
Centro de Investigación en Matemáticas A.C.

Real-Time Physically-Based Deformable Objects Simulation

Tesis

para obtener el grado de

Maestro en Ciencias con Especialidad en

Computación y Matemáticas Industriales

Presenta:

Lazaro Emilio Lesmes León

Director de Tesis:

Dra. Claudia E. Esteves Jaramillo

September 04, 2013 Guanajuato, Gto., México

2 · Real-Time Physically-Based Deformable Objects Simulation

2

Abstract

This thesis presents an approach to real-time physically-based simulation of deformable objects. The

work described here, is focused on deformation of volumetric solids represented as tetrahedral meshes. A

damper mass-spring system has been implemented using OpenGL API and GLSL. The implementation

developed reaches speed of interactive rates solving numerical simulations with huge meshes of hundreds

of thousands elements due to the exploitation of latest features presented in current GPUs. Several

numerical integration schemes are exposed and implemented. The use of some specific techniques to the

mathematical model allowing numerically stable simulation over complex geometric meshes using explicit

methods is described.

To illustrate the behaviour and performance, a graphics computer application was developed using

modern graphics hardware. Results and computational time of various sample meshes are shown.

Resumen

En esta tesis se presenta un enfoque a la simulación en tiempo real de objetos deformables basada en

leyes de la f́ısica. El trabajo realizado se centra en la deformación de sólidos volumétricos representados

como mallas de tetraedros. Se ha implementado un sistema masa-resorte amortiguado usando OpenGL y

GLSL. La aplicación desarrollada alcanza velocidades que permiten resolver simulaciones numéricas con

grandes mallas de cientos de miles de elementos en tiempo interactivo, gracias a la explotación de las

funcionalidades que brindan GPUs actuales. Se exponen varios esquemas de integración numérica y el

uso de algunas técnicas espećıficas para alcanzar simulaciones numéricamente estables usando métodos

expĺıcitos sobre mallas geometricamente complejas.

Para mostrar los resultados y el rendimiento de la investigación realizada, se desarrolló una aplicación

gráfica utilizando hardware gráfico moderno. Se exponen las tablas de los tiempos de cómputo y resultados

obtenidos para varias mallas.

To my family

Agradecimientos

Mis primeras palabras de agradecimiento son para el Centro de Investigación en Matemáticas,

A.C. (CIMAT), por abrirme sus puertas al programa de Maestŕıa en Ciencias de la Computación

y Matemáticas Industriales; y para el Consejo Nacional de Ciencia y Tecnoloǵıa porque sin el

programa de becas no hubiese sido posible desarrollar mis estudios. Además, quiero expresar un

agradecimiento especial a mi asesora y directora de este trabajo Dra. Claudia Esteves Jaramillo,

por su excelente conducción y el apoyo brindado desde el principio de la invetigación requerida

para la realización mi tesis. Muchas gracias también a todos los profesores de la maestŕıa de

computación de los cuales tuve el honor de recibir clases. Un abrazo a todos mis compañeros

de aula y causa durante este par de años, sin duda una nueva familia. Y por último a las

personas más importantes en mi vida, a mi padre Mart́ın Quesada, a mi madre Delsy, a mi

esposa Yoandra, a mis niños Daylenis y Maikol, a mis hermanos Regla y Jesús.

Contents

List of Figures ii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Organization . 2

2 Physically-Based Deformable Objects 3

2.1 Mass-Spring Systems . 4

2.1.1 Related Work . 6

2.2 Real-Time Applications in Computer Graphics 11

3 Mathematical Model and Simulation 13

3.1 Laws of Motion . 14

3.2 Potential Energies . 14

3.3 Forces . 15

3.3.1 Damping Forces . 16

3.3.2 Deformation Limits . 17

3.4 Mass Distribution . 18

3.5 Numerical Integration . 18

3.6 Algorithm . 20

4 Computational Tools 22

4.1 GPU Architecture and Functionality . 22

4.2 OpenGL . 23

4.2.1 OpenGL Shading Language(GLSL) . 24

4.2.2 Rendering Pipeline . 26

5 Implementation 28

5.1 Tetrahedral Meshes . 28

5.2 Memory Management . 30

5.3 Numerical Simulation . 34

5.4 Algorithm Implementation . 35

i

ii · Real-Time Physically-Based Deformable Objects Simulation

5.4.1 Rendering . 36

6 Results and Discussion 38

6.1 Computing Time . 39

6.2 Simulation Parameters . 41

6.2.1 Parameters Selection . 41

7 Conclusions 44

7.1 Future Work . 45

ii

List of Figures

2.1 Physically-Based Deformable Models in CG. 5

2.2 A portion of a mass-spring model. 6

2.3 Volumetric Mass-Spring Lattice. 7

2.4 Illustration of volume preserving forces. 9

2.5 The volume constraint with its five tetrahedrons. 10

2.6 Varying examples of point/face and edge/edge altitude springs. 11

3.1 A tetrahedron with four mass points. 15

4.1 GPU Architecture. 23

4.2 Performance between GPUs and CPUs. 24

4.3 OpenGL 4.2 GLSL Specification. 25

4.4 Program Pipeline Object Set Up. 25

4.5 OpenGL Rendering Pipeline. 26

5.1 Triangular Meshes and its volumetric discretization in tetrahedra. 29

5.2 Meshes Quality Histograms. 31

5.3 GPU implementation. 37

6.1 Computing time comparison. 40

6.2 Physically-based deformable objects simulation. 40

6.3 Distance and preservation forces configuration effect. 43

iii

iv · Real-Time Physically-Based Deformable Objects Simulation

iv

1
Introduction

Physically-based deformable object simulation has been an active research topic in the computer

graphics (CG) community for almost three decades now. The main goal is usually to get eye-

believable animations. To reach this goal, many physically-based models for deformable objects

simulation have emerged. Numerous application have been developed for modeling objects

composed of real materials: e.g. solids deformation and fracture, ropes, clothes, muscles, fluid

and gases, melting objects, granular materials, etc. Also, recent applications demand deformable

objects simulation in real-time, e.g virtual reality environments, video games, clinical surgery

simulators, etc. This demand can be fulfilled because the current technology brings up the

possibility to implement algorithms with huge computational complexity, and get the results

in milliseconds. Therefore, the real-time simulation of physically-based deformable objects is a

modern research topic.

1.1 Motivation

As summer project of 2012, I implemented a motion planning algorithm to move a deformable

robot through an environment of rigid obstacles based on RRT1 ([LaValle and Kuffner Jr. 2001]).

In this project, the robot is a geometrically-based deformable object which is enforced by a FFD2

([Sederberg and Parry 1986]): object vertices position are computed interpolating established

control points position. Then, looking for more realistic results, we decided to try physically-

based deformable objects simulation. For our final application, a very efficient implementation

1Rapidly-exploring Random Tree, http://msl.cs.uiuc.edu/rrt/ .
2Free Form Deformation.

1

2 · Real-Time Physically-Based Deformable Objects Simulation

is required because it will be executed inside a sampling-based motion planner(which can imply

that the simulation has to run a few thousand time). It is for this reason that we chose a model

based on a mass-spring system for physically-based deformable objects, which is extensively

used in CG because of its low computational cost.

1.2 Contribution

The real-time simulation of volumetric deformable solids represented as tetrahedral meshes is the

main concern of this work. For achieving this, an implementation of a mass-spring system with

volume preserving behaviour, employing GLSL3, is proposed. A new algorithm was designed, a

detailed description of its implementation, is given as well as the related qualities of OpenGL

(labelled as a graphic library) for general-purpose computing on GPU (GPGPU). A novel GPU-

based4 solution for physically-based deformable object simulation, employing the latest OpenGL

API features, was developed; and it is described in this work. There is, to our knowledge only one

other work ([Georgii et al. 2005]) that implements mass-spring system, with volume preserving

tetrahedral meshes, using GLSL; so, this is a little explored approach.

1.3 Organization

The main thread of this document is the description of the solution here proposed for real-time

deformable objects simulation; but all issues dealt to achieve it are also discussed. The model

implemented in this work for deformable objects modeling appears in the technical bibliography

as mass-spring system or as particles system5. Because of that, in the following sections the

terms point masses and particles are uses interchangeably.

This thesis is divided in six chapters following the current introduction. Chapter 2 gives

an overview of many physically-based deformable object models that have been used in CG,

with a deeper view on mass-spring system. Also, there is a section of previous works related to

volumetric deformable solids simulation. The mathematical formulation behind the implemented

model is described in Chapter 3 ; as well as the equations that drive the dynamics of the

system, the numerical integration schemes considered and the algorithm designed are listed.

Then, the computational tools employed and the implementation of the algorithm of Chapter

3, over specific hardware to achieve a real-time application, are the contents of Chapter 4 and 5

respectively. Next, the results from the implementation are presented and discussed in Chapter

6. Finally, in the last chapter, the conclusions of this research are done and the considerations

for future work are marked.

3OpenGL Shading Language.
4Graphics Processing Unit.
5Also used to fluids and gases simulation.

2

2
Physically-Based Deformable Objects

The simulation of physically-based deformable objects in CG has been frequently focused more

on getting animations that are believable to the eyes of the observer, rather than on the accuracy

and correctness of the underlying models. In some applications, such as video games or clinical

surgeries simulators, this is further enhanced by the need of achieving user interactive rates,

which makes the use of simplified physical models a requirement. Fortunately, the rapid growth

of graphics hardware capabilities has allowed to increase the complexity of the underlying models

while decreasing simulation times from several hours to a few milliseconds: Algorithms that were

proposed in the literature a few decades ago, that were prohibitive for real-time applications can

be implemented in modern graphics processors to be used at interactive rates.

The beginning of research in the area of deformable objects in CG is usually marked with

Lasseter’s discussion on squashing and stretching [Lasseter 1987] together with Terzopoulos

et al. seminal paper on elastically deformable models [Terzopoulos et al. 1987]. After these

works, many researchers have tackled the problem of physically-based deformable objects

simulation in CG community. Many of these works have been summarized in the surveys of

[Gibson and Mirtich 1997; Nealen et al. 2006]. In the first survey [Gibson and Mirtich 1997],

the authors describe a few purely geometrically-based algorithms but focus mainly on physically-

based approaches and their applications. Nearly a decade later, Nielsen et al. [Nealen et al. 2006]

proposed a classification of physically-based models for object deformations in two main groups:

Lagrangian and Eulerian methods.

