
Centro de Investigación en
Matemáticas
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Introduction
We will be working with a finite dimensional connected and basic k-algebra A over

an algebraically closed field k, all modules will be finite dimensional modules and all
ideals will be two sided ideals unless stated otherwise.

In this dissertation we study some special ideals of an algebra, called ”homological
ideals”, for which the corresponding quotient map induces a full and faithfull func-
tor between derived categories. This ideals seem to have really interesting properties
and they appear in a very big branch of algebras. They were introduced by Auslan-
der, Platzeck and Todorov; they called them strong idempotent ideals, they have been
studied also by Gatica, Lanzillota and Platzeck, and independently by Xu and Xi with
some relations to the so called finitistic dimension conjecture.

The first interesting property stated in this thesis is Lemma 1, which has been a
handy tool to identify homological epimorphisms (and hence homological ideals). We
use this lemma to prove some other interesting properties of homological ideals such
as obtaining new homological ideals in one-point (co)extension algebras from given
homological ideals, and identifying some inclusion maps which are homological epi-
morphisms on quotient algebras.

Other result we give is a briefly view through the lattices of homological ideals of
an algebra, the proof is very easy given Lemma 1, and it says that the correspondence
of ideals stated in The Correspondence Theorem restricts to the sets of homological
ideals when the ideal that we are quotienting is homological.

There is an interesting result due to Happel. It says that if M is an exceptional
A-module, then the Hochschild cohomologies of A and A[M] are isomorphic:

Hn(A)∼= Hn(A[M]) ∀ n≥ 2

We have generalized this theorem, and weakend the hypothesis in just asking for a
homological ideal I such that the category mod(A/I) has an exceptional module. And
even more, there are isomorphisms for all homological ideals J ⊂ I of A:

Hn(A/J)∼= Hn((A/J)[M]
)

The following results are original of this thesis: Proposition 2, Lemma 1, Theorem
2, Theorem 9 and Theorem 10.

We assume the reader is familiar with the standard language in representation the-
ory of finite dimensional associative algebras and the tools of homological algebra.
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1 Homological Ideals

1.1 First Properties
Definition 1. A morphism of k-algebras ϕ : A→ B is called an epimorphism if for all
k-algebra morphisms f ,g : B→C the fact that f ◦ϕ = g◦ϕ implies that f = g.

Of course, surjective algebra morphisms are epimorphisms, such as quotient maps

by a two sided ideal πI : A→ A/I and the map A[M]→ A given by
[

a 0
m λ

]
7→ a.

But they do not have to be surjective maps, for example the inclusion map
[

k 0
k k

]
↪→[

k k
k k

]
is an epimorphism, and even for rings, the inclusion map Z ↪→ Q is an epi-

morphism.
Given a morphism of algebras ϕ : A→B, we have an induced functor ϕ∗ : mod(B)→

mod(A) that gives to M ∈ mod(B) an action from A given by a ·m := ϕ(a)m.
The next result is probably well known:

Proposition 1. Let ϕ : A→ B be a morphism of algebras. The following statements
are equivalent:

1. ϕ is an epimorphism.

2. For all M,N ∈ mod(B), every A-linear map f : M→ N is also B-linear.

3. The induced functor ϕ∗ : mod(B)→ mod(A) is full and faithfull.

Proof: 1.⇒ 2.): Let M,N ∈ mod(B), and f : M → N an A-linear map (in terms

of the action given by ϕ). Let C = {
[

b 0
g b

]
: b ∈ B,g ∈ Homk(M,N)} and define

two morphisms χ,ψ : B→C given by χ(b) =
[

b 0
b f − f b b

]
and ψ(b) =

[
b 0
0 b

]
.

Then χ ◦ϕ = ψ ◦ϕ , hence χ = ψ and b f − f b = 0.
2.⇒ 1.): Let χ,ψ : B→C be morphisms of algebras such that χ ◦ϕ = ψ ◦ϕ . Then

C is a B-module via ψ , and χ is B-linear, that is, for all b,b′ ∈ B we have χ(bb′) =
b ·χ(b′) = ψ(b)χ(b′), taking b′ = 1 the unity of B gives: χ(b) = ψ(b) for all b ∈ B.

2⇔ 3): Is immediate.�
This last result motivates the following definition.

Definition 2. An epimorphism of algebras ϕ : A→ B is called a homological epimor-
phism if it induces a full and faithfull functor:

Db(ϕ∗) : Db(B)→ Db(A)

We will wait until we have proven some properties of this morphisms to give ex-
amples, since proving that a morphism satisfies this definition its not easy.

Let I be a two sided ideal of A. Since the quotient map π : A→ A/I is an epimor-
phism, the induced functor π∗ : mod(A/I)→ mod(A) is full and faithfull.
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Definition 3. A two sided ideal I of A is homological if the quotient map π : A→ A/I
is a homological epimorphism.

