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Abstract

Diabetes Mellitus 2 is a metabolic disorder. Its prevalence has been increasing all

over the world. The Oral Glucose Tolerance Test (OGTT) allows to diagnose some

anomalies related to the status of the disease. This work presents a model for

the dynamics of glucose-insulin-glucagon in the human body and the corresponding

qualitative analysis. Measurements of the glucose level during the OGTT supplie

observations (data) for the formulation of the inverse problem. Quantifying the

uncertainty is the principal objective of the bayesian approach presented. Under

specific conditions, the model predicts around 60% of diagnosed patients.

Keywords: OGTT; Diabetes; bayesian; glucose; insulin; uncertainty
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Chapter 1

Introduction

The World Health Organization (WHO) refers to diabetes as a chronic, metabolic

disease characterized by elevated levels of blood glucose which leads over time to

serious damage to the heart, blood vessels, eyes, kidneys, and nerves. The most

common is type 2 diabetes, usually in adults, which occurs when the body becomes

resistant to insulin or doesn’t make enough insulin. In the past three decades the

prevalence of type 2 diabetes has risen dramatically in countries of all income levels.

Type 1 diabetes, once known as juvenile diabetes or insulin-dependent diabetes, is

a chronic condition in which the pancreas produces little or no insulin by itself.

For people living with diabetes, access to affordable treatment, including insulin, is

critical to their survival [WHO]. That means that the economic cost around the

treatment and medication of diabetes is growing.
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Chapter 1. Introduction 7

Figure 1.1: Cost for Healthcare in Mexico, 2010

Since 1965, WHO has published guidelines for the diagnosis and classification of

diabetes. Globally in 2013, it is estimated that almost 382 million people suffer from

diabetes for a prevalence of 8.3%. North America and the Caribbean is the region

with the highest prevalence of 11% having 37 million people with diabetes, followed

by the Middle East and North Africa with a prevalence of 9.2% having 35 million

people with diabetes. The Western Pacific is the region with the highest number of

people living with diabetes (138 million), however its prevalence is 8.6%, close to the

prevalence of the World. In Mexico, the situation is worse than worldwide as we can

see in the next picture, taken from the International Diabetes Federation [IDF]
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Figure 1.2: NAC(North America and Caribbean)

In the last decades, diabetes has become the principal health problem in Mexico.

It is the leading cause of death in women since the year 2000. It is the primary cause

of premature retirement, blindness, and kidney failure. By the year 2025, close to

11.7 million Mexicans are expected to be diagnosed with diabetes.

In this work, we will explain the biological situation of the desease, review some

mathematical models and describe tests for the diagnose of diabetes, particularly

the Oral Glucose Tolerance Test. In the next chapters, we will explain our model,

propose the inverse problem and present results from the bayesian approach. The

following scheme shows the aspects of this work:
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Figure 1.3: Work scheme

1.1 Biological situation

Hormones travel in the bloodstream to tissues and organs. They affect a vast array

of bodily functions, such as sexual functions, growth and development, whole-body

metabolism and blood glucose levels. The glucose level in the blood is regulated

by two main chemical messengers in the body that are created in the endocrine

glands, insulin and glucagon. Most tissues and organs need glucose constantly, as an

important source of energy. Low blood concentrations of glucose can causes seizures,

loss of consciousness, and death. On the other hand, a long-lasting elevation of

blood glucose concentration can result in blindness, renal failure, vascular disease,

and neuropathy. Therefore, blood glucose concentration needs to be maintained

within narrow limits. The process of maintaining blood glucose at a steady-state

level is called glucose homeostasis. [14]

The normal blood glucose level in humans is in a range of 70-110 mg/dl. We can

find in [8] an extensive explanation of the endocrine system. Hormones secreted from
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cells in the pancreas are responsible for the control of glucose, amino acids, and other

molecules that are necessary for metabolism. The pancreas contains a large number

of secretory cells. There are three principal secretory cell types: the α-cells secrete

glucagon, the β-cells secrete insulin and the δ-cells secrete somatostatin. We are

interested in the first two. Glucagon and insulin have complementary actions. A high

concentration of glucose in the bloodstream (corresponding to an over-abundance

of nutrients) stimulates the production of insulin, which in turn induces storage of

excess nutrients and decreases the rate at which nutrients are mobilized from storage

areas such as adipose tissue or the liver. Insulin acts principally on three tissues:

striated muscle (including the heart), liver, and adipose tissue. All the actions of

insulin apparently stem from its interaction with a specific receptor in the plasma

membrane of insulin-sensitive cells. How this interaction leads to the many actions

of insulin on the cell is not fully understood. In striated muscle and adipose tissue,

one important action of insulin is to stimulate the transport of glucose into the

cell. In the liver, insulin acts on enzymes to increase glucose storage and decrease

mobilization of glucose stores. Exercise and fasting can induce a decrease in the

glucose level and glucagon raises this concentration of glucose in the bloodstream.

It acts mainly but not entirely on the liver, where it stimulates glycogen breakdown

and the formation of glucose. Figure (1.4), found in [9], summarizes the situation.

Diabetes is a chronic disease, which occurs when the pancreas does not produce

enough insulin, or when the body cannot effectively use the insulin it produces. This

leads to an increased concentration of glucose in the blood (hyperglycaemia). A brief

classification by type is:

• Type 1 diabetes (previously known as insulin-dependent or childhood-onset

diabetes) is characterized by a lack of insulin production.

• Type 2 diabetes (formerly called non-insulin-dependent or adult-onset dia-

betes) is caused by the bodys ineffective use of insulin. It often results from

excess body weight and physical inactivity.

• Gestational diabetes is hyperglycaemia that is first recognized during preg-

nancy.
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Figure 1.4: Biological situation

Impaired glucose tolerance (IGT) and impaired fasting glycaemia (IFG) are in-

termediate conditions in the transition between normality and diabetes. People with

IGT or IFG are at high risk of progressing to type 2 diabetes, although this is not

inevitable. The following picture shows the criteria to diagnose these conditions

Figure 1.5: Diagnostic Criteria for WHO and ADA
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Measurement of glucose in blood remains the mainstay of testing for glucose tol-

erance status. There are a number of important considerations which can influence

this measurement which require careful attention in order to ensure an accurate re-

sult.

The OGTT consists of a small sample of fasting-state blood. After giving a blood

sample, the patient must drink a concentrated solution of glucose (250 ml. of water

with 75 gr. of sucar) within a given amount of time (usually five minutes). Then

blood samples are taken each 30 minutes for 2 hours (a total of five samples). By

taking several samples of your blood as your body processes the sugary drink, the

healthcare professional can deduce how quickly your body can process sugar.

The Intravenous Glucose Tolerance Test (IVGTT) consists of giving a bolus of glu-

cose (300 mg/kg in a 30% solution) within 60 seconds into the antecubital vein. Blood

is sampled from the contralateral antecubital vein for assessment of the plasma glu-

cose, insulin, and C-peptide concentrations.

