗Wδ(u). (3.49)

Step 3: We calculate E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
.

First we note that E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
does not depend on the

penalty function ω(x, y, z), therefore we consider φ when ω(x, y, z) ≡ 1 and use the

result in Step 2. For this choice of ω, using (3.38) and Step 2 we obtain

φ(u; δ, ω) = E
[
e−δτ

+
u 1{τ+

u <∞}

]
= E

[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
+Hδ,ω ∗W (u), (3.50)

which yields

E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
= E

[
e−δτ

+
u 1{τ+

u <∞}

]
−Hδ,ω ∗Wδ(u).

By Lemma 19 a), the above equality is equivalent to

E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
= P

[
−IXeδ > u

]
−Hδ,ω ∗Wδ(u)
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= aδ

∞∫
u

Wδ(y)dy −Hδ,ω ∗Wδ(u), (3.51)

where we have used that aδWδ(u)du is the probability density of −IXeδ . Taking

Laplace transforms in both sides of the equality above yields:

∞∫
0

e−ruE
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
du =

1− aδŴδ(r)

r
− Ĥδ,ω(r)Ŵδ(r)

=
1

r
− Ŵδ(r)

r

(
aδ + rĤδ,ω(r)

)
.

(3.52)

Now we calculate Ĥδ,ω(r) for ω(x, y, z) ≡ 1.

First we note that the term E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
is not zero only

in Case C, and in this case we have Hδ,ω(u) =
R∑
j=1

kj−1∑
a=0

E(j, a, δ)Jω,δ,a,j(u). With this

in mind, we obtain for ω(x, y, z) ≡ 1:

Hδ,ω(y) =
R∑
j=1

kj−1∑
a=0

E(j, a, δ)

∞∫
y

(v − y)a e−ρj,δ(v−y)

∞∫
v

νS(dx)dv

=
R∑
j=1

kj−1∑
a=0

E(j, a, δ)

∞∫
y

(v − y)a e−ρj,δ(v−y)VS(v)dv, (3.53)

where VS(v) is the tail on v of νS(dx).

Using the definition of Tρj,δ;aVS(v) given in (3.9) and then taking Laplace trans-

forms in the equality above, we obtain

Ĥδ,ω(r) =
R∑
j=1

kj−1∑
a=0

E(j, a, δ)T̂ρj,δ ;aVS(r) (3.54)
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Now we note that

L̂δ(r)−
ΨS(r)

r
=

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
sT̂sVS(r)


s=ρl,δ

− ΨS(r)

r
. (3.55)

Our goal now is to prove that (3.55) equals Cδ + rĤδ,ω(r) for some Cδ.

Using Hermite interpolation polynomials it can be proved that:

R∑
j=1

(−1)1−kj

(kj − 1)!

∂kj−1

∂skj−1


N∏
l=1

(ql − s)ml(ρj,δ − s)kj

R∏
l=1

(ρnl,δ − s)kl


s=ρj,δ

= (−1)m
R∑
j=1

(−1)m+1−kj

(kj − 1)!

∂kj−1

∂skj−1


N∏
l=1

(ql − s)ml(ρj,δ − s)kj

R∏
l=1

(ρnl,δ − s)kl


s=ρj,δ

= (−1)m(−1)m = 1. (3.56)

Hence the expression in the right-hand side of (3.55) can be rewritten as

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj

(
sT̂sVS(r)− ΨS(r)

r

)
s=ρl,δ

.

By the second equality in (3.12), the expression above is equivalent to

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj

(
rT̂sVS(r)− ΨS(s)

s

)
s=ρl,δ

= r

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
T̂sVS(r)


s=ρl,δ

− Cδ, (3.57)

where Cδ =
R∑
l=1

(−1)1−kl

(kl−1)!
∂kl−1

∂skl−1

 N∏
j=1

(qj−s)mj (ρl,δ−s)kl

R∏
j=1

(ρj,δ−s)kj

(
−ΨS(s)

s

)
s=ρl,δ

.
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This gives:

L̂δ(r)−
ΨS(r)

r
=

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj

(
rT̂sVS(r)− ΨS(s)

s

)
s=ρl,δ

= r

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
T̂sVS(r)


s=ρl,δ

+ Cδ

= r

R∑
l=1

kl−1∑
a=0

(
kl − 1

a

)
∂kl−1−a

∂skl−1−a
(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj


s=ρl,δ

× ∂a

∂sa

[
T̂sVS(r)

]
s=ρj,δ

+ Cδ = r

R∑
l=1

kl−1∑
a=0

E(j, a, δ)T̂ρj,δ;aVS(r) + Cδ = rĤδ,ω(r) + Cδ.

where in the third equality we used Leibniz rule. Setting r = 0 in the equality

above, we obtain L̂δ(0) = Cδ. Therefore L̂δ(r) − ΨS(r)
r

= rĤδ,ω(r) + L̂δ(0). This

implies

rĤδ,ω(r) = −ΨS(r)

r
−
[
L̂δ(0)− L̂δ(r)

]
(3.58)

On the other hand, we know from (3.24) that:

Ŵδ(r) =
1

aδ + γ2r − ΨS(r)
r −

[
L̂δ(0)− L̂δ(r)

] (3.59)

Now we substitute (3.58) and (3.59) in (3.52), and obtain:

∞∫
0

e−ruE
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
du

=
1

r
− 1

r

1

aδ + γ2r − ΨS(r)
r −

[
L̂δ(0)− L̂δ(r)

] (aδ − ΨS(r)

r
−
[
L̂δ(0)− L̂δ(r)

])
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=
1

r
− 1

r

1

aδ + γ2r − ΨS(r)
r −

[
L̂δ(0)− L̂δ(r)

] (aδ ± γ2r − ΨS(r)

r
−
[
L̂δ(0)− L̂δ(r)

])

=
1

r
− 1

r

1− γ2r

aδ + γ2r − ΨS(r)
r −

[
L̂δ(0)− L̂δ(r)

]


=
γ2

aδ + γ2r − ΨS(r)
r −

[
L̂δ(0)− L̂δ(r)

] = γ2Ŵδ(r),

where in the last equality we used (3.59) again. Inverting the equality above yields

E
[
e
−δG

τ+
u
−δ
(
τ+
u −Gτ+

u

)
1{τ+

u <∞,X ∗(τ+
u )=u}

]
= E

[
e−δτ

+
u 1{τ+

u <∞,X ∗(τ+
u )=u}

]
= γ2Wδ(u).

(3.60)

Step 4: We substitute (3.49) and (3.60) in (3.38). This completes the proof.

Lemma 19 a) and Theorem 14 give the following corollary.

Corollary 7. Let

Φ(u) := 1− P
[
τ−0 <∞|X u(0) = u

]
and

ϕδ(u) = 1− E
[
e−τ

−
0 1{τ−0 <∞}

∣∣X u(0) = u
]
, δ > 0,

denote respectively, the survival probability of X u and one minus the Laplace transform

of the time to ruin of X u, then Φ(u) and ϕδ(u) are distribution functions with densities

Φ′(u) and ϕ′δ(u).

Moreover, for any penalty function ω we have the equalities:

φ(u; δ, ω) =
ω0γ

2

aδ
ϕ′δ(u) +

1

aδ
Hδ,ω ∗ ϕ′δ(u), δ > 0,
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and

φ(u; 0, ω) =
ω0γ

2

a0

Φ′(u) +
1

a0

H0,ω ∗ Φ′(u), δ = 0,

where Hδ,ω(u) is given in Theorem 14.

Proof. We only need to prove that Wδ(u) = 1
aδ
ϕ′δ(u) a.s. for δ > 0 and W0(u) =

1
a0

Φ′(u) a.s., both for all u > 0. Clearly, the second equality follows from the first by

taking limits when δ ↓ 0, which implies we only need to prove the first equality.

For this we recall that 1 − ϕδ(u) = φ(u; δ, ω) in the case when ω ≡ 1. Therefore

by Lemma 19 a) and the fact that the first passage of X u below zero (time to ruin)

equals the first passage of −X above u, we obtain 1−ϕδ(u) = P
[
−IXeδ > u

]
. Now we

use the equality aδ
∞∫
u

Wδ(y)dy = P
[
−IXeδ > u

]
, and conclude that Wδ(u) = 1

aδ
ϕ′δ(u)

a.s.

3.4 Examples

In this final section we present a few particular examples of the function Wδ(u) under

cases A, B and C. Here we take as case C1 the one considered in Proposition 6.

We make use of the two-parameter Mittag-Leffler function, denoted by Eα,β(x)

and defined as:

Eα,β(x) =
∞∑
n=0

xn

Γ(αn+ β)
. (3.61)

For c > 0, α ∈ (1, 2) and β = 1, we recall that the Mittag-Leffler function Eα−1,1(−cxα−1)

is the tail of the extremal stable distribution, which has a density denoted by zα,c(u)

for u > 0. The function zα,c(u) has a Laplace transform ẑα,c(r) given by

ẑα,c(r) =
c

c+ rα−1
(3.62)

The proof of the equality above can be found in Furrer [1998]. These properties are

used in many of the examples presented below.
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Example 1 (Case A): Let us suppose thatGS(r) =
√
b+ r−b (this is a particular

case of an Inverse Gaussian subordinator). We focus our attention in the function

θδ(u), whose Laplace transform is, by defitinion, given by aδ
aδ+GS(r)

. In this case we

have θ̂δ(r) = aδ
aδ−b

aδ−b
aδ−b+(b+r)1/2 , hence if aδ > b, by (3.62) it follows that

θδ(u) =
aδ

aδ − b
e−buzα,aδ−b(u), u > 0,

where in this case α = 3/2. Using Theorem 13 we obtain:

Wδ(u)

=
1

aδ − b
e−buzα,aδ−b(u)

+
1

aδ − b

u∫
0

e−b(u−y)zα,aδ−b(u− y)
∞∑
n=1

(
− 1

aδ

)n(̂̀
δ(0)θδ − `δ ∗ θδ

)∗n
(y)dy, (3.63)

where the function `δ(u) is given in (3.10). Let us consider the particular case

when b = 1, λ1 = 2, δ = 0.5 and f̂1(r) = 1
(1+r)2 .

We have

LX (r)− δ = 2
1

(1− r)2
+ 1− (1 + r)1/2 − 2− 0.5,

In this case the two different roots are 0.1154509835 and 1.794106343, which gives

aδ = 2.413927106 > 1 = b.

In the particular case when S is a compound Poisson process with Laplace expo-

nent GS(r) = λ2

∞∫
0

(1 − e−rx)f2(x)dx, where f2(x) is a density function and λ2 > 0,

we have that

θ̂δ(r) =
aδ

aδ + λ2 − λ2f̂2(r)
=

aδ
aδ + λ2

∞∑
n=0

(
λ2

aδ + λ2

)n (
f̂2(r)

)n
.

Inverting the above Laplace transform yields

θδ(u) =
aδ

aδ + λ2

δ0(u) +
aδ

aδ + λ2

∞∑
n=1

(
aδ

aδ + λ2

)n
f ∗n2 (u), u > 0.
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Example 2 (Case B): Let us suppose that GS(r) = λ2f̂2(r) − λ2, i.e. S is a

compound Poisson process with Lévy measure λ2f2(x) for λ2 > 0. In this case the

resulting Lévy risk process is the classical two-sided jumps risk process.