Observe that the kernel of a homological epimorphism is a homological ideal.
We have found a very useful property of these maps, stated by the following lemma.

Lemma 1. Let A,A1, . . . ,An,A′1, . . .A
′
m and B be finite dimensional algebras such that

the following is a commutative diagram of algebra maps:

A1 · · · An

A B

A′1 · · · A′m

f0

f1 fn−1

fn

g0

g1 gm−1

gm

If the maps f0, . . . , fn,g0, . . . ,gm−1 are homological epimorphisms, then gm is a
homological epimorphisms.

Proof: Let X ,Y be objects of Db(B), then we have a commutative diagram of vector
spaces:

HomDb(A1)
(X ,Y ) · · · HomDb(An)

(X ,Y )

HomDb(A)(X ,Y ) HomDb(B)(X ,Y )

HomDb(A′1)
(X ,Y ) · · · HomDb(A′m)

(X ,Y )

Db( f ∗0 )

Db( f ∗1 ) Db( f ∗n−1)

Db( f ∗n )

Db(g∗0)

Db(g∗1) Db(g∗m−1)

Db(g∗m)

where all maps but Db(g∗m) are isomorphisms, hence all of them are isomorphisms.
This proves that gm is a homological epimorphisms.�

We can apply this lemma, for example in the following proposition.

Proposition 2. Let I ⊂ J ⊂ A be homological ideals in A, then the inclusion map
A/I→ A/J is a homological epimorphism.
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Proof: In deed, we have a commutative diagram of algebras:

A A/I

A/J

where all maps but one are homological epimorphisms, hence the last lemma applies.�
There is a well known and important theorem in algebra called The Correspon-

dence Theorem, namely:

Theorem 1. Let I be a two sided ideal of A. There exist a one to one correspondence
induced by the quotient map π : A→ A/I

{Ideals o f A containing I}←→ {Ideals o f A/I}

Which is actually an isomorphism of partially ordered sets.
We have proven a homological version of this theorem, using Lemma 1.

Theorem 2. If I is a homological ideal of A, then the correspondence on the corre-
spondence theorem restricts to the sets of homological ideals.

That is, the quotient map π : A→ A/I induces a one to one correspondence between
the homological ideals of A that contain I and the homological ideals of A/I.

Proof: Let J be a homological ideal of A that contain I. The correspondence theo-
rem sends J to the ideal J/I. We have to show that the quotient map A/I→ (A/I)/(J/I)
is homological. Because of the isomorphism theorem we have a commutative diagram
of algebras:

A A/I (A/I)/(J/I)

A/J
∼=

where all maps but A/I→ (A/I)/(J/I) are homological epimorphisms (isomorphisms
are homological epimorphisms), since (A/I)/(J/I) is the sink of the diagram, Lemma
1 applies.

Now, if we have a homological ideal of A/I, say J/I, then we have a commutative
diagram of algebras:

A A/I (A/I)/(J/I)

A/J
∼=

where all maps but A→ A/J are homological epimorphisms and A/J is the sink of the
diagram, hence all of them are homological epimorphisms, by Lemma 1.�
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This theorem gives us a view to the structure of the lattice of homological ideals of
an algebra. Observe that the lattice of homological ideals behaves in some way like the
lattice of ideals, but lets do this carefully.

We do know that the correspondence respects contentions, but also that the intersec-
tion of ideals is an ideal, while intersection of homological ideals does not have to be a
homological ideal. Observation which can be appreciated if we take two homological
ideals I and J of A, and look at the following diagram of algebra maps:

A A/(I∩ J)

A/IA/J

In which there is no easy way (and maybe there is not) to embbed the map A→
A/(I∩J) into some commutative diagram that has all of the other maps as homological
epimorphisms and use Lemma 1, unless one of the two inclusions I→ I∩J or J→ I∩J
induces a full and faithfull functor between the respective derive categories. That is,
either

Db
(
A/(I∩ J)

)
→ Db(A/I) or Db

(
A/(I∩ J)

)
→ Db(A/J)

is a full and faithfull functor. Observe that we can not apply proposition 2 in this
situation.

An example for which the intersection of homological ideals is not a homological
ideal is given in page 18.
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1.2 Functorial and Derived Properties
In order to determine wheter an ideal or an epimorphism are homological, we need
some other tools we give in this section.

Definition 4. A subcategory C of an abelian category A is called thick if given a short
exact sequence:

0→ X → Y → Z→ 0

in which two of the terms are objects of C , then the third is an object of C

Definition 5. A subcategory C of an abelian category A covers (resp. finitely covers)
A if the smallest thick subcategory of A containing C which is closed under arbitrary
(resp. finite) direct sums is A

Definition 6. A subcategory C of an abelian category A weakle covers (resp finitely
weakly covers) A if the smallest thick subcategory of A containing all objects admit-
ting a resolution by arbitrary (resp. finite) direct sums of objects from C is A .

