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Summary

The Boundary Element Method (BEM) is a numerical method for solving
partial differential equations governing boundary value problems. The solu-
tion to a boundary value problem is usually expressed as a function of the
whole domain. The BEM, however, transforms the nature of this solution
to from a full-domain-dependent-solution to a boundary-dependent solution;
allowing a low computational method to solve boundary value problems.
The method relies on the integral representation of the partial differential
equations governing the problem. The boundary integral equations, from
which the problem is solved, arise as a direct consequence of the properties
of Green’s functions. Using these integral representations we set a system
of linear algebraic equations which is solved to obtain the solution to the
problem in a particular set over the problem’s domain.

Transport processes in porous media could be described by a dispersive-
convective transport equation. Studying this kind of phenomena gives place
to boundary value problems governed by this equation, where the dispersive
coefficient results as a time dependent function. The correct interpretation
of the model relies on a precise approximation to the problem’s solution. In
this sense, the Boundary Element Method provide us with a tool to avoid
possible problems during operations over porous media.

In this thesis we will develop a numerical tool to solve a general class of
boundary value problems, flow behaviour through porous media among them.
For doing so, we will discuss the development of various class of boundary
element methods: first and second order boundary element methods with
polynomial and thin plate spline approximations are discussed. Also, the
precision of the method is evaluated by comparing the numerical results
with the exact solution for some problems. Once the method is established,
we apply it to solve a dispersive-convective transport equation to study the
behaviour of a flow process trough porous media.
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Introduction

The Boundary Element Method (BEM) is a numerical tool for solving bound-
ary value problems. The method explicitly develops the solution to the par-
tial equations governing the boundary value problem as a boundary integral
equation which can be solved numerically. Using these integral representa-
tions we set a system of linear algebraic equations which is solved to obtain
the solution to the problem.

Transport processes in porous media could be described by a dispersive-
convective transport equation. Studying this kind of phenomena gives place
to boundary value problems, where the dispersive coefficient results as a time
dependent function. Poor predictions of the model could give bad predictions
related with field operations. The correct interpretation of the model relies on
a precise approximation to the problem’s solution, proven that the solution is
not available. In this sense, the Boundary Element Method provide us with
a tool to correctly analyse data from the mathematical model, predicting
possible problems during operations over porous media.
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Thesis Overview

This document presents the clear development and implementation of a nu-
merical tool. The careful discussion of the algorithm and the comparative
study between variations of boundary element methods, which has not been
formally discussed in literature, sets a starting point for future work. The
method discussed trough this thesis can be easily extended in different di-
rections, strengthening the method to solve more complex problems with
relatively ease.

During this thesis we will establish the fundamental theory behind the
application of boundary element methods. Once this is set, a few examples
will be discussed to end with the resolution of a problem that surges from
hydrocarbon recovery in oil reservoirs. The document is divided in three
chapters, and a final section to discuss conclusions and future work, each one
containing one of the following:

Chapter 1: The Boundary Element Method

Here, using Green’s third identity, we establish the harmonic solution to a
boundary value problem in the form of an integral equation. This serves
as the nucleus of boundary element methods. Once the integral equation is
defined over the problem’s boundary, giving form to discrete the boundary
value representation, we use it to approximate the missing values of the
potential, or its normal derivative. With a full knowledge of the boundary
values the solution is completed. In this chapter we develop the procedure
to apply Boundary Element Methods to solve the Laplace equation defined
on connected compact sets of R2.

Chapter 2: BEM for Poisson’s Equation

Here we extend the theoretical basis of boundary element methods to handle
the solution to equations more complex than Laplace’s, particularly Pois-
son’s equation. We first study the arise of domain integrals at boundary rep-
resentations for models with non-homogenous sources. Then, using Green’s
second identity, and assuming the knowledge of a particular solution to Pois-
son’s equation, we get rid of the domain integrals. This leads to a boundary
representation that depends on the values of the function and the particular
solution at the domain’s boundary. As sometimes is difficult to know the
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particular solution, a dual reciprocity principle is used to approximate it in a
series of known functions. This defines de dual reciprocity boundary element
method, which is extended to consider wider problems. In this chapter we
construct a boundary element method for solving problems where potential,
advection, and time dependent terms arise.

Chapter 3: Transport in Porous Media

Here we present a model published in the literature by Numbere and Erkal,
1998, that describes accurately anomalous anisototropic transport processes
in porous media. This results in an usual advective-difusive transport equa-
tion with a time dependent dispersion coefficient. The model is introduced as
a reduction from a stochastic process that follows from a geostatical frame-
work. Once the model is presented, a dual reciprocity method is stated to
solve the equation. At the end of the chapter we present some numerical
results and a brief discussion about them.



Chapter 1

The Boundary Element Method

The Boundary Element Method is a numerical method for solving partial
differential equations encountered in the math-physics and engineering. Ex-
amples include Laplace’s equation, Helmholtz’s equation, the convection dif-
fusion equation, and the equations of potential and viscous flow. In princi-
ple, any differential equation can be resolved with the BEM. However, this
method is efficient, and thus appropriate, for linear, elliptic, and homoge-
neous partial differential equations governing boundary-value problems in
the absence of an homogeneous source.

The key idea behind the BEM is to express the solution of a partial
differential equation in terms of boundary distributions. This process leads to
an integral representation of the problem in terms of the problem’s boundary
values. Once the boundary distributions are fully determined, the solution
to the problem at any point of the domain can be determined through direct
evaluation, Pozrikidis [22].

In this chapter the basic formulation of the method for solving the Laplace
equation is presented. In the first section of this chapter we will discuss the
requirements that a problem has to accomplish so it can be solved using BEM.
Then we establish the required background to develop the Boundary Element
Method and stablish the general procedure to solve Laplace’s equation. Next,
the problem is posed in matrix form, explaining how the boundary element
influence coefficients are obtained and the boundary conditions applied. The
cases of constant an linear elements are discussed together. Finally, some
numerical results are presented and discussed.

4
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1.1 Boundary Element Methods Overview

A large amount physical phenomena occurring in nature can be described
by differential equations and boundary conditions. In the solution to these
boundary value problems we aim to determine a response to given boundary
conditions. Analytical solutions to boundary value problems, i.e solutions
that satisfy both the differential equations and the boundary conditions, can
only be obtained for few problems with very simple assumptions. As an
example, we may be interested in determining the response of a rock mass
due to the excavation of a tunnel. Analytical solutions for this problem exist
only if we consider the excavation circular tunnel in in a homogeneous rock
mass, not the most realistic scenario for practical tunnelling. To be able
to solve real life problems, we must revert very frequently to approximate
solutions.

The term Boundary Element Method derives from the practice of dis-
cretizing the boundary of a solution domain into “boundary-elements” as a
part of the resolution of the problem. In the case of a two-dimensional solu-
tion domain, the boundary is a planar line, and the boundary elements are
straight segments, parabolas, circular arcs, or cubic segments.

The theoretical formulation and numerical methods related with the Bound-
ary Element method can be applied to differential equations of the general
form

L[u] = 0, in Ω, (1.1)

where L[·] is a differential operator satisfying the following properties, Pozrikidis
[22]:

• The differential operator L[·] is elliptic.

• The differential equation is homogeneous.

• The differential equation is linear.

• The fundamental solution to the differential equation is available.

If we can assure that L[·] has the previous properties, then: the solution
to (1.1) is determined exclusively by data specified around the boundary
of Ω, a zero-solution follows from zero-valued boundary conditions, and the
boundary integral equation for the problem is available.
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The numerical method describes the solution u(xi) to the problem (1.1),
for any interior point xi in the problem’s domain, as a function that depends
only on the boundary values. To solve a problem using BEM the following
approach is taken:

1. Develop an incomplete boundary representation for the solution to the
boundary value problem.

2. State an integral equation to recover the unknown boundary values of
the problem.

3. Solve numerically the boundary integral equation for the unknown
boundary values.

4. Complete the solution of the problem as a boundary value representa-
tion.

1.2 BEM for Laplace’s Equation

The Boundary Integral Representation

Consider that we are seeking the solution of a Laplace equation in a two-
dimensional domain Figure 1.1,

∇2u = 0 in Ω, (1.2)

with the following boundary conditions

1. “Essential” conditions of the type u = ū on Γ1.

2. “Natural” conditions such as q :=
∂u

∂n
= q̄ on Γ2,

where n is the outward normal to the boundary Γ = Γ1 + Γ2, ū and q̄ are
known functions.

The starting boundary integral equation required by the method can be
deduced in a simple way considering Green’s third identity. Let ψ and φ be
scalar functions defined on some simply connected, bounded region Ω ⊂ R2.
Suppose that ψ is twice differentiable, and φ is once differentiable, then

(φψx) = φxψx + φψxx.
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Figure 1.1: Bidimensional domain Ω for Laplace’s equation.

The same is true for the derivative respect to y. Summing both derivatives
leads to the following identity

∇ · (φ∇ψ) = ∇φ · ∇ψ + φ∇2ψ.

If we integrate over Ω and use the divergence theorem on the left side, then∫
Γ

φ
∂ψ

∂n
dΓ =

∫∫
Ω

(∇φ · ∇ψ)dΩ +

∫∫
Ω

(φ∇2ψ)dΩ. (1.3)

This is Green’s first identity, and it is valid for any solid region Ω, and any
pair of functions ψ and φ that satisfy the differentiability conditions. Now,
switching ψ and φ in (1.3)∫

Γ

ψ
∂φ

∂n
dΓ =

∫∫
Ω

(∇ψ · ∇φ)dΩ +

∫∫
Ω

(ψ∇2φ)dΩ. (1.4)

If we subtract (1.4) from (1.3), then∫∫
Ω

(
φ∇2ψ − ψ∇2φ

)
dΩ =

∫
Γ

(
φ
∂ψ

∂n
− ψ∂φ

∂n

)
dΓ. (1.5)

This is Green’s second identity and it is valid for any solid region Ω, and for
any pair of functions ψ and φ.