The survey classifies some of the methods present in the literature into these groups:

3

4 · Real-Time Physically-Based Deformable Objects Simulation

• Lagrangian Mesh Based Methods

– Continuum Mechanics Based Methods

∗ Finite Element Method (e.g Figure 2.1a, [Georgii 2008])

∗ Finite Differences Method (e.g Figure 2.1b,[Terzopoulos et al. 1987])

∗ Finite Volume Method (e.g Figure 2.1c,[Teran et al. 2003])

– Mass-Spring Systems (e.g Figure 2.1d,[Teschner et al. 2004])

• Lagrangian Mesh Free Methods

– Loosely Coupled Particle Systems (e.g Figure 2.1e, [Bell et al. 2005])

– Smoothed Particle Hydrodynamics (SPH) (e.g Figure 2.1f, [Müller et al. 2003])

– Mesh Free Methods for the solution of PDEs (e.g Figure 2.1g, [Pauly et al. 2005])

• Reduced Deformation Models and Modal Analysis (e.g Figure 2.1h, [Barbič and James 2005])

• Eulerian and Semi-Lagrangian Methods

– Methods for Fluids and Gases Simulation (e.g Figure 2.1i, [Feldman et al. 2005])

– Methods for Melting Objects Simulation (e.g Figures 2.1j, 2.1k and 2.1l, [Carlson et al. 2002])

References to many interesting research about each one of previous categories and subcategories

are given in [Nealen et al. 2006]. Special highlight is given to the works of [Barbič and James 2005]

where samples of complex geometric objects under large deformations are shown at interactive

rates and of in [Georgii 2008] where, based on the implicit finite element method with a multigrid

approach, 200000 elements can be simulated at rate a rate of 10 times per second.

Additionally, in [Nealen et al. 2006] it is pointed out that since the survey of [Gibson and Mirtich 1997],

significant contributions have been made in key areas of physically-based deformable models in

CG, e.g. object modeling, fracture, cloth animation, stable fluid simulation, time integration

strategies, discretization and numerical solution of partial differential equations (PDEs), modal

analysis, space-time adaptivity, multiresolution modeling and real-time simulation.

2.1 Mass-Spring Systems

A detail review about mass-spring systems is presented in this section as it was the method

chosen for modeling the deformable objects described and implemented in this thesis.

As its name implies, a mass-spring system consists in the representation of the target object

as a set of point masses connected by massless springs in a specific lattice structure (see Figure

2.2). In [Erleben et al. 2005], a mass-spring system is defined as essentially a Particles System

with a set of predefined springs between pairs of particles. The only function of springs is to

produce internal forces to handle the behaviour of the deformable object. Neither collisions nor

crossings between the springs are considered. Depending on the design of the network of springs

4

Physically-Based Deformable Objects · 5

(a) Deformed tetrahedral horse. (b) Persian carpet falling. (c) Skeletal muscle contraction.

(d) Deformable cloth model. (e) Flow through an hourglass. (f) Pouring water into a glass.

(g) Highly plastic deformations
and ductile fracture.

(h) Multibody dynamics with large
deformations.

(i) Smoke on a tetrahedral mesh
inside.

(j) Melting bunny sequence. (k) (l)

Figure 2.1: Physically-Based Deformable Models in CG.

5

6 · Real-Time Physically-Based Deformable Objects Simulation

Figure 2.2: A portion of a mass-spring model. Springs connecting point masses exert forces on
neighboring points when a mass is displaced from its rest positions [Gibson and Mirtich 1997]

.

that is formed by joining the point masses, objects with several properties can be modelled, e.g.

objects with shearing and/or bending resistance, objects that preserve area and/or volume, etc.

Some examples are described in Section 2.1.1.

A mass-spring system is therefore a dynamic system governed by some particular law of

motion. In Section 3.1 Newton’s and Lagrange’s laws of motion, which have been used in the

works discussed in Section 2.1.1, will be exposed in detail. The state of the system, analogous

to phase space in [Baraff and Witkin 2003], at a given time t consists of the three dimensional

vectors position xi and velocity vi of all point masses (i = 1 . . . n). Moreover, other relevant

quantities for the motion of a particle are: mass and force. The force acting on each point

mass is the composition of external forces such as gravity, friction, collision response, user

interaction, etc. and internal forces due to the springs connection of neighbouring particles. In

the mathematical model considered, theses forces are derived from the potential energy of the

system, (see Section 3.3). In practical applications, any other quantities such as: color, shape,

etc.; can be attached to each particle for rendering or visualization purposes.

2.1.1 Related Work

A lot of works for modeling deformable objects have exploited the mass-spring system, because

it is intuitive, easy to implement and computationally cheaper than other models. For instance,

a mass-spring system is computationally cheaper than a Finite Element System as the later has

to be discretized and then assembled, whereas the former is already discrete.

A well-known introduction to physically-based modeling in CG, and in particular to the

mass-spring modeling system, is that of [Baraff and Witkin 2003]. This is a short but excellent

6

Physically-Based Deformable Objects · 7

Figure 2.3: A Volumetric Mass-Spring Lattice [Chen et al. 1998]

course that covers this topic in great details from the beginning. Another, well-known reference

is the book “Physics-based Animation” by Kenny Erbelen et al.[Erleben et al. 2005], very

comprehensive for beginners and full of tips such as: pseudo codes and explicit formulas, really

useful for implementation as well as a complete survey on related techniques and methods for

physically-based modeling. A more recent work focused on the implementation of the mass-

spring deformable model on GPU has been presented in [Vassilev and Rousev 2008] where an

algorithm and several data structures are proposed taking advantage of parallel processors.

Previously described works are helpful to understand and implement a general mass-spring

system but do not focus on the problem of simulating volumetric deformable solids, which

include plastic deformations, fractures, melting, etc. The remainder of this section is focused on

elastic deformable objects as they are the main subject of study of our work.

In [Chen et al. 1998], the authors state that most of the previous work on mass-spring models

were limited to 2D modeling or 3D rigid object modeling. The elastic model they propose, is

a voxel-based mesh of l×m×n point masses, regularly spaced in a lattice(Figure 2.3). Three

different types of springs are defined linking specific point masses in order to achieve particular

behaviors: (1) Structural Springs, that act in opposition to pure compression and stretching;

(2) Shear Springs, that are constrained under shear stress and (3) Flexion Springs, that are

resistant to bending. An animation sequence of a falling and bouncing chair using the model is

shown.

Tzvetomir Vassilev and Bernhard Spanlang presented a mass-spring model for real-time

simulation of volume-preserving deformable solids in [Vassilev and Spanlang 2002]. The model

consist in surfaces of triangular meshes that conform volumetric objects, each vertex is a point

mass and each edge a spring. The authors present a new type of spring called “support spring”,

with the intention of simulating matter inside objects and perform a volume-preserving behavior,

saving the cost of explicit volume computations during the simulation. These springs connect

7

8 · Real-Time Physically-Based Deformable Objects Simulation

each point mass in the triangulated body surface with a virtual point in the body center. The

main feature of support springs, is that their response depend not only on its own elongation

but also, in a collective way, on the state of the whole system. The authors argue that their

algorithm is linear with respect to the number of triangles of the deformable solid.

In [Matyka and Ollila 2003], Maciej Matyka and Mark Ollila simulated a pressure model of

soft body based on simple laws of physics using a mass-spring system. Their model also consist

in objects with surfaces of triangular meshes, these objects are virtually filled of an ideal gas.

Implementing thermodynamics laws, the authors claim that were obtained high quality results

in real-time. The additional step of their algorithm is the computation of pressure over all faces

for calculating the corresponding force over vertices. To achieve a fast volume computation,

required for the calculation of pressure, bounding objects of simple geometry, such as boxes,

spheres and ellipsoids, are used.

A more general and robust mass-spring system was developed by Matthias Teschner et

al. in [Teschner et al. 2004], this paper was the main reference for this thesis. Their model

applies to both, volumetric objects of tetrahedral meshes and objects with surfaces of triangular

meshes, and it considers elastic and plastic deformation. A system of potential energies is defined

considering specific constraints such as distance between vertices, area of the triangles, volume

of the tetrahedra, etc. These energies are minimal when the body is at its restring state. Then,

the forces over a point mass are computed as the derivatives of the energies with respect to its

position. Each potential energy type (one type of each kind of constraint) defined can influence a

few of the neighboring particles, e.g. the energy of distance preservation affects the two particles

at the spring extremes, the energy of area preservation affects the three particles in a triangle

and the energy of volume preservation affects the four particles in a tetrahedron. Depending on

the kind of object to be modeled, the effect of one potential energy compared with the effect

induced by the other could be insignificant, e.g. when volumetric objects are modeled, area

preservation energy is not considered, only energies of distance and volume preservation have

considerable effects. Several geometrically complex meshes are tested and shown. A table with

computation time of eight explicit numeric integration methods is analysed.

A method to accelerate computation of surgical simulation and modeling complex organs

was presented by Jesper Mosegaard et al. in [Mosegaard et al. 2005]. It is pointed as the first

proposal of a GPU-based mass-spring system by Marilena Maule et al. in [Maule et al. 2010].

Their model is represented as 3D grid built from medical datasets. All point masses are encoded

in a 2D texture and neighbors information are reached through texture coordinates. Each

vertex is always connected to a fixed amount neighbors, eighteen in this case, which can be

a drawback in more general systems, e.g. with smaller valences. As results for this work,

interesting sample of surgical simulation on a pig heart consisting of 42.745 particles in a regular

grid reconstructed from a CT data set is shown, and the speed-up of GPU implementation over

8

Physically-Based Deformable Objects · 9

Figure 2.4: Illustration of volume preserving forces. The vertex vi, forces are calculated with respect to
the stretching of the springs ij, ik, il. The volume force F v at vertex vi in the direction of the opposite
face normal ensures that each element resists changes of its initial volume. [Georgii et al. 2005]

CPU implementation with an increasing number of nodes is tabulated.

Georgii and R.Westermann analyse different implementations of mass-spring systems for

interactive simulations of deformable surfaces on GPU in [Georgii and Westermann 2005]. Two

different simulation algorithms implementing scattering1 and gathering2 operations on the GPU

are compared with respect to performance and numerical accuracy. Some memory access

patterns and GPU specific issues to be considered in mass-spring systems simulation are

discussed. This work is extended in [Georgii et al. 2005] where volumetric deformable objects

represented with tetrahedral meshes are simulated. The authors state that to further increase

the physical realism of their simulation, volume preservation behavior was added. The forces

on tetrahedral point masses derived from the volume-preservation action are linear with respect

to the difference in volume and act in the direction of the normal vector of the face opposite to

the respective vertex (see Figure 2.4). In their GPU implementation, particles are codified in

a 2D texture (here called vertex texture). Then, the whole mesh is represented as a sequence

of textures where each tetrahedron adjacent to its respective vertex in the texture is encoded

in a 2D texture. To avoid memory overhead, a procedure to store vertexes with high valences

in textures is described. A more comprehensive description and different algorithms about this

research were published in Georgii’s Ph.D. thesis [Georgii 2008].

A novel GPU-based implementation of physically-based deformation of tetrahedral meshes

using a mass-spring approach was presented in [Tejada and Ertl 2005]. The main contribution

of this work is the implementation of an implicit numerical solver on a GPU, but no volume-

preservation forces where considered in their model. They affirm that fast and stable deformation

1Memory write operation from a computed address: e.g the C code a[i] = x is a scatter operation.
2A gather operation is an indirect memory read operation, such as x = a[i].

9

10 · Real-Time Physically-Based Deformable Objects Simulation

Figure 2.5: The volume constraint with its five tetrahedrons, eight particles, and 16 springs. The red
springs can have different spring constants from the green ones.[Diziol et al. 2009]

of tetrahedral meshes with larger time-steps simulation were achieved. Performance comparisons

of implicit and explicit numerical integration schemes on GPU are exposed. The mesh topology is

represented with two 2D textures, only neighborhood information is stored, the vertex incidence

on tetrahedral elements is not considered. Additional 2D textures are used to hold the vertex

positions, velocities and external forces.

