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Chapter 1

Introduction

In 2012 the Instituto Nacional de Salud Pública in Mexico (INSP) fielded a nationwide health
and nutrition survey called ENSANUT 2012 1. The goal of the survey is to collect inform-
ation to monitor and evaluate trends in health and nutrition of the Mexican population.
Details about the design and objectives of ENSANUT 2012 can be found in [12].

The ENSANUT 2012 included a questionnaire called a 24-Hour Dietary Recall (R24Hr-
2012) that aims to capture intake of food energy (calories), nutrients and non nutrient com-
ponents from food and beverages that were consumed during the 24-hour period prior to
the interview by each participant. From a public health perspective, however, what is of
interest is the usual or regular nutrient intake which we envision to be the long-run average
intake of the nutrient by the individual. Usual or regular intake is unobservable, unless
daily intakes for a large sample of persons are collected over a long period of time. This
is impractical, both from a cost and from a respondent burden perspective. Therefore, we
typically have only one or two observations of daily intake per person. From a statistical
viewpoint, this is equivalent to observing noisy measurements of the variables of interest.

The focus of this thesis is to describe the association between usual intake of sugary
drinks and usual intake of nutrients in a sample of Mexican children and adolescents.

The difficulty here is that neither usual intake of the nutrients nor usual intake of sug-
ary drinks are observable as discussed above. Given independent replicates of daily intake,
however we can formulate a measurement error model in order to estimate the associations
of interest.

In general, measurement error models are useful in cases where one or more of the
variables in the model are not observable. When both the response and the predictor(s)
are not observable, we sometimes refer to the regression problem as an errors in variables
problem. Unless one is willing to make strong and typically unverifiable assumptions,
having independent replicate observations from which to obtain information about the
distribution of the measurement errors is critically important. In the case of ENSANUT,
a replicate 24-hr recall was collected from a random sub-sample of about 10% of survey
participants. While this replicate permits in principle estimating the distribution of the
measurement errors in both the response and the predictor, we simplify this estimation
problem by assuming normality of the measurement errors.

The Bayesian approach to estimation, which we adopt for our analyses, allows incorpor-
ation of prior information given what we know about the contextual framework, without
which it may be difficult to estimate parameters in the absence of richer data at the level
of the individual. This fact permits introducing more complexity (and thus, flexibility)
into the measurement error models. For example, by formulating our model in a hierarch-
ical manner, we can accommodate heterogeneity of measurement error variances across
individuals. However, the challenge of the Bayesian approach is computational; we need

1The previous surveys are ENSANUT 2001 and ENN 1999.
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to program a Markov chain Monte Carlo (MCMC) algorithm in order to approximate the
posterior distributions of interest.

The package rjags, available in R, is able to implement a Gibbs sampler algorithm but
only for models that are not very complex. In this last case it is necessary to program the
algorithm from scratch.

Although measurement error models are not a new topic in Statistics, few articles ad-
dress estimation in these models from a Bayesian point of view [1]. For this reason, present-
ing an application of measurement error models to ENSANUT data using a Bayesian ap-
proach is a valuable contribution. The models we propose to describe the association
between usual intakes of sugary drinks and of nutrients have attractive attributes:

- They use all the information (replicates) available at the level of the individual.

- They account for both the between individual and the within individual variances in
intakes.

- They are flexible enough to allow realistic assumptions about the measurement error
variances in intake.

These characteristics are present in an heteroscedastic measurement error model with rep-
licates using a Gibbs sampler algorithm programed in rjags package to estimate the para-
meters.

The results that we compute in this thesis are not to be generalized to the entire popu-
lation of Mexican children and adolescents. This is because the ENSANUT is not a simple
random sample of the Mexican population. To obtain results that are generalizable to the
entire Mexican population we would need to carry out a weighted analysis, using the
survey weights that are provided in the database. Because ENSANUT is far from self-
weighting, we expect that results obtained using weights will differ significantly from those
we present here. Thus, a limitation of our application is that results apply exclusively to
the sample of children and adolescents used in the analyses. The next step is to carry out
a weighted analyses using the same methodology, so that results can be more widely useful.

1.1 Structure of the Thesis

The thesis is composed of three chapters and a conclusions section.
In Chapter 2: we explain how the dataset used in our analyses was built by using in the
application of the models described in Chapter 3 using the data provided by INSP. It will be
described, in a general way, the origin of the data and the structure of ENSANUT 2012 data
base. It will also be explained which are the important variables according to the purpose
of this thesis and the variables that compose the data for analysis.

Chapter 3: we propose two variants of the measurement error models with replicates. The
concept of measurement error model will be introduced, then the models that will be ap-
plied will be described and the methodology to estimate their parameters will be explained.

Chapter 4: here the parameters of models in the previous chapter are estimated using sim-
ulated data with similar characteristics to the data analyzed in Chapter 5. This chapter has
the objective to analyze the performance of the credible intervals and compare them to the
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models proposed.

Chapter 5: we present an application of the models introduced in Chapter 2. We explain
how to fit the models in Section 3.1.1 and 3.1.2, and the results will be shown. The analysis
of fitting the models will be compared in order to choose the best option to explain the
association between consumption of sugary drinks and nutrient density.

Finally, we include a short conclusions section and an appendix.





Chapter 2

Data Description

The aim of this chapter is to describe the intake data provided by the Instituto Nacional de Salud
Pública, Cuernavaca, México. First the structure of the ENSANUT 2012 data base will be described.
Secondly the important variables according to the purpose of this thesis will be explained. Finally a
description of the variables that compose the data used in the application will be given.

2.1 ENSANUT R24Hr-2012 Data Base

In 2012 the Instituto Nacional de Salud Pública (INSP) implemented the Encuesta Nacional
de Salud y Nutrición (ENSANUT) 2012ENSANUT is a nation-wide survey designed to be
representative at the level of regions. Food intake information is collected using a ques-
tionnaire called 24-Hour Dietary Recall (R24Hr-2012) which is meant to capture individual
total intake of foods, beverages and supplements during a 24-hour period. Using extens-
ive food composition databases, consumption of food and beverages is transformed into
its components: energy (calories), nutrients and non-nutrient components from food and
beverages that were consumed during a 24-hour period prior to the interview.

Neither the handicapped nor children younger than 15 years were interviewed directly;
instead, information was collected from the person responsible to feed the family. Children
and adolescents were asked to confirm the information provided by the care-taker.1

The INSP obtained a replicated, independent recall for a subsample of those who par-
ticipated in the first interview; thus R24Hr-2012 information is organized in two data sets;
one for the first recall and the other for the second. The first recall data set contains inform-
ation on about 10,886 individuals from which a second data set of 981 individuals were
interviewed again. Both sets were built in the same way; each row in data base corres-
ponds to one beverage or food consumed by the individual with certain folio number, both
data bases include a total of 214 variables grouped into six types (See Table 2.1). These
types of variables are described.

- Folio: it identifies the individual interviewed.

- Demographic: Socioeconomic characteristics.

- Anthropometric: Physical characteristics.

- Intake: How often, where, how etc. the interviewed person consumes the product in
question.

- Characteristics of food: it includes codes for the type of food, the quantity consumed,
the ingredients etc.

1More informations about R24Hr-2012 consult [10].
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Variable Class Variable Type Number of Variables

Interviewee
Folio 1
Demographic 22
Anthropometric 5

Habits Intake 21

Foods
Characteristics of food 35
Decomposition 130
Total 214

Table 2.1: R24Hr-2012 Data Base Variables.

Age Group First Recall Second Recall
Preschool 2,655 231
School 2,783 261
Adolescents 2,138 197
Total 7,576 689

Table 2.2: Number of interviewees per Age Group.

- Composition: Nutrient and no nutrient content in each food.

Here only a subset of the variables will be considered, since the focus of this thesis is on the
association between nutrient intake and sugary drinks.

2.1.1 Target Population

The R24Hr-2012 data sets contain the variable called GrupoPOB that classifies the informa-
tion in four groups of different intervals of ages:

- Preschool: from 1 to <5 years old

- School: from 5 to <12 years old

- Adolescents: from 12 to ≤ 19 years old

- Adults: at least 20 years old

The target population in our analyses includes Preschool, School and Adolescents. This
study will not consider Adults in our work since we assume that children and young adults
are more likely to consume sugary drinks in greater quantities. Therefore from now on,
the description will include only the groups of interest. Table 2.2 shows the number of
individuals interviewed per group of age in the first and second recall.

2.1.2 Sugary Drinks and Nutrients

The codification of R24Hr-2012 classified all non-alcoholic beverages into 22 different types
of non alcoholic drinks. Among the sugary drinks consumed in Mexico, we select bever-
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Calium Iron Magnesium Phosphorous Potasium
Zinc Folate Thiamin Riboflavin Niacin
Vitamin B6 Vitamin C Vitamin A Vitamin E Vitamin D

Table 2.3: Nutrients Analyzed

ages with highest sugar content and highest consumption among children and adolescents.
The sugary drinks we included in our analyses are:

- Industrialized flavored water.

- Sodas.

- Artificial fruit/vegetables drinks.

From now on when we refer to a sugary drinks, we mean the three beverages mentioned
above. In terms of nutrients, see Table 2.3 :

- Total of each nutrient consumed 24 hrs. prior to recall j per individual i.

- Total of Kcal consumed 24 hrs. prior to recall j per individual i.

- Total of Kcal consumed 24 hrs. prior to recall j through sugary drinks per individual
i.

Here j = 1, 2 and i = 1, . . . n. These totals will be indispensable in order to obtain the final
data base as will be shown next.

2.1.3 Final Analyticial Data Base

Now a new set of variables will be computed by taking into account the nutrient and Kcal
ingested by individuals. First we define the concept of Nutrient Density :

Nutrient Density =
Nutrient content

Total Kcal content
× 100.

Thinking of diet quality in terms of nutrient density rather than nutrient amounts per-
mits comparing individuals whose total intake differs due to age, body size, etc. Nutrient
density, as the name suggests, is an indicator of the amount of a nutrient that is present in
100 kcal.
Once the totals of nutrients and calories ingested per each person were computed, the next
variables can be calculated :

- lij : Total amount of nutrient l consumed by individual i 24 hrs. prior to recall j.
Where l could be whatever nutrient in the table 2.3.

- Kcalij : Total kcal consumed by individual i 24 hrs. prior to recall j.

- KcalSBij : Total kcal that contain the sugary drinks consumed by individual i 24 hrs.
prior to recall j.
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Recall First Second
Total of Individuals 3,571 226

Columns

Folio 1 1
GrupoPOB 1 1
Body Mass Index 1 1
Age 1 1
Xij 1 1
Ylij 15 15

Total of Columns 20 20

Table 2.4: Final Data Base per Recall.

Finally, we define two additional variables:

Ylij =
lij

Kcalij
(2.1)

Xij =
KcalSBij
Kcalij

, (2.2)

where Ylij is the density of nutrient l in the diet of participant i on day j of the survey and
Xij is the proportion of total calories in the diet that are contributed by sugary drinks for
that person on that day.
It is worth mentioning that a considerable portion of the data set contains missing data or
zero value in variables Kcalij and KcalSBij . This loss of information could be produced
by error in the cleaning data bases processes. Since to compute densities we need to have
positive energy consumption in the day, all participants whose energy intake was missing
or was recorded as zero were deleted. After filtering the information according to the type
of beverages consumed and after eliminating the individuals with zero or NA in variables
Kcalij and KcalSBij , the data set of the first recall j = 1 contains information of n=3,571
individuals and the second recall j = 2, only contains 226 observations. The final data set
will contain draws of equations (5.3) and (5.4) and the following variables from the original
data set: Folio, Age and Body Mass Index. In table 2.4 the structure of the data sets that will
be used in the next chapter are shown.
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Methodology

Two variants of the measurement error models with replicates will be described in this chapter. First
the concept of measurement error model will be introduced, then the models that will be used in
the application will be described and at the end the methodology to estimate the parameters of the
models will be explained. A Bayesian approach will be used for which the distributions of unknown
parameters and latent variables will be assigned.

3.1 Measurement Error Models

Let a classical linear regression model

yi = xiβ + ei (3.1)

where xi is a covariate and ei is a random variable. When xi is not observed directly but
instead of observing xi one observes Xi

Xi = xi + ui (3.2)

where ui is a random variable, then equations (3.1) and (3.2) comprise a measurement error
model. If xi is fixed, the model is functional, while a model with random xi is called
structural.

When the response variable yi is not directly observed either, it means that one observes
Yi

Yi = yi + wi (3.3)

with wi a random variable, then equations(3.1), (3.2) and (3.3) comprise a model with an
error in the equation as described by [6].
Two structural models will be used in this thesis. The first model will have an error in the
equation, it will be added a z observable variable and ui and wi will be assumed as hetero-
scedastic errors. The second model is a modification of a measurement error model assum-
ing ui as heteroscedastic errors as well. Both models assume that replicates are available
to estimate the parameters of the measurement error distribution. In the following sections
these models will be described in detail.

3.1.1 Model 1: Model with an Error in the Equation with Replicates

Consider an experiment where the response yi , i = 1, . . . , n is independent among indi-
viduals i. Let xi, and zi be explanatory variables for the individual i. It will be assumed
that there is a linear relation among yi , xi and zi of the next form:

yi = β0 + xiβx + ziβz + qi , qi|σ2
q ∼ (0, σ2

q ), (3.4)
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where βx and βz are the regression coefficients.
It will be denoted as β = (β0, βx, βz) the vector that contains all the coefficients. In the

model (3.4) the variables xi and yi, are not directly observed, instead of observing them the
experiment was replicated j times for some individual i and the observed variables Yij and
Xij will give information about xi and yi in the next way:

Yij = yi + wij , wij
ind∼ (0, σ2

wi
) (3.5)

Xij = xi + uij , uij
ind∼ (0, σ2

ui
). (3.6)

The variables yi and xi are called latent variables , qi, wij and uij are the measurement
errors , these are random variables independent to the respective latent variable and among
them. It will be assumed these errors have mean zero and variance σ2

wi
and σ2

ui
. 1

Notice that the three equations comprise a model with an error in the equation, if yi in
(3.4) is replaced by (3.5) then we obtain:

Yij = β0 + xiβx + ziβz + qi + wij (3.7)

Xij = xi + uij . (3.8)

It will be reasonable to assume a normal distribution for the measurement errors wij and
uij , perhaps after an appropriate transformation of the data. Thus, we assume

qi|σ2
q
ind∼ N

(
0, σ2

q

)
wij |σ2

wi

ind∼ N
(
0, σ2

wi

)
uij |σ2

ui

ind∼ N
(
0, σ2

ui

)
. (3.9)

The sum of errors eij = qi + wij in (3.7) is known as error in the equation . Then, replacing

eij = qi + wij

in the equation (3.7) it is obtained,

Yij = β0 + xiβx + ziβz + eij (3.10)

Xij = xi + uij . (3.11)

1In the homoscedastic case σ2
wi

and σ2
ui

are the same for all the individuals.
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Consistent with a Bayesian approach it will be assumed that xi has a conditional normal
prior distribution with mean α0 + α1zi and variance σ2

x, then

xi|α0, α1, σ
2
x ∼ N

(
α0 + α1zi, σ

2
x

)
. (3.12)

Using (3.9) and (3.10), it is obtained

Yij |β0, βx, βz, xi, yi, σ2
wi
, σ2
ui
∼ N

(
β0 + xiβx + ziβz, σ

2
ui

+ σ2
wi

)
Xij |xi, α0, α1, σ

2
ui
∼ N

(
xi, σ

2
ui

)
,

yi|β0, βx, βz,xi, σ2
q ∼ N

(
β0 + xiβx + ziβz, σ

2
q

)
. (3.13)

In the model with an error in the equation with replicates that we have introduced, para-
meters β0, βx, βz, σ2

q , σ
2
wi
, σ2
ui
, α0, α1 are unknown and the variables yi and xi are no observ-

able directly. This makes estimation of model parameters challenging. The Gibbs sampler
algorithm is an option to obtain simulations of yi and xi from their respective posterior
distributions in order to estimate the model parameters. In Section 3.2 we describe how to
construct this algorithm.