The fundamental solution u∗i = u∗(x, xi) , represents the field generated
by a concentrated unit source acting at a point xi. The effect of this source
is propagated from xi to infinity without any consideration of boundary con-
ditions. This can be established as u∗i satisfying the following equation,

∇2u∗i + δxi = 0,
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where δxi stands for the Dirac delta distribution centered at xi, which corre-
sponds to the definition of the fundamental solution for Laplace’s equation.
It can be easily demonstrated, using the properties of the delta distribution,
that if u is harmonic and xi ∈ Ω, then∫

Ω

u(∇2u∗i ) =

∫
Ω

u(−δxi) = −ui,

where we take the nomenclature standard ui = u(xi). Equating φ = u,
harmonic, and ψ = u∗i on Green’s second identity (1.5) we get Green’s third
identity:

ui =

∫
Γ

u∗i qdΓ−
∫

Γ

q∗i udΓ, (1.6)

where q∗i corresponds to the normal derivative of the fundamental solution
centred at xi. This defines an integral equation for the solution to any har-
monic function at the interior point xi. The formalism of Green’s third
identity can be resumed in the following theorem:

Theorem 1.1 (Harmonic Interior Boundary Representation). Let xi ∈ Ω,
where Ω is an open, simple connected region contained in R2 with boundary
Γ, and let u be harmonic in Ω. Then u(xi) can be expressed as

u(xi) =

∫
Γ

u∗(x, xi)
∂u

∂n
(x)dx−

∫
Γ

u(x)
∂u∗

∂n
(x, xi)dx xi ∈ Ω (1.7)

Where,

u∗(x, xi) = − 1

2π
ln|x− xi|2

is the fundamental solution to Laplace’s operator, and

∂u∗

∂n
(x, xi) = −n · (x− xi)

‖x− xi‖2
2

.

Equation (1.7) provides a solution to a harmonic function in terms of the
boundary values and the boundary distribution of the normal derivative of
the harmonic function. This is known as the a boundary-integral represen-
tation. To compute the value of u at a particular point xi inside a selected
control area, we simply evaluate the two boundary integrals on the right-hand
side of (1.7).
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The boundary value representation is the cornerstone of the boundary
element method, and it is not exclusive for the solution to Laplace’s Equa-
tion. The equation (1.7) can be easily extended to various elliptical operators
governing a boundary value problem, if the fundamental solutions are avail-
able. Solutions to Helmholtz’ equation and the stationary diffusive transport
equation can be found at sections 2.2 and 2.3 from Pozrikidis [22]. This work
will consider only the application of the equation presented in Theorem 1.1,
a little discussion about further applications is considered for future work.

The Boundary Integral Equation

The integral equation (1.7) is valid for any point within the domain Ω. How-
ever, and as attractive as it could result, the Boundary Representation is not
completely developed yet. Usually, the boundary data is not fully-available
a priori. To recover the missing information of the problem we need to apply
equation (1.7) on the boundary, and it is necessary to find out what happens
when the point xi is on Γ. The following approach is taken from Partridge,
[18].

Lets return to the integral representation (1.7), and consider that the
point xi is on a smooth boundary. Suppose that the domain itself is aug-
mented by a semicircle as shown in Figure 1.2, the extended boundary is
represented as Γε. The boundary point xi is considered to be at the center

Figure 1.2: Extended boundary to evaluate (1.7) at a boundary point.

of the semicircle, and then the limit as the radius ε tends to zero is evalu-
ated. The point will then become again a boundary point and the resulting
expression will be the specialization of (1.7) for a point on Γ.
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Evaluating the boundary representation (1.7) using the extended bound-
ary Γε leads to

ui +

∫
Γε

uq∗i dΓε =

∫
Γε

qu∗i dΓε. (1.8)

Careful examination for the integral term at the right side of (1.8) shows
that it vanishes as ε→ 0,

lim
ε→0

∫
Γε

qu∗i dΓε = lim
ε→0

∫
Γε

− 1

2π
ln ‖x− xi‖2

∂u

∂n
(x)dx = 0. (1.9)

In other words, this term is a continuous integral when evaluated at the
boundary. For the term at the left side we have

lim
ε→0

∫
Γε

uq∗i dΓε = lim
ε→0

∫
Γε

−u(x)
∂

∂n
(ln ‖x− xi‖2) dx = −1

2
ui (1.10)

This means that the integral has a discontinuity, or jump, on the boundary,
and it produces what is called a free term. Finally, evaluating equation (1.7)
at the boundary point xi, using (1.9) and (1.10), leads to

Theorem 1.2 (Harmonic Boundary Representation). Let xi ∈ Γ, where Γ is
the smooth boundary of an open, simple connected region Ω contained in R2,
and let u be harmonic in Ω. Then u(xi) can be expressed using the following
integral equation

1

2
u(xi) +

∫
Γ

u(x)
∂u∗

∂n
(x, xi)dx =

∫
Γ

u∗(x, xi)
∂u

∂n
(x)dx xi ∈ Γ, (1.11)

Where,

u∗(x, xi) = − 1

2π
ln|x− xi|2

is the fundamental solution to Laplace’s operator, and

∂u∗

∂n
(x, xi) = −n · (x− xi)

‖x− xi‖2
2

.

The integrals at equation (1.11) are calculated in the sense of Cauchy
Principal Values. This is the boundary integral equation generally used as
the starting point for the boundary element formulation. Now, the Boundary
Element Method is based on the following observations, Pozrikidis [22]:
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• Given the boundary distribution of the function u, equation (1.11)
reduces to a Fredholm integral equation of the first kind for the normal
derivative q ≡ n · ∇u. To show this more explicitly, we recast the
integral equation as ∫

Γ

u∗(x, xi)q(x)dx = F (xi), (1.12)

where

F (xi) = −1

2
u(xi) +

∫
Γ

u(x)
∂u∗

∂n
(x, xi)dx

is a known source term consisting of the boundary values of u and its
distribution over the problem’s boundary.

• Given the boundary distribution of the normal derivative n ·∇u, equa-
tion (1.11) reduces to a Fredholm integral equation of the second kind
for the boundary distribution of u. To show this more explicitly, we
recast the integral equation into the form

u(xi) = 2

∫
Γ

u(x)
∂u∗

∂n
(x, xi)dx+ Φ(xi) (1.13)

where

Φ(xi) = −2

∫
Γ

u∗(x, xi)
∂u

∂n
(x)dx

is a known source term consisting of the distribution of the normal
derivative of u over the problems boundary.

The main goal of the Boundary Element Method is to generate numerical
solutions to the integral equations (1.12) and (1.13). The numerical imple-
mentation of the boundary element collocation method, to be discussed in
detail in the following section, involves the following steps:

1. Discretize the boundary into a collection of boundary elements, and
approximate the boundary integrals with sums of integrals over the
boundary elements.

2. Introduce approximations for the unknown function, u or q, over the
individual boundary elements.
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3. Apply the integral equation at collocation points located over the bound-
ary elements to generate a number of linear algebraic equations equal
to the number of unknowns.

4. Perform the integration over the boundary elements.

5. Solve the linear system for the coefficients involved in the approxima-
tion of the unknown function.

In performing and interpreting the results of a boundary-integral com-
putation, it is important to have a good understanding of the existence and
uniqueness of the solution. If the integral equation does not have a solu-
tion or if the solution is not unique, poorly conditioned or singular algebraic
systems with erroneous solutions will arise.

The Discrete Integral Representation

The Boundary Element Method derives its name from the practice of describ-
ing the boundary of a solution with a collection of elementary geometrical
units called boundary elements. In the case of Laplace’s equation in two
dimensions, the boundary elements are line segments with straight or curved
shapes described in analytical form by methods of function interpolation and
approximation in terms of element nodes, Pozrikidis [22].

A variety of boundary elements are available in two dimensions. Three
popular choices are linear elements with straight shapes, circular arcs, and
elements of cubic splines. For sake of simplicity, we will stablish the BEM
using straight elements. Some work developed using cubic splines or circular
arcs can be consulted at [22].

Figure 1.3 illustrates the discretization of a boundary into a collection of
N straight elements defined by the element end-point vertex. The element
labels increase in the counterclockwise direction around the boundary. Since
the second end-point of an element is the first end-point of the next element,
the collection of the N elements is defined by N + 1 distinct (unique) points.
If the boundary is closed, the first and last global nodes coincide, and the
collection of the N elements is defined by N distinct vertices.

To describe the j -th element, Figure 1.4, we introduce the coordinates
of the end-points x0

j = (x0
j , y

0
j ), xlj = (xlj, y

l
j), two interpolating functions

φ− and φ+, and the dimensionless parameter ξ (S at Figure) ranging in the
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Figure 1.3: Discrete boundary approximation.

Figure 1.4: Straight element parametrization.

interval [−1, 1]. Then, the coordinates of a point in the element are given by

x(ξ) = x0
jφ
−(ξ) + xljφ

+(ξ)

y(ξ) = y0
jφ
−(ξ) + yljφ

+(ξ).
(1.14)

Where,
φ+(ξ) = 1

2
(1 + ξ),

φ−(ξ) = 1
2
(1− ξ).

(1.15)

As ξ increases from −1 to 1, the point x(ξ) moves from the first element
end-point to the second element end-point.

Let us consider how expression (1.11) can be discretized to find the system
of equations from which the boundary values can be found. Assume that the
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boundary is divided into N segments as shown in Figure 1.3. The points
where the unknown values are considered are called “nodes” and taken to be
in the middle of each straight element for the so-called constant elements,
Fig 1.5 (Left). We will later discuss the case of linear elements, i.e. those

Figure 1.5: Constant element nodal distribution, Left; Linear element nodal
distribution, Right

elements for which the nodes are at the extremes or ends. A boundary
element method which considers constant approximations over each element
is called 0-BEM from now on.

The boundary-integral representation (1.11) can now be discretized. To
do so, lets take the procedure discussed by Patridge at [18]:

Evaluating at a given node xi = (xi, yi), substituting the boundary by
the boundary approximation follows

1

2
ui +

N∑
j=1

∫
Γj

uq∗i dΓj =
N∑
j=1

∫
Γj

qu∗iΓj.

In the case of the constant elements the values of u and its normal deriva-
tive q are assumed to be constant over each element and equal to the value
at the mid-element node. The points at the extremes of the elements are
used only for defining the geometry of the problem. Note that for this type
of element the boundary is always smooth at the nodes as these are located
at the center of the elements, hence the multiplier of ui is always 1

2
.

The u and q values can thus be taken out of the integrals. They will be
called uj and qj for element Γj. Hence,

1

2
ui +

N∑
j=1

uj

∫
Γj

q∗i dΓj =
N∑
j=1

qj

∫
Γj

u∗iΓj.
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Notice that there are now two types of integrals to be carried out over each
element, ∫

Γj

q∗i dΓj and

∫
Γj

u∗iΓj.

These integrals relate the node xi, where the fundamental solution is ap-
plied, to the boundary element Γj. Because of this, their resulting values are
sometimes called influence coefficients,

Gij = Gj(xi) =

∫
Γj

u∗(x,xi)dx, (1.16)

and

H ij = Hj(xi) =

∫
Γj

∂u∗

∂n
(x,xi)dx. (1.17)

Then, for a particular point xi one can write

ui +
N∑
j=1

H ijuj =
N∑
j=1

Gijqj. (1.18)

Let us now call

Hij = H ij +
1

2
δij,

where δij is the Kronecker delta, in such a way that the 1
2

value is summed

to H when i = j. Then Equation (1.18) can now be written as

N∑
j=1

Hijuj =
N∑
j=1

Gijqj. (1.19)

If it is now assumed that the position of node xi also varies from i = 1 to
i = N , i.e. one assumes that the fundamental solution is applied at each
node successively, defining a equation for each boundary node, a system of
equations is obtained. This set of equations can be expressed in matrix form
as

Hu = Gq (1.20)

where H and G are two N ×N matrices, and u and q are vectors of length
N containing the boundary values of u and q at each boundary node.

