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Preliminaries: Notation and definitions

In this small chapter, we introduce some spaces of functions and basic definitions that will be
used in this thesis. These functions are defined on an open set O C R4, with d > 2, where the
complement, closure, interior and boundary of O are denoted by O°, O, int O and 9O, respectively.
We recall that |- || is the Euclidean norm and (-, -) is the inner product. When o = () 4xa € R,
we denote tr(-) as the trace of the matrix o.

An open ball with radius r > 0 and center in an arbitrary z € R is defined as B,. In case that
the center is fixed, we denote the open ball with radius » > 0 and center x € R? as B,(r). Let

O C R?be an open set.

0.1 Spaces of continuous functions

Let C°(O) denote the space of real valued continuous functions on O. The set C*(O) consists of
real valued functions on O that are k-fold differentiable, i.e. 0°f € C°(O) for every a € D,,,
0 < m < k, where D,, is the set of all multi-indices of order m. For instance, if & = 2, then
NMfefof:i=1,....dyand &f € {95f :i,j = 1,...,d}. Here D'u = (dyu,...,0qu),
D*u = (0%u)axa. We define C*(0) = 2, C*(O). The sets C*(O) and C°(0) consist of
functions in C*(©) and C> (), whose support is compact and contained in O, respectively. The
following result gives an extension for uniformly continuous functions defined on open sets, which

proof is in Section 0.3.

Proposition 0.1. If f : O — R is uniformly continuous function, then f has a unique extension

to a continuous function f : O — R.

If f € C°(O) is bounded and uniformly continuous on @, by Proposition 0.1, it follows that it
possesses a unique bounded continuous extension to O. The set Ck(@) is defined as the set of real

valued functions f € C*(O) for which 9 f is bounded and uniformly continuous on O for every

1



2 PRELIMINARIES: NOTATION AND DEFINITIONS

a € D,,, with 0 < m < k. This space is equipped with the following norm
k
1fllcroy =Y D 110 flleoo) = Z > sup{|0”f(x)[},
m=0 a€Dn, m=0a€Dm

where 3~ ., denotes summation over all possible m-fold derivatives of f. For each D C RY,

f:D— Rand0 < a <1, the operator [ - |co.a(p) is defined as

_ [f(z) = f(y)l
[f]CO"’(D) = ZS%%{W} 0.1

Next we define different spaces of Holder continuous functions that will be used in this work. Let
O C R? be an open set, the set C)%(0) is that of all functions in C°(O) such that | flova) <
oo, for every compact set K C O. The set C**(O) is the set of all functions f in C°(O) that
[ fllcoe@) = llfllco@) + [flcoa(o) < oo. Define Cl%(O) as the set of functions in C*(©) that
satisfy [0%f]co.a(x) < 00, for every compact set X' C O and every a € Dy, with 0 < m < k.
The set C**(0) denotes the set of all functions in C*(O) such that [0" fleoa(@) < oo, for every
a € Dy,, with 0 < m < k. This set is equipped with the following norm

k
[ fllere@y = | fllcr@) + Z Z [0 flco o) 0.2)

m=0 a€Dm,

Taking k = 2 in (0.2), the norm for the space C**(O) takes the following form

||f||ckao)—||f||00a +Z||af|’cw +ZH f’|00>a(6)

i,j=1

The set C**(0) consists of all functions in C**(©) whose support is compact and contained in
O. This space is equipped with the norm || - |[or. (o). We understand CF(R?) as CH*(R?), when
O = R4, in the sense that [8‘1ﬂco,a(Rd> < o0, for every a € D,,, with 0 < m < k.

0.2 [” and Sobolev spaces

As usual, L7(O) with 1 < p < oo, denotes the class of real valued functions on O with finite norm

110 = /@ fPde < oo,
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where dz denotes the Lebesgue measure. Also, let L (O) consist of functions whose LP-norm
is finite on any compact subset of @. Define the Sobolev space W*?(0) as the class of functions

f € LP(O) with weak or distributional partial derivatives 0° f, see [1, p. 22], and with finite norm

k
1 fognioy = 2 D [10°fIlEno), forall f € WH(O). (0.3)

m=0 a€Dy,

The space Wfog (O) consists of functions whose W*?-norm is finite on any compact subset of O.

When p = co, the Sobolev and Lipschitz spaces are related. In particular, W2 (0) = C*11(0)

loc

for an arbitrary subset © C R?, and W*>*(0) = C*~1(O) for a sufficiently smooth domain O,

when it is Lipschitz; see Definition 2.1.

0.3 Proof of Proposition 0.1

In this section we shall give a proof of Proposition 0.1.

Proof. Let f : O — R be a uniformly continuous function and = € JO. There exists a sequence

{Zn}n>1 C O suchthat lim z,, = x. Thus, {z,},>1 is a Cauchy sequence, i.e. for all p > 0 there

n—oo

exists a positive integer /V,
||Tn — zm|| < p, forall n,m > N.
Since f is uniformly continuous, we have that for each € > 0, there exists a positive integer N,
|f(zn) — f(zm)] <€ foralln,m > N.

Then, {f(z,)}n>1 is a Cauchy sequence in R. Therefore, by completeness in R, f(z):= lim f(z,)
= n—o0
exists. If {y,} C O is another sequence that converges to x, and proceeding the same way as for
f(z), we can see that f,(z):= lim f(y,) exists. Now, we shall verify that f(x) = f,(x), showing
n—oo

that f(z) is well defined. Since lim z, = x = lim v, we get that
n—oo n—oo
|n = ynll < lJzn + 2| + |l = yol| — 0
n—o0
Then, for each p > 0, there exists a positive integer Ny,
||z — ynl| < p, foralln > Nj. 0.4)

By uniform continuity of f, it follows

f(20) = fyn)| < g, forall n > Ny, 0.5)
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for each € > 0. We know that there exist positive integers N, and N3 such that

foralln > N,

[f(z) = f(za)| <

Wl ™

(0.6)
for all n > Ng,

(@) = flya)l <

for each € > 0. Taking N = max{N;, N2, N3} and from (0.5)—(0.6), it implies

Wl ™

() = Fr(@)] < [F(@) = f@a)l + 1f (ya) = Fr(@)] + |f (@n) = fya)| < e,

foralln > N. Thus, f(z) = f,(z). Defining f : O — R as

_ x), ifxre O,
=" )

lim f(z,), ifz € Oand{x,},> C Osuchthat lim z, =z,

n—oo n—oo

we now show that f is a continuous function. In case that z € O, this is strightforward. When

x € 00, we have two cases,

{yn}n>1CO {Yyn}n>1CO0O
Let {y, },>1 C O be a sequence such that lim y,, = x. Since {z, },>1 is a sequence that converges
- n—o0 -
to z, it yields (0.4). Then, by uniform continuity of f, it follows that for each ¢ > 0, there exists a

positive integer /V; such that

|f(zn) = fyn)| < g foralln > Nj.
By definition of f(z), there exists N, such that
|?(l’) - f(xn)| S %, for all n Z Nz.

Then, taking N = max{ N, N, }, we conclude

[F(x) = flyn)l < [f(@) = f@a)l + | (@a) = f(ya)| <€, foralln > N.

Thus,
{yn}nzlco
Let {y,}n>1 C OO be a sequence such that lim y, = z. This means that for any p > 0, there
- n—o0

exists a positive integer Ny,
llz = yal| < g, for all n > N. 0.7)
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Since

Flz) = lm f(z,).

f(yn) = lim f(xn,m)7 forall n > 17
m—00

with {x,, }n>1, {Tnm }m>1 C O sequences such that

lim z, =,
n—oo

lim z, , = y,, foralln > 1,
m— 00

we have that for e > 0 and p > 0 given in (0.7), there exists a positive integer N, that satisfies

- €
F@) = fa)] < 5.
(0.8)
P
_ < 2
o —all < £,
for all n > N>, and for each n > N, there exists a positive integer /V,, such that
— €
Flo) = F@nm) < 5.
(0.9)
lza, = yull < £.
Then, taking N = max{Ny, N, }, we get
l2n = o na || < Nlwn = @l + [l = yul| + |[yn — Zan, || < p, foralln = N.
By uniformly continuous of f, it follows for £ > 0 given in (0.8) and (0.9), that
() — fl@an,)| < % forall n > N. (0.10)

From (0.8)—(0.10), we conclude

[F(x) = flyn)| < [F(2) = fl@n)] + | f(20) = f@nn)] +1f(@an,) = Flua)| < e
for all n > N. Then

{yn}n21C30
Therefore, it yields that f is a continuous function in O. Finally, we shall prove uniqueness of
the extension f. Suppose f and f, are two continuous extensions of f from O to O. If x € O,
it is clear from the definition of extension that f(z) = f(x) = f,(z). If z € 0O, there exists

{zn}n>1 C O asequence that converges to x. Then

?(x) = nlggo f(xn) = ?1(1‘)

Thus, f is the unique continuous extension of f from O to O. [ |






Chapter 1
Introduction and main results

In this thesis, we study a Hamilton-Jacobi-Bellman (HJB) equation in the domain Br(0), with
R > 0, whose operator associated is an elliptic integro-differential operator. The HJB equation
analyzed in this work is closely related to singular stochastic control problems, where the controlled
process is a d-dimensional Lévy process, whose components are a Brownian motion with drift and
a compound Poisson process; see (1.6). We recall that a Lévy process is a cadlag process with
independent and stationary increments [30]. Our main goal is to establish the existence, uniqueness
and regularity of the solution u to the HIB equation
max{qu(z) — Tu(z) — h(x),|| D' u(z)||> = 1} =0, a.e. in Br(0),

(1.1)
u(z) =0, on 9Bg(0),

where Br(0) C R%, with R > 0 and d > 2 fixed. The components of this equation are:

(i) A constant ¢ > 0 and a positive function i : Bg(0) — R.

(i) An integro-differential operator I' which has two parts, an elliptic partial differential operator

and an integral operator, i.e.
Tu(z):= % tr(o D* u(x)) + (D' u(z),7)
+ /R(E(u)(:v + 2) —u(x) — (D' u(x), 2))v(dz), (1.2)

with x € Bg(0). Here v = (v1,...,741) € R, 0 = (0ij)axa € R¥ is a positive definite

matrix, and v is a finite non-trivial Lévy measure in R*:= R\ {0} such that [, ||z|[v(dz) <

0. The operator E : C**(Bg(0)) — CF*(R?), with & > 0 and o € [0, 1], is a continuous

7



8 INTRODUCTION AND MAIN RESULTS

linear operator that has the following properties: there exist constants C' = C'(k, R) > 0 and
b > 0 such that for every w € C**(By(0)),

/

supp|E(w )} is compact, (13

supp|E(w)] C Bp, 1 (0),

HE(w)Hck:a(le) < CHwHC’“"’(BR(O)V

where supp|E(w)]:= {z € R? : E(w)(x) # 0}. The norm || - [|cr.a(. is as in (0.2).

Since [;. ||z||v(dz) < oo and the continuous linear operator E satisfies (1.3), we see that I, given

in (1.2), can be written as

Tu(z) = %tr(o D?u(z)) + (D u(z),75) + /*(E(u)(:): + z) —u(z))r(dz), (1.4)

for all z € Bg(0), where
= 7—/ zv(dz). (L.5)
R*
Note that the operator I as in (1.4) is the infinitesimal generator of the d-dimensional Lévy process
Y ={Y;:t > 0} given by

K:Wt+:}7t+/ / z¥(ds x dz), forall t > 0, (1.6)

where W = {W; : t > 0} is a d-dimensional Brownian motion with Gaussian covariance matrix o,
7 € R? as in (1.5), and ¥ is a Poisson random measure in [0, 00) x R* equipped of the o-algebra
B generated by B[0, c0) x B(R*), with an intensity measure d¢ x v(dz). The last part on the right
side in (1.6) is a compound Poisson process with rate v(IR*) and the distribution of its jumps is
v(R*)"'v(dz). Recall that the process Y has independent and stationary increments, whose paths
are right continuous with left limits, and Y = 0 almost surely. For background of Lévy processes
we refer to [30], which will be our main reference.

The following hypotheses will be assumed throughout the thesis.
Hypotheses
(HI) The function h € C*(Bg(0)) is positive. Then 2]l 2 Bry) < Co for some constant Cy > .

(H2) The Lévy measure v satisfies v(dz) = r(2)dz, with k € C**(R*), for some o € (0, 1) fixed,

v:=v(R*) < oo and vi:= [, ||z||v(dz) < oo, where R* = R*\ {0}.




(H3) There exist real numbers 0 < 0 < © such that the coefficients of the differential part of I
satisfy
OlICII* < (o€, C) < O[C][*, forall ¢ € RY,

and define A := ||v||.

(H4) The discount parameter q is large enough such that
2A0/ v(dz) < g+ vy =:¢,
B, 5(0)
2

where Ay =~ 1.03727 which is given in (2.25) and b is a constant small enough but fixed. ®

The paper of Soner and Shreve [32] has been one of the main sources of inspiration of this

work. In that paper the authors consider the following HIB equation

max{u — Au — h, || D u||* — 1} = 0, (1.7)

where Au: = 0% u + 0%u, h € C2L(R?) is an strictly convex function and there exist positive

loc

constants Cj and ¢, such that

0= h(0) < h(z) < Co(L+||z]]*),
1D h()]| < Co(1 + h(x)),
collyl]* < (D* h(@)y,y) < Collyl[*(1 + h(x)),

for all 2,y € R2. Soner and Shreve [32] proved that there exists a unique solution v € C**(IR?) to
the problem (1.7), which is a non-negative convex function. Also, they showed that the value func-
tion of a stochastic control problem, where the controlled process is a two-dimensional standard
Brownian motion, satisfies the HIB equation (1.7). When the controlled process is a d-dimensional
standard Brownian motion, with d > 2, Kruk [21] showed that the value function of this stochas-
tic control problem is related to the solution of the HIB equation (1.7), with 4 : RY — R and
Au: = 2?21 O2u. In this case, the solution to the problem (1.7) is in Wfo’go(IRd); see [27]. The
d-dimensional standard Brownian motion is a particular example of continuous Lévy process. In
our setting the controlled process is allowed to be a more general d-dimensional Lévy process, it
has a continuous component given by a Brownian motion with drift and a component with jumps

given by a compound Poisson process, whose jumps occur at exponential times with parameters
v(R?*\ {0}) and jump sizes distributed as (R \ {0})~*v(dz). This makes that our HJB equation,
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given in (1.1), differs from (1.7) by an integral term coming from the compound Poisson process in
the controlled process, which is naturally related to the integral term in its infinitesimal generator,
given by (1.4).

Recently, Davis et. al. [6], Bayraktar et. al. [2] and Menaldi and Robin [26] studied a class
of HIB equations in R%, with an integro-differential operator. The first two works are interested in
studying regularity properties of the value function for an infinite horizon discounted cost impulse
control problem, where the controlled process is a non-degenerate multidimensional jump diffusion

with infinite activity. By probabilistic, partial differential and viscosity methods, they proved that

2,p
loc

this value function belongs to W;>?(R¢), and it is associated to a HIB equation. Davis et. al. [6]
study this problem when the jump process has finite variation, i.e. integro-differential operator of
order [0, 1], and later Bayraktar et. al. [2] generalizes this work, when the jump process has infinite
variation, i.e. integro-differential operator of order (1, 2].

In our case, we consider a HIB equation with constant coefficients, and v as a finite non-trivial
Lévy measure that satisfies (H2). The existence of the solution u to the HIB equation (1.1) is a

strong sense, i.e., a strong solution of the equation
max{(qu(z) — Tu(z) — h(x), || D' u(z)||* — 1} = 0, in Br(0), (1.8)

is a twice weakly differentiable function on Br(0) that satisfies (1.8) almost everywhere in Bg(0).

Under the assumptions (H1)—(H4), the main result obtained in this thesis is the following.

Theorem 1.1. If d < p < oo, there exists a unique nonnegative strong solution u € C**(Bg(0)) N
W2P(Bg(0)) to the HIB equation

loc

max{qu(z) — Tu(x) — h(z), || D' u(2)||* =1} =0, a.e. in Br(0),
u(xr) =0, on OBRr(0).

It is worth observing that the solution obtained in this thesis is in a strong sense which should
be contrasted with recent results in the topic, where the solutions are established in the viscosity
sense. This problem has only been studied in the case that I is an elliptic differential operator; see,
e.g. [9, 18, 32, 27, 21, 17]. We establish our main result; Theorem 1.1, by probabilistic, integro-
differential and PDE classical methods, which are inspired by Evans [9], Lenhart [23], Gimbert and
Lions [14], Soner and Shreve [32], Garroni and Menaldi [12] and Hynd [17].

The closest to our work is the paper by Menaldi and Robin [26]. They study a singular control

problem for a multidimensional Gaussian-Poisson process, and establish a relationship between the
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value function to this problem and the solution of the corresponding HIB equation. The multidi-
mensional Gaussian-Poisson process is a Lévy process where it only has a d-dimensional standard

Brownian motion and a jump process whose Lévy measure v satisfies fR*

z||Pr(dz) < oo, for all
p > 2. Although the proofs of their principal results are not provided in detail, and they left these to
future works, they give enough arguments to show that the solution to the HIB equation associated
with the value function to the singular control problem is in the classical sense.

To guarantee the existence and regularity of the HIB equation (1.1), first we have to analyze
the existence, regularity and uniqueness of the solution u° to the non-linear integro-differential
Dirichlet (NIDD) problem

qu(x) — T (2) + (|| D' w(2)|[?) = h(x), in BR(0),
uf(z) =0, on 0Bg(0);

(1.9)

see Theorem 1.3. The penalizing function 1. : R — R, with ¢ € (0, 1), is defined by

r—1

wg(r):—w( >, forallr € R, (1.10)

with ¢ € C*°(RR) such that

Y(r) =0, forall r <0,
Y(r) >0, for all 7 > 0,
Y(r)=r—1, forall r > 2,
P'(r) >0, ¢"(r) >0, forallr € R.

The penalty method used in the NIDD problem (1.9), was introduced by L. C. Evans to establish
existence and regularity of solutions to second order elliptic equations with gradient constraints [9].
This method has also been used in other works, like [18, 32, 16, 17]. Deducing uniform estimates
of the solutions to the NIDD problem (1.9) that allow us to pass to the limit as ¢ — 0 in a weak
sense in (1.9), it is obtained the existence and regularity of the solution to the HIB equation (1.1).
Although the NIDD problem (1.9) is a tool to guarantee the existence of the HIB equation (1.1),
this turns out to be an independent problem of great interest because it can be related with optimal
stochastic control problems where the state process is a controlled d-dimensional Lévy process as
in (1.6). In this work the optimal stochastic control problem related to the HIB equation (1.1) is not

developed, albeit we analyze it for the NIDD problem (1.9); see Section 1.2.
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Previous to this work, Bony [4], Bensoussan and Lions [3], Lenhart [23] and [24], Gimbert and
Lions [14] and Garroni and Menaldi [12], among others, studied the existence, uniqueness and reg-
ularity of the solutions to the linear Dirichlet problem with an integro-differential operator similar to

(1.2), obtaining results in the spaces W>* and W"> N WP

loc?

respectively. We note that the NIDD
problem (1.9) is more general than the linear Dirichlet problem studied in the works mentioned
above, in the sense that our problem has a non-linear part that is determined by v.(|| D' u°(-)).
Also, we can also highlight that for each ¢ € (0, 1), the solution u* to the NIDD problem (1.9) is in
C**(Bg(0)); see Lemma 3.9.

The integral part of the operator I" given in (1.2) has an important component, this is the con-
tinuous linear operator . The reason for introducing the operator F is that the integral part of
I" is an operator defined in R?, i.e. when u : RY — R the integral operator is given by
Jg-(u(@ + 2) — u(z) — (D' u(z), 2)r(dz), and hence we can see that it is not well defined if
the domain of a function w is restricted to a bounded set. For this reason, it is required that £ :
C**(Bg(0)) — C**(IR%), be a continuous linear operator that satisfies the properties described
in (1.3). Using this argument the integral operator [i..(E(u)(z + z) — u(z) — (D u(z), z))v(dz)
is well defined and hence the HIB equation (1.1) is also well defined. From (1.3), we know that
supp|E(u)] € By, 5 (0). Then, the solution to the HIB equation (1.1) depends also of the values
of E(u)(-) on By, b (0) \ Br(0), where b is a fixed small constant, as it is explained in Section
2. Since E : C*(Bg(0)) — CF*(R?), we can also verify that the solution u to the NIDD
problem belongs to C**(Bx(0)). The construction of the continuous linear operator will be given
in Subsection 2.2.