Min Hong et al. present a new method for fast volume preservation of a mass-spring system to

achieve efficient deformable object simulation in [Min Hong and Welch 2006]. This method does

not use a volume discretization and its authors argue that the simulated behavior is comparable

to a finite-element method-based model at a fraction of the computational cost. This approach

is independent from the geometric structure of an object.

Another method for volume preservation of surface models is that of [Arnab and Raja 2008].

The authors develop a surface mass-spring model with shape-preserving springs for deformable

volume simulation. These springs act as surface springs but their length is zero. They work

as virtual anchors from the interior of the object for preserving shape at equilibrium state. To

compute volume displacement during simulation, a derivation of volume calculation employed

in [Min Hong and Welch 2006] is implemented. An approach that estimates springs stiffness

values from real material properties is proposed. A performance comparison of four different

approaches that vary the stiffness setting and mass distribution is given.

Raphael Diziol et al. present a method for simulating volume conserving deformable bodies

using an impulse-based approach in [Diziol et al. 2009]. Their model uses tetrahedral meshes

where each tetrahedron is enforced with volume constraints in order to ensure total volume-

preservation. From an arbitrary triangle mesh, a specific volume discretization is done, then

each cell consisting of five tetrahedrons gets assigned a volume constraint. The volume constraint

10

Physically-Based Deformable Objects · 11

Figure 2.6: Varying examples of point/face and edge/edge altitude springs. Examples (a) and (d)
represent ideal cases for the two types of altitude springs, whereas (b) and (e) show altitude springs of
each type with negative barycentric weights. (c) shows all point/face altitude springs having negative
weights, but there is still one edge/edge altitude spring that has non-negative weights. (f) shows all
edge/edge altitude springs having negative weights, but one point/face altitude spring has non-negative
weights. [Selle et al. 2008]

consists of a volume preserving tetrahedrons helped by springs which are introduced as external

forces (see Figure 2.5). The authors argue that the impulse-based simulation enforces the

constraints iteratively until all constraints are satisfied, and also that their algorithm is easy to

implement and ensures exact volume conservation at each simulation step.

A mass-spring model for hair simulation is presented by Andrew Selle et al. in [Selle et al. 2008].

This work is similar to the others cited here because the hair full geometry is simulated using

a tetrahedral mesh. To simulate volume preservation behavior, a new kind of spring is defined:

Altitude Spring (see Figure 2.6). This is placed between each particle of the tetrahedron and a

virtual node is projected onto the plane of the opposite face, or between two edges in a mutually

orthogonal direction to the two lines containing the edges. The connection is used in certain

cases of highly stretched or degenerate tetrahedron. Other kinds of springs are introduced to

achieve more natural hair behavior, e.g. curly or straight hair.

2.2 Real-Time Applications in Computer Graphics

Real-Time Applications in Computer Graphics are about perception. Applications that display

events that the user perceives they occur at speed they would in the real life, are eligible.

According to [Akenine-Möller et al. 2008], an application displaying 15 fps (frames per second)

is certainly real-time; the user focuses on action and reaction. From about 72 fps and up,

11

12 · Real-Time Physically-Based Deformable Objects Simulation

differences in the display rate are effectively undetectable. On the other hand, in the case of

physics-based simulation, Teschner et al. indicate that an application runs in real time when

the ratio of numerical integration time step and the computing time in compute one simulation

step is one [Teschner et al. 2004]. They also propose this ratio as performance measure between

numerical integration schemes. In this thesis results considering both criteria will be given.

12

3
Mathematical Model and Simulation

The overall approach of our approximation for modeling physically-based deformable objects is

depicted in the following diagram:

Newton’s 2nd Law

vt = ẋt

Ft = mv̇t

Forces

(Derivative from

Potential Energies)

Position Updating

Internal

- Volume Preservation

- Distance Preservation

External

Numerical Intregation

1. Euler

2. Midpoint

3. Verlet

4. Euler-Cromer

13

14 · Real-Time Physically-Based Deformable Objects Simulation

3.1 Laws of Motion

The dynamic behavior of a mass-spring system is determined by a given law of motion. In all

the references cited in Related Work Section 2.1.1 either the Newton’s (Equation 3.2) or the

Lagrange’s (Equation 3.1) Laws of motion are used for modeling the particles movement:

miẍi + cẋi +
∑

F internal
i = F external

i (3.1)

miẍi = Fi, (3.2)

where mi is the mass of particle i, which is considered a constant scalar in this formulation;

c is a damping constant; F internal
i is the resulting vector of all internal forces, F external

i is the

resulting vector of all external forces and Fi is the resulting vector of all forces, over the point

mass i (details in section 3.3); ẋi and ẍi are the first and second derivatives of particle position

with respect to time, which denote velocity and acceleration, respectively.

3.2 Potential Energies

To model deformation on objects, an energy-based system such as that is exposed in

[Teschner et al. 2004; Erleben et al. 2005] is considered. In this thesis the formulation developed

in [Teschner et al. 2004] is followed. Given constraints of the form C(p0, . . . , pn−1), which are

scalar functions depending on the positions of point masses pi, an associated potential energy is

defined as:

E(p0, ..., pn−1) =
1

2
kC2, (3.3)

with k denoting a stiffness coefficient that has to be defined for each type of potential energy.

The overall potential energy derived from previous constraints is interpreted as a deformation

energy of the object and it is zero if the object is not deformed, otherwise it is larger than zero.

The first type of potential energy described ED, is associated with the constraint CD =‖ pj−

pi ‖ −D0 where pi, pj are the current positions of particles i, j respectively andD0 (with D0 6= 0)

is the initial distance or resting distance between them:

ED(pi, pj) =
1

2
kD

(

‖ pj − pi ‖ −D0

D0

)2

. (3.4)

This energy influences all pairs of particles connected by tetrahedral edges.

The second type of potential energy EV represents the energy based on the difference of the

14

Mathematical Model and Simulation · 15

Figure 3.1: A tetrahedron with four mass points is the basic volumetric primitive of deformable model
implemented. In this simple example, six distance-preserving forces between all pairs of points, e.g.
FD(pi, pj), and the volume-preserving force FV (pi, pj , pk, pl) are considered.[Teschner et al. 2004]

current volume of a tetrahedron and its initial volume V0 (with V0 6= 0):

EV (pi, pj , pk, pl) =
kV
2

(

1

6
|(pj − pi) · ((pk − pi)× (pl − pi))| − V0

V0

)2

. (3.5)

with pi through l being the positions of the particles. The four particles that build a tetrahedron

are influenced by this energy.

Another type of potential energy commonly considered in energy-based systems implementation

is the potential energy based on the difference of areas between the current surface of the triangle

and its initial area EA. Teschner et al. pointed out that the influence of EA is negligible compared

with that of ED and EV for volumetric deformable solids simulation [Teschner et al. 2004]. For

this reason EA is not considered in this work.

3.3 Forces

Forces that act over each point mass in the system are classified as external or internal forces.

On the one hand, external forces are those arise outside the system, e.g. gravitational force,

air resistance force, etc. Each one has specific characteristics depending on its own nature, e.g.

global earth gravity acts independently on each particle, it is equal to mig, where g is a constant

vector in the direction of the center of the earth and with a magnitude equal to the gravitational

constant (9.8 m/s2 is a commonly used value). On the other hand, in the current formulation,

internal forces are forces produce due to potential energies defined in Equation 3.3. Forces at

particle pi are computed as the derivatives of the energies with respect to the particle position:

F i(p0, ..., pn−1) = −
∂

∂pi
E = −kC

∂C

∂pi
, (3.6)

15

16 · Real-Time Physically-Based Deformable Objects Simulation

where k is the same value defined in Equation 3.3 and C are the constraints described above.

Internal forces conserve linear and angular momentum of the object, as it is discussed in

[Teschner et al. 2004].

Consequently, the forces derived from potential energy in Equation 3.4 that act over

connected particles xi, xj , can be written as:

FD(xi) = −kDCD
∂CD

∂xi
= −kD(‖ xi − xj ‖ −L)

xi − xj
‖ xi − xj ‖

FD(xj) = −kDCD
∂CD

∂xj
= kD(‖ xi − xj ‖ −L)

xi − xj
‖ xi − xj ‖

. (3.7)

Because of the behavior they cause to the deformable object, these forces are called Distance

Preservation Forces; they coincide with the forces from Hooke’s Spring Law in [Erleben et al. 2005].

Another kind of internal forces computed in our approach are the so called Volume

Preservation Forces Fv, which can mimic bending forces. Given a tetrahedron composed

of point masses pi, pj, pk, pl (see Figure 3.1); edges defined as the vectors e1 = pj − pi,

e2 = pk − pi, e3 = pl − pi, and constraints from potential energy in Equation 3.5 written as

CV (pi, pj, pk, pl) =
1

6
e1(e2 × e3)− V0, these forces over the four particles can be defined as:

FV (xi) = kV CV (e2 − e1)× (e3 − e1)

FV (xj) = kV CV (e3 × e2)

FV (xk) = kV CV (e1 × e3)

FV (xl) = kV CV (e2 × e1). (3.8)

Analogously to previous displayed forces, these forces are called Volume Preservation Forces;

they can mimic bending forces. These forces are equivalent to those used to obtain the volume

preservation behavior in [Georgii et al. 2005].

3.3.1 Damping Forces

“A dissipative force is one for which energy of the system decreases when motion takes places”

[Eberly and Shoemake 2004]. In this sense, Damping Forces are dissipative forces that oppose

the movement of particles in the system. They act like friction forces in the direction contrary

to the velocity but they should not slow down the movement of the whole system. Equation 3.6

applying a damping effect can be written as:

F i(p0, ..., pn−1; v0, ..., vn−1) = (−kC − kd
∑

0≤j<n

∂C

∂pj
vj)

∂C

∂pi
, (3.9)

16

Mathematical Model and Simulation · 17

with vi denoting the velocity of a mass point and kd denoting the damping coefficient. Then, the

distance preservation forces from Equations 3.7 result the same as the Hooke’s Law for damped

springs in [Erleben et al. 2005]:

FD(xi) = −FD(xj) = −

[

kD (‖ xi − xj ‖ −L) + kd
(xi − xj) · (vi − vj)

‖ xi − xj ‖

]

xi − xj
‖ xi − xj ‖

, (3.10)

where the damping parameter controls how the deformation energy of an object is reduced

during dynamics simulations. Damping forces can improve the stability of the system because it

is taken to its resting state. In [Teschner et al. 2004] the authors argue that they obtained stable

simulations considering damping only within the distance preservation forces. Experiments done

in this work showed that applying damping to volume preservation forces in addition to distance

preservation forces can help for simulation of geometrically complex volumetric objects, such as

those in the Figure 5.1. The implementation done for the above purpose do not follow exactly

the Equation 3.9. An approach based on Equation 3.10 has been developed. The relative

velocities between the six pairs of the four particles per tetrahedron projected over the volume

preservation forces direction are considered:

FV (xi) =

[

kV CV − kd
(3vi − vj − vk − vl) · ((e2 − e1)× (e3 − e1))

‖ (e2 − e1)× (e3 − e1) ‖

]

(e2 − e1)× (e3 − e1)

‖ (e2 − e1)× (e3 − e1) ‖
,

(3.11)

analogously, forces on particles j, k, l are computed. This formulation got better results(see

results in Section 6) than the one in Equation 3.9 and than the one which considered only

damping within distance preservation forces .