Notice that N1 values of u and N2 values of q are unknown on Γ1 and
Γ2 respectively (N1 + N2 = N), hence there are only N unknowns in the
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system of equations (1.20). Once this boundary conditions are introduced
into (1.20) one has to rearrange the system. Once all unknowns are passed
to the left-hand side one can write

Ax = b (1.21)

where x is a vector of unknown boundary values of u and q, and b is found by
multiplying the corresponding columns of H or G by the known boundary
values. It results interesting to point out that the unknowns are now a
mixture of the potential and the normal derivative. This is a consequence of
the boundary element method being a “mixed” formulation, and constitutes
an important advantage over finite elements, Partridge [18]. Three cases may
now be recognized, Pozrikidis [22]:

• If all element values uj are specified, equation (1.19) provides us with a
system of linear equations for the unknown vector of normal derivatives
q.

• If all element values qj are specified, equation (1.19) provides us with
a system of inear equations for the unknown vector u.

• If some element values uj, and a complementary set of values qj are
specified, equation (1.19) provides us with a system of linear equations
for the unknowns, Equation (1.21).

Setting up the algebraic system (1.19) is the main task of the boundary
element implementation. Once this has been accomplished, the solution can
be found using a linear solver.

An important feature of the linear system arising from the boundary-
element collocation method is that the coefficient matrices H and G are
dense. In contrast, linear systems arising from finite-diference, finite-element,
and spectral-element methods are banded.

Interior Solution

Once the element values uj and qj are available, we are be able to approximate
the field value u(xi) in terms of the influence coefficients. From (1.24) we
state

ui =

∫
Γ

qu∗i dΓ−
∫

Γ

uq∗i dΓ. (1.22)
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Note that the coefficient 1
2

is taken as 1 and the fundamental solution is
considered to be acting at an internal point. This process leads one to a direct
integration of the influence coefficients. Considering the same discretization
that was used for the boundary integrals at we obtain from (1.22)

ui '
N∑
j=1

Gijqj −
N∑
j=1

ujH ijuj. (1.23)

Once the influence coefficients are calculated, Equation (1.23) describes a full
solution in terms of the boundary values. Moreover, we are able to reproduce
the boundary values using this discrete representation. Jaswon exploits this
idea to bound the absolute error of the method for the Dirichlet problem
[13].

Evaluation of integrals

The coefficients Gij and H ij can be calculated using a numerical integra-
tion formulae for the case i 6= j, Pozrikidis [22]. Lets assume first that the
evaluation point xi lies off the j -th boundary element, Figure 1.6. Using

Figure 1.6: Non singular integral evaluation

parametrization (1.14) to describe the line elements, the differential arc
length is given by

dΓj =
√
x′(ξ)2 + y′(ξ)2 = hξdξ.

where −1 ≤ ξ ≤ 1, and

hξ ≡
1

2

√
(x0

j − xlj)2 + (y0
j − ylj)2.
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is the metric coefficient associated with the parameter ξ. The unit normal
vector to this element is constant and denoted by n(j), Figure 1.6. Accord-
ingly, the influence coefficients are given by

Gij = hξ

∫ 1

−1

u∗(x(ξ),xi)dξ,

and

H ij = hξ

∫ 1

−1

[
∇q∗(x(ξ),xi) · n(j)

]
dξ.

Developing the fundamental solution we get the integral-coefficients

Gj(xi) = −hξ
2π

∫ 1

−1

ln ‖x(ξ)− xi‖2dξ,

and

Hj(xi) = −hξ
2π

∫ 1

−1

n(j) · (x(ξ)− xi)

‖x(ξ)− xi‖2
2

dξ.

Here, the normal outward vector is given by the parametrization itself

n(j) = [y′(ξ),−x′(ξ)].

In the case where xi and xj are on the same element, i.e. i = j, the
solution requires a more accurate integration scheme, Figure 1.7, Pozrikidis
[22]. In this case, as the integration point x approaches the evaluation point

Figure 1.7: Singular integral evaluation

xi, the integrands of the influence coefficients (1.16) and (1.17) exhibit, re-
spectively, a logarithmic and an apparent higher-order singularity, and the
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boundary elements are classified as singular. Writting ‖xi − x‖2 = ‖li − l‖
and carrying out the integration of the point source distribution (1.16), we
obtain

Gij = − 1

2π

∫ L

0

ln ‖l − li‖2dl

= − 1

2π
[li(ln li − 1) + (L− li)(ln (L− li)− 1)]

where L =
√

(x0
i − xli)2 + (y0

i − yli)2. If we consider that the singular point
xi is halfway at the straight element Ej, then the previous equation becomes

Gij = − L

2π
(ln li − 1).

Because the normal vector n is orthognonal to the tangential vector (x−
x0), the numerator of the fraction inside the integral of the coefficient defined
by (1.17) vanishes, and the influence coefficient is identically equal to zero,
Hij = 0.

1.3 First Order BEM

Up to this section only the case of constant elements, i.e. those with values of
the variables assumed to be the same all over the element, has been discussed.
Let us now consider a linear variation of u and q over each element, for which
case the nodes are considered to be at the ends of each straight segment,
Figure 1.5. This formulation is stated as 1-BEM, i.e. a first order boundary
element method . Prior this point we have assumed that the boundary point
xi lies on a smooth boundary Γ, as we will see next, this is not always the
be best assumption. First, lets discuss what happens when we drop the
assumption of smoothness in the boundary.

Non-Smooth Boundaries

Suppose that xi is defined over a corner of the boundary with internal angle
γ(xi). Then we can evaluate (1.11) as

β(xi)u(xi) +

∫
Γ

u(x, xi)
∂u∗

∂n
(x)dx =

∫
Γ

u∗(x)
∂u

∂n
(x, xi)dx, (1.24)
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where,

β(xi) =
γ(xi)

2π
.

This result is discussed by Brebbia [3], and follows by defining a small circular
region around the point and then taking its radius to zero, similar to what
has been shown in the process of deriving (1.11), Figure 1.8.

Figure 1.8: Extended boundary to evaluate (1.7) at a cusp boundary point

The general form of the integral representation is stated by defining β(xi)
as a parameter takes the following values:

β(xi) =


1 if xi ∈ Ω,

0.5 if xi ∈ Γ smooth,
γi
2π

if xi ∈ Γ corner.

Boundary Element Discretization

After discretizing the boundary into a series of N elements, equation (1.24)
can be written as in the previous section:

βiui +
N∑
j=1

∫
Γj

uq∗i dΓj =
N∑
j=1

∫
Γj

qu∗i dΓj (1.25)

The integrals in this equation are more difficult to evaluate than those for
the constant element as u and q vary linearly over each element Γj and hence
it is not possible to take them out of the integrals.
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Consider the j-th element. A linear variation of the interest values can
be constructed in a similar way as we did with (1.14). The values of u and
q at any point on the element can be defined in terms of their nodal values
and the two linear interpolation functions φ+ and φ−, Figure 1.9,

φ+(ξ) = 1
2
(1 + ξ),

φ−(ξ) = 1
2
(1− ξ).

Following a linear parametrization

Figure 1.9: Linear variation at u over the boundary element

u(ξ) = φ−u− + φ+u+ = [φ− φ+]

[
u−

u+

]
,

q(ξ) = φ−u− + φ+q+ = [φ− φ+]

[
q−

q+

]
,

(1.26)

where the dimensionless parameter ξ goes from −1 to 1 as the values of u or
q varies from one node to another, and the extreme values are defined as

u− := u0
j , u+ := ulj,

q− := q0
j , q+ := qlj.

Then the integrals over an element j must be calculated. For the left-hand
side of (1.25),∫

Γj

uq∗i dΓj =

∫
Γj

q∗i
[
φ− φ+

] [u−
u+

]
=
[
h−ij h

+
ij

] [u−
u+

]
, (1.27)
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where, for each element j, we have two terms

h+
ij =

∫
Γj

φ+q∗i dΓj

h−ij =

∫
Γj

φ−q∗i dΓj.

Similarly, the integral on the right-hand side of (1.25) gives∫
Γj

qu∗i dΓj =

∫
Γj

u∗i
[
φ− φ+

] [q−
q+

]
=
[
g−ij g

+
ij

] [u−
u+

]
, (1.28)

where, for each element j, we have two terms

g+
ij =

∫
Γj

φ+u∗i dΓj

g−ij =

∫
Γj

φ−u∗i dΓj.

Treatment of Corners

In general, a boundary element discretization will present a series of points
of geometric discontinuity which require special attention. To study this
particular case lets assume that we will discretize a boundary where each
node is a cornered node. One option is to replace the cornered boundary
by a smooth curve that resembles the cornered element. A less aggressive
approach, taken from Partridge [18], is taken in this project and is discussed
up next.

When the boundary of a region is discretized into linear elements, the
final node of element j is the same point as the first node of element j +
1. Lets call flux at the normal derivative of u at a given point. While
corners with different values of the flux on both sides exists in many practical
problems, discontinuous values of the potential are seldom prescribed. Since
the potential is unique at any point of the boundary, u+ of element Γj and
u− of element Γj+1 have the same value. However, this argument cannot be
applied as a general rule to the flux, Figure 1.10.

To take into account the possibility that the flux at the final node of any
element may be different from the flux at the initial node of the next element,
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Figure 1.10: Flux discontinuity at boundary cusp

the fluxes can be arranged in a 2N vector, two flux values for each corner
node, Figure 1.10,

q = [q−0 , q+
0 , . . . , q

−
N , q+

N ]T .

Substituting (1.27) and (1.28) at all the j−elements of (1.25) it follows,
for node xi,

βiui +
N∑
j=1

H ijuj =
N∑
j=1

[g−ij g
+
ij ]

[
q−j
q+
j

]
.

Here, the influence coefficients are defined as

H ij = h−i,j−1 + h+
i,j.

Evaluating at each boundary node we generate a system with N equations.
Similarly as was previously shown for constant elements, (1.20), this whole
set of equations can be written in matrix form

Hu = Gq,

where G is a rectangular matrix of size N × 2N , and q gives two values at
each node to take into account possible flux discontinuities.