Lemma 2. Let A and B be abelian categories and η : (Gn)n∈Z→ (Fn)n∈Z be a mor-
phism of connected sequences of additive functors (Gn)n∈Z,(Fn)n∈Z : A →B

1. Suppose that (Gn)n∈Z,(Fn)n∈Z are exact and that A ′ finitely covers A and
ηn(A) : Gn(A)→ Fn(A) is an isomorphism for all A ∈ A ′ and all n, then η

is an isomorphism.

2. Suppose that (Gn)n∈Z,(Fn)n∈Z are right exact and that A ′ finitely weakly covers
A , Gn = Fn = 0 for all n < 0, and that for any A ∈A ′ the morphism η0(A) is an
isomorphism and Gn(A) = Fn(A) = 0 for all n 6= 0, then η is an isomorphism.

Proof:

1. Let C be the subcategory of A consisting of all objects A ∈A such that ηn(A)
is an isomorphism for all n. By hypothesis, every object of A ′ is an object of C .
Given a short exact sequence in A ,

0→ X → Y → Z→ 0

since Gn and Fn are exact functors, we have a commutative diagram with exact
rows for every n:

0 Gn(X) Gn(Y ) Gn(Z) 0

0 Fn(X) Fn(Y ) Fn(Z) 0

ηn(X) ηn(Y ) ηn(Z)

Then by the Five Lemma, if two of the η ′ns maps are isomorphisms, then the
third is an isomorphism. Hence C is a thick subcategory, and since A ′ finitely
covers A , we have that A = C .
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2. We will proceed by induction on n. If n = 0, let

X1→ X0→ A→ 0

be an exact sequence of an object A ∈A with X0,X1 ∈A ′. Since G0 and F0 are
right exact, we have a commutative diagram with exact rows:

G0(X1) G0(X0) G0(A) 0

F0(X1) F0(X0) F0(A) 0

η0(X1) η0(X0) η0(A)

in which η0(X1) y η0(X0) are isomorphisms, and by the Five Lemma, η0(A) is
an isomorphism.

Now suppose that n > 0 and ηn−1 is an isomorphism. Let A ∈A and let

0→ K→ X → A→ 0

be a short exact sequence, where X is a finite direct sum of objects in A ′. Since
Gi(X) = Fi(X) = 0 for all i > 0 we get a commutative diagram with exact rows.

0 = Gn(X) Gn(A) Gn−1(K) Gn−1(X)

0 = Fn(X) Fn(A) Fn−1(K) Fn−1(X)

∂Gn

∂Fn

ηn(A) ηn−1(K) ηn−1(X)

where ∂Gn and ∂Fn are the connecting morphisms of the connected sequences of
functors. By the Five Lemma and the induction hypothesis, we get that ηn(A) is
an isomorphism.�

What we want now is to give these notions at the level of derived categories, substi-
tuting the exact sequences by the exact triangles. We consider A as a full subcategory
of Db(A ), viewing every object A ∈ A as a complex concentrated in degree 0. We
denote the translation functor in Db(A ) as T .

Definition 7. Let C be a triangulated category, a subcategory D is called thick if for
each triangle

X → Y → Z→ T (X)

in C the fact that two terms belong to D implies that the third term also belongs to D .

Definition 8. Let C be a triangulated category, a subcategory D covers (resp. finitely
covers) C if the smallest thick subcategory of C containing D which is closed under
arbitrary (resp. finite) direct sums is C .
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Definition 9. Let C be a triangulated category, D a subcategory of C . An object
C ∈ C admits a resolution by objects from D if there is a sequence of triangles:

Ki+1→ Di→ Ki→ T (Ki+1) i≥−1

with K−1 =C and Di ∈D .

Definition 10. Let C be a triangulated category, a subcategory D weakly covers (resp.
finitely weakly covers) C if the smallest thick subcategory of C containing all objects
admitting a resolution by arbitrary (resp. finite) direct sums of objects from D is C .

Lemma 3. Let C be a triangulated category, B an abelian category, G,F : C →B
exact functors and η : G→ F a natural transformation. Denote Gn = G ◦ T−n and
Fn = F ◦T−n.

1. Suppose C ′ finitely covers C and that ηn(C) is an isomorphism for all C ∈ C ′

and all n, then η is an isomorphism.

2. Suppose that C ′ finitely weakly covers C , Gn = Fn = 0 for all n < 0, and that for
any C ∈ C ′ we have that η0 is an isomorphism and Gn(C) = Fn(C) = 0 for all
n 6= 0, then η is an isomorphism.