Then `δ(u) = λ2

R∑
j=1

kj−1∑
a=0

E(j, a, δ)
∞∫
u

(y−u)ae−ρj,δ(y−u)f2(y)dy, and using (A.56) we

obtain aδ + ̂̀α(0) = c, where c is the drift of the process X in this case. Hence by

Theorem 13 we have

Wδ(u) =
1

c
δ0(u) +

1

c

∞∑
n=1

(
1

c

)n
`∗nδ (u), u > 0.

In this case we have the following equivalent representation for `δ:

Let us consider the probability P
[
SXeδ − Y > −u

]
, where Y has probability density

f2 and it is independent of SXeδ . We can think of Y as one of the claims associated to

the spectrally negative Lévy process S.

Then P
[
SXeδ − Y > −u

]
= δ

aδ

R∑
j=1

kj−1∑
a=0

E(j, a, δ)
∞∫
u

(y − u)ae−ρj,δ(y−u)f2(y)dy and it

follows that `δ(u) = λ2δ
−1aδP

[
SXeδ − Y > −u

]
.

Example 3 (Case C): Let us suppose now that LX (r) − δ = λ1
Q(−r)∏N

j=1(qj−r)mj
+

cr+ bαΓ(−α)r− bαΓ(−α)(b+ r)αr−λ1− δ, where α ∈ (0, 1), c, b > 0 and γ = 0. This

is a particular case of the process considered in Section 6 in Hubalek and Kyprianou

[2011]. It follows from Theorem 12 that:

ŴY(r) =
1

(aδ + bαΓ(−α))r − bαΓ(−α)r(b+ r)α
.

Hence, by Theorem 6.2 in Hubalek and Kyprianou [2011] we have

WY(u) =
1

−Γ(−α)

u∫
0

e−byyα−1Eα,α
(
aδ + Γ(−α)bαyα

Γ(−α)

)
dy, (3.64)

where Eα,α(x) is defined in (3.61). This yields:

W′Y(u) =
1

−Γ(−α)
e−buuα−1Eα,α

(
aδ + Γ(−α)bαuα

Γ(−α)

)
, u > 0.
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Hence, in view of Theorem 13, we have

Wδ(u)

=
1

−Γ(−α)
e−buuα−1Eα,α

(
aδ + Γ(−α)bαuα

Γ(−α)

)

+
1

−Γ(−α)

u∫
0

e−b(u−y)(u− y)α−1Eα,α
(
aδ + Γ(−α)bα(y − u)α

Γ(−α)

) ∞∑
n=1

σ∗nδ,α,b(y)dy,

for u > 0, where

σδ,α,b(u) = L̂δ(0)e−buuα−1Eα,α
(
aδ + Γ(−α)bαuα

Γ(−α)

)

−
u∫

0

Lδ(u− y)e−byyα−1Eα,α
(
aδ + Γ(−α)bαyα

Γ(−α)

)
dy

and

Lδ(u) =

R∑
j=1

kj−1∑
a=0

E∗(j, a, δ)

∞∫
u

(y − u)ae−ρj,δ(y−u)

∞∫
y

e−bx
(
bx+ (α+ 1)

xα+2

)
dxdy.

Example 4: As a particular case of Proposition 6, we set γ = 0 and take M as an

α-stable process with α ∈ (1, 2), only positive jumps and −ΨM(r) = ηαrα. This gives

−ΨM(r)
r

= ηαrα−1. Hence, using (3.36) and (3.62), we obtain:

Ŵ′M−(r) =
1

c+ κδ + ηαrα−1
=

1

c+ κδ

c+κδ
ηα

c+κδ
ηα + rα−1

=
1

c+ κδ
ẑ
α,
c+κδ
ηα

(r).

The equality above implies that:

W′M−(u) =
1

c+ κδ
z
α,
c+κδ
ηα

(u), u > 0.

Recalling that, in this case, we have VM(x) = ηα α−1
Γ(2−α)

x−α and using the equality

above and Proposition 6, we obtain

ϑδ(u) =
1

c+ κδ
zα,b(u) +

1

c+ κδ
zα,b ∗

∞∑
n=1

(
− 1

c+ κδ

)n
(Lδ,M ∗ zα,b)∗n (u),



106 CHAPTER 3. WIENER-HOPF FACTORIZATION

where in this case b = c+κδ
ηα

and

Lδ,M(u) = ηα
α− 1

Γ(2− α)

R∑
j=1

kj−1∑
a=0

E∗(j, a, δ)

∞∫
u

(y − u)ae−ρj,δ(y−u)y−αdy.

Recalling Proposition 6, the density of the negative Wiener-Hopf factor is given

by the expression:

Wδ(u) = ϑδ(u) + ϑδ ∗
∞∑
n=1

(κδϑδ + `δ ∗ ϑδ)∗n (u), u > 0,

where `δ(u) =
R∑
j=1

kj−1∑
a=0

E(j, a, δ)
∞∫
u

(y − u)ae−ρj,δ(y−u)νS(dy). Hence, we can obtain an

explicit formula for Wδ(u) above by substitution of `δ and ϑδ. Since the expression

for ϑδ also involves an infinite sum of convolutions, the resulting expression for Wδ(u)

is too large, and therefore we omit it.

From the above calculations we note that, in the case when all the roots ρj,δ, j =

1, 2, . . . ,m+ 1 are assumed to be different and S is a compound Poisson process, we

obtain the particular case of the process studied in Chapter 2. Moreover, we also

obtain the density of the negative Wiener-Hopf factor of the process studied in the

aforementioned chapter, in the more general case when the roots ρj,δ are allowed to

have multiplicities greater than 1 and S is a subordinator.



Chapter 4

Examples of q-scale functions

In this final chapter we use the techniques developed previously to obtain explicit

expressions for some cases of q-scale functions. First we consider the case when

X = {X (t), t ≥ 0} is given by

X (t) = ct+ ηWα(t)− S(t), η ≥ 0 (4.1)

where c ≥ 0, Wα = {Wα(t), t ≥ 0} is an α-stable process with α ∈ (1, 2), only

negative jumps and Lévy measure νW(dx), and S = {S(t), t ≥ 0} is an independent

subordinator with Laplace exponent −GS(r) = −
∞∫

0+

(1− e−rx)νS(dx). This process is

a generalization of the one studied in Kolkovska and Mart́ın-González [2016], where

S is taken as a compound Poisson process.

We let VW(x) denote the tail of νW(dx) and denote again the Generalized Lund-

berg function of X as LX (r) (which, in this case, coincides with the Laplace exponent

of X ). We assume that E [X (1)] > 0. Under this assumption, it can be proved that

the equation LX (r)− q = 0 has exactly one nonnegative root (see, for instance, Biffis

and Kyprianou [2009]), which equals zero when q = 0. We denote this root by ρ. The

following two results are needed.

Proposition 8. For r ≥ ρ and c′ = c/ηα, the function

V̂α,ρ(r) =
ẑc′,α(r)

1 + ηαρ
c
T̂ρVW(r)ẑc′,α(r)

(4.2)

is the Laplace transform of a function Vα,ρ which admits the series representation

Vα,ρ(u) = zc′,α ∗
∞∑
n=0

(−1)n
(
ηαρ

c

)n (
TρVW

)∗n ∗ z∗nc′,α(u), u > 0,

where ẑc′,α(r) is defined in (3.62).

Proof. We have
ηαρ

c
T̂ρVW(ρ)ẑc′,α(ρ) =

(α− 1)ηαρα−1

c+ ηαρα−1
< 1. (4.3)
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Hence, for r ≥ ρ,

V̂α,ρ(r) =
ẑc′,α(r)

1 + ηαρ
c
T̂ρVW(r)ẑc′,α(r)

=
∞∑
n=0

(−1)n
(
ηαρ

c

)n (
T̂ρVW(r)

)n
ẑn+1
c′,α (r). (4.4)

Let us define Sn(u) := zc′,α ∗
∑n

k=0

(
ηαρ
c

)k (
TρVW

)∗k ∗ z∗kc′,α(u). Using the monotone

convergence theorem we get, for r ≥ 0,

∞∫
0

e−(r+ρ)uzc′,α ∗
∞∑
k=0

(
ηαρ

c

)k (
TρVW

)∗k ∗ z∗kc′,α(u) du

= lim
n→∞

∞∫
0

e−(r+ρ)uSn(u) du

= lim
n→∞

n∑
k=0

(
ηαρ

c

)k ∞∫
0

e−(r+ρ)u
(
TρVW

)∗k ∗ z∗(k+1)
c′,α (u) du

= lim
n→∞

n∑
k=0

(
ηαρ

c

)k (
T̂ρVW(r + ρ)

)k
(ẑc′,α(r + ρ))k+1

=
∞∑
k=0

(
ηαρ

c

)k (
T̂ρVW(r + ρ)

)k
(ẑc′,α(r + ρ))k+1 <∞,

where in the last inequality we used (4.3). This implies that the series in the right-

hand side of (2.8) is absolutely convergent, and shows that the Laplace transform of

that series equals the right-hand side of (4.4), which proves the result.

Corollary 8. If ρ = 0, we have the equality Vα,0(u) = zc′,α(u) for u > 0.

Proof. This follows from Proposition 8 by setting ρ = 0 in (4.2).

Now we are ready to state and prove our result for the q-scale function of the

process X .
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Proposition 9. The q-scale function of the process X defined in (4.1) is given by

W
(q)
X (x) =

1

c
eρx ∗

∞∑
n=0

(
1

c

)n
(TρνS)∗n ∗ V ∗(n+1)

α,ρ (x), q > 0, (4.5)

and

WX (x) =
1

c

∞∑
n=0

(
1

c

)n
Zc′,α ∗ V

∗n
S ∗ z∗nc′,α(x), q = 0, (4.6)

where Zc′,α(x) =
x∫
0

zc′,α(y)dy.

Proof. Since LX (r)−q = cr+ηαrα−GS(r)−q, it follows that cρ+ηαρα+GS(ρ) = q.

These equalities imply that:

∞∫
0

e−rxW
(q)
X (x)dx =

1
r−ρ

c+ ηα
(
ρα−rα
ρ−r

)
−

∞∫
0+

(e−rx−e−ρx)νS(dx)

ρ−r

.