Several situations may occur at a boundary node. First, that the bound-
ary is smooth at the node; in such a case, both fluxes “before” and “after”
the node are the same unless they are prescribed different. In any case, only
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one variable will be unknown, either the potential or the unique flux. Sec-
ond, that the node is a corner point. In this case there are four possibilities
depending on the boundary conditions:

1. Known values: fluxes “before” and “after” the corner.
Unknown values: potential.

2. Known values: potential and flux “before” the corner.
Unknown values: flux “after” the corner.

3. Known values: potential and flux “after” the corner.
Unknown values: flux “before” the corner.

4. Known values: potential.

There is only one unknown per node for the first three cases. Then, the
two known values are taken to the right-hand side and the usual system of
N ×N equations is obtained, as we did to generate (1.21).

When the number of unknowns at a corner node is two (case 4), one extra
equation is needed for the node. The problem can also be solved using the
idea of “discontinuous” elements [6]. In this case, the second node of element
Γj and the first node of element Γj+1 are shifted inside the two linear elements
which meet at the corner and remain as two distinct nodes instead of joining
into one at the corner, Figure 1.11. Thus, one equation can be written for
each node. The potential and the flux are represented by linear functions
along the whole of the element in terms of their nodal values, buy they are
in principle discontinuous at the corner.

BEM Improvement

The uniform-element and linear discretizations described represent the sim-
plest implementation of the Boundary Element Method. If a continuous
boundary distribution for the function u, or its normal derivative q, is de-
sired, then a higher-order discretization must be applied. Cubic splines and
Lagrange polynomials are some examples that are discussed at [22].

The accuracy of a Boundary Element Method may be improved in two
ways, Pozrikidis [22]: (a) by increasing the number of boundary elements
while keeping the order of the polynomial expansion over each element con-
stant, (This is an h-type refinement) or (b) by increasing the order of the
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Figure 1.11: Flux shifting at at boundary cusp

polynomial expansion while keeeping the number of elements fixed (This is
a p-type refinement).

This work concentrates at the implementation of a first order BEM with
straight line elements, which has been developed through the previous sec-
tions. Future work on the matter could include some refinement on the code
to implement a more accurate version of the BEM.

1.4 Developed Examples

Laplace’s Equation on a Square

Laplace’s equation in two dimensions is given by

∂2u

∂x2
+
∂2u

∂y2
= 0. (1.29)

Let the unit square have a Dirichlet boundary condition u = 0 everywhere
except y = 1, where the condition is f(x) for 0 < x < 1. The formal solution
is

u(x, y) =
∞∑
n=1

cn sinh(nπy) sin(nπx), (1.30)
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where

cn = 2

∫ 1

0

f(x)
sin(nπx)

sinh(nπ)
dx.

Solutions for boundary conditions on other sides of the square are obtained
by switching variables in the formula, [23].

The solution of the problem was calculated using Wolfram Alpha CDF
Player and the script constructed by David von Seggern [26]. The demomon-
startion deals with the square −0.5 < x < 0.5 and −0.5 < y < 0.5 by shifting
the variables, leading to a slightly more complicated solution.

To study the performance of the numerical method we define the following
boundary condition:

u =


0, x = 0.5, −0.5 < y < 0.5
0, x = −0.5, −0.5 < y < 0.5
0, y = 0.5, −0.5 < x < 0.5
f(x), y = −0.5, −0.5 < x < 0.5

Figure 1.12: Boundary conditions for Laplace’s problem

where the values for y = −0.5 are given by f(x) = 1− 4x2.
The solution (1.30) is approximated up to 4 terms and its graphic pre-

sented on Figure(1.13, Left). Then a second order boundary element method,
i.e. using linear aproximations on the boundary elements, was developed to
approximate the solution to the problem, Figure (1.13, Right).

A boundary discretization of 32 linear-boundary elements was defined to
approximate the solution to Laplace’s problem using the boundary element



CHAPTER 1. THE BOUNDARY ELEMENT METHOD 27

Figure 1.13: Solution to the Laplace’s Equation: Approximated up to four
terms (Left); Approximated using Boundary Element Method (Right)

method, Figure(1.14, Left). Once the boundary values are recovered using
(1.24), the solution becomes available at any interior point, Equation (1.8).
Then a square mesh of 64 interior points, Figure(1.14, Right), was defined
and the solution at each point was calculated, Figure(1.13, Right). Lets re-
mark that the high-density mesh is not strictly necessary for the solution
to be calculated and it is defined only to set a smooth surface on Figure
(1.13). Numerical values to compare the performance of the boundary ele-
ment method will be discussed on following sections.

The next step is to compare the performance of the boundary element
method using the two approximations discussed. At Figure 1.15 and Fig-
ure 1.15 we present the comparative BEM results using constant values over
each boundary element and a linear variation over each. As we can see the
constant value BEM presents solutions with less uniformity than first order
BEM. Also, information in the corners of the problem is miss-treated when
BEM-0 is applied. This variations on both methods depend mainly in the
fact that BEM-1 is considering information at the corners of the boundary,
while BEM-0 does not.
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Figure 1.14: Boundary discretization for BEM (Up), Interior nodes for BEM
(Down)

Figure 1.15: BEM-Contour plots to Laplace’s solution using: a constant
value integration (Left), lineal variation integration (Right)

Laplace’s equation on a smooth domain

We now solve Laplace’s equation on a smooth domain, Figure 1.17. Here
an ellipse of semi-major axis of length 2 and a semi-minor axis of length
1 is discretized using 16 linear boundary elements. Homgeneous boundary
conditions cannot be prescribed for Laplace’s equation as the result will be
u = q = 0 at all nodes, Maximum principle. As a consequence, a non-
homogeneous boundary condition has to be imposed. For this particular
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Figure 1.16: BEM-Surface plots to Laplace’s solution using: a constant value
integration (Left), lineal variation integration (Right)

Figure 1.17: Elliptic smooth domain for Laplace’s equation

problem lets set the boundary values of u as

u = x+ y.

It can be easily verified that u = x+y is a particular solution to the problem.

The nodal boundary values are taken as the central points of each straight
element for BEM-0 and the vertices for BEM-1, Figure 1.18. The solution is
calculated at 17 interior points. The results are presented at Table 1.1.

In the coming chapters we will use BEM-0 to solve different problems on
smooth boundaries. For domains with cusps, we take advantage of BEM-1 to
solve the problem and recover information at the corners. BEM-1 will result
essential to solve the problem of advective diffusive transport at chapter 3.
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Figure 1.18: Smooth boundary discretization: nodal points for constant order
BEM (Left), nodal points for first order BEM (Right)

Node x y BEM-0 BEM-1 Solution
0 0 0 0 0 0
1 1.5 0 1.4936 1.5841 1.50
2 1.2 -0.35 0.8425 0.8904 0.85
3 0.6 -0.45 0.1504 0.1602 0.15
4 0 -1.5 -0.4985 -0.5110 -1.5
5 1.0 0 0.9956 1.0437 1.00
6 0.5 0 0.4985 0.5194 0.50

Table 1.1: Results for Laplace’s equation on a elliptic domain using BEM



Chapter 2

BEM for Poisson’s Equation

In previous chapter, we have discussed integral representations, integral equa-
tions, and boundary element methods for Laplace’s equation. As we have
seen, applying the Boundary Element Method to differential equations of the
general form

L[u(x)] = 0,

is possible as long as the differential operator L[·] is linear, elliptic, homo-
geneous, and a fundamental solution for L is available. Asking for all this
conditions to accomplish is no easy task. Commonly, we encounter mod-
els involving inhomogeneous, non-linear, and time-dependent (parabolic or
hyperbolic) equations, expressing evolution from an initial state.

As we will see, the fundamental solution to the operator L has to take
into account all the terms in the governing equation for the method to work,
Partridge [18]. If this is not accomplished, domain integrals arise in the
formulation of the boundary integral equation. The evaluation of domain in-
tegrals considerably increases the amount of data needed to apply the method
and hence it losses some of its attractiveness in relation to Finite Element
Method or other domain techniques.

To take advantage of the boundary-integral formulation, we must ex-
tend the theoretical foundation and numerical implementation of BEM, so
that we can tackle a broader class of equations. In this chapter, we discuss
the generalization of the boundary-integral formulation to have available a
technique that: (i) Enables a “boundary-only” solution to be obtained for
non-homogeneous problems, (ii) it can be easily extended to problems for
which a fundamental solution is not available, (iii) can be applied using a
similar approach for different problems.

31
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2.1 Sources and Domain Integrals

Domain integrals in boundary elements may arise due to a variety of effects
such as body forces, initial states, non-linear terms and other source terms. In
what follows, the use of the non-homogeneous Poisson’s differential equation
will be studied to extend the BEM for non-homogeneous problems. The
resulting formulation will later on be extended to cases for which the right-
hand side term is, amongst others, a function of space, the potential itself or
includes time-dependent effects.

Consider Poisson’s equation,

∇2u = b, in Ω

where b is assumed to be a known function. Multiplying both sides by the
fundamental solution of Laplace’s equation u∗i , and using Green’s second
identity one gets, Partridge [18],

βiui +

∫
Γ

uq∗i dΓ +

∫
Ω

bu∗i dΩ =

∫
Γ

qu∗i dΓ. (2.1)

Which represents an integral equation for the function u evaluated at the
point xi.

Notice that although the b function is known, and consequently the inte-
gral in Ω do not introduce any new unknowns, the problem has changed in
character; now we need to carry out a domain integral as well as the bound-
ary integralss, Partridge [18]. The constant βi as explained before, depends
only on the boundary geometry at the point xi under consideration. A simple
way of solving (2.1) without having to compute any domain integrals is by
changing the variables in such a manner that these integrals disappear. The
fundamental part of this procedure consists in splitting the function into a
homogeneous and a particular solutions, Partridge [18].

2.2 The Use of Particular Solutions

It results convenient to introduce the stated method with reference to Pois-
son’s equation in two dimensions. Consider the boundary problem

∇2u = b, in Ω, (2.2)

with the same boundary conditions as for Laplace’s problem:
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1. “Essential” conditions of the type u = f on Γ1.

2. “Natural” conditions such as q :=
∂u

∂n
= g on Γ2.

Figure 2.1: Bidimensional domain Ω for Laplace’s equation.

Assume now that the potential function u can be written as

u = ũ+ û, (2.3)

where ũ is harmonic, and û is a particular solution such that

∇2û = b.