3.1.2 Model 2: Modified Measurement Error Model with Replicates

Consider now an experiment where the responses Yij , i = 1, . . . , n are independent between
individuals i. Let xi a explanatory variable for the individual i. It will be assumed that there
is a linear relation between Yij and xi in the next form:

Yij = β0 + xiβx + wij , wij |σ2
w ∼ (0, σ2

w) (3.14)

Xij = xi + uij , uij |σ2
ui
∼ (0, σ2

ui
), (3.15)

where the errors uij and wij were defined in (3.7). According to a Bayesian approach, xi is
assumed to have a conditional normal prior distribution with parameters:

xi|µx, σ2
x ∼ N

(
µx, σ

2
x

)
(3.16)

From (3.14) and (3.15) it is obtained

Yij |βx, xi, σ2
w ∼ N

(
β0 + xiβx, σ

2
w

)
Xij |xi, σ2

ui
∼ N

(
xi, σ

2
ui

)
. (3.17)

In this model, unlike the previous model, all we have to estimate is xi and the parameters
β0, βx, σ

2
w, µx, σ

2
u, σ

2
x. As in the previous case, we design a Gibbs Sampler to draw values

from the posterior distributions of the parameters. The method will be explained in next
section.
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3.2 Estimation via Gibbs Sampler

The Gibbs sampler works iteratively, and it is useful in many mutidimensional problems
where the objective is to estimate the posterior distribution of

θ =
(
θ1, . . . , θd

)
.

Each iteration of the algorithm cycles through the subvectors of θ, drawing each subset
conditional on the value of all others. There are d steps in the iteration t. At each iteration
t, an ordering of the components of θ is chosen and, in turn, each θtj is sampled from the
conditional distribution given all the other components of θ:

p
(
θj |θt−1−j , y

)
, (3.18)

where
θt−1−j =

(
θt1, . . . , θ

t
j−1, θ

t−1
j+1, . . . , θ

t−1
d

)
.

Thus, each subvector θj is updated conditional on the latest values of the other components
of θ, which are the iteration t values for the components already updated and the iteration
t− 1 values for the others [7]. The generic algorithm Gibbs is given below:

1. For any j not selected before, p(θtj |θt without θtj , y).

2. Simulate from the conditional distribution p(θtj |θt without θtj , y) and obtain θt+1
j .

3. Update θt = (θt1, . . . , θ
t+1
j , θtj+1, . . . , θ

t
n, y), with t = 1, . . . , n

4. Repeat.

At the end of the iteration t all the vector θ must to be updated. On other hand, at the
beginning of the algorithm initial values for θ have to be specified to start the iterations.

In Section 3.2.1 and 3.2.2 the conditional distributions that allow to simulate from (3.18)
will be given for the respective model described above.

3.2.1 Gibbs Sampler for Model 1

According to the model in section 3.1.1 and supposing that β0, βx, βz, σ2
q , σ

2
wi
, σ2
ui
, α0, α1

are given, Yij , Xij and xi are conditionally independent [1], then the likelihood for one
individual with mi replicates is

p(Yi,Xi, xi, yi|zi, β, α, σ2
q , σ

2
x, σ

2
wi
, σ2
ui

) ∝
mi∏
j=1

p(Yij |β, xi, yi, σ2
wi

)

×
m∏
j=1

p(Xij |xi, α, σ2
ui

)

× p(xi|α, σ2
x)

× p(yi|zi, β, xi, σ2
q ), (3.19)
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where

β = (β0, βx, βz)

α = (α0, α1)

Yi = (Yi1, . . . , Yimi
)

Xi = (Xi1, . . . , Ximi
).

Then the target (or posterior) distribution is:

p(β, α, σ2
q , σ

2
x, σ

2
wi
, σ2
ui
|Y,X,x,y, z) ∝

n∏
i=1

p(Yi,Xi, xi, yi|zi, β, α, σ2
q , σ

2
wi
, σ2
ui

)

× p(β)p(α)p(σ2
q )p(σ2

x)p(σ2
wi

)p(σ2
ui

)

(3.20)

Under the assumptions that (3.12) and (3.13) and replacing (3.19) in (3.20) the target distri-
bution is expressed by,

p(β, α, σ2
q , σ

2
wi
, σ2
ui
|Y,X,x,y, z) ∝

n∏
i=1

[(
σwi

σui

)−mi
(
σxσq

)−1
× exp

{
− 1

2σ2
q

(yi − Ctiβ)2 − 1

2σ2
x

(xi −Dt
iα)2

}

× exp
{−∑mi

j=1(Xij − xi)2

2σ2
ui

−
∑mi

j=1(Yij − yi)2

2σ2
wi

}]
× p(σ2

q )p(σ2
x)p(σ2

wi
)p(σ2

ui
). (3.21)

Here Ci = (1, zi, xi) and Di = (1, zi).

Following an application in Ruppert(2006) [9] the priors that will be used are, 2

2IG meaning Inverse Gamma.
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p(β) ∼ N3

(
0, σ2

βI
)

p(α) ∼ N2

(
0, σ2

αI
)

p(σ2
q ) ∼ IG(γq, δq)

p(σ2
wi

)
iid∼ IG(γw, δw)

p(σ2
ui

)
iid∼ IG(γu, δu)

p(σ2
x) ∼ IG(γx, δx). (3.22)

The hyperparameters σ2
β , σ

2
α, γ∗, δ∗ are constants. These constants will be specified later.

Thus the full conditionals for each parameter taking into account mi replicates per indi-
vidual i is given by, 3

p(xi|others) ∝ exp
{
− β2

xxi − 2xi(β0 + βzzi − yi)
2σ2

q

− x2i − 2xi(α0 − α1zi)

2σ2
x

−
∑mi

j=1

(
Xij − xi

)2
σ2
ui

}

= exp

{
− 1

2

(
β2
x

σ2
q

+
1

σ2
x

+
mi

σ2
ui

)
x2i − 2xi

(
β0 + βzzi − yi

βz
+
α0 + α1zi

σ2
x

+
miX̄ij

σ2
ui

)}

∴ p(xi|others) ∼ N
([

β2
x

σ2
q

+
1

σ2
x

+
mi

σui

]−1(
β0 + βzzi − yi

βx
+
α0 + α1zi

σ2
x

+
miX̄ij

σ2
ui

)
,

[
β2
x

σ2
q

+
1

σ2
x

+
mi

σui

]−1)
.

(3.23)

p(yi|others) ∝ exp
{
− 1

2σ2
q

(
yi − β0 − βxxi − βzzi

)2 − ∑mi

j=1

(
Yij − yi

)2
2σ2

wi

}

= exp

{
y2i − 2yi(β0 + βxxi + βzzi)

2σ2
q

− miy
2
i − 2miȲijyi

2σ2
wi

}

= exp

{
y2i

(
1

σ2
q

+
mi

σ2
wi

)
− 2yi

(
β0 + βxxi + βzzi

σ2
q

+
miȲij
σ2
wi

)}

∴ p(yi|others) ∼ N
([

1

2σq2
+
mi

σ2
wi

]−1(
β0 + βxxi + βzzi

σ2
q

)
,

[
1

2σ2
q

+
mi

σ2
wi

]−1)
(3.24)

3Rule: if some p-dimensional parameter θ,

p(θ|others) ∝ exp
{
− (θtAθ − 2bθ)/2

}
where the constant of proportionality is independent of θ, then p(θ|others) is N(A−1b, A−1).
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p(β|others) ∝ exp
{
− 1

2σ2
q

n∑
i=1

(yi − Ctiβ)t(yi − Ctiβ) +
βtβ

2σ2
β

}
let C = [Ct1, . . . , C

t
n]a matrix

∴ p(β|others) ∼ N
([
CtCσ−2q + I3σ

−2
β

]−1
Ctyσ−2q ,

[
CtCσ−2q + I3σ

−2
β

]−1)
(3.25)

p(α|others) ∝ exp
{
− 1

2σ2
x

(x−Dα)t(x−Dα)− 1

2σ2
α

αtα

}
where D = [1(n×1) z] is a matrix

∴ p(α|others) ∼ N
([
DtD + δαI3

]−1
Dtx,

[
DtD + δαI3

]−1)
(3.26)

p(σ2
q |others) ∝

(
σ2
q

)−n/2
exp

{
− 1

2σ2
q

n∑
i=1

(
yi − β0 − βxxi − βzz

)2 − δq
σ2
q

}(
σ2
q

)−γq+1

=
(
σ2
q

)−(γq+n/2−1)
exp

{
−
δq +

∑n
i=1(yi − (β0 + βxxi + βzzi))

2

σ2
q

}

∴ p(σ2
q |others) ∼ IG

(
γq + n/2, δq +

n∑
i=1

(
yi − (β0 + βxxi + βzzi)

)2) (3.27)

p(σ2
x|others) ∼ exp

{
− 1

2σ2
x

n∑
i=1

(xi − α0 − α1zi)
2 − δx

σ2
x

}(
σ2
x

)−(∑n
i=1mi/2−γx−1)

∴ p(σ2
x|others) ∼ IG

(
γx +

n∑
i=1

mi/2, δx +

n∑
i=1

(
xi − (α0 + αxzi)

)2) (3.28)

p(σ2
ui
|others) ∝

(
σu2

i

)−mi/2
exp

{
− 1

2σ2
ui

mi∑
j=1

(Xij − xi)2 −
δu

2σ2
u

}(
σ2
ui

)γu−1

∴ p(σ2
ui
|others) ∼ IG

(
γu +mi/2, δu +

∑mi

j=1

(
Xij − xi

)2
2

)
(3.29)
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p(σ2
wi
|others) ∝

(
σw2

i

)−mi/2
exp

{
− 1

2σ2
wi

mi∑
j=1

(Yij − yi)2 −
δw

2σ2
w

}(
σ2
wi

)γw−1

∴ p(σ2
wi
|others) ∼ IG

(
γw +mi/2, δw +

∑mi

j=1

(
Yij − yi

)2
2

)
(3.30)

Once we have derived the full conditionals of the parameters β, σ2
q , σ

2
x, σ

2
wi
, σ2
ui
, α and non

observable variables xi,yi, a Gibbs sampler can be carried out as was shown at the begin-
ning of this section (3.2). Let p(.|θt without θ.) a distribution expressed in (3.23) to (3.30),

θ = (xi, yi, β0, βx, βz, σ
2
q , σ

2
x, σ

2
wi
, σ2
ui
, α0, α1).

= (θ1, . . . , θ2n+9). (3.31)

Remember that the model is heteroscedastic in the errors uij and wij , therefore 2n+ 9 val-
ues will be obtained in each step, thus θt = (θt1, . . . , θ

t
2n+9) is the estimation of the entries

of the vector θ in the step t. The initial value θ0 will be specified in the application.

3.2.2 Gibbs Sampler for Model 2

Now we list the full conditionals corresponding to Model (3.1.2), where the parameters are
βx, σ

2
w, σ

2
ui
, µx, σ

2
x and a non observable variable xi have to be estimated. The likelihood for

one individual with mi replicates is [1]:

p(Yi,Xi, xi|β0, βx, σ2
x, µx, σ

2
w, σ

2
ui

) ∝
mi∏
j=1

p(Yij |βx, xi, σ2
w)

×
mi∏
j=1

p(Xij |xi, β0, βx, σ2
ui

)

× p(xi|µx, σ2
x),

(3.32)

where

Yi = (Yi1, . . . , Yimi
)

Xi = (Xi1, . . . , Ximi
).

β = (β0, βx)

The target distribution is:

p(β0, βx, µx, σ
2
w, σ

2
ui
, σ2
x|Y,X,x) ∝

n∏
i=1

[
p(Yi,Xi, xi|β0, βx, µx, σ2

ui
, σ2
w, σ

2
x)

]
× p(β0, βx)p(µx)p(σ2

w)p(σ2
u)p(σ2

x). (3.33)
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Under the suppositions in (3.16) and (3.17) and replacing them in (3.33), the expression of
the target distribution is:

p(β0, βx, µx, σ
2
w, σ

2
ui
, σ2
x|Y,X,x) ∝

n∏
i=1

[(
σ2
x

)−1/2(
σ2
wσ

2
ui

)∑n
i=1mi/2

× exp
{
−
∑mi

j=1(Yij − β0 − xiβx)2

2σ2
w

−
∑mi

j=1(Xij − xi)2

2σ2
ui

− (xi − µx)2

2σ2
x

}]
× p(β0, βx)p(µx)p(σ2

w)p(σ2
ui

)p(σ2
x). (3.34)

The priors proposed are the following:

p(β) ∼ N
(
0, σ2

βI
)

p(µx) ∼ N
(
µ, σ2

µx

)
p(σ2

w) ∼ IG
(
γw, δw

)
p(σ2

ui
)
iid∼ IG

(
γu, δu

)
p(σ2

x) ∼ IG
(
γx, δx

)
(3.35)

The parameters σ2
β , µ, σ

2
µx
, γ∗, δ∗ are constants. From (3.34) and (3.35) the full conditionals

are obtained.

p(xi|others) ∝ exp
{
−
∑mi

j (Yij − β0 − xiβx)2

2σ2
w

−
∑mi

j (Xij − xi)2

2σ2
ui

− (xi − µx)2

2σ2
x

}

∴ p(xi|others) ∼ N
([
mi

(
β2
x

σ2
w

+ σ−2ui

)
+ σ2

x

]−1(
− βxȲij + X̄ij

σ2
w

+
µx
σ2
x

)
,

[
mi

(
β2
x

σ2
w

+ σ−2ui

)
+ σ2

x

]−1)
(3.36)

Let β = (β0, βx) , X = [1(n×1) x] be a matrix, m is a vector with the number of repetitions
per individual mi, M =

∑n
i mi and Yj is a vector that contain all the observations in

replicate j, then

p(β|others) ∝ exp

{
−

∑mi

j=1

(
Yij −Xβ

)t(
Yij −Xβ

)
2σ2

w

− βtβ

2σ2
β

}

∴ p(β|others) ∼ N
([
Iσ−2β +

MXtX

σ2
w

]−1
Xt(m⊗ Ȳj)

σ2
w

,

[
Iσ−2β +

MXtX

σ2
w

]−1)
(3.37)
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p(µx|others) ∝ exp
{
− µ2

x

(
1

2σ2
x

+
1

2σ2
µx

)
− µx

(
x̄

σ2
x

− µ

σ2
µx

)}

∴ p(µx|others) ∼ N
((

1

2σ2
x

+
1

2σ2
µx

)−1(
x̄

σ2
x

− µ

σ2
µx

)
,

(
1

2σ2
x

+
1

2σ2
µx

)−1)
(3.38)

p(σ2
w|others) ∝

(
σ2
w

)n∑n
i=1mi/2+γw+1

exp

{
−
∑n
i

∑n
j=1(Yij − β0 − xiβx)2

2
+ δw

)
/σ2

w

}

∴ p(σ2
w|others) ∼ IG

(
n
∑n
i=1mi

2
,

∑n
i=1

∑mi

j=1(Yij − β0 − xiβx)2

2
+ δw

)
(3.39)

p(σ2
ui
|others) ∝

(
σ2
ui

)−∑n
i=1mi/2−γu−1

exp

{
− 1

σσ2
ui

(∑n
i=1(Xij − xi)2

2
+ δu

)}

∴ p(σ2
ui
|others) ∼ IG

(∑n
i=1mi

2
+ γu,

∑n
i=1(Xij − xi)2

2
+ δu

)
(3.40)

p(σ2
x|others) ∝

(
σ2
x

)−γx−n/2−1
exp

{
− 1

σ2
x

(∑n
i=1(xi − µx)2

2
+ δx

)
+ δx

}

∴ p(σ2
x|others) ∼ IG

(
γu + n/2,

∑n
i=1(µx − xi)2

2
+ δx

)
(3.41)

The full conditionals given above will be used in a Gibbs sampler algorithm in order to
estimate the parameters.