We note that the HIB equation (1.1) and the NIDD problem (1.9) can be defined on any Lips-
chitz, bounded domain O. Then, the results obtained in this thesis when the domains are open balls
of the form By(0), with R > 0, are the same for Lipschitz, bounded domains O. The reason that
we restrict ourselves to the case where the domains are Bg(0), with R > 0, is because the NIDD

problem (1.9) is related in the study of the existence, regularity and uniqueness of the HIB equation
max{qu(z) — Dju(z) — h(z),|| D u(z)|> — 1} = 0, in RY, (1.11)

where

’

Fu(x):= %tr(o D?u(x)) + (D' u(z), ) + /*(u(x + 2) —u(z) — (D' u(x), 2))v(dz). (1.12)

The existence and regularity of the solution to the HIB equation (1.11) is obtained passing to limits

in a weak sense in (1.9). For this is necessary to find bounds of ©=#, D* u*# and D? u*" that are
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independent of (e, R), where > is the solution to the NIDD problem (1.9). The problem here
is the constant that limits || D' u*(-)||, since this constant grows exponentially fast with R; see
Lemma 3.19. This is not suitable as it suggests that a bound function for || D' u=%(-)|| in Bz(0)
is of the exponential type, and hence it possesses technical issues when we estimate the first and
second derivatives of this bound function; see more in the conclusions of this thesis, page 85.

The HIB equation (1.11) arises in the study of the minimization of an infinite horizon dis-
counted running convex cost, where the state process is a controlled d-dimensional Lévy process
which components are a d-dimensional Brownian motion with Gaussian covariance matrix o, and
a compound Poisson process with rate v(IR*) and the distribution of its jumps is v(R*)~'v(dz);
see Section 1.2.

Let us now some comments about the hypotheses (H1)-(H4). Hypotheses (H1) and (H4)
ensures the existence and uniqueness to the positive solution u* of the NIDD problem (1.9) in
C**(Bg(0)); see Theorem 3.8 and Propositions 3.9 and 3.13. The main reason of Hypothesis
(H2) is because this is necessary to guarantee the existence of the solution u°(-;w) to the non-
linear Dirichlet problem (3.5), when w € Co(m); see Lemma 3.2. Defining the map T; as in
(3.19) and using contraction fixed point Theorem; see Theorem 3.1, we can prove the existence
and uniqueness to the solution u° of the NIDD problem (1.9), which is in C**(Bg(0)). Finally,
Hypothesis (H3) is a classical assumption for differential operators called ellipticity property, see,
e.g. [9, 18,22, 14, 13, 12, 6, 16, 2].

In the following section, we shall state with an equivalent form of the main result; Theorem 1.1,
and we shall give our main contribution concerning to the NIDD problem (1.9). After, we shall
show a sketch of the proofs of Theorems 1.2 and 1.3. Finally, in Subsection 1.2, we shall explain
the relationship that there exists between the equations (1.9), (1.11) and singular stochastic control

problems; see Lemmas 1.4 and 1.5.

1.1 Main results and sketch of proof

Under the assumptions (H1)-(H4), we establish the existence of the unique strong solution to the

HJB equation (1.1) in C%*(Bg(0)) N W22 (Bg(0)), with d < p < oc. First, since v(R*) < oo, we

loc

have that the HIB equation (1.1) can be written as

max{q'u(z) — T'u(z) — h(z), || D' u(2)||* = 1} =0, in Bg(0),
u(z) =0, on 0Bg(0),

(1.13)
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where
¢ =q+v(R") =q+w,
Iu(z):= S tr(o D*u(z)) + (D' u(x),7) + [ E(u)(z + 2)v(dz) (1.14)
=:L'u(z) + T E(u)(x).
The differential and integral part of I'" are denoted by £ and Z, respectively. Then, our main result;

Theorem 1.1, is equivalent to prove the following theorem.

Theorem 1.2. If d < p < oo, there exists a unique nonnegative strong solution v € C*'(Bg(0)) N
W2P(Bg(0)) to the HIB equation

loc
max{qu(x) — Nu(z) — h(z),|| D' u(z)||> =1} =0, a.s. in Br(0),
u(z) =0, on OBg(0).
Using (1.14) we see that the NIDD problem (1.9) is equivalent to the following NIDD problem
q'u(z) = T'w () + ¢ (|| D' w(2)[]*) = h(w),  in Br(0),
uf(z) =0, on 0Bg(0),

(1.15)

where 1. is given in (1.10). We have the following result.

Theorem 1.3. For each ¢ € (0, 1), there exists a unique positive solution u to the NIDD problem
(1.15) in the space C>*(Bg(0)).

The key steps in the proofs of these theorems are the following. First, we guarantee the existence
and uniqueness of a sequence of positive functions {u°}.c(o,1), where for each ¢ € (0,1), u° is the
solution to the NIDD problem (1.15). Define for each ¢ € (0, 1), the operator 7. : C°(Bg(0)) —
C%(Bg(0)) as T.(w) = Ve(-;w), whenever w € C°(Bg(0)), where the value function V*(-, w) is

as in (3.16). From Lemma 3.5, it follows
T.(w) = VE(-,w) € C**(Bg(0)) C C°(Bg(0)), for each w € C°(Bg(0)).
Verifying that V¢(-; w) satisfies

2A0
V7o) VGl < gt i@l = sl
q BR+g(0)

for each wy, wy € C°(Br(0)); see Lemma 3.6, by Hypothesis (H4), we obtain that 7} is a contrac-

tion mapping in the Banach space (C°(Bg(0)), || -| | 0o @r7oy))- BY contraction fixed point Theorem;
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see Theorem 3.1, it yields that there exists a unique w* € C°(Bg(0)) such that T.(w*) = w*;
see Lemma 3.7. Using this and that V*(; w) is related with the solution »°(-;w) to the non-linear

Dirichlet problem (3.5); see Lemma 3.5, we obtain the existence, uniqueness and regularity of the

solution u® € C**(Bg(0)) to the NIDD problem (3.1); see Theorem 3.8. By Proposition 3.9,

we obtain that u® € C**(Br(0)), and hence it is obtained the result of Theorem 1.3. Now, from
Lemma 4.6, we know that there exist a decreasing subsequence {5H(L)}L21, with €.,y — 0, and
u € C™'(Bg(0)) N WiP(Bg(0)), such that

loc

uss) —3 yu, in C%OC(BR(O))v
5H(L)—>0

u**® — u, uniformly in Bg(0),
EK(L)—>0

uts — u, weakly in W2P(Bg(0)).
EK(L)—H:)

Moreover, the following limit holds

Z E(u®=®)(x) —, 7 E(u)(x), uniformly in Bg(0).
EN(L)H
Using Theorem 1.3 and Lemma 4.6, we conclude that u is the solution to the HIB equation (1.13)

and hence it is also solution to (1.1). The proof of the uniqueness of w is given in Subsection 4.1.

1.2 Probabilistic interpretation

Through at this document, we will work on a filtered probabilistic space (2, F, F' = {F;}i>0, P),
whose filtration ' = {F;};>¢ satisfies the usual conditions of right-continuity and completeness
with respect to P. Let Y = {Y; : t > 0} be a d-dimensional Lévy process as in (1.6), which
is adapted with respect to the filtration . By the Lévy-Khintchine formula [30, p. 37] it is well
known that the Lévy process Y is determined by a triplet (7, o, ), where 7 € R? as in (1.5), o is a
positive definite matrix of size d x d that satisfies (H3) and v is a measure on R* that satisfies (H2).

In the present case the characteristic exponent has the following form

Y B . 1 * i(\,z
\I/()\) _ —10g<]E(€ (A >>) — _1<’y7)\> + §<)\0', )\> — IJ(R )/*(e (A )—1)V(R*)7

for all A € R¢, and we recall that its infinitesimal generator is given by (1.4).
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1.2.1 Probabilistic interpretation of the HJB equation on the whole space

In this part, it is established the relationship between the HIB equation (1.11) and the value function

of an optimal stochastic control problem. The state process X = {X; : t > 0} is defined as

Xi=zx4+Y, + N, dg,, forallt > 0, (1.16)
[0,¢]

where # € R? is the initial condition and Y is a d-dimensional Lévy process as in (1.6). Here the

corresponding Lévy measure v to the process Y satisfies
/ v(dz) < oo and / (1z]] V [|2]1*)v(d2) < oo. (1.17)
. R*
The control process (N, &) = {(N, &) : t > 0} is F-adapted with
||V¢]| =1, forallt > 0 a.s.,

and, with probability one, £ is a nondecreasing, left-continuous process with {; = 0. The process
N provides the direction and £ the intensity of the push applied to the state process X. Observing
that

t
Nydés I/ N,dg§ + Z N,AE,, forallt > 0,
0

[0,¢] 0<s<t
where £¢ is the continuous part of £, we can show that the state process X is a semimartingale
[28, Ch. II] whose paths are right continuous and with left limits. Note that the jumps of the state
process X are inherited from Y and &, and we assume that these processes do not jump at the same
time ¢, i.e.

AX, = Xy — X;— = AY 1{av,20, a0y + N A& L ag, 40, Av,=0} (1.13)

for all ¢ > 0. For ¢ > 0 and a control process (IV, £), the corresponding cost function is defined as
Ving(z) = B, (/[ )e_qt(h(Xt) dt + d&)), forall z € RY,
0,00
where h € Ci;i(le) is an strictly convex function satisfying for some positive constants Cy and ¢y,

0=h(0) < h(z) < Co(1 + [[z]*),
|D* h(z)|| < Co(1 + h(x)), (1.19)

collyl]* < (D* h(2)y, y) < Collyl[*(1 + h(x)),
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forall 7,y € R% From (1.17) and (1.19), we see E(h(Y};)) < co. The value function corresponding

to the state process X is given by

Vi(z) = (}?g Ving(z), forz € R (1.20)

Note that the HIB equation (1.11) is equivalent to
max{qu(z) — Tyu(z) — h(z), || D u(z)||* — 1} = 0, in RY, (1.21)

where
Mu(x):= %tr(a D u(z)) + (D' u(x),7) + /R* (u(z + 2) — u(z))r(dz). (1.22)

The relationship between the value function (1.20) and the HJB equation (1.21) is described in the

following result.

Lemma 1.4. Suppose that (1.17) and (1.19) hold true. If u is a convex function in C*(R?), which
is a solution of the HJB equation (1.21), then

(i) u(xz) < V(z), for each z € R%;

(ii) given the initial condition X; = z, v € RY suppose that there exists a control process

(N*, &) such that Vin« ¢+ (x) < 0o and the state process X* satisfies
(¢ —Tu(X7) = h(X7) =0,

/ ]l{N;:— D' u(X*_ )} dg: = 5:7
[0,2]

(X)) — u(X7 ) Lag 20, avimoy = &y — &

forallt € [0,00) a.s., with 'y as in (1.4). Then,

i.e. (N*,&*) is optimal at x.

Proof. Let us assume that u is a convex function in C*(R?), such that it is a solution of the HJB

equation (1.21).

(i) Let x € R? be an initial state and (N, &) a control process. Using integration by parts in
e % u(X,) [28, Cor. 2, p. 68], it follows that

e " u(X;) —/0 eqsdu(Xs)—/O qe ® u(X)ds + [e” % u(Xy)],
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where [e™? u(X})] is the quadratic covariation of e and u(X;) [28, p. 66]. Since e~ is

of bounded variation [28, Thm. 23, p. 68], it implies that

[e*qt,u(Xt)] = u(x).

Then , ,
Pu(Xy) — u(r) = / e du(Xy) — / ge ¥ u(Xy)ds. (1.23)
0 0
Applying 1t6’s formula to w [28, Thm. 33, p. 81], we get that

w(X) — u(z) = /0 (Dlu(Xs,),dXSH—% / tr(o D2 u(X,))ds

0

+ 3 ((X,) —u(X,) — (D'u(X,0),AX,)). (1.24)

0<s<t

From (1.6) and (1.16), we observe that

dX; = dY; + N dg,,

dy, = dw; +7dt+/ z9(dt x dz),

5

and hence, the first term on the right side of (1.24) has the following expression

/ot<D1u(Xs),dXs> /t<D1( ) dWa) + /ot<D1u(X5)ﬁ>ds

/ / * ,2)9(ds x dz)

/O< u(X,), N)des + Y (D NOYAE,,  (1.25)

0<s<t

where £€ is the continuous part of . Since the state process X jumps only at the times where

the process Y or £ and these processes do not jump at the same time (see (1.18)), hence

> (u(X,) —u(X,) — (D' u(X,),AX,))

0<s<t
= > (X)) — u(X,) — (D' u(X,), AYa)) Ljjiav, 0, ac =0}
0<s<t
+ Z (U(Xs) — U(XS,) — <D1 u(XS,), NS>A£S)H{HA£5H¢0,HAYSHZO}' (126)
0<s<t

In case that ||AY;|| # 0 and ||A&|| = 0, (1.16) implies that

X, = X;_ + AY,, forallt > 0,
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and, if ||A&]|| # 0 and ||AY}|| = 0, defining the process {A; : t > 0} as
A, = X, + AY,, forallt > 0,
it follows that

Ai=z+Y,_+ N, + AY,
[O7t)

=z+Y+ Nyd&s — NAG
[0,¢]

Now, recalling that I'; is as in (1.22) and combining the equalities (1.24)—(1.27), we get that

u(Xy) —u(z) = /Flu( )ds+/0(D1u(Xs),Ns)dfg—i—/o(Dlu(Xs),dWS>

+ ) (u(As + NAAL) — u(A) Ljjac, 10, AY:] =0}

0<s<t

+/0 /*(U(XS_ + 2) —u(Xs2))(P(ds x dz) — v(dz)ds).

Then, the expression (1.23) has the following form
t
() — (o) = [T = gu(X) + HX))s

—/ ) ds—i—/ e (D' u(X,_), Ny)dEs + M,
0
+ ) e (u(Ag + NoAL) — u(AL)) a0, javs =0y, (1.28)

0<s<t

for all ¢ > 0, where

M= /Ot e (D' u(X,), dW,)
* / /R e (u( X, + 2) —u(X,-))(I(ds x dz) — v(dz)ds).

Since the process M = {M; : t > 0} is a local martingale and defining the stopping time
TBn,(O) as

Tp,(0) = inf{t > 0: X; ¢ B,(0)}, foralln > 1,
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the process M7 (0) = {Mt/\TBn(O) :t > 0} is a P,-martingale with M, = 0. Then, taking
expected value in (1.28), it follows that

t/\TBn(O)
u() =B (™" u(Xinry (o)) + Eo (/ e (g = Tu(X,) - h(Xs))d5>
0
t/\TBn(O) t/\TBn(O)
I E, / e~ h(X,)ds | — E, ( / (D (X, ), Ns>d§§>
0 0

- Ew( Yo e PulA+ NAE) ~ U(As))ﬂﬂmas#o,mys—0}> . (129

0<S§t/\7’Bn(0)
Given that u is a convex solution to the HIB equation (1.21), we know that
[|D u(X-) [P =1 <0,
(¢ = T')u(Xe-) — h(X,-) <0,
u(A; + NAE()) — u(4) > (D' ulAy), N)AE(?).

Then,
t/\TBn(O)
u(z) < Eg(e7 100 u(Xinry, ))) + Eq / e " (h(X,)ds +d&,) |.
0
Letting n — oo, it follows that 75, (o) — oo a.s. and hence

u(z) <E, (e u(Xy)) + E,; </Ot e P (h(X,)ds + d§S)>. (1.30)

Since

lim E, (/t o (h(X,)ds + dgs)> _E, (/w o (h(X,)ds + d§3)> ,

we only need to prove that
lim E(e"? u(X;)) = 0. (1.31)

t—o0

Assume that £, ( fooo e 9 h(Xt)dt) < 00. Otherwise (1.30) is always true. This implies that

lim E,(e” h(X;)) = 0.

t—o0

By (1.19) and Taylor’s Formula, we can observe that

Dbl < [ 0= N0 BN = h(3),
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(ii)

Then, using that u is a convex function and || D u(y)||?> < 1, for all 5 € R?, we can see

u(y) < u(0) +
0

(0) + (D" u(y), y)
(
(0
(

+|ID" u(y)|| |yl
+1+ HyH2

IN
I~

2

)+
)
)
<u(0)+1+ COh( y),

for all y € R®. This implies that lim, ,  E,(e % u(X;)) = 0. It follows that u(z) < V(x),

for each z € R<.

Let z € R? be an initial state and (N*, £*) a control process such that Vi« ¢+)(z) < 0o, and

the state process X * satisfies

(¢ — Tu(Xi) — (X)) =0, (1.32)

/ Lyne— Dt 3ds =&/ (1.33)
0.4

(u(X7) = w(X7 ) Liagr 20, avi=0) = & — & (1.34)

for all t € [0,00) a.s., with I'; as in (1.22). Applying similar arguments as in the previous
proof of u <V, (1.29) holds for X*. From (1.33) and (1.34), it is easily verified for Tgn(o) =
inf{t > 0: X; ¢ B,(0)}, withn > 1,and ¢ > 0, that

t/\TB (0) . . e t/\TB (0) ‘e
/ <D u(Xs—)vNS>d€5 = _/ ]l{N;:fDlu(X;ﬂi)}dgs 5 (135)
0 0
and
doAg = ) (At NAE) — w(A))Lgaczo, avif—op-  (1.36)
O<s<t/\TB () 0<s<t/\TB (0

Using (1.32), (1.35) and (1.36) in (1.30), it follows that

t/\TB o
u(w) = By (e he0) u(Xy, <U>>)+EI< / (>eqs<h<x:>ds+d§:>>. (1.37)

Letting n — oo in (1.37) and by (1.31), we get u(x) = Viy+¢+)(x) = V(). This means that
(N*,&*) is the optimal control. ]
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1.2.2 Probabilistic interpretation of the NIDD problem

Define the convex function g. : R — R and its Legendre transform /. : R — R by

gE(ﬁ):: 1/)E(HCH2)7

(1.38)
ls(ﬁ):: Sup({(ﬂa C> - gE<<)}7
The Legendre transform [, satisfies
le(n) = 5lInl* = ge(§m) = §lnll*, (139)

L ULICIP) ) = 20Z(ICIPIICH = e (lICI),

for all n, ¢ € R?. Since g. is differentiable, it follows that g.(¢) = sup, {(n, () — l(n)}. Then, the
NIDD problem (1.15) can be written as
qu(x) — T1 E(uf) () + sup, { (D" w*(x),m) — I(n)} = h(z), in Br(0),
u(x) =0, on 0Bg(0),

(1.40)

where
D E(uf)(z) = %tr(o D? E(u)(x)) + (D' E(u)(x),7 + /R*(E(ue)(ﬂc +2) — E(u’)(2))v(dz)

_ %tr(a D2 () + (D' i (x), ) + /*(E(us)(x +2) = (2))r(d2),

forall z € Bg(0). A control process is any d-dimensional, absolutely continuous process ¢ = {g; :

t > 0} [F-adapted and satisfying oo = 0 almost surely. Given an initial state = € Bg(0), we define
the state process Z = {Z; : t > 0} by

Zyi=x+Y, — o, forallt > 0,

where Y = {Y; : t > 0}, is a d-dimensional Lévy process as in(1.6). The cost function correspond-
ing to o is given by

Vo= ([ ez e)as),

forall z € Bg(0), with 7,,(0y:= inf{t > 0: Z, ¢ Br(0)} and 9y:= %. Finally, the value function
is defined by
VE(x):= inf V; ().
4

Recalling that v € C**(Bg(0)) is the solution to the NIDD problem (3.15), the following result

is obtained.
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Lemma 1.5. The solution u® to the NIDD problem (3.15) agrees with V¢ in Bg(0).

Proof. Let p be a control process and = € Bg(0) fix an initial state. Integration by parts and Itd’s

formula imply (see [28, Cor. 2 and Thm. 33, pp. 68 and 81, respectively]) that
u€($> _ e_(I(t/\TBR(O)) ue(Zt/\TBR(O))
t/\TBR(O) i L )
_ / e (qu(2,)) — T1E(u)(Z) + (D'w(Z,), 6)) ds — Minsy, o0 (141)
0
for all ¢ > 0, with

t
Myi— / =9 (D! y(Z,), dI,)

+ /0 /* e P(EW)(Zs— + z) —u(Zs-))(¥(ds x dz) — v(dz)ds),

The process M = {M, : t > 0} is a local martingale with My = 0. Then, the process M ™r©):=
{Mt/\TBR o t= 0} is a P,-martingale with M, = 0. Then, taking the expected value in (1.41), it
follows that

u6($) _ Em(efq(t/\TBR(o)) uE(Zt/\TBR(O)))
t/\TBR(O)
=E, </ e P (qut(Zy)) — TV E(uf)(Z,) + (D' uf(Zy), 05)) ds). (1.42)
0
From (3.15), we get that
t/\TBR(O)
E, (e 9"\8x©) U Zinrs o)) = v (@) — By </ e P (h(Zs-) + ZE(Q'S))ds). (1.43)
0

Note that 75,,() < 00 or 7,9y = 0c. If we are over the event {7p,) < 0o}, then, letting ¢ — oo

in (1.43), we have that
TBR(0) B .
uf(z) < Ex<</ e ®(h(Zs)+ lg(gs))ds> H{TBR(O><°O}>' (1.44)
0

Now, if we are over {7p,,() = 00}, we observe that e """8z©) = 0 and Z; € Bg(0), forall t > 0.