By (3.12) we have ρα−rα
ρ−r = rα−1+ρρ

α−1−rα−1

ρ−r = rα−1+ρT̂ρVW(r). Hence we obtain,

for r > ρ,

∞∫
0

e−rxW
(q)
X (x)dx =

1
r−ρ

c+ ηαrα−1 + ηαρρ
α−1−rα−1

ρ−r − T̂ρνS(r)

=

1
r−ρ

1

c+ηαrα−1+ηαρ ρ
α−1−rα−1

ρ−r

1− T̂ρνS(r) 1

c+ηαrα−1+ηαρ ρ
α−1−rα−1

ρ−r

=

1
c

V̂α,ρ(r)

r−ρ

1− 1
c
T̂ρνS(r)V̂α,ρ(r)

,
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where in the last equality we used (4.2). This gives:

Ŵ
(q)
X (r) =

1
c

V̂α,ρ(r)

r−ρ

1− 1
c
T̂ρνS(r)V̂α,ρ(r)

=
V̂α,ρ(r)

c(r − ρ)

∞∑
n=0

(
1

c

)n (
T̂ρνS(r)V̂α,ρ(r)

)n
. (4.7)

Since for r > ρ we have that 1
r−ρ is the Laplace transform of eρx, with the help

of Proposition 8 we can invert (4.7) and obtain (4.5). To obtain (4.6), we set ρ = 0

in (4.7) and use Corollary 8 and the equalities rẐc′,α(r) = ẑc′,α(r) and T̂ρνS(r)|ρ=0 =

V̂S(r). This results to:

ŴX (r) =
1
c

ẑc′,α(r)

r

1− 1
c
V̂S(r)ẑc′,α(r)

=
Ẑc′,α(r)

c

∞∑
n=0

(
1

c

)n (
V̂S(r)ẑc′,α(r)

)n
.

Now (4.6) follows by inverting the expression above.

From the proposition above we obtain the following corollary.

Corollary 9. Suppose that ηWα in (4.1) is replaced by γB, where B = {B(t), t ≥ 0}
is a brownian motion with zero mean and variance 2, then the q-scale function of the

resulting spectrally negative Lévy process X is given by

W
(q)
X (x) =

1

c+ γ2ρ
eρx ∗

∞∑
n=0

(
1

c+ γ2ρ

)n
(TρνS)∗n ∗ e∗(n+1)

c′ (x), q > 0,

and

WX (x) =
1

c

∞∑
n=0

(
1

c

)n
Ec′ ∗ V

∗n
S ∗ e∗nc′ (x), q = 0,

where in this case c′ = c/γ2 + ρ, ea(x) = ae−ax, x > 0 and Ea(x) =
x∫
0

ea(y)dy.
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Proof. In this case we have

∞∫
0

e−rxW
(q)
X (x)dx =

1
r−ρ

c+ γ2
(
ρ2−r2

ρ−r

)
−

∞∫
0+

(e−rx−e−ρx)νS(dx)

ρ−r

=

1
r−ρ

c+ γ2(r + ρ)− T̂ρνS(r)

=

1
r−ρ

1
c+γ2ρ+γ2r

1− T̂ρνS(r) 1
c+γ2ρ+γ2r

=

1
c+γ2ρ

1
r−ρ êc′(r)

1− 1
c+γ2ρ

T̂ρνS(r)êc′(r)

The rest of the proof is analogous to that of Proposition 9.

The second formula in the Corollary above clearly gives the result in Proposition

7 by taking derivatives and considering c = aδ + µS .
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Appendix A

Proofs of technical results

Proof of Lemma 3. The existence of the integral In follows from the existence of

both, ĝα,1 and the first moment of gα,1 for α ∈ (1, 2). Setting y = −n1/αx we obtain

In =

∫ ∞
0

n
(

1− ery/n1/α

+
ry

n1/α

)
gα,1(−y)dy,

and putting I∗n(y, r) = n
(

1− ery/n1/α
+ ry

n1/α

)
gα,1(−y) gives

|I∗n(y, r)| =

∣∣∣∣∣
∞∑
k=2

rk
yk

nk/α−1
gα,1(−y)

∣∣∣∣∣ ≤
∞∑
k=2

|r|kykgα,1(−y) =
(
e|r|y − 1− |r|y

)
gα,1(−y).

Since
∞∫
0

(
e|r|y − 1− |r|y

)
gα,1(−y)dy =

0∫
−∞

(
e−|r|y − 1 + |r|y

)
gα,1(y)dy < ∞, we

use the inequality |In| ≤
∫∞

0
|I∗n(x, r)| dx and apply the dominated convergence theo-

rem, and the result follows.

Proof of Lemma 4. Hypothesis 1 implies that φn,k(u) is bounded for all u ≥ 0,

hence K0(n, k, r) is finite. Using integration by parts it follows that

∫ x

0

yk−1qkj e
−qjy

(k − 1)!
dy = 1−

k−1∑
l=0

e−qjx

l!
qljx

l, (A.1)

and performing the change of variables z = u+ x we obtain

K0(n, k, r) = λ1(k)A(k)

∫ ∞
0

∫ ∞
x

e−rzφn,k(z)bn(k)e(r−bn(k))xdzdx

+ λ1

N∑
i=1

mi∑
j=1

βij

∫ ∞
0

∫ ∞
x

e−rzφn,k(z)
xj−1qji e

(r−qi)x

(j − 1)!
dzdx

= λ1(k)A(k)

∫ ∞
0

e−rzφn,k(z)

∫ z

0

bn(k)e−(bn(k)−r)xdxdz

113
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+ λ1

N∑
i=1

mi∑
j=1

βij

∫ ∞
0

e−rzφn,k(z)

∫ z

0

xj−1qji e
(r−qi)x

(j − 1)!
dxdz. (A.2)

Using (A.1) we get

K0(n, k, r) = λ1(k)A(k)
bn(k)

bn(k)− r

∫ ∞
0

e−rzφn,k(z)dz

− λ1(k)(1− A(k))
bn(k)

bn(k)− r

∫ ∞
0

φn,k(z)e−bn(k)zdz

+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∫ ∞
0

e−rzφn,k(z)dz (A.3)

− λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

∫ ∞
0

e−rzφn,k(z)

{
j−1∑
l=0

e−qiz+rz

l!
(qi − r)lzl

}
dz

=

[
λ1(k)A(k)bn(k)

bn(k)− r
+ λ1

N∑
i=1

mi∑
j=1

βijq
j
i

(qi − r)j

]
φ̂n,k(r)

− λ1(k)(1− A(k))bn(k)

bn(k)− r
φ̂n,k(bn(k))− λ1

N∑
i=1

mi∑
j=1

βijq
j
i

j−1∑
l=0

(qi − r)lγl,i(n, k)

l!(qi − r)j
,

and the result follows.

Proof of Lemma 5. We set e(u; r1, r2) = e−r1u − e−r2u and recall that d(α) =
α(α−1)
Γ(2−α)

. Hence

η−α(Mα,n(r1)−Mα,n(r2)) = n1+1/α

∫ ∞
0

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu.

(A.4)

By formula (14.37), p. 89 in Sato (1999), we get limx→∞
gα,1(x)

d(α)x−1−α = 1. Hence, for
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every ε > 0 there exists a positive number Aε > 1 such that for all u > Aε,

gα,1(x)

d(α)x−1−α < (1 + ε). (A.5)

We take A = Aε and n > Aα, and split (A.4) as

η−α [Mα(r1)−Mα(r2)] = n1+1/α

∫ ∞
1

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu

+ n1+1/α

∫ 1

A/n1/α

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu

+ n1+1/α

∫ A/n1/α

0

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu.

(A.6)

Since u ≥ 1 and x ≥ u imply n1/αx > A, from (A.5) we obtain that the first term

in (A.6) is bounded above by

2d(α)B(1 + ε)

∫ ∞
1

∫ ∞
u

x−1−αdxdu =
2d(α)B(1 + ε)

α(α− 1)
.

Hence, using dominated convergence it follows that

lim
n→∞

n1+1/α

∫ ∞
1

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx) dx du (A.7)

= d(α)

∫ ∞
1

∫ ∞
u

e(u; r1, r2)ω(x− u, u)x−1−α dx du.

Now we consider the second term in (A.6). In this case n1/αx ≥ A, hence
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∣∣∣∣n1+1/α

∫ 1

A/n1/α

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu

∣∣∣∣
≤ d(α)B

∫ 1

0

∫ ∞
u

|e(u; r1, r2)| gα,1(n1/αx)

d(α) [n1/αx]
−1−αd(α)x−1−αdxdu

≤ d(α)B(1 + ε)

∫ 1

0

∞∑
k=1

|rk2 − rk1 |uk

k!

∫ ∞
u

1

x1+α
dxdu

≤ 2d(α)B

α

(
|r1 − r2|

2− α
+ e|r1| + e|r2|

)
.

Using again dominated convergence yields

lim
n→∞

n1+1/α

1∫
A

n1/α

∞∫
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu

= d(α)

1∫
0

∞∫
u

e(u; r1, r2)ω(x− u, u)x−1−αdxdu. (A.8)

For the third term in (A.6) we use the change of variables y = n1/αu and z = n1/αx.

This yields

∣∣∣∣∣n1+1/α

∫ A/n1/α

0

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu

∣∣∣∣∣
≤ n1−1/α

∫ A

0

∫ ∞
y

∣∣∣e−r1y/n1/α − e−r2y/n1/α
∣∣∣ω(z − y

n1/α
,
y

n1/α

)
gα,1(z)dzdy

≤ B

∫ A

0

∫ ∞
y

∞∑
k=1

|rk1 − rk2 |yk

k!n(k+1−α)/α
gα,1(z)dzdy ≤ B

n(2−α)/α

∫ A

0

(
e|r1|y + e|r2|y

)
Gα,1(y)dy

≤ B

n(2−α)/α
A
(
e|r1|A + e|r2|A

)
Gα,1(0),
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where the last inequality follows using that n ≥ Aα > 1, which implies n−(2−α)/α ≥
n−(k+1−α)/α for all k ≥ 2. The last inequality renders

lim
n→∞

n1+1/α

∫ A/n1/α

0

∫ ∞
u

e(u; r1, r2)ω(x− u, u)gα,1(n1/αx)dxdu = 0,

and using (A.8) and (A.8), we obtain (2.2).

Now we will prove (2.3). First we note that

Mα(r1)−Mα(r2)

r2 − r1

= ω+
0

d(α)

r2 − r1

∫ ∞
0

∫ ∞
u

e(u; r1, r2)x−1−αdxdu

+
d(α)

r2 − r1

∫ ∞
0

∫ ∞
u

e(u; r1, r2)ω∗(x− u, u)x−1−αdxdu, (A.9)

where ω∗(x, y) = ω(x, y) − ω+
0 . Using (2.6), we have that the first term in (A.9)

equals ω+
0
rα−1
2 −rα−1

1

r2−r1 , which converges to ω+
0 when α→ 2.

Hypothesis 1 implies that, for any ε > 0, there exists a δ <
√

2 such that∣∣ω(x, y)− ω+
0

∣∣ < ε for all (x, y) with |(x, y)| < δ. Let us split the second double

integral in (A.9) as follows:

d(α)

r2 − r1

∫ ∞
1

∫ ∞
u

e(u; r1, r2)ω∗(x− u, u)x−1−αdxdu (A.10)

+
d(α)

r2 − r1

∫ 1

0

∫ ∞
u

[e(u; r1, r2)− r1u+ r2u]ω∗(x− u, u)x−1−αdxdu (A.11)

+ d(α)

∫ 1

δ√
2

∫ δ√
2

u

uω∗(x− u, u)x−1−αdxdu (A.12)

+ d(α)

∫ 1

0

∫ ∞
δ√
2

uω∗(x− u, u)x−1−αdxdu (A.13)

+ d(α)

∫ δ√
2

0

∫ δ√
2

u

uω∗(x− u, u)x−1−αdxdu. (A.14)
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For (A.10) we have

∣∣∣∣∣∣ d(α)

r2 − r1

∞∫
1

∞∫
u

e(u; r1, r2)ω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣ ≤ 2Bd(α)

r2 − r1

∞∫
1

∞∫
u

x−1−αdxdu

=
2BΓ(α + 1) sin [π(2− α)]

πα(α− 1)(r2 − r1)

Using the continuity of the function Γ(x) at the positive integers and the equality

limα→2 sin[π(2− α)] = 0, we obtain that (A.10) tends to zero as α→ 2.