How to apply the models given and how to use the Gibbs sampler to made estimations
will be shown in the next chapter.



Chapter 4

Simulation Study

The aim we pursue in this chapter is to assess the performance of the algorithm we use to estimate
the parameters in the models proposed in Chapter 2.

The vector of regression coefficients β in the models is of interest since the coefficients quantify
the strength of the association between the response variable and consumption of sugary drinks.
One of the difficulties we encountered in our analysis (as discussed in Chapter 3) that nutrient
and sugary drinks intakes are highly variable, both within persons (between days) and also between
persons. For this reason we try to simulate data with these characteristics to observe the quality of
the credible intervals.

4.1 Simulated Data

Data were simulated according to model (3.13), (3.17) with the priors given in (3.2.1) and
(3.35) they were used to asses performance of credible intervals.

Three data set with different values for the variance were simulated per each model. In
Table 4.1 and 4.2 are the respective values used. The main interest of the simulation is to
observe the behavior of the credible intervals under high variability in the parameters σui

and σwi because the real data to be analyzed in Chapter 5 have these characteristics.
Value of σui are drawn from an Inverse Gamma(2.5,6) distribution. The values for

σwi
were simulated from three distributions with different mean and variance: Inverse

Gamma(3,30), Inverse Gamma(2.5,6) and Inverse Gamma(3,1). These parameters are sim-
ilar to the estimation obtained by moments method using the real data.

Parameter Simulation 1 Simulation 2 Simulation 3
N. Observations 1000 1000 1000
N. Chains 100 100 100
α0 5 5 5
α1 1.5 1.5 1.5
β0 70 70 70
βx -0.5 -0.5 -0.5
βz -0.1 -0.1 -0.1
σ̄ui

4.45 4.45 4.08
¯σwi

14.68 5.05 0.17
σq 21 21 1
σx 5 5 5

Table 4.1: Parameters for simulation for Model 1.

1

1Mean of σ∗i is denoted by σ̄∗i .
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Parameter Simulation 1 Simulation 2 Simulation 3
N. Observations 1000 1000 1000
N. Chains 100 100 100
β0 70 70 70
βx -0.5 -0.5 -0.5
µx 5 5 5
σ̄ui

5.39 4.22 2.89
σx 5 5 5
σw 25 0.69 1

Table 4.2: Parameters of simulation for Model 2.

4.2 Expected credible intervals

100 chains of size 100,000 per simulation were simulating by using a burn-in of 10,000.
After that, the expected quantile 2.5% and 97.5% were computed.

Parameter σ̄ui =4.45 σ̄ui =4.45 σ̄ui =4.33
¯σwi =14.85 ¯σwi =5.05 ¯σwi =0.17, σq =1

α0 =5 (4.79 , 5.99) (4.22 , 5.63) (4.56 , 5.67)
α1 =1.5 (0.99 , 1.83) (0.93 , 1.89) (1.04 , 1.82)
β0 =70 (66.56 , 72.63) (66.24 , 70.57) (68.95 , 69.36)
βx =-0.5 (-0.87 , -0.27) (-0.68 , 0.08) (-0.53 , -0.31)
βz =-0.1 (-0.091 , 3.74) (-1.88 , 0.88) (-0.46 , -0.22)
σui (1.92 , 2.09) (2.02 , 2.19) (1.71 , 3.16)
σwi

(1.78 , 1.89) (3.28 , 3.73) (0.51 , 0.53)
σq =21 (21.44 , 30.15) (20.32 , 22.21) (0.66 , 1.86)
σx =5 (5.16 , 6.83) (4.92 , 6.72) (5.72 , 6.35)

Table 4.3: Expected quantiles of Model 1.

Parameter σ̄ui
=5.39 σ̄ui

=4.22 σ̄ui
=4.33

σw =25 σw =0.69 σw =1
β0 =7 (6.17 , 7.87) (2.64 , 14.48) (6.74 , 7.67)
β1 =-0.5 (-0.43 , -0.02) (-2.87 , -0.52) (-1.17 , 1.47)
µx =5 (5.15 , 5.45) (3.98 , 4.37) (4.9 , 5.27)
σ̄ui

(2.18 , 2.37) (3.26 , 3.45) (2.84 , 3)
σx =5 (7.16 , 7.95) (0.16 , 0.19) (0.16 , 0.21)
σw (24.25 , 26.36) (0.6 , 0.81) (0.9 , 1.45)

Table 4.4: Expected quantiles of Model 2.
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From the results shown in Table 4.3, we observe that the means of the σ′s computed
from the data are not contained in the intervals between the 2.5% and the 97.5% expec-
ted quantiles for σ̄ui

and ¯σwi
. This, however, does not appear to impact the estimation of

the regression coefficients. Further, the residuals computed from the model are plotted in
Figure 4.2 2 where it can be observed that there is not a pattern but there are high values of
residuals. This behavior is expected because when the model is fitted it is supposed that the
response and covariate are not observable and data have considerable variability. Taking
all of this into account, we find that the expected credible sets are sufficiently narrow.

In Model 2, we observe a similar behavior. While the expected quantiles 2.5% and 97.5%

for σ̄ui
and σw do not bracket the true parameter values, for the other parameters they do.

Comparing the residuals based on simulations from model 2 in Figure 4.2, we notice that
the residuals of model 2 are large in cases of high variance. When the variances σwi

are
low, Model 2 produces smaller residuals than Model 1.

The heteroscedastic measurement errors in the variables make it challenging to estimate
the regression parameters. It is worth mentioning that we also simulated the homoscedastic
case to determine whether a simpler model might also be applicable to the type of data
collected in ENSANUT. We failed to reach converge, but since the real data display clear
heterogenity of variances, we did not pursue this issue any furrther.

2Details about computation of msr are in Appendix B.1.
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(a)

(b)

(c)

Figure 4.1: Residuals msri of simulation. In (a), (b), (c) are the residuals of simulations 1,2
and 3 for Model 1.
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(a)

(b)

(c)

Figure 4.2: Residuals msri of simulation. In (a), (b), (c) are the residuals of simulations 1,2
and 3 for Model 2.





Chapter 5

Application

The models introduced in the last chapter will be fitted to consumption data collected by the 2013
ENSANUT. We first briefly describe the problem. Then we explain how to use the models in Section
3.1.1 and 3.1.2 and present some results. Finally we revisit the substantive problem and interpret
our findings in terms of the association of sugary drinks intake and nutrient density in the diet of
Mexican children and adolescents.

5.1 Question of interest

This application is focused on quantifying the association between intake of sugary drinks
and usual consumption of certain nutrients in a sample of Mexican children and adoles-
cents. This population is divided into three age groups: Preschool, School and Adolescents,
as was mentioned in Section (2.1.1).

One way to describe the association between consumption of sugary drinks and nutri-
ent density of the diet is through a linear relation between the regular density of the nu-
trient in question and the percentage of the kcal provided by the sugary drinks consumed
regularly. More precisely, if we let

yi =
Regular intake of nutrient N

Regular intake of Kcal

xi =
Regular intake of Kcal provided by sugary drinks

Regular intake of Kcal
,

(5.1)

then a linear model with error in the equation is given by

yi = β0 + βxxi + qi , qi
ind∼ (µ, σ2) (5.2)

The linear relation in (5.2) permits quantifying, at an individual level, what happen with
the usual (or regular) density of the nutrients of interest 1 if the proportion of the energy
consumed by the individual provided by sugary drinks increases o decreases. Using pro-
portion of kilo-calories as the metric for consumption of sugary drinks makes sense because
in addition to added sugar, these beverages contribute close to nothing else to the diet. The
difficulty in this problems is that regular intake of nutrients is not observable [5], however
information from one or two 24 Hours Dietary Recalls can be used in order to estimate the
regular intake of the nutrients of interest. Given the data described in Section 2.1 and sup-
posing that we are interested in analyzing a specific nutrient N , we recall the definitions
from Section 2.1.3:

1Nutrients of interest are in table 2.3



22 5. Application

Figure 5.1: Linear relation between X and Y.

- lij : Total amount of a nutrient consumed by individual i on day j. Here l can repres-
ent any of the nutrients listed in the Table 2.3.

- Kcalij : Total kcal consumed by individual i on day j.

- KcalSBij : Total kcal contributed by sugary drinks consumed by individual i on day
j.

Thus instead of observing xi and yi, we observe noisy measurements:

Yij =
lij

Kcalij
(5.3)

Xij =
KcalSBij
Kcalij

(5.4)

It is important to notice that due to the measure error, the linear relation between Yij and
Xij cannot be observed, as it is shown in Figure 5.1, however the linearity assumption
between xi and yi can still be assumed.

Given that the predictor and the response are not observed, and given that there are
replicate measurements available on a sub-sample of individuals, we can fit a measurement
error model to determine the relation between xi and yi.

The two measurement error models we fitted in this chapter assume heteroscedastic
error in the measurement of xi and yi. This is a good characteristic of the model since it
permits assuming that the within-individual variation of energy and nutrient consumption
is different across persons, something which is known to actually happen.
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The difference between the two models is two-fold; in the first model we assume that
the response depends on x, an non observable variable, and z an observable variable. We
use body mass index (BMI) as the observable covariate in the model . The second model
assumes that measurement error of y only depends on wij , the error of the observation Yij .

The objective of this chapter is to fit both and compare them in order to select the a
model for each nutrient. Before fitting the models to the ENSANUT data, we carried out a
simulation study (see Chapter 4.4).
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5.2 Model 1

Recall the model in Section (3.1.1) where

yi = β0 + xiβx + ziβz + qi, qi|σ2
q
iid∼ N(0, σ2

q ),

Yij = yi + wi , wij |σ2
wi

iid∼ N(0, σ2
wi

)

Xij = xi + uij , uij |σ2
ui

iid∼ N(0, σ2
ui

)

(5.5)

where z is an observable variable and yi, xi are latent variables. To apply a model with an
error in the equation the variables BMI, YNij and Xij will be taken from the final data base
2, as z, Yij , Xij respectively.

Given the full conditional distributions and the priors distributions in (3.2.1) for the
model parameters, it is necessary to specify the values of the hyper-parameters σ2

β , σ2
α, γq ,

δq , γw, δw,γu, δu, γx, δx to implement the Gibbs sampler algorithm.
In the case of α and β it will be used a non informative prior so

σ2
β = σ2

α = 100.

The errors qi and wi are not observable and will be supposed to have small values because
the largest source of variation is day-to-day variability in individual intake more than in the
error of the regression. In order to ensure that the posterior distribution of σq and σw will
have most of it mass on small values, we propose the following prior parameter values:

γq = γw = 3

δq = δw = 1.

The errors uij and wij are estimable from the replicate observations, therefore we can com-
pute sample estimates of σ2

u and σ2
w in the following way:

σ̃2
ui

= sample variance
(
Xi1, Xi2

)
σ̃2
u = (σ̃u1

, . . . , σ̃un
)

σ̃2
wi

= sample variance
(
Yi1, Yi2

)
σ̃2
w = (σ̃w1 , . . . , σ̃wn).

2See table 2.4
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Variable Nutrient Density
Adolescents School Preschool
γ∗ δ∗ γ∗ δ∗ γ∗ δ∗

Xij Sugar drinks Kcal 2.59 7.92 2.53 5.89 2.46 6.04

Yij

Calcium 2.61 20.62 2.34 22.60 2.59 25.85
Iron 2.32 0.26 2.53 0.24 2.51 0.25
Magnaesium 2.56 6.19 2.59 6.25 2.56 4.93
Phosphorus 2.63 27.21 2.63 27.69 2.67 23.44
Potassium 2.48 49.45 2.51 43.40 2.56 53.61
Zinc 2.51 0.19 2.57 0.18 2.51 0.18
Vit C 2.49 4.23 2.54 5.16 2.39 6.64
Thiamin 2.53 0.03 2.04 0.04 2.02 0.22
Riboflavin 2.32 0.03 2.04 0.04 2.02 0.24
Niacin 2.38 0.39 2.43 0.39 2.43 0.42
Vit B 2.31 0.05 2.43 0.06 2.04 0.16
Folate 2.43 9.60 2.50 11.89 2.55 13.38
Vit A 2.48 18.57 2.38 20.64 2.42 24.25
Vit E 2.58 0.28 2.60 0.26 2.53 0.25
Vit D 2.34 0.25 2.31 0.26 2.44 0.28

Table 5.1: Values for hyperparameters of Inv. Gamma(γ∗,δ∗) for the distribution of the error
uij and.wij per group of age.

Assuming that σ2
u and σ2

w are Inverse Gamma distributed, using (5.2) γw,δw,γu,δu can be
estimated by method of moments for each group of age:

γ∗ =

(∑n
i=1 σ̃

2
∗i

)2
n
∑n
i=1(σ̃2

∗i)
2

+ 2

δ∗ =

∑n
i=1 σ̃

2
∗i

n

(
α̃− 1

)
(5.6)

We wish to fit the model separately for the three age groups defined earlier. The corres-
ponding values of the hyperparameters are shown in table 5.1.

From the table, we observe that for some nutrients the values of the hyperparameters
computed from the sample data are high. This will result in high values of the mean of σ2

w

for these nutrients. This is particularly true for the Pre-school group. For the Adolescents
there appears to be more variability in the intake percentage of kcal of sugary drinks. These
facts could affect the residuals.