Since 1€ is a bounded continuous function, we have that
—q(tN
Ex(e q(tATB R (0)) Us(Zt/\TBR(o))H{TBR(U):OO}) = 0.

Then, by (1.43), it yields that

u () <E, < ( /0 T e (h(zZ,) + zE@S))ds) 11{%(0):00}) . (1.45)
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From (1.44) and (1.45), we get u® < V. Since ¢ (|| D' u®(z)||?) D' u*(z) is a Lipschitz continuous
function [28, Thm. 6, p. 255], the process 7 = {Z :0 <t < Tgy(0)} is solution to

. t/\TBR(O) L L
Zi—asYim [ D (2l D e (Z)ds (146
0
forall 0 < ¢ < 7p,(0). Then, its corresponding control process is given by
off = 20L(|| D uf(Z,)|]2) DL (Z, ), forall 0 < ¢ < Tp,(0). (1.47)

The process X satisfies (1.42) and by (3.13), from a similar it follows that

t/\TBR(O) -
E,(e™? UATBRO) (Zt/\TBRm))) =u(z) — E,; (/ e (h(Zs) + ZE(@§>)d5>a
0

Proceeding of a similar way that (1.44) and (1.45), we have that u(z) = V=%(x). We finish the

proof. |

The rest of this thesis is organized as follows. Section 2 is devoted to the study of the exten-
sion operator /. We first recall an extension theorem for Holder spaces (Theorem 2.10), whose
proof can be found in [33, p. 353]. Then, Theorem 2.10 gives a continuous linear operator
E : C*(Bg(0)) — CH*(RY), which is used to verify that Z E(w) is well defined when w €
C*(Bg(0)), where k > 0. Before that, we need to introduce the definition of Lipschitz domain,
since the construction of the continuous linear operator E depends on the regularity of 0Bx(0). We
also discuss properties of Z E(w), when w € C¥(Bz(0)). In Section 3 we present the existence,
regularity and uniqueness to the non-linear Dirichlet problems (1.15) and (3.5); the former with
an integro-differential operator, and the latter with a differential operator. We also discuss some
properties of these solutions. In Section 4 we establish the existence and uniqueness of the HIB

equation (1.13); see Theorem 1.2. We also present some properties of this solution.



Chapter 2

Extension theorem and properties of the

integral operator

In the first part of this chapter, we give a brief introduction about Lipchitz domains and some
of their properties. In particular, we focus in Bg(0), with R > 0. The reason for doing this is
because we need to have a complete description of the Lipschitz functions that are defined on the
neighborhoods of the points in Bg(0). These functions are part of the sets where the continuous
linear operator F' is constructed. Recall that &/ was described in (1.3). After that, we present
an extension theorem for Holder spaces, where we focus in the construction and analysis of the
continuous linear operator F, defined (2.36). Although Theorem 2.10 is valid for more general
domains, see for instance [5], we are interested in the case that the domains are open balls in Re.
At the end of the section, we show useful properties of the integral operator Z, which is defined as
Tw(z) = [n E(w)(z+ 2z)v(dz).

2.1 Lipschtz domains

It is well known that the regularity of the solutions to partial differential or integro-differential
equations on a domain O C R? depends on the regularity of 9O, when 0O # @; see e.g. [9, 18,
22,14, 23, 13, 12, 6, 5, 2, 17]. In our case, we are interested in having the property of Lipschitz
domain, since the construction of the continuous linear operator F requires it. For more general

domains, see e.g. [11, 15, 8, 7, 5].

Definition 2.1. An open set O C RY, with 00 # @, is said to be Lipschitz, or C*', if for every

25
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x € 0O there exist a neighborhood U, of x and @, € C**(R4™) such that, up to rotation,
U:NO=U N {y = (¥, ya) € R X R :ya > waly)}

The open balls Br(0), with R > 0, satisfies this definition as it is verified below. To show that
0BRr(0) satisfies the Definition 2.1, we use the following Lipschitz extension theorem; its proof is

given in [10, p. 80].

Theorem 2.2. Let f : D — R be a Lipschitz function, with D C R®. There exists a Lipschitz
function f : R* — R such that

[f]c‘)’l(le) = [f]c“»l(D),

with [ f]co gay and [f]coapy as in (0.1).

Leteg = (0,...,0,1) € R? and define H: = {eq}*t, 2’: = Py(x), and z4: = (eq4, x), for all
r € RY where H and P, are the orthogonal hyperplane to e; and the orthogonal projection onto
H, respectively. We identify H with R4~1:= {(2/,0) € R? : 2/ € R}, where thisisad — 1
dimension vectorial subspace, and write x = x’ 4 x4e4, denoting this vector by (2, z4). A direction
vector w in R¥ is identified with a unit vector. Defining the orthogonal subgroup of d x d matrices

as
Ougvgi={A € R ATA = AAT = I},

where AT is the transposed matrix of A, the direction vector w € R? can be associated with some
A € Ogxqsuch that w = Aey. An important property of the orthogonal subgroup is that it preserves

the inner product (-, -), i.e. for each A € Oy.4 and any x4, x5 € R?, we have that
(Axy, Azy) = 21 AT Ay = 2T 29 = (11, 29).

This implies that || Az|| = ||z|| = || A z||, forall A € Oy and x € RY. Note that the hyperplane

A is orthogonal to the vector w and hence for any element # € IR? can be written in terms of the

hyperplane A and its orthogonal complement, i.e.
= A({ + (geq), with ¢ = Py(A 'w) and (g = (A1, ey),
where (', (s) € H x R. Besides, for each A € Oy 4, we have that A~ T = A, then

(A7 'z eq) = 2TA Tey = 2T Aeg = (z, Aey), withz € RY.
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In case that w = o — x1, with 21, 2o € R? fixed, we have that there exists a matrix Az, € Ouxa

such that w = A,, e, and for any r € RY,
r =11+ Ay, (¢ + Caea),

with ' = Py(A;N(x —21)) and {4 = (A, (x — x1), eq), where (¢, (4) € H x R. We note that the

element z; is the origin of the hyperplane A,, 7, whose is orthogonal to the vector w = x5 — ;.

Definition 2.3. Let O be an open subset of R¢, with 00 # @. The set O is said to be a locally
Lipschitz, or locally C*', if for each x € 0O there exist

(i) an open neighborhood U, of x;
(ii) a matrix A, € Ogyxq;
(iii) a bounded open neighborhood V,, of 0 in ‘H such that

U, C{y e R*: Py(A (y — 2)) € Vo (2.1)

(iv) afunction o, € C*'(H) such that ©,(0) = 0 and

uz No0 = Z/lz N {37 + AI(CI + Cded) : CI € Vm Cd = (P:D(C/)}> (22)
U NO =Uy N {z + Ap(¢" + Caeq) - ¢ € Ve, Ga > 0a(C)}- (2.3)

Lemma 2.4. The open ball Bg(0), with R > 0, is Lipschitz, i.e. for any x € 0Br(0) there exists a
Lipschitz function ¢, : H — R such that [p;]coa 3y < 2.

The above result can be found in [7, Thm. 56, p. 93] for convex subsets of R?. Delfour and
Zolésio [7, Thm. 56, p. 93] prove that any convex subset O of R?, with O # R and 00 # @&
is locally Lipschitz. We adapt their proof to show that Bg(0) is Lipschitz, since for each point in
0BRr(0), it is defined explicit a locally Lipschitz function, given by (2.4), which is used to construct

and analyze the continuous linear operator F.

Proof Lemma 2.4. Let H be the orthogonal hyperplane to ¢; = (0,...,0,1) € R?. Taking z €

OBg(0) and 0 < r < 1 fixed, we choose 2™ = £=222 € Bg(0), and the direction vector w, =

2—1T(:(ﬁL — x). We associate a matrix A, € Ogyxq such that w, = A,e,. Recall that the hyperplane
A,H is orthogonal to the direction vector w,. Choosing z~ = £z it follows that z~ ¢ Bg(0)
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and the minimum distance from z~ to Bg(0) is ||z~ — z|| = 2r. Then, for each ' € H, with
||| < 2r, the line
L= {a + As(¢" + Gea) = |Gl < 2r},

from 2™ + A, to 2~ + A, in the direction to the vector w, has a point in Bg(0) and a point in
its complement. Note that x* + A’ € Bg(0) and x~ + A,(" ¢ Bg(0). Therefore, there exists Ca
with |Cy| < 2r, such that § = z + A,(¢' 4 Caeq) € OBR(0) N Lo minimizes ¢g = (Azeq, (y — )

over all y € Bg(0) N Ler. If 7 and 5 are two minimizing points such that ad = ng, then
D = 2+ Ap(C' + Gaea) = = + Au(C + Coaea) = T
Hence, the function f, : {¢(' € H : ||{|| < 2r} — R defined as

f2(():= inf  (Ageq, (y —2)) = inf  (eq, A, (y — 2)), 2.4)

yEBR(O)ﬁLC/ yEBR(O)ﬁLC/

~

is finite, well defined and there exists a unique Zd, with |Ed| < 2r, such that f,(¢') = (4 and
y=1x+ A (¢ + Zded) is the unique minimizer. When ¢’ = 0, we see that x € dBg(0) N Lo

minimizes over all y € B(0) N Ly, and hence

fz(0) = 0.
Taking the neighborhoods

Vei=A{¢ € H: ||| < 2r},
U= {y € RY: |Pu(AT y — )| < 2, [(A7 (g — o), ea)] < 20,

we have that, by construction, these are convex open sets and satisfy the conditions (2.1)—(2.3) from
Definition 2.3. Now, we shall verify that the function f defined in (2.4) is a Lipschitz function in
Vo= {¢' € H : ||¢’|| < r}. We shall show that f is a convex function in V,. Since Bg(0) and U,

are convex sets, U, N Br(0) is also a convex set. Then, for all y;, y» € U, N Bg(0), it follows that

ty1 + (1 —t)yo € U, N Bg(0), forallt € (0,1). (2.5)
From the conditions (2.1)—(2.3) that
Uy, N Br(0) = Uy N {z + Ao+ (ea) : ¢ € Vi, ¢4 = f2(C)}, (2.6)
and hence, we get that for any vy, yo € U, N IBg(0),

yi = @+ Ao + Caea), Wit ¢y = £o()) and i = 1,2. 27
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Then, (2.5) and (2.6) imply that

tyr + (1= )y2 = & + A (8¢ + (1 = )¢ + (110 + (1 = 1)Gg)ea) € U N Br(0),

and (2.6) it follows that
tCla+ (1 = 1)Ga > fo(tG + (1 = 1)G)- (2.8)

Hence, from (2.7) and (2.8), we get that

Therefore, f, is a convex function in V,. Now, taking ¢, ¢ € V,, such that ¢ # ¢, and (=
G3 + £(G — ¢1), with p = [|¢3 — ({||, we note that (5 € V), and write
, r

! !
_ P ) 2.
G = , G+ , G (2.9)

Then, by convexity of f,, we have that
!/ r ! p !
fo(G3) < mfx(ﬁ) + mfx(gs;)
= @) = £ + 14D
< 2152(6h) = (DI + £

Since | f,(¢")| < rforall ||('|| < r, it follows that

£2(63) = Ja(6) < B1a(G5) = fulcDI < 20165 = il

Interchanging the roles of (] and ¢} in (2.9), we obtain

Therefore f, is a Lipschitz function in 179[; with [f,] o, S 2. we conclude, by Theorem 2.2, that

there exists a Lipschitz function ¢, : H — R such that

SOZE = f;E in VI, and [g@z]co.l(Rd) = [fz]co,l(‘jz) S 2 | |

Note that as a consequence of Lemma 2.4, the Lipschitz constant [p;]co1 3 is uniformly
bounded. Since 0Bg(0) is a compact set, we can choose an integer N > 1 large enough, z,, €

0BRr(0) and b,, > 0 small enough, with k € {1,..., N}, such that

N
0Br(0) C | By, (). (2.10)

k=1
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,,,,,

Ty & By, (xy), withk, k" € {1,..., N} and k # &/,
By _s(en) N By, _1(21) # 2, (2.11)

Bbfg(q:,{)ﬁB b (Tpp1) # D, forany k € {1,..., N — 1}.

b)i+17§
We also know from the proof of Lemma 2.4 that for each z, € 0Bg(0), with k € {1,..., N},

there is a neighborhood U/, defined as

U= {y € R*: [Pu(A; 1y — 2))l| < 2be, 14710y — ), ea)] < 26},

T

where the matrix A, € Ogx«q is associated to the direction vector w,, = A, eq. Recall that

Wy, = i(x: — x,), with z} = £=25g, € Bg(0). It is easy to verify that By, (z.) € U,

forall kK € {1,...,N}. Now, taking f,, as in (2.4), we know that this function is Lipschitz on
Vo= {¢" € H : ||C'|| < b}, and we can see that

By, () N Br(0) = By, (w:) N {g + Ap (¢ + Caea) : ¢ € Vs G2 [ ()}, (212)

forall k € {1,..., N}. Since f,, is a Lipschitz function on 17%, from Theorem 2.2, we have that

the Lipschitz extension of f,_ is given by

o ()= inf (o (G + oo I = GHID. (2.13)

1€Vay
forall (' € Hand k € {1,..., N}, where this extension satisfies
O, = [z, In 17%, and [(pxn}co,l(Rd) = [fxn]co,l(gm) <2 forallk € {1,...,N}.
Defining the set O, as
O, i= {2 + A (¢" + Ca€a) : Ca > 0u()}, (2.14)

from (2.12) we get

By, (z,) N Br(0) = By, (z,) N Oy, , forany x € {1,...,N}. (2.15)

In order to define the continuous linear operator £ : C**(Bx(0)) — C"*(IR%), given in (2.37),
first, for each O, defined in (2.14) with x € {1,...,d}, we shall construct the continuous linear

operator £, : C**(0,) — C**(R%), given in (2.26). The contruction of the continuous linear
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operator E is given by the sequence the continuous linear operators { £/ }~_,. But before, we give
some properties of the Hausdorff distance, which is denoted by o(x): = g(:p, 0) = inf{||lz — y|| :
y € O}, with O an arbitrary open set. The distance of = z,, + A,, (¢] + Careq) to O, , for some
(¢1,Ca1) € H x R, is given by

o(@):=inf{l|z =yl y = 2 + Au (¢ + Ca) € O, }
= inf{||¢; = ¢" — ea(Car = C)lI : Ga = @0, (¢}, (2.16)
for each k € {1,..., N}. The Hausdorff distance g,,(-) = 0,(-, Oy, ), with x € {1,..., N} and

O,,, asin (2.14), satisfies the following result, whose proof can be found in [5, Thm. 16.20, p.
346].

Lemma 2.5. Let ¢ € C™'(R41),

Opi={r=(2",24) ER"' xR :14> p(z')}, and O_:= 6;. (2.17)
Then

(1 + [¢lcor)op(x) = @(a') — za, for any x = (2',24) € O,
where 0,(+) = 0,(-; O,). Moreover, for every x,y € O_ with x # vy, there exists z € O_ such that
[z,2)Ulz,9) CO- and ||z —2][ + ||z — yl| < (2 + 4[p]coa)[|z — yl|-

Where [2,7):= {w = (w1,...,wq) € R : 2z; <w; < x5, i € {1,...,d}}. This result is true for
O_ replaced by O,,.

Since the Hausdorff distance o(-) = o(-; O) is not differentiable in general on O°, with O an
open ball, this is replaced by a regularized distance o*(-): = ¢*(-; @), which is smooth on O and
essentially has the same profile as o(-). The existence of this regularized distance is guaranteed by

the following result. Its proof is in [33, 20, Thms. 2 and 17.21, pp.171 and 267, respectively].

Lemma 2.6. Let ¢ € C*'(R%1), O,, O_ be defined as in (2.17) and o(-) = o(-;O,) be the
Hausdorf distance. Then, there exists 0*: = 0*(-;O,) € C®(O_;[0,00)) such that for every
T = (I,7$d)7y = (?f;yd) S O—;

0" (x) > 2(p(2) — wa),
So(x) < o*(z) < Co(x),
|| D* o*(x H<CQ( )R,

)
1D o*(2) = D* 0" ()] < Cllz = yl|* max{o(x)' "+ o(y)' 1,

(2.18)
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for some constant C = C(k,d, [p]co1) > 0, where k > 0 is an arbitrary integer and o € [0, 1] is

an arbitrary real number.

The constant C' that appears in (2.18) is of the form C' = 2(1 + [p]c01)C; > 0, where C) =
Cy(k,d) > 0 is a constant independent of O,. For more details see [33, 5, pp. 183 and 347,

respectively]. In our case, from Lemma 2.6, we have the following result.

Corollary 2.7. Let O, be as in (2.14), O7": = O;zn, and 0,(+) = 0x(+; Oy,, ) be the Hausdorf
distance, with = € {1,...,N} and N as in (2.10). Then, there exists ¢;(-) = 0:(O,, ) €
C>(07%;10,00)), such that for every x,y € O%",

05(x) > 2(pn(C]) = Car),
Sox(x) < 05(x) < Coxlw),
ID* gi(x)]| < Cowl(a)*,

1D g5 () = D gr ()] < ClI¢ — G + (Car = Ca)eal|®

1-k—a
b

17k704}
)

x max{ g, (x) 0x(Yy)

for some constant C, = Cy(k,d) > 0 independent ofé%ﬁ, where k > 0 is an arbitrary integer,
a € [0,1] is an arbitrary real number, C' = 2C\(1 + [px]co1(3)) < 6C1 and (7, Car), (C3, Caz) €
H x R are such that x = x,, + A,, (¢} + Caea), y = o + As, (¢ + Cazeq), with z,, € 0BR(0).

In case that x € By, (z,,) \ Br(0), withx € {1,..., N} and N asin (2.10), we obtain that ¢ (x)
is uniformly bounded with respect to O, .

Corollary 28. If k € {1,...,N} and x € By (z,) \ Bgr(0), there exists a constant Cy =
Cy(k,d) > 0 independent of O, , such that

0r(z) < Coby. (2.19)

Proof. Letk € {1,...,N}and x € B, _(z,) \ Br(0) fixed. Then, there exists (¢}, (s1) € H X R,
with [|(¢], Ca1)]| < b, such that

v =+ Ay (G + Carea) € L,
where Lo = {x, + A.(¢] + Cgea) : |¢y] < 20, }. Recalling the definition of f,, in (2.4), i.e.

fo ()= _inf  (Aq eq, (y — zx)), with [|(']] < 2b,,

yEBR (O)f‘ng/
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we know that there exists a unique (g, with |Cy| < by, such that
o (G) = Goand § = @, + Ay, (¢ + Caea) € OBR(0) N L.

Besides, there exists a unique (4o, With (42| < b, such that

Far(G) = Ca,
2=y + Ap (G + Cinea) € 9BR(0) N Ly,

ox(2) = [[(C1 + Carea) = (G + Cazea) |-

Hence, using the triangle inequality, we get that

ox() = [[(¢] + Carea) — (G + Cazea)l|
< 1(¢] + Carea) — (G + Caea)l| + (G + Ca)ea) — (G5 + Cazea)l
< 11(Gar = Caeall + 1165 = Gall + 11 (Ca = Caeal
< 8by.

Therefore, from Corollary 2.7, it follows that ¢*(z) < 8Cb, < 48Cib,. Thus, there exists a
constant Cy = Cy(k, d) > 0 such that it satisfies (2.19). ]

Remark 2.9.
(i) Letz ¢ @%N, with k € {1,..., N} and N as in (2.10). Defining

T.(t):= 1z, + Au(C" 4 (Ca + toi(x))eq), forall t > 1, (2.20)

where v = . + Ay, ((' + (aea), Az, € Oaxa, (¢, Ca) € H x Rand 0} () = 0j.(+; Oy, ) asin
Corollary 2.7, we observe that z,.(t) € O, . Since ¢, (') — (4 > 0, by Corollary 2.7, we
get

Ca+ton(®) > Ca+ 2t(00, (¢) = Ca) = ¢, () + (92, () = Ca) > 92, (C),

forall t > 1. Hence z.(t) € O,,, .