Using Green’s second identity, the domain integral in (2.1) becomes∫
Ω

bu∗i dΩ =

∫
Ω

(∇2û)u∗i dΩ

=

∫
Ω

û(∇2u∗i )dΩ +

∫
Γ

u∗i q̂dΓ−
∫

Γ

q∗i ûdΓ

= βiûi(∇2u∗i ) +

∫
Γ

u∗i q̂dΓ−
∫

Γ

q∗i ûdΓ, (2.4)

where q̂ =
∂û

∂n
. Substituting (2.4) in (2.1),

βiui +

∫
Γ

uq∗i dΓ−
∫

Γ

qu∗i dΓ = βiûi +

∫
Γ

ûq∗i dΓ−
∫

Γ

q̂u∗i dΓ. (2.5)
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Notice that now all integrals are computed only along the boundary. Equa-
tion (2.5) can be written in a more compact form as a function of the new
variable ũ = u− û as follows,

βiũi +

∫
Γ

ũq∗i dΓ =

∫
Γ

q̃u∗i dΓ.

Formula (2.5) defines a boundary integral equation for the solution to the
Poisson’s equation at xi, ui = u(xi). It can be written, after a boundary
discretization procedure, as

βiui +
N∑
j=1

H ijuj −
N∑
j=1

Gijqj = βiûi +
N∑
j=1

H ijûj −
N∑
j=1

Gij q̂j. (2.6)

Applying the above to all boundary points produce the following system

Hu−Gq = Hû−Gq̂, (2.7)

or simply,
Hu−Gq = d,

where,
d = Hû−Gq̂

is a vector that depends on the particular solution û.
The main disadvantage of this approach is the need to describe the be-

haviour of the function û in an analytical form, which in some cases may be
difficult or impossible to do. The next step is to generalize to account for
arbitrary or unknown types of sources. This ideas gave origin to the Dual
Reciprocity Method, first proposed by Nardini and Brebbia in 1983 [15].

2.3 The Dual Reciprocity Method

The DRM (Dual Reciprocity Method), discussed by Partridge at [18], is
a variation of the Boundary Element Method that allows us to deal with
the deduction of particular solutions û during developing the solution to
non-homogeneous problems. For sake of simplicity we develop the DRM
theoretical basis and applications using Poisson’s equation. One departs
from (2.2),

∇2u = b, in Ω.
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Let the solution be described as (2.3),

u = û+ ũ,

where ũ is harmonic, and
∇2û = b.

It results difficult to find a solution û that satisfies the above, particularly
in the case of non-linear or time-dependend problems. The Dual Reciprocity
Method proposes the expansion of the particular solution into a sum of par-
ticular functions ûk, sometimes called parental functions, instead of the single
function û.

Figure 2.2: Interior and boundary nodes in the domain Ω.

We start the procedure by defining the nodal points: N in the problems
boundary, and L inside the domain, Figure 2.2. Then we define a set of
geometry-dependent functions fk, k = 1, . . . , N + L, such that

b '
N+L∑
k

αkfk. (2.8)

Here, αk correspond to a set of initially unknown coefficients, defined so
that the equality is achieved at each nodal point. Each of the interpolating
functions fk, concisely called basis functions, maintain a close relation with
each of the nodal points defined. Since equation (2.8) is defined to be exact
at the nodal points, the expansion may be considered as valid over the whole
problem’s domain. At this moment, no restriction will be placed on the
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functions fk. Many different types may be used, each of which results in a
different function ûk. The question of which type of function fk to use will
be considered in the next section.

The particular solutions ûk, and the approximating functions fk are linked
through the relation

∇2ûk = fk. (2.9)

Substituting (2.9) at (2.8),

b =
N+L∑
k

αk(∇2ûk).

Then, from Poisson’s equation it follows

∇2u =
N+L∑
k

αk(∇2ûk), (2.10)

which demonstrates that the particular solution can be given, at the nodal
points, by the expansion:

û =
N+L∑
k

αkûk. (2.11)

Up next we follow the same procedure as we did on the deduction of
(2.1). Equation (2.10) is multiplied by the fundamental solution to Laplace’s
equation u∗i then integrated over the whole domain Ω,∫

Ω

(∇2u)u∗i dΩ =
N+L∑
k

αk

∫
Ω

(∇2ûk)u
∗
i dΩ. (2.12)

Using Green’s second identity at both sides of the last equation produces the
following integral equation for the value of u at a source node xi ∈ Ω, [18],

βiui +

∫
Γ

q∗i udΓ−
∫

Γ

u∗i qdΓ =

N+L∑
k=1

αk

(
βiûik +

∫
Γ

q∗i ûkdΓ−
∫

Γ

u∗i q̂kdΓ

)
. (2.13)
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The term q̂k is defined as q̂k = ∂ûk
∂n

. Also, we are establishing a nomenclature
where the functions at the nodal point xi are written as ûik = ûk(xi), and
q̂ik = q̂k(xi). The normal derivative q̂k can be expanded as

q̂k =
∂ûk
∂x

nx +
∂ûk
∂y

ny, (2.14)

where nx and ny are the components of the outward normal to the boundary
Γ. Note that equation (2.13) involves, again, no domain integrals. We got rid
of the source term by first approximating b using (2.8), and then expressing
both right and left sides of the resulting expression as boundary integrals
using Green’s second identity. The same result may be achieved using a
reciprocity principle [15]. It is this operation which gives the name to the
method: reciprocity has been applied to both sides of (2.12) to take all terms
to the boundary, hence Dual Reciprocity Method.

The next step is to write (2.13) in discretized form. As a first approxi-
mation, we follow the same boundary discretization procedure as we did on
section 1.2. Lets use the N boundary points as vertex to approximate the
boundary using straight elements, Figure 2.3. Approximating the boundary

Figure 2.3: Boundary dicretization using straight elements for DRM.
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by the union of the straight elements gives for a source node xi the expresion

βiui +
N∑
j=1

∫
Γj

q∗i udΓj −
N∑
j=1

∫
Γj

u∗i qdΓj =

N+L∑
k=1

αk

(
βiûik +

N∑
j=1

∫
Γj

q∗i ûkdΓj −
N∑
j=1

∫
Γj

u∗i q̂kdΓj

)
. (2.15)

Now recast the center of each linear element as a nodal point xj. Lets suppose
that the functions u, q, ûk and q̂k take constant values over each element, i.e.

u|Γj
= uj, q|Γj

= qj,

ûk|Γj
= ûjk, q̂k|Γj

= q̂jk,

then one can take out the constants from the integrals and write,

βiui +
N∑
j=1

Hijuj −
N∑
j=1

Gijqj =

N+L∑
k=1

αk

(
βiûik +

N∑
j=1

Hijûjk −
N∑
j=1

Gij q̂jk

)
. (2.16)

The influence coefficients are defined as in (1.16) and (1.17). This process
could be easily extended to consider linear increments in each boundary el-
ement instead of constant values. The procedure is not presented, it follows
the same steps as the one deducted at section 1.3, however results are dis-
cussed for non-smooth boundaries.

It may be noted that, since ûk and q̂k are known functions once fk is
defined, there is no need to approximate their variation within each boundary
element by using interpolation functions or constant nodal valuess, Partridge
[18]. However, to do so implies that the same matrices H and G defined
in Chapter 1 may be used on both sides of the equation. This procedure
introduces an approximation in the evaluation of the terms on the right-
hand side of equation (2.15), nevertheless, the error has been show to be
small and the efficiency of the method to be considerably increased, Nardini
[15].
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After application to all boundary nodes using a collocation technique,
and incorporating the terms involving βi in the main diagonal of H, equation
(2.16) can be expressed in a matrix form as

Hu−Gq =
N+L∑
k=1

αj(Hũk −Gq̃k). (2.17)

If each of the vectors ũk and q̃k is considered to be one column of the ma-
trices Ũ and Q̃ respectively, then equation (2.17) may be written without
summation to produce

Hu−Gq = (HŨ−GQ̃)α. (2.18)

Equation (2.18) is the basis for the application of Dual Reciprocity Bound-
ary Element Method and involves discretization of the boundary only. In-
ternal nodes may be defined in the number and at the locations desired by
the user; this is generally done at points where it is desirable to know the
interior solution.

The process described forms the basis of the dual reciprocity bound-
ary element method (DRBEM). It establishes a procedure for extending the
Boundary Element Method for solving non-linear, or time dependent prob-
lems. Two main issues must be distinguished, the case when the source term
s depends only on the spatial coordinates, and the case when the source term
s depends on the, a-priori unknown, function u.

Interior Nodes

The definition of interior nodes is not normally a necessary condition to ob-
tain a boundary solution; however, the solution will usually be more accurate
if a number of such nodes is used. When interior nodes are defined, each one
is independently placed, and they do not form part of any element or cell,
thus only the coordinates are needed as input data. Hence, these nodes may
be defined in any order.

The α vector

The α vector in equation (2.18) will now be discussed. It was seen in equation
(2.8) that

bj =
N+L∑
k=1

αkfjk,
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at each nodal point xj. This defines a linear system that may be represented
in matrix form as

b = Fα, (2.19)

where each column of F consists of a vector fj containing the values of the
function fj at each of the DRM collocation points. Up to this point we
have considered that the source term b = b(x, y) as a known function. Thus,
assuming that F may be inverted, we solve for α

α = F−1b.

The right-hand side of equation (2.18) is thus a known vector

d = (HŨ−GQ̃)α.

Then (2.18) can be rewritten as

Hu−Gq = d. (2.20)

Applying boundary conditions to (2.20), as explained in chapter 1, this equa-
tion reduces to the form

Ax = y,

where x contains N unknown boundary values of u or q. A full discussion
of the implementation of different boundary conditions in BEM analysis can
be found in [2].

Interior Solution

After solution of (2.20) for the unknown boundary values, the solution at any
internal node can be calculated from equation (2.16). In the case of internal
nodes, as was explained in chapter 1, βi = 1 and (2.16) becomes

ui = −
N∑
j=1

Hijuj +
N∑
j=1

Gijqj+

+
N+L∑
k=1

αk

(
βiûik +

N∑
j=1

Hijûjk −
N∑
j=1

Gij q̂jk

)
. (2.21)

The development of DRM for Poisson-type equiations is now complete. In
the next section, the different approximating functions f and the respective
expressions for û and q̂ will be considered.
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2.4 f Expansions

The particular solution û, its normal derivative q̂, and the corresponding
approximating functions f used in DRM analysis are not limited by the
formulation except that the resulting F, equation (2.19), should be non-
singular. In order to define this functions it is customary to propose an
expansion for f and then compute û and q̂ using equations (2.9) and (2.14),
respectively.