Before implementing the Gibbs sampler algorithm using real data, a simulation was
made in order to asses the performance of the estimation, details about that are in Appendix
4.2.

The Gibbs sampler algorithm given in Section 3.2.1 was programed in R using the pack-
age rjags [11]. For each nutrient and for group of age were simulated two chains with
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100,000 iterations and burn-in of 10,000.
The convergence of the chains and the fit of the models using residual analysis will be

assessed and the results will be exposed in following sections.

5.2.1 Convergence

Two convergence test were used. First, we used the Geweke test [13] using proportions
10% and 50% for chains of size 90,000. In Table 5.2.1 the values of the statistic Z − score are
given for chains of each parameter, nutrient and group of age.

The Geweke test considers as evidence against the hypothesis of convergence an abso-
lute value of Z − score greater than 2.5. Under this criterion, one of the two chains of some
of the parameters for a few nutrients show evidence against convergence. These instances
are underlined in Table 5.2.1.

Shaded results correspond to α0 and α1 of Adolescents group and σx of Preschool in
zinc. σu in iron of Preschool group. In thiamin β0 of School, σw and σq of Preschool group.
In riboflavin σu and σw of in School, and in folate σx of Preschool group.

The graphics of the chains for which the null hypothesis of convergence is rejected with
Geweke test are shown in Figures 5.2 to 5.11 where both chains per parameter are com-
pared. It can be observed that both chains have almost the same density estimation and
also look like a convergent chain, therefore these chains will be assumed as convergent.

Figure 5.2: Geweke test refused convergence of chain from α0 Adolescents group, Zinc.
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Figure 5.3: Geweke test refused convergence of chain from α1 Adolescents group, Zinc.

Figure 5.4: Geweke test refused convergence of chain from σx Preschool group, Zinc.

Figure 5.5: Geweke test refused convergence of chain from β0 School group, Thiamin.
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Figure 5.6: Geweke test refused convergence of chain from σui
Preschool group, Iron.

Figure 5.7: Geweke test refused convergence of chain from σwi Preschool group, Thiamin.

Figure 5.8: Geweke test refused convergence of chain from σq Preschool group, Thiamin.
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Figure 5.9: Geweke test refused convergence of chain from σ̄ui
School group, Riboflavin.

Figure 5.10: Geweke test refused convergence of chain from σwi
School group, Riboflavin.

Figure 5.11: Geweke test refused convergence of chain from σx Preschool group, Folate.
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The second test used was the Gelman-Rubin test. Here the criterion to reject the null hy-
pothesis of convergence is an R − statistic greater than 1.06. The value of the R−statistic
indicates the potential reduction in the Monte Carlo variance that can be achieved by con-
tinuing the iterations to infinity. A value of 1.06 indicates that we cannot decrease the vari-
ance more than 6% even if we were to continue iterating indefinitely. For this test, the null
hypothesis was rejected for chains of parameters β0 and βz of Preschool group of vitamin
B, and for the same parameters and same group of vitamin E the hypothesis was rejected
too. These results are shaded in Table 5.3.

Given this evidence against convergence another two chains for Preschool group for
vitamin B and E were simulated, now with 100,000 iterations and burn-in of 100,000, both
test were done again, the result are in Table 5.2. Gelman-Rubin and Geweke test were not
reject convergence in this last simulation, however the posterior densities were not different
than in the first one.

Figures 5.13 and 5.13 contain four chains. The first two correspond to the first simula-
tion where Gelman-Rubin test concluded to reject the null hypothesis while Geweke did
not. Chain three and four correspond to the last simulation, for these chains Geweke test
and Gelman-Rubin did not reject convergence.

Parameter Nutrient Gelma-Rubin Geweke Nutrient Gelma-Rubin Geweke
Chain 1 Chain 2 Chain 1 Chain 2

α0

Vit B

1.00 -3.11 0.16

Vit E

1.01 -1.82 -0.34
α1 1.00 3.08 -0.17 1.01 1.76 0.32
β0 1.03 1.16 0.86 1.01 -0.69 1.85
βx 1.00 -1.47 -1.28 1.00 0.31 -0.99
βz 1.04 -1.07 -0.81 1.01 0.73 -1.81
σu 1.00 -0.71 -0.82 1.00 0.49 0.53
σy 1.00 -0.71 -0.82 1.00 0.49 0.53
σq 1.00 -0.23 -0.24 1.00 -0.28 0.35
σx 1.00 -0.15 -0.29 1.00 -2.07 -1.11

Table 5.2: Test results for Preschool group, Vitamin B and E after 100,000 simulations with
burn in of 100,000
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(a)

(b)

Figure 5.12: Posterior of (a) β0 Preschool group, Vitamin B .(b) βz Preschool group, Vitamin
B.
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(a)

(b)

Figure 5.13: Posterior of (a) β0 Preschool group, Vitamin E. (b) βz Preschool group, Vitamin
E.
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Adolescents School Preschool
Nutrient Parameter Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2

Calcium

α0 -1.4 -0.8 0.34 0.49 -0.46 0.11
α1 1.37 0.79 -0.38 -0.54 0.48 -0.09
β0 0.32 -0.86 -1.06 -0.21 0.34 -0.42
βx 0.07 -0.11 -0.11 0.04 -0.45 0.19
βz -0.33 0.93 1.37 0.26 -0.31 0.45
σu 1.64 0.28 -0.52 -1.25 0.72 0.08
σw -0.32 0.03 0.44 0.56 0.2 1.2
σq 1.78 -1.63 0.32 -0.23 -0.85 -1.17
σx 0.38 0.29 -0.51 -0.77 0.25 0.32

Iron

α0 0.22 0.16 -2.2 0.74 2.19 1.7
α1 -0.16 -0.2 2.16 -0.74 -2.15 -1.72
β0 -0.64 0.14 -0.96 -1.66 -0.77 0.42
βx 1.97 -0.24 -0.24 1.25 1.86 0.53
βz 0.25 -0.12 1.34 1.47 0.57 -0.54
σu 0.13 -0.35 -0.04 -0.13 -0.8 2.41
σw -0.88 -1.09 0.3 -1.91 0.46 0.92
σq 1 -0.35 -0.71 1.25 0.15 -0.49
σx 1.84 -1.74 0.37 0.87 1.89 -0.07

Magnesium

α0 -0.61 0.79 -0.78 -0.35 -1.54 -0.74
α1 0.62 -0.76 0.8 0.41 1.52 0.74
β0 2.36 -0.78 -0.95 -0.11 -1.02 -0.51
βx -1.92 -0.73 1.46 0.96 -1.56 -0.64
βz -1.87 1 0.53 -0.39 1.48 0.73
σu -0.33 -1.55 1.79 0.53 -2.07 0.73
σw -0.03 0.23 0.6 -0.54 -0.74 0.36
σq 0.25 1.06 -0.78 -0.48 1.14 -1.19
σx 0.56 -1.55 1.58 0.67 -1.62 0.45

Phosphorus

α0 -1.05 0.53 1.03 0.38 2.01 -0.48
α1 1.03 -0.5 -1.07 -0.34 -2 0.47
β0 0.97 -0.15 0.22 -0.59 -0.55 -0.36
βx 1.06 -0.14 0.13 0.63 1.32 0.3
βz -1.37 0.18 -0.35 0.44 0.45 0.39
σu 0.56 -1.07 -0.85 -1.57 0.75 -0.15
σw 0.04 2.39 -0.57 -1.03 -0.44 -0.29
σq -1.93 -0.42 0.42 -0.17 1.58 0.8
σx 0.58 1.21 -1.08 0.54 1.11 -0.29

Potassium

α0 -1.51 -0.96 -0.7 0.97 -0.96 0.95
α1 1.53 0.91 0.7 -0.97 0.97 -0.97
β0 -1.84 -0.73 0.26 -0.31 1.44 0.21
βx 1.35 -0.07 -0.06 0.83 -1.36 0.29
βz 1.61 0.84 -0.25 -0.03 -1.49 -0.29
σu 0.87 0.29 0.2 -0.94 -0.35 1.25
σw -0.62 -2.65 -1.25 -2.48 0.74 -0.99
σq 0.49 2.09 1.17 2.06 -0.84 0.94
σx 0.31 -1.27 0.09 0.35 1.77 -1.47
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Adolescents School Preschool
Nutrient Parameter Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2

Zinc

α0 3.06 -0.01 -0.01 1.26 -0.66 1.15
α1 -3.11 0.05 -0.02 -1.29 0.65 -1.12
β0 1.87 0.38 0.23 2.08 0.08 -0.34
βx -0.76 -0.57 -0.3 -1.02 0.45 2.39
βz -1.82 -0.3 -0.19 -2.14 -0.12 0.18
σu 0.21 -0.14 -0.94 0.23 0.22 0.51
σw 0.34 -1.35 1.76 -0.55 1.54 -0.55
σq 0.02 0.46 -0.46 0.15 0.01 -1.12
σx -0.43 1.03 -0.53 -0.23 0.98 2.83

Vit C

α0 1.17 0.88 -0.74 -0.5 1.22 2.17
α1 -1.27 -0.84 0.72 0.63 -1.25 -2.16
β0 1.66 -1.08 0.41 1.82 -1.27 -0.12
βx -0.14 -0.42 -0.09 -2.4 0.58 -0.79
βz -1.7 1.35 -0.55 -1.01 1.36 0.43
σu 1.07 1.73 -1.54 2.54 0.59 2.05
σw -1.56 -0.48 1.14 0.1 0.25 0.23
σq 1.88 0.88 -0.53 1.73 -0.67 0.37
σx 0.93 0.73 -1.04 2.69 -0.72 0.89

Thiamin

α0 -1.37 0.36 -0.79 -0.07 0.96 -0.7
α1 1.31 -0.39 0.78 0.12 -0.96 0.72
β0 -0.82 0.09 -2.81 -0.01 -0.02 -1.25
βx -0.5 0.65 0.78 0.22 -0.12 1.1
βz 1 -0.2 2.91 -0.06 0.03 1.36
σu -1.07 -3.27 -0.85 -1.72 1.17 -1.7
σw -0.68 -0.65 -0.67 1.02 3.02 -0.22
σq -0.93 1.13 2.17 0.68 0.69 -3.09
σx 0.11 -1.82 1.17 0.9 -0.99 -0.3

Riboflavin

α0 0.19 -0.54 -0.56 1.91 2.5 -2.12
α1 -0.24 0.53 0.53 -1.84 -2.51 2.11
β0 -1.09 0.11 -0.04 -1.39 -0.79 -1.89
βx 1.46 0.41 0.87 1.12 0.17 -0.4
βz 0.83 -0.19 -0.16 1.26 0.8 1.89
σu -0.48 0.71 -0.3 -0.09 0.64 0.91
σw 0.37 -0.19 2.94 1.34 -0.54 0.63
σq 1.23 -0.41 0.98 -1.81 -0.05 0.36
σx 0.64 -0.69 -1.05 0.76 -1.13 -0.78

Niacin

α0 -0.93 -0.08 -0.63 0.18 -0.72 -1.05
α1 0.86 0.09 0.69 -0.18 0.72 1.04
β0 0.41 -1.69 1.21 -0.87 0.34 0.98
βx 0.16 0.25 -0.4 1.59 -0.53 -1.06
βz -0.43 1.67 -1.3 0.57 -0.3 -0.95
σu 1.43 -1.27 -0.88 1.42 -0.18 -2.59
σw 0.39 -1.09 -0.8 1 -0.42 0.71
σq -0.16 -0.28 0.41 -0.31 -1.78 0.03
σx -1.77 -0.56 -0.92 0.73 -0.08 0.44
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Adolescents School Preschool
Nutrient Parameter Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2

Vit B

α0 1.75 1.64 -0.96 0.8 -2.2 1.28
α1 -1.73 -1.52 1.02 -0.84 2.24 -1.26
β0 0.41 2.2 -0.71 1.43 0.65 -0.08
βx 0.87 -0.27 -0.36 -0.02 0.32 -0.21
βz -0.63 -2.35 0.91 -1.57 -0.68 0.08
σu -2.33 -1.22 1.02 -1.68 0.2 -0.15
σw -0.16 1.79 0.07 0 -0.25 0.93
σq 0.68 -0.65 -0.87 0.11 0.52 -0.09
σx 0.95 -1.35 0.68 0.24 0.89 -0.6

Folate

α0 0.02 -0.44 -0.23 -1.07 2.25 -0.69
α1 0 0.39 0.16 0.98 -2.28 0.68
β0 0.06 -1.82 0.52 -0.3 0.14 0.52
βx 0.43 1.23 -0.88 1.11 0.55 -0.3
βz -0.17 1.76 -0.29 -0.14 -0.27 -0.55
σu 0.55 -0.34 -0.66 -0.11 -0.61 1.18
σw 0.22 0.29 -0.03 0.92 0.98 0.21
σq 0.15 -0.26 -0.71 -0.33 -0.63 -0.76
σx 1.3 -0.9 -2.53 0.13 3.92 -0.86

Vit A

α0 -0.52 -0.79 0.87 -0.04 -0.41 1.11
α1 0.53 0.82 -0.9 0.08 0.41 -1.13
β0 1.1 0.94 0.74 0.93 0.08 -0.59
βx -1.19 0.3 -0.96 0.1 0.95 -0.32
βz -0.81 -1.07 -0.54 -1.24 -0.3 0.81
σu -1.16 -0.11 -0.72 -0.54 -0.8 0.23
σw 0.53 -1.45 -1.44 -2.25 0.68 0.26
σq -0.66 -0.28 0.29 0.57 -0.82 -0.17
σx -1.37 1.2 -1.43 0.37 -0.57 1.64

Vit E

α0 -0.33 -0.94 -0.06 -0.06 -0.06 -0.2
α1 0.36 0.97 0.04 0.06 0.06 0.2
β0 0.42 -0.82 -0.19 -0.26 0.26 0.62
βx -1.17 0.72 0.02 0.55 -0.08 0.11
βz -0.11 0.7 0.26 0.21 -0.28 -0.62
σu 1.85 1.35 0.32 -2.54 -0.73 -1.33
σw 0.32 0.12 0.8 -1.32 -1.22 0.95
σq 0.63 0.64 -0.8 0.2 -0.68 -2.13
σx -0.55 1.1 -0.95 -1.15 0.26 0.25

Vit D

α0 0.66 0.44 1.71 1.01 1.69 1.29
α1 -0.66 -0.43 -1.66 -1.07 -1.71 -1.29
β0 -0.21 0.8 -0.98 -1.3 0.28 -0.81
βx -0.91 -0.49 1.13 0.56 -0.47 1.33
βz 0.37 -0.78 0.68 1.31 -0.24 0.78
σu -0.82 -1.32 -0.22 -1.42 -0.18 1.78
σw -0.12 1.43 0.03 -0.55 0.86 0.12
σq -0.02 -0.36 -0.47 1.52 0.36 -2.47
σx -0.09 -0.25 1.58 -2.33 -0.55 0.52
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Parameter Nutrient Adolescents School Preschool Nutrient Adolescents School Preschool
α0

Calcium

1 1.01 1

Phosphorus

1 1 1
α1 1 1.01 1 1 1 1
β0 1 1 1.01 1 1.01 1
βx 1 1 1 1 1 1
βz 1 1 1.01 1 1.01 1.01
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Iron

1 1 1

Potassium

1 1 1.01
α1 1 1 1 1 1 1.01
β0 1 1.01 1.03 1 1 1
βx 1 1 1 1 1 1
βz 1.01 1 1.02 1 1 1
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1.01
σq 1 1 1 1 1 1.01
σx 1 1 1 1 1 1
α0

Magnesium

1 1 1

Zinc

1 1.01 1
α1 1 1 1.01 1 1.01 1
β0 1 1 1 1.01 1 1.02
βx 1 1 1 1 1 1
βz 1 1 1 1.01 1 1.02
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Vit C

1 1 1.01

Niacin

1 1 1
α1 1 1 1.01 1 1 1
β0 1 1 1 1.01 1.02 1.02
βx 1 1 1 1 1.01 1.01
βz 1 1 1 1.01 1.01 1.02
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Thiamin

1 1 1.01

Vit B

1 1 1.02
α1 1 1 1.01 1 1 1.02
β0 1.01 1.02 1.02 1.02 1 1.13
βx 1 1 1 1.01 1 1
βz 1.01 1.02 1.02 1.01 1 1.15
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Riboflavin

1 1.01 1.04

Folate

1 1.01 1
α1 1 1.02 1.04 1 1.01 1
β0 1.01 1.01 1 1 1 1
βx 1 1 1 1 1 1
βz 1.01 1 1 1 1 1
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Vit A

1 1 1.02

Vit D

1.01 1 1.01
α1 1 1 1.01 1.01 1 1.01
β0 1 1 1 1 1.03 1
βx 1 1.01 1 1 1 1
βz 1 1 1 1 1.02 1
σu 1 1 1 1 1 1
σw 1 1 1 1 1 1
σq 1 1 1 1 1 1
σx 1 1 1 1 1 1
α0

Vit E

1 1 1
α1 1 1 1
β0 1 1.01 1.08
βx 1 1 1
βz 1 1.01 1.08
σu 1 1 1
σw 1 1 1
σq 1 1 1
σx 1 1 1

Table 5.3: Model 1: Gelman-Rubin test results.
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Figure 5.14: Model 1: msri vs x̂i.