(ii)) Now, since By, (x,) N Br(0) = By, (x,) N O,,, , we will need to know when a segment of
x,(t) is contained in By, (x,), with x.(t) given in (2.20). This occurs if and only if there

exists ¢’ > 1 such that

|2, — xfc(t/)H = by, whenx =z, + A,, (C + Caea) € By, (7x) \6wm’
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This is equivalent to

I¢" 4 (Ca + ¥ 0y ())eal| = by, when [|¢ + Caeql| < by and g, (C') > Ca.
Then, it is easy to see that

(b2 = lIS'II)2 — ¢l

t' =
o ()

, when =z, + A, (' + Caea) € By, () \6¢1N~

This implies that

t" — oo when g (z) — 0. ]

The previous results that were studied in this section, shall be used extensively in the following

section. Specially in the construction and properties of the continuous linear operator
E : CH*(Bg(0)) — C**(R%), with k > 0 and « € [0, 1],

which is defined in (2.36).

2.2 Extension theorem for Holder spaces

The following result gives an extension between Hélder spaces C*(Bg(0)) and CF(R?), when
k > 0 is an integer and « € [0, 1], whose proof is given in [5, p. 353]. However, we will reproduce
some parts of the proof of Csat6 et. al. [5], in order to describe in detail the construction of
the continuous linear operator F' that satisfies Theorem 2.10. This will be useful to study some

fundamental properties of Z F(w), when w € C**(Bx(0)).

Theorem 2.10 (Extension theorem for Holder spaces). For any integer k > 0 and any 0 < o < 1,

there exists a continuous linear extension operator

E : C"(Bg(0)) — CH*(RY),

that satisfies
E(w) ‘TR(O) = w,
supp|E(w)| is compact, I
B (w) b for all w € C**(Bg(0)), (2.21)
Supp{E(w)] € By (0),
1E(w)|cromey < Cllwllcre@gm):
for some constants C = C(k, R) > 0 and b > 0. The norms || - || ke (gray and || - || or.e gy are as

in (0.2).
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2.2.1 Proof of Theorem 2.10

We shall show some steps of the proof of Theorem 2.10, where we shall give some previous results
for the construction of the operator F; see (2.36).

Step 1. The proof of the following result can be found in [33, Lemma 1, p. 182].

Lemma 2.11. There exists U € C°([1,00)) such that for every positive integer k > 1, there exists
A > 0 such that
Ay
[U(O)] < s forevery t € [1,00), (2.22)

/ U(t)dt =1 and / t*w(t)dt = 0.
1 1

Stein [33] proves that ¥ : [1,00) — R given by

and for every k > 1,

W(t):= %Im(exp(— (L —1)1)), (2.23)

satisfies Lemma 2.11. Note that

Agi= / W(t)|dt ~ 1.03727, (2.24)
1
Defining Ay, as
A= sup {t*|WU(t)|}, foreach k > 1, (2.25)
t€(l,00)

we can see that A;, satisfies (2.22).
Step 2. Taking N > 1 and W as in (2.10) and (2.23), respectively, we define the continuous linear
operator E/, : C**(0,, ) — C"*(R?) by

if x = A, ({
B (1) (2) = w(z), ife=ux,+ A, (¢ + Ceeq) € Oy, 2.26)

[T w(ze(t)dt, if x =z, + Ay, (' + Caea) ¢ O,
forall w € C**(0,, )and x € {1,..., N}. Here O,, and z,(t) are given in (2.14) and (2.20),
respectively. By Remark 2.9(i), we have E! is well defined, for each x € {1, ..., N}. This operator
is part of the construction of the continuous linear operator F, that was announced in Theorem 2.10,

and satisfies the following result, whose proof is given in [5, p. 348].

Theorem 2.12. Let p,, € C*'(R*') and O,, defined as in (2.14), with € {1,...,N}. For
any integer k > 0 and any 0 < « < 1, the continuous linear operator E!. given in (2.26),
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satisfies El(w) € CM*(RY), for all w € CH(O,, ). In particular, there exists a constant
C = C(k,0,, ) > 0such that for every w € C**(0,, ),

1B (w)l|oromey < Cllwlloro,, )

We claim that the continuous linear operator E/, with x € {1,..., N}, satisfies the following
inequality

| B (w)(@)] < Aol[w]|cre@,, s (2.27)
forall » € R? and w € C"*(O,,, ), with Ay as in (2.24). When = = z,, + A, (¢’ + (seq) € O,
with (¢', (4) € H x R, itis easy to prove the inequality (2.27),

|EL(w)(@)] = [w(@)] < |lwllgreo,,, ) < Aollwlleree,,, )-

In the other case, when z = z,, + A, (¢, (4eq) ¢ O, by definition of E!, we get that

B (w)(z)] < / (W ()] |w(z(t))|dt < Aol[w||cro,, )
1
Therefore, it satisfies (2.27). Note that E; is differentiable and it is given by (2.28).

Lemma 2.13. Let O,, be as in (2.14), with s € {1,...,N}. Ifv ¢ O,, andw € C**(O,, ),
then

O we) = [ O (e) + (o0, (228)

withi € {1,...,d}.

Proof. Let k € {1,...,N}, x = x, + A, (¢' + Caea) ¢ O, , for some (¢, () € H x R,
A, € Ogyq and 7, € OBp(0). Taking w € CH*(0,, ), define g(z,t): = w(z,(t)), where
To(t) = 2 + Ap, (¢ + (Ca + toi(z))eq), witht > 1, and o7 (-) = 0% (+; O) as in Lemma 2.6. First
we show that
(Ol l9((@ + pes) t) — gl O]
p

is an integrable function with respect to the Lebesgue measure d¢. Computing first derivatives of

g(x,t), with respect to x, we have that

0;g(z,t) = Oyw(x,(t)) + toqw(x,(t))0;d(x)), foralli € {1,...,d}.
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Then, for € > 0, there exists p’ € (0, 1) such that if p € (0, p’), it follows that

V()] lg((x + pei), t) — g(,1)]
p
< [W(t)|(e+ |Big(x, 1)])
< [U(B)[(e + [Oiw(n(t))] + t|0aw (x ()] |0igy (x)])

_ Aletlovllee,,,) + A0 @) 10nllee,,,)
_— t2 )

(2.29)

foralli € {1,...,d}. Here A; and Aj; are given in (2.25). Since |[0jw|[c0@,) and [|Oqw]|co @,
are finite, the last right part in inequality (2.29) is integrable with respect to the Lebesgue measure

dt. Thus, by the Dominate Convergence Theorem, we get
BEL(w)(w) = [ W) Ouwlint) + tOaw (o, ()00,
1
foralli € {1,...,d}. ]

Step 3. Now, we proceed to construct the continuos linear extension operator F/, which was an-
nounced in Theorem 2.10. First, recall that for any R > 0 fixed, we can choose an integer N > 1

large enough, z,, € 0Bg(0) and b, > 0 small enough, with x € {1,..., N}, such that 9B (0) C

.....

assume that

Ty & By, (xy), withk, k" € {1,..., N} and k # K/,
By, _s(xn) N By, _s(21) # 2, (2.30)

B, _+(z.)NB b (Trr1 g, foranyk € {1,...,N — 1}.
be—2

bﬁ+l_§

We define the following auxiliary functions. Let A\, € C°(R¢), with x € {1,..., N}, be such that

A €10,1], Ae=1,inB, _»(zs), and supp[A] C B, _»(7s), (2.31)

b b
2 1

and Mg, Ay, A € C°(R?) satisfying that

Xos Ais A € [0,1],

Ao = 1, in Bg(0), and supp[Ao] C BR+3(0),

Ay =1, in B, (0)\ Bp_3(0) and supp[A1] € Br4s(0) \ Br-s(0),
A_=1,1in Bng(O) and supp[A_] C Bg(0).

(2.32)
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Defining the functions A, A_ as

A A
T d A=)
L VI U N A
we get that
N
Ay <1, in supp[Ay] € Bgio(0)\ B_s(0) C | B, _s (), (2.33)
k=1
A_ <1, in supp[A_] C Bg(0),
since

At +A- > 1, in supp[Ay + A-] € Bryy(0),
supp[ho] C {r € R : A\, + A\ > 1}.

Then, Ay, A € C°(R%) and A + A_ = )\o. Note that by (2.30),

N N
1< ZAi <2, in U B, _y (), (2.34)
k=1 k=1
and hence
A, N
———— € C®(RY) and ——— < lin supp[A,] C | | B, _s(zs). (2.35)
Z;{ 1 )\i Zn:l AI{ HL;Jl :
Finally, we define the continuous linear extension operator
E : C**(Bg(0)) — Co*(RY),
as N
Ae(2)EL
E(w)(x):= A+(:(:)<Z"1 <(2) . (w”)(x)) + A (2)w(z), (2.36)
Zn 1 )\n( )

for all + € R? and w € C**(Bg(0)), with k¥ > 0 an integer and a € [0,1]. For each k €
{1,..., N}, the operator E, is defined in (2.26) and the function w,, : O,, — R is given by

()= Ae(@)w(z), ifz=x,+ A, (¢ + Cieq) € Op, N By, (x), 237

0, ifz=m,+ A;, (' + Caea) € 6%% \ By, ().

To verify that w,, € Che (6%%)’ see for instance [S5, p. 355]. The continuous linear extension
operator F is well defined by the properties previously reviewed and it is also possible to show that
supp[E(w)] C BR+%(O) and E(w) = w in Bg(0).
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Remark 2.14. From the construction of the linear continuous operator E, (2.36), we clearly observe

that

w(q;)’ ifx e BR(O),

T N (B (we)(x . D N\
Bu)(r) = § MEZIEOEEE ity ¢ B (0)\ BalO)

0, it 2 € By, s (0),

for each w € C**(Bg(0)). ]

In the following two subsections, we shall give some properties of the continuous linear operator

E and the integral operator Z.

2.2.2 Some properties of the continuous linear operator £

Define the following sets

D= BbN—g(xN) M Bbl_ﬁ($1)7

4

D,:= B, b(Te1) N By _»(wy), withs =2,... N,

_b b
k—17"7 1

Gui= By _»(2x) \ Dy, withw =1,... N,

Jwi= (Bpys(0)\ Br(0)) NGy, withk =1,.... N, (2.38)
Ji:= (Bryy (0)\ Br(0)) N Dy, (2.39)
Jp:= (Bpy(0)\ Br(0)) N Dy, with i =2,..., N. (2.40)

Note that B/:: BR+%(O)\BR(O) = Ui\;l jrw DK 7& @’ jﬁﬂjﬁ, — g, for any x, ’{/ c {1’ . .,N},
with k # «/, and

\75:(\75\\74+1)U‘7/;+17 lf/€€{1,7N—1}7

In = (I~ \T)U T, if Kk = N.

If v € B, there exists k € {1,..., N} such that 2 € J,. Then, when x € {1,..., N — 1}, we get
that

E(w)(x) = Ao(2) Ey(wi) () 17077, , ()

) (0 () B () () + Aes (2) Bl (10051 () L, (1), 2.41)

+
M) + Ay (o)
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forall x € J.. When x = N, we obtain that

E(w)(z) = Xo(2) Ey (wn) (@) L7 (2)
Ao(T)

X+ R@)

(An (@) Ex (wy) () + M () By (wr) () 17 (2). - (2.42)

for all z € Jy. Recall that £/, and w,; are given in (2.26) and (2.37), respectively.

Proposition 2.15. Ifw € C°(Bg(0)), then
|E(w)(x)] < 240||w]|co @@y, for all w € R, (2.43)

with Ag as in (2.24).

Proof. Let w € C°(Bg(0)). Observe that when = € BR+%(O)C, (2.43) is trivially true. When

x € Bg(0) it follows that

|E(w)(@)| = [w(@)] < [[wlleozam) < 240llwlloo@wm):

Ifxr e B = BR+%(O) \ Bgr(0), we know there exits k € {1,...,N — 1} such that x € J,, =
(T \ Tis)) VT ot € Iy = (In \ J{) U J{, where J,. and J, are given in (2.38)—(2.40).
Suppose that € 7, = (J. \ J.,1) U T, 14, forsome v € {1,..., N — 1}. From (2.26), (2.31),
(2.32), (2.35), (2.37), (2.41), and taking B,: = Bg(0) N By, (2), with & € {1,..., N}, it follows
that

|E(w)(2)| < [E(we) (@) 1707, ()
+ (1B (we) (we) ()] + | By (i) () L7z, ()
= [EL ()] + [ By (wega) (2) 17, (@)

< /100 (W ()| A (s (1)) [w(24(2)) |15, (2 (t))dt
+ /100 (W) A1 (@1 (8) (@1 () s, 1 (2r1a(2))dE (2.44)

< ([wlleos,) + Hw”co(m“))/ (W (t)|dt (2.45)
1

< 2A0Hw”CO(BR(O))a

with Ay as in (2.24). When z € Jy = (I~ \ J{) U J|, we use (2.42) and proceeding in a similar
way to obtain (2.43). [ |
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Now, since A, A\, € C(R?), with

m\o—

supp[Ax] C Bbﬂfg(x,@) and supp[A] C CJ B, _
k=1
we can assume that
|0;Ay| < Cyand [0\, < Cy, foralli e {1,...,d}, (2.46)
for some constant Cy > 0.

Lemma 2.16. If w € C'(Bg(0)), there exists a constant Cy = Cs(k,d) > 0 such that for each
v € B = By (0)\ B0

0 E(w) ()] < Cs||wl|cr g0y, foralli € {1,...,d}. (2.47)

Proof. Let v € B and w € C"*(Bg(0)) fixed. Then, there exists s € {1,..., N} such that
r € J.,. Whenk € {1,..., N — 1}, from (2.41), we know that
E(w)(x) = Xo(2) E(2) 1707, ()

)\0(1’) ' ,
+ N2(z) + A2, (z )(/\,;(:E)Eﬂ(w,.i)(:(:) +)‘K+1(x)En-H(me)(x))lJ;H(I)'

Then, the first derivatives are given by

O E(w)(z) = (Eg(we)(x)0ido(x) + Ao ()0, By (wie) ()1 g0\a7,, ()
Jr(A w(2) Bl (Wi ) (2) + Apir () By (we1) (2)
(Ae(@)? + Mg (2)?)?

< ((AX(@) + 2541 (2))0ido(@) = 220(2) (Ae(2) Ak (%) + Axtr (2)0i A ()

)‘0( ) / /
AQ( )+/\K+1( )(En(w,{)(l’)az/\,{(l’)+)\H($)(91Eﬁ(wn)(,7;))

+ E};+1(wﬁ+1)($)a¢)\n+1(l’) + )\,{+1(CE’)6¢E;+1(U},{+1)(1‘))> 1.7,2+1 (.Z‘)

Recall that the sets J,;, J. are given in (2.38)—(2.40). By (2.37), for each ¢ € {x, k + 1}, we know
that w,(z,(t)) = A\ (z,(¢))w(x,(t)), if z,(t) € B,:= Bg(0) N Bbr%(:z:L). Then, from Lemma 2.13

and computing the first derivatives of w,, it is follows that
O E,(w,)(x) = /1 WO (x(0) + t0qw,(x.(t));g; (x))dt
- / W) O (0 (1) () + w( ()0 (2,(1)

+ t(A (2 () aw(z, (1) + w(z, (1)) DaA. (z.(1))) D;g; () 1p, (2.(t))dt,

+
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foralli € {1,...,d}. Where ¢, z,(t) and ¥ are given in Corollary 2.7, (2.20) and (2.23), respec-
tively. Hence, using Corollary 2.7, Lemma 2.11, (2.24) and (2.46), we get

0B (w,) ()] < / 1w 0)] (9l (0)] + ol ()]
OB (. (1)) + Caluw, (8)))) 1, (. (1))t (2.48)
< Jlwller gy (1 + o) / W)L+ Crydt

< f[wller @y (1 + C2)(Ag + CAs),

with C, Ay, Az, Cy are constants given in Corollary 2.7, (2.24), (2.25), (2.46), respectively, and

N
Bi:= Br(0)N U Bng (xy) . Taking C%:= (14 Cy)(Ag + C A3), from (2.31)—(2.35) and (2.46)—

k=1
(2.48), it follows that

|0 E(w)(2)| < (Co(|Ep(wi) (@)] + | By (wer1) (@)])
+ 0 Ey (we)(2)] + |0 By (werr) (2))) Lz, (%)
+ (TCo (| Ep(wi) (@)] + | By (wiern) (2))
0B (wi) ()] + 0,y (W) (@)) 177, (%)
< 2(AgCo + Cy)||wllcr sy Laagz,, (%)
+2(TA)C2 + Cy)l|wll vy L, (2)

Taking C5 = 2(7ACs + C%), it follows (2.47). When z € Jy = (Jn \ J;) U J{, computing first

derivatives in (2.42) and proceeding in a similar way, it yields (2.47). [ ]

2.3 Properties of the integral operator 7

Recall that the integral operator Z is defined for each w € C°(Bg(0)) as

T E(w)(x) = /R E(w)(z + 2)v(dz),

for all x € Br(0). Some properties of Z F(w) shall be analyzed below. These results will be
helpful in order to show some properties of the solutions to the non-linear Dirichlet problems (3.5)
and (3.21).
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Lemma 2.17. Let Br(0) be an open ball in R".
(i) If w € C°(Bg(0)), then

| Z E(w)(z)| < 240v0]|w]|co gy, forall x € R,

where vy, Ay are as in (H2) and (2.24), respectively.

(ii) Ifw € C°(Bg(0)), then T E(w) € C**(R%).

(iii) If w € C'(Bg(0)), then a%iIE(w) € C"*(R%) and 8%Z_IE(w) = Ia‘ziE(w), for each
ied{l,...,d}

Proof. Letw € C°(Bg(0)) and z,y € R? such that z # y fixed. The proof of (i) is as follows. By

Proposition 2.15, we have

|Z E(u)(x)] < / |E(w)(z + 2)|v(dz) < 2A0v0][w||co@my)- (2.50)

To prove (ii) we use that v(dz) = r(z)dz with k € C**(R*), for some a € (0,1) fixed. Then,
from Proposition 2.15, doing variable chance and using that supp[E(w)] C By, 5 (0), we get

| T E(w)(z) =T E(w)(y)| =

[ B +2) - Bwy+ 2)wdz)

[ Bl = ) = r(e' = )
< [ IB@E 8~ 2) - 5( = ld
sl [ B

R+5(0)

< K|z =yl 2.51)

< l5llcoe g

Here K = 2Ao||w||co gy Kl coe we) ( fBRer(o) dz), where Ay as in (2.24). This implies that
2

[Z E(w)]coe@roy < K1 < oo. Note that from (2.51), it follows that 7 E(w) is Holder continuous.

Using (2.50), we get

1 Z Ew)lloo gy < 240v(Bry s (O[] o 50y, < 00 (2.52)

By (2.51) and (2.52) we conclude that Z E(w) € C**(R%). Let w € C'(Bg(0)). To prove (iii), we
should first show that for each i € {1,...,d},
Blw)(x + = + pes) — E(w)(z + 2)
p

; (2.53)
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is bounded by an integrable function with respect to the Lévy measure v, for all p € (0, 1). Since
E(w) € CL(RY), we get that

[E(w)(a + 2 + pe)) — B@w) (@ +2)| < Cllllor o o

where C'= C(2, R) > 0is aconstantas in (2.21). It follows that (2.53) is bounded by C/|w||c1 (7, )»
which is integrable with respect to the Lévy measure v. Thus, by the dominated convergence The-

orem, it follows that

0 /R*E(w)(erz)u(dz):/R lim 2@ £ 2+ pei) = Bw)@+2) 5

ox; « p—0 p
= 0 E(w)(z + z)v(dz)
N R* 81‘1' '

0
T E(w) € C*(R%), foreachi € {1,..., N}. Since F(w) €
T

CL(Bg(0)), then, by (i), we conclud 86:)1:

Finally, we proceed to show that

(w) € CO*(RY), foreachi € {1,...,N}. |

The following corollary is a consequence of the previous lemma. Recall that D,,, with 0 <

m < k, is the set of all multi-indices of order m.

Corollary 2.18. Let B(0) be an open ball in R? and k > 0 an integer. If w € C*(Bg(0)), then
7 E(w) € CH(R%).

From Corollary 2.18, note that the integral operator Z maps C*(Bz(0)) into C**(R9), with
k > 0. The following two lemmas describe the behavior of the integral of F(w)(z + z) and
0; E(w)(x + z) with respect to the Lévy measure v(dz) when z + z € Bg(0) “andx € Bgr(0).

Lemma 2.19. Ifw € C°(Bg(0)), then
‘/ (x + 2)v(dz2)| < 2A0||w|\co(3i)/ 1g(z+ 2z)v(dz),
|Ix+ZH>R} R*

for all x € Bgr(0), where Aq is a constant given in (2.24), B’ = BR+1)( )\ Bg(0) and B,: =
Br(0) NUiLy By, s ().