We have for (A.11):

∣∣∣∣∣∣ d(α)

r2 − r1

1∫
0

∞∫
u

[
e−r1u − r1u− e−r2u + r2u

]
ω(x− u, u)x−1−αdxdu

∣∣∣∣∣∣
≤ B(1/π)Γ(α + 1) sin[π(2− α)]

r2 − r1

1∫
0

∣∣e−r1u − r1u− e−r2u + r2u
∣∣u−αdu

≤ B(1/π)Γ(α + 1) sin[π(2− α)]

r2 − r1

1∫
0

∞∑
k=2

|rk1 − rk2 |u2−α

k!
du

≤ B(1/π)Γ(α + 1) sin[π(2− α)]

r2 − r1

1∫
0

∞∑
k=2

|r1|k + |r2|k

k!
du

≤ B(1/π)Γ(α + 1) sin[π(2− α)]

r2 − r1

(
e|r1| + e|r2|

)
where the second last equality follows using that k−α > 0 for k ≥ 2, which gives

uk−α ≤ 1 for u ∈ [0, 1]. Using the continuity of the function Γ(x) at the positive

integers and limα→2 sin[π(2− α)] = 0, this gives:



119

lim
α→2

∣∣∣∣∣∣ d(α)

r2 − r1

1∫
0

∞∫
u

[
e−r1u − r1u− e−r2u + r2u

]
ω(x− u, u)x−1−αdxdu

∣∣∣∣∣∣ = 0

This implies that (A.11) tends to zero as α→ 2.

Since lim
(x,y)→(0+,0+)

ω(x, y) = ω+
0 , for ε > 0 there exists a δ <

√
2 such that∣∣ω(x, y)− ω+

0

∣∣ < ε, for all (x, y) such that |(x, y)| < δ.

We take | · | as the euclidean distance and note that, for the right-hand side of

(A.14), we have (x−u)2 < δ2

2
and u2 < δ2

2
, which implies

√
(x− u)2 + u2 < δ. Hence,

for each 1 < α < 2 we obtain:

∣∣∣∣∣∣∣∣d(α)

δ√
2∫

0

δ√
2∫

u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣ ≤ d(α)ε

δ√
2∫

0

δ√
2∫

u

ux−1−αdxdu (A.15)

Now we note that the right-hand side of (A.15) satisfies the equalities:

d(α)ε

δ√
2∫

0

δ√
2∫

u

ux−1−αdxdu =
εΓ(α + 1) sin[π(2− α)]

πα

δ√
2∫

0

u

[
u−α −

(
δ√
2

)−α]
du

=
εΓ(α + 1) sin[π(2− α)]

πα

[
1

2− α

(
δ√
2

)2−α

− 1

2

(
δ√
2

)2−α
]

=
ε

π
Γ(α + 1)

sin[π(2− α)]

(2− α)

(
δ√
2

)2−α(
1

α
− 2− α

2α

)

Using the continuity of the gamma function at the positive integers and the equal-

ity lim
α→2

sin[π(2−α)]
2−α = π, we see that the right-hand side of the equality above tends to

ε/2 as α→ 2. Applying this to (A.15) we obtain:
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lim sup
α→2

∣∣∣∣∣∣∣∣d(α)

δ√
2∫

0

δ√
2∫

u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣ < ε. (A.16)

The inequality |ω(x, y)− ω+
0 | ≤ B gives for (A.12) and (A.13) as before:∣∣∣∣∣∣∣∣d(α)

1∫
δ√
2

δ√
2∫

u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣
≤ B

Γ(α + 1) sin[π(2− α)]

πα

1∫
δ√
2

u

[
u−α −

(
δ√
2

)−α]
du

= B
Γ(α + 1) sin[π(2− α)]

πα

[
1−

(
δ/
√

2
)2−α

2− α

−1

2

(
δ√
2

)−α(
1−

(
δ√
2

)2
)]

= B
Γ(α + 1) sin[π(2− α)]

πα(2− α)

[
1−

(
δ/
√

2
)2−α

]
−BΓ(α + 1) sin[π(2− α)]

2πα

(
δ√
2

)−α [
1−

(
δ√
2

)2
]

and ∣∣∣∣∣∣∣∣d(α)

1∫
0

∞∫
δ√
2

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣
≤ Bd(α)

1∫
0

∞∫
δ√
2

ux−1−αdxdu = B
Γ(α + 1) sin[π(2− α)]

πα

1∫
0

u

(
δ√
2

)−α
du



121

= B
Γ(α + 1) sin[π(2− α)]

2πα

(
δ√
2

)−α
.

Since lim
α→2

B (1/π)Γ(α+1) sin[π(2−α)]
α(2−α)

[
1−

(
δ/
√

2
)2−α

]
= 0, we obtain:

lim sup
α→2

∣∣∣∣∣∣∣∣d(α)

1∫
δ√
2

δ√
2∫

u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣ = 0

and

lim sup
α→2

∣∣∣∣∣∣∣∣d(α)

1∫
0

∞∫
δ√
2

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣∣∣ = 0.

Hence using these equalities together with (A.16), the triangle inequality and

properties of the limit superior, we obtain:

lim sup
α→2

∣∣∣∣∣∣d(α)

1∫
0

∞∫
u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣ ≤ ε.

Since ε is arbitrary, we obtain

lim
α→2

∣∣∣∣∣∣d(α)

1∫
0

∞∫
u

uω∗(x− u, u)x−1−αdxdu

∣∣∣∣∣∣ = 0. (A.17)

Hence
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lim sup
α→2

∣∣∣∣ d(α)

r2 − r1

∫ ∞
0

∫ ∞
u

e(u; r1, r2)ω∗(x− u, u)x−1−αdxdu

∣∣∣∣ ≤ ε,

and (2.3) follows.

Proof of Proposition 2.

a) We set

J0(r) = λ1

m+1∑
j=1

Q1(ρj,δ)
1

m+1∏
i=1,i 6=j

(ρi,δ − ρj,δ)

Q(−r)
N∏
j=1

(qj−r)mj
− Q(−ρl,δ)

N∏
j=1

(qj−ρl,δ)mj

ρj,δ − r
.

First we prove that J0(r) = 0 for all r ≥ 0. From (2.6) we get Q(r)∏N
j=1(qj+r)

mj
=

N∑
k=1

mk∑
l=1

βklq
l
k

(qk+r)l
. Now, for any fixed r ≥ 0 we define ρ∗j,δ(r) = ρj,δ−r and q∗i (r) = qi−r.

This gives:

J0(r) = λ1

m+1∑
j=1

N∏
h=1

(q∗h(r)− ρ∗j,δ(r))mh

m+1∏
i=1,i 6=j

(ρ∗i,δ(r)− ρ∗j,δ(r))

N∑
k=1

mk∑
l=1

βklq
l
k

(q∗k(r)− ρ∗j,δ(r))l − (q∗k(r))
l

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))lρ∗j,δ(r)

= λ1

m+1∑
j=1

N∏
h=1

(q∗h(r)− ρ∗j,δ(r))mh

m+1∏
i=1,i 6=j

(ρ∗i,δ(r)− ρ∗j,δ(r))

N∑
k=1

mk∑
l=1

βklq
l
k

P ∗l (ρ∗j,δ(r))

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))l

,

(A.18)

where P ∗l is a polynomial of degree l−1. We note that for each j ∈ {1, . . . ,m+1},

N∑
k=1

mk∑
l=1

βklq
l
k

P ∗l (ρ∗j,δ(r))

(q∗k(r))
l(q∗k(r)− ρ∗j,δ(r))l

=
P ∗∗(ρ∗j,δ(r))

N∏
h=1

(q∗h(r)− ρ∗j,δ(r))mh
,
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where P ∗∗(ρ∗j,δ(r)) is a polynomial on ρ∗j,δ(r) of degree at most m − 1. Using the

above equality in (A.18) gives

J0(r) = λ1

m+1∑
j=1

P ∗∗(ρ∗j,δ(r))
m+1∏

i=1,i 6=j
(ρ∗i,δ(r)− ρ∗j,δ(r))

= 0,

due to (2.5). From the equality λ1 +λ2 + δ = λ2f̂2(ρj,δ) +λ1
Q(−ρj,δ)∏N

l=1(ql−ρj,δ)ml
+ cρj,δ +

ηαραj,δ, we obtain that the denominator of the right-hand side of (2.4) is given by

m+1∑
j=1

Q1(ρj,δ)∏
l 6=j

(ρl,δ − ρj,δ)(ρj,δ − r)
Lα(r)

=
m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ − ρj,δ)(ρj,δ − r)

(
λ2(f̂2(r)− f̂2(ρj,δ))− c(ρj,δ − r)− ηα(ραj,δ − rα)

)
.

From the equality above, (2.4) and
ραj,δ−r

α

ρj,δ−r
= ρj,δ

ρα−1
j,δ −r

α−1

ρj,δ−r
+ rα−1, we have

Ŵδ(r) =
1

m+1∑
j=1

Q1(ρj,δ)
m+1∏

i=1,i 6=j
(ρi,δ−ρj,δ)

(
−λ2

(f̂2(r)−f̂2(ρj,δ))

ρj,δ−r
+ c+ ηα

ραj,δ−rα

ρj,δ−r

)
=

1
m+1∑
j=1

E(ρj,δ)

(
−λ2T̂ρj,δf2(r) + c+ ηαρj,δ

ρα−1
j,δ −rα−1

ρj,δ−r
+ ηαrα−1

) (A.19)

=
1

c+ ηαrα−1 − λ2

m+1∑
j=1

E(ρj,δ)T̂ρj,δf2(r) + ηα
m+1∑
j=1

E(ρj,δ)ρj,δ
ρα−1
j,δ −rα−1

ρj,δ−r

=

1
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[η−αĝδ(r) + κδ] ν̂α,δ(r)

where the last equality is obtained by dividing the nominator and the denominator

by c+ ηακδ + ηαrα−1 + ηα
∑m+1

j=1 E(ρj,δ)ρj,δT̂ρj,δ`α(r).
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b) We define the function ν̂∗α,δ(r) = 1

c+ηαrα−1+ηαf̂α,δ(r)
. From (2.2) and (A.19) we obtain

φ̂(r) =
ĥα,δ,ω(r)ν̂∗α,δ(r)

1− ĝδ(r)ν̂∗α,δ(r)
. (A.20)

First we consider the case when δ > 0. We will show in this case that if ω(x, y) ≡ 1,

then
1

r

[
1− ĝδ(r)ν̂∗α,δ(r)− δRν̂α,δ(r)