5.2.2 Residuals

In order to detect non linearity in the regression, lack of the homogeneity of the error vari-
ances and non normality of the errors, the graph of simulation of xi versus modified square
residuals (msri) [2] will be analyzed.

msri = r2i − σ̂2
qi − β̂

2
xσ̂

2
ui

+ 2β̂2
xσ̂

2
x. (5.7)

The way to compute msri is described in appendix B.1.
The plot of the residuals is shown in Figure 5.14. It can be seen that there is no pattern in

behavior of themsri and high values of the residuals can be observed, mainly for Preschool
group, for nutrients calcium, magnesium, phosphorus, potassium, folate and vitamin A
and C. This is a consequence of high variability in the sample and the measurement error.
Given the analysis of convergence and residuals and comparing the behavior of residuals
with the results of simulations, the fit of the model 5.2 for all the nutrients and groups with
low variability in data can be accepted.

Once that the results of the estimations were assessed, the credible intervals are given
in Appendix A.1.



38 5. Application

5.3 Model 2

Here we consider the model in 3.1.2

Yij = β0 + xiβx + wij , wij |σ2
w
iid∼ (0, σ2

w)

Xij = xi + uij , uij |σ2
ui

iid∼ (0, σ2
u)

xi|µx, σ2
x
iid∼ N

(
µx, σ

2
x

)
Yij |βx, xi, σ2

w
iid∼ N

(
β0 + xiβx, σ

2
w

)
Xij |xi, σ2

ui

iid∼ N
(
xi, σ

2
u

)
(5.8)

The variables Xij and Yij are as defined in 5.2 and the parameters that we need to estimate
are µx, σ2

u, σ2
x, σ2

w, with main interest in β0 and βx. Initial values are σ2
β = 100, γq = γw = 3,

δq = δw = 1. The values for the hyperparameters corresponding to the Inverse Gamma
distribution of the errors uij and wij are in Table 5.1.

A Gibbs sampler algorithm programed in rjags with 100,000 iterations was used for es-
timating the parameters of this model. The credible intervals for β0 and βx are in table A.2
in Appendix A.2. Next the analysis of the convergence of the chains and residual will be
made.

5.3.1 Convergence

Analogously to 5.2.1, the convergence of the chains was analyzed by using the Geweke and
the Gelman-Rubin tests.

Using the Gelman-Rubin test, the hypothesis of convergence was not rejected for any
chain as can be observed in Table 5.6. The Geweke test however rejected convergence in the
Preschool group for parameters β0 and βx in magnesium and folate. In zinc, for σu and σx
convergence was also rejected. These results are shaded in Table 5.5. Even in these cases,
the posterior density estimated from these chains were practically non-distinguishable
from the densities estimated from the chains that had presumably not converged to their
stationary distribution. The chains in question can be observed in Figures 5.15 to 5.20.

The 95% credible intervals for all the parameters were computed and are shown in Table
A.2. The interpretation of these intervals will be addressed later.



5.3. Model 2 39

Figure 5.15: Geweke test refuse convergence of chain from β0 Preschool group, Magnesium.

Figure 5.16: Geweke test refuse convergence of chain from βx Preschool group, Mag-
nesium.

Figure 5.17: Geweke test refuse convergence of chain from β0 Preschool group, Folate.



40 5. Application

Figure 5.18: Geweke test refuse convergence of chain from βx Preschool group, Folate.

Figure 5.19: Geweke test refuse convergence of chain from σu Preschool group, Zinc.

Figure 5.20: Geweke test refuse convergence of chain from σx Preschool group, Zinc.
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Adolescents School Preschool
Nutrient Parameter Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2

Calcium

β0 -0.65 0.9 -1.14 -0.74 1.04 -0.83
βx 0.54 -0.93 1.14 0.76 -1.06 0.85
µx -1.55 -0.21 -0.13 1 -1.24 0.44
σu 1.73 0.04 0.61 0.25 1.49 -1.06
σx -1.44 0.01 -0.59 0.02 -1.53 0.74
σw 0.02 -1.63 -1.18 1.33 1.25 -0.26

Iron

β0 -1.82 0.2 -1.65 -1.67 -1.99 -0.85
βx 1.85 -0.28 1.59 1.67 2.07 0.84
µx 1.48 0.89 -0.17 0.61 0.35 0
σu -1.69 0.23 -0.08 -1.14 -1.84 -0.35
σx 1.38 -0.59 -0.04 1.01 2.55 0.46
σw 0.73 0.11 1.57 1.82 2.55 0.43

Magnesium

β0 -1.05 0.56 0.76 1.43 3.14 0.49
βx 1.04 -0.57 -0.76 -1.39 -3.1 -0.52
µx -0.22 -0.95 -0.46 0.72 -0.27 0.01
σu -1.42 1.55 -0.08 -0.75 0.78 1.59
σx 0.4 -1.58 -0.64 0.56 -1.55 -0.97
σw -0.78 1.23 0.54 -0.07 -1.92 -0.36

Phosphorus

β0 2.3 -0.91 -0.18 1 -0.77 0.51
βx -2.26 0.8 0.15 -0.97 0.78 -0.49
µx -0.36 -0.2 0.54 0.54 -0.78 0.19
σu 0.75 -0.07 0.56 0.28 0.55 0.11
σx -0.99 -0.73 0.49 0.03 0.44 -0.19
σw -1.62 0.47 -0.28 1.31 1.5 -0.56

Potassium

β0 0.96 0.27 -1.18 -0.39 -1.19 -1.15
βx -1 -0.38 1.18 0.35 1.2 1.16
µx -0.64 0.07 1.47 -0.88 0.01 -0.94
σu -0.43 -0.12 -1 -0.4 0.47 1.58
σx -0.33 -0.35 0.91 0.25 -0.94 -1.47
σw 0.6 1.32 0.78 -1.04 -1.42 -0.5

Zinc β0 -1.08 0.66 0.94 1.31 -0.49 -0.55
βx 1.03 -0.7 -0.93 -1.3 0.5 0.59
µx 1.06 -0.18 -1.41 -0.19 0.3 2.53
σu -0.42 0.91 0.86 0.36 -0.44 -3.03
σx 1.78 -1.02 -0.52 -0.19 -0.12 2.81
σw 1.11 -1.29 -0.25 -1.47 0.25 0.01

Vit C

β0 -0.98 0.33 1.28 0.54 0.72 -0.67
βx 1.05 -0.41 -1.26 -0.47 -0.76 0.66
µx -0.55 -0.11 0.55 -0.63 1.46 -0.91
σu 0.7 -0.41 -1.2 0.35 -1.46 0.48
σx -0.45 0.71 0.39 -0.46 0.75 -1.17
σw -0.06 0.43 1.38 1.17 0.76 -0.36

Table 5.4: Model 2: Geweke test results.
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Adolescents School Preschool
Nutrient Parameter Chain 1 Chain 2 Chain 1 Chain 2 Chain 1 Chain 2

Thiamin

β0 0.27 0.8 -0.16 1.22 1.49 -0.43
βx -0.25 -0.67 0.16 -1.28 -1.44 0.4
µx -1.7 0.86 0.19 0.05 0.14 -0.41
σu 1.4 -0.28 -1.55 -1.15 -0.66 0.28
σx -1.49 1.38 1.53 0.7 1.58 -0.42
σw -1.85 -0.05 0.24 -0.3 -1.16 0.36

Riboflavin

β0 -1.26 -1.3 0.84 -0.47 -0.06 2.4
βx 1.11 1.35 -0.84 0.48 0.05 -2.38
µx -0.59 -1.72 0.54 -0.15 -0.24 -0.75
σu 0.15 0.35 -2.44 -0.52 0.3 0.61
σx -0.22 -0.71 1.25 0.8 -0.89 -0.02
σw 0.55 -0.65 1.93 1.57 0.73 0.07

Niacin

β0 -1.68 2.43 0.37 -0.34 -0.34 -1.15
βx 1.7 -2.42 -0.44 0.37 0.38 1.15
µx 0.25 -1.01 -0.72 0.45 0.77 -1.12
σu 0.05 1.48 1.21 -0.7 -0.54 -1.34
σx 0.6 -1.21 -0.99 0.6 0.47 0.45
σw -0.25 -0.84 0.44 -0.91 0.27 1.45

Vit B

β0 0.26 0.32 -0.24 1.36 1.91 -1.63
βx -0.15 -0.2 0.3 -1.35 -1.86 1.68
µx 0.91 0.66 -0.37 -0.01 0.02 -0.44
σu -0.34 0.4 1.81 0.08 0.71 -0.16
σx 0.41 0.01 -0.77 0.52 -0.13 -0.63
σw 0.93 1.19 0.31 -0.93 1.28 1.94

Folate

β0 1.07 0.17 0.6 1.03 3.27 0.08
βx -1.16 -0.15 -0.6 -1.05 -3.29 -0.08
µx 1.22 0.06 -0.74 -1.04 -0.79 0.32
σu -1.57 1.05 -0.38 1.08 1.22 0.17
σx 1.52 0.18 0.21 -0.88 -1.06 -0.13
σw -0.63 -0.89 -0.87 -0.72 -2.49 -0.5

Vit A

β0 0.16 -0.07 -0.79 2.05 -0.43 0.51
βx -0.15 -0.04 0.81 -2.01 0.42 -0.54
µx 0.02 0.16 -0.69 0.92 1.39 -1.65
σu -1.14 1.04 0.75 0.26 -0.96 2.12
σx 0.37 0.41 -0.19 -0.41 0.78 -2.58
σw -0.82 -0.03 -0.77 0.14 -1.21 0.2

Vit E

β0 -1.99 2.52 1.2 -0.32 -0.03 -0.45
βx 2.04 -2.42 -1.18 0.31 -0.02 0.39
µx 0.67 -0.87 0.69 -0.21 -0.91 -0.66
σu -0.35 0.66 0.66 -0.2 0.19 0.7
σx 0.25 -1.88 0.02 0.81 -0.87 -0.84
σw 0.15 -0.1 -0.4 0.26 -0.03 -0.45

Vit D

β0 0.72 -0.98 -0.36 0.55 -0.12 -1.76
βx -0.82 1.04 0.37 -0.59 0.13 1.68
µx -0.26 0.23 1.98 0.89 -0.69 -2.02
σu -0.15 0.17 -0.93 0.24 1.56 1.05
σx -1.14 0.01 1.95 0.15 -0.83 -1.16
σw -1.42 0.83 0.76 -0.59 0.43 2

Table 5.5: Model 2: Geweke test results.
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Parameter Nutrient Adolescents School Preschool Nutrient Adolescents School Preschool
β0

Calcium

1 1 1.01

Thiamin

1 1 1
βx 1 1 1.01 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Iron

1 1 1

Riboflavin

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Magnesium

1 1 1

Niacin

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Phosphorus

1 1 1

Vit B

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Potassium

1 1 1

Folate

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Zinc

1 1 1

Vit A

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Vit C

1 1 1

Vit E

1 1 1
βx 1 1 1 1 1 1
µx 1 1 1 1 1 1
σu 1 1 1 1 1 1
σx 1 1 1 1 1 1
σw 1 1 1 1 1 1
β0

Vit D

1 1 1
βx 1 1 1
µx 1 1 1
σu 1 1 1
σx 1 1 1
σw 1 1 1

Table 5.6: Model 2: Gelman-Rubin test results.
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5.3.2 Residuals

Similar to Section 5.2.2, predictions for the posterior predictive distribution of msri ex-
pressed as:

msri = r2i − (σ2
w + β2

xσ
2
ui

).

In Appendix B.2 we describe the msri for this model. The plot of the residuals is in Figure
5.21, and is similar to the plot of residuals that was drawn for Model 1. There is no pattern
in the behavior of the msri. We do, however, observe some high values of the residuals
for the nutrients calcium, magnesium, phosphorus, potassium, folate and vitamin A and
C. This is not true for iron, zinc, thiamin, riboflavin, niacin, vitamin B, E and D. Although
the behavior of both models are similar the residual values of Model 1 appear to be smaller
than the residuals of Model 2.

The chains of Model 2 show better a behavior of convergence, but results of residuals are
almost the same. The conclusion is an acceptable fit of Model 2 if the variability is low. In
the cases with high variability in data, the fit could not be so good. The credible intervals
for all the parameters in this model are in Appendix A.2.