Oral tests necessarily fail to distinguish between effects due to changes in intestinal

absorption and those due to alterations in carbohydrate metabolism. Variations in

gastric emptying time and in intestinal absorption are in fact known to influence the

results of oral tests. Technically, the IVGTT is more difficult, time-consuming and

is rarely used.

There is continuing debate about the place of the OGTT for clinical and epidemio-

logical purposes. The test is recommended by the WHO inasmuch as fasting plasma

glucose alone fails to diagnose approximately 30% of cases of previously undiagnosed

diabetes and is the only means of identifying people with IGT. Although the ADA

(American Diabetes Association) acknowledges the OGTT as a valid way to diagnose

diabetes, the use of the test for diagnostic purposes in clinical practice is discour-

aged in favour of fasting plasma glucose for several reasons, including inconvenience,

greater cost and less reproducibility.

We can see in ([3]) a brief description of some indices used to “measure” insulin

sensitivity. The HOMA formula is a simplification of a mathematical model which

assesses β-cell response and can be described as the product of fasting glucose and

fasting insulin divided by a constant. As insulin secretion follows a pulsatile pattern,

the accuracy of the indices is questioned in several cases. That gives a prospect of
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tools and limitations possessing the clinical professionals.

1.2 Previous models for glucose-insulin dynamics

1. Bergman Bergman’s Minimal Model was presented in 1979 and is a model

that works during the IVGTT. The model is given by

Ġ(t) = −p1 (G(t)−Gb)−X(t)G(t), G(0) = G0

Ẋ(t) = −p2X(t) + p3 (I(t)− Ib) , X(0) = 0

İ(t) = −n (I(t)− Ib) + γ (G(t)− h)+ t, I(0) = I0,

(1.1)

where t = 0 is the glucose injection time and the variables denote the following;

• G(t): the glucose concentration in plasma at time t.

• I(t): the insulin concentration in plasma at time t.

• X(t): the insulin’s effect on the net glucose disappearance (remote insulin

action).

See [1] for a bayesian approach with this model. We want to point out that the

glucose level as well as the insulin level of the body are modelled with a basal

level, Gb and Ib. Moreover, the rate of change for the insulin is characterized

by a switch that is on when the glucose is over a threshold value.

2. Sturis Based on two negative feedback loops describing the effects of insulin on

glucose utilization and production and the effect of glucose on insulin secretion,

Sturis et al. (1991) developed a six-dimensional ODE model. A negative

feedback is a key regulatory mechanism for physiological function in living

things. Negative feedback tends to promote a settling to equilibrium, and

reduces the effects of perturbations. Ussually, negative feedback loops occur

in a series of steps: There is an stimulus, in which a change occurs. There is a

sensor, or the change is detected. There is a control, which is just a response to

the change. There is an effector, or the effect of the response for a period of time
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until the situation is brought back to normal. This model includes additional

variables associated with the delays of the insulin effect on the hepatic glucose

production. A brief explanation of this model and references are presented in

[9].

3. The next model is presented in [4] and it is a premodel for [5],

Ġ = (L− I)G+
D

θ2

İ = θ0

(
G

G0

− 1

)+

− I

a

L̇ = θ1

(
1− G

G0

)+

− L

b

Ḋ =
D

θ2
,

(1.2)

where G(t) is the blood glucose level at time t, I(t) is the blood insulin level at

time t and L(t) the glucagon levels. Also, D(t) is the digestive system “glucose

level”. This model shows, again, that when G(t) is over a threshold value, Gb,

insulin is produced. On the contrary, when G(t) is under that value, glucagon

is produced.

In [9] we can find a variety of models for the glucose-insulin system from the ODE

models, delay equations, integro-differential equations, PDE models among others.
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1.3 The model

We will explain the biological motivation for the following model:

Ġ = λ1L− λ2I + 0.8λ3D

İ = λ4(G−G0)
+ − λ5I

L̇ = λ6(G0 −G)+ − λ7L

Ḋ = −λ3D + λ8V

V̇ = −λ8V ,

(1.3)

where G(t), I(t) and L(t) are as in (1.2). Also, D(t) is the digestive system “glucose

level” due to the supply and finally V (t) is the “glucose level” in the glass. The fifth

equation models the glucose level in the glass in an exponential way. The digestive

system “glucose level” D(t) is modeled like a tank, all the glucose taken from the

glass arrives in the digestive system at a different rate than it desintegrates. Just

a fraction of the glucose in the digestive system affects the blood level. Several

epidemiological studies reveal sex-specific differences during oral glucose tolerance

tests, such as gut glucose absorption. Based on [2], we will work with 0.8 as this

fraction. λ4 and λ6 are the production rates of insulin and glucagon and λ5 and λ7

their desintegration rates respectively. Finally, λ1 and λ2 are the effectiveness rates

of the glucagon and insulin that affects the blood glucose level.

In the following chapter, we will parameterize this model, analyze its stability, prop-

erties of its solutions and propose the inverse problem under the bayesian approach.



Chapter 2

Materials and Methods

Making the following parametrization λ1L = L1 and λ2I = I1 in (1.3), we reach the

next system

Ġ = L1 − I1 + 0.8θ0D

İ1 = θ1(G−Gb)
+ − λ5I1

L̇1 = θ2(Gb −G)+ − λ7L1

Ḋ = −θ0D + λ8V

V̇ = −λ8V ,

(2.1)

equivalent to the one shown in [5].

2.1 Analysis of the ODE system

2.1.1 Equilibrium points and stability

The equilibrium points are found by solving each equation of the system. Fifth

equation forces that V = 0. Substituting in the fourth equation we get D = 0. In

the same way, from the first equation, we obtain the condition L1 = I1. Finally, from

the second and third equation, it follows that G = Gb, L1 = I1 = 0. So our unique

16
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equilibrium point is (Gb, 0, 0, 0, 0).

Now we proceed to the calculation of the jacobian matrix for our system. Observe

that the jacobian matrix must be determined in two different ways; for G+
0 and for

G−0 . Thus,

J− =


0 −1 1 θ0 0

0 −λ5 0 0 0

−θ2 0 −λ7 0 0

0 0 0 −θ0 1

0 0 0 0 −λ8

 .

The characteristic polynomial associated to J− is

p−(λ) = (λ+ λ8)(λ+ θ0)(λ+ λ5)(λ
2 + λλ7 + θ2).

So, the corresponding eigenvalues are −λ8,−λ5,−θ0,
−λ7 ±

√
(λ7)2 − 4θ2
2

. Note

that all have a negative real part.

On the other hand

J+ =


0 −1 1 θ0 0

θ1 −λ5 0 0 0

0 0 −λ7 0 0

0 0 0 −θ0 1

0 0 0 0 −λ8

 .

The characteristic polynomial asociated to J+ is

p+(λ) = (λ+ λ8)(λ+ θ0)(λ+ λ7)(λ
2 + λλ5 + θ1).