3.3.2 Deformation Limits

If a real spring is forced to an extremely large deformation it does not recover its original length.

This shows that springs have deformation limits. In physically-based simulations, to neglected

this limits can cause a problem of stiffness1. In order to achieve stable simulations a position-

based strain limiting technique has been implemented. This is a geometric-based solution to

simulate deformation limits. The procedure is to correct the positions of connected particles if

the distance between them is greater than a fixed proportion from their initial separation:

if ‖ xi − xj ‖ > αL then

x̂i = xi +
mj

mi +mj

(‖ xi − xj ‖ −αL)
xi − xj

‖ xi − xj ‖

x̂j = xj −
mi

mi +mj

(‖ xi − xj ‖ −αL)
xi − xj

‖ xi − xj ‖
. (3.12)

1These type of problems arise when the differential equation associated to the problem have two or more
functional terms that have widely different scales[Eberly and Shoemake 2004].

17

18 · Real-Time Physically-Based Deformable Objects Simulation

where L is the resting distance between the particles i, j; x̂i, x̂j are their resulting positions.

The position correction is done over the spring direction. The above formulation tries to include

physical behavior moving more the particles with the smallest mass. The linear and angular

momentum of the object is preserved because only internal forces are affected.

3.4 Mass Distribution

The physic properties of the particles that compose a volumetric object determine the object

behavior during physically-based simulations. Therefore, in order to achieve realistic animation,

the total mass of a virtual model has to replicate the total mass of the real object. A principle for

homogenize volumetric solids is that, to bigger volume correspond greater mass; consequently, a

mass distribution based of the model volume discretization has been implemented. Point masses

that are common to many tetrahedron have more mass than others. The mass of a particle i is

computed as:

mi =

∑
j∈i vj

ni

∑T
t=0

∑
j∈i vj

ni

M, (3.13)

where
∑

j∈i vj

ni
is the average volume of all tetrahedra which have the particle i as node; the

denominator of Equation 3.13 is the total sum of the average volume corresponding to each

particle; M is the object mass. The above mass distribution allows stable simulations of

deformable objects with irregular topology or non-uniform shape.

3.5 Numerical Integration

To simulate the dynamic behavior of the deformable model developed in this work, Newton’s

law of motion Equation 3.2 is computed for each particle. Newton’s law of motion is an ordinary

differential equation (ODE) of second order, but can be rewritten as a system of two coupled

equations of first order:

vt = ẋt

Ft = mv̇t, (3.14)

where Ft is the total force acting on a particle and xt, vt are functions that describe the

motion of a particle, representing the particles position and velocity respectively. These are the

quantities required for physically-based animation. The sub-index ti denotes a discretization

of the above functions with respect to time, e.g. xt0, vt0 are the initial values. Given the

initial values, Equations 3.14 belongs to a class of problems called initial values problems.

18

Mathematical Model and Simulation · 19

Several explicit numerical integration methods (EM) were implemented in this work to solve

numerically the raised problem. Although, EM are in general only conditionally stable2, they

fit better than implicit ones for data-parallel computing3 because no linear equations system

have to be solved and therefore no data transfer is needed. Beside, parallelism is useful because

a real-time application is desired, EM were chosen. Stable simulations are obtained combining

some techniques described above (damping forces, strain limiting and mass distribution) with a

appropriate time step (h) for the EM.

In this work four EM where implemented in order to compare their performance. These are

(1)Euler,(2)Midpoint,(3)Verlet and (4)Euler-Cromer. The first method implemented is Euler’s

Method. The numerical integration step from t to t + h for updating position and velocity, is

written as:

xt+h = xt + hẋt = xt + hvt

vt+h = vt + hv̇t = vt + h
Ft

m
. (3.15)

The position update depends on velocity; the force update generally depends on the position

and on the velocity. This method is not accurate (O(h)) and h must be close to zero to achieve

numerical stability.

Another implemented method is the Midpoint Method or Second-Order Runge-Kutta.

Position and Velocity updates are given as:

vt+h
2

= vt +
h

2

Ft

m

F
t+h

2

= f(xt +
h

2
vt, vt+h

2

)

xt+h = xt + hv
t+h

2

vt+h = vt + hFt+h
2

, (3.16)

This method has O(h2) accuracy but additional operations have to be done to compute vt+h
2

and F
t+h

2

.

The third one implemented method is Verlet Method. An important difference with the

previous methods is that Verlet’s method computes the new position value without any explicit

velocity information. The position at time t+ h is calculated using position at time t, position

at time t− h and the total force at time t:

2EM requires small time steps to not increase the error in the result (Sometimes, are impractical time steps).
3A programming paradigm in which the same analysis code is applied simultaneously to different data elements.

19

20 · Real-Time Physically-Based Deformable Objects Simulation

xt+h = 2xt − xt−h + h2
Ft

m

vt+h =
xt+h − xt−h

2h
. (3.17)

The accuracy of position computation is O(h4) and for velocity is O(h2). This high accuracy

allows to use a larger time step in comparison with other EM.

The last method implemented is the Euler-Cromer’s Method, which is a semi-implicit

method. The velocity is computed as in Euler’s Method but for computing the new position the

updated velocity information is used:

xt+h = xt + hvt+h

vt+h = vt + h
Ft

m
. (3.18)

The obtained accuracy is as low as that of the Euler’s Method, but the semi-implicit scheme

gets more numerical stability, see [Burden and Faires 2011].

Results and comparison between the above methods are given in Section 6. Also, specific

considerations for their GPU implementation with OpenGL is detailed in Section 5.

3.6 Algorithm

A new algorithm for mass-spring system modeling was developed in this thesis. In general,

this algorithm can be seen as a combination of the element-centric4 and edge-centric5 approach

proposed in [Georgii 2008] for mass-spring system implementation on GPU. If only an element-

centric approach is employed, the computation of Distance Preservation Forces is performed

more than once over common edges to several tetrahedrons. This affects the accumulated force

of point masses joined by theses edges. Moreover, applying only the edge-centric approach (only

with the tetrahedra edges) volume preservation behaviour can not be achieved.

The CPU implementation of the Algorithm 3.6 is straightforward, but in the case of GPU

implementation several data structures have to be designed and specific memory issues have to

be considered. Section 5 gives a detailed explanation of these implementations. The complexity

of the Algorithm 3.6 is (O(v + e + tr)) where v is the number of vertices, e is the number of

edges and tr is the number of tethahedra of the object mesh. The pseudo-code listed is a general

algorithm for mass-spring system simulation of volumetric deformable solids. However, some

4Every tetrahedron maintains references to its four points, spring stiffness and rest volume.
5Every edge maintains references to both incident points, spring stiffness and rest length.

20

Mathematical Model and Simulation · 21

Algorithm 3.1: Mass-spring system simulation

Input: A tetrahedral mesh of the object
repeat1

foreach mass point i in mesh do2

initialize total force accumulator Fi of vertex xi.3

end4

foreach tetrahedron t in mesh do5

compute volume-preservation force over each mass point in t.(Equations on 3.8).6

add the computed force to each vertex total force accumulator.7

end8

foreach edge e in mesh do9

compute distance-preservation force over both mass point in e.(Equations on 3.7).10

add the computed force to both vertex total force accumulator.11

end12

foreach mass point i in mesh do13

update vertex position xi, using any of EM described in Section 3.5.14

end15

until simulation ends ;16

modifications had to be done in specific cases, e.g. if the Midpoint Method is used for position

update computation, another two cycles have to be added to compute the volume and distance

preservation forces.

21

4
Computational Tools

With the aim of getting a real-time application, a data-parallel programming paradigm is

employed to implement the algorithm proposed in this thesis for mass-spring system simulation.

Some of the most recent features of graphics hardware have been exploited, a few of which will

be described in this chapter.

4.1 GPU Architecture and Functionality

Early generations of graphics processors were intended only for rendering tasks such as:

illumination, shading and texturing of triangles, etc. Special-purpose fixed-function engines

(e.g OpenGL) were implemented in hardware making it impossible to use these chips in non

rendering applications. Since then, the hardware of GPUs have had a huge developed1.

As Kirk and Hwu pinpoint in their book [Kirk and Hwu 2010] (Figure 4.1), a modern GPU

is organized into an array of highly threaded streaming multiprocessors(SMs), two SMs form a

building block. Also, each SM in Figure 4.1 has a number of streaming processors (SPs) that share

control logic and instruction cache. Each GPU currently comes with up to 4 gigabytes of graphics

double data rate (GDDR) DRAM, referred to as global memory in Figure 4.1. These GDDR

DRAMs differ from the system DRAMs on the CPU motherboard in that they are essentially

the frame buffer memory that is used for graphics. For graphics applications, they hold video

images, and texture information for three-dimensional (3D) rendering, but for computing they

1 The GPUs computational power is growing 2-3 times faster than Moore’s Law [Georgii 2008].

22

Computational Tools · 23

Figure 4.1: Architecture of a Modern GPU. [Kirk and Hwu 2010]

function as very-high-bandwidth.

The current design of GPU and its computational power has allowed its use for the

implementation of general-purpose computing applications (labelled as GPGPU for the scientific

community). Recently, several Application Programming Interfaces (APIs), with their own

programming languages, have been created to develop GPGPU applications, e.g. CUDA and

OpenCL. Also, APIs which were originally designed only for CG applications, such as Direct3D,

OpenGL, etc., have included features to bring on GPGPU to their users, e.g. Compute Shaders

(similar to Cuda or OpenCL kernels) introduction in OpenGL 4.3. Modern GPUs support both

single and double precision floating point, and they outperform current CPUs with respect to

memory bandwidth and floating point operations (see Figure 4.2).

4.2 OpenGL

The main computational tool used to implement the knowledge gained during this research is

OpenGL2, an API for accessing features in graphics hardware. OpenGL is widely used in the

industry, from game to virtual reality and it is supported on a wide variety of platforms: from

mobile phones to supercomputers.

In the latest edition of the official OpenGL reference book, also know as the Red Book,

Shreiner et at. introduce OpenGL in the following way: OpenGL is designed as a streamlined,

2More information at http://www.opengl.org .

23

24 · Real-Time Physically-Based Deformable Objects Simulation

Figure 4.2: Performance between GPUs and CPUs.[Kirk and Hwu 2010]

hardware-independent interface that can be implemented on many different types of graphics

hardware systems, or entirely in software (if no graphics hardware is present in the system)

independent of a computer’s operating or windowing system. As such, OpenGL doesn’t include

functions for performing windowing tasks or processing user input; instead, your application will

need to use the facilities provided by the windowing system where the application will execute.

Similarly, OpenGL doesn’t provide any functionality for describing models of three-dimensional

objects, or operations for reading image files (like JPEG files, for example). Instead, you must

construct your three-dimensional objects from a small set of geometric primitives –points, lines,

triangles, and patches.[Shreiner et al. 2013].