Figure 5.21: Model 2: msri vs x̂i.
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While both models appear to fit the data reasonably well, we wish to decide on one of
the two in order address the subtantive problem that motivated this thesis. To do so, we
carry out model comparison in Section 5.4.
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5.4 Model comparison

Previously, model (5.2) and (5.3) were fitted, the convergence of the chains for each para-
meter and the residuals were analyzed. Now we select one model in order to determine
the association between regular intake of sugary drinks and nutrient density of the diet.
The model will be assessed by using Deviance Information Criteria (DIC) [7]. In Section
3.1.1 the correspondent parameter vector for the model is θ = (β0, βx, βz, σ

2
wi
, σ2
ui
, α0, α1)

for i = 1, . . . , n. For the model is Section 3.1.2 θ = (β0, βx, σ
2
w, σ

2
x, µx). It will be necessary

to sample from the posterior distribution of θ in order to obtain θl and compute:

DIC = D̄(y) + pD. (5.9)

Where

D̄(y) =
1

L

L∑
l=1

D(y, θl)

D(y, θ) = −2log(y|θ)

pD = D̄(y)−Dθ̂(y) (5.10)

D(y, θ) = −2log(y|θ)

Dθ̂(y) = D(y, θ̂). (5.11)

In order to compute the DIC of the models a number sample L = 20000 was considered.
The results are in table 5.7, the shaded numbers are the lowest DIC between the two models.

Nutrient
Adolescents School Preschool

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2
Calcium 17122 19920 19677 22440 15577 19227
Iron 9083 8593 9590 9667 8070 8154
Magnesium 15436 16480 17263 18059 13135 14225
Phosphorus 17601 19929 19590 22099 15352 17626
Potassium 19454 21746 21764 24208 19192 19829
Zinc 8343 9063 9014 9774 7455 7383
Vit C 15146 16839 17035 18709 13718 15456
Thiamin 5737 8421 7285 14388 7332 11201
Riboflavin 6209 9149 7443 14703 7665 11505
Niacin 9657 9341 10583 10483 8630 8427
Vit B 6842 8861 7556 13258 7296 10822
Folate 16579 18953 18718 21013 14665 16555
Vit A 17580 21309 20524 24301 15465 18438
Vit E 8895 8525 9597 8849 7898 7512
Vit D 8958 8742 9797 9912 8185 8665

Table 5.7: Deviance Information Criteria (DIC).
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Given the DIC of both models in question and taking into account that the performance of
the models is almost the same but considering a more realistic model it can be concluded
that:
Model 1 will be applied in all groups of age for nutrients calcium, magnesium, phosphorus,
potassium, zinc, vitamin C, thiamin, riboflavin, vitamin B, folate and vitamin A. Model 2
will be fit in all the age groups for niacin and vitamin E.

For iron, we fit Model 1 in the group of Adolescents and Model 2 in the two other
groups.
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5.5 Results

Once we have selected a model to fit in each age group and nutrient, we estimated the
posterior distributions of model parameters as described earlier. The interpretation and
conclusions will be given next.

Most of the sugary drinks consumed in Mexico contribute negligible amounts of nutri-
tion and high amounts of calories to the diet of children and adolescents. For this reason,
our working hypothesis is that higher consumption of sugary drinks is associated with
lower nutrient density in the diet. That is, we expect that consumption of sugary drinks
displaces nutrients. In fact, the results we obtained in the analysis of consumption inform-
ation obtained in ENSANUT provide evidence in support of our working hypothesis for
almost all nutrients. Somewhat surprisingly, we found that BMI did not help to explain
usual nutrient density. The estimated 95% credible sets for the coefficients of the linear
model fitted are shown in Table 5.8.

The sugary drinks we included in this analysis are: sodas, industrialized flavored water
and artificial fruit/vegetables drinks. These beverages have different nutritional content (in
all cases, nutritional content is low with the exception of vitamin C) and are consumed in
different quantities depending on the age of the individuals. Therefore it is reasonable to
find differences in the association between the usual intake of sugary drinks and the usual
nutrient density in the diet for the different age groups. In this light, we interpret results
separately for each age group.

- Adolescents: The association between usual intake of sugary drinks and the cal-
cium, iron, magnesium, phosphorus, potassium, zinc, niacin and folate density in the
usual diet is negative and statistically significant. There is no significant association
between consumption of sugary drinks and the diet density of thiamin, riboflavin,
vitamin A, B, D and E . The density of vitamin C in the diet increases significantly
with consumption of sugary drinks; this can be explained by the fact that some artifi-
cial fruit and vegetable drinks are fortified with vitamin C.

- School-aged children: In this group, the nutrient density of calcium, iron, magnesium,
phosphorus, folate, niacin and vitamin A are negatively and significantly associated
with the usual consumption of sugary drinks. The association between density of po-
tassium, zinc, thiamin, riboflavin, vitamin B, E and D and intake of sugary drinks is
not statistically significant. As in the case of adolescents, sugary drinks are associated
with higher vitamin C density in the diet.

- Preschool children: In this group, we find a statistically significant and negative asso-
ciation between the densities of magnesium, zinc, niacin and folate with consumption
of sugary drinks. In this age group, the density of both potassium and vitamin C in-
crease with increased consumption of sugary drinks. The rest of the nutrient densities
are not significantly associated with consumption of sugary drinks.

To summarize, usual consumption of sugary drinks is associated with lower nutrient dens-
ities in the diet of adolescents and school-age children for several important nutrients. With
the exception of vitamin C, increased consumption of sugary drinks does not improve the
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diet density of any of the micro nutrients considered in ENSANUT. If we take into account
that sugary drinks contribute a significant proportion of the calories to the diet of chil-
dren and adolescents in Mexico and that over-weight and obesity have reached epidemic
proportions, we have to conclude that there is no benefit whatsoever associated with the
consumption of these drinks.
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Nutrient Group Intercept βz βz

Calcium
Adolescents (41.9 , 52.8) (-0.9 , -0.4) (-0.3 , 0.1)
School (41.1 , 54.3) (-1.1 , -0.019) (-0.3 , 0.3)
Preschool (12.8 , 56.2) (-2 , 0.3) (0.6 , 3)

Iron
Adolescents (0.7 , 0.79) (-0.02 , -0.01) - -
School (0.6 , 0.8) (-0.015 , -0.003) (-0.006 , 0.004)
Preschool (0.5 , 0.9) (-0.02 , 0) (-0.011 , 0.016)

Magnesium
Adolescents (17.2 , 20.5) (-0.2 , -0.1) (-0.1 , 0.004)
School (16.6 , 20) (-0.3 , -0.013) (-0.2 , -0.006)
Preschool (16.2 , 22.6) (-0.4 , -0.004) (-0.3 , 0.041)

Phosphorus
Adolescents (67.4 , 80.5) (-0.7 , -0.1) (-0.4 , 0.2)
School (67.7 , 80.8) (-1.1 , -0.017) (-0.5 , 0.2)
Preschool (58.6 , 88.9) (-1.5 , 0.1) (-0.8 , 0.8)

Potassium
Adolescents (116.5 , 143) (-1.3 , -0.1) (-1.1 , 0.1)
School (116.7 , 145) (-1.3 , 1) (-1.3 , 0.03)
Preschool (66.8 , 144) (1.2 , 5.5) (-1.6 , 2.7)

Zinc
Adolescents (0.4 , 0.6) (-0.008 , -0.001) (-0.003 , 0.004)
School (0.4 , 0.6) (-0.009 , 0.001) (-0.003 , 0.006)
Preschool (0.4 , 0.8) (-0.013 , 0.001) (-0.01 , 0.013)

Vitamin C
Adolescents (1.5 , 4.3) (0.043 , 0.2) (-0.013 , 0.1)
School (1.2 , 4.6) (0.3 , 0.7) (-0.1 , 0.029)
Preschool (-4.5 , 4.2) (0.6 , 1.1) (-0.1 , 0.3)

Thiamin
Adolescents (0.033 , 0.1) (-0.002 , 0.001) (-0.002 , 0.001)
School (0.028 , 0.1) (-0.003 , 0.002) (-0.002 , 0.002)
Preschool (-0.1 , 0.3) (-0.007 , 0.006) (-0.013 , 0.01)

Riboflavin
Adolescents (0.037 , 0.1) (-0.002 , 0.001) (-0.002 , 0.002)
School (0.033 , 0.1) (-0.004 , 0.002) (-0.002 , 0.003)
Preschool (-0.1 , 0.3) (-0.008 , 0.006) (-0.014 , 0.011)

Niacin
Adolescents (0.82 , 0.93) (-0.01 , -0.004) - -
School (0.82 , 1.01) (-0.03 , -0.001) - -
Preschool (0.87 , 1.08) (-0.04 , -0.01) - -

Vitamin B6
Adolescents (0.045 , 0.1) (-0.003 , 0.001) (-0.002 , 0.002)
School (0.1 , 0.2) (-0.004 , 0.002) (-0.003 , 0.003)
Preschool (-0.033 , 0.3) (-0.007 , 0.005) (-0.01 , 0.008)

Folate
Adolescents (13.7 , 19.8) (-0.4 , -0.1) (-0.1 , 0.1)
School (17.2 , 24.4) (-0.7 , -0.1) (-0.3 , 0.1)
Preschool (16.1 , 31.9) (-0.9 , -0.1) (-0.6 , 0.3)

Vitamin A
Adolescents (21.9 , 33.8) (-0.5 , 0.046) (-0.3 , 0.2)
School (26.1 , 39.8) (-1.1 , -0.012) (-0.3 , 0.4)
Preschool (10.5 , 49) (-1.2 , 0.8) (-0.3 , 1.8)

Vit E
Adolescents (0.37 , 0.45) (-0.01 , 0.002) - -
School (0.35 , 0.45) (-0.01 , 0.01) - -
Preschool (0.39 , 0.54) (-0.02 , 0.004) - -

Vitamin D
Adolescents (0.22 , 0.31) (-0.01 , 0.001) - -
School (0.1 , 0.3) (-0.011 , 0.002) (-0.003 , 0.009)
Preschool (-0.1 , 0.4) (-0.013 , 0.007) (-0.004 , 0.027)

Table 5.8: For a fixed intercept and βz , every increase in the % of kcal ingested through
sugary drinks, nutrient density chance βx units.
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Conclusions

In this work, we propose two heteroscedastic measurement error models to describe the
association between consumption of sugary drinks and nutritional content of the diet of
children and adolescents in Mexico. The data for analysis consist of one or two meas-
urements of daily intake for a sample of ENSANUT 2013 participants. To estimate model
parameters, we adopt a Bayesian approach with both informative and non-informative pri-
ors. The two models we propose are reasonable given the known sources of variability in
this problem:

- Measurement error in both the response variable and the predictor (known as day to
day variability in intakes or within-person variability).

- The variability in intakes between individuals.

When the day-to-day variability in the replicates is high, the credible intervals for the
within-person variances may not include the true value of the variances. This is because
for some individuals, the variance in sugary drink or nutrient intakes across days is very
high, and this significantly increases the value of the mean (across persons) within-person
variances. However, the credible intervals for coefficients of the linear regression do cover
the means.

If the prior distributions of the variances of the errors proposed in Chapter 3 are changed
for a inverse Chi-square, as was proposed by Castro (2012) [1], the results of simulations
will have insignificant differences when the value of the hyperparameters are accurate.
However the estimation of hyperparameter using method of moments does not work very
well in simulations. This fact make difficult to propose values of hyperparameters for each
nutrient and group age. For this reason it was more practical to propose an inverse gamma
distribution as a prior distribution of the variances of the errors. The difference between
the two types of prior is one of re-scaling of parameters in any case.

We briefly considered fitting a model under the assumption of homogeneous meas-
urement error variances across individuals. We abandoned this approach as unrealistic,
since it is clear from the ENSANUT data that the within-person variances in both nutrient
density and consumption of sugary drinks are heterogeneous. From a technical point of
view, fitting the model with a homogeneity assumption for the measurement errors would
require a different formulation to avoid identifiability issues.

For a majority of the nutrients considered in ENSANUT and for children and adoles-
cents in Mexico, we found that higher consumption of sugary drinks are negatively and
significantly associated with lower nutrient density in the diet. For most of the other nu-
trients, there was no association between nutritional quality of the diet and consumption
of sugary drinks. That is, the calories provided by sugary drinks are “empty” calories, in
that they do not add any nutritional value to the diet of children and adolescents. The only
exception is vitamin C; in all age groups, higher consumption of sugary drinks is signific-
antly associated with higher vitamin C density in the diet. This is explained by the fact that
artificial fruit and vegetable drinks in Mexico tend to have added vitamin C.





Appendix A

Results

A.1 Model 1

Nutrient Group α0 α1 β0 βx βz σ̄ui
¯σwi

σq σx

Calcium
Adolescents (4.7 , 8.3) (0.1 , 0.2) (41.9 , 52.8) (-0.9 , -0.4) (-0.3 , 0.1) (3.409 , 3.586) (3.875 , 4.214) (16.54 , 18.138) (4.767 , 5.518)
School (4.9 , 7.7) (-0.005 , 0.1) (41.1 , 54.3) (-1.1 , -0.019) (-0.3 , 0.3) (3.62 , 3.796) (4.356 , 4.683) (18.389 , 20.045) (2.794 , 3.497)
Preschool (4.3 , 10.4) (-0.2 , 0.2) (12.8 , 56.2) (-2 , 0.3) (0.6 , 3) (4.084 , 4.325) (4.635 , 5.438) (29.401 , 32.475) (2.537 , 3.37)

Iron
Adolescents (4.7 , 8.3) (0.1 , 0.2) (0.6 , 0.8) (-0.011 , -0.003) (-0.005 , 0.004) (3.403 , 3.578) (0.364 , 0.381) (0.12 , 0.145) (4.795 , 5.544)
School (5 , 7.8) (-0.01 , 0.1) (0.6 , 0.8) (-0.015 , -0.003) (-0.006 , 0.004) (3.617 , 3.793) (0.34 , 0.353) (0.116 , 0.14) (2.8 , 3.51)
Preschool (4.5 , 10.4) (-0.2 , 0.2) (0.5 , 0.9) (-0.02 , 0) (-0.011 , 0.016) (4.082 , 4.32) (0.357 , 0.374) (0.143 , 0.179) (2.564 , 3.384)

Magnesium
Adolescents (4.7 , 8.4) (0.1 , 0.2) (17.2 , 20.5) (-0.2 , -0.1) (-0.1 , 0.004) (3.397 , 3.572) (1.935 , 2.04) (4.7 , 5.211) (4.831 , 5.593)
School (5.1 , 7.9) (-0.015 , 0.1) (16.6 , 20) (-0.3 , -0.013) (-0.2 , -0.006) (3.622 , 3.798) (1.912 , 2.007) (4.251 , 4.7) (2.784 , 3.474)
Preschool (4.1 , 10.1) (-0.2 , 0.2) (16.2 , 22.6) (-0.4 , -0.004) (-0.3 , 0.041) (4.086 , 4.325) (1.678 , 1.771) (4.37 , 4.871) (2.54 , 3.363)

Phosphorus
Adolescents (4.7 , 8.4) (0.1 , 0.2) (67.4 , 80.5) (-0.7 , -0.1) (-0.4 , 0.2) (3.399 , 3.575) (4.33 , 4.613) (20.513 , 22.375) (4.818 , 5.577)
School (5 , 7.9) (-0.018 , 0.1) (67.7 , 80.8) (-1.1 , -0.017) (-0.5 , 0.2) (3.62 , 3.796) (4.269 , 4.506) (18.37 , 19.912) (2.783 , 3.485)
Preschool (4.3 , 10.3) (-0.2 , 0.2) (58.6 , 88.9) (-1.5 , 0.1) (-0.8 , 0.8) (4.083 , 4.321) (3.735 , 3.942) (21.439 , 23.536) (2.548 , 3.373)