]
= ĥα,δ,ω(r)ν̂∗α,δ(r), (A.21)

where R =

N∏
i=1

q
mi
i

m+1∏
j=1

ρj,δ

. Using that Lα(ρj,δ) = 0 and Lemma 6 we get

δR =
m+1∑
j=1

E(ρj,δ)
δ

ρj,δ

=
m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ +

λ1

(
Q(−ρj,δ)∏N

l=1(ql−ρj,δ)ml
− 1
)

ρj,δ


=

m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ


+ λ1

m+1∑
j=1

E(ρj,δ)

Q(−ρj,δ)∏N
l=1(ql−ρj,δ)ml

ρj,δ
− λ1

m+1∑
j=1

E(ρj,δ)

ρj,δ
(A.22)

From Lemma 6 it follows that λ1

∑m+1
j=1

E(ρj,δ)

ρj,δ
= λ1R. From the definition of

E(ρj,δ) we obtain:

λ1

m+1∑
j=1

E(ρj,δ)

Q(−ρj,δ)∏N
l=1(ql−ρj,δ)ml

ρj,δ
= λ1

m+1∑
j=1

N∏
l=1

(ql − ρj,δ)ml

m+1∏
k=1,k 6=j

(ρk,δ − ρj,δ)

Q(−ρj,δ)
N∏
l=1

(ql − ρj,δ)mlρj,δ

= λ1

m+1∑
j=1

Q(−ρj,δ)
m+1∏

k=1,k 6=j
(ρk,δ − ρj,δ)ρj,δ

.
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Since Q is a polynomial in ρj,δ of degree at most m − 1 and constant term
N∏
i=1

qmii , it follows that Q(−ρj,δ)ρ−1
j,δ = (ρj,δ)

−1
N∏
i=1

qmii + Q0(−ρj,δ), where Q0(r)

is a polynomial of degree at most m − 2. Hence, applying (2.5), we obtain

λ1

m+1∑
j=1

E(ρj,δ)

Q(−ρj,δ)∏N
l=1

(ql−ρj,δ)ml

ρj,δ
= λ1R, and (A.22) simplifies to

δR =
m+1∑
j=1

E(ρj,δ)

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ

 . (A.23)

On the other hand, from the definition of gδ(x) and Lemma 6 it follows that

1− ĝδ(r)ν̂∗α,δ(r) = 1−

(
λ2

m+1∑
j=1

E(ρj,δ)T̂ρj,δf2(r)

)
ν̂∗α,δ(r)

=
m+1∑
j=1

E(ρj,δ)
(

1− λ2T̂ρj,δf2(r)ν̂∗α,δ(r)
)
, (A.24)

and due to (A.23) and (A.24),

1

r

[
1− ĝδ(r)ν̂∗α,δ(r)− δRν̂∗α,δ(r)

]
=

1

r

m+1∑
j=1

E(ρj,δ)

{
1− λ2T̂ρj,δf2(r)ν̂∗α,δ(r)

−

λ2

(
f̂2(ρj,δ)− 1

)
ρj,δ

+ c+ ηαρα−1
j,δ

 ν̂∗α,δ(r)
}
.

(A.25)

Using the equality ν̂∗α,δ(r) =
1

c+ ηαrα−1 + ηαf̂α,δ(r)
and Lemma 6, we get:

m+1∑
j=1

E(ρj,δ)

[
c+ ηαrα−1 + ηαρj,δ

ρα−1
j,δ − rα−1

ρj,δ − r

]
ν̂∗α,δ(r) = 1. (A.26)
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From (A.26) and (A.25) we obtain, for r 6= ρj,δ:

1

r

[
1− ĝδ(r)ν̂∗α,δ(r)− δRν̂∗α,δ(r)

]
=

1

r

m+1∑
j=1

E(ρj,δ)

[
c+ ηαrα−1 + ηαρj,δ

ρα−1
j,δ − rα−1

ρj,δ − r

]
ν̂∗α,δ(r)

− 1

r
λ2

m+1∑
j=1

E(ρj,δ)T̂ρj,δf2(r)ν̂∗α,δ(r)

− 1

r

m+1∑
j=1

E(ρj,δ)

(
λ2(f̂2(ρj,δ)− 1)

ρj,δ
+ c+ ηαρα−1

j,δ

)
ν̂∗α,δ(r)

=
1

r

m+1∑
j=1

E(ρj,δ)


ηαrρα−1

j,δ − rα−1

ρj,δ − r
+ λ2r

1−f̂2(r)
r
− 1−f̂2(ρj,δ)

ρj,δ

ρj,δ − r

 ν̂∗α,δ(r)


=

m+1∑
j=1

E(ρj,δ)
(
ηαT̂ρj,δ`α(r) + λ2T̂ρj,δF 2(r)

)
ν̂∗α,δ(r).

Since ξω(u) = F 2(u) when ω(x, y) = 1, from (2.3), (2.1) and the above equality

we obtain

ĥα,δ,ω(r) =
m+1∑
j=1

E(ρj,δ)
(
ηαT̂ρj,δ`α(r) + λ2T̂ρj,δF 2(r)

)
=

1

r

[
1− ĝδ(r)ν̂∗α,δ(r)− δRν̂∗α,δ(r)

]
ν̂∗α,δ(r)

,

and (A.21) is proved. From (A.21) and (A.20) it follows that

ϕ̂δ(r) =
1

r

1− ĝδ(r)ν̂∗α,δ(r)− δRν̂∗α,δ(r)
1− ĝδ(r)ν̂∗α,δ(r)

=
1

r
− 1

r

[
δRν̂∗α,δ(r)

1− ĝδ(r)ν̂∗α,δ(r)

]

=
1

r
− 1

r


δR

ηα

θδ + rα−1 + f̂α,δ(r)− η−αĝδ(r)− κδ
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=
1

r
− 1

r

[
δR
ηαθδ

ν̂α,δ(r)

1− 1
θδ

[η−αĝδ(r) + κδ] ν̂α,δ(r)

]
=

1

r
− 1

r
δRŴδ(r),

where the last equality follows from (2.7). This proves d).

Proof of Proposition 4.

a) Let us define F ∗(u) =
u∫
0

Fα(x)dx. From (2.22) we obtain F̂ ∗(r) =
1− 1

CF
f̂α(r)

r2 .

The idea now is to use Lemma 9 to prove the assertion in a). For this, we consider

the limit lim
r↓0

rF̂ ∗(r)

rα−2
, which by the equality above is equivalent to lim

r↓0

1− 1
CF
f̂α,0(r)

rα−1
.

By definition of CF it follows that 1− 1
CF
f̂α(0) = 0, hence we use LH́opital’s rule

to obtain:

lim
r↓0

1− 1
CF
f̂α,0(r)

rα−1
= lim

r↓0

1 +
1

CF
∑m+1

j=2 E(ρj)ρj
ρα−1
j − rα−1

ρj − r
rα−1

= lim
r↓0

1

CF
∑m+1

j=2 E(ρj)ρj

(
ρα−1
j − rα−1

(ρj − r)2
− (α− 1)rα−2

ρj − r

)
(α− 1)rα−2

= lim
r↓0

1

CF
∑m+1

j=2 E(ρj)

(
r2−αρα−1

j − r
(ρj − r)2

− (α− 1)

ρj − r

)
(α− 1)

= − 1

CF

m+1∑
j=2

E(ρj) =
1

CF

1−

N∏
i=1

qmii

m+1∏
j=2

ρj,0


where the fifth equality follows by taking limits as δ ↓ 0 in

∑m+1
j=1 E(ρj(δ)) = 1. By

Lemma 9 we obtain (2.23). Since (2.23) implies that Fα(x) is regularly varying,

and all regularly varying distributions are also subexponential, we also obtain that

Fα(x) ∈ S.
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b) For any ρj, j = 2, 3, . . . ,m+ 1, we have

lim
x→∞

∣∣∣∣∣∣∣∣
∞∫
x

Tρjf2(y)dy

F 2,I(x)

∣∣∣∣∣∣∣∣ ≤ lim
x→∞

∞∫
x

∞∫
y

e−Re(ρj)(z−y)f2(z)dzdy

F 2,I(x)
(A.27)

Taking limits when x→∞ in the right-hand side of (A.27) yields:

lim
x→∞

∞∫
x

eRe(ρj)y
∞∫
y

e−Re(ρj)zf2(z)dzdy

F 2,I(x)
= lim

x→∞

∞∫
x

e−Re(ρj)zf2(z)dzdy

e−Re(ρj)xF 2(x)

= lim
x→∞

e−Re(ρj)xf2(x)

Re(ρj)e−Re(ρj)xF 2(x) + e−Re(ρj)xf2(x)

= lim
x→∞

f2(x)

F 2(x)

Re(ρj) + f2(x)

F 2(x)

, (A.28)

where the first and second equalities follow by L’Hopital’s rule. Using the assump-

tion that F2 ∈ R0, we obtain from (A.28) and (A.27) that

lim
x→∞

∣∣∣∣∣∣∣∣
∞∫
x

Tρjf2(y)dy

F 2,I(x)

∣∣∣∣∣∣∣∣ = 0. (A.29)

Since
∞∫
x

g0(y)dy = λ2

∏N
i=1 q

mi
i∏m+1

j=2 ρj
µ2F 2,I(x) − λ2

∑m+1
j=2 E(ρj)

∞∫
x

Tρjf2(y), the triangle

inequality yields:

λ2µ2

CG

N∏
i=1

qmii

m+1∏
j=2

ρj,0

−

∣∣∣∣∣∣∣∣
− λ2

CG

∑m+1
j=2 E(ρj)

∞∫
x

Tρjf2(y)dy

F 2,I(x)

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣ G0(x)

F 2,I(x)

∣∣∣∣ (A.30)
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and

∣∣∣∣ G0(x)

F 2,I(x)

∣∣∣∣ ≤ λ2µ2

CG

N∏
i=1

qmii

m+1∏
j=2

ρj,0

+

∣∣∣∣∣∣∣∣
− λ2

CG

∑m+1
j=2 E(ρj)

∞∫
x

Tρjf2(y)dy

F 2,I(x)

∣∣∣∣∣∣∣∣ . (A.31)

Taking limits when x → ∞ in (A.30) and (A.31) and using (A.29), we obtain

(2.24). Assuming that F2,I ∈ S, we obtain G0 ∈ S from Lemma 8 c).

c) Let us assume that F 2(x) = o(x−α), hence L’Hospital’s rule implies that

lim
x→∞

F 2,I(x)

x1−α = 0 (A.32)

This yields

lim
x→∞

∞∫
x

∞∫
y

e−Re(ρj)(z−y)f2(z)dzdy

x1−α ≤ lim
x→∞

∞∫
x

∞∫
y

f2(z)dzdy

x1−α = µ2 lim
x→∞

F 2,I(x)

x1−α = 0,

so we obtain from (A.32):

lim
x→∞

∣∣∣∣∣∣∣∣
∞∫
x

Tρjf2(y)dy

x1−α

∣∣∣∣∣∣∣∣ = 0. (A.33)

Replacing F 2,I(x) by x1−α in (A.30) and (A.31) we obtain the inequalities:

µ2

CG

N∏
i=1

qmii

m+1∏
j=2

ρj,0

F 2,I(x)

x1−α −

∣∣∣∣∣∣∣∣
− 1
CG

∑m+1
j=2 E(ρj)

∞∫
x

Tρjf2(y)dy

x1−α

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣G0(x)

x1−α

∣∣∣∣ (A.34)
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and

∣∣∣∣G0(x)

x1−α

∣∣∣∣ ≤ µ2

CG

N∏
i=1

qmii

m+1∏
j=2

ρj,0

F 2,I(x)

x1−α +

∣∣∣∣∣∣∣∣
− 1
CG

∑m+1
j=2 E(ρj)

∞∫
x

Tρjf2(y)dy

x1−α

∣∣∣∣∣∣∣∣ (A.35)

Hence, the result follows by taking limits when x→∞ in (A.34) and (A.35), and

applying (A.32) and (A.33).

d) Putting r = 0 in (2.19) we obtain CU = 1

1+
CF
θ

. Multiplying both sides in (2.19)

by CU we obtain
ν̂α,0(r)

CU

(
1 + 1

θ
f̂α,0(r)ẑα,θ0(r)

)
=
ẑα,θ0(r)

CU(
1− ν̂α,0(r)

CU

)(
1 +

1

θ
f̂α,0(r)ẑα,θ0(r)

)
= 1 +

1

θ
f̂α,0(r)ẑα,θ0(r)− ẑα,θ0(r)

CU

= 1 +
1

θ
f̂α,0(r)ẑα,θ0(r)−

(
1 +
CF
θ

)
ẑα,θ0(r)

= 1− ẑα,θ0(r)− CF
θ
ẑα,θ0(r)

(
1− 1

CF
f̂α,0(r)

)
(A.36)

We define the function U∗α(x) =
x∫
0

Uα(y)dy, x > 0. By (2.22), the Laplace trans-

form of this function satisfies the equalities:

Û∗α(r) =
Ûα(r)

r
=

1− ν̂α,0(r)

CU

r2
. (A.37)

Hence (A.36) yields:

rÛ∗α(r)

rα−2
=

1− ẑα,θ0(r)

rα−1
− CF

θ

ẑα,θ0(r)
(

1− 1
CF
f̂α,0(r)

)
rα−1

1 + 1
θ
f̂α,0(r)ẑα,θ0(r)

(A.38)

Using that ẑα,θ(r) = θ
θ+rα−1 we obtain limr↓0

1− ẑα,θ(r)
rα−1

= limr↓0
1

θ+rα−1 = 1
θ
, and
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from the proof of a) we have lim
r↓0

1− 1
CF
f̂α,0(r)

rα−1
=

1

CF

1−
N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

 .

Letting r ↓ 0 in (A.38) and using the two equalities above, we obtain:

lim
r↓0

rÛ∗α(r)

rα−2
=

1
θ
− 1

θ
+ 1

θ

N∏
i=1

q
mi
i

m+1∏
j=2

ρj,0

1 + CF
θ

=
CU
θ

N∏
i=1

qmii

m+1∏
j=2

ρj,0

, (A.39)

where in the last equality we used that CU = 1

1+
CF
θ

.

Since U∗α(x) has the monotone density Uα(x), Lemma 9, gives (2.25). This implies

that the tail of Uα is asymptotically regularly varying with index 1− α, hence we

conclude that Uα ∈ S.

Proof of Lemma 15. First we prove that

∞∫
0+

∣∣1− e−rx∣∣VS(x)dx <∞ (A.40)

for any r ∈ C+. We have:

∞∫
0+

∣∣1− e−rx∣∣VS(x)dx =

1∫
0+

∣∣1− e−rx∣∣VS(x)dx+

∞∫
1

∣∣1− e−rx∣∣VS(x)dx

≤
1∫

0+

∣∣1− e−rx∣∣VS(x)dx+

∞∫
1

VS(x)dx

≤
∞∑
k=1

|r|k

k!

1∫
0+

xkVS(x)dx+

∞∫
1

VS(x)dx
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≤
∞∑
k=1

|r|k

k!

1∫
0+

xVS(x)dx+

∞∫
1

VS(x)dx

=
(
e|r| − 1

) 1∫
0+

xVS(x)dx+

∞∫
1

VS(x)dx (A.41)

Since xVS(x) ≥ 0, by Fubini’s theorem we have

1∫
0+

xVS(x)dx =

1∫
0+

x

∞∫
x

νS(dy)dx =

1∫
0+

y∫
0

xdxνS(dy) +

∞∫
1

1∫
0+

xdxνS(dy)

=

1∫
0+

y2

2
νS(dy) +

1

2

∞∫
1

νS(dy),

where both integrals are finite because of condition
∞∫

0+

(x2 ∧ x) νS(dx), which implies

1∫
0+

x2νS(dx) <∞ and
∞∫
1

νS(dx) ≤
∞∫
1

xνS(dx) <∞.

Now we consider the integral
∞∫
1

VS(x)dx. We apply integration by parts and

obtain:

∞∫
1

VS(x)dx = xVS(x)
∣∣∣∞
x=1

+

∞∫
1

xνS(dx)

We note that xVS(x) =
∞∫
x

xνS(dy) ≤
∞∫
x

yνS(dy), and since the right-hand side of this

inequality is finite for x ≥ 1 by the condition
∞∫

0+

(x2 ∧ x) νS(dx) and it tends to zero

as x→∞, it follows that lim
x→∞

xVS(x) = 0. Hence

∞∫
1

VS(x)dx =

∞∫
1

xνS(dx)− VS(1) =

∞∫
1

(x− 1)νS(dx) ∈ [0,∞).
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This proves that the right-hand side in (A.41) is finite. Therefore we obtain (3.13)

using Fubini’s theorem. To prove (3.12) we have

ΨS(r1)

r1

− ΨS(r2)

r2

=

∞∫
0+

[
1− e−r1x − r1x

r1

− 1− e−r2x − r2x

r2

]
νS(dx)

=

∞∫
0+

x∫
0

[
e−r1y − 1−

(
e−r2y − 1

)]
dyνS(dx)

=

∞∫
0+

∞∫
y

νS(dx)
[
e−r1y − e−r2y

]
dy

=

∞∫
0+

VS(y)
[
e−r1y − e−r2y

]
dy = V̂S(r1)− V̂S(r2) (A.42)

where the third equality follows by changing the order of integration, which is possible

because of (A.40). Now we note that:

ΨS(r1)−ΨS(r2)

r2 − r1

=
r1

ΨS(r1)
r1
− r2

ΨS(r2)
r2
± r2

ΨS(r1)
r1

r2 − r1

=
r1 − r2

r2 − r1

ΨS(r1)

r1

+ r2

ΨS(r1)
r1
− ΨS(r2)

r2

r2 − r1

= r2

ΨS(r1)
r1
− ΨS(r2)

r2

r2 − r1

− ΨS(r1)

r1

. (A.43)

and analogously:

ΨS(r1)−ΨS(r2)

r2 − r1

= r1

ΨS(r1)
r1
− ΨS(r2)

r2

r2 − r1

− ΨS(r2)

r2

. (A.44)

Hence the result follows substituting (A.42) in (A.43) and (A.44) and using (1.5).

Proof of Lemma 16. We construct m + 1 different numbers depending on

ε > 0 and such that k1 of these numbers converge to ρ1,δ, k2 of these numbers,

different from the previous k1, converge to ρ2,δ, . . . , kR numbers different than the

previous m + 1 −
R−1∑
j=1

kj converge to ρR,δ. For this we take ε ∈ (0, E), where E =
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min{|Reρi,δ −Reρj,δ| : Reρi,δ −Reρj,δ 6= 0} and consider the complex numbers

ρ∗1,δ(ε) = ρ1,δ, ρ
∗
2,δ(ε) = ρ1,δ +

ε

m+ 1
. . . , ρ∗k1,δ

(ε) = ρ1,δ +
k1 − 1

m+ 1
ε,

ρ∗k1+1,δ(ε) = ρ2,δ, ρ
∗
k1+2,δ(ε) = ρ2,δ +

k1 + 1

m+ 1
ε, . . . , ρ∗k1+k2,δ

(ε) = ρδ +
k1 + k2 − 1

m+ 1
ε, . . .

...

ρ∗k1+···+kR−1+1,δ(ε) = ρR,δ, ρ
∗
k1+···+kR−1+2,δ(ε) = ρR,δ +

∑R−1
j=1 kj + 1

m+ 1
ε, . . . ,

ρ∗m+1,δ(ε) = ρR,δ +

∑R
j=1 kj − 1

m+ 1
ε, (A.45)

Clearly we have:

lim
ε→0

ρ∗lj+aj ,δ(ε) = ρj,δ, j = 1, 2, . . . , R,

for l1 = 0, l2 = k1, . . . , lR = kR−1 and aj = 1, 2, . . . , kj.

This gives m+ 1 distinct numbers ρ∗1,δ(ε), ρ
∗
2,δ(ε), . . . , ρ

∗
m+1,δ(ε) such that, as ε ↓ 0,

the first k1 converge to ρ1,δ, the next k2 converge to ρ2,δ, etc. This construction plays a

critical role in the proof of Lemma 16. The following technical lemma is also required.

First we obtain the result for case C. Using the complex numbers ρ∗1,δ(ε), . . . ρ
∗
m+1,δ(ε)

defined in (A.45), first we have the equality

LX
[
ρ∗j,δ(ε)

]
− δ =−ΨS

[
ρ∗j,δ(ε)

]
+ λ1

Q(−ρ∗j,δ(ε))
N∏
j=1

(
qj − ρ∗j,δ(ε)

)mj
+ cρ∗j,δ(ε) + γ2

[
ρ∗j,δ(ε)

]2 − δ − λ1.

Therefore, for each j = 1, 2, . . . ,m+ 1 we obtain:

λ1 + δ =−ΨS
[
ρ∗j,δ(ε)

]
+ λ1

Q(−ρ∗j,δ(ε))
N∏
j=1

(
qj − ρ∗j,δ(ε)

)mj
+ cρ∗j,δ(ε) + γ2

[
ρ∗j,δ(ε)

]2 − (LX [ρ∗j,δ(ε)]− δ) .



135

This yields:

LX (r)− δ =−ΨS(r) + λ1
Q(−r)∏N

j=1(qj − r)mj
+ cr + γ2r2 + ΨS

[
ρ∗j,δ(ε)

]
− λ1

Q(−ρ∗j,δ(ε))
N∏
j=1

(
qj − ρ∗j,δ(ε)

)mj − cρ∗j,δ(ε)− γ2
[
ρ∗j,δ(ε)

]2
+ LX

[
ρ∗j,δ(ε)

]
− δ.