The DRBEM works by approximating source terms by a finite series of
basis functions, usually radial basis functions, Golberg [10], in the form

fk = 1 + rk + r2
k + . . .+ rmk , (2.22)

for which corresponds the functions ûk and q̂k:

ûk =
r2
k

4
+
r3
k

9
+ . . .+

rm+2
k

(m+ 2)2
, (2.23)

q̂k =

(
1

2
+
r

3
+ . . .+

rm

(m+ 2)

)(
x− xk
y − yk

)
· n (2.24)

where rk is the euclidean distance

rk(x) = ‖x− xk‖2, x ∈ R2

and n corresponds to the outer normal to the problem’s boundary Γ. The ex-
pansion using some type of distance functions was adopted, first, by Nardini
and Brebbia, then by most researchers, as the simplest and most accurate
alternative [18]. However, Goldberg and Chen [9] suggested that thin plate
splines might be a better and more mathematically defensible choice for bi-
dimensional problems, [11].

fk = r2
k log rk, (2.25)

for which corresponds,

ûk =
1

32
r4
k(log r2

k − 1), (2.26)

q̂k =

(
1

4
r2
k log r − 1

16
r2
k,

)
(rk · n). (2.27)
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For the Dirichlet problem using Poisson’s equation over a bounded do-
main in the plane, Golberg has showed that the error using DRM has to com-
ponents, [9]: (1) that due to approximating the particular solution (which
generally depends on the error in approximating the source term), and (2)
error due to the choioce of boundary element method [11]. Using this as an
argument it could be said that traditional BEMs using low order piecewise
polynomial approximations that the dominant part of the computational er-
ror may be due to BEM error -not the interpolation error-; while if higher
order solvers are used the dominant error may now be the interpolation error
and the effects on the choice of radial basis functions is evident.

It is important to note that the matrix F depends only on geometric data
and has no relation to either governing equation nor boundary conditions. It
may be calculated once and stored in a data file for use with all subsequent
analyses involving the same discretization.

For the method constructed in this thesis, the implementation of the
DRBEM is based in two interpolating functions:

• fk(x) = 1 + rk(x),

• fk(x) = r2
k(x) log rk(x).

Several examples based on this interpolating functions are considered in the
next sections. In all cases, results using thin plate approximating functions
are found to differ little from those obtained using 1+rk, which is the simplest
alternative.

2.5 Developed Examples

We will start this section by considering a known source term b = b(x, y).
Then we will increase the complexity of the problem by introducing the
potential u, the derivative ux and a time dependent term ut, and solve using
DRBEM.

Examples here discussed are presented by Partridge at [18], we will be
presented using two classes of source term approximations: a first order radial
basis function and thin plate splines, and extend the results presented at [18]
by considering two class of approximating functions. Results are defined
over two domains: an elliptical domain of semi-axes with length 2 and 1,
Figure 2.4 (Left); And a square domain of side-length 3, Figure 2.4 (Right).
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Figure 2.4: Smooth boundary (Left), Non-smooth boundary (Right).

The smooth domain is discretized using 24 linear boundary elements, and
17 interior nodes, Figure 2.5 (Left). The square domain is discretized by
using 24 straight elements in the boundary and 33 interior nodes, Figure 2.5
(Right).
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Figure 2.5: Smooth discrete boundary (Left), Non-smooth discrete boundary
(Right).

2.5.1 The DRBEM for ∇2u = b(x, y)

Since the method for solving this equation has already been discussed, in this
section we only present results of the application of equation (2.18) to solve
Poisson’s problem.
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The Case ∇2u = −x
The governing equation is

∇2u = −x.
The problem’s domain is defined over the smooth boundary Figure 2.4 (Left).
For this case we consider an homogeneous boundary condition u|Γ = 0. The
exact solution is given by

u =
2x

7

(
x2

4
+ y2 − 1

)
,

and the flux is evaluated as

q = − x

14

(
3x2

2
+ 2y2

)
− 4xy2

7
.

Zero order DRBEM, 0-BEM, gives the results presented in Table 2.1.

x y Exact f = 1 + r f = r2 log r
0 0 0 0 0

1.5 0 0.1875 0.1616 0.1784
1.2 -0.35 0.1774 0.1514 0.1673
0.6 -0.45 0.1213 0.1161 0.1189
0 -0.5 0 0 0
1 0 0.2143 0.1974 0.2057

0.5 0 0.1339 0.1279 0.1309

Table 2.1: Interior Values for 0-BEM to equation ∇2u = −x

The Case ∇2u = a2 − x2

The governing equation is
∇2u = 4− x2.

The problem’s domain is defined over the smooth boundary Figure 2.4 (Left).
For this case we consider an homogeneous boundary condition u|Γ = 0. .The
exact solution is given by

u =

[
1.6− 1

246

(
50x2 − 8y2 + 33.6

)](x2

4
+ y2 − 1

)
,
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and the flux is evaluated as

q = 0.4(x2 + 8y2) +
1

246

(
−50x3 − 96xy2 + 83.2x

) x
2

+
1

246

(
−96x2y + 32y3 − 83.2y

)
y.

Zero order BEM (considering constant values over each element), gives the
results presented in Table 2.2.

x y Exact f = 1 + r f = r2 log r
0 0 -1.4634 -1.4475 -1.4505

1.5 0 -0.4402 -0.3963 -0.3704
1.2 -0.35 -0.6079 -0.5635 -0.5514
0.6 -0.45 -0.9883 -0.9713 -0.9556
0 -0.5 -1.1037 -1.0920 -1.0762
1 0 -0.9451 -0.9118 -0.9267

0.5 0 -1.3243 -1.3044 -1.3084

Table 2.2: Interior Values for 0-BEM to equation ∇2u = 4− x2

2.5.2 The DRBEM for ∇2u = b(x, y, u)

In this section, the range of application of the DRM will be extended to
bi-dimensional problems governed by equations of the type

∇2u = b(x, y, u) (2.28)

where the non-homogeneous term may be a combination, sum or product of
functions. The source term could include linear as well as non-linear terms.
In DRM analysis only truly non-linear problems are solved using iterative
techniques. In this thesis we restrict our work to the case of linear non-
homogeneous sources. In order to generate the basic relationships the case

∇2u+ u = 0

is considered. Function b is defined as −u. Thus, from (2.19)

α = −F−1u.
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For this class of problems it is no longer possible to separate boundary and
interior solutions as the presence of the fully populated matrix F−1 results in
a coupled problem in which both sets of values, interior and boundary ones,
must be calculated simultaneously. The next step is to extend our linear
system. Evaluating (2.16) at every node and substituting the vector α as the
product F−1u then (2.18) becomes

Hu−Gq = −(HŨ−GQ̃)F−1u. (2.29)

The matrices G, H, Q̃ and Ũ of equation (2.29) are defined as the same
as used in the previous sections, except that we extend them to include
the interior nodes. The matrix F was defined in connection only with the
calculation of vector α. Then dealing with problems governed by equation
of the type (2.28), or the time-dependent cases to be discussed on the next
section, α cannot be obtained explicitly and will always be expressed in the
matrix equation as F−1b. The right hand of (2.29) thus becomes a matrix
expression multiplying the unknown vector b which will be different in each
case.

For the examples to be considered in this and the following sections, the
right-hand side of (2.28) is an unknown function where the known vector d,
equation (2.20), has to be replaced by a matrix expression, equation (2.29).
Defining

S = (HŨ−GQ̃)F−1 (2.30)

then equation (2.20) becomes

Hu−Gq = −Su. (2.31)

The calculation of S is done by multiplying known matrices. Collecting terms
in u on the left-hand produces

(H + S)u = Gq. (2.32)

Over the boundary, N values of u and q are unknown, while L values of u at
interior nodes are all unknown. After applying the boundary conditions the
usual equation

Ax = y

is obtained. This represents a (N+L)×(N+L) linear system and x contains
N boundary values of u or q, plus L interior values of u.
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Equations (2.29) to (2.32) form the basis of application of the Dual Reci-
procity Method to equations of the type (2.28). The only difference in each
new case will be a new vector b to replace −u. The treatment of these vectors
will be explained for each case to be studied in a systematic way.

The Case ∇2u = −u
The governing equation is

∇2u+ u = 0.

We define the problem over the smooth boundary Figure 2.4 (Left). Since
homogeneous boundary conditions will result in the trivial solution u = q = 0
at all nodes, a non-homogeneous condition has to be used, for instance

u = sinx.

This equation results in a solution to the problem considered. Zero DRBEM,
0-BEM, gives the results presented on Table 2.3.

x y Exact f = 1 + r f = r2 log r
0 0 0 -0.0001 -0.0001

1.5 0 0.9975 0.9845 0.9981
1.2 -0.35 0.9320 0.9178 0.9173
0.6 -0.45 0.5646 0.5606 0.5596
0 -0.5 0 -0.0001 -0.0001
1 0 0.8415 0.8310 0.8332

0.5 0 0.4794 0.4748 0.4759

Table 2.3: Interior Values for 0-BEM to equation ∇2u+ u = 0

2.5.3 The DRBEM for ∇2u = b(x, y, ux, uy)

In this section, the range of application of the DRM will be extended to
bi-dimensional problems governed by equations of the type

∇2u = b(x, y, ux, uy) (2.33)

where the non-homogeneous term may also be a combination, sum or product
of functions. The term ux and uy represent the spatial derivatives of the
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function u. Convective terms can be easily accommodated in the DRM
treatment. Consider, as an example, an equation of the type

∇2u =
∂u

∂x
.

Comparing this with (2.28) it is seen that in this case b = ∂u
∂x

, such that the
vector

b =
∂u

∂x
represents the nodal values of the derivative of u with respect to x. Thus,
substituting into equation (2.19), one obtains

α = F−1∂u

∂x
,

and equation (2.20) becomes for this case

Hu−Gq = (HŨ−GQ̃)F−1∂u

∂x
, (2.34)

or, using (2.30),

Hu−Gq = S
∂u

∂x
. (2.35)

A mechanism must now be established to relate the nodal values of u to
the nodal values of its derivative ∂u

∂x
. At this point it should be remembered

that the basic appoximation of the DRM technique is equation 2.19,

b = Fα.

A similar equation may be written for u,

u = Fγ, (2.36)

where γ 6= α. Differentiating (2.36) produces

∂u

∂x
=
∂F

∂x
γ, (2.37)

where, in the right hand side of the equation we find a (N + L) × (N + L)
matrix which contains the derivatives of each of the approximating functions
evaluated at each nodal point, i.e.(

∂F

∂x

)
ij

=
∂fj
∂x

(xi).
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Recasting (2.36) as γ = F−1u one can write (2.37) as

∂u

∂x
=
∂F

∂x
F−1u. (2.38)

Substituting into (2.35) one obtains

Hu−Gq = S
∂u

∂x
= S

∂F

∂x
F−1u. (2.39)

Calling

R = S
∂F

∂x
F−1, (2.40)

produces the system of equations

(H−R)u = Gq, (2.41)

which can be handled exactly as (2.32).
Both ∂F

∂x
and F−1 are fully populated matrices. The terms in the ∂F

∂x

matrix depend on the basis-function used. For the radial-basis-functions
(2.22) we have

∂f

∂x
= (x− xk)

(
1

r
+ 2 + 3r + . . .+mrm−2

)
. (2.42)

For the thin-plate-spline-functions (2.25) we have

∂f

∂x
= (x− xk)2 log(r + 1). (2.43)

Is important to note that if we define the expansion (2.37) using the radial
basis functions we will generate singularities at the source elements. This
will cause problems with the diagonal elements of the matrix ∂F

∂x
. To solve

this problem we define the expansion in (2.37) as

∂u

∂x

∣∣∣∣
xi

=
N+L∑
j=1
j 6=i

γj
fj
∂x

∣∣∣∣
xi

.