Proof. Let z € B(0) and w € C°(Bg(0)) fixed. Then

’/$+z|>R} w)(x + 2z)v(dz)

< / |E(w)(z + 2)|v(dz). (2.54)
{llz+z||>R}
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By construction of the linear operator E (see (2.36)), we know that E(w)(z + z) = 0, for all
b
l|lz+z|| > R+ o Then,

/{ o) |E(w)(x + 2)|v(dz) = - |E(w)(x + 2)|1g(x + 2)r(dz), (2.55)

with B/ = BR+%(O) \ Bg(0). Since B’ = U, J., where {7}, is a sequence of disjoint sets
given in (2.38), we have that

/*| (w)(z + 2)[1a (& + 2)v(d2) Z/* v )|y (z 4 2(ds).  (2.56)
Using (2.45), we get
» [E(w)(z + 2)[1g,(z + 2)r(dz) < 240][w[|cogs,) /R Ly, (z + 2)v(d2),
where B} = Bz(0) N U, m Then,

Z/* w)(w -+ 2 + 2w <dz><2Aon\|coBf>Z/ L (@ + ()

— 24 [wllooqs) /R st ow(ds). @57)

From (2.54)—(2.57), it follows

‘/||Z+z|>R} (x + 2)v(dz)

Lemma 2.20. Ifw € C'(Bg(0)), then

‘/ ‘WM} (w)(z + 2)v(d?)

for all x € Bg(0), where C3 is a constants given in (2.24) and Lemma 2.16, respectively, B' =
By 1(0)\ Br(0) and By:= Br(0) NU,, By, 1 ().

< 240wl coga /R Lo (2 + 2)v(d2). .

< C3|wH01(B§)/ I (z + 2)v(dz),
R*

Proof. Letx € Bp(0),i € {1,...,d}, and w € C*(Bg(0)) fixed. Then

’/ O E(w)(z + 2)v(dz)
{llz+z[|>R}
Proceeding in a similar way than (2.55) and (2.56), it yields that

< / |0;E(w)(x + 2)|v(dz). (2.58)
{llz+=||>R}

/{” . 0. E(w)(z + 2)|v(dz) = /R 0, E(w)(z + )|l (z + 2)v(dz),  (2.59)
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where {J,Q}NJ\’:1 is a sequence of disjoint sets given in (2.38). From (2.49), we get that

/ B (W) + 2)[ 17, (x + 2)0(d2) < Cslluwllona / Ly (o +2)w(ds),  (2.60)
R* R*

with Cj given in Lemma 2.16 and B} = Br(0)nJ"_, B, s (xx). From (2.58)—(2.60), we conclude
that

’/I+z||>R} (w)(@ + 2)v(dz)] < Csflwllere Z/ 1, (x4 2)v(dz)

:CSHU’Hcl(Bg)/R I (z + 2)v(dz),

with B' = By, 1 (0) \ Br(0). n

Remark 2.21. Observe that when N — oo, b — 0, since 0 < b < QLN It follows that B’ =
BR+%(O) \ Br(0) AL Then,

/ Ip(x + z)r(dz) S 0

This implies that we can choose N > 1 arbitrary large in (2.10) but fixed, such that the argu-
ments realized in this chapter are valid, with the difference that b is small enough, and the value of
J- 1/ (z + z)v(dz) can be taken arbitrarily small. From the condition (2.30), we can also note
when N > 1 increases, the values b, > 0 decreases, for all K € {1,..., N}. This implies that
B; = Br(0)n UYL, m e dBr(0), and hence that for each w € C*'(Bg(0)) fixed, we
have that

Hch(’(B;) N llwllco@rr () u



Chapter 3
Non-linear Dirichlet problems

In this chapter, we are interested in establishing the existence, uniqueness and regularity of the

solution to the non-linear integro-differential Dirichlet (NIDD) problem given in (1.15), i.e.

q'u(z) = T'u(2) + ¢ (|| D w (@) ]]*) = h(w),  in Br(0),
u(x) =0, on 9Bg(0).

(3.1)

We recall that
qd =q+uvy>0, (3.2)

with vy = v(R*) and
, 1 , . _
Mw(z) = 5 tr(oc D*w(x)) + (D" w(x),7) + / E(w)(z + z)v(dz)
= L'w(z) + T B(w)(),

where ¥ = v — [i.. zv(dz), the continuous linear extension E : C**(Bg(0)) — CE*(R?) is

defined in (2.36), and the penalizing function v, : R — R is defined by

o (r) —w(r_l), forr € R, (3.3)
with ¢ € C*(RR) such that

P(r) =0, forr <0,

w(r) >0, forr > 0, 3.4)

Y(r)=r—1, forr > 2,

Y'(r) >0, ¢"(r) >0, forreR.
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Recall the hypotheses (H1)—(H4) in pages 8 and 9, are in force all thorough this chapter.

The arguments to guarantee existence, uniqueness and regularity of the solution to the NIDD
problem (3.1) are based in the contraction fixed point Theorem which is recalled below; see [13,
Thm. 5.1 p.74]. If (B, || - ||5) is a Banach space with norm || - ||z, a mapping 7" : B — B is called

a contraction in (B, || - ||5) if there exists a constant 0 < K < 1 such that
||T(b1) — T(bQ)HB § KHbl — bQHB, for all bl,bg S B.

Theorem 3.1 (Contraction fixed point Theorem). A contraction mapping in a Banach space (B, || -

||8) has a unique fixed point, i.e., there exists a unique solution b* € B to the equation T'(b*) = b*.

To use this result, we define the operator 7. : C°(Bg(0)) — C°(Br(0)) as

T.(w) = V¢(-;w), for each w € C°(Bg(0)),
where the value function V¢(-, w) is as in (3.16). From Lemma 3.5, it follows
T.(w) = VE(-,w) € C**(Bg(0)) C C°(Bg(0)), for each w € C°(Bg(0)).

Verifying that V¢(-; w) satisfies

24
(Ve wr) — Ve(';wQ)HCO(BR(O)) < 7”(3R+g(0))"w1 - wQHCO(BR(O))’

for each wy, wy € C°(Bg(0)); see Lemma 3.6. By Hypothesis (H4), we obtain that 7} is a contrac-

tion mapping in the Banach space (C°(Bg(0)), || -| |co(Bray))- By contraction fixed point Theorem;
Theorem 3.1, it yields that there exists a unique w* € C°(Bg(0)) such that T.(w*) = w*; see
Lemma 3.7. Using this and that V°(;w) is related with the solution »°(-;w) to the non-linear
Dirichlet problem (3.5); see Lemma 3.5, we obtain the existence, uniqueness and regularity of the
solution u® to the NIDD problem (3.1); see Theorem 3.8.

Finally, in Subsection 3.2.1, we shall show some properties of the solution u* to the NIDD
problem (3.1), which shall be used in Chapter 4 to prove the existence and regularity of the solution

u to the Hamilton-Jacobi-Bellman equation

max{qu(z) — Tu(z) — h(x),|| D' u(z)||> = 1} =0, in Bx(0),
u(zr) =0, on 0Bg(0).
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3.1 Non-linear Dirichlet problem with an elliptic differential

operator

For each w € C°(Bg(0)), define h(-;w) : Br(0) — R as

h(z;w) = h(z) + T E(w)(z), forall 2 € Br(0).

Since h € C*(Bg(0)) and Z E(w) € C**(R¢), whenever w € C°(Bg(0)); see Hypothesis (H1)
and Lemma 2.17(ii) respectively, we have that (-; w) € C%*(Bg(0)). Then, from [13, Thm 15.10
p- 380], we have the following result.

Lemma 3.2. For each w € C°(Bg(0)) and ¢ € (0, 1) fixed, the non-linear Dirichlet problem

q'uf (x;w) — L'uf (z;w) + (|| D uf (a5 w)|[?) = E(m, w), in Bg(0),
uf(z;w) = 0, on OBgr(0),

(3.5)

has a solution u*(-;w) € C**(Bg(0)).

To guarantee the existence of the solution #°(-; w) to the non-linear Dirichlet problem (3.5), we
only need to verify the conditions in [13, Thm 15.10 p.380], which is recalled below. A quasi-linear

operator Q is an operator of the form
Qu:= Z ai;(x, v, D )90 + b(x, v, D' v), with a;; = aj;. (3.6)
iJ
We say that the operator Q is elliptic in I/, a subset of  x R x R, if there exist functions
A AU — R, such that

0 < M, QNN < ay(a,m, Q)& < Ay, OIIE], 3.7)

ij

forall§ = (&, ..., &) € RN\{0} and forall (z,7, () € U. Define E(x, 7, ¢):= >, ai;(x,m, ()G
If Q is elliptic in U, from (3.7), it follows that

A, n, ONICH® < €y, ¢) < Aa,n, QIICI?, forall (z,7,¢) € U. (3.8)
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Before stating Theorem 3.3, we introduce the conditions that should satisfy the coefficients a;;
and b of Q. Namely,

ai; = O(X),

(¢, D¢ ag) = O(N),

D,y aij + [[¢]|73(¢, Dg aiz) = o(N),
b= O(\¢][*),

(¢, Deb) < OICIP),

Dy, b+ [[¢]172(C, D¢ b) < o(Al[C]]?)-

(3.9)

as ||C|| — oo, uniformly for z € €2 and bounded 7. Recall that f = O(g) if only if there exists a

constant M such that for some x, it satisfies |f(x)| < M|g(x)|, for all x > x, and f = o(g) if

only if limj,)— o0 % = (. Furthermore, suppose that there exist non-negative constant p; and j

such that
b(a,n, Q) sgn(n) _ pul[Cl| + peo
E(@,n,¢)  — Il

Theorem 3.3. Let Q be a bounded domain in R® and suppose that the operator Q in (3.6) is

, forall (z, 4,¢) € 2 x R x R (3.10)

elliptic, with coefficients a;j,b € CH(Q x R x R%), which satisfy (3.9) together with the condition
(3.10). Then, if 0 € C** and p € C**(Q), 0 < o < 1, there exists a solution v € C**(Q) of the
Dirichlet problem Qu = 0, in ), and v = @, on 2.

Although Theorem 3.3 is valid for more general quasi-linear elliptic operators, we are interested

in the case when the coefficients of the quasi-linear elliptic operator are given by

aij(xvna ¢):= %Uij;

_ (3.11)
b(x,n,¢):= h(x) + (. 7) — ¢'n — ¢:(I[CI]*),

forall (z,n,¢) € Br(0) x R x R4

Proof of Lemma 3.2. Existence. To guarantee the existence of the solution u°(-;w) € C**(Bg(0))
to the equation (3.5), with w € CO(M) fixed, we only need to verify the conditions (3.9)
and (3.10), when a;; and b are given by (3.11). Recall from Hypothesis (H3) that there exist real
numbers 0 < ¢ < © such that the coefficients of the differential part of I" satisfy

0lICI[* < (0¢.¢) < OII¢IP, forall ¢ € RY.



3.1. NON-LINEAR DIRICHLET PROBLEM WITH AN ELLIPTIC DIFFERENTIAL OPERATOR 51

In our case we have that A\, A are 6, ©, respectively. Then, since a;; is a constant, it follows that
a;; = O(6), (¢, D¢ ay) = O(F) and D} a;; + |I¢]|7*(¢, D¢ ai;) = o(8). Furthermore, by (3.4) and
since /1 is in C%* (Br(0)), we have that there exists a positive constant A/ such that for some ¢, we
have that [b(x, 7, ¢)| < M0|[¢]|?, for all ||C|] > ||¢ol], i.e., b = O(0]|¢|*). Note that

(€. Deblz,m, Q) = (¢, 7) — 2¢L(/[CIP)IICI,

D, b, 1,¢) + [[¢][72(C, D b, m, ¢)) = —¢" = 20L(/[¢][?) + 1[¢]172(C. 7)-
Then, we can see that there exists a positive constant M/, such that for some (,, we have that
(¢, D¢ b, m, ¢))| < MO|[C][?, for all ||| > I¢ol], and

DX b, ,¢) + II¢]I~2(¢, DE bl 1, ©))

lim =0.
I€l—o0 olI¢II?
Finally, we prove that b, given by (3.11), satisfies the condition (3.10). By (H3), we have

1 < 1 < 1
Ollcl> = &(x,n,¢) ~ Ol[¢I*
Then, since ¢’ > 0 and ¥.(][C][|*) > 0, we get

bz, n, Q) sen(n) _ —q'Inl — ¢-([[CI1%) sen(n) + (¢, 7) sen(n) + h(x; w) sgn(n)

E(x,n,C) E(x,n, )
< {6, 7) sgn(n) + h(z; w) sgn(n)
B E(z,n, Q)
- I+ 1A w) o Bry)
- o]1¢]I?
~ h(w)l o (Feros . . o
Taking py = 2l and i, = H()H% we obtain the inequality given in (3.10). Therefore, from

Theorem 3.3, we conclude the existence of the solution u°(-; w) to the Dirichlet problem (3.5). =

The uniqueness of the solution u°(-; w) to the non-linear Dirichlet problem (3.5) is obtained in

the following result.

Lemma 3.4. Let w € C°(Bg(0)) and € € (0,1) fixed. Then, the non-linear Dirichlet problem (3.5)

has a unique solution.

Proof. Let w € C°(Bg(0)) and e € (0,1) be fixed. If u{(-;w) and u5(-;w) are two solutions to

the non-linear Dirichlet problem (3.5), we define f(-):= u{(-;w) — u5(-;w) in Bg(0), which is in

C**(Bg(0)) and

¢ f(a) = L' f(x) + (]| D i (a3 w)|*) — ¢(|| D' ug (w5 w)[[) = 0, in Br(0),
f(z) =0, on 0BRr(0).

(3.12)
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Let * € Bg(0) be the point where f attains its maximum. If * € 0Bg(0), from (3.12), it follows
that f(z) < f(2*) = 0. Suppose now that z* € Br(0). Then, we have

D' f(a*) = D' uf (" w) — D' (i w) = 0,

1tr(eD? f(z%)) <0,
which implies that ¢ (|| D* w (z*; w)||?) — ¥-(|| D* wa(z*;w)||?) = 0. Evaluating * in (3.12), we
get that 0 > 1tr(0 D f(2*)) = ¢ f(z*), and hence uf(z;w) — u5(z;w) < f(2*) < 0in Bg(0).

By symmetry we have also that #5(-;w) — u{(-;w) < 0 in Bg(0). Therefore uf(-;w) = u5(-; w),

and then, the non-linear Dirichlet problem (3.5) has a unique solution. [ |

The convex function g. : R? — R was defined in (1.38) as g.(¢) = . ([|¢|]?), together with
its Legendre transform [, : R — R, which is given by I.(n) = sup{(n,{) — g-(¢)}. The

Legendre transform [ satisfies

() = 5|10l = g-(5n) = $lnll%,

(3.13)
1= (20L(1[¢11A)C) = 2¢2(lICIPICH = w=(1IC]1?),
for all € R?. Since g. is differentiable, it follows that
9:(¢) = sup{(n, ) — I(n)}. (3.14)
n
Then, the non-linear Dirichlet problem (3.5) can be written as
q' v (z;w) — L B(uf)(2;w)

+sup, {(D' (w5 w),m) = L(n)} = h(z;w), in Br(0), (3.15)

u(z;w) =0, on 9Bg(0).

Next we describe the stochastic control problem associated with this equation. A control process is
any d-dimensional, absolutely continuous process o = {o; : t > 0} F-adapted and satisfying gy =

0 almost surely. Given an initial state © € Bg(0), we define the state process X = {X; : t > 0} by
Xy=x+ W, +7t — o, forallt > 0,

where W = {W; : t > 0} is a d-dimensional Brownian motion with Gaussian covariance matrix o

and drift 7 is as in (3.2). The cost function corresponding of o, depending on w € C°(Bg(0)), is
given by

Ve w)i= E, ( [T e v L) ds),



3.1. NON-LINEAR DIRICHLET PROBLEM WITH AN ELLIPTIC DIFFERENTIAL OPERATOR 53

for all x € Bg(0), with 75,0):= inf{t > 0: X; ¢ Br(0)} and ¢; = %. The constant ¢’ > 0 is

given in (3.2). Finally, the value function is defined by
VE(z;w):= inf V; (z;w). (3.16)
14

Recalling that u°(-;w) € C**(Bg(0)), with w € C°(Bg(0)), is the solution to the non-linear
Dirichlet problem (3.15).

Lemma 3.5. The solution u*(-;w) to the non-linear Dirichlet problem (3.15) agrees with V(-; w)

Proof. Let p and x € Bg(0) be a control process and an initial state, respectively. Since u°(-;w) €

C**(Bg(0)), by integration by parts and It6’s formula (see [28, Cor. 2 and Thm. 33, pp. 68 and
81, respectively]), we have that

e~ (NTB ) uE(Xt/\TBR(O);w) — (25 w)
t/\TBR(O) s , N e 1 e i

_/ eI (L = ¢)u (X5 w)) — (D' (X5 w), 3,))ds + Miney o)
0

t/\TBR(O) L~ )
= [T GO0 D (), ) D KPS+ Mg
0

(3.17)

with M;:= fot e*q'S<D1 u®(Xg;w), dWs), for all t > 0. The process M = {M, : t > 0} is a local
martingale. Then, the process M ™2r(©): = {MtATBR(o) : t > 0} is a P,-martingale with M, = 0.
Taking the expected value in (3.17), it follows that

/ tATBRo) -
Em(e—q (tATBR(0)) uE(Xt/\TBR(O);w)) = uf(x; w) —E, </ e 1 S(h(Xg, UJ)
0
(D1 (X)) = 01D (g ) ). 319
By definition of [, it implies
, t/\TBR(O) L~
B0 (X i00) 2 o) = B ([ 0 0) 4 @) ).
: 0
Proceeding in a similar way as in (1.44) and (1.45), we obtain that »°(-; w) < V¢(-;w). Since

YL(|[ D uf (250)[]*) DY (3 w),
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is a Lipschitz continuous function [19, Thm. 2.5, p. 287], we define the process X = {)~( 10 <

t < Tgu(0)} as the unique strong solution to

~ IATB R (0) ~ ~

XK=t W47t — / 20 (|| D" 4 (Ko w)][2) D' (Ko w)dls,

0
forall 0 < ¢ < 7p,(0). Then, its corresponding control process is given by
oft = 20L(|| D' (X,; w)|[?) D' 4 (X w), forall 0 < ¢ < 7p,0).
The process X satisfies (3.18) and by (3.14), it follows that
, - t/\TBR(O) , -
E,(e”?®\3r0) 1 (Xinrs 03 0)) = v (z3w) — Ey (/ e (M Xs;w) + lE(g'f))ds>7
0

Proceeding of a similar way that (1.44) and (1.45), we have that u(x; w) = V=F(x;w). This ends
the proof. [ |

Defining 7. : C°(Bg(0)) — C°(Bg(0)) as

T.(w) = V¢(+;w), for each w € C°(Bg(0)), (3.19)

from Lemma 3.5, we see that 7} is well defined. Now, by Hypothesis (H4) and using the following
result; Lemma 3.6, we obtain that 7. is a contraction mapping in (C°(Bg(0)), ]| - |lcoBr7ay))» and
hence, by contraction fixed point Theorem; seeTheorem 3.1, we have that 7. has a unique point in

CY(Bg(0)); see Lemma 3.7.

Lemma 3.6. If w;, w, € C°(Bg(0)), then

2A00(Bp. 4 (0)

; |wr — w2HCO(BR(O))’

Ve wr) — VE('EIU?)HCO(BR(O)) = q

Proof. Let wy, wy; € C°(Bg(0)). For each z € Bx(0), we have

Ve(x;wy) = ir;f{V;(x;wl) — Vi (z;w2) + V, (v5w2) }
< ir;f{ sup{V, (z;w1) — V, (25ws) } + V(w5 w2)}
0

< sup{V; (z;wy) — V5 (z5w2) } + VE(z;w2). (3.20)
4
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Therefore V*(z;w;) — VE(x;ws) < sup, {V;(2;wi) — V5 (2;w2)}. Proceeding of the same way
than (3.20), it yields V*(z; wa) — V(z;wy) < sup,(Vy (w;ws) — Vi (2;w)). Then, using Propo-
sition 2.15 and that supp[E(w; — w1)] C Bp,»(0), we conclude that

V(s wg) — V(s n)]| < sup |V (5 3) — VE ()|
o
TBR(0) , o~ ~
<swpE, [ e R ) - RG] ds
4 0

TBRO)
_ sup]EZ/ 7% | T E(ws — wy)(X,)|ds
0 0
TBR(0) ,
SsupIEz/ e_qs/ |E(wy — w1)(Xs + 2)|v(dz)ds
R*

0 0
oo
/o
0 By

2A0v(B 0
< 0 ( 1/z+g( ))
q

o 240/ |wa — w1l o By v (dz) ds
0

[lwe = willcomam): u

Lemma 3.7. Let T, : C°(Bg(0)) — C°(Bg(0)) be as in (3.19). Then, there exists a unique
/w*

solution w* € C° Bg(0) to the equation T.(w*) = w*.