Proof: The proof is analogous to the one of the last lemma.�

Proposition 3. Let j : A → B be an exact embedding of abelian categories. The
following statements are equivalent:

1. The morphism induced by j

j̃ : Extn
A (X ,Y )→ Extn

B( jX , jY )

is an isomorphism for all X ,Y ∈A and all n≥ 0

2. The induced functor of derived categories

Db( j) : Db(A )→ Db(B)

is a full embedding.

Proof: 1.⇒ 2.): For each A ∈A we have a morphism of exact functors:

ηA : HomDb(A )(A,−)→ HomDb(B)( jA,−)◦Db( j)

and ηA(X) is an isomorphism for all X ∈ A . Since A finitely covers Db(A ), by the
last lemma we have that ηA is an isomorphism.

Now, for X ∈ Db(A ) we have a morphism of exact functors:

ηX : HomDb(A )(−,X)→ HomDb(B)(−, jX)◦Db( j)

which is an isomorphism for objects of A , and since A finitely weakly covers Db(A ),
by lemma 3, η is an isomorphism.

2.⇒ 1.): Since Extn
A (X ,Y )∼=ϕ HomDb(A )(X ,T nY ), Extn

B(X ,Y )∼=ψ HomDb(B)(X ,T nY ),
and by hypothesis we have that HomDb(A )(X ,T nY ) and HomDb(B)(X ,T nY ) are iso-
morphic under Db( j). Given that j̃ =ψ−1◦Db( j)◦ϕ we have that j̃ is an isomorphism.�
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Theorem 3. For a morphism of artinian rings ϕ : A→ B the following statements for
finitely generated modules are equivalent:

1. The multiplication map B⊗A B→ B is an isomorphism and TorA
i (B,B) = 0 for

all i≥ 1.

2. For all MB the multiplication map M⊗A B→M is an isomorphism and
TorA

i (M,B) = 0 for all i≥ 1.

3. For all BN the multiplication map B⊗A N→ N is an isomorphism and
TorA

i (B,N) = 0 for all i≥ 1.

4. For all MB and all BN, the induced map TorB
i (M,N)→ TorA

i (M,N) is an iso-
morphism for all i≥ 0.

5. For all MB the map HomA(B,M)→ M is an isomorphism and Ext i
A(B,M) = 0

for all i≥ 1.

6. For all BN the map HomA(B,N)→ N is an isomorphism and Ext i
A(B,N) = 0 for

all i≥ 1.

7. For all MB and M′B the map Ext i
B(M,M′)→ Ext i

A(M,M′) is an isomorphism for
all i≥ 0.

8. For all BN and BN′ the map Ext i
B(N,N′)→ Ext i

A(N,N′) is an isomorphism for
all i≥ 0.

9. The functor
Db(ϕ∗) : Db(mod B)→ Db(mod A)

is a full embedding.

10. The functor
Db((ϕop)∗

)
: Db(mod Bop)→ Db(mod Aop)

is a full embedding.

Proof:
1.⇒ 2.): For each MB we have a sequence of isomorphisms:

M⊗A B∼= M⊗B B⊗A B∼= M⊗B B∼= M

whose composition is the multiplication map induced by the action.
Now, for each MB we have a short exact sequence:

0→ X → Bm→M→ 0

And a commutative diagramm:
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X⊗A B Bm⊗A B M⊗A B 0

0 X Bm M 0

where the vertical arrows are the isomorphisms we have just proven. Hence we
have a short exact sequence:

0→ X⊗A B→ Bm⊗A B→M⊗A B→ 0

Therefore TorA
1 (M,B) = 0, and also TorA

n+1(M,B)∼= TorA
n (X ,B) for all n≥ 2, and

finally:

TorA
n (M,B) = 0 ∀n≥ 1

2.⇒ 4.): For each MB we have functors M⊗A− and M⊗B− from mod(B) to Ab.
The natural transformation:

τ : M⊗A−→M⊗B−

is such that τB is an isomorphism and since the functors are right exact we may
use lemma 2. We already have that TorA

n (M,−) = TorB
n (M,−) = 0 for all n < 0; Also

the derived functors are anihilated by the projectives in every n 6= 0, and since pro j(B)
finitely weakly covers mod(B), we have that τ is an isomorphism, in particular the
induced maps:

TorA
n (M,N)→ TorB

n (M,N)

are isomorphisms for all MB, all BN and all n≥ 0.
4.⇒ 1.): Since TorA

n (M,N)∼= TorB
n (M,N) for all MB, BN and all n, we have that:

TorA
n (B,B)∼= TorB

n (B,B) = 0

for all n > 0, since B is B-projective. Then we have a sequence of isomorphisms:

B⊗A B = TorA
0 (B,B) → TorB

0 (B,B) = B⊗B B → B
b⊗b′ 7→ b⊗b′ 7→ bb′

1.⇒ 3.): Analogous to 1.⇒ 2.
3.⇒ 4.): Analogous to 2.⇒ 4.
5.⇒ 7.): Analogous to 2.⇒ 4.
6.⇒ 8.): Analogous to 2.⇒ 4.
7.⇒ 5.): Analogous to 4.⇒ 1.
8.⇒ 6.): Analogous to 4.⇒ 1.
3.⇒ 5.): For MB we have a sequence of isomorphisms:
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HomA(B,M) ∼= HomA(B,HomB(B,M))
∼= HomB(B⊗A B,M) by the ad joint isomorphism
∼= HomB(B,M) by hypothesis
∼= M

whose composition is the map HomA(B,M)→M.
In particular the functor HomA(B,−) is exact in mod(B). We denote DM for the

left B-module HomZ(M,Q/Z), and by [16]:

Ext i
A(B,DDM)∼= DTorB

i (B,DM) = D0 = 0

for all i≥ 1. Since M is a submodule of DDM we have that Ext1
A(B,M) = 0 because

Ext1
A(B,−) is left exact, and we can conclude by induction on i.
5.⇒ 3.): For BN we have

DTorA
i (B,N)∼= Ext i

A(B,DN)

for all i≥ 0, again by [16]. Hence TorA
i (B,N) = 0 for all i≥ 1 and we get:

HomZ(N,Q/Z)∼= HomA(B,DN)∼= HomZ(B⊗A N,Q/Z)
This composition of isomorphisms is the multipication map.
2.⇔ 6.): Analogous to 3⇔ 5.
7.⇔ 9.): Follows from proposition 2.
8.⇔ 10.): Follows from proposition 2.�

Corollary 1. Let ϕ : A→ B be a homological epimorphism of algebras. Then

1. ϕop is a homologial epimorphism.

2. gl.dim(B) ≤ gl.dim(A).

Proof: It is immediate from last theorem.�

Corollary 2. We have the following:

1. Let ϕ : A→ B be an epimorphism and suppose that B is a flat B-module. Then ϕ

is a homological epimorphism.

2. If A is commutative and S is a subset of A, the map A→ S−1A is a homological
epimorphism.

Proof: It is immediate from last theorem.�

Proposition 4. Let I be an ideal of A, then

1. I is a homological ideal of A if and only if TorA
n (I,A/I) = 0 for all n≥ 0. In this

case, I is idempotent.

2. If I is idempotent and A-projective, then I is homological.

3. If I is idempotent then I is homological if and only if Extn
A(I,A/I) = 0 for all

n≥ 0.
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Proof:

1. Apply the functor −⊗A A/I to the exact sequence of A-modules: 0→ I→ A→
A/I→ 0 to get another exact sequence:

TorA
1 (A,A/I) = 0→ TorA

1 (A/I,A/I)→ I⊗A A/I→ A⊗A A/I→ A/I⊗A A/I→ 0

Now, since I is the syzygy of A→A/I we get that TorA
n (A/I,A/I)∼=TorA

n−1(I,A/I)
for n ≥ 2. We have that I⊗A A/I ∼= I/I2 (because I/I2 satisfies the universal
property of I⊗A A/I) and A/I ∼= A/I⊗A A/I, substituting this in the last exact
sequence we get:

TorA
1 (A/I,A/I)∼= I/I2

2. If I is A-projective, then TorA
n (I,A/I) = 0 for all n≥ 1, and also

I⊗A A/I ∼= I/I2 ∼= 0

from 1, we get that I is homological.

3. It is obvious.�

Proposition 5. Let ϕ : A→ B be a (homological) epimorphism of k-algebras. Then:

1. ϕe : Ae→ Be is a (homological) epimorphism.

2. ϕe
n : Extn

Be(B,B)→ Extn
Ae(B,B) is an isomorphism for all n≥ 0.

Proof: We are going to use the following results given in [16]. For k-algebras
Λ,Γ,Σ and modules XΛ−Γ,Λ YΣ,Γ−Σ Z:

(a) (X⊗Λ Y )⊗(Γ⊗kΣ) Z ∼= X⊗(Λ⊗kΓ) (Y ⊗Σ Z)
(b) I f TorΛ

n (X ,Y ) = 0 = TorΣ
n (Y,Z) f or all n > 0

Tor(Λ⊗kΣ)
n (X⊗Λ Y,Z)∼= Tor(Λ⊗kΓ)

n (X ,Y ⊗Σ Z)

1. Be⊗Ae Be = (B⊗k Bop)⊗A⊗kAop Be ∼= B⊗A (Bop⊗Aop Be) for (a).

Now, since Bop⊗Aop (B⊗k Bop)∼= (Bop⊗Aop B)⊗k Bop ∼= B⊗k Bop, we have:

Be⊗Ae Be ∼= (B⊗A B)⊗k Bop

∼= B⊗k Bop ϕ is an epimorphism
∼= Be

Hence ϕe is an epimorphism. Finally:

TorAe

n (Be,Be) = TorA⊗kAop

n (B⊗k B,Be)∼= TorA
n (B,B

op⊗Aop Be) = 0

Where the last Tor is cero because ϕ is homological. Hence ϕe is homological.