Potassium
Adolescents (4.7 , 8.4) (0.1 , 0.2) (116.5 , 143) (-1.3 , -0.1) (-1.1 , 0.1) (3.406 , 3.583) (6.625 , 7.216) (40.61 , 44.889) (4.773 , 5.531)
School (5 , 7.9) (-0.017 , 0.1) (116.7 , 145) (-1.3 , 1) (-1.3 , 0.03) (3.623 , 3.8) (5.997 , 6.468) (39.821 , 43.3) (2.766 , 3.467)
Preschool (4.4 , 10.4) (-0.2 , 0.2) (66.8 , 144) (1.2 , 5.5) (-1.6 , 2.7) (4.079 , 4.317) (6.377 , 7.004) (51.637 , 57.577) (2.58 , 3.396)

Zinc
Adolescents (4.7 , 8.4) (0.1 , 0.2) (0.4 , 0.6) (-0.008 , -0.001) (-0.003 , 0.004) (3.402 , 3.577) (0.303 , 0.317) (0.109 , 0.129) (4.793 , 5.554)
School (5 , 7.8) (-0.009 , 0.1) (0.4 , 0.6) (-0.009 , 0.001) (-0.003 , 0.006) (3.62 , 3.795) (0.286 , 0.299) (0.104 , 0.122) (2.791 , 3.486)
Preschool (4.4 , 10.4) (-0.2 , 0.2) (0.4 , 0.8) (-0.013 , 0.001) (-0.01 , 0.013) (4.08 , 4.32) (0.295 , 0.308) (0.117 , 0.141) (2.57 , 3.393)

Vitamin C
Adolescents (4.6 , 8.3) (0.1 , 0.2) (1.5 , 4.3) (0.043 , 0.2) (-0.013 , 0.1) (3.403 , 3.578) (1.836 , 1.979) (4.033 , 4.541) (4.804 , 5.561)
School (5 , 7.8) (-0.01 , 0.1) (1.2 , 4.6) (0.3 , 0.7) (-0.1 , 0.029) (3.631 , 3.807) (1.946 , 2.076) (3.78 , 4.311) (2.748 , 3.422)
Preschool (4.5 , 10.6) (-0.2 , 0.2) (-4.5 , 4.2) (0.6 , 1.1) (-0.1 , 0.3) (4.077 , 4.317) (2.455 , 2.66) (4.449 , 5.32) (2.589 , 3.436)

Thiamin
Adolescents (4.6 , 8.3) (0.1 , 0.2) (0.033 , 0.1) (-0.002 , 0.001) (-0.002 , 0.001) (3.405 , 3.581) (0.116 , 0.123) (0.068 , 0.076) (4.783 , 5.54)
School (5 , 7.9) (-0.015 , 0.1) (0.028 , 0.1) (-0.003 , 0.002) (-0.002 , 0.002) (3.622 , 3.798) (0.193 , 0.231) (0.073 , 0.082) (2.766 , 3.473)
Preschool (4.2 , 10.1) (-0.2 , 0.2) (-0.1 , 0.3) (-0.007 , 0.006) (-0.013 , 0.01) (4.084 , 4.324) (0.398 , 0.44) (0.107 , 0.127) (2.539 , 3.371)

Riboflavin
Adolescents (4.7 , 8.3) (0.1 , 0.2) (0.037 , 0.1) (-0.002 , 0.001) (-0.002 , 0.002) (3.405 , 3.581) (0.135 , 0.145) (0.072 , 0.081) (4.778 , 5.537)
School (5.1 , 7.8) (-0.013 , 0.1) (0.033 , 0.1) (-0.004 , 0.002) (-0.002 , 0.003) (3.621 , 3.798) (0.21 , 0.252) (0.074 , 0.084) (2.783 , 3.485)
Preschool (4.3 , 10.6) (-0.2 , 0.2) (-0.1 , 0.3) (-0.008 , 0.006) (-0.014 , 0.011) (4.083 , 4.324) (0.432 , 0.481) (0.11 , 0.131) (2.537 , 3.374)

Niacin
Adolescents (4.7 , 8.3) (0.1 , 0.2) (0.6 , 0.9) (-0.013 , -0.002) (-0.004 , 0.008) (3.403 , 3.578) (0.45 , 0.47) (0.14 , 0.175) (4.795 , 5.55)
School (5 , 7.9) (-0.014 , 0.1) (0.7 , 1) (-0.017 , 0.001) (-0.006 , 0.006) (3.619 , 3.795) (0.447 , 0.466) (0.137 , 0.169) (2.795 , 3.492)
Preschool (4.4 , 10.4) (-0.2 , 0.2) (0.8 , 1.4) (-0.024 , 0) (-0.032 , 0.001) (4.081 , 4.319) (0.464 , 0.486) (0.152 , 0.193) (2.574 , 3.392)

Vitamin B
Adolescents (4.6 , 8.2) (0.1 , 0.2) (0.045 , 0.1) (-0.003 , 0.001) (-0.002 , 0.002) (3.404 , 3.581) (0.167 , 0.177) (0.079 , 0.09) (4.783 , 5.541)
School (5 , 7.8) (-0.012 , 0.1) (0.1 , 0.2) (-0.004 , 0.002) (-0.003 , 0.003) (3.622 , 3.798) (0.208 , 0.23) (0.079 , 0.09) (2.776 , 3.475)
Preschool (4.7 , 10.6) (-0.2 , 0.1) (-0.033 , 0.3) (-0.007 , 0.005) (-0.01 , 0.008) (4.083 , 4.324) (0.354 , 0.392) (0.103 , 0.121) (2.544 , 3.378)

Folate
Adolescents (4.6 , 8.3) (0.1 , 0.2) (13.7 , 19.8) (-0.4 , -0.1) (-0.1 , 0.1) (3.404 , 3.581) (3.043 , 3.364) (8.849 , 10.044) (4.783 , 5.539)
School (5 , 7.9) (-0.014 , 0.1) (17.2 , 24.4) (-0.7 , -0.1) (-0.3 , 0.1) (3.622 , 3.796) (3.238 , 3.508) (9.116 , 10.328) (2.785 , 3.478)
Preschool (4.8 , 10.6) (-0.2 , 0.1) (16.1 , 31.9) (-0.9 , -0.1) (-0.6 , 0.3) (4.084 , 4.324) (3.149 , 3.403) (10.887 , 12.183) (2.529 , 3.363)

Vitamin A
Adolescents (4.7 , 8.3) (0.1 , 0.2) (21.9 , 33.8) (-0.5 , 0.046) (-0.3 , 0.2) (3.407 , 3.584) (4.881 , 5.627) (18.154 , 19.935) (4.764 , 5.524)
School (5 , 7.8) (-0.012 , 0.1) (26.1 , 39.8) (-1.1 , -0.012) (-0.3 , 0.4) (3.62 , 3.796) (5.561 , 6.42) (18.565 , 20.367) (2.797 , 3.488)
Preschool (4.4 , 10.4) (-0.2 , 0.2) (10.5 , 49) (-1.2 , 0.8) (-0.3 , 1.8) (4.086 , 4.325) (4.645 , 5.2) (26.037 , 29) (2.541 , 3.368)

Vitamin E
Adolescents (4.7 , 8.4) (0.1 , 0.2) (0.2 , 0.5) (-0.006 , 0.003) (-0.003 , 0.006) (3.404 , 3.581) (0.354 , 0.369) (0.121 , 0.147) (4.788 , 5.543)
School (5 , 7.9) (-0.016 , 0.1) (0.2 , 0.4) (-0.007 , 0.005) (-0.001 , 0.011) (3.623 , 3.799) (0.342 , 0.355) (0.116 , 0.139) (2.768 , 3.467)
Preschool (4.3 , 10.1) (-0.2 , 0.2) (0.3 , 0.7) (-0.011 , 0.006) (-0.019 , 0.009) (4.082 , 4.322) (0.347 , 0.362) (0.13 , 0.16) (2.552 , 3.383)

Vitamin D
Adolescents (4.6 , 8.4) (0.1 , 0.2) (0.1 , 0.3) (-0.005 , 0.003) (-0.005 , 0.003) (3.405 , 3.581) (0.358 , 0.374) (0.118 , 0.143) (4.783 , 5.542)
School (5.1 , 7.8) (-0.011 , 0.1) (0.1 , 0.3) (-0.011 , 0.002) (-0.003 , 0.009) (3.621 , 3.797) (0.37 , 0.386) (0.117 , 0.14) (2.78 , 3.483)
Preschool (4.2 , 10.5) (-0.2 , 0.2) (-0.1 , 0.4) (-0.013 , 0.007) (-0.004 , 0.027) (4.083 , 4.324) (0.38 , 0.399) (0.142 , 0.178) (2.548 , 3.369)

Table A.1: Credible Intervals.
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A.2 Model 2

Nutrient Group β0 βx µx σ̄ui σx σw

Calcium
Adolescents (42.73 ,49.98) (-0.99 ,-0.31) (9.88 ,10.32) (3.41 ,3.59) (4.8 ,5.56) (22.42 ,24.25)
School (41.94 ,51.47) (-0.88 ,0.35) (7.35 ,7.78) (3.62 ,3.8) (2.77 ,3.47) (23.05 ,24.79)
Preschool (36.03 ,75.57) (-2.24 ,3.28) (6.84 ,7.36) (4.09 ,4.33) (2.53 ,3.36) (46.88 ,50.99)

Iron
Adolescents (0.7 ,0.79) (-0.02 ,-0.01) (9.88 ,10.33) (3.41 ,3.59) (4.79 ,5.55) (0.28 ,0.3)
School (0.74 ,0.88) (-0.03 ,-0.01) (7.35 ,7.78) (3.62 ,3.8) (2.78 ,3.48) (0.3 ,0.32)
Preschool (0.78 ,0.97) (-0.04 ,-0.01) (6.83 ,7.36) (4.08 ,4.32) (2.53 ,3.35) (0.36 ,0.4)

Magnesium
Adolescents (17.07 ,18.77) (-0.28 ,-0.12) (9.91 ,10.35) (3.4 ,3.58) (4.85 ,5.61) (5.82 ,6.3)
School (15.7 ,18.03) (-0.28 ,0.02) (7.34 ,7.78) (3.62 ,3.8) (2.76 ,3.47) (5.38 ,5.79)
Preschool (16.12 ,18.81) (-0.4 ,-0.03) (6.83 ,7.36) (4.09 ,4.33) (2.51 ,3.34) (5.04 ,5.48)

Phosphorus
Adolescents (67.86 ,74.76) (-0.66 ,-0.03) (9.9 ,10.35) (3.4 ,3.58) (4.84 ,5.61) (23.56 ,25.46)
School (65.9 ,75.19) (-0.98 ,0.21) (7.34 ,7.78) (3.62 ,3.8) (2.76 ,3.47) (21.14 ,22.73)
Preschool (69.33 ,81.1) (-1.67 ,-0.05) (6.84 ,7.37) (4.08 ,4.32) (2.52 ,3.36) (22.12 ,24.04)

Potassium
Adolescents (113.5 ,127.5) (-1.46 ,-0.17) (9.88 ,10.33) (3.41 ,3.59) (4.8 ,5.57) (46.62 ,50.38)
School (107.3 ,126.25) (-0.91 ,1.54) (7.34 ,7.77) (3.63 ,3.8) (2.76 ,3.45) (44.36 ,47.68)
Preschool (98.38 ,128.43) (1.43 ,5.58) (6.85 ,7.37) (4.08 ,4.32) (2.55 ,3.38) (54.57 ,59.54)

Zinc
Adolescents (0.54 ,0.66) (-0.01 ,-0.002) (9.89 ,10.34) (3.41 ,3.58) (4.82 ,5.58) (0.34 ,0.37)
School (0.57 ,0.71) (-0.02 ,-0.01) (7.35 ,7.78) (3.62 ,3.8) (2.78 ,3.48) (0.32 ,0.35)
Preschool (0.6 ,0.77) (-0.03 ,-0.01) (6.84 ,7.36) (4.08 ,4.32) (2.55 ,3.37) (0.27 ,0.29)

Vit C
Adolescents (3.02 ,5.19) (0.06 ,0.26) (9.91 ,10.35) (3.4 ,3.58) (4.85 ,5.6) (6.92 ,7.48)
School (-0.67 ,2.9) (0.47 ,0.94) (7.34 ,7.77) (3.63 ,3.8) (2.75 ,3.45) (6.55 ,7.14)
Preschool (-3.65 ,2.01) (0.94 ,1.74) (6.88 ,7.4) (4.07 ,4.31) (2.62 ,3.44) (8.16 ,9.22)

Thiamin
Adolescents (0.08 ,0.15) (-0.01 ,0) (9.88 ,10.33) (3.41 ,3.59) (4.8 ,5.57) (0.27 ,0.29)
School (-0.23 ,0.42) (-0.03 ,0.05) (7.34 ,7.77) (3.63 ,3.8) (2.76 ,3.45) (1.5 ,1.61)
Preschool (-0.05 ,0.6) (-0.06 ,0.03) (6.83 ,7.36) (4.09 ,4.33) (2.51 ,3.35) (1.39 ,1.51)

Riboflavin
Adolescents (0.08 ,0.18) (-0.01 ,0) (9.89 ,10.33) (3.41 ,3.59) (4.8 ,5.57) (0.33 ,0.36)
School (-0.3 ,0.44) (-0.03 ,0.07) (7.34 ,7.77) (3.63 ,3.8) (2.76 ,3.46) (1.66 ,1.78)
Preschool (-0.03 ,0.73) (-0.07 ,0.04) (6.84 ,7.36) (4.09 ,4.33) (2.53 ,3.36) (1.61 ,1.75)

Niacin
Adolescents (0.82 ,0.93) (-0.01 ,-0.004) (9.89 ,10.33) (3.41 ,3.58) (4.8 ,5.57) (0.37 ,0.4)
School (0.82 ,1.01) (-0.03 ,-0.001) (7.35 ,7.78) (3.62 ,3.8) (2.79 ,3.49) (0.42 ,0.45)
Preschool (0.87 ,1.08) (-0.04 ,-0.01) (6.85 ,7.37) (4.08 ,4.32) (2.54 ,3.38) (0.41 ,0.45)

Vitamin B6
Adolescents (0.11 ,0.2) (-0.01 ,0) (9.88 ,10.33) (3.41 ,3.59) (4.81 ,5.57) (0.31 ,0.34)
School (-0.2 ,0.24) (-0.004 ,0.05) (7.34 ,7.77) (3.63 ,3.8) (2.74 ,3.45) (1.03 ,1.11)
Preschool (0.04 ,0.62) (-0.05 ,0.03) (6.84 ,7.36) (4.09 ,4.33) (2.53 ,3.36) (1.24 ,1.34)

Folate
Adolescents (17.15 ,21.82) (-0.58 ,-0.15) (9.89 ,10.33) (3.41 ,3.58) (4.8 ,5.57) (15.7 ,16.96)
School (18.69 ,24.7) (-0.93 ,-0.16) (7.34 ,7.78) (3.62 ,3.8) (2.77 ,3.47) (14.26 ,15.35)
Preschool (20.3 ,27.86) (-1.19 ,-0.15) (6.84 ,7.36) (4.09 ,4.33) (2.52 ,3.36) (14.43 ,15.69)

Vit A
Adolescents (25.94 ,37.53) (-0.84 ,0.23) (9.89 ,10.33) (3.41 ,3.59) (4.8 ,5.57) (38.54 ,41.65)
School (32.58 ,51.13) (-2.23 ,0.14) (7.34 ,7.78) (3.62 ,3.8) (2.76 ,3.47) (44.34 ,47.69)
Preschool (37.19 ,54.23) (-1.72 ,0.62) (6.83 ,7.36) (4.09 ,4.33) (2.52 ,3.36) (33.39 ,36.25)

Vit E
Adolescents (0.37 ,0.45) (-0.01 ,0.002) (9.89 ,10.33) (3.41 ,3.58) (4.81 ,5.57) (0.27 ,0.29)
School (0.35 ,0.45) (-0.01 ,0.01) (7.34 ,7.78) (3.63 ,3.8) (2.76 ,3.46) (0.23 ,0.25)
Preschool (0.39 ,0.54) (-0.02 ,0.004) (6.84 ,7.36) (4.08 ,4.32) (2.54 ,3.37) (0.28 ,0.3)

Vit D
Adolescents (0.22 ,0.31) (-0.01 ,0.001) (9.88 ,10.33) (3.41 ,3.59) (4.8 ,5.57) (0.31 ,0.34)
School (0.25 ,0.39) (-0.01 ,0.003) (7.35 ,7.78) (3.62 ,3.8) (2.77 ,3.48) (0.34 ,0.36)
Preschool (0.39 ,0.63) (-0.03 ,0.001) (6.83 ,7.36) (4.09 ,4.33) (2.52 ,3.34) (0.47 ,0.52)

Table A.2: Credible Intervals.
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Compute Residuals

B.1 Model 1

Following the idea in [2] where given the measurement error model

yi = β0 + xiβx + qi, qi|σ2
q
iid∼ (0, σ2

q ),

Yij = yi + wij , wij |σ2
wi

iid∼ N(0, σ2
wi

)

Xij = xi + uij , uij |σ2
ui

iid∼ N(0, σ2
ui

).