OpenGL has been in development for almost two decades, since its first release in July

1994. Significant changes have been done from the first versions to the latest ones. These

include the replacement of fixed functionalities by programmable ones with the introduction of

a specific programming language: the OpenGL Shading Language(GLSL). Generally speaking,

an application using the modern OpenGL API can be describe in three steps: (1) data flow

from CPU application to GPU; (2) data pass trough a sequence of processing stages in the

GPU (Rendering Pipeline); (3) a rendered image is obtained. For the present work OpenGL

4.2 (released on August 8, 2011) was employed, then many of features described in following

sections are dependent on this version.

4.2.1 OpenGL Shading Language(GLSL)

The GLSL is a high-level programming language used to encode the programmable stages of

OpenGL Rendering Pipeline, see Figure 4.3. It is a C-like language that has evolved together

24

Computational Tools · 25

Figure 4.3: OpenGL 4.2 GLSL Specification [Cozzi and Riccio 2012].

Vertex Shader
Fragment
Shader

Geometric
Shader

Program Object Program Object

Program Pipeline Object

Figure 4.4: Program Pipeline Object Set Up.

with OpenGL since its release with OpenGL 2.0 in 2004. Files written in GLSL are loaded to

OpenGL objects called shaders, these represent the programmable stages (mentioned above) and

allow the compilation of the GLSL code. OpenGL shaders objects are attached to an OpenGL

program object. It represent the compiled executable code, in GLSL, for one or more shaders

objects and to link them to check if output of the previous stage corresponds to the input of the

next one; e.g if the vertex shader output match with the fragment shader input or other optional

shader following it. At the same time, OpenGL provide an object called program pipeline, that

is a container of program objects; it allows to use multiple different program objects to set up

all the programmable stages of the OpenGL Rendering Pipeline (the sequence of procedures to

convert 3D data into a 2D image); with the program pipeline objects is possible to reuse and to

combine the shaders objects in several program objects. The diagram in Figure 4.4 illustrates

the above description.

With the current capabilities of GPUs, latest releases of GLSL have added several features

25

26 · Real-Time Physically-Based Deformable Objects Simulation

Figure 4.5: The OpenGL 4.X Rendering Pipeline [Angel and Shreiner 2011]

.

that allow GPGPU use the rendering pipeline: e.g. now it is possible to read/write to textures

and to do atomic arithmetic operations over data through image objects. Because of this, it has

been possible in our work, to do physically-based simulation with the same library that is used

in the graphical part, avoiding the inclusion of additional computational tools.

4.2.2 Rendering Pipeline

The latest OpenGL Rendering Pipeline is shown in Figure 4.5. It represents an state machine

where data provided by the application are processed. Boxes labelled as Shader are completely

programmable stages using GLSL. First, data are passed from application to GPU (vertices

and geometric primitives); then, data are processed through a sequence of shader stages:

Vertex Shader, both Tessellation Shader and Geometry Shader; after this, the rasterizer3 (not

programmable yet) generates fragments for any primitive that is inside of the clipping region4;

finally, a Fragment Shader process each generated fragment. The programmer has the control of

which shader stages to employ and what they do. Not all shader stages are required, in general

only Vertex and Fragment Shader must be included5, the other are optional. In the following

paragraphs, these stages used in this work are described in detail:

• Vertex Shader: For each vertex provided by the application the Vertex Shader is executed

(in parallel) to process its respective information. Routines that are commonly done at

this stages are: computation of vertex position (it generally implies to use transformation

matrices); determining the vertex color using lighting computations; etc. No new vertex

can be generated or existing one be removed, but additional information can be passed to

next stages using vertex attributes (Section 4.2.1).

• Geometry Shader: Processes individual geometric primitives before rasterization, including

to create new primitives and to transform or to remove them (e.g. convert triangles to

3To transform a virtual 3D scene in a 2D image.
4Region inside the viewing-volume considered in a CG application.
5When rasterizer is disabled, Fragment Shader can be omitted.

26

Computational Tools · 27

lines). In this stages all vertices of a primitive (and its information from previous stage)

are accessible. Applications related with transform the shape of and object, e.g removing

geometry based on some criteria, are straightforward in this shader.

• Fragment Shader: Determines the fragment final color and depth. In this stage a

programmable control over the fragment color based on its screen position is allowed.

Also, it is possible to determine which fragment can be drawn or not (fragment discard).

Efficient shading techniques are implemented in this shader stage, e.g. deferred shading

(only visible vertices are illuminated).

Each one of the above steps runs in parallel on the SPs of the GPU, one per each instance

that they process. It means: Vertex Shaders run in parallel, one per each vertex stemmed by

OpenGL; Geometric Shaders run in parallel, one per each geometric primitive specified as input;

Fragment Shaders run in parallel, one per each fragment resulted from previous step. These

features make OpenGL a useful tool for high performance graphics applications.

A lot can be written about OpenGL and GLSL, but it is out to the goal of this thesis. This

session is an attempt to introduce the computational tool and the subset of features used in this

work.

27

5
Implementation

With OpenGL as the principal computational tool (Section 4.2), in this work a c++ application

was implemented. To display the images produced with OpenGL, the open source library

FreeGLUT 1 was employed for managing the windowing system. For the purpose of comparing

computing time2, two different implementations of the algorithm 3.6 were done, one using C++

to run in CPU3 and other using OpenGL Shaders (Section 4.2.1) to run in GPU4. In both cases

the rendering part was done rather similar using OpenGL. In the following sections, the key

issues during the implementation process are described in detail. Also, all the tools that were a

useful support for extra tasks, as preparing the input tetrahedral meshes (e.g. holes filling), are

mentioned.

5.1 Tetrahedral Meshes

The mass-spring system developed in this work is designed to work with volumetric solids

represented as a tetrahedral mesh. The algorithm implemented receives a tetrahedral mesh

as input. The mesh data are read from two text files: one lists all vertices, where the first line

is the count of vertices and the remaining lines are the cartesian coordinates (x,y,z) of each

vertex, one line per vertex. The other lists all tetrahedra, using the same format as the first

file: the first line is the count of tetrahedra and the rest lines are four indices referencing four

vertices positions in the list of vertices, that represent the nodes of a tetrahedron, also one line

1http://freeglut.sourceforge.net .
2The hardware used in this work was composed of a PC armed with Intel Core i7 Processor, 8GB of RAM

and a Nvidia GeForce GT 640 graphic card.
3This will be referred as CPU implementation.
4This will be referred as GPU implementation.

28

Implementation · 29

(a) Cube (b) (c) Bunny (d)

(e) Dragon (f) (g) Armadillo-Man (h)

Figure 5.1: Triangular Meshes and its volumetric discretization in tetrahedra.

per tetrahedron.

Mesh Vertices Tetrahedra Edges

Cube 3041 15484 19706

Bunny 4742 19507 27452

Bunny2 7133 35081 45417

Dragon 25156 102453 143704

Armadillo-Man 33276 145835 197798

Table 5.1: Tetrahedral Meshes Description. Columns 1, 2, 3 show the numbers of vertices (point masses
or particles), tetrahedra and edges respectively. Bunny2 is Bunny refined.

Figure 5.1 shows example input tetrahedral meshes used in this work which are described in

the Table 5.1. Tetrahedral meshes are obtained from triangular meshes5 using the tool: TetGen6.

However, poor quality meshes (having tetrahedra of zero volume, edges of zero length, holes,

etc.) can affect the numerical stability of simulations. While TetGen does not give tetrahedra of

zero volume or edges of zero length, for high resolution triangular meshes it can return volumes

or lengths in the order 10−9 or less. To avoid these problems triangular meshes are scaled; also,

the tool MeshLab7 is employed for hole filling and to get low resolution triangular meshes from

high resolution ones. But, still there may remain problems regarding high differences with the

5Triangular meshes used in this work came from http://www.cc.gatech.edu/projects/large models .
6http://wias-berlin.de/software/tetgen .
7http://meshlab.sourceforge.net .

29

30 · Real-Time Physically-Based Deformable Objects Simulation

scale of the inverses of point masses, tetrahedra volumes and edges lengths when using irregular

meshes. In order to illustrate the above differences, frequency histograms of the point masses

inverse, tetrahedra volumes and edges lengths are presented in Figure 5.2.

As the point masses are set depending on the volume distribution (Section 3.4), to very

small tetrahedra correspond very small point masses values, and therefore huge values of the

inverses of the point masses: e.g. the Figure 5.2 shows that the dragon range of the values of the

inverses of the point masses reaches 1.2e + 10. Huge values of the inverses of the point masses

cause unstable numerical simulation because they are factor of the total force over a particle in

the position update formulation, see the Section 3.5. Therefore, an artifice used in this work to

obtain stable numerical simulations is to truncate the largest values of the inverses of the point

masses: first, a mass quantity (kg) is given to distribute it between all particles of a mesh; then,

all the values of the inverses of the point masses greater than a prefixed value are truncated to

this value. Table 5.2 shows the values employed to produce stable simulations and the results

described in Section 6. The meshes with the “worst” histograms in Figure 5.2 have higher

percent of values of the inverses of the point masses over the truncation value. The value “· · · ”

means that no values were truncated. The Sub-figures with caption Mass Inverse Truncated

in the Figure 5.2 represent the values of the inverses of the point masses after they were truncated.

Mesh Mass Max Mass Inv. Trunc. val Over Percent

Cube 50 143.04 · · · 0 0

Bunny 75 9739.69 500 55 1.2

Bunny2 100 7667.24 500 93 1.3

Dragon 200 1.34e + 10 250 16204 64.4

Armadillo-Man 200 5.59e + 09 2000 13108 39.4

Table 5.2: Mass configuration set up to tetrahedral meshes. The second column is the mass quantity to
be distributed between all particles of the object; third column is the maximum mass inverse value after
distribution; fourth column is the value at which masses inverse values are truncated; fifth column is the
amount of particles that have mass inverse value greater than the truncation value and the last column
is what percent from all system particles represents the quantity in column 5.

5.2 Memory Management

For the CPU implementation the memory management is done in an ordinary way. Data are

read to RAM Memory and they are stored in lineal arrays in order to optimize memory space.

This is important because data are always loaded to RAM Memory, even if they are transferred

to GPU for GPU implementation. Cases of huge data amount, where the RAM Memory is not

enough to store them, are out of the scope of this thesis but are considered as future work. Data

are loaded in RAM as:

• A floating point array to store vertices coordinates (x, y, z). These are taken as the vertices

30

Implementation · 31

(a) Cube histograms

(b) Bunny histograms

(c) Bunny2 histograms

(d) Dragon histograms

(e) Armadillo-Man histograms

Figure 5.2: Meshes Quality Histograms. Less disproportionate histograms indicate higher quality meshes:
e.g. cube and bunny.

31

32 · Real-Time Physically-Based Deformable Objects Simulation

initial positions and do not change during simulation time.

• An unsigned integer array to store tetrahedral nodes.

these are read from hard drive (Section 5.1), and their dimensions are 3 × vertices count and

4× tetrahedra count respectively. Additionally memory is reserved for:

• edges: an unsigned integer array of dimension 2× edges count to store only once all mesh

edges. An algorithm was designed to get all edges given a tetrahedral mesh (see Algorithm

5.1).