2. ϕe is a homological epimorphism and B is a Be-module.�
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1.3 Examples
Now with all this theory it is easier to give some examples.

1. Let A be the path algebra of the following quiver:

1 2 3
α β

That is, A is the matrix algebra:  k 0 0
k k 0
k k k


whose Auslander-Reiten quiver is:

P(1) = I(3)

P(2) I(2)

P(3) S(2) I(1)

Since A is hereditary, the cluster category is:

P(1) = I(3) P(3)[1]

P(2) I(2) P(2)[1]

P(3) S(2) I(1) P(1)[1]

And also every ideal is projective, hence every idempotent ideal is homological.
Define:

I1 =

 0 0 0
k k 0
k k k

 , I2 =

 k 0 0
k 0 0
k k k

 , I3 =

 k 0 0
k k 0
k k 0

 .
15



It is easy to see that these three ideals are two sided idempotent ideals, and also
that A/In ∼= k for n = 1,2,3. Hence the subcategories given by these homological
ideals in mod(A) are:

A→ A/I1 induces : mod(k)∼= add(I(1)) ↪→ mod(A)

A→ A/I2 induces : mod(k)∼= add(S(2)) ↪→ mod(A)

A→ A/I3 induces : mod(k)∼= add(P(3)) ↪→ mod(A)

Observe that the subcategories on the cluster category are obvious.

Now, from [9], all idempotent ideals are traces of projective modules, and the
traces of the indecomposable projectives are:

J1 := trP(1)(A) =

 k 0 0
k 0 0
k 0 0

 , J2 := trP(2)(A) =

 0 0 0
k k 0
k k 0

 ,
J3 := trP(3)(A) =

 0 0 0
0 0 0
k k k

 .
We have that A/Ji ∼=

[
k 0
k k

]
for i = 1,3, and A/J2 ∼= k× k.

Hence the subcategory of mod(A) given by A → A/J1 is add(P(3)⊕ P(2)⊕
S(2)), i.e. is the one given by the subquiver of the Auslander-Reiten quiver of A:

P(2)

P(3) S(2)

The subcategory of mod(A) given by A→ A/J3 is add(S(2)⊕ I(2)⊕ I(1)), i.e.
is the one given by the subquiver of the Auslander-Reiten quiver:

I(2)

S(2) I(1)

And obviously, the subcategory of mod(A) given by A→ A/J2 is add(P(3)⊕
I(1)).
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It appears that we are breaking down into pieces from below to above the cat-
egory mod(A) if we go from the maximal homological (the I′s) ideals to the
minimal homological (the J′s) ideals, at least in the hereditary case. Observe
that the zero ideal gives the whole category and it is homological.

Now, the cluster category of A/J1 is:

P(2) P(3)[1]

P(3) S(2) P(2)[1]

Inside the cluster category of A the shift should be the one from Db(A), hence
inside the cluster category of A the subcategory given by J1 is:

add
(

P(3)⊕P(2)⊕S(2)⊕P(3)[1]⊕P(2)[1]
)

Since in the cluster category S(2)[1] = P(2) and I(2)[1] = P(2), the subcategory
given by J3 inside the cluster category of A is given by the following subquiver:

P(2) I(2)

P(3) S(2) I(1)

For the ideal J3 it is analogous, and for J2 and the I′i s it is trivial. We finish with
this example by observing that we have analyzed all the homological ideals of A.

2. The Kronecker algebra A:

2 1
α

β

We can write:

A =

[
k 0
k2 k

]
Again is hereditary, hence all homological ideals are the idempotent ideals, by
[9], they are all the traces of the indecomposable projectives on A. It is easy to
see that:

17



trP(1)(P(2)) = P(1)⊕P(1)
trP(2)(P(1)) = 0

Hence the homological ideals are:

I1 := trP(1)(A) =

[
k 0
k2 0

]
I2 := trP(2)(A) =

[
0 0
k2 k

]
Observe that A/Ii ∼= k for all i, and then as epimorphisms, I1 gives the category
add(P(1)), and I2 gives add(P(2)). Also in the derived categories these induced
subcategories are again trivial.