This solution is presented by Partridge at [18], and defines the matrix ∂F
∂x

as
a skew-symmetric matrix. If we expand using thin plate spline functions not
such problem arises and (2.37) is defined using the standard expansion

∂u

∂x

∣∣∣∣
xi

=
N+L∑
j=1

γj
fj
∂x

∣∣∣∣
xi

.
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A similar treatment can be carried out in the case of the equation

∇2u =
∂u

∂y
.

For which the same equation (2.29) will be obtained with

R = S
∂F

∂y
F−1.

The derivatives are defined similarly as on (2.42) and (2.43), except that they
are taken with respect to the space variable y.

The Case ∇2u = −∂u
∂x

The governing equation is

∇2u+
∂u

∂x
= 0.

We define the problem over the smooth boundary Figure 2.4 (Left). A par-
ticular solution for this case is

u = e−x

which, when imposed as an essential boundary condition, also constitutes the
problem’s solution. Zero order DRBEM 0-BEM, gives the results presented
on Table 2.4.

2.5.4 The DRBEM for ∇2u = b(x, y, ux, uy, t)

This section presents applications of the boundary element Dual Reciprocity
Method to transient problems. For the DRM formulation, the fundamental
solution of Laplace’s equation is used and we consider problems in the general
form

∇2u = b(x, y, u, t) (2.44)

where the non-homogeneous term may also be a combination, sum or product
of functions. We start by defining the method of solution for a diffusion
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x y Exact f = 1 + r f = r2 log r
0 0 1.0000 1.0220 1.0306

1.5 0 0.2231 0.2211 0.2379
1.2 -0.35 0.3012 0.3312 0.3348
0.6 -0.45 0.5488 0.6315 0.6285
0 -0.5 1.0000 1.1576 1.1573
1 0 0.3679 0.3707 0.3829

0.5 0 0.6065 0.6199 0.6255

Table 2.4: Interior Values for 0-BEM to equation ∇2u+
∂u

∂x
= 0

problem in this section. Then, in chapter 3, we will extend to the advective-
diffusive transport equation. To state the basic relationships on the method
we start with the bi-dimensional heat equation

∇2u =
1

k
u̇.

The temporal derivative is taken using Newton notation as u̇. The parameter
k is a positive constant that refers to the thermal diffusivity. The definition
of the problem is completed with the specification of appropriate boundary
condition, and initial conditions u(x, y, t0) = u0(x, y) at the problems do-
main. Comparing the heat equation with (2.28) it is seen that in this case
b = 1

k
u̇. The application of the DRM follows the same pattern as in previous

sections, and produces a matrix equation of the form

Hu−Gq =
1

k
(HŨ−GQ̃)α (2.45)

In the present case, nevertheless, approximation (2.8) implies a separation
of variables in which fk are known geometry-dependen functions and αk
unknown functions of time,

u̇ =
N+L∑
k=1

fk(x, y)αk(t). (2.46)

Thus, matrices Ũ and Q̃ above are the same as in the previous analysis. This
can be represented as a linear system

u̇ = Fα (2.47)
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The next step in the formulation similar to the inversion of equation (2.36),
written in this case as

α = F−1u̇.

Substituting the vector α at (2.34) produces

Hu−Gq =
1

k
(HŨ−GQ̃)F−1u̇. (2.48)

The term multiplying u̇ can be seen as a “heat capacity” matrix,

C = −1

k
S = −1

k
(HŨ−GQ̃)F−1.

And equation (2.31) is rewritten as

Cu̇ + Hu = Gq (2.49)

To solve (2.49) a two-level time integration scheme is employed, [28]. A
linear approximation is proposed for the variation of u and q within each
time step, this leads to

u = (1− θu)um + θuu
m+1, (2.50)

q = (1− θq)qm + θqq
m+1, (2.51)

u̇ =
1

∆t
(um+1 − um), (2.52)

where θu and θq are parameters that take values between 0 and 1, which posi-
tion the values of u and q, respectively, between time levels m and m+1; and
um and qm represent the values of u and q at the time step m. Substituting
these approximations into (2.49) yields:(

1

∆t
C + θuH

)
um+1 − θqGqm+1 =(

1

∆t
C + (1− θu)H

)
um − (1− θq)Gqm (2.53)

The right hand side of (2.53) is known at all times since it involves values
which have been specified as initial conditions or calculated previously. Upon
introducing the boundary conditions at time (m + 1)∆t, one can rearrange
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the left side of (2.53) and solve the resulting system of equations for each
time level.

Note that the elements of matrices H, G, and S depend only on geomet-
rical data. Thus, they can all be computed once and stored. If the value of
∆t is kept constant, the system matrix can be reduced only once as well, and
the time advance procedure will consist of a simple recursive scheme with
only algebraic operations involved.

The Case ∇2u = u̇

The problem of heat diffusion in a square plate, Figure 2.4 (Right), initially
at 30◦ and cooled by the application of a thermal shock (u = 0◦ all over
the boundary) has been studied using the finite element method at [5]. The
exact solution for this problem is given in the last reference as

u =
∞∑
n=1

∞∑
j=1

Anj sin
nπx

Lx
sin

nπy

Ly
exp

[
−
(
Kxn

2π2

L2
x

+
Kyj

2π2

L2
y

)
t

]
,

where Kx and Ky refer to thermal diffusivity components at the x and y
directions; and the coefficient Anj is given as

Anj =
4u0

njπ2
[(−1)n − 1][(−1)j − 1].

In the present analysis, the numerical values adopted are Lx = Ly = 3,
Kx = Ky = 1.25 and u0 = 30. To solve for this problem we use a first
order BEM to take the corners in the problem’s domain into account. Table
2.5 shows a comparison of results for for a boundary discretization with 33

x y Exact [5] f = 1 + r f = r2 log r
2.4 1.5 1.065 1.1217 1.2053
2.4 2.4 0.626 0.6601 0.7299
1.8 1.5 1.723 1.8149 1.9210
1.8 1.8 1.639 1.7257 1.8172
1.5 1.5 1.812 1.9093 2.0256

Table 2.5: Interior Values for 1-BEM to equation ∇2u = u̇ at t = 1.2.

internal nodes and 24 boundary nodes, Figure 2.5 (Right), obtained with a
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time step ∆t = 0.05. It can be seen that the results seem to converge to
values which are slightly higher than the exact ones.

Figure 2.6, shows the results for u at the centre point at each time-step.
As expected in a thermal shock problem, the largest errors -an apparent
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35
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Figure 2.6: Central temperature response of a plate cooled by a boundary
thermal shock.

increase in temperature- appear at the initial times since the shock is applied
linearly over the first time step in the computational model and not suddenly
as in the mathematical problem [18]. It can be observed, however, that the
initial oscillations are quickly dampened.



Chapter 3

Transport in Porous Media

Interest by studying transport processes in porous rocks arise inside the oil
industry. Several phenomena could be modelled using this type of processes.
In a recovery process, a common oil-extracting operation, dilution or even
loss of injected species can be expected as a consequence of heterogeneities
in the medium. This irregularities gives place to fluid mixing. Two phe-
nomena is identified in this transport processes: the molecular diffusion, a
consequence of concentration gradients; and mechanical dispersion, a conse-
quence of media heterogeneities. This is can be studied by considering the
hydrodynamic dispersion: a combination of both previous mentioned effects.
Thus, taking dispersive properties of porous media is relevant to the success
of enhanced oil recovery projects.

Early studies considered analytical dispersion on tracer flow tests based
on the convection-dispersion equation. These supposed dispersion coefficients
as constants. This assumption, however, did not hold when operating at field
tests because the dependence with the scale results fundamental. A model
which solves the difficulties between different spatial scales is deduced from
the stochastic form of the convection-dispersion equation and is given in
this chapter. The resulting equation takes the form of a advective-diffusive
transport equation with a time dependent diffusive parameter.

In this section of the Thesis, once the model is established, we use the
DRMBEM tools developed in previous chapters to solve for a transport pro-
cess with a time dependent dispersion term. We study numerical results for
a particular case at the end of the chapter.

55
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3.1 The Model

The relationship between concentration and dispersion coefficient was first
gleaned from analytical solutions to the deterministic equations modelling re-
covery processes. These analytical dispersion models of tracer flow are based
on the convection-dispersion equation and are restricted to cases of mixing
governed by Fickian dispersion in one and two dimensional homogeneous
media, Perkins [21]. These early models accounted, thus, for a constant dis-
persive parameter. The assumption of constant dispersion coefficients did
not hold when operating at field inter-well scales because the scale of hetero-
geneity in the reservoir which is much larger than that in laboratory tests,
Numbere and Erkal [16].

Reservoir heterogeneities increase the rate of solvent dispersion during
tracer tests. Field measured dispersion coefficients were found to be space
dependent and have been shown to vary approximately linearly with the
scale of measurement, Gelhar [8]. As the flow paths become longer, greater
variations of permeability are encompassed. Then, the correct prediction of
fluid mixing and flow through heterogeneous porous media must integrate
the effects of the many length scales of heterogeneity, Numbere and Erkal
[16].

A stochastic approach is chosen, the model of the problem results form
a geostatistical framework. This accounts for the uncertainty caused by
limited reservoir data as well as the probabilistic distribution of reservoir
heterogeneities. Considering only the heterogeneities caused by permeability
variations, using a Monte-Carlo simulation technique, Warren and Skiba con-
cluded that the mixing caused by macro-scale permeability variations can also
be modelled using the conventional convection-dispersion equation. How-
ever, the space-dependent effective macroscopic dispersion coefficient should
be used in place of the constant dispersion coefficient, Warren and Skiba [27].

Considering a small variance of the field’s velocity, a weak heterogeneity
in the media, assuming a constant viscosity and pressure gradient, Zhang
deduces a dispersion coefficient, [29, 30]. The dispersion coefficient tensor
contains three components, one for each spatial direction. For the unidirec-
tional case we have

K(t) =
qm
v̄

(
1

1 + µ

)[(
1 +

v̄t

l

)1+µ

− 1

]
. (3.1)

Here µ is a fractal exponent which accounts for the model’s multiple scales,
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qm is the variance of the velocity field, v̄ is the mean velocity. As we can
see, the effects of the porous media over the system are stated in the disper-
sion coefficient K(t). At Figure 3.1 we see the behaviour of the dispersive
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Figure 3.1: Evolution of dispersive coefficient for different fractal exponents

coefficient for different fractal exponents, K tends asymptotically to a con-
stant value as µ decreases. As µ approaches zero, the dispersive coefficient
growths more rapidly as time moves forward. This effects will be noted at
the simulations presented in the next section.