• mass: a floating point array of dimension vertices count to store the mass of each particle.

Actually, the inverse of the mass is saved instead of the mass in order to get better

performance on the simulation, avoiding unnecessary computations.

• distance: a floating point array of dimension 3 × vertices count to store the distance

covered for each particle (in x, y, z) since the start of the simulation.

• velocity: a floating point array of dimension 3 × vertices count to store the velocity

(vx, vy, vz) of each particle.

• force: a floating point array of dimension 3 × vertices count to store the total force,

excluding the gravitational force, over each particle. Instead of using gravitational force,

the gravitational constant g is employed explicitly as acceleration in each numerical

integration step. Thus, a multiplication operation is avoided gaining in performance and

in numerical correctness.

Algorithm 5.1: Find all edges from tetrahedral mesh

Input: A tetrahedral mesh of the object
std :: vector < uint > matrix edges[vertices count− 1]1

for i = 0 to vertices count− 1 do2

matrix edges[i] = std :: vector < uint > ()3

end4

foreach tetrahedron t in mesh do5

sort the four indices in tetrahedron nodes6

add indices in tetrahedron nodes to matrix edges7

end8

edges = new uint[edges count]9

edge index = 010

for i = 0 to vertices count− 1 do11

for j = 0 to matrix edges[i].size() do12

edges[edge index++] = i13

edges[edge index++] = matrix edges[i][j]14

end15

end16

In the Algorithm 5.1, matrix edges (line number 1) is a data structure where per each vertex

in the mesh, there is a list of its connected vertices. These connected vertices are inserted in

order according to their index while browsing through the tetrahedra (function in line number

32

Implementation · 33

7). For two connected vertices i, j with i < j, only the index j is added to the list of vertex i;

so it is guaranteed that the same edge is inserted just once.

For the GPU implementation, memory inside the device is employed to avoid the data

interchange between RAM and GPU. This allows a better performance because no time is spent

in data transfer; data remain in the GPU during the whole simulation time. The type of memory

chosen for storing the information inside the GPU (see in Figure 4.1), is an important issue to

consider in the design of a solution because it can affect the application performance: e.g.

accessing global memory is slower than accessing local memory. The OpenGL objects used for

the GPU implementation have been set with this in mind:

• Vertices coordinates, masses, edges and tetrahedral indices are stored in GPU using buffer

objects (described below).

• The whole information of distance, velocity and force are stored in GPU using textures

(described in the following paragraphs).

Buffer Objects are defined in [Shreiner et al. 2013] as just chunks of memory managed by

OpenGL server8. The usage mode of a buffer object is defined when it is created trough a target

parameter. The buffer objects to store the vertices coordinates and masses are targeted as

GL ARRAY BUFFER. So, at run time in the vertices processing step in GPU (see OpenGL

Rendering Pipeline in Section 4.2.2), the coordinate and mass associated to each vertex are

accessible from local memory by the Vertex Shader processing it. Moreover, the buffer objects for

storing edges and tetrahedral indices are targeted as GL ELEMENT ARRAY BUFFER.

These indices represent references to the current information (vertices coordinates, point masses

values) which is stored in GL ARRAY BUFFER, allowing to save memory. As result, at

run time in the geometric primitives processing step, the whole information associated with

the vertices present in a geometric primitive (an edge or a tetrahedron) is accessible as local

memory by the Geometric Shader. Furthermore, the buffer objects are set up with the parameter

GL STATIC DRAW, which means that they are populated with data only once and that these

data are used many times in the GPU.

Textures are defined in [Shreiner et al. 2013] as large chunks of image data that can be used

to paint the surfaces of objects to make them appear more realistic. However, for many more

purposes, e.g in this work they are used as data containers with the required information to

perform the simulation. The OpenGL version employed in this implementation (4.2) allows the

data stored in textures to be accessible as global memory at any step of the rendering pipeline.

This is possible through the OpenGL objects called images, that are bounded to the textures.

This binding can be done at compiling or run time. Formatted data can be stored directly

in textures only by specifying a format to the texture. Floating point data of distance and

velocity are stored in GL RGB32F 2D texture, a two dimensions texture with three channels

8In many references, OpenGL API is presented as a client-server architecture where the server is the GPU;
and the client is the part that runs in CPU making requests to the GPU.

33

34 · Real-Time Physically-Based Deformable Objects Simulation

of memory that contains 32-bits floating point data. Force data are stored in a GL R32F 2D

texture, equivalent to the one describe above with only one channel. OpenGL images objects

allows us to do atomic operations over data in textures. In this work: atomic read/write to

texture that stored position information is done from the Vertex Shader for updating particles

position; atomic add to texture that store force information is done from the Geometric Shader

for gathering the force over each particle (details in Section 5.4). The atomic add operation

is an special case because the standard OpenGL only implements it (at its last version 4.3)

over integer or unsigned integer textures. There are two options for doing it over floating point

textures: (1) to write a function that encapsulates floating point numbers in integers as the

one presented in [Crassin and Green 2012]; (2) to use a specific vendor extension, e.g. in this

work GL NV shader atomic float extension from NVIDIA is employed. The use of a specific

vendor extension gives better performance because it offers a hardware implementation, but it

requires the use of a specific hardware: the current implementation is restricted to the use of

NVIDIA hardware.

5.3 Numerical Simulation

The issues to deal with floating point numbers is a well discussed topic in the area of numerical

mathematics. In this work the main issue to overcome was comparing floating point numbers for

near equality. To reduce the effect of numerical errors, the distance covered by each particle is

considered instead absolute position, for internal force calculation. But even so, numerical errors

rise: e.g. for an object in free fall, the distance between connected particles differs a bit from

their resting distance after few simulation steps. The numerical error that produces the above

difference is: given the floating point numbers A,B, γ the operation [A−B == (A+γ)−(B+γ)]

is not always true, e.g when γ is too small in comparison with A or B. This error can cause

unexpected internal forces producing unstable simulations. The following code illustrates the

gap with 32 floating point numbers:

int a = 1.1f;

return ((a + a + a) - 3.3f);

the return value is around 2.38419e − 07. To deal with the issue of comparing floating point

numbers for near equality in this work, the advice given by D. Knuth in [Knuth 1997] and

enunciated by Chris Lomont9 is followed: a good floating point routine should claim two floats

are nearly equal not if their absolute error10 is bounded by a tolerance, but if their relative

error11 is bounded by some tolerance. So, the following function is used:

bool KnuthCompare(float a, float b, float relError)

{

return (abs(a-b) <= relError*max(abs(a),abs(b)));

9http://www.lomont.org/Math/Papers/2005/CompareFloat.pdf .
10given to numbers a, b the absolute error is |a− b| .
11given to numbers a, b the relative error is |a−b|

|a|
.

34

Implementation · 35

}

using ≤ instead < ensures that the function works correctly in the case a = b = 0.0f . There is

not a specific way to figure out a good value for relError. In this work good results have been

obtained with relError = 1.0e − 06.

5.4 Algorithm Implementation

The CPU implementation of the Algorithm 3.1 is straightforward. The key issue of this

implementation is the transfer of data from RAM to GPU for the rendering task. Because of

the simulation runs in CPU, computed distance information has to be sent to GPU to visualize

the results. Fortunately, for performance purposes, data transfer is needed only in one direction:

from RAM to GPU. To achieve this the technique described in [Hrabcak and Masserann 2012] is

used (Buffer Respecification (Orphaning)). This consists in calling the function glBufferData to

fill data in buffer object with a NULL pointer and after recall specifying the data. The following

code shows this technique:

glBindBuffer(GL_ARRAY_BUFFER , my_buffer_object);

glBufferData(GL_ARRAY_BUFFER , data_size, NULL, GL_STREAM_DRAW);

glBufferData(GL_ARRAY_BUFFER , data_size, mydata_ptr, GL_STREAM_DRAW);

For the GPU implementation four OpenGL program pipeline objects (Section 4.2.1) were

developed, three for the physically-based simulation an one for the rendering. An overall of

eight shaders were written for the four program pipeline objects:

• Program pipeline for distance preserving force computation: vertex and geometric shader.

• Program pipeline for volume preserving force computation: vertex and geometric shader.

• Program pipeline for position updating: vertex shader.

• Program pipeline for rendering: vertex, geometric and fragment shader.

Each simulation step executes three OpenGL rendering commands12, each one with its respective

program pipeline object bound:

The first command is for distance preserving force computation: glDrawElements with

a buffer object containing the edges (Section 5.2) bound. This command executes, in parallel,

a vertex shader per each vertex from the edges list. In this step information of position and

mass13 is read from buffer objects and information of distance and velocity is read from textures

through image objects. After, the information is sent to the next step: the geometric shader,

which is executed, also in parallel, once per edge. Now, in this new step, with the information of

both vertices of an edge, distance preserving force is computed (Equation 3.7) and written to the

force texture, also through image objects. With the option GL RASTERIZER DISCARD

12An OpenGL function that triggers the rendering pipeline in the GPU .
13Mass information is used to apply strain limiting, Section 3.3.2 .

35

36 · Real-Time Physically-Based Deformable Objects Simulation

enabled, the pipeline is truncated after the geometric shader step.

The second command is for volume preserving force computation (Equation 3.8), it is also

glDrawElements but now a buffer object containing the tetrahedra is bound. This command

executes analogously to the previous one described. Also the pipeline is truncated using the

option GL RASTERIZER DISCARD, to avoid the rendering stage.

The third command is to update the point masses position: glDrawArrays. This command

executes in parallel a vertex shader per each vertex of the mesh. In this step the position

updating is achieved solving a numerical integration method (Section 3.5). For the Verlet

Method: information of distance, previous distance, velocity and force is read from textures;

then a numerical step is computed (Equation 3.17). Finally, the results are saved to textures.

This time only the vertex shader step is needed, and the pipeline is truncated in a similar way

to the previous commands.

5.4.1 Rendering

The implementation of the rendering part is rather similar for the CPU and the GPU simulation.

This thesis is focused in physically-based simulation, so not advanced rendering technique

was implemented but it is considered as future work. The rendering command called is

glDrawElements with a buffer object containing the tetrahedra bound. In the vertex shader

information of position is sent to the geometric shader that receive primitives of the type

lines adjacency and produces triangle strip with four triangles that represent the face of

a tetrahedron. In this step the normals of the tetrahedron vertices are computed and sent to

the fragment shader. In the fragment shader the final color of each pixel is determined applying

the Phong Illumination Model ([Phong 1975]).

In order to achieve the best performance, the underlying implementation of memory

transactions in OpenGL is caching-based. This implies that: e.g. in a simulation step

the second command can begin its execution while the information written by the first

command in not in the texture yet, causing an undefined simulation behaviour. To solve

this issue a memory barrier provided by OpenGL is used. The function glMemoryBarrier

defines a barrier ordering memory transactions issued before the command relative to those

issued after the command. Memory transactions performed by shaders are considered to be

issued by the rendering command that invoked the execution of the shader. The parameter

GL SHADER IMAGE ACCESS BARRIER BIT specifies that data read from an image

variable in shaders executed by commands after the barrier should reflect data written into those

images by commands issued before the barrier [Shreiner et al. 2013]. A memory barrier is placed

between each of the above rendering commands.