(A.46)

First we prove the result for case C. Let us recall that Q1(r) =
N∏
j=1

(qj − r)mj for

r ∈ C+. Since this polynomial has degree m, it admits the equivalent representation

Q1(r) =
m+1∑
l=1

N∏
j=1

[
qj − ρ∗l,δ(ε)

]mj
∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] ∏
j 6=l

[
ρ∗j,δ(ε)− r

]
,

which follows from Lagrange interpolation. This and (A.46) give:

[LX (r)− δ]Q1(r) =
m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]
∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] ∏
j 6=l

[
ρ∗j,δ(ε)− r

]{ [
−(ρ∗l,δ(ε)− r)

]

×

ΨS(r)−ΨS(ρ∗l,δ(ε))

ρ∗l,δ(ε)− r
+ λ1

Q(−r)∏N
j=1(qj−r)mj

− Q(ρ∗l,δ(ε))∏N
j=1(qj−ρ∗l,δ(ε))

mj

ρ∗l,δ(ε)− r


− c(ρ∗l,δ(ε)− r)− γ2(ρ∗l,δ(ε)− r)(ρ∗l,δ(ε) + r)

− ηα(ρ∗l,δ(ε)− r)

[
ρ∗l,δ(ε)

]α
− rα

(ρ∗l,δ(ε)− r)
+
[
LX (ρ∗l,δ(ε))− δ

]}

=

m+1∏
j=1

[
ρ∗j,δ(ε)− r

]m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]
∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] {−ΨS(r)−ΨS(ρ∗l,δ(ε))

ρ∗l,δ(ε)− r

+ λ1

Q(−r)∏N
j=1(qj−r)mj

− Q(ρ∗l,δ(ε))∏N
j=1(qj−ρ∗l,δ(ε))

mj

ρ∗l,δ(ε)− r
− c− γ2(ρ∗l,δ(ε) + r)
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− ηα

[
ρ∗l,δ(ε)

]α
− rα

(ρ∗l,δ(ε)− r)
+
LX (ρ∗l,δ(ε))− δ
ρ∗l,δ(ε)− r

}
. (A.47)

Formula (2.5) and the first part of the proof of Proposition 2 imply, respectively:

m+1∑
l=1

Q1[ρ∗l,δ(ε)]∏
j 6=l

[ρ∗j,δ(ε)−ρ∗l,δ(ε)]
= 1

and

λ1

m+1∑
l=1

Q1[ρ∗l,δ(ε)]∏
j 6=l

[ρ∗j,δ(ε)−ρ∗l,δ(ε)]

 Q(−r)∏N
j=1(qj−r)

mj
−

Q(ρ∗l,δ(ε))∏N
j=1(qj−ρ∗l,δ(ε))

mj

ρ∗l,δ(ε)−r

 = 0, r ∈ C+.

(A.48)

Hence, substituting these two equalities in (A.47) and applying the first equality

in (3.12) to
ΨS(r)−ΨS(ρ∗j,δ(ε))

ρ∗j,δ(ε)−r
, it follows that

[LX (r)− δ]Q1(r) =
m+1∏
j=1

[
ρ∗j,δ(ε)− r

]m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{− ρ∗l,δ(ε)T̂ρ∗l,δ(ε)VS(r)

+
ΨS(r)

r
− c− γ2

[
r + ρ∗l,δ(ε)

]
+
LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}
.

Dividing both sides in the equality above by
∏m+1

j=1

[
ρ∗j,δ(ε)− r

]
we obtain

[LX (r)− δ]Q1(r)∏m+1
j=1

[
ρ∗j,δ(ε)− r

] =
m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{− ρ∗l,δ(ε)T̂ρ∗l,δ(ε)VS(r) +
ΨS(r)

r
− c

− γ2
[
r + ρ∗l,δ(ε)

]
+
LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗j,δ(ε)− r

}

=
ΨS(r)

r
− c− γ2r −

m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{ρ∗l,δ(ε)T̂ρ∗l,δ(ε)VS(r)

+ γ2ρ∗l,δ(ε)−
LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗j,δ(ε)− r

}
(A.49)
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Taking limits as ε ↓ 0 in both sides of the equality above, and using (1.12) yields:

[LX (r)− δ] ê+
δ (r)

=
ΨS(r)

r
− c− γ2r −

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
sT̂sVS(r)


s=ρl,δ

− γ2

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skj−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
s


s=ρl,δ

+
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1

Q1(s)(ρl,δ − s)kl
R∏
j=1

(ρj,δ − s)kj

LX (s)− δ
s− r


s=ρl,δ

(A.50)

Since ρj,δ for j = 1, 2, . . . , R are the roots of LX (s)− δ = 0 in C++, and they have

multiplicities kj for j = 1, 2, . . . ,m+ 1, it follows that:

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1

Q1(s)(ρl,δ − s)kl
R∏
j=1

(ρj,δ − s)kj

LX (s)− δ
s− r


s=ρl,δ

= 0.

Hence, substituting this in the equality above, setting

Dδ =
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skj−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
s


s=ρl,δ

,

and multiplying both sides by −1 we obtain:
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[δ − LX (r)] ê+
δ (r) = c+ γ2Dδ + γ2r − ΨS(r)

r

+
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
sT̂sVS(r)


s=ρl,δ

(A.51)

Now we apply Leibniz rule and Lemma 14 to the last term in the equality above.

This gives:

[δ − LX (r)] ê+
δ (r) =c+ γ2Dδ + γ2r − ΨS(r)

r
+

R∑
l=1

kl−1∑
a=0

(
kl − 1

a

)
(−1)1−kl

(kl − 1)!

× ∂kl−1−i

∂skl−1−i


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj


s=ρl,δ

∂a

∂sa

[
T̂sVS(r)

]
s=ρl,δ

= c+ γ2Dδ + γ2r − ΨS(r)

r
+

R∑
l=1

kl−1∑
a=0

(
kl − 1

a

)
(−1)1−kl+a

(kl − 1)!

× ∂kl−1−a

∂skl−1−i


N∏
j=1

(qj − s)mj(ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj


s=ρl,δ

T̂ρl,δ ;aVS(r)

= c+ γ2Dδ + γ2r − ΨS(r)

r
+

R∑
l=1

kl−1∑
a=0

E∗(l, a, δ)T̂ρl,δ;aVS(r)

= c+ γ2Dδ + γ2r − ΨS(r)

r
+ L̂δ(r).

Using L’Hospital’s rule we obtain lim
r↓0

ΨS(r)
r

= 0, hence setting r = 0 in both sides of

the equality above and using [δ − LX (0)] ê+
δ (0) = aδ, we obtain aδ = c+γ2Dδ+ L̂δ(0).
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It follows that:

[δ − LX (r)] ê+
δ (r) = aδ − L̂δ(0) + γ2r − ΨS(r)

r
+ L̂δ(r)

= aδ + γ2r − ΨS(r)

r
−
(
L̂δ(0)− L̂δ(r)

)
.

This gives the result for case C.

For case B, we use (A.47) replacing ΨS(r) by GS(r) and setting γ = 0. This gives:

[LX (r)− δ]Q1(r)

=
m+1∏
j=1

[
ρ∗j,δ(ε)− r

]m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] {−GS(r)−GS(ρ∗l,δ(ε))

ρ∗l,δ(ε)− r

+λ1

Q(−r)∏N
j=1(qj−r)mj

− Q(ρ∗l,δ(ε))∏N
j=1(qj−ρ∗l,δ(ε))

mj

ρ∗l,δ(ε)− r
− c+

LX (ρ∗l,δ(ε))− δ
ρ∗l,δ(ε)− r


=

m+1∏
j=1

[
ρ∗j,δ(ε)− r

]m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] {T̂ρ∗l,δ(ε)νS(r)− c+
LX (ρ∗l,δ(ε))− δ
ρ∗l,δ(ε)− r

}

(A.52)

where in the second equality we used

GS(r)−GS(s)

s− r
= −

∞∫
0+

[e−rx − 1− (e−sx − 1)] νS(dx)

s− r

= −

∞∫
0+

[e−rx − e−sx] νS(dx)

s− r
= −T̂sνS(r). (A.53)

and the second equality in (A.48). Using the first equality in (A.48) and dividing
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both sides in (A.52) by −
m+1∏
j=1

[
ρ∗j,δ(ε)− r

]
, we obtain

[δ − LX (r)]
Q1(r)

m+1∏
j=1

[
ρ∗j,δ(ε)− r

]
= c−

m+1∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] {T̂ρ∗l,δ(ε)νS(r) +
LX (ρ∗l,δ(ε))− δ
ρ∗l,δ(ε)− r

}

(A.54)

Taking limits as ε ↓ 0 and using (1.12), we obtain:

[δ − LX (r)] ê+
δ (r) = c−

R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
T̂sν(r)


s=ρl,δ

= c−
R∑
l=1

kl−1∑
a=0

(
kl − 1

a

)
(−1)1−kl

(kl − 1)!

∂kl−1−i

∂skl−1−i


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj


s=ρl,δ

× ∂a

∂sa

[
T̂sνS(r)

]
s=ρl,δ

= c−
R∑
l=1

kl−1∑
a=0

E(l, a, δ)T̂ρl,δ;aνS(r)

= c− ̂̀δ(r), (A.55)

where in the second equality we used Leibniz rule and in the third equality we used

Lemma 14. Setting r = 0 in the equality above and using [δ − LX (0)] ê+
δ (0) = aδ, we

obtain c− ̂̀δ(0) = aδ, or equivalently

c = aδ + ̂̀δ(0). (A.56)

Therefore:

[δ − LX (r)] ê+
δ (r) = aδ +

[̂̀
δ(0)− ̂̀δ(r)]
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This implies the result for case B. To obtain the result for case A, we suppose that

LX (r) = λ1

(
Q(−r)∏N

j=1(qj−r)mj
− 1

)
−GS(r), and S is a subordinator but not a compound

Poisson process. Note that we have also assumed that the drift term c = c0 + µS

equals zero.

In this case we know by Lemma 13 that LX (r)− δ = 0 has m roots in C++. We

denote them again as ρ1,δ, . . . , ρR,δ and assume that they have multiplicities k1 ≡
1, k2, . . . , kR such that

∑
j

kj = m. We consider the numbers ρ∗1,δ(ε), . . . , ρ
∗
m,δ(ε) as

defined before, and instead of ρ∗m+1,δ(ε) we take ρ∞(n) =
√
n. We also take cn = 1

n
.

Clearly lim
n→∞

cn = 0 and lim
n→∞

cnρ∞(n) = 0.

Note that, in this case, the function LX (r) + cnr is exponent of the moment

generating function of some Lévy process of the form (3.1) with γ = 0 and drift term

cn. Hence we can use (A.47) with γ = 0, GS instead of ΨS and cn instead of c. This

yields:

[LX (r) + cnr − δ]Q1(r)

= (ρ∞(n)− r)
m∏
j=1

[
ρ∗j,δ(ε)− r

] m∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] {−GS(r)−GS(ρ∗l,δ(ε))

ρ∗l,δ(ε)− r

+λ1

Q(−r)∏N
j=1(qj−r)mj

− Q(ρ∗l,δ(ε))∏N
j=1(qj−ρ∗l,δ(ε))

mj

ρ∗l,δ(ε)− r
− c− γ2(ρ∗l,δ(ε) + r) +

LX (ρ∗l,δ(ε))− δ
ρ∗l,δ(ε)− r

 .