(B.1)

Let

ri = Ȳij − ŷi

ei = qi + wij − βxuij

then

V ar(ei) = σ2
q + σ2

w + β2
xσ

2
u − 2βxcov(Xij , Yij)

= σ2
q + σ2

w + β2
xσ

2
u − 2β2

xσ
2
x (B.2)

approximately (B.1)estimate r2i but changes in ri non necessarily reflect changes in V ar(ei)
when the measurement error variances or covariance change over i. In that case we con-
sider a modified squared residual

msri = r2i − (σ2
q + σ2

w + β2
xσ

2
ui
− 2β2

xσ
2
x)

To computemsri in a bayesian way one have simulate from the posterior of θ = (βx, σx, σw, σq),η =

(α∗, σx), and simulate from the posterior of xi in next way:

1. Select the size K for the sample.

2. Simulate θ(k) from the posterior distribution of θ,k = 1, . . . ,K.

3. Simulate x̂i using η(i), i = 1, . . . Ng . Ng is the number of observations Xij for age
group g.



56 B. Compute Residuals

4. Compute msr(k)i using θ(k) for every x̂i , then msri =
∑k=1

K msr
(k)
i

K . At the end msr =

(msr1, . . . ,mrsNg
)

B.2 Model 2

Considering the model

Yij = β0 + xiβx + wij , wij |σ2
w
iid∼ (0, σ2

w)

Xij = xi + uij , uij |σ2
ui

iid∼ (0, σ2
u)

xi|µx, σ2
x
iid∼ N

(
µx, σ

2
x

)
Yij |βx, xi, σ2

w
iid∼ N

(
β0 + xiβx, σ

2
w

)
Xij |xi, σ2

ui

iid∼ N
(
xi, σ

2
u

)
(B.3)

and following the idea to compute the residual of model 1, it will be obtained

ri = Ȳij − Ŷij

ei = wij − βxui

because wij , uij are independent

V ar(ei) = σ2
w + β2

xσ
2
u.

Therefore

msri = r2i − (σ2
w + β2

xσ
2
ui

).

To compute the msri the algorithm in the last section have to be used.
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R code

C.1 Data Simulated

C.1.1 Data Simulated code Model 1

The library used to simulate from a inverse gamma distribution.

library(MCMCpack)

It is simulated 1000 observations.

set.seed(1985)

N <- 1000

The simulation of data is made according to model (3.13) using priors in (3.2.1). The value
of the parameters are next:

B0 <- 70

Bz <- -0.1

Bz <- -.5

a0 <- 5

a1 <- 1.5

sigmax <-5

sigmau <- rinvgamma(N,sqrt(6),sqrt(36))

sigmaeps <- 21

sigmay <- rinvgamma(N,sqrt(6),sqrt(49))

Then the observable varaible Z and the not observable variables xi and yi are simulated:

Z <- matrix(rnorm(N,1,1),ncol=1)

X <- matrix(rnorm(N,a0+a1*Z,sigmax) ,ncol=1)

y <- rnorm(N,B0+x2*X + Bz*Z[,1],sigmaeps)

Here will be simulated Xij and Yij , each one with at most two replicates per observation i.

reps <- 2

W <- numeric(0)

for (i in 1:reps)

W <- cbind(W,rnorm(N,X,sigmau))

#Adding some missing observations

W[sample(1:N,N/10*9),2] <- NA
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Y <- numeric(0)

for (i in 1:reps)

Y <- cbind(Y,rnorm(N,y,sigmay))

#Adding some missing observations

Y[sample(1:N,N/10*9),2] <- NA

In order to compute the hyperparameters of the prior distribution of the prior distribution
of σui and σwi , it will be computed the estimator of moments respectively.

WW <-W[!is.na(W[,2]),]

YY <-Y[!is.na(Y[,2]),]

sdw<-apply(WW,1,sd)

sdY<-apply(YY,1,sd)

media.sdw <-mean(sdw)

sd.sdw <-sd(sdw)

mw <-media.sdw

# Estimator of the shape for sigma_w_i

alfaw <-(mwˆ2*length(sdw))/sum(sdwˆ2)+2

# Estimator of the scale for sigma_w_i

betaw <- mw*(alfaw-1)

my <-mean(sdY)

sy <-sd(sdY)

# Estimator of the shape for sigma_u_i

alfay <-(myˆ2)*length(sdY)/sum(sdYˆ2)+2

# Estimator of the scale for sigma_u_i

betay <- my*(alfay-1)

C.1.2 Data Simulated code Model 2

It is simulated 1000 observationsas according to (3.13) using priors in (3.2.1). The value of
the parameters are below,

N <- 1000

reps <- 2

B0 <- 70

B1 <- -.5

sigmax <-5
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mux <-5

sigmau <- rinvgamma(N,sqrt(6.5),sqrt(60))

sigmay <- 0.69

The variables xi and yi are simulated:

x <-rnorm(mux,sigmax)

X <- matrix(rnorm(N,x,sigmax) ,ncol=1)

y <- B0+B1*X

Now variables Xij and Yij are simulated:

W <- numeric(0)

for (i in 1:reps)

W <- cbind(W,rnorm(N,X,sigmau))

# Adding some missing observations

W[sample(1:N,N/10*9),2] <- NA

Y <- numeric(0)

for (i in 1:reps)

Y <- cbind(Y,rnorm(N,y,sigmay))

##Adding some missing observations

Y[sample(1:N,N/10*9),2] <- NA

It will be necessary to give of estimation of µx in order to give a prior value of this para-
meter. For this reason it is compute X̄ij as estimation of µx.

mW<-apply(W,1,function(x) mean(x,na.rm=T))

mpob=mean(mW)

C.2 R code for Gibbs Sampler

Before to execute a Gibbs Sampler code it will be necessary to call libraries that will be
required

library(rjags)

library(coda)

Then the data are charged:

data<-read.csv("data_fin_dep.csv",head=T)

hyp<-read.csv("hyperparameter.csv",head=T)

z<-data[,c(18,72,26)]

Y1<-data[,c(32:46)]

Y2<-data[,c(53:67)]

W1<-data[,68]

W2<-data[,69]



60 C. R code

C.2.1 Gibbs Sampler code Model 1

Remember that it will be analyzed fifteen nutrients per three age group. For this reason
will be used a loop in order to execute the Gibbs Sampler for each data set automatically.

for (i in 1:n){

for(j in 1:3){

datos2<-cbind(z[,2],Y1[,i],Y2[,i],W1,W2)

nombre<-c(ndem[2],nz[2],nY1[i],nY2[i],nW1,nW2)

analiz<-datos2[datos$\$$GrupoPOB==j,]

Y<-analiz[,3:4]

Z<-analiz[,2]

W<-analiz[,5:6]

N<-dim(analiz)[1]

# Values of hyperparameters of the inverse gamma distribution.

# These values are save in hyperparameter.csv file.

u1<-hyp[1,2*j-1]

u2<-hyp[2,j*2]

p1<-hyp[i+1,2*j-1]

p2<-hyp[i+1,2*j]

dataList = list(

Y = Y,

Z = Z,

W=W,

nalphas=2,

nbetas=3,

Nobservations=N,

Nreplications=2,

u1=u1,

u2=u2,

py1= p1,

py2=p2 )

# Here begin the Gibb Samper rutine

model= "model

{#BEGIN MODEL

for (i in 1:Nobsevations)

{#BEGIN FOR i in 1:Nobservations

#Outcome model

Y[i,1]˜ dnorm(y[i],tauy[i])

Y[i,2]˜ dnorm(y[i],tauy[i])

y[i]˜dnorm(meany[i],taueps)
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meany[i]<-beta[1]+beta[2]*X[i]+beta[3]*Z[i]

#Replication model

for (j in 1:Nreplications)

{W[i,j]˜dnorm(X[i],tauu[i])}

#Exposure model

X[i]˜dnorm(meanX[i],taux)

meanX[i]<-alpha[1]+alpha[2]*Z[i]

} #END FOR i in 1:Nobservations

#Noninformative priors on the model parameters

for (j in 1:Nobservations)

{

tauy[j]˜dgamma(py1,py2)

tauu[j]˜dgamma(u1,u2)

}

taueps˜dgamma(3,1)

taux˜dgamma(3,1)

#Priors for alpha and beta

for (i in 1:nalphas)

{alpha[i]˜dnorm(0,1.0E-6)}

for (i in 1:nbetas)

{beta[i]˜dnorm(0,1.0E-6)}

#Deterministic transformations: standard deviations

sigmaeps<-1/sqrt(taueps)

sigmax<-1/sqrt(taux)

m.sigmau<-mean(1/sqrt(tauu))

m.sigmay<-mean(1/sqrt(tauy))

}#END MODEL"

m=jags.model(textConnection(model),dataList,n.adapt=10000,n.chains=2)

update(m, 10000) # burn in

# DIC especifications

dic.pd <- dic.samples(m, 5000, "pD")
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penalty<-sum(dic.pd[[1]])

m.deviance<-sum(dic.pd[[2]])

DIC<-penalty+m.deviance

# Parameters to print

parameters= c("beta","alpha","sigmax","sigmaeps","m.sigmau","m.sigmay")

# Chains especifications

res1 = coda.samples(m,parameters, n.iter=100000, nthin=200,n.burnin=10000)

# Compute Gelman test

gelman.diag(mcmc.list(res1))

# Compute Geweke test

geweke.diag(mcmc.list(res1))

}}

C.2.2 Gibbs Sampler code Model 2

The estimation of parameters in model(3.13) using priors in (3.2.1) is given next. Fist it is
necessary to call data:

library(rjags)

library(coda)

datos<-read.csv("data_fin_dep.csv",head=T)

hyp<-read.csv("hyperparameter.csv",head=T)

para<-des[,8:13]

datos<-datos[,-1]

bmi<-datos$\$$peso/(datos$\$$talla/100)ˆ2

data<-cbind(datos,bmi)

variable<-names(data)

demo<-data[,c(1,20)]

z<-data[,c(18,72)]

Y1<-data[,c(32:46)]

Y2<-data[,c(53:67)]

W1<-data[,68]

W2<-data[,69]

n<-length(Y1)

Now the loop that contain the Gibbs Sampler algorithm is given:
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for (i in 1:n){

for(j in 1:3){

datos2<-cbind(demo[,2],z[,2],Y1[,i],Y2[,i],W1,W2)

nombre<-c(ndem[2],nz[j],nY1[i],nY2[i],nW1,nW2)

analiz<-datos2[datos$\$$GrupoPOB==j,]

Y<-analiz[,3:4]

Z<-analiz[,2]

W<-analiz[,5:6]

N<-dim(analiz)[1]

u1<-para[1,2*j-1]

u2<-para[2,j*2]

e1<-para[i+1,2*j-1]

e2<-para[i+1,2*j]

mW<-apply(W,1,function(x) mean(x,na.rm=T))

mpob<-mean(mW)

sW<-sd(mW)

dataList = list(

Y = Y,

W=W,

nbetas=2,

Nobservations=N,

Nreplications=2,

u1=u1,

u2=u2,

e1= e1,

e2=e2,

mpob=mpob

)

model= "model

{#BEGIN MODEL

for (i in 1:Nobservations)

{#BEGIN FOR i in 1:Nobservations

#Outcome model

Y[i,2]˜ dnorm(meany[i],tauy)

Y[i,1]˜ dnorm(meany[i],tauy)

meany[i]<-beta[1]+beta[2]*X[i]

#Replication model

for (j in 1:Nreplications)

{W[i,j]˜dnorm(X[i],tauu[i])}

#Exposure model

X[i]˜dnorm(meanX,taux)
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}#END FOR i in 1:Nobservations

meanX˜dnorm(mx,taux)

#Noninformative priors on the model parameters

for (i in 1:Nobservations){

tauu[i]˜dgamma(u1,u2)}

tauy˜dgamma(e1,e2)

taux˜dgamma(3,1)

mx˜dnorm(mpob,.1)

#Priors for alpha and beta

for (i in 1:nbetas)

{beta[i]˜dnorm(0,1.0E-6)}

#Deterministic transformations: standard deviations

sigmau<-mean(1/sqrt(tauu))

mediaX<-mean(X)

sigmay<-mean(1/sqrt(tauy))

sigmax<-1/sqrt(taux)

}#END MODEL"

m=jags.model(textConnection(model),dataList,n.adapt=1,n.chains=2)

update(m, 20000) # burn in

parameters= c("beta","sigmau","sigmax","sigmay","mediaX")

res1 = coda.samples(m,parameters, n.iter=100000, nthin=200,n.burnin=50000)

# Compute DIC

dic.pd <- dic.samples(m, 20000, "pD") # Deviance Information Criterion

penalty<-sum(dic.pd[[1]])

m.deviance<-sum(dic.pd[[2]])

DIC<-penalty+m.deviance

#Gelman ans Geweke test

gelman.diag(mcmc.list(res1))

geweke.diag(mcmc.list(res1))

}}
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