Since the eigenvalues associated to J+ are −λ8,−λ7,−θ0,
−λ5 ±

√
(λ5)2 − 4θ1
2

, we

can observe that again all possess a negative real part.

Finally, it follows that the equilibrium point (Gb, 0, 0, 0, 0) is asymptotically stable.
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2.1.2 An expression for the glucose in the digestive system

We will start with the fifth equation in (2.1). Using separation of variables, we have

dV

dt
= −λ8V ⇒

dV

V
= −λ8dt

⇒ lnV = −λ8t+ C ⇒ V (t) = Ke−λ8t

then

V (t) = V0e
−λ8t. (2.2)

With that expression for V , we now solve the fourth equation in (2.1),

Ḋ = −θ0D + λ8V = −θ0D + λ8V0e
−λ8t.

We consider two cases:

(i) θ0 6= λ8

For this case, D(t) takes the form D(t) = K1e
−θ0t + K2e

−λ8t and we must

determine K1 and K2, then

Ḋ + θ0D = −θ0K1e
−θ0t − λ8K2e

−λ8t + θ0K1e
−θ0t + θ0K2e

−λ8t =

= −λ8K2e
−λ8t + θ0K2e

−λ8t = K2e
−λ8t (−λ8 + θ0) = λ8V0e

−λ8t

⇒ K2 (−λ8 + θ0) = λ8V0 ⇒ K2 =
λ8V0
θ0 − λ8

.

So, D(t) = K1e
−θ0t +

λ8V0
θ0 − λ8

e−λ8t and since D(0) = 0 we have

D(0) = K1 +K2 = K1 +
λ8V0
θ0 − λ8

= 0

⇒ K1 = − λ8V0
θ0 − λ8

.

Finally,

D(t) =
λ8V0
θ0 − λ8

(
e−λ8t − e−θ0t

)
. (2.3)
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(ii) θ0 = λ8

For this case, D(t) must be D(t) = (P1 + P2t) e
−θ0t. To determine P1 and P2,

substituting as before we have

Ḋ+θ0D = P2e
−θ0t−θ0 (P1 + P2t) e

−θ0t+θ0 (P1 + P2t) e
−θ0t = P2e

−θ0t = θ0V0e
−θ0t

⇒ P2 = θ0V0.

Again, since D(0) = 0, we arrive to

D(0) = P1 = 0.

Finally,

D(t) = θ0V0te
−θ0t. (2.4)

Therefore,

D(t) =


λ8V0
θ0 − λ8

(
e−λ8t − e−θ0t

)
, if θ0 6= λ8,

θ0V0te
−θ0t, if θ0 = λ8

. (2.5)

For the numerical approach, we will work with the case θ0 6= λ8.

2.1.3 A harmonic oscillator

Consider the first three equations in (2.1). Now, we will assume that λ5 = λ7 and

θ1 = θ2, then (2.1) becomes

Ġ = L1 − I1 + 0.8θ0D

İ1 = θ1(G−Gb)
+ − λ5I1

L̇1 = θ1(Gb −G)+ − λ5L1

(2.6)
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Let w = L1 − I1 so ẇ = L̇1 − İ1. Since (Gb − G)+ − (G − Gb)
+ = Gb − G we have

that

ẇ = L̇1 − İ1 = θ1(Gb −G)+ − λ5L1 − θ1(G−Gb)
+ + λ5I1

= θ1
[
(Gb −G)+ − (G−Gb)

+
]
− λ5(L1 − I1)

= θ1(Gb −G)− λ5w

Now, if we choose x = G−Gb, then we have ẋ = Ġ = L1 − I1 + 0.8θ0D. Then (2.6)

becomes
ẋ = w + 0.8θ0D

ẇ = −θ1x− λ5w
. (2.7)

Finally, since ẋ = w + θ0D, then

ẍ = ẇ + 0.8θ0Ḋ = −θ1x− λ5w + 0.8θ0Ḋ

so

ẍ = −θ1x− λ5(ẋ− 0.8θ0D) + 0.8θ0Ḋ.

The last equation can be written as

ẍ+ λ5ẋ+ θ1x = 0.8θ0

(
λ5D + Ḋ

)
(2.8)

and the solution x(t) can be found analytically and is a driven harmonic oscillator,

i.e., a damped oscillator with an external force applied.

2.1.4 A third order oscillator

As in the last subsection, let us consider θ1 = θ2 + ε and λ5 = λ7 + η and using (2.6),

we have

ẇ = L̇1 − İ1 = θ2(Gb −G)+ − λ7L1 − (θ2 + ε)(G−Gb)
+ + (λ7 + η)I1

= θ2
[
(Gb −G)+ − (G−Gb)

+
]
− λ7(L1 − I1)− ε(G−Gb)

+ + ηI1 =

= θ2(Gb −G)− λ7w − ε(G−Gb)
+ + ηI1.
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Now, letting x = G−Gb, instead of (2.7) we obtain

ẋ = w + 0.8θ0D

ẇ = −θ2x− λ7w − εx+ + ηI1.

(2.9)

Differentiating on (2.9) we get an order 2 equation.

Since ẋ = w + 0.8θ0D then

ẍ = ẇ + 0.8θ0Ḋ = −θ2x− λ7w − εx+ + ηI1 + 0.8θ0Ḋ

ẍ = −θ2x− λ7(ẋ− 0.8θ0D)− ε(x)+ + ηI1 + 0.8θ0Ḋ

finally, we arrive to
ẍ+ λ7ẋ+ θ1x = 0.8θ0

(
λ7D + Ḋ

)
+ ηI1, if x ≥ 0,

ẍ+ λ7ẋ+ θ2x = 0.8θ0

(
λ7D + Ḋ

)
+ ηI1, if x < 0

. (2.10)

Note that when ε = η = 0 we have (2.8).

In the next equation, we will use (2.10) to differentiate and eliminate the I1 term

⇒


x(3) + λ7ẍ+ θ1ẋ = 0.8θ0

(
λ7Ḋ + D̈

)
+ ηİ1, if x ≥ 0,

x(3) + λ7ẍ+ θ2ẋ = 0.8θ0

(
λ7Ḋ + D̈

)
+ ηİ1, if x < 0

(2.11)

next, using the second equation in (2.6) we have
x(3) + λ7ẍ+ θ1ẋ = 0.8θ0

(
λ7Ḋ + D̈

)
+ η (θ1x− λ5I1) , if x ≥ 0,

x(3) + λ7ẍ+ θ2ẋ = 0.8θ0

(
λ7Ḋ + D̈

)
− ηλ5I1, if x < 0

(2.12)
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From (2.10), we can obtain a relation to I1