Finally, I1 ∩ I2 = rad(A), which is not idempotent, and hence not homological.
Then the intersection of homological ideals does not have to be a homological
ideal.
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2 Hochschild Cohomology and One Point Extensions

2.1 Hochschild Cohomology Spaces
Definition 11. Let M be a finite dimensional left Ae-module (where Ae = A⊗k Aop ),
we define the Hochschild Complex of A with coefficients in M, C• = (Cn,dn)n∈Z, as
follows: Cn = 0 and dn = 0 for all n < 0; C0 = M, Cn = Homk(A⊗n,M) for n > 0,
d0(m)(a) = am−ma for m ∈M and a ∈ A, and dn : Cn→Cn+1 by:

(dn f )(a1⊗·· ·⊗an+1) = a1 f (a2⊗·· ·⊗an+1)

+
n

∑
j=1

(−1) j f (a1⊗·· ·⊗a ja j+1⊗·· ·⊗an+1)

+(−1)n+1 f (a1⊗·· ·⊗an)an+1

for f ∈Cn and a1, . . . ,an+1 ∈ A.

· · · Cn−1 Cn Cn+1 · · ·dn−2 dn−1 dn dn+1

Definition 12. The n-th Hochschild Cohomology of A with coefficients in M is:

Hn(A,M) = Hn(C•)

In the case where M =A, we denote Hn(A)=Hn(A,A) and call it the n-th Hochschild
Cohomology of A.

It is well known and easy to prove that H0(A) = Z(A) and that H1(A) is the quotient
of the derivations group over the subgroup of inner derivations.

An interpretation for the second Hochschild Cohomology space of an algebra is the
following. For f ∈ Homk(A⊗k A,M) we define the algebra A× f M which is A⊕M as
k-vector spaces with product:

(a,m)(̇a′,m′) = (aa′,am′+ma′+ f (a⊗a′))

If f ∈ ker(d2), then A× f M is an associative algebra with unity.

Theorem 4. Let f ,g ∈ ker(d2). Then A× f M ∼= A×g M if f̂ = ĝ in H2(A,M).

Another equivalent way of constructing the Hochschild Cohomology spaces is to
construct first the following Ae-projective resolution of A. We denote Sn(A) = A⊗n+2

for n≥−1, which is a left Ae-module, and define δn : Sn(A)→ Sn−1(A) by:

δn(a0⊗·· ·⊗an+1) =
n

∑
j=0

(−1) ja0⊗·· ·⊗a ja j+1⊗·· ·⊗an+1

In the computation of the Hochschild Cohomology spaces we use:

HomAe(Sn(A),M) = HomAe(A⊗k A⊗n⊗k A,M)
= HomAe(Ae⊗k A⊗n,M)
= Homk(A⊗n,M)
= Cn
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Hence Hn(A,M)∼= ExtAe(A,M).
And actually it is stronger than this:

Theorem 5. There is an isomorphism

Hn(A,−)∼= ExtAe(A,−)

of functors from mod(Ae) to mod(k).

One of the most important properties of Hochschild Cohomology is its derived
invariance:

Theorem 6. Let A and B be finite dimensional k-algebras. If there is an equivalence
of triangulated categories F : Db(A)→ Db(B) such that F(A) = B, then

Hn(A)∼= Hn(B)

Proof: Indeed, since we can define a triangulated equivalence F̂ : Db(Ae)→Db(Be)
([11]) sending Ae to Be:

Hn(A) ∼= ExtAe(A,A)
∼= HomDb(Ae)(A,T

n(A))
∼= HomDb(Be)(B,T

n(B))
∼= ExtBe(B,B)
∼= Hn(B)�

Now we pass to One-Point Extensions and their relation to Hochschild Cohomol-
ogy.

2.2 One Point Extensions
Definition 13. Let M ∈ mod(A), the One-Point Extension algebra of A by M is the
matrix algebra:

A[M] =

(
A 0
M k

)
For example the algebra of upper triangular matrices over k, Tn(k), acts by left

multiplication on an n-dimensional vector space. Then Tn(k)[M] ∼= Tn+1(k). For an
algebra B to be of the form A[M] it is necessary that there exist a simple injective B-
module, say S. If P(S) is the projective cover of S and b ∈ B is an idempotent such that
P(S) = bB, then B = A[M] for A = B/I, I =< b > and M = radP(S).

Proposition 6. The map p : A[M]→ A given by
[

a 0
m λ

]
→ a is a homological

epimorphism.

Proof: The morphism is surjective and has kernel
[

0 0
M k

]
, which is idempotent

and projective, hence a homological ideal.�
Now we use the following lemma stated in [11] to prove Happel’s long exact se-

quence.
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Lemma 4. If P(b,b′) denotes the indecomposable projective A[M]e-module corre-
sponding to the idempotent b⊗ b′, where b′ denotes the corresponding element in the
opposite algebra A[M]op of b. Then

1. I ∼= P(b,b′)∼= Homk(S(b),P(b)) as left A[M]e-modules.

2. Ext j
Ae(A,A)∼= Ext j

A[M]e
(A,A) for all j ≥ 0.