The two dimensional form of the convection-dispersion equation with a
space-dependent dispersion coefficient can be written as, Numbere and Erkal
[16],

∂u

∂t
= K(t)

(
∂2u

∂x2
+
∂2u

∂y2

)
− v̄ ∂u

∂x
. (3.2)

where u is a concentration field referring to a single chemical specie, and K(t)
is given by, (3.1). This equation represents a transient isotropic dispersion
with a unidirectional velocity profile.
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3.2 The DRBEM for The Transport Equa-

tion

A dual reciprocity formulation of (3.2) follows the work of Patridge et. al [18],
discussed at chapters 1 and 2. First, lets state equation (3.2) as,

K(t)∇2u =

(
∂u

∂t
+ v̄

∂u

∂x

)
. (3.3)

Experimental data proves that this equation describes the behaviour of a
function u correctly describes the model presented, Numbere and Erkal [16].
Departing from this fact, existence of solutions to (3.3) is assumed. Then,
assume that u is defined over Ω and the values of u are known at the domain’s
boundary Γ, u|Γ = ū. This defines a Dirichlet problem over Ω. Comparing
equation (3.3) with (2.2) we see that,

b(x, y, t) =

(
∂u

∂t
+ v̄

∂u

∂x

)
. (3.4)

Following the procedure defined on section 2.3, we start by defining N nodal
points at Γ and L internal nodes at the interior of Ω. Then, one approximates
the source term by a series of geometry-dependent functions

b(x, y, t) =
N+L∑
k=1

αk(t)fk(x, y). (3.5)

The approximating functions are defined so

∇2ûk = fk

can be solved for each fk. Up next, we substitute (3.5) at (3.3)

∇2u =
1

K(t)

N+L∑
k=1

αk(t)fk(x, y). (3.6)

Multiplying both sides of (3.6) by the fundamental solution to Laplace’s
equation and integrating over the domain yields∫

Ω

(∇2u)u∗i dΩ =
1

K(t)

N+L∑
k=1

αk(t)

∫
Ω

(∇2ûk)u
∗
i dΩ. (3.7)
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Note that the summation and the integral are interchanged by assuming
smoothness. Using Green’s second identity on both sides and approximating
boundary integrals by summation over boundary elements gives for a source
node (xi, yi) ∈ Ω

βiui +

∫
Γ

q∗i udΓ−
∫

Γ

u∗i qdΓ =

1

K

N+L∑
k=1

αk

(
βiûik +

∫
Γ

q∗i ûkdΓ−
∫

Γ

u∗i q̂kdΓ

)
.

After the Boundary Element Method approximation over each boundary el-
ement we rewrite,

βiui +
N∑
j=1

Hijuj −
N∑
j=1

Gijqj =

1

K

N+L∑
k=1

αk

(
βiûik +

N∑
j=1

Hijûjk −
N∑
j=1

Gij q̂jk

)
. (3.8)

The coefficient βi takes a value of 1 if the node i is an interior point, 0.5 if it
is on a smooth boundary, and a value given by the value if the angle at the
corner otherwise. The definition of the known influence coefficients Hij and
Gij depends on the election of constant element values or linear increments
on uj and qj. After evaluation of the last equation at every nodal value we
establish a (N + L)× (N + L) linear system

Hu−Gq =
1

K

N+L∑
k=1

αj(Hũk −Gq̃k). (3.9)

The α vector is defined to satisfy

α = F−1

(
∂u

∂t
+ v̄

∂u

∂x

)
. (3.10)

Taking α into (3.9), and considering the expansion of the convective term,
equation (2.38),

Hu−Gq =
S

K

(
∂u

∂t
+ v̄

∂F

∂x
F−1u

)
, (3.11)
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where
S = (HŨ−GQ̃)F−1.

By defining

C = − S

K
, R =

S

K

(
v̄
∂F

∂x
F−1

)
,

one can rewrite (3.11) as

Cu̇ + (H−R)u = Gq. (3.12)

Equation (3.12) is solved with a discrete time-marching procedure. A
linear approximation is used for the variation of u and q within each time
step, i.e.,

u = (1− θu)um + θuu
m+1, (3.13)

q = (1− θq)qm + θqq
m+1, (3.14)

u̇ =
1

∆t
(um+1 − um). (3.15)

Substituting equations (3.13)-(3.15) into equation (3.12) produces[
1

∆t
C + θu(H−R)

]
um+1 − θqGqm+1 =[
1

∆t
C + (1− θu)(H−R)

]
um − (1− θq)Gqm (3.16)

The right side of equation (3.16) is a known vector at all times. It uses the
initial values specified at t = 0 and is calculated in subsequent time steps. At
each time step the linear system (3.16) is reduced and solved for the unknown
values of u and q.

The ADT equation on a square plate.

The performance of the numerical method has been proved over the discus-
sion of previous examples. Now we will study some particular cases for the
advective-dispersive transport equation.

The problem of advective-dispersive transport in a square plate is pre-
sented. For this particular case we set the problem’s domain as a square plate
Ω. The initial condition corresponds to u0 = 0 over Ω. Let the unit square
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have a Dirichlet boundary condition ū = 0 everywhere except at x = 0, where
the condition is ū = 300 for 0 < y < 3, Figure 3.2,

u =


0, y = 3, 0 < x < 3
0, y = 0, 0 < x < 3
0, x = 3, 0 < y < 3
300, x = 0, 0 < y < 3

The boundary condition remains fixed for every t.

Figure 3.2: Boundary conditions for advective-dispersive transport problem

µ f = 1 + r
0 129.7129

-0.4 133.5025
-0.8 137.4781
-1.8 148.0798
-3 161.5357

Table 3.1: u evaluated at [1.5, 1.5], t = 1.2

To obtain solution for this problem we use a first order BEM to take cor-
ners into account. Solving this problem we defined a boundary discretization
of 24 straight elements and 100 interior nodes, Figure 3.3. The problem was
solved using the radial basis functions f = 1+r. The values of µ where taken
as −3 ≤ µ ≤ 0, accordingly with Figure 3.1. Concentration profiles for the
central point of the plate are presented at Figure 3.4. Full plate profiles for
different times are presented at Figures 3.5 to 3.8. At the figures we can see
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Figure 3.3: Domain discretization for advective-dispersive transport problem

that a variation over the fractal exponent implies a slightly different profile
evolution. This issue needs to be taken with precaution in field operation.
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Figure 3.4: Concentration profile evolution for the plate at [1.5, 1.5] for dif-
ferent values of µ.

Apparently, decrements over the fractal parameter µ imply an increment
on the concentration at t = 1.2. Table 3.1 shows a comparison of results
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for the concentration profile u at the center of the plate for t = 1.2 using
different values for β.

This behaviour can somehow be interpreted using the problem’s model:
If we analyse the dispersion coefficient we see that as the fractal coefficient
takes smaller values, the growth of the dispersive parameter is decreasing.
This implies a slowest movement of the chemical species in Ω, implying a
mayor accumulation. This fact can also be taken as the cause for the pro-
file evolution at Figures 3.5 to 3.8. So, the model, considering a temporal
dependent dispersive coefficient, predicted correctly behaviour that does not
result obvious at first glance.
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Figure 3.5: Concentration profile for the plate at t = 0.25 for: µ = 0, up;
µ = −3.0, down.
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Figure 3.6: Concentration profile for the plate at t = 0.50 for: µ = 0, up;
µ = −3.0, down.
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Figure 3.7: Concentration profile for the plate at t = 1.00 for: µ = 0, up;
µ = −3.0, down.
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Figure 3.8: Concentration profile for the plate at t = 1.25 for: µ = 0, up;
µ = −3.0, down.



Chapter 4

Conclusions

Boundary element methods constitute a useful tool for studying models de-
scribed by elliptical PDE’s over regular or irregular domains. The main
advantage of BEM against other class of numerical methods corresponds to
the easiness of its implementation, and the flexibility of the method. The
main disadvantage of the BEM resides on the need of knowing some Green’s
function related to the problem’s model, which is not always available. From
the examples discussed we verify that the method approximates the solution
to Laplace’s equation for different boundary conditions. As for the results
there exists not much difference between the application of a zero order and a
first order boundary element method for smooth boundaries. For boundaries
which contains cusps, however, there is a slightly improvement by using a
first order BEM because it takes into account non-smooth boundary-points.

Even considering that the foundation of BEM relies on Laplace’s equa-
tion, is possible to extend its theoretical basis in order to solve more complex
equations. As noted in Chapter 2, using Laplace’s fundamental solution we
enable a boundary solution, which was not available at first instance, for
Poisson’s problems -where the source term could even include the potential
or time dependent terms-. The extension of fundamental solutions gives us
a flexible method which, departing from a simple equation, can be easily
extended to solve a broader class of problems. In this sense, boundary el-
ement methods result in a interesting tool which deserves more study and
developement.

In this thesis we used Laplace’s fundamental solution to construct a
boundary element method to solve boundary value problems. The use of
Laplace’s fundamental solution restricts the method’s accuracy because of

68
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the approximations in the source term made by BEM. Future work could
include a comparative in the implementation of boundary element methods
using different fundamental solutions. Fundamental solutions to Helmholtz
and advective transport equations are available. Particularly, an approach
to deal with time-dependent terms using fundamental solutions could be de-
veloped. Both issues are presented by Pozrikidis at [22].

Also, a comparative study between a wider spectrum of basis functions is
suggested as a starting point for future investigation. Different interpolating
functions gives different convergence on the method, resulting on more or
less precise results.

Refinement of the method is also necessary for future implementation. At
this point we build a boundary element method with linear approximations
and straight boundary elements. Depending on the future course of work,
quadratic or cubic elements must be deployed in the method to improve
precision in results.

Finally, a dispersive-advective transport process was solved. Once the im-
plementation of the method was developed, we see that the process to apply
the DRBEM to the model follows easily, even with the time dependent terms.
With a relatively small amount of data -boundary and initial conditions at a
few domain points- the numerical method can predict the behaviour of the
problem. Even considerable concentration differences were predicted by the
model due to its fractal approach over the problems heterogeneities.

As a final conclusion we can present the boundary element formulation as
an effective, flexible tool, which can be easily extended from simple problems
-Laplace’s Equation- to a little more complicated -Dispersive-advective trans-
port equation-, and other kind of partial differential equations. This thesis
has showed the development and implementation of the numerical method
to solve boundary valued problems in future implementations.
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