⇒


ẍ+ λ7ẋ+ θ1x− 0.8θ0

(
λ7D + Ḋ

)
= ηI1, if x ≥ 0,

ẍ+ λ7ẋ+ θ2x− 0.8θ0

(
λ7D + Ḋ

)
= ηI1, if x < 0

and substituting in (2.12) we have

⇒



x(3) + λ7ẍ+ θ1ẋ− ηθ1x =

0.8θ0

(
λ7Ḋ + D̈

)
− λ5

(
ẍ+ λ7ẋ+ θ1x− 0.8θ0

(
λ7D + Ḋ

))
, if x ≥ 0,

x(3) + λ7ẍ+ θ2ẋ =

0.8θ0

(
λ7Ḋ + D̈

)
− λ5

(
ẍ+ λ7ẋ+ θ2x− 0.8θ0

(
λ7D + Ḋ

))
, if x < 0

(2.13)

Finally, simplifying we arrive to

⇒



x(3) + (λ7 + λ5)ẍ+ (θ1 + λ7λ5)ẋ+ θ1λ7x =

0.8θ0

(
D̈ + (λ7 + λ5)Ḋ + λ5λ7D

)
, if x ≥ 0,

x(3) + (λ7 + λ5)ẍ+ (θ2 + λ7λ5)ẋ+ λ5θ2x =

0.8θ0

(
D̈ + (λ7 + λ5)Ḋ + λ5λ7D

)
, if x < 0

(2.14)

2.1.5 Qualitative features of solutions

(a) Homogeneous equation solution

The characteristic equation asociated to the first case in (2.14) is

m3 + (λ7 + λ5)m
2 + (θ1 + λ7λ5)m+ θ1λ7 = 0

which we can write as

(m+ λ7)(m
2 + λ5m+ θ1) = 0. (2.15)
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In an analogous way for the second equation in (2.14), we have

(m+ λ5)(m
2 + λ7m+ θ2) = 0. (2.16)

Different behaviours are possible relative to the number ∆1 = λ25−4θ1 for (2.15)

and ∆2 = λ27 − 4θ2 for (2.16). We characterize these cases in the following.

Insulin subsystem

(i) λ25 − 4θ1 > 0

The solutions to (2.15) are m0 = −λ7 and

m1 =
−λ5 −

√
λ25 − 4θ1

2
m2 =

−λ5 +
√
λ25 − 4θ1

2

Since 0 < λ25−4θ1 < λ25 then
√
λ25 − 4θ1 < λ5. Moreover−λ5+

√
λ25 − 4θ1 <

0 so, we have that m1 and m2 are both negatives.

Therefore

xH(t) = A1e
m1t + A2e

m2t + A3e
−λ7t.

(ii) (λ5)
2 − 4θ1 = 0

In this case, the equation (2.15) has solutions m0 = −λ7 and m = −λ5
2

with multiplicity two. Hence,

xH(t) = e−
λ5
2
t (B1 +B2t) +B3e

−λ7t.

(iii) (λ5)
2 − 4θ1 < 0

The solutions to (2.15) are m0 = −λ7 and

m1 =
−λ5 − i

√
4θ1 − λ25

2
m2 =

−λ5 + i
√

4θ1 − λ25
2
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Accordingly,

xH(t) = e−
λ5
2
t

[
C1 cos

(√
4θ1 − λ25

2
t

)
+ C2 sin

(√
4θ1 − λ25

2
t

)]
+ C3e

−λ7t

Glucagon subsystem: For this case, we consider exactly the same cases as in

the insulin subsystem.

(i) λ27 − 4θ2 > 0

The solutions to (2.16) are m0 = −λ5 and

m1 =
−λ7 −

√
λ27 − 4θ2

2
m2 =

−λ7 +
√
λ27 − 4θ2

2
.

Since 0 < λ27−4θ2 < λ27 then
√
λ27 − 4θ2 < λ7. Therefore−λ7+

√
λ27 − 4θ2 <

0 and we have that m1 and m2 are both negative. Hence,

xH(t) = A1e
m1t + A2e

m2t + A3e
−λ5t.

(ii) λ27 − 4θ2 = 0

In this case, the equation (2.16) has solutions m0 = −λ5 and m = −λ7
2

with multiplicity two. Hence,

xH(t) = e−
λ7
2
t (B1 +B2t) +B3e

−λ5t.

(iii) λ27 − 4θ2 < 0

The solutions to (2.16) are m0 = −λ5 and

m1 =
−λ7 − i

√
4θ2 − λ27

2
m2 =

−λ7 + i
√

4θ2 − λ27
2

.
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Accordingly,

xH(t) = e−
λ7
2
t

[
C1 cos

(√
4θ2 − λ27

2
t

)
+ C2 sin

(√
4θ2 − λ27

2
t

)]
+C3e

−λ5t.

(b) Particular solution

From (2.5) and since F (t) = 0.8θ0

(
D̈ + (λ7 + λ5)Ḋ + λ7λ5D

)
we can conclude

that F (t) will be given by
0.8θ0λ8V0
θ0 − λ8

[
e−λ8t (λ5 − λ8) (λ7 − λ8)− e−θ0t (λ5 − θ0) (λ7 − θ0)

]
, if θ0 6= λ8,

0.8θ20V0e
−θ0t [(λ5 + λ7 − 2θ0) + (λ5 − θ0) (λ7 − θ0) t] , if θ0 = λ8

(2.17)

From (2.17) we deduce that a particular solution for system (2.14) can be for

θ0 6= λ8

xp(t) = K1e
−θ0t +K2e

−λ8t.

Our aim is to determine the constants K1 and K2. Note that

ẋp(t) = −θ0K1e
−θ0t − λ8K2e

−λ8t

ẍp(t) = θ20K1e
−θ0t + λ28K2e

−λ8t

x(3)p (t) = −θ30K1e
−θ0t − λ38K2e

−λ8t.

Next substituting on (2.15) we have

K1e
−θ0t

(
−θ30 + (λ5 + λ7)θ

2
0 − (θ1 + λ7λ5)θ0 + θ1λ7

)
+K2e

−λ8t
(
−λ38 + (λ5 + λ7)λ

2
8 − (θ1 + λ7λ5)λ8 + θ1λ7

)
= F (t)
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⇒



K1(−θ0 + λ7)(θ
2
0 − λ5θ0 + θ1) = −0.8θ0λ8V0

θ0 − λ8
(θ0 − λ5)(θ0 − λ7)

K2(−λ8 + λ7)(λ
2
8 − λ5λ8 + θ1) =

0.8θ0λ8V0
θ0 − λ8

(λ8 − λ5)(λ8 − λ7)
(2.18)

⇒



K1 =
0.8θ0λ8V0
θ0 − λ8

θ0 − λ5
θ20 − λ5θ0 + θ1

K2 = −0.8θ0λ8V0
θ0 − λ8

λ8 − λ5
λ28 − λ5λ8 + θ1

(2.19)

In the same way, but substituting

xp(t) = L1e
−θ0t + L2e

−λ8t

in (2.16) we have

⇒


L1 =

0.8θ0λ8V0
θ0 − λ8

θ0 − λ7
θ20 − λ7θ0 + θ2

L2 = −0.8θ0λ8V0
θ0 − λ8

λ8 − λ7
λ28 − λ7λ8 + θ2

.