3. Ext j
A[M]

(S(b),P(b))∼= Ext j−1
A (M,M) for all j ≥ 2.

4. Ext1
A[M](S(b),P(b))

∼= HomA(M,M)/ < 1M >, and since < 1M >∼= k, we write
HomA(M,M)/k insted of HomA(M,M)/ < 1M >.

5. HomA[M](S(b),P(b)) = 0.

Theorem 7. (Happel) There exist a long exact sequence:

0→H0(A[M])→H0(A)→HomA(M,M)/k→H1(A[M])→H1(A)→Ext1
A(M,M)→ . . .

Proof: Let I be the kernel of the A[M]e-map, A[M]→ A given by
(

a 0
m λ

)
7→ a.

We have an exact sequence of A[M]e-modules:

0→ I→ A[M]→ A→ 0

By the last lemma, I ∼= P(b,b′) is A[M]e-projective and hence Ext i
A[M]e(I,A) = 0 for

i≥ 1. Applying the functor HomA[M]e(−,A) to the last short exact sequence we get that
Ext i

A[M]e(A,A)
∼= Ext i

A[M]e(A[M],A) for i≥ 1. Now:

Ext i
A[M]e(A[M], I) ∼= H i(A[M], I)

∼= H i
(
A[M],Homk(S(b),P(b))

)
∼= Ext i

A[M](S(b),P(b))

∼=
{ HomA(M,M)/k f or i = 1

Ext i−1
A (M,M) f or i≥ 2

Applying the functor HomA[M]e(A[M],−) to the first short exact sequence, we get a
long exact sequence:

HomA[M]e(A[M], I) = 0→ HomA[M]e(A[M],A[M])→ HomA[M]e(A[M],A)

→ Ext1
A[M]e(A[M], I)→ Ext1

A[M]e(A[M],A[M])→ Ext1
A[M]e(A[M],A)→ . . .

Now, by Theorem 6, HomA[M]e(A[M],A[M]) = H0(A[M]); by the first assertion in this
proof we get HomA[M]e(A[M],A)∼= HomA[M]e(A,A) and by the last lemma part 2

HomA[M]e(A,A)∼= HomAe(A,A)∼= H0(A)

We already proved that Ext1
A[M]e(A[M], I) ∼= Ext1

A[M](S(b),P(b)) and by the last
lemma part 4, Ext1

A[M](S(b),P(b))
∼= HomA(M,M)/k; All the other isomorphisms to

obtain the desired long exact sequence are obtained this way.�
There is an important result that follows from this last theorem.
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Definition 14. An A-module M is exceptional if Extn
A(M,M) = 0 for all n > 0 and

HomA(M,M) is a one dimensional vector space.

Theorem 8. Let M be an exceptional A-module, then Hn(A)∼= Hn(A[M]) for all n≥ 0.

Proof: It is clear from Happel’s long exact sequence.�

2.3 Connections with Homological Ideals
We have the following result, we give a direct proof using lemma 1.

Theorem 9. Let M be an A-module and I a homological ideal of A such that IM =
MI = 0. Then I[M] is a homological ideal of A[M].

Proof: Let ϕ : A[M]→ A/I be given by
(

a m
0 λ

)
7→ a+ I, then by the isomor-

phism theorem we get:

A[M]/I[M]∼= A/I

And we get a commutative diagram of algebras:

A[M]/I[M] A/I

A[M] A

ϕ̂−1

πI[M] πI

p

where ϕ̂−1 is an isomorphism, πI is a homological epimorphism by hypothesis, and by
Proposition 6, p is a homological epimorphism, hence all maps but πI[M] are homolog-
ical epimorphisms, and by Lemma 1, πI[M] is a homological epimorphism.�

We have proved a generalization of Theorem 8.

Theorem 10. If there exist a homological ideal I of A such that the category mod(A/I)
has an exceptional module M, then:

Hn(A/J)∼= Hn
(
(A/J)[M]

)
for all n≥ 1 and all homological ideals J of A with J ⊂ I.

In particular, for the trivial homological ideal we get Hn(A) ∼= Hn
(
A[M]

)
for all

n≥ 1.

Proof: Let I be a homological ideal of A and M an exceptional A/I-module. If
J⊂ I is a homological ideal of A, then the inclusion map induces morphisms of algebras
A/J→ A/I, and then M is an A/J-module, now (A/J)[M] makes sense. By Theorem 3,
Extn

A/J(M,M)∼= Extn
A(M,M)∼= Extn

A/I(M,M) = 0, applying Theorem 8 for the algebra
A/J and the now exceptional A/J-module M, gives the desired result.�
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