Proof. Recall that T, : C°(Bg(0)) — C°(Bg(0)) is defined as T.(w) = V¢(-;w), for each

w € C"(Bg(0)), where V4 (+;w) is given by (3.16). Then, by Hypothesis (H4) and Lemma 3.6, we

obtain that 7. is a contraction mapping in (C°(Bg(0)), ]| - |lco@p0y))- Therefore, from contraction

fixed point Theorem; see Theorem 3.1, there exists a unique solution w* € C°(Bg(0)) to the

equation 7. (w*) = w*. ]

3.2 Non-linear Dirichlet problem with an elliptic integro-differ-
ential operator
We begin this section showing the existence, regularity and uniqueness of the solution u° to the

non-linear integro-differential Dirichlet problem (NIDD) (3.21). To prove this, we use Lemmas

3.5-3.7, stated in the previous section.

Theorem 3.8. For each ¢ € (0,1) fixed, there exists a unique solution v € C*>*(Bg(0)) to the
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NIDD problem

qu () — Lu(2) = T B(u)(2) + 9o (|| D' w*(2)[]*) = h(x), in Bg(0),
u(x) =0, on 0Bg(0).

(3.21)

Proof. From Lemma 3.7, we know that there exists a unique solution w* € C° Bx(0) to the equa-

tion 7. (w*) = w*, where T is given by (3.19). Furthermore, Lemmas 3.2 and 3.4 imply that there

exists a unique solution #°(-; w*) € C**(Bg(0)) to the Dirichlet problem
¢ (z;w*) — L'wf (z;0%) + ©e(|| DY (z;w)|[2) = h(z;w*), in Bg(0),
u®(x; w*) =0, on 9Bg(0),

and by Lemma 3.5, we obtain that

u(w*) =V*(;w") =T.(w*) = w",in Bg(0).

Therefore, taking u° as w*, we conclude that u* is in C>*(Bx(0)), and it is the unique solution to

the NIDD problem (3.21). [ ]

3.2.1 Some properties of the solution to the NIDD problem

In this subsection, we shall show some properties of the solution u® to the NIDD problem (3.21),

such properties will in turn be used in Chapter 4 to establish the existence and regularity of the

solution to the HIB equation (1.1). Since h € C?(Bg(0)), the proposition below, establishes that

u® € C**(Bg(0)), and it satisfies (3.22).
Proposition 3.9. The solution u® to the NIDD problem (3.21) is in C**(Br(0)) and it satisfies,
%tr(a D? Oju (7)) = ¢'Ouf (z) — (D' O (), 7)
— Oih(x) = ZOE(w")(z) + ¢l (9(x))dig(x), (3.22)
withi,j € {1,...,d}. Where
g(x):= || D' u®(z)|)?, forall v € Bg(0),

and its first and second derivatives are, respectively,

0ig(x) = 237, Ous(2)0fus (),

a;ig(x) =2> (0,3ju5(:1:)8,§iu5(x) + akus(m)afikus(x)),
withi,j € {1,....d).

(3.23)
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To verify this statement, we state three results on partial differential equations whose proofs
can be found in [13, Thm. 3.3, Corollary 6.9 and Thm. 6.17 pp. 33, 101 and 109, respectively].
Although Theorems 3.10-3.12 are valid for more general differential operators, we are interested

in the case that the differential operator £’ is given by £'v = 1 tr(c D*v) + (D' v,7).
Theorem 3.10 ([13], Thm. 3.3, p. 33). Suppose that u,v € C*(Bg(0)) N C°(Bg(0)) satisfying
qu—L'u=qv—Lv inBg0),
u=wv, on OBRr(0).
Then u = v in Bg(0).
Theorem 3.11 ([13], Corollary 6.9, p. 101). If f € Coe (M), then the Dirichlet problem
qv—Lv=f inBg(0),
v=0, on OBgr(0),
has a unique solution v € C*>*(Bg(0)).

Theorem 3.12 ([13], Thm. 6.17, p. 109). Let v € C*(Bg(0)) be a solution of the equation
qv— L'v = fin Br(0), where f € C**(Bg(0)). Then v € C***(Bg(0)).

Proof of Proposition 3.9. Defining f:= h(x) + T E(u®)(z) — ¥.(]| D" ¥ (x)|[?), we see that f €
Ch*(Bg(0)), since h € C*(Bg(0)) and ¥.(|| D' u°||?), T E(w) € C**(Bg(0)). Then, by Theorem

3.11, we have

¢v—L'v=f, inBg(0),
v=0, on 0Bgr(0),

has a unique solution v € C**(Bg(0)). Also, from Theorem 3.12, it follows that v € C**(Bg(0)).
Furthermore, we know that u* € C**(Bg(0)) is the unique solution to
Q) — £ (x) = h(x) + T E@)(@) — (]| D" w(@)|[2),  in Ba(0),
u® =0, on 9Bg(0).
Then, we get
¢u(w) = Lv*(w) = ¢'v(w) — L'v(x), in Br(0),
ut = v on 0Bg(0),

since f = h(z) + Z E(uf)(z) — ¥.(|| D' uf(2)||?). Using Theorem 3.10, we conclude that u® = v
and hence u® € C**(Bg(0)). ]
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From Lemma 1.5, it is easy to verify that u° is a positive function. This fact is proved below.

Proposition 3.13. The solution u® to the NIDD problem (3.21) is a positive function.

Proof. From the proof of Lemma 1.5, it is known v*(z) = E, (fOMTBR(O) e~ (h(Zs) + 1.(oF))ds),
where Z and ot are given by (1.46) and (1.47), respectively. Since h is a positive function, it
follows u®(x) > ]Ez( OMTBR(O) e s h(Zg)ds) > 0. Therefore, u¢ > 0. ]
D"l (]| D" wf][2) and || D*u|luo(,). with

B, C Bg(0) an open ball, such that these estimates are independent of ¢; see Lemmas 3.16, 3.21,

Now, we shall establish estimates for u®,

3.23 and 3.24. The reason for doing this is because in Chapter 4 we will need to extract a convergent
subsequence {1~ }.>1 of {t}.c(0,1) such that u:= lim., _,o u*~ is the solution of the HJB equation
(1.1).

The following result is based in the weak maximum principle for integral-differential equations.
Although Theorem 3.14 is valid for more general domains and integro-differential operators, see
for instance [12, Thm. 3.1.3], we are interested in the case that the domain and integro-differential
operator are Br(0) C R%and ¢ — £ — T E(.), respectively, where ¢ > 0 and

Lu(z):= L tr(o D*u(x)) + (D' u(x), ),
(3.24)

T u(z):= S (B(u)(z + 2) — u(z) — (D u(z), z))v(d).
Theorem 3.14 (Weak maximum principle). If w € C?*(Bg(0)) N CS(BR+%(O)) satisfies qu —
Lw—T E(w) <0, in Br(0), then supga E(w) = SUD,_, (0)\Ba(0) [E(w)]T, where [E(w)]T:=
max{E(w),0}.

Note that the NIDD problem (3.21) is equivalent to
quf (x) — Lu*(2) = T E(uf)(z) +¢(|| D' w(2)|]*) = h(x), in Br(0),
u(x) =0, on 0Bg(0).

(3.25)

Remark 3.15. Observe that the linear integro-differential Dirichlet problem

gn(x) — Ln(x) =T E(n)(x) = hz), in Br(0),
n(x) =0, on 9By (0),

(3.26)

has a unique solution n € C**(Bg(0)) [12, Thm. 3.1.12]. We can see that the linear integro-
differential Dirichlet problem (3.26) is equivalent to

¢n(z) — L'n(x) — T E(n)(z) = h(z), in Bg(0),
n(z) =0, on dBR(0).
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Since h + Z E(n) € C**(Bg(0)) and using similar arguments that the proof of Proposition 3.9, it
is easy to verify that n € C**(Bg(0)). |

Lemma 3.16. There exists a finite constant K5 > 0, independent of (¢, R), such that
u*(z) < Ks, in B(0).

Proof. Letu,n € C**(Br(0)) be solutions to (3.21) and (3.26), respectively. Note that

qu(z) — Luf(z) — T E(uf)(z)
< quf (z) = Lu*(2) = T E(u)(2) + (|| D' (2)|*) = h(a),

in Bz(0). Then

g(wf —n)(x) = L(w* = n)(z) =T E(u® —n)(x) <0, in Bg(0),
(u® = n)(z) =0, on §Bx(0).

(3.27)

From Theorem 3.14, it follows that (u® —7) < SUDg , (0)\Br(0) [E(u® —n)]T, in Br(0). We prove
2

below that u* —n < 0 in Bg(0). Let 2* € Bg(0) be the point where u® — 7 in Bg(0) attains its

maximum. Observe that (u® — n)(z*) < SUPR_, (0)\Br(0) [E(uf —n)|t. If 2* € OBg(0), we have
Lb
trivially ’

(v — 1) <0, in B(0). (3.28)

Now, if z* € Bg(0), we shall prove the statement (3.28) by contradiction. Suppose
(u® —n)(z*) > 0. (3.29)
Since u® — 7 attains its maximum at 2* € Bg(0) and u — 7 = 0 on dBg(0), we get that

D' (u* —n)(z7) =0,

1tr(o D*(uf — n)(2*)) <0, (3.30)

(u —n)(a* + 2) — (v —n)(x*) <0, forall z* + z € Bg(0).

Since (u® —n)(z* 4 z) — (u® —n)(z*) <0, forall z* + 2 € Br(0), and b is small enough, it follows

0>T B(u —n)(a") = /{n . H<R}((?f =)@’ +z) = (W —n)(@"))v(dz)

+f (B e+ 2) — (o — ) )r(dz). (3B31)
{R<||z*+2||[<R+3}
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From (3.27) and (3.30), we have 0 > 1 tr(o D*(u® — n)(z*)) > q(u® — n)(z*) — 7 E(u —n)(z*).
Then, by (3.31), we get q(uf — n)(z*) < T E(u® — n)(z*) < 0, which is a contradiction of (3.29)
and hence u® — 1 < 0in Bg(0). Since 7 is a function independent of &, we conclude that u° < K

in Ba(0), where K5:= |1 o .

From Remark 2.21, we know that we can choose NV > 1 large enough in (2.10) but fixed, such
that 0 < b < 5 is small enough and the value of [. 1z /(z + z)v(dz), is also arbitrarily small,
where B’ = B, 43 (0) \ Bgr(0). Using this and Proposition 3.13, we have the following result.

Lemma 3.17. The solution u® to the NIDD problem (3.21) satisfies that T E(u®)(x) > 0, for any
AN BR(O)

Proof. Let us write Z E(u®)(x) in the following way
TEwW)(x) = u(x + z)v(dz E(u®)(z+ 2)v(dz
@ = [ e | B+
- /*uf(:r+z)]15§(:):+z)z/(dz)+/R* u (x4 2) g (v + 2)v(dz2)
+/*E(u€>(I+Z)]lB/<.T+Z)V(dZ)
= /*ue(x—kz)]lgé(x—&—z)u(dz)+/*u5(x+z)1lg/l(x+z)z/(dz)

+Z/ Nz + 2)1s (z + 2)v(dz), (3.32)

where B’ = BR+g(O) \ Bg(0) = U, Jn, with {7}, a sequence of disjoint sets given in
(2.38), By = Bg(0) N"U,L, B, _+(wx) and By:= Br(0) \ Uy, B, _:(w,). Recall that 0 < b <
min,.c N}{QN,b } such that GBR( ) C UNN:1 BbK_g(xH), with x, € 0Bg(0). Estimating the

.....

last term on the right hand side of (3.32), we have
N

Z/ )z +2)1g (x4 2)v(dz) = Z/{E( o) E(w)(x + 2)1g, (x4 2)r(dz)

k=1

_Z/ B (a2 <0} E(u®)(z + 2)|1g.(z 4 2)v(dz).

Using (2.45), it follows
/ B(0) o+ 2)[ 1, o+ 2)o(d)
{E(u®)(x+2)<0}

< 24, 1|0 s / 1Ly (e + 2)v(dz), (3.33)

{E(u)(z+2)<0}
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foreach k € {1,..., N}. From (3.32) and (3.33), we get
| B+ 2l
> / ut(r + 2) g (x + 2)v(dz) + / ut (v + 2) g (z + 2)v(dz)

*

+Z/ W)@+ 2) 1 (@ + 2)(d2)

{E(u®) (z+z)>0}

— 2 Aol oo e Z / 1, (¢ + 2)v(d2)

{E(u®)(z+2)<0}

= /* u(r + 2) 1 (z + 2)v(dz) + /{E( P Ew)(z+ 2)lp(x + 2)r(dz)

+ / u(z + 2)1g, (z + 2)v(dz) — 240 |[u|[cos) / Ip(z+ 2)r(dz). (3.34)

{E(u)(z+2)<0}

By Proposition 3.13, we know that u® > 0 in Bg(0). This implies

/* u(x + 2) 1, (z + 2)v(dz) > 0 and / ut (v + 2)1p (z + 2)r(dz) >0

*

Observe that

/]R* ut (v + 2) gy (z + 2)v(dz) >

/ ut(r + 2)1p (x + 2)v(dz)
_ 2Ao||ug||00(6’1)/ 1g(x+ z)v(dz)|, (3.35)
{E(uf)(z+2)<0}

because [. 1s(z + z)v(dz) can be chosen arbitrarily small, and [ullcosyy < 11wl oo Br)»
where ||u|[ o,y is bounded by a constant independent of ¢; see Lemma 3.16. From (3.34) and
(3.35), we conclude that [,. E(u®)(x + z)v(dz) > 0. [ ]

Defining n; as

eKoR? _ gellell®  if 4 Bgr(0),
m(z) = o
BE(u®)(x), ifz € Br(0)°,

with K > 0 a constant, we can see that 7, € C?(Bg(0)) N C°(Bx(0)°) is a positive concave

function in B(0). We have the following result.

Lemma 3.18. Let n; be defined as in (3.36). Then, choosing K¢ > 0 large enough,

gm(z) — Ly (z) — T m(z) > Co(1 + ||z]|?) > h(z), in Br(0). (3.37)
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This statement will be helpful in finding a constant, independent of €, which bounds by above
|0guf| in 0BR(0). Recall that y f denotes the directional derivative of the function f with respect
to the unit vector ¥ € R%, i.e. dy f(x):= lims_,o w, with € R

Proof of Lemma 3.18. Letn; be as in (3.36). Calculating their first and second derivatives in B(0),

om(x) = -—2K;s eHellzl)? z;,
2 (x) = —2Kgelolll® (1 + 2Ka?), (3.38)
() = —4K2 Sl g

withi,j € {1,...,d} and ¢ # j, by (H3) and (3.38), we see that

— Ly (x) = 2K e’ellel” <; > o+ Kelow,z) + (x, 7>>

> 2K efollell? <K69||x||2 — Aljz|| + 92d> (3.39)
Since 7 is a positive concave function in Br(0), we have that
m(z+2) —m(x) < (D'n(),2), forall ||z + z|| < R.
Then, using Lemma 2.19, we obtain the following inequalities

~T m(z) =~ / (m(z +2) —m(z) — (D m(x), 2))r(dz)
{llo+2l|<R}

- /{ + ||>R}(E(UE)(x + Z) - 771(93) - (Dl Th(x), Z>)V<dz)

2o [ (Bt ) - o) - (D (), )l
{llz+z||>R}
— Ew)(x+ 2)|lv(dz 1z v(dz
- /{||E+Z>R}‘ ( )< i )’ ( )+77( )/{||I+Z>R} ( )
2K efollzll? x, z)v(dz
i /{|$+Z|>R}< > ( )
> —2Kg (AO/ 1 (2 + 2)v(dz) + vy eollzll HxH) (3.40)

Recall that B' = B s (0) \ Br(0) and vy, Ay are constants given by (H2) and (2.24), respectively.
Using (3.39)—(3.40), we get that

/ 2 Hd
gm(z) — Lm(x) —Z m(z) > 2K efsllell (9K6H.TH2 — <A + V()) [|z]| + 2)

9Ky A / T (2 + 2)0(dz),

for all x € Bg(0). From (H1) and choosing K large enough, it implies (3.37). [ ]
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We obtain the following result as a consequence of the previous lemma.
Lemma 3.19. Let K¢ > 0 be the constant given in Lemma 3.18. Then
|Bgus (z)| < 2K5R "™ in OBR(0).
Proof. Let x € 0Bg(0), ¥ a unit vector and 7 as in (3.36). Since
g(uf —m) = L(u* =) = T (E(w?) —m) <0, in Br(0),
SUPBH%\BR(O) [E(u®) —m]t =0,

by the weak maximum principle, Theorem 3.14, it follows that u* < 7. Since these functions

agree in Br(0)¢ and u® > 0, we get that

&wf’R(x) _ }Lir% u(z) — uh(x — h) _ hiH}) —u (a:h— h1) <0,
oem(e = k) —ut(e - h)
Oy (z) = }lllir(l) — < }L%T = Jyu® ().

Then dyni(z) < dyus(z) < 0. It implies that [0yus(z)| < ||D'ni(z)|| in 9Bg(0). Recalling
the definition of 7, and its first derivatives, see (3.38), it follows that |dyus(z)| < 2KgR eX¢F” in
0BR(0). |

Before showing that || D' u|| is bounded by a positive constant in By(0), which is independent

of ; see Lemma 3.21, we establish an auxiliary result.

Lemma 3.20. Define the auxiliary function ¢ : BR(0) — R as

o(x):= || D' u®||* — Mu®(z), for all x € Bg(0), (3.41)

where M:= max, g || D' u®(z)||. Then

1
3 > 00%0(x) > ¢l (g(x))(2(D" p(x), D' u(x)) + M| D" v (2)[”)
]
— (Ks + MKy)|| D' v (2)|| = M(K7 + Ki0) — (D' ¢(),7), (3.42)
forall x € Bg(0), where the constants K, . . ., Ky are independent of ¢.