(2.20)

(c) General solution

In the following, we just consider the case λ8 6= θ0

(i) λ25 − 4θ1 < 0 and λ27 − 4θ2 < 0.
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In this case, the solution is given by

x(t) =



A1e
−λ7t + e−λ5t/2

[
A2 cos

(√
4θ1 − λ25

2
t

)
+ A3 sin

(√
4θ1 − λ25

2
t

)]
+

0.8θ0λ8V0
θ0 − λ8

(
θ0 − λ5

θ20 − λ5θ0 + θ1
e−θ0t − λ8 − λ5

λ28 − λ5λ8 + θ1
e−λ8t

)
,

if x ≥ 0,

B1e
−λ5t + e−λ7t/2

[
B2 cos

(√
4θ2 − λ27

2
t

)
+B3 sin

(√
4θ2 − λ27

2
t

)]
+

0.8θ0λ8V0
θ0 − λ8

(
θ0 − λ7

θ20 − λ7θ0 + θ2
e−θ0t − λ8 − λ7

λ28 − λ7λ8 + θ2
e−λ8t

)
,

if x < 0

(2.21)

Since the solution must satisfy the conditions

x(0) = 0, x′(0) = 0, x′′(0) = 0.8θ0λ8V0

we must solve the system
1 1 0

λ7
λ5
2

−
√

4θ1 − λ25
2

λ27
λ25
2
− θ1 −

λ5
√

4θ1 − λ25
2


 A1

A2

A3

 = K̃

where

K̃ =
0.8θ0λ8V0

(θ20 − λ5θ0 + θ1)(λ28 − λ5λ8 + θ1)

 λ25 + θ0λ8 − θ0λ5 − θ1 − λ5λ8
θ1(λ5 − θ0 − λ8)
θ1(θ1 − θ0λ8)



Finally, we have

A1 = 0
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A2 =
0.8θ0λ8V0 [λ5(λ5 − θ0 − λ8)− (θ1 − θ0λ8)]

(θ20 − λ5θ0 + θ1) (λ28 − λ5λ8 + θ1)

A3 =
0.8θ0λ8V0 [2λ7(λ

2
5 + θ0λ8 − θ0λ5 − θ1 − λ5λ8)− (λ25 + 2θ1)(λ5 − θ0 − λ8)]√
4θ1 − λ25 (θ20 − λ5θ0 + θ1) (λ28 − λ5λ8 + θ1)

+

+
0.8θ0λ8V0 [λ5(θ1 − θ0λ8)]√

4θ1 − λ25 (θ20 − λ5θ0 + θ1) (λ28 − λ5λ8 + θ1)

Since we are in the oscillatory regime, and (2.1) is not C1 for every t

then we need to solve another system for B1, B2, B3 with different initial

conditions.

(ii) λ25 − 4θ1 > 0 and λ27 − 4θ2 > 0

In this case, the solution is given by

x(t) =



C1e
−λ7t + C2e

m1t + C3e
m2t

+
0.8θ0λ8V0
θ0 − λ8

(
θ0 − λ5

θ20 − λ5θ0 + θ1
e−θ0t − λ8 − λ5

λ28 − λ5λ8 + θ1
e−λ8t

)
,

if x ≥ 0,

D1e
−λ5t +D2e

n1t +D3e
n2t

+
0.8θ0λ8V0
θ0 − λ8

(
θ0 − λ7

θ20 − λ7θ0 + θ2
e−θ0t − λ8 − λ7

λ28 − λ7λ8 + θ2
e−λ8t

)
,

if x < 0

(2.22)

where

m1 =
−λ5 −

√
λ25 − 4θ1

2
m2 =

−λ5 +
√
λ25 − 4θ1

2

and

n1 =
−λ7 −

√
λ27 − 4θ2

2
n2 =

−λ7 +
√
λ27 − 4θ2

2
.

The system that we obtain from substituting and using the initial condi-
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tions is 1 1 1

−m1 −m2 λ7

m2
1 m2

2 λ27


 C1

C2

C3

 = K

 λ25 + θ0λ8 − θ0λ5 − θ1 − λ5λ8
θ1(λ5 − θ0 − λ8)
θ1(θ1 − θ0λ8)

 ,

where again K =
0.8θ0λ8V0

(θ20 − λ5θ0 + θ1)(λ28 − λ5λ8 + θ1)
.

We have already mentioned that different behaviours can be obtained and depend

on the numbers ∆1 = λ25−4θ1 and ∆2 = λ27−4θ2. For example, a possible scenario

for the exponential regime is:

On the other hand, possible scenarios for the oscillatory regime are
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Our aim is to find a scenario that models the glucose level for a patient for two

hours. That scenario will be chosen through blood samples. The next subsection

allows us to formulate an approach to make that choice.

2.1.6 Identifiability

We begin this subsection by giving a definition from [11]. Consider a dynamical

system given by

ẋ(t) = f(t, x(t), u(t), θ) (2.23)

y(t) = h(t, x(t), u(t), θ) (2.24)

where x(t) is a vector of state variables, y(t) is the measurement vector, u(t) is a

known system input vector and θ is a parameter vector. Then

Definition 1. The dynamical system given by (2.23) and (2.24) is identifiable if

θ can be uniquely determined from the given system input u(t) and the measurable

system output y(t); otherwise, it is said to be unidentifiable.

A way of verifying system identifiability is through exploration of the system

structure, that is, the model itself. We refer to that as structural identifiability.

Denis-Vidal and Joly-Blanchard proposed to verify the identifiability of uncontrolled

and autonomous systems by directly comparing the function f in (2.23). In this
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case, f(t, x(t), u(t), θ) = f(x, θ). Therefore, the problem is to determine when

f(x, θ) = f(x, θ′)⇒ θ = θ′. (2.25)

We will call this technique the Direct Test. Getting back to (2.1), and applying

the last test, from the fourth equation we have that

−θ0D + λ8V = −θ′0D + λ8V.

Then if we partially differentiate with respect to D on both sides of the equation,

we conclude that θ0 = θ′0. For the second equation, we have

θ1(G−Gb)
+ − λ5I1 = θ′1(G−G′b)+ − λ5I1.

Then

θ1(G−Gb)
+ = θ′1(G−G′b)+.

If Gb 6= G′b then θ1 = θ′1 = 0, but we need that θ1 > 0, so we conclude that Gb = G′b.

Then, differentiating again with respect to G, we conclude that θ1 = θ′1. In an

analogous way, we have θ2 = θ′2.

Finally, the model is identifiable.

2.1.7 Sensitivity analysis

The sensitivity analysis is the study of how the uncertainty in the output of a math-

ematical model can be apportioned to different sources of uncertainty in its inputs.