36

Implementation · 37

Vertex Processing
(vertex shader)

Primitive Processing (Eq. 3.7)
(geometric shader)

distances
read texture

velocitiesread texture

forceswrite texture

truncated pipeline

Memory barrier

Vertex Processing
(vertex shader)

Primitive Processing (Eq. 3.8)
(geometric shader)

distances
read texture

velocitiesread texture

forceswrite texture

truncated pipeline

Memory barrier

D
is

ta
n

c
e

 P
re

s
e

rv
a

ti
o

n

F
o

rc
e

s
 C

a
lc

u
la

ti
o

n

V
o

lu
m

e
 P

re
s
e

rv
a

ti
o

n

F
o

rc
e

s
 C

a
lc

u
la

ti
o

n

Vertex Processing (Eq. 3.17)
(vertex shader)

distances

read/write texture

velocities
read/write texture

forces

read texture

truncated pipeline

Memory barrier

P
o

s
it
io

n
s

U
p

d
a

te previous
distances

read/write texture

Vertex Processing
(vertex shader)

Primitive Processing
(geometric shader)

distances
read texture

Fragment Processing
(fragment shader)

Final image

P
h

y
s
ic

a
lly

-B
a

s
e

d
 S

im
u

la
tio

n
R

e
n

d
e

rin
g

Figure 5.3: Diagram of the GPU implementation described in this section.
37

6
Results and Discussion

The implementations (CPU and GPU) described in the Section 5 were tested several times

with the tetrahedral meshes in Figure 5.1. The experimental proposed to demonstrate the

performance of the volumetric deformable solids simulation implemented, is to drop an object in

free fall from a given height over a flat floor. For this experiments we have not considered friction

forces between the floor and the deformable object. Although this work does not cover collision

detection response between rigid and deformable objects or between deformable and deformable

objects (neither self-collision of deformable objects), an strategy of collision detection response

between individual particles and the plane has been implemented. This strategy is applied

between each particle in the mass-spring system and the floor. When a point mass is found to

penetrate the floor (nf (xp−xf) < 0, where nf is the normalized floor normal, xf is the position

of a point in the floor plane and xp is the mass point position), it is projected out the floor

through its normal direction and its velocity is cancelled (no bouncing). This strategy is based

on the idea introduced in [Provot 1995].

The first results presented in this work show a comparison between the four numerical

integration methods exposed in Section 3.5, which were implemented in CPU. The numerical

simulations have been done with a cube of 1602 point masses, 7647 tetrahedra and 9997 edges.

The constants of distance and volume preservation forces (Equations 3.7 and 3.8) are set to 50

and the total mass1 to 50kg. Damping coefficients for distance and volume preservation forces

(Section 3.3.1) are both 0.1 for Euler and Midpoint methods; and 0.001, 0.01 respectively for

Verlet and Euler-Cromer methods. The Table 6.1 shows the results given when the Algorithm

1The Mass quantity to be distributed between all object particles.

38

Results and Discussion · 39

3.1 is executed using each of the numerical schemas in the update position routine (lines 13-15).

Also, the collision detection response is evaluated in this routine. In this work, the numerical

stability of each method is evaluated qualitatively according the behaviour of the deformable

objects in the simulation.

Method
CPU

comp. time time step ratio

Euler 9.6 3.0 0.313

Midpoint 14.3 3.5 0.245

Verlet 9.6 6.5 0.677

Euler-Cromer 9.6 6.5 0.677

Table 6.1: Comparison of Numerical Integration Methods. The first two columns show the average
of 1000 samples of computing time measured and the maximum time step which get stable numerical
simulation for each method (in milliseconds). The last column shows the ratio between the time step and
the computing time as a performance measure of the numerical integration schemes.

The Midpoint method gets the worse performance and, equal to the Euler method, requires

small time step to produce stable numerical simulation. The Verlet and Euler-Cromer methods

get better performance. From these results we decided to implement, only Verlet and Euler-

Cromer methods in GPU using GLSL (Section 4.2.1). Several simulations for each tetrahedral

mesh in the Figure 5.1 were executed with both methods. Computing time comparison between

the CPU and the GPU implementation is the content of the Section 6.1.

6.1 Computing Time

The Verlet and Euler-Cromer (Section 3.5) methods have some differences: the Verlet method

has accuracy O(h4) in position update calculation and the Euler-Cromer method O(h); the

Verlet method does not use velocity information for position update, but the Euler-Cromer

method use a semi-implicit scheme where position is updated using the velocity at the next

step; the Verlet method requires the information of previous step position which implies more

memory requirements than the Euler-Cromer method and, at least, two more accesses to textures

in GPU. The Verlet method does two multiplications and an add operation more than the Euler-

Cromer method to perform position update. Considering the above differences, the last two may

affect the computing performance. However, do not exist difference between the computing time

of these methods (in the scale of milliseconds), even for large meshes such as the Armadillo-Man

mesh (Table 5.1). The same computing time is obtained by both methods when using the same

tetrahedral mesh, in the CPU and the GPU implementation. Also, visually, the deformable

objects have the same behavior in the animations produced (Figure 6.2). These shows the

current optimization of arithmetic and memory access operations in CPU and GPU.

The Figure 6.1 shows the computing time comparison for each mesh between the CPU and

39

40 · Real-Time Physically-Based Deformable Objects Simulation

Figure 6.1: Computing time comparison between the CPU and the GPU implementation for each of the
presented tetrahedral meshes (Figure 5.1): (1) Cube, CPU:11.4ms, GPU:1.2ms; (2) Bunny, CPU:15.8ms,
GPU:1.8ms; (3) Bunny2, CPU:26.8ms, GPU:3.0ms; (4) Dragon, CPU:83.3ms, GPU:8.6ms; (5) Armadillo-
Man, CPU:115.2ms, GPU:11.8ms. These values are the average of 1000 samples of the physically-
based simulation time spent (including collision detection-response with the floor and deformation limits
verification, Section 3.3.2) for computing each step over each mesh. (Figure 6.2)

(a) Cube (b) (c) Bunny (d)

(e) Dragon (f) (g) Armadillo-Man (h)

Figure 6.2: Physically-based deformable objects simulation. Several videos of the
graphics application execution, implemented as part of this research, were produced
(http://www.youtube.com/channel/UC53I9Xk2XIWiShzoEcEb0eg). These figures are scenes of
those animations.

40

Results and Discussion · 41

Mesh
Frames per second

CPU GPU

Cube +60 +60

Bunny +60 +60

Bunny2 37 +60

Dragon 12 +60

Armadillo-Man 8 30

Table 6.2: Frames per second rate of the CPU and the GPU implementation. With the basic functionality
of freeglut only up to rate of 60 fps is possible. The value +60 means that the application fps rate in
greater than 60.

the GPU implementations. The GPU implementation shows an order of 10× speed up over

the CPU implementation. The computing time measured includes only the physically-based

simulation, but also the frames per second (fps) rate of the graphics application (displaying on

freeglut, Section 5) is computed and shown in the Table 6.2. The fps values with the computing

time values provide and overview of the time spent in the rendering process of huge meshes, e.g

the Armadillo-Man mesh takes only 11.8ms and because of it runs at 30fps, the rendering of

all tetrahedra takes around 21ms. The time of rendering process is not measured in this work

because its focus on the physically-based simulation.

6.2 Simulation Parameters

The Table 6.3 shows the parameter set up for distance and volume preservation forces (Equations

3.7 and 3.8) computing, over the meshes described in the Tables 5.1 and 5.2. With this

configuration and using non physically-based tricks such as strain limiting (Section 3.3.2) and

point masses values truncation (Section 5.1) stable and realistic physically-based deformable

solids simulation are obtained in this work (Figure 6.2). The Figure 6.3 reflects the effects of

forces configuration parameters: e.g. adjusting the constant of distance preservation force it is

possible to mimic solids of hard or soft materials; the sub-figures in the first row models a rigid

Bunny while the ones on second row models a soft Bunny which behaves as a melting object, it

has a large constant volume preservation force and a small constant of distance preserving force.

6.2.1 Parameters Selection

None of the references, about volumetric deformable objects simulation using mass-spring model,

studied during this research (Section 2.1.1) addresses the issue of the parameter selection or

estimation for archiving stable numerical simulation. In general, in most mass-spring deformable

objects publications, the physical parameters are determined through a trial and error approach.

Several works ([Baraff and Witkin 2003]) explain how to estimate the numerical error of the

41

42 · Real-Time Physically-Based Deformable Objects Simulation

Mesh
Dist.P forces Vol.P forces

step
const. damp. const. damp.

Cube 50 0.001 25 0.01 0.008

Bunny 50 0.001 20 0.01 0.005

Bunny2 50 0.001 20 0.01 0.005

Dragon 30 0.001 20 0.002 0.0025

Armadillo-Man 40 0.00001 20 0.001 0.0025

Table 6.3: Distance and volume preservation forces configuration parameters. Constant and damping
coefficient.

numerical integration schemes but there are not many published works about the determination

or estimation of the physical parameters in mass-spring deformable objects simulation: e.g.

only a recent work ([Natsupakpong and Çavuşoğlu 2010]) closed to this topic was found in this

research, in this work the authors obtain the point masses and the springs constant of a mass-

spring model taking as reference a closed finite element model that they solve. So, the above

arguments demonstrate that is a costly task and almost a harder problem to found the physical

parameters for stable physically-based simulation for mass-spring system. Here, the trial and

error approach is used jointly to a set of non-physical tricks, mentioned above. It is notable that

for “high quality meshes” (Figure 5.2) a wide set of physical parameters are available for getting

stable numerical simulation, but its difficult and time consuming to find a few for “bad quality

meshes” (such as the Dragon and Armadillo-Man meshes).

42

Results and Discussion · 43

(a) Rigid Bunny (b) (c) (d)

(e) Melting Bunny (f) (g) (h)

Figure 6.3: Distance and preservation forces configuration effect. Rigid Bunny has distance and
volume preservation forces constants 100 and 10, respectively. Melting Bunny has distance and volume
preservation forces constants 10 and 30, respectively.

43

7
Conclusions

The real-time physically-based simulation is a modern research topic due to the development of

current GPU and CPU architectures. Therefore, most references related to this topic cited in

this document are recent published works.

This thesis has presented a real-time application for physically-based deformable objects.

A mass-spring system that considers volumetric deformable solids represented with tetrahedral

meshes has been implemented using GLSL. This work demonstrates that modern OpenGL allows

us to go further than to implement only rendering projects, introducing some of its most recent

features for GPGPU applications. We have shown that themass-spring system is a very intuitive

model, computationally in expensive and highly customizable to get physical or non-physical

behaviour in deformable objects simulation. However, it is also shown that there does not exist a

simple way to find a set of parameters, when employing explicit numerical integration methods,

for obtaining stable simulations of non-regular complex geometries. Because of this, we employ

some non-physical techniques in order to achieve numerical stability of our physically-based

approach of deformable objects simulation. But, the realistic physical behavior of the deformable

objects, in the animations shown, is not affected, at least to the spectator view, and a wide range

from soft to hard materials can be mimic. The performance of several numerical integration

methods have been evaluated and discussed. As well, we present comparisons between the GPU

implementation speed up over the CPU one.