Proof. Note that ¢ € C**(Bg(0)), since u* € C**(Bg(0)). Then, calculating first and second
derivatives of ¢ in Br(0),

Dip(x) =23, Opus(2)0Fu () — Moy (x),

8%90@) =2 Zk(ﬁ,?jua(x)a,%iua(x) + Opuf (2)03, . u (x)) — M@%UE(:):),

kij



64 NON-LINEAR DIRICHLET PROBLEMS

we have that

- Z Tij U<p Z alj(?kj (2)0Fus () + Z 0;j0u’ (x 8sz - — Z 0”02 u(z

kij kij

Using (3.21) and (3.22), we get for each = € Bg(0),

— 15 22y 0i0iut (x) = M(h(w) — q'u(z) — ¥=(g(2)) + (D' v (2),7) + I E(u)(2)),
3 iy OO (2)0};0 () = || DY w ()] — (D' wf(x), D A(x))
+(g(x))(D' uE(I% D' g(x)) — (D*w*(x) D' u(x),7)
— > 0 (x) [ E(Oiuf)(x + z)v(dz),

where the first and second derivatives of g(x) are given in (3.23). Then,

- Zawﬁww

—Z%% (2)05;uf (x) — 2(D" u*(x), D" h(x)) + Mh(x)

kij

+¢/ (2| Dt (2)|* — Mu(2)) + 201 (g(x)) (D" v (), D g(x)) — My (g(x))
+M/ )(x + 2)v(dz) —QZau /*E(aﬂf)(x—&—z)v(dz)

— 2(D?uf(z) D' uf(2),7) + M (D" w(x),7). (3.43)

Lemma 3.16 implies
¢'(2|| D' (2)|]* — Muf(x)) > —M Ky, (3.44)

where K;:= ¢' K. The constant K is as in Lemma 3.16. By (H1) and (H3), it follows

— Ks|| D w(2)]| < 0] D* w(@)|]” — Ks|| D' wf ()|
< Zaw@,wu (2)0%uf () — 2(D' (), D* h(x)) + Mh(z), (3.45)

kij
where Kg:= 2Cj. Recall that the constants 6 and Cj are given in (H1) and (H3), respectively. Since
ve(g(x)) < ¥l(g(x))g(x) and dip(x) = 237, Opu® (2)Of;u () — MO (x) forall i € {1, d},
we have that
(DY p(),3) = 2D u () D} (2), 3) — M(D' (), 3),
20 (g())(D" (1), D' g()) — M. (g() (3.46)
> YL(9(2)(2(D* (), D (@) + M| DV ()| ).
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Since [i.. E(uf)(x + z)r(dz) > 0 and from Lemma 2.20, it follows that

— || D' uf (z)||M Ky — MKy

<M [ B+ 2)v(ds) - 23 0u(o) / B0 (x + 2)v(dz), (347)

R* *

where Ky:= d(vy+dCs [, 1g(z+2)v(dz)), and Kig:= dC3 K5 [,. 1 (z+2)v(dz). Recall that

the constants 1y and Cj are as in (H2) and Lemma 2.20, respectively, and B’ = B, 5 (0) \ Bgr(0).
Applying (3.44), (3.45), (3.46) and (3.47) in (3.43), it yields (3.42). [ |

Lemma 3.21. There exists a constant K11 > 0 independent of € such that
|| D' wf(x)|| < K11, in Br(0).
Proof. Consider the auxiliary function ¢ as in (3.41). Observe that if

M= swp |[D'e(@)) <1,
z€BR(0)

we obtain a bound for M that is independent of €. We assume henceforth that A/ > 1. Taking

x* € Bg(0) as a point where ¢ attains its maximum on Bg(0), it suffices to bound || D" u®(2*)||?

for a constant independent of ¢, since

1D w(2)[]* < [|D uf (@) + M (uf(2") + v*(2)) < || D u(a")[]* + 2M K5, (3.48)

for all z € Bg(0). The last inequality in (3.48) is obtained from Lemma 3.16. If z* € 0Bg(0), by
Lemma 3.19, it is easy to deduce ¢(z*) = || D* v (z*)||* < 2K R %", where K is as in Lemma

3.19. Then, from (3.48),
|D" s (2)||? < 2K R 5™ 42M K, forall z € Bg(0).

Note that for all ¢, there exists xg € Br(0) such that (M — €)? < || D u(x)||?. Then

(M — €)? < 2KR ™% +2M K, for all z € Bg(0). (3.49)

Letting e — 0in (3.49), it follows M < 2K¢R eXef* 12K, where 2K¢R eX¢f* 42K is a constant
independent of e. When 2* € Bg(0), we have that D' ¢(z*) = O and 1 > 0ij0ijp(x*) < 0. Then,
from (3.42), we get

0> My(g(="))|| D" u(a")|]* — (Ks + MKo)|| D' w(a7)]| — M (K7 + Kip). (3.50)
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1
If 4. (g(2*)) < 1 < —, by definition of 1., given in (3.3), we obtain that ¢).(g(z*)) < 1. It follows
€
that || D' uf(2*)|| < 2e +1 < 2. Then, by (3.48) and arguing as in (3.49), we obtain M < 4+2Kj,
where 4 + 2K is a constant independent of e. If ¢/ (g(z*)) > 1, from (3.50), we get

0> M||D*uf(z")|]* — (Ks + MKy)|| D' wf(2*)|| — M (K7 + K),

and hence

Kg + MKy + ((Ks + MKy)* +4M*(K7 + KlO)ﬁ)
2M

oz(mlu%x*m -

Ky + MKy — ((Kg 4+ MKo)? + 4M2(K- + Ki))?

SiHCC Kg + MKg — ((Kg + MK9)2 + 4M2(K7 + KlO))% S O, lt 1mphes

Ky + MKy — ((Ks + MKy)? + AM2(K; + Ky0))?

Dl €[k o
1D )| £

> 0.

From (3.51), it yields

Ks + MKy + ((Kg + MKy)? + 4M%(K7 + Ky0))2
2M

_ 205 + M Kg) + 2M (K7 + K1o)?

= 2M

< K+ Ko + (K7 + Kyo)?.

D uf(2")]] <

Using (3.48) and a similar argument that (3.49), we conclude
M < (Ks+ Ko+ (K7 + K10)2)? + 2K,

where (Kg + Ko + (K7 + Klo)é)Q + 2K is a constant independent of . Therefore, in this case
we also have that there exists a constant K1; > 0, independent of ¢, such that || D' u(z)|| < Ky,

in BR<O> |

In Lemma 3.23, we shall establish that 1. (|| D' u#||?) is locally bounded by a constant indepen-

dent of €. Previous, we give an auxiliary result.

Lemma 3.22. For each cutoff function £ in C°(B,) satisfying 0 < & < 1, with B, C Bg(0), define
the function ¢ : B, — R as

¢(x) = () (g(x)). (3.52)
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Then,
1
= > 03056(z) = —Kig(Kis + Kl | D* w(2)|])
ij

+9L(g(2)) (0¢(2)[| D*uf(2)[]* — (2Ku|[F]| + Kir)|| D uf(2)]]
— (2K1s + dK11 K13 + K1 K15 K16) + 2(D' ¢(2), D" w®(2))),  (3.53)

forall x € B,, where K11, ..., Kig are positive constants independent of ¢.

Proof. Since u#(-) and || D' u#(-)|| are uniformly bounded with respect ¢ in Bx(0) (Lemmas 3.16
and 3.21), we have

u(x) < K, )
inz € B,. (3.54)
|| D' (uf)(z)|] < Ku,

Furthermore, from Lemmas 2.19 and 2.20, we see that

/ B+ ()| < Ko (3.55)

/ E(0u®)(x + 2)v(dz)| < Kis, (3.56)

forall x € B, and foreach i € {1,...,d}, where

Kis:= K5 (VO + 2A0/ Ip(x + z)y(dz)),

*

Ki3:= K111/0+03(K5+dK11>/ ]]_B/(ZE+Z)V(dZ)7

*

are constants independent of . Recall vy, Ay, C3, K5 and K17 are constants given in (H2), (2.24)
and Lemmas 2.16, 3.16 and 3.21, respectively. Then, using the Hypothesis (H1), (3.54) and (3.55)
in (3.21), we have that

5

Ve(g9(2)) = h(z) — ¢'u"(2) + L'u"(2) + / E(u®)(x + 2)v(dz)
< Ku|| D?wf (2)]| + K1, (3.57)

for all z € B,, where g(z) = || D' u*(z)||? and
K=Y loyl,
]

K15:: (C[) + q/KB) + KllH:YiH + K12’
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Then, calculating the first and second derivatives of ¢ in B,.,
9ip(x) = 1=(9(2))0i () + &(2)Yl(g(2))Dig(),
%0(x) = ¥ (9(2))07E(x) + YL (g(2)) 0 (2)0;9(x) + §(2)YL (9(x))0;9(x)Dig(w)
+1(9(2))0;€(2)9;9(x) + £(2)vL(9(2))059(),
where i, 7 € {1,..., d} and the derivatives of g(x) are given in (3.23), by (3.43), we get
S o) = I S o o) + EDEIED 5o g(wpaigte)

(S oot

(2) 3" 030 (0% () R u (o >+aku8<x>a;ku5<x>)>

jik

_ Yelo(e) Sedfetn)+ W > oxdioe)aata
(Z 0]185 Zaﬂa 82] E( )

jik

+26(2) (q 1D (a2 — (D' w(x), D' h(a)
+9(g(2)) (D w(2), D' g(2) — (D u(2) DV (), )
_ Z Bt () /R B + z)y(dz)> ) . (3.58)
From Hypothesis (H3) and (3.57), it implies
vuota) S0 1 ) 1 )

> KooK + Kl D (@) ) + Dy gy e

tr(c D* () +

where K14 > 0 is a constant that only depends on . Since {(x) > 0 and ¢”(x) > 0, it follows
— Ki6(K1s + Kl [ D* u*(2))

2 2
Using Hypothesis (H3) and (3.54), it implies

— Ki7|| D wf(@)|| + 0€() ]| D* uf ()] |?
<Zaﬂag (€)Y 0ji0u (x)fyus (x), (3.60)

jik
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where K17:= 2d K11 K14K¢ is a constant that only depends on . From Hypothesis (H1), it follows
—Kig < || D' (2)]|* — (D' w (), D' h(x)). (3.61)
where Kg:= K1,C) is a constant independent of €. Since

0ip(w) = ¥=(g(x)) & () + f($)¢;(9(x))ai9(x)7

&(x)y(g(x))(D" g(x), D' u(z)) = (D' ¢(z), D' u(x)) — ve(g(x))(D' (), D ().
From (3.57), it yields

E(@)Yl(g(x)) (D g(z), D' v (z))
> (D! ¢(x), D uf (x)) — K16K11 (K5 + Kig|| D*uf(2)]]).  (3.62)

Finally, (3.54) and (3.56) implies

— Kn|[IID* uf (2)]] — dK11 Ky
< —(D*wuf(z) D' uf(x),7) — Z@ius(x) / E(Ou®)(z + 2)v(dz). (3.63)
i R~
Then, applying (3.59), (3.60), (3.61), (3.62) and (3.63) in (3.58), we conclude
1
5 trlo D? ¢(z)) > —Kis(K15 + K| D* uf(2)]])
+9L(g(2)) (06 ()| D* v (2)[|* — (2K |[F[€(x) + Kag)|| D* w ()]
— (2K18€(x) + dK 11 K3 + K K5 K6) + 2<d1gz5(x), D? u®()))
> —K16(K15 + K| | D' ws()]])

+ 0L (g(2) (06 ()| D* w (2)[]* = (2K 1 |[F] + Kir)|| D* v ()]

— (2K 15+ dK 11 K13 + K11 K15K6) + 2(D ¢(2), D' uf(2))). [
Lemma 3.23. Let B, C Bg(0) be an open ball. For each § € C°(B,) satisfying 0 < & < 1, there
exist non-negative constants K4, K15, K19, Koo independent of €, such that

K14 (Ko + (0K3)?)
0

E(@)ve(|| D (@)]?) < + Kis,

forall x € B,. The constant 0 > 0 is as in the Hypothesis (H3).
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Proof. Let B, C Bg(0) and for each cutoff function £ in C°(B,) satisfying 0 < ¢ < 1, define ¢ as
in (3.52). Taking =* € B, as a point where ¢ attains its maximum on B,, it suffices to bound ¢(z*)

by a constant independent of ¢. If * € OB, then ¢(x) < ¢(z*) = 0. When z* € Bg(0), we have
1
1 *\ 2 *
D' ¢(z") =0 and Z 0 056(x") < 0.
ij
Then, from (3.53), we get that

0> —Kig(Kus + Kua|| D?uf(27)]) + 9L(g(2")) (0&(a")|| D* u® (")
— 2Ku|[Al| + Ki7)|| D* wf (2%)|| — (2K1s + dK11 K13 + K11K15K16))7 (3.64)

1

where K7, . .., Kig are constants independent of e. If ¢/ (g(z*)) < 1 < —, by the definition of ),
5

given in (3.3), we obtain that ¢.(g(z*)) < 1. Then,

¢(x) < o(a") = §(z")Ye(g(2")) < 1.
In the case where ¥ (g(z*)) > 1, from (3.64), we get that
0> ¢l(g(2"))(0&(2")|| D* u (2")||* — Kuol| D* u (2")|| = Ka),
where

Kig:=2Ku|[3|] + Ki7 + K14Kis,
Koo:=2K1g + dI1 Kqs + K11 K5 K6 + K566,

are constants that only depend on &. Since ¢/ (z*) > 0, this implies that
0 > 0¢(2")|| D* uf (2")||* — Kugl| D* uf (27)|| — Koo,

and hence

0> <|\ D2 uf (z*)]] — Kig + (K3 + 495(:5*)[(20)2)

20€(x*)

Ko — (K2 + 40¢(2%) Ky 2
|

Since K19 — (K2 + 40¢(z*) Kq)2 < 0, it follows

Ko+ (K2 + 40¢(2%) Ko 2
2 e/ % < 19 19 )
1D (2")[| < 206z
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Therefore, from (3.57), we conclude that

¢(x)

IA

¢(z7)
(") e(g(2))
&) (K| D* u ()] + Kis)

IA

Ko 4 (K2, + 40¢(2%) Ky) 2
206(") * K“)

+ K15.

<€) (KM

< Ki4(Ki9 + (HKZO)%)
- 0

We finish the proof.

Lemma 3.24. Let 1 < p < co and 8 € (0,1) such that Bg:, C Bg(0), with ' = % There exists

a constant Ky3 = Ko3(fr, p) > 0 independent of € such that

1D wf[|ue(Bs,) < Kas([|hllues,,) + 1 E(w)||Lres,,)
+ 1€ (1D [ )[Le(s,,) + 1D ufles,,) + 16 ||Lres,,)) -

(3.65)

Proof. Letr > 0, € (0,1) and £ € C°(B,) a cutoff function such that 0 < £ < 1, = 1 on
Bg, and § = 0 on B, with 8 = % Suppose that || D' ¢|| < K>y and || D* €[] < Koy, for some

constant K5; > 0. Defining w = £u®, we obtain
I D? wf[|Lo s,y < 1D ||Le(s,,) + 11 D Eu||Le(s,,\B,,) = || D*wlLr(s,,)-
Calculating first and second derivatives of w in B,

Oqw(r) = u*(z)0:¢ (x) + O (x)€(x),
Ofw(x) = Oju(2)0i¢ () + v ()0;,8 (x) + Ou ()05 (x) + & () ju” (2),

with j,7 € {1,...,d}, by (3.21), we get

Jw(z) — L'w(z) = f(x), in Bg,,
U)(l’) = 0, on 635%

f(x):= &) (h(x) +/ E(u)(z + 2)r(dz) — ¢(|| D" v (2)[]*))

( S eista) + (0t w>)—<aD1§<x>,D1u€<x>>.

(3.66)

(3.67)

(3.68)
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We know that for the linear Dirichlet problem (3.67) (see [23, Lemma 3.1]), there exists a constant
Ky = Ky(fr, p) > 0 independent of w, such that

ID? wl|Le(s,,) < Kool flles,,)-

Estimating the terms on the right hand side of (3.68) with the norm || - [|r»(p,, ) and by the choice
of &, it follows

1D wllie(s,,) < Kas([|hlles,,) + 12 EW)|lws,,)

+ €| D ) lers,,) + | D' wllees,,) + 10l s,,),  (3.69)

for some constant K3 = Ko3(Sr, p) > 0 independent of £. Hence, from (3.66) and (3.69), we have
the inequality (3.65). [ |

By (0.3) and Lemmas 3.24 it is easy to obtain the following result.

Lemma 3.25. Let 1 < p < oo and 3 € (0,1) such that Bg, C Bg(0), with 3 = 251, There exists

a constant Koy > 0 independent of € such that

| lwer () < Koa(||hllLe(s,,) + 11T B[ s,,)
+ 1€ (1D | )[Le(s,,) + 1D ez, + 1w |Lrs,,)),

1
with ' = B%



Chapter 4

Existence, uniqueness and regularity to the

HJB equation

As in Chapter 3, the hypotheses (H1)—(H4) are in force all through this chapter. Our main purpose
here is to establish Theorem 1.2, that we recall below for case of reference. A strong solution of

the equation
max{(q'u(z) — T'u(z) — h(z), || D u(z)||* — 1} = 0, in Bg(0), 4.1)
with
¢ =q+v(R") =q+w,
Iu(r) = Ltr(o D2 u(x)) + (D' u(x),3) + [y E(u)(z + 2)v(dz) (4.2)
= L'u(z) + T E(u)(x).

is a twice weakly differentiable function on Br(0) satisfying (4.1) almost everywhere in Br(0).

'With this at hand we can now recall the statement of Theorem 1.2.

Therem 1.2. If d < p < oo, there exists a unique nonnegative strong solution u € C*'(Bg(0)) N
W2P(Bg(0)) to the HIB equation

loc

max{(¢u(z) — T'u(z) — h(z),|| D' w(z)||> =1} =0, a.e. in Br(0),

(4.3)

u(zr) =0, on 0Bg(0),

Note that by the definition of ¢’ and I"', the HIB equation (4.3) can be written as
max{(qu(z) — Lu(z) — T E(u)(x) — h(z),|| D u(z)|]> =1} =0, ae. in Bg(0), “4)

u(z) =0, on 9Bg(0),

73
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where ¢ > 0 is as in Hypothesis (H4), and

Lu(z) = %tr(a D?u(z)) + (D' u(z), ),

T u(z) = [ (B(u)(z + 2) — u(z) — D' wf(z + 2))v(d).

In order to show Theorem 1.2, first we shall prove the existence of the solution to HIB equation
(4.3). Finally, we shall prove the uniqueness of the solution to the HIB equation (4.3). To verify

this last part, we use Bony’s maximum principle [25], which quoted next.

Theorem 4.1 (Bony’s maximum principle, [25]). Let 2 be an open set in R% and let u € WP ().

loc

Then, if x is a point of local maximum of v and p > d, we have

liminfess Y ay;(y)diuly) <0,
m%Z@) july) <

where (a;;)Raxra IS a positive definite matrix a.e. and a;; € Ly, (Q).

Before proceeding to prove Theorem 1.2, we state without proof some auxiliary results. They
shall help us to obtain the existence of a convergent subsequence of u°, whose limit is the solution
to the HIB equation (4.3); see Lemma 4.6. The first can be seen in [29], and the last two in [1].

Recall that {f,},>1 is uniformly bounded, if there exists a positive constant M such that
SUP,>1 SUP,ex | f(7)] < M, and {f, }n>1 is equicontinuous, if for every ¢ > 0, there exists § > 0

such that | f,,(x) — f.(y)| < ¢, for all n > 1 whenever ||z — y|| < 4.

Theorem 4.2 (Arzela-Ascoli Theorem, [29], Thm. 7.25, p. 158). Let K C R? be compact and
let {fu}n>1 C CUK). If {fn}ns1 is uniformly bounded and equicontinuous, then there exists a

subsequence { f,,, }w>1 of { fu}n>1 which converges uniformly.

Theorem 4.3 (Reflexivity of LP(B, ), [1], Thm. 2.46, p. 49). The Banach space (L”(B,), ||-||L»(5,))
is reflexive if and only if 1 < p < co. Then, for any bounded sequence in (L*(B,),|| - ||L»(s,)) has
a weakly convergent subsequence, i.e., let { f,, }n>1 be a bounded sequence (L¥(B,),|| - ||Lr(B,))-
Then, there exist a subsequence { f,, }x>1 of { fu}n>1 and f € LP(B,) such that

fa.dpdz — | fodx, forany ¢ € L' (B,),

By By

1,1
where = + = = 1.
P + P
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Theorem 4.4 (Sobolev embedding theorem, [1], Thm. 4.12, p. 85). If p > d, then
d

W2P(B,) < C*(B,), witha/ =1 — —.
p

Moreover, there exists a positive constant C' = C(d, p,r) such that
||U|’clﬁ(BT) < CHUHWZP(BT), for all v € W?*?(B, ).

Having stated the auxiliary results, we can now proceed to prove Theorem 1.2, this proof will
be carried on in several lemmas. For that end we start by noticing that by Lemmas 3.16 and 3.21,

we obtain that there exists a constant Ko; > 0 independent of ¢, such that
HU‘SHCOJ(M) < Ko, forall e € (0, 1), 4.5)

Moreover, Proposition 2.15 and Lemmas 3.16, 3.21, 3.23-3.25, guarantee that for each B, C
Br(0) there exist positive constants K»g, Ko7 independent of & such that

||D2UEHLP(B[M) < K26, (46)

||u€||w2’1’(3ﬁr) < Koy,

foralle € (0,1), where 5 € (0,1) and 1 < p < oo fixed. Finally, if we take d < p < oo in (4.6),
then, from Theorem 4.4, we have that for each B, C Bg(0), there exists a positive constant Kog

independent of € such that

[l eror 75y < Kas, foralle € (0, 1), 4.7)

with 3 € (0,1) fixedand o/ =1 — %.
Recall that for each ¢ € (0,1), u° is the unique solution to the non-linear integro-differential
Dirichlet problem (3.21). As a consequence of Theorems 4.2-4.3 and (4.5)—(4.7), we obtain the

following key results.