+ (ρ∞(n)− r)
m∏
j=1

[
ρ∗j,δ(ε)− r

]{
−
GS(r)−GS(ρ∗l,δ(ε))

ρ∗l,δ(ε)− r

+ λ1

Q(−r)∏N
j=1(qj−r)mj

− Q(−ρ∞(n))
N∏
j=1

(qj−ρ∞(n))mj

ρ∞(n)− r
− c− γ2(ρ∞(n) + r) +

LX (ρ∞(n))− δ
ρ∞(n)− r

}
(A.57)

By (A.48) we have

m∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

] +
Q1 [ρ∞(n)]∏m

j=1

[
ρ∗j,δ(ε)− ρ∞(n)

] = 1
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and

m∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]
 Q(−r)∏N

j=1(qj−r)mj
− Q(ρ∗l,δ(ε))∏N

j=1(qj−ρ∗l,δ(ε))
mj

ρ∗l,δ(ε)− r



+
Q1 [ρ∞(n)]

m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

]


Q(−r)∏N
j=1(qj−r)mj

− Q(−ρ∞(n))
N∏
j=1

(qj−ρ∞(n))mj

ρ∞(n)− r

 = 0. (A.58)

Applying the equalities above and GS(r)−GS(s)
s−r = −T̂sνS(r) (which is due to (A.53)),

to (A.57), then dividing both sides by
m∏
j=1

[
ρ∗j,δ(ε)− r

]
, we obtain:

[LX (r) + cnr − δ]
Q1(r)∏m

j=1

[
ρ∗j,δ(ε)− r

]
= −cn(ρ∞(n)− r) +

m∑
l=1

ρ∞(n)− r
ρ∞(n)− ρ∗l,δ(ε)

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{T̂ρ∗l,δ(ε)νS(r)

+ cnρ
∗
l,δ(ε) +

LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}

+
Q1 [ρ∞(n)]

m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

] {(ρ∞(n)− r) T̂ρ∞(n)νS(r) + cnρ∞(n) + (LX [ρ∞(n)]− δ)
}

= −cn(ρ∞(n)− r) +
m∑
l=1

ρ∞(n)− r
ρ∞(n)− ρ∗l,δ(ε)

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{T̂ρ∗l,δ(ε)νS(r)

+ cnρ
∗
l,δ(ε) +

LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}

+
Q1 [ρ∞(n)]

m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

]
{
−GS(r) +GS(ρ∞(n)) + cnρ∞(n) + (LX [ρ∞(n)]− δ)

}
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where in the second equality we have used the equality (ρ∞(n) − r)T̂ρ∞(n)νS(r) =

(ρ∞(n)− r)
(
−GS(r)+GS(ρ∞(n))

ρ∞(n)−r

)
.

Now we substitute LX (ρ∞(n)) = λ1

 Q(−ρ∞(n))
N∏
j=1

(qj−ρ∞(n))mj
− 1

 − GS(ρ∞(n)) and ob-

tain:

[LX (r) + cnr − δ]
Q1(r)∏m

j=1

[
ρ∗j,δ(ε)− r

]
= −cn(ρ∞(n)− r) +

m∑
l=1

ρ∞(n)− r
ρ∞(n)− ρ∗l,δ(ε)

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{T̂ρ∗l,δ(ε)νS(r)

+ cnρ
∗
j,δ(ε) +

LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}
+

Q1 [ρ∞(n)]
m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

]
{
−GS(r) +GS(ρ∞(n))

+

(
cnρ∞(n) + λ1

Q (−ρ∞(n))∏N
j=1 (qj − ρ∞(n))mj

−GS (ρ∞(n))− λ1 − δ

)}

= −cn(ρ∞(n)− r) +
m∑
l=1

ρ∞(n)− r
ρ∞(n)− ρ∗l,δ(ε)

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{T̂ρ∗l,δ(ε)νS(r) + cnρ
∗
l,δ(ε)

+
LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}
− Q1 [ρ∞(n)]

m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

]GS(r)

+
Q1 [ρ∞(n)]

m∏
j=1

[
ρ∗j,δ(ε)− ρ∞(n)

]
{
cnρ∞(n) + λ1

Q (−ρ∞(n))∏N
j=1 (qj − ρ∞(n))mj

− (λ1 + δ)

}
(A.59)

Since Q1(r) =
∏N

j=1(qj − r)mj and
∏m

j=1

(
ρ∗j,δ(ε)− r

)
both have degree m, and

since in the quotient Q(r)
Q1(r)

, Q(r) is a polynomial of degree at most m − 1, it follows

that for any r, s such that r 6= ρ∞(n) and s 6= ρ∞(n):

lim
n→∞

ρ∞(n)− r
ρ∞(n)− s

= 1
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lim
n→∞

Q1(ρ∞(n))∏m
j=1

(
ρ∗j,δ(ε)− ρ∞(n)

) = 1

lim
n→∞

Q(−ρ∞(n))
N∏
j=1

(qj − ρ∞(n))mj
= 0.

We let n → ∞ in both sides of (A.59) and multiply the resulting equality by −1.

This gives:

[δ − LX (r)]

∏N
j=1(qj − r)mj∏m

j=1

(
ρ∗j,δ(ε)− r

)
= −

m∑
l=1

Q1

[
ρ∗l,δ(ε)

]∏
j 6=l

[
ρ∗j,δ(ε)− ρ∗l,δ(ε)

]{T̂ρ∗l,δ(ε)νS(r) +
LX
[
ρ∗l,δ(ε)

]
− δ

ρ∗l,δ(ε)− r

}
+GS(r) + λ1 + δ.

Letting ε ↓ 0 in the equality above and using again (1.12) and that ρj,δ for j =

1, 2, . . . , R are roots of LX (r) − δ in C++, with multiplicities kj, j = 1, 2, . . . , R we

obtain:

[δ − LX (r)]

∏N
j=1(qj − r)mj∏m
j=1 (ρj,δ − r)kj

= GS(r) + λ1 + δ

−
R∑
l=1

(−1)1−kl

(kl − 1)!

∂kl−1

∂skl−1


N∏
j=1

(qj − s)mj (ρl,δ − s)kl

R∏
j=1

(ρj,δ − s)kj
T̂sνS(r)


s=ρl,δ

= GS(r) + λ1 + δ − ̂̀δ(r) (A.60)

From this we obtain aδ = λ1+δ−̂̀(0) by taking r = 0, or equivalently λ1+δ = aδ+̂̀(0).

Substituting this in (A.60) results to:

[δ − LX (r)]

∏N
j=1(qj − r)mj∏m
j=1 (ρj,δ − r)kj

= aδ +GS(r) + ̂̀δ(0)− ̂̀δ(r). (A.61)

Proof of Lemma 18. We prove b). First we consider cases B and C, in which



145

the roots in C++ are m + 1, and hence,
∏R

j=1(ρj,δ − r)kj has degree m + 1. We also

recall that
∏N

l=1(ql − r)ml has degree m for cases A, B and C.

By (A.10) in Labbé et al. [2011] the polynomial
∏N

l=1(ql− r)ml has the equivalent

representation

N∏
l=1

(ql − r)ml =

R∑
j=1

kj−1∑
a=0

1

a!

∂a

∂sa

[∏N
l=1(ql − s)ml(s− ρj,δ)kj∏R

l=1(s− ρl,δ)kl

]
s=ρj,δ

∏R
l=1(r − ρl,δ)kj

(r − ρj,δ)kj−a
.

Hence, dividing both sides in the equality above by
∏R

j=1(ρj,δ − r)kj and factorizing

(−1)m+1, we obtain:

ê+δ (r) = (−1)m+1
R∑
j=1

kj−1∑
a=0

1

a!

∂a

∂sa

[∏N
l=1(ql − s)ml(−1)kj (ρj,δ − s)kj

(−1)m+1
∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

(−1)kj−a

(ρj,δ − r)kj−a

=

R∑
j=1

kj−1∑
a=0

1

a!

∂a

∂sa

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

(−1)a

(ρj,δ − r)kj−a

We set b = kj − 1 − a and note that b moves from 0 to kj − a. We also use that

(−1)1−kj+b = (−1)kj−1−b and rewrite the equality above as

ê+δ (r)

=

R∑
j=1

kj−1∑
b=0

(−1)1−kj+b

(kj − 1− b)!
∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

1

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(kj − 1)!

(kj − 1)!

b!

b!

(−1)1−kj+b

(kj − 1− b)!
∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

1

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

E(j, b)
b!

(ρj,δ − r)b+1
(A.62)

Now we use that
∞∫
0

erxybe−ρj,δxdx = b!
(ρj,δ−r)b+1 , and the result follows in this case.

In case A there are only m roots in C++, hence
∏R

j=1(ρj,δ − r)kj has degree m.

We note that the term with degree m in this polynomial is given by (−1)mrm, and

also the term with degree m in
∏N

l=1(ql − r)ml is given by (−1)mrm. Therefore
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P (r) =
∏N

l=1(ql−r)ml−
∏R

j=1(ρj,δ−r)kj is a polynomial with degree m−1. We apply

(A.10) in Labbé et al. [2011] to P (r) and obtain:

P (r) = (−1)m+1
R∑
j=1

kj−1∑
a=0

1

a!

∂a

∂sa

[
P (r)(−1)kj (ρj,δ − s)kj

(−1)m+1
∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

(−1)kj−a

(ρj,δ − r)kj−a

=

R∑
j=1

kj−1∑
a=0

1

a!

∂a

∂sa

[
P (r)(ρj,δ − s)kj∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

(−1)a

(ρj,δ − r)kj−a

=

R∑
j=1

kj−1∑
b=0

(−1)1−kj+b

(kj − 1− b)!
∂kj−1−b

∂skj−1−b

[
P (r)(ρj,δ − s)kj∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

1

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(kj − 1)!

(kj − 1)!

b!

b!

(−1)1−kj+b

(kj − 1− b)!
∂kj−1−b

∂skj−1−b

[
P (r)(ρj,δ − s)kj∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

1

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[
P (r)(ρj,δ − s)kj∏R
l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

−
R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏R
l=1(ρl,δ − s)kl(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

where in the sixth equality we used the linearity of the partial derivatives. We note

that

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏R
l=1(ρl,δ − s)kl(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

=

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b
[
(ρj,δ − s)kj

]
s=ρj,δ

b!

(ρj,δ − r)b+1
= 0,

because all the derivatives ∂kj−1−b

∂skj−1−b

[
(ρj,δ − s)kj

]
s=ρj,δ

equal zero. Hence:

P (r) =

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1

(A.63)
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We note that ê+
δ (r) can be rewritten as ê+

δ (r) = 1 + P (r)∏R
l=1(ρl,δ−r)kl

. Therefore (A.63)

implies that ê+
δ (r) equals:

1 +

R∑
j=1

kj−1∑
b=0

(
kj − 1

b

)
(−1)1−kj+b

(kj − 1)!

∂kj−1−b

∂skj−1−b

[∏N
l=1(ql − s)ml(ρj,δ − s)kj∏R

l=1(ρl,δ − s)kl

]
s=ρj,δ

b!

(ρj,δ − r)b+1
.

Using
∞∫
0

erxybe−ρj,δxdx = b!
(ρj,δ−r)b+1 and

∞∫
0

erxδ0(x)dx = 1 we obtain the result in this

case.
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