This study can be made determining sensitivity indices, which according to [12], are

used for estimating the influence of individual variables or groups of variables in the

model output. Given a model of the form

Y = f(X1, X2, ..., Xk) (2.26)

with Y a scalar, a variance based first order effect for a generic factor Xi can be

written as

VXi (EX∼i(Y |Xi))
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where EX∼i(·) is the mean of argument (·) taken over all factors but Xi and VXi(·)
is the variance of argument (·) taken over Xi. The meaning of the inner expectation

operator is that the mean of Y is taken over all possible values of X ∼ i while keeping

Xi fixed. The outer variance is taken over all possible values of Xi. The associated

sensitivity measure (first order sensitivity coefficient) is written as:

Si =
VXi (EX∼i(Y |Xi))

V (Y )
(2.27)

In our case, Y will be the glucose level given by G(t) at t = 2. That is, the level

glucose after two hours of starting the OGTT.

In the following, we justify our election of values for some constants.

(a) V (0)

Consider the case when θ1 = 0. Then G(t) is a monotone increasing and bounded

function. It can be shown that

sup
t∈(0,∞)

G(t) = G(0) + 0.8V (0).

For that reason, considering the values of the data and because the process in

the body that converts food to blood glucose is unknown, we decide to choose

V (0) = 300.

(b) The OGTT establishes 5 minutes at most to drink the sweetened solution. So

we will use this information to estimate λ8. We want that at 5 min = 1
12

h, 95%

of the solution was taken. That is

V

(
1

12

)
= 0.05V (0)

where V (t) = V (0)e−λ8t. We must solve the equation

e−
λ8
12 = 0.05 (2.28)

Then, we use λ8 ≈ 35.948.

(c) λ5 and λ7
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For both, we use estimates provided by Dr. Adriana Monroy. Since
1

λ5
≈ 31min

then λ5 = λ7 = 60/31.

(d) G(0)

Our initial value for the glucose level will be G0 = 90. However, we know that

the glucose level, after 8 hours fasting will vary in different ranges relative to the

health state of the patient.

(e) I1(0) = L1(0) = 0

We are working for a level of Insulin and Glucagon with respect to the basal

level. That means that I(0) = L(0) = 0 in (1.3). Since L1 = λ1L and I1 = λ2I,

then I1(0) = L1(0) = 0.

We have used SALib for this analysis. SALib is an open source library written in

Python for performing sensitivity analysis, [SALib]. The range for the parameter

are given in the following:

θ0 ∈ [0, 2] θ1 ∈ [0, 100] θ2 ∈ [0, 100] Gb ∈ [50, 300].

These are the results of the sensitivity indices with 100000 vector parameters values:

S1 is the column for the first-order index, ST is the column for the total-order index.

Parameter S1 ST

θ0 0.050386 0.085926

θ1 0.332847 0.230311

θ2 0.504080 0.288524

Gb 0.366470 0.491858

The parameters θ1, θ2 and Gb exhibit first-order sensitivity, especially θ2. The output

model is not sensitive to θ0. If ST is considerably bigger than S1, there will be high-

order interactions ocurring, like for Gb for our case.

Now, with 500000 vector parameters values we have
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Parameter S1 ST

θ0 0.058373 0.084982

θ1 0.340894 0.228474

θ2 0.510008 0.282305

Gb 0.366677 0.488995

.

The increase in the sample do not change significantly the indices values. The

high sensitivity on Gb is reflex of the meaning of this value. As we explain above, Gb

is the equilibrium value for G(t) and we expect that a two hours, G(2) will be close

to Gb, that means that changes in Gb will affects directly G(2).
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2.2 Bayesian formulation for the inverse problem

To consider an inverse problem we need first to determine a direct one. In our case

the forward problem is

Given θ0, θ1, θ2 and Gb in (2.1) determine the solution G(t)

For this description, we will follow [7]. First, we find the characterization

Inverse problems are encountered typically in situations where one makes indirect

observations of a quantity of interest

Statistical inversion theory reformulates inverse problems as problems of statistical

inference by means of Bayesian statistics. In Bayesian statistics all quantities are

modeled as random variables. The randomness, which reflects the observers un-

certainty concerning their values, is coded in the probability distributions of the

quantities. From the perspective of the statistical inversion theory, the solution to

an inverse problem is the probability distribution of the quantity of interest when all

information available has been incorporated in the model. This distribution, called

the posterior distribution, describes the degree of confidence about the quantity after

the measurement has been performed.

Assume we have observations of some quantity y ∈ Rm with the aim of obtaining

information about another quantity x ∈ Rn. These two variables are connected

through a model, for example, one with the form

y = f(x, e),

where f : Rn × Rk → Rm is the observation operator and e ∈ Rk is the vector with

all unknown parameters, including the noise.

The classic approach to inverse problems is to make a formulation as an optimization

problem, formulated as

min
e∈Rk
||y − f(x, e)||

This problem is ill-posed in the sense of Hadamard. Recall that we said that a

problem is well posed, in the sense of Hadamard, if and only if

(i) The solution exists.
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(ii) The solution is unique.

(iii) The solution depends continuously on the data.

In our case, we have an observation operator G : R4 → C[0, 2]. It is clear that the

G is not onto. Nevertheless, the main problem is that the observations are contami-

nated with noise and the formulation does not take into account the randomness of

the measurements and other possible errors sources.

The philosophy behind the statistical inversion methods is to recast the inverse prob-

lem in the form of a statistical quest for information. We have directly observable

quantities and others that cannot be observed. In inverse problems, some of the

unobservable quantities are of primary interest. The objective of the statistical in-

version theory is to extract information and assess the uncertainty about the variables

based on all available knowledge of the measurement process as well as information

and models of the unknowns that are available prior to the measurement.

2.2.1 Bayes’ Theorem

In the following we call the observable random variable Y the measurement and its

realization, the data. The primary interest random variable X will be called the

unknown. Those variables that we can not observe or are not of primary interest will

be called parameters or noise.

Assume that before taking the measurements of Y , we have some information about

X. The bayesian framework assumes that this information can be codified under a

probability density, x→ πpr(x) called the prior density.

Now, suppose that there exists a joint propabibility distribution forX and Y , denoted

by π(x, y). Then, the marginal density for the unknown X is given by the formula∫
Rm

π(x, y)dy = πpr(x).

On the other hand, if we want the value of the unknown, then the conditional

probability density of Y given X will be given by

π(y|x) =
π(x, y)

πpr(x)
, if πpr(x) 6= 0.
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We call the conditional probability of Y the likelihood function because it expresses

the likelihood of differents posibles measurements given that X = x.

Finally assuming that the observations Y = y are given the conditional probability

distribution

π(x|y) =
π(x, y)

π(y)
, if π(y) =

∫
Rn
π(x, y)dx 6= 0

will be called the posterior distribution of X. This distribution expresses what we

know about X after the realization of observation Y = y.