This research was focused in the development of a solution for real-time physically-based

deformable objects simulation using GLSL and therefore, code optimization was not a main

44

Conclusions · 45

concern. For this, code optimization can still be done in the physical simulation implementation

or another rendering, computationally less expensive, can be implemented. However, with the

current implementation we reach computing time less than 12ms for meshes that contain more

than 145000 tetrahedra at a rate greater than 30fps.

7.1 Future Work

Due to the time limitations of a masters thesis, some interesting problems could not tackled.

Also, useful aspects in order to insert the developed algorithm into a motion planning application

for a deformable robot could not be addressed. The following list tries to enumerate some of

them:

• The implementation of implicit numeral integration methods in GPU with GLSL.

• The design and implementation of a real-time strategy for collision detection and response

between rigid/deformable and deformable/deformable objects.

• The design and implementation of a real-time strategy for self-collision detection and

response of deformable objects.

• The implementation and performance comparison with other GPU-based approaches as

CUDA or OpenCL.

45

References

Akenine-Möller, T., Haines, E., and Hoffman, N. 2008. Real-Time Rendering 3rd

Edition. A. K. Peters, Ltd., Natick, MA, USA.

1 citation(s) on 1 page(s): 11,

Angel, E. and Shreiner, D. 2011. An introduction to modern opengl programming.

1 citation(s) on 1 page(s): 26,

Arnab, S. and Raja, V. 2008. A deformable surface model with volume preserving springs.

In Proceedings of the 5th international conference on Articulated Motion and Deformable

Objects. AMDO ’08. Springer-Verlag, Berlin, Heidelberg, 259–268.

1 citation(s) on 1 page(s): 10,

Baraff, D. and Witkin, A. 2003. Siggraph 2003 course notes.

3 citation(s) on 2 page(s): 6 and 41,

Barbič, J. and James, D. L. 2005. Real-time subspace integration for st. venant-kirchhoff

deformable models. ACM Transactions on Graphics (SIGGRAPH 2005) 24, 3 (aug), 982–990.

2 citation(s) on 1 page(s): 4,

Bell, N., Yu, Y., and Mucha, P. J. 2005. Particle-based simulation of granular

materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on

Computer animation. SCA ’05. ACM, New York, NY, USA, 77–86.

1 citation(s) on 1 page(s): 4,

Burden, R. L. and Faires, J. D. 2011. Numerical Analysis.

1 citation(s) on 1 page(s): 20,

Carlson, M., Mucha, P. J., Van Horn, III, R. B., and Turk, G. 2002. Melting and

flowing. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer

animation. SCA ’02. ACM, New York, NY, USA, 167–174.

1 citation(s) on 1 page(s): 4,

Chen, Y., Zhu, Q.-h., Kaufman, A. E., and Muraki, S. 1998. Physically-based

animation of volumetric objects. 154–160.

2 citation(s) on 1 page(s): 7,

Cozzi, P. and Riccio, C. 2012. OpenGL Insights. CRC Pressnote.

1 citation(s) on 1 page(s): 25,

Crassin, C. and Green, S. 2012. Octree-based sparse voxelization using the gpu hardware

rasterizer. In OpenGL Insights, P. Cozzi and C. Riccio, Eds. CRC Press, 303–318.

1 citation(s) on 1 page(s): 34,

Diziol, R., Bender, J., and Bayer, D. 2009. Volume conserving simulation of deformable

bodies. In Proceedings of Eurographics. Munich (Germany).

46

Conclusions · 47

2 citation(s) on 1 page(s): 10,

Eberly, D. H. and Shoemake, K. 2004. Game Physics. Interactive 3d Technology Series.

Elsevier/Morgan Kaufmann.

2 citation(s) on 2 page(s): 16 and 17,

Erleben, K., Sporring, J., Henriksen, K., and Dohlman, K. 2005. Physics-based

Animation (Graphics Series). Charles River Media, Inc., Rockland, MA, USA.

5 citation(s) on 5 page(s): 4, 7, 14, 16, and 17,

Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating gases with

hybrid meshes. In Proceedings of ACM SIGGRAPH 2005.

1 citation(s) on 1 page(s): 4,

Georgii, J. 2008. Real-time simulation and visualization of deformable objects. Ph.D.

thesis, Technische Universität München. http://mediatum2.ub.tum.de/node?id=627732.

5 citation(s) on 4 page(s): 4, 9, 20, and 22,

Georgii, J., Echtler, F., and Westermann, R. 2005. Interactive simulation of

deformable bodies on gpus. In Proceedings of Simulation and Visualisation 2005. 247–258.

4 citation(s) on 3 page(s): 2, 9, and 16,

Georgii, J. and Westermann, R. 2005. Mass-spring systems on the gpu. Simulation

Modelling Practice and Theory 13, 693–702.

1 citation(s) on 1 page(s): 9,

Gibson, S. F. F. and Mirtich, B. 1997. A survey of deformable modeling in computer

graphics. Tech. rep.

4 citation(s) on 3 page(s): 3, 4, and 6,

Hrabcak, L. and Masserann, A. 2012. Asynchronous buffer transfers. In OpenGL

Insights, P. Cozzi and C. Riccio, Eds. CRC Press, 391–414.

1 citation(s) on 1 page(s): 35,

Kirk, D. B. and Hwu, W.-m. W. 2010. Programming Massively Parallel Processors: A

Hands-on Approach, 1st ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

3 citation(s) on 3 page(s): 22, 23, and 24,

Knuth, D. E. 1997. Seminumerical Algorithms, Third ed. The Art of Computer

Programming, vol. 2. Addison-Wesley.

1 citation(s) on 1 page(s): 34,

Lasseter, J. 1987. Principles of traditional animation applied to 3d computer animation. In

Proceedings of the 14th annual conference on Computer graphics and interactive techniques.

SIGGRAPH ’87. ACM, New York, NY, USA, 35–44.

1 citation(s) on 1 page(s): 3,

LaValle, S. M. and Kuffner Jr., J. J. 2001. Randomized kinodynamic planning. I. J.

Robotic Res. 20, 5, 378–400.

1 citation(s) on 1 page(s): 1,

Matyka, M. and Ollila, M. 2003. Pressure model of soft body simulation. Proc. of

Sigrad, UMEA, 2003 , 20–21.

1 citation(s) on 1 page(s): 8,

47

48 · Real-Time Physically-Based Deformable Objects Simulation

Maule, M., Maciel, A., and Nedel, L. 2010. Efficient collision detection and physics-

based deformation for haptic simulation with local spherical hash. In Proceedings of the

2010 23rd SIBGRAPI Conference on Graphics, Patterns and Images. SIBGRAPI ’10. IEEE

Computer Society, Washington, DC, USA, 9–16.

1 citation(s) on 1 page(s): 8,

Min Hong, Sunwha Jung, M.-H. C. and Welch, S. 2006. Fast volume preservation for

a mass-spring system. IEEE Computer Graphics and Applications 26, 83–91.

2 citation(s) on 1 page(s): 10,

Mosegaard, J., Herborg, P., and Sørensen, T. S. 2005. A gpu accelerated spring mass

system for surgical simulation. Studies in health technology and informatics 111, 342–348.

1 citation(s) on 1 page(s): 8,

Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation

for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation. SCA ’03. Eurographics Association, Aire-la-Ville,

Switzerland, Switzerland, 154–159.

1 citation(s) on 1 page(s): 4,

Natsupakpong, S. and Çavuşoğlu, M. C. 2010. Determination of elasticity parameters in

lumped element (mass-spring) models of deformable objects. Graphical Models 72, 6, 61–73.

1 citation(s) on 1 page(s): 42,

Nealen, A., Mueller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006.

Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4

(dec), 809–836.

4 citation(s) on 2 page(s): 3 and 4,

Pauly, M., Keiser, R., Adams, B., Dutré, P., Gross, M., and Guibas, L. J. 2005.

Meshless animation of fracturing solids. In ACM SIGGRAPH 2005 Papers. SIGGRAPH ’05.

ACM, New York, NY, USA, 957–964.

1 citation(s) on 1 page(s): 4,

Phong, B. T. 1975. Illumination for computer generated pictures. Commun. ACM 18, 6

(jun), 311–317.

1 citation(s) on 1 page(s): 36,

Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth

behavior. In IN GRAPHICS INTERFACE. 147–154.

1 citation(s) on 1 page(s): 38,

Sederberg, T. W. and Parry, S. R. 1986. Free-form deformation of solid geometric

models. In Proceedings of the 13th annual conference on Computer graphics and interactive

techniques. SIGGRAPH ’86. ACM, New York, NY, USA, 151–160.

1 citation(s) on 1 page(s): 1,

Selle, A., Lentine, M., and Fedkiw, R. 2008. A mass spring model for hair simulation.

ACM Transactions on Graphics 27, 3 (aug).

2 citation(s) on 1 page(s): 11,

Shreiner, D., Sellers, G., Licea-kane, B., and Kessenich, J. M. 2013. OpenGL

Programming Guide: The Official Guide to Learning OpenGL, Versions 4.1. Graphics

programming. Addison Wesley Professional.

48

Conclusions · 49

4 citation(s) on 3 page(s): 24, 33, and 36,

Tejada, E. and Ertl, T. 2005. Large steps in gpu-based deformable bodies simulation.

Simulation Practice and Theory. Special Issue on Programmable Graphics Hardware 13, 9,

703–715.

1 citation(s) on 1 page(s): 9,

Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume

methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation. SCA ’03. Eurographics

Association, Aire-la-Ville, Switzerland, Switzerland, 68–74.

1 citation(s) on 1 page(s): 4,

Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable

models. SIGGRAPH Comput. Graph. 21, 4 (aug), 205–214.

2 citation(s) on 2 page(s): 3 and 4,

Teschner, M., Heidelberger, B., Müller, M., and Gross, M. 2004. A versatile and

robust model for geometrically complex deformable solids. In Proc. CGI, Crete, Greece. 312–

319.

9 citation(s) on 7 page(s): 4, 8, 12, 14, 15, 16, and 17,

Vassilev, T. and Rousev, R. 2008. Algorithm and data structures for implementing a

mass-spring deformable model on gpu. In Biomedical Physics Papers, Research and Laboratory

University Ruse.

1 citation(s) on 1 page(s): 7,

Vassilev, T. and Spanlang, B. 2002. A mass-spring model for real time deformable solids.

In East-West Vision.

1 citation(s) on 1 page(s): 7,

49

	List of Figures
	Introduction
	Motivation
	Contribution
	Organization

	Physically-Based Deformable Objects
	Mass-Spring Systems
	Related Work

	Real-Time Applications in Computer Graphics

	Mathematical Model and Simulation
	Laws of Motion
	 Potential Energies
	Forces
	Damping Forces
	Deformation Limits

	Mass Distribution
	Numerical Integration
	Algorithm

	Computational Tools
	GPU Architecture and Functionality
	OpenGL
	OpenGL Shading Language(GLSL)
	Rendering Pipeline

	Implementation
	Tetrahedral Meshes
	Memory Management
	Numerical Simulation
	Algorithm Implementation
	Rendering

	Results and Discussion
	Computing Time
	Simulation Parameters
	Parameters Selection

	Conclusions
	Future Work