Under the bayesian approach, the inverse problem is expressed in the following way:

Given the data Y = y, find the conditional probability distribution π(x|y) of the

variable X. The following result represents the main result of the theory

Theorem 1 (Bayes’ Theorem). Assume that the random variable X ∈ Rn has a

known prior probability density πpr(x) and the data consists of the observed value y

of an observable random variable Y ∈ Rk such that π(y) > 0. Then, the posterior

probability distribution of X, given the data y is

πpost(x) = π(x|y) =
πpr(x)π(y|x)

π(y)
(2.29)

2.2.2 Likelihood and prior

In this section, we establish our assumptions for π(y|x) and πpr(x). According to

(2.29), we have

π(x|y) ∝ π(y|x)πpr(x). (2.30)

The likelihood function π(y|x) refers to the probability of the data given the pa-

rameters and is directly related with the observation operator. For our problem, we

assume that

y = G(x) + ε, (2.31)

where G is the solution of the glucose level of (2.1) and ε represents an additive noise

distributed as N (0, σ2I). Moreover , we have measurement yi for i ∈ {0, 1, · · · , 4}.
Note that, formally G(x) ≡ G(t, x), where x represents our parameter vector and t

denote the time dependence of the function. Recall that t ∈ [0, 2] and it is measured

in hours. Under the assumption that ε and x are independent, we have that yi ∼
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N (G(ti, x), σ2), where t ∈ {0, 0.5, 1.0, 1.5, 2.0}. So, getting back to (2.31), we have

y =


y0

y1

y2

y3

y4

 , ε =


ε0

ε1

ε2

ε3

ε4

 , G(x) =


G(t0, x)

G(t1, x)

G(t2, x)

G(t3, x)

G(t4, x)

 . (2.32)

Finally,

π(y|x) = exp

(
− 1

2σ2
||y −G(x)||22

)
. (2.33)

In relation with the prior distribution, the qualitative information that we have

of θ0, θ1 and θ2 is that they are rates, so we must establish the condition θi > 0.

Moreover, the basal glucose levelGb must also be positive. Nevertheless, the following

two graphs can show the importance of the choice for the prior:

Figure 2.1: Possible glucose level for the same patient data

It is clear that the insulin sensitivity, θ1, is completely different in both scenarios.

We have an oscillatory regime in the right and an exponential regime on the left.

Moreover the basal glucose level on the left is lower than on the right, this implies

that glucagon sensitivity, θ2, is representative for the figure on the right and it is

not on the left. Our choice of the prior can affect what regime the stationary status

would be.
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2.2.3 MCMC

Being guaranteed the existence of the posterior density, we need to explore it. We

use a Markov Chain Monte Carlo (MCMC) method, which has the advantage of

sampling from a probability measure only known up to a normalizing constant. As

in [13], the basic idea is to design a Markov chain with the property that a single

sequence of output for the chain {xn}∞n=0 is distributed according to the posterior

measure µ associated to π(x|y). This Markov Chain, with x ∈ E, is aperiodic and

irreducible and has stationary distribution π(x|y). E is called the support of x and

is directly related with the support of our prior. Nevertheless, if E ⊂ Rn, we need to

determine representative points since, in practice, we can not sample all the domain.

That selection will be made by the density itself.

The way that the chain jumps from a state xi to the next state xi+1 is determined

by a transition kernel. As the explanation in [7], let P be a probability transition

kernel. P is a map from Rn×B → [0, 1], where B denotes the Borel sets of Rn. Then

P (xi, Ai+1) is the probability that the chain X ∈ Ai+1 conditioned that the state of

X is xi. P is related with the measure µ by

µXj+1
(Aj+1|x1, . . . , xj) = µXj+1

(Aj+1|xj) = P (xj, Aj+1) (2.34)

If P (k)(xj, Bj+k) denotes the transition kernel that propagates k steps forward in

time, we will say that P is irreducible if for each x ∈ Rn and A ∈ B, with µ(A) > 0,

there exists k > 0 such that P (k)(x,A) > 0.

On the other hand, for stating the property of aperiodicity, we will define what a

periodic kernel is. P is periodic if for some integer m ≥ 2, there is a set of disjoint

nonempty sets {E1, . . . , Em} ⊂ Rn such that for all j = 1, . . . ,m and all x ∈ Ej,

P (x,Ej+1(mod m)) = 1. A kernel P is aperiodic if it is not periodic.

The construction of this transition kernel can vary relating to the observation oper-

ator, prior and noise distributions. To make our exploration, we will use twalk, [6],

which is a MCMC sampling that can sample from target distributions with arbitrary

scale and correlation structure.
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2.2.4 Data

The data used in this work was provided by Dr. Adriana Monroy Guzmán from the

Hospital General in Mexico City. There are data from five different categories of

patients(A total of 80 patients):

1. Healthy patients.

2. Patients with Impaired Fasting Glucose (IFG): Fasting blood glucose level

≥ 100.

3. Patients with Impaired Glucose Tolerance (IGT): Blood glucose level ≥ 140 at

t = 2.

4. Patients with IFG and IGT (BA: both alterations).

5. Patients with Diabetes Mellitus 2 (DM2): Fasting blood glucose level ≥ 126

and blood glucose level ≥ 200 at t = 2.

In the next figures, the data presented are five blood glucose measurements at t = 0,

the first in a fasting status, and the other four at t = 0.5, 1, 1.5 and 2 hours.

In Figure (2.2), the image at the left shows that there is a wide range for the glucose

level at 2 hours. All the data are lower that 200. The figure on the right shows

oscillations for many patients. Although all these patients are healthy, there is a

variety of behavior during two hours.

Figure 2.2: Data for healthy patients
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Figure (2.3) shows data for patients diagnosed with an alteration. The image in

the bottom right corner shows that patients with DM2 have higher blood glucose

levels that other patients and they can not bring back their blood glucose to a normal

level at 2 hours.

Figure 2.3: Data for unhealthy patients
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Results and discussion

This discussion will follow the terminology introduced in [5]. We work with the

following conditions for the prior distributions of the parameters:

θ0 ∼ Γ(1, 1) θ1 ∼ Γ(1, 1)

θ2 ∼ Γ(1, 1) Gb ∼ Γ(y20/20, 20/y0)
(3.1)

where y0 is the fasting glucose data.

Figure 3.1 shows some simulations for data corresponding to a healthy patient. Fur-

thermore, the estimators for the function G(t), solution of the ODE system in (2.1),

given by the MAP and the CM are shown. Also, in grey, we show the last 1000 more

probably simulations.

42
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Figure 3.1: Healthy Patient

Figure 3.2 shows the probability distributions, through histograms, of prior and

posterior for each of the parameters for the same patient. We can note that all

observations are higher than y0, so the data does not give us information about the

reaction of the organism related to glucagon. That is, the parameter θ2 does not have

relevance in this case. Also, the blood glucose level according to the measurements

does not reach a high enough level. That means, the estimation of the basal level

of glucose for this patient, Gb, is not modified by the data. This last point becomes

precise through the fact that the posterior distributions for the parameters θ2 and

Gb match the prior distribution, that is, the data are not informative toward these

two parameters.
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Figure 3.2: Prior and posterior distributions for a healthy patient

However, under conditions (3.1), we have bad approximations for some data as

Figure 3.3 shows. On the left, note that the amplitude of data are very small and

constant oscillations are not identified by the model. On the right, the model can

not reproduce the last oscillation in the data.
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Figure 3.3: Bad approximations for healthy patients

Comparison of prior

We realize a change in the prior for the kind of data shown in Figure (3.3). So, we

work with uniform priors for the parameters θ0, θ1 and θ2 and Gb prior stay like in

(3.1).

Figure 3.4: Prior distributions Γ(1, 1) (left) and Uniform (right) for parameters θ0, θ1
and θ2 in a healthy patient with constant oscillations.

Note that in Figure 3.4, on the right, the solutions of the system recognize the

oscillations of the data. The MAP and the CM are shown with differences but they
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match close the measurement times. The estimation of the insulin and glucagon

sensitivity are bigger than the previous cases because of the oscillations in the data.

However, in grey we can see a high variance in the trajectories of the solutions es-

pecially in the time between measurements. This situation leads us to the question,

which criteria were used in the decision about the time and the number of measure-

ments for the test?

Prediabetic and diabetic diagnosed patients

In [10] the authors suggest that the OGTT can be used effectively to define insulin sen-

sitivity and secretory defects in individuals with impaired glucose homeostasis. Also,

they propose an index of whole-body insulin sensitivity derived from the OGTT.

This index represents a composite of both hepatic and peripheral tissue sensitivity

to insulin.

In a technical report of the World Health Organization and the International Dia-

betes Foundation, the OGTT is recommended as a diagnostic test because of the

following reasons:

• Fasting plasma glucose alone fails to diagnose approximately 30% of the cases

of previously undiagnosed diabetes.

• An OGTT is the only means of identifying people with IGT.

• An OGTT is frequently needed to confirm or exclude an abnormality of glucose

tolerance in asymptomatic people.

Recall that the category IGT(Impaired Glucose Tolerance) is a state of increasing

risk of progressing to diabetes. In the data supplied by Dr.Monroy, we find 29 female

patients diagnosed with one of the following conditions:

Impaired Fasting Glucose (IFG): Fasting Glucose ≥ 100

Glucose Intolerance (GI): Glucose level at 2 hours ≥ 140

Both alterations (BA: IFG and GI)

Diabetes mellitus 2 (DM2): FG ≥ 126 and Glucose level at 2 hours ≥ 200

(3.2)

We find individuals with BMI (Body Mass Index) from 23.6 to 53.83 where 69% of
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them are obese (BMI≥30). The model recognizes almost 60% of the cases. Some

examples are shown in Figures 3.5 and 3.6.

Figure 3.5: Patients with Glucose Intolerance

In patients with Glucose Intolerance, the digestive indicator is smaller than for

diabetic patients. That is, the mean life glucose in the digestive system and the

insuline sensitivity are lower in diabetic patients. Again, the parameters θ2 and Gb

are not relevant for this patient.

Figure 3.6: Diabetic Patients

In Figure 3.7, we can see a classification of diagnosed patients as in (3.2). Note
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that for diabetic patients, the estimation of θ1 is lower than the other cases and Gb

bigger. That is, the insuline sensitivity are lowest than the others.

Figure 3.7: Classification by parameters on MAP estimator
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Conclusions

In this work, we have explain the biological situation for the dynamics of the glucose-

insulin(-glucagon) system. The human body posseses a basal blood glucose level

between 70 and 110 mg/dL. Recall that food increases this level and insulin is the

hormone charge to bring down it. On the other hand, usually after a long fasting,

the glucagon is the hormone charge to increase it. We introduce a model based on

these biological ideas. Our qualitative analysis for the model allows us to identify

two main regimes that we associate with their corresponding biological situations.

This behaviour, together with the identifiability and sensitivity analysis of the model

enables us to introduce a formulation to the inverse problem. The chosen approach

was bayesian which furnishes the basis for quantifying the uncertainty associated to

the data from the OGTT. The next figure shows two trajectories beginning at 89,

at t = 0, and finishing between 80 and 90, at t = 2.

49
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The modeling during two hours can describe different escenarios between this two

patients. Instead, estimating the glucose level at two hours can not. If the interest

remains to estimate the glucose blood level at 2 hours, there is another path to follow.

Depending on the parameters, we think that there is a curve that envelops multiple

oscillating escenarios with different frequencies as is shown in the next pictures

The level of this envelope at t = 2 satisfies these interest.

The qualitative analysis shows that the dynamic of the model is rule by a third order

oscillator with an impulse, which correspond to effects of the solution on the glass.

The next figure shows the graphs of this impulse for different values of the parameter
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These three different cases depend on the parameters of the model and the estimate

value for the rate at which the patient consumes the solution on the glass. This last

rate may be an uncertainty source that for this work is negligible.

Even though there are sets of data that the model can not identify, working with

data from diagnosed patients, we find that the model is almost 60% predictive. This

percentage, besides the probability given by the bayesian approach, result very im-

portant as a possible tool on the health system. Moreover, this information leads

us to think in a higher percentage if appropiate data were provided. Recall that
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experimental design is the design of any task that aims to describe or explain the

variation of information under conditions that are hypothesized to reflect the vari-

ation. Well chosen experimental designs maximize the amount of information that

can be obtained for a given amount of experimental effort. Future work can follow

this direction: which criteria were used to determine the time measurement for the

test?

One of our assumptions is the additive form of the noise in the data. Again, future

work can consider another approach. For example, suppose that there is an error

measurement directly related to the time measures tk. In that case, it will be need

to suggest another random structure for that noise and also for the likelihood.

The principal advantage of the bayesian approach is the quantification of uncer-

tainty. Another way to quantify uncertainty is spectral methods, that is, orthogonal

decomposition methods in which a random variable is expanded with respect to an

appropiate orthogonal basis for L2[0, 2]. An example of this approach is the K-L

expansion used for a Gaussian measure. Using the posterior distribution found with

the MCMC, a possible perspective to follow is by the following path. Choose a dis-

tribution for one of the parameters and keep the others fixed. The polynomial chaos

analyze the propagation of uncertainty only in the direction of the parameter chosen.

This approach can be followed in [15].

The formalism about the inversion of the observation operator G is not developed.

We have mentioned that G is not onto but the existence of an open subset in C[0, 2]

contained in the image of G is needed to ensure conditions for inversion. Neverthe-

less, the identifiability justifies our numerical work.

Another option for quantifying the uncertainty is to review the formulation of the

model. There are a wide range of models for the dynamics of glucose-insulin and

as we have already mentioned, a very complete review of them is provide by ([9]).

Nevertheless, we think that the power prediction of another model will not improve

substantially unless the provided data are reconsidered.
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