Lemma 4.5. Let d < p < oo, B, C Bg(0) an open ball and € (0,1) fixed. There exist a

decreasing subsequence {c () },>1, with €.,y — 0, and u, € C%Y(Bgr(0)) N W??(Bg,) such that
- L—00

ussw  — ., in C'(Bg,),
SK(L)ﬁO

L0 — Ur; uniformly in Br(0), (4.8)
EK(L)—>

uss©  — ., weakly in W*?(Bg,).
EK(L)—>0
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Moreover, the following convergence also holds

/R* Eu®)(-+ z)v(dz) — E(u,)(- + 2)v(dz), uniformly in Bg(0). 4.9)

EN(L)*)O R*
Proof. Let d < p < oo, B, C Bg(0) an open ball and 5 € (0,1) fixed. Since the sequence
{u}ee(o,) satisfies (4.6), ie. [|u®[lw2r(p,) < Koz, by Theorem 4.3, there exist a decreasing
subsequence {e, }.>1, with e, — 0, and f, € LP(Bjg,), with a € D,,, and m € {0, 1,2}, such
- K—00
that

urodr — fa¢d, forany ¢ € L¥ (Bg,), (4.10)
B, ex—0 Bg,

where % + ﬁ = 1. Recall that D,, is the set of all multi-indices of order m. Observing that the

sequence {u" } > satisfies (4.7), i.e.,

uE*@HCl,ur(B—m) < Kog, for all k > 0, we obtain

|0 (z)| < Hus*‘Hcl,a/(ﬁ) < Kyg, forallk > 1, a € D,,, m € {0,1}, andz € Bg(0). (4.11)

Taking e > 0 and p < (K%m)l/a/, it follows that if ||z — y|| < p, with =,y € Bg,, then

0 () — 0= ()] < [ | ner gy 17— Il < e, 4.12)

forall k > 1, a € D,,, m € {0,1}. From (4.11) and (4.12), {9"u" },,>¢ is uniformly bounded
and equicontinuous, for all a € D,,, with m € {0, 1}, and hence Arzela-Ascoli Theorem, Theorem
4.2, implies that for each a € D,,, with m € {0, 1}, there exists a subsequence {9"u**® }, 1 C
{0%u®*} .1 such that

u=®  — I uniformly in Bg,,
er(t) 50

where fél) is a continuous function in Bigr; see, for instance, [29, Thorem 7.12]. We need to prove
that f{" is differentiable and ' f{") = f in Bg,. Define Py @ Bs, x (0,1) — Roas

F @+ he) — £ ()
h b

U0 (x + he;) — u0 (x)
h

gbf{(b) (‘,Ea h) - and ¢i (l’, h) =
withi € {1,...,d}. Hence,
S0 () = lim @'
Our (x) }ILILI(I) Grey (T, h). (4.13)

Since u*=) — f$" uniformly in Bj,, then

Kk(L)—00

w0 (z + hey) — £V (2 + hey)
h

w0 (z + he;) — ueeo (z) — (f§ (z + her) — f57(2)) ‘

w0 (z) — f3(x)
+ - 0

IN

— 0,
er(l) =0
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for each z € Bg, and h € (0, 1) such that z + he; € Bg(0). This implies that

¢y — ¢, uniformly, withi € {1,...,d}. 4.14)

K(1)—00

Then, (4.13), (4.14) and Theeorem 7.11 in [29], imply that

03" () = flzlg(l) ¢z, h) = lim O (z) = f forall z € Bg,.

()50 !

u€N<L)

O BRD) =
Ky, for all k(¢) > 1. Then, of a similar way than (4.11) and (4.12), we can verify that {u+® } is

Therefore 9! él) = 1(1) in Bg,. Now, the sequence {u~ } satisfies (4.5), i.e.,

uniformly bounded and equicontinuous in Bg(0). By Arzela-Ascoli Theorem, we obtain that there

exist a subsequence {u®1® },., ()1 of {u*®} and u, € C*'(Bg(0)) such that

u*s1  — g, uniformly in Bg(0).

a,il(t)a()

Since {u®1®}, ()>1 C {u™ O }oy>1 C {u*}.>1, we have that
fo=f" =u,and f; = f) = 8'u,, ae. in By, (4.15)
0 1 B
Finally, from (4.10), we have

*uFm© pdr  — fogpdz, forany ¢ € L7 (Bg,.), (4.16)

BBT' 6”2(’*)_)0 B[;T

where 1—17 + i = 1. Furthermore, by integration by parts, we get

/ PP*utrm© pdz = / ut109?pdx, for any ¢ € C2(Bg,). (4.17)
Bﬁr

BBT

Then, using (4.15), (4.16) and letting &, (,) — 0 in (4.17), we have
fuode = [ wdPoda, forany o € CH(By)
Bgr B,

which is the definition of weakly derivative of second order to u,, and hence 0;;u*=1» — .
Eri() ™

0;;u, weakly in LP(Bg,), where 0,;u, represents the second weakly derivative of u, with 7,5 €
{1,...,d}. Therefore

us=®  — wu,, in C'(Bg,),
EN(L)*)O

u**w  — wu,, uniformly in Bg(0),
EN(L)—>O

uss — wu,, weaklyin W??(Bg,).
En(/.)_)o
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Note that for each z € Bg(0), by Proposition 2.15, we have

|ZE(u10)(z) — T E(u,)(z)] < / |E(ut10) — u,)(x + 2)|v(dz)

< 2A40wp| U1 — || oo )

— 0, (4.18)

EK(L)*)O
and hence 7 E(u*<®) — . 7 E(u,), uniformly in Br(0). We conclude that there exist a de-
Cr1(0)7
creasing subsequence {e,(,},>1, With £,y — 0, and u, € C*'(Bg(0)) N W??(Bg,) satisfying
- L—>00
(4.8) and (4.9) ]

Lemma 4.6. Let d < p < oo. There exists a decreasing subsequence {em)}el, with €,,) — 0,

and u € C*'(Bg(0)) N WP (Bg(0)), such that

loc

(

Er(e) ] 1
u EK;)O u, mm CIOC(BR(O))7
TRAO) — U uniformly in Bg(0), (4.19)
EH,(L)_>
ussw  — u, weakly in Wi¥(Bg(0)).
EH(L)*)O

Moreover; the following convergence also holds

/R* E(um)(-+ z)v(dz) — E(u)(- + 2)v(dz), uniformly in Bg(0). (4.20)

Ex() 0 JRx

Proof. Letd < p < oo, € (0,1) and {r,, },>1 an increasing sequence of Ry = {r € R: r > 0}
such that Sr,, T R, when n — oo. This implies that Bg,, (0) T Br(0), when n — oco. Taking

n = 1, Lemma 4.5 implies that there exist a decreasing subsequence {c,, ()}, with €,,(,) — 0,
L—00

and u,, € C*'(Bg(0)) N W*?(Bg,,(0)) such that

(
utr1) — Uy in Cl(Bﬁrl (O))7
Enl(b)_ﬂ)

u*s1 0 — ., uniformly in Bg(0),
e,ﬂ(b)—m

um©  —s u,, weakly in W*?(Bg,, (0)).

€,€1(L)*>O

and

ZEwsm)(-+ 2)v(dz) — ZE(uq)(-+ 2)r(dz), uniformly in Bg(0).

EKI(L)—)O
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Now, taking n = 2 and using Lemma 4.5 over {u“1( },;, we extract a subsequence {&,,(,) },>1 of

{1 () }i>1 such that

R — Upy, N Cl(BﬁTQ(O))a
SNQ(L)*)O

u®x2® — u,,, uniformly in Bg(0),
EK,Q(L)_>0

ur2® _ Tio u,,, weakly in W??(Bg,,(0)).
k H,2 L

and
I E(u=2W)(-+ z)v(dz) — T E(uy,)(- + z)v(dz), uniformly in Bg(0).

EKQ(L>—>O

where u,, € C”!'(Bg(0)) N W??(Bg,,(0)). Continuing this process, it gives that there exists a
subsequence {&,,(,)} of {€x, ()} such that

urn () EKT;}—W Up,, in Cl (BﬁTn (O))7
ufn@  — w, ;. uniformly in Bg(0),
Emn(,/)—>0

ucrn)  — Uy, , Weakly in sz(Bﬁ?"n (O))

E,in(b)A)O

and
I E(un®) — T FE(u,,), uniformly in Bg(0).

€rn ()0

where u,, € C**(Bg(0)) "W>P(Bjg,, (0)). Since {u®n®},q is a subsequence of {u -1 } o,
it follows that

Up,, = Uy, _q, in B'r‘n—l (0) c Brn(O)

Now, taking u® of {un®},q, for each n > 1, the sequence {u* }, -, satisfies

. lirnHO un =, . in Bg, (o, foreachn’ > 1.
rn(n)

Defining

w=lm S,
€rn(n) —0

we observe that u € C*'(B(0)) N W2*(Bg(0)) and for any compact set ' C Bp(0), there exists

loc

Tnt € {Tn}n>1 such that K C B, ,(0) and

u=1u,,, inK.
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Hence, the sequence {u®<~( } satisfies

usn  —  w,in C(Bg(0)),
Ern(n) 0

ufen  — g, uniformly in Bg(0),
E,{n(n)—>0

ufrnm  — oy, weakly in WIQC;IC’(BR(O)).
Eron (n) 0

Since ufrn(n  — o U uniformly in Bg(0) and proceeding of a similar way than in (4.18) and
E"in(”)H

(4.20), we conclude (4.20). [ ]

4.1 Proof of Theorem 1.2

We proceed to show the existence and uniqueness to the solution of the HIB equation (4.3).

Remark 4.7. Note if [, fodr = [, gpda, for any non-negative function ¢ in CZ°(B,) then f = g
almost everywhere in B,. The same way we have that if || g, Jodz < i) , 9¢dz, for any non-

negative function ¢ in C2°(B,.) then f < g almost everywhere in B,. ]

4.1.1 Ecxistence

Proof of Theorem 1.2. Existence. Let d < p < oo. From Lemma 4.6, we know that there exist a
decreasing subsequence {e,(, },>1, With £,y — 0, and u € C**(Bg(0)) N W (Bg(0)) satisfy-
- L—> 00

ing (4.19) and (4.20). Since for each e,(,) € (0, 1), the function u*+® is the unique solution of the
NIDD problem (3.21), we get

quE0 (z) — L'ut0 () — T E(u®w)(x) < h(x), in Bg(0). 4.21)
Then, for each B, C Br(0) and § € (0, 1) fixed, we get

/ (qusr — L'uf0 — T B(uf©))pdr < / hodz, (4.22)
Bg,

T

for each non-negative function ¢ in C3°(Bg,). Letting ¢*®) — 0 in (4.22), from Lemma 4.6, we

obtain

/ (u— L'u—TE(u)¢dr < / hodz,
Bg,

BBT

for each non-negative function ¢ in C;°(Bg, ). By Remark 4.7, it follows that

qu(z) — L'u(z) — T E(u)(z) < h(z), ae. in B(0). (4.23)



4.1. PROOF. EXISTENCE AND UNIQUENESS 81

Now, since 1. (|| D' u®+® (x)|?) is locally uniform bounded (Lemma 3.23), independent of ¢,
we have

|| D' u(z)||* < 1, in Bgr(0). (4.24)

Suppose that || D' u(2*)||?> < 1, for some 2* € Bx(0). Then, by the continuity of D' u, there exists

an small neighborhood V,- of z* such that
|| D' u(x)|]* < 1, forall z € V,-.

Since D! ufx  — . D' u uniformly in V,-, we obtain that there exists () € (0, 1) such that
EH,(L)_)

|| D w0 (2)|? < 1, forall z € V- and £,y < Ex(0)-
Then, from (3.21) and the definition of )., it follows that
qu0 (x) — L uf= () = Z E(u*0)(x + 2z)v(dz) = h(x),
forall z € V, and ,,(,) < €,(,,). Then,

/ ((us*® — L'us0 — T E(uf®))pde = / hodz, (4.25)
Ve

i V=

for each non-negative function ¢ in C°(Bg,). Letting ) — 0 in (4.25), from Lemma 4.6, we

J

¥

obtain

((u—L'uv—TE(u))pdr = / hodz,

Vm*

for each non-negative function ¢ in C;°(Bg,). By Remark 4.7, it yields

qu(z) — L'u(z) — T E(u)(z) = h(z), ae. in V.. (4.26)
Finally, since v+ (x) = 0 on 0Bg(0) and u*~® — U uniformly in Bg(0), it yields
Er() ™
u(z) =0, on 0Bg(0). (4.27)

From (4.23)—(4.27), we conclude that u is a solution to the HJB equation (4.3) a.e. in Bg(0). ]

4.1.2 Uniqueness

Proof of Theorem 1.2. Uniqueness. To show the uniqueness of the HIB equation (4.3), we shall
use the HIB equation (4.4) which is equivalent to it. Let d < p < oo. Suppose that there exist
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uy,uy € C¥H(Bg(0)) N WP (Bg(0)) two solutions to the HIB equation (4.4). Let z* € Bg(0) be

loc

the point where u; — s attains its maximum. If z* € dBg(0), it is easy to see
(ur — u2)(z) < (w1 — ug)(x*) = 0in Bg(0). (4.28)

If x* € Bgr(0), we shall prove (4.28) by contradiction. Suppose (u; —usz)(x*) > 0. For p > 0 small
enough, the function (1 — p)u; —us is positive at some point of Br(0), with ((1—p)us —us)(z) =0
on 0Br(0), and hence that ((1 — p)u; — ug)(x}) > 0, where 27 € Bg(0) is the point where

(1 — p)u; — uy attains its maximum. Besides, we have
D'((1 = p)ur — uz)(27) = 0,
(1 = p)uy —ug)(xy + 2) < ((1 — p)ug — ug)(xy), forall z7 + 2z € Br(0).
Since ((1 — p)ug — ug)(x] + 2) < ((1 — p)us — ug)(x}) for all 7 + z € Bg(0), it follows that
0>7 E((1—p)uy — us)(x})
(1= pus —ug) (2] + 2) = (1 = pJur = ua)(27))Lpp(0) (27 + 2)v(d2)
R*

+ /*(E((l = pJur = ug)(7 + 2) = (1 = pJur — up)(7)) L (21 + 2)v(d2),

with B’ = BR+%(O) \ Bg(0). Since D*((1 — p)uy — up)(z}) = (z1)|] < 1andp >0, we

get that
|| DY ug ()] = (1 = p)|| D g (23)]] < 1.

This implies that there exists V,» a neighborhood of ] such that

qua(z) — Lus(z) — T E(ug)(z) =

, forall z € V,».
qui(z) — Luy(z) =T E(w)(z) < h(z),

Then,

a(1 = p)us — us)() — L((1 = pus — uz)(x) — T E((1 = p)us — us)(x) < —ph(a),
for all x € V,+, and hence,

Z% plur — u2)(x) = q((1 — p)ur — uz)(x)

~ T B((1 — p)ur — uz)(w) — {(D'(1 = p)ur — uz)(x),7) + ph(a),
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for all x € V,+. Using Bony’s maximum principle; see Theorem 4.1, it yields

0> linii_rgfess % Zaijafj((l — p)up — uz)(x)
ij
> g((1 = pur — uz)(2}) = T B((1 — p)us — up)(a7) + ph(z7),

which is a contradiction, since ((1 — p)u; — uo)(x}) > 0 implies that

a((1 = p)ur —ug)(27) = T B((1 — p)us — uz)(a7) + ph(ai) > 0.
Therefore, we have

(ur —ug)(z) < (ug —ug)(x}) <0, forall z € Bg(0).

Taking us — u; and proceeding of the similar way as before, it follows that

(ug —up)(x) < (ug —uy)(x3) <0, forall x € Bg(0),

and hence we conclude that the solution u to the HIB equation (4.3) is unique. [ |






Conclusions and some open problems

Let us start by reviewing the main results in the thesis and the techniques used, so that later we
point towards which directions our results can be extend and discuss related problems. Under the

hypotheses (H1)—(H4) given in pages 8 and 9, it was shown that the solution u to the HIB equation

(4.3) there exists in C*'(Bz(0)) N W (Bg(0)) and this is unique, if d < p < oo; see Chapter 4.
Recall that R > 0 is fixed, and the linear operator I"" that appears in the HIB equation (4.3) is an
elliptic integro-differential operator given in (4.2), where the principal ingredients of this operator
are the integral operator Z and the continuous linear operator E, which is defined in (2.36).

In order to obtain the existence and regularity of the solution u to the HIB equation (4.3), first

we had to verify that the value function V¢(-; w) related with the solution #°(-; w) to the non-linear

Dirichlet problem (3.5) is in C**(Bgr(0)) C C°(Bg(0)) see Lemma 3.5, and it satisfies that if
wy, wy € C°(Bg(0)), then

. . 240
(IVECswi) = VG w2)lleo@my) < 7”“11 — walleo Br));

see Lemma 3.6. Then, defining the mapping 7. : C°(Bg(0)) — C°(Bg(0)) as T.(w) = V(- w),

for each w € C°(Bg(0)), we verified that T, is a contraction mapping in the Banach space
(CO(BR(0)), || - [|co (Bnoy))» and hence, using contraction point fixed Theorem; see Theorem 3.1,
we solved the NIDD problem (3.21), guaranteeing that its solution u € C**(Bg(0)) is unique, for
eache € (0, 1); see Theorem 3.8.

Note that to accomplish this step, it has been fundamental to transform the NIDD problem
(3.21) in a classic non-linear Dirichlet problem, i.e. we fixed the integral part of the operator I"', to
guarantee the existence of its unique solution in C** (M) Also, it has been very important to
have a very good understanding of the continuous linear operator £ defined in (2.36), which plays
a crucial role in the definition of the non-linear Dirichlet problems (3.5) and (3.21), and to establish
that their solutions belong to C**(Bg(0)).

After completing the above described step, for each ¢ € (0, 1), we verified, by probabilistic,

85
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integro-differential and partial differential methods, that the solution u° to the NIDD problem (3.21)
is positive and bounded by a positive constant independent of ¢ in Bg(0); see Proposition 3.13 and
Lemma 3.16. We succeeded in proving that the norm of its gradient is bounded by a constant
independent of ¢ in Bg(0), see Lemma 3.21, and evaluating the matrix of its second derivatives in
the norm of the Sobolev space W:*(Bz(0)), with d < p < 0o, we obtained that the this estimation

is locally bounded by a constant independent of ¢; see Lemma 3.24. Using these, we established

the convergence of a subsequence of {u°}.c (1) in C**(Br(0)) N W}2(Bg(0)), with d < p < oo;
see Lemma 4.6. Taking {u®® }()>; and u as in Lemma 4.6, and using that 1. (|| D" u*(-)|[?) is
locally bounded by a constant independent of € in Bz (0), we obtained that u is the solution to the
HIJB equation (4.3), and finally, by Bony’s maximum principle, see Theorem 4.1, it is shown that
this solution is unique.

The closer to our work is to Menaldi and Robin [26]. They are interested in to study a singular
control problem for a multidimensional Gaussian-Poisson process, and to establish a relationship
between the value function to this problem and the solution a HIB equation. The multidimensional
Gaussian-Poisson process is a Lévy process where it only has a d-dimensional standard Brownian

motion and a jump process which Lévy measure v satisfies
/ 2][Pv(dz) < oo, forall p > 2.
R4\ {0}

Although the proofs of their principal results are not provided in detail, and they left these to future
works, they give enough arguments to show that the solution to the HIB equation associated with
the value function to the singular control problem is in the classic sense. Besides that our problem
is also related to a singular control problem, there are several differences between this problem and
ours. Our problem is related to an optimal stochastic control problem where the controlled process
is a d-dimensional Lévy process as in (1.6).

Now, there are many lines of research in the theory of the optimal control and integro-differen-
tial equations that can be explored to extend the results obtained in the present work, we will next
describe some of them.

First, observe that the solution v to the HIB equation (4.3) depends on the constants p and b.
An improvement to this result would establish that the solution « to the HIB equation (4.3) belongs

to C™(Bx(0)) N VVIZOCC>C (Bg(0)). For this, we need to show that for each open ball B, C Bg(0), it
satisfies || D? u?|[y2.(p,) < C, for some constant C' independent of &, where v is the solution to
the NIDD problem (3.21).

Second, observe that the HJB equation (4.3) is stated in terms of the extension operator E, and
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it would be suitable to remove this from the equation to have a standard formulation of the HIB
equation. For that end one should make b go to zero, which according to Remark 2.21 is equivalent
to make N tend to infinity. For that end one should prove that the solution u to the HJB equation
(4.3), their first and weakly second derivatives are uniformly bounded with respect to b, we could
pass the limit in (4.3) when b — 0, and guarantee the existence and regularity of the solution to the

following HIB equation
max{q'u(x) — F,u(x) — h(z), || D! u(z)||* =1} =0, in Bg(0),
u(z) =0, outside Bg(0),

where

*

/ 1 ~
Mu(z) = 5 tr(o D? u(z)) + (D' u(x),7) + / (u(x + z))v(dz). (4.29)
Another very important related problem is the HIB equation (1.11) defined in R, i.e.
max{qu(z) — I'u(z) — h(z),|| D u(z)|[* — 1} = 0, in RY, (4.30)

with T as in (4.29). In order to obtain the existence and regularity of the solution to this HIB
equation, we need to pass to limits in a strong sense in (3.21). For this is necessary to find bounds
of u=f, D' 4= and D? 4> that are independent of (¢, R), where u* is the solution to the NIDD
problem (3.21). Now, in Lemma 3.19, it was shown that || D* u®#(-)|| is bounded by a positive
constant on 0Bg(0). This constant is independent of & but grows exponentially fast with R. This
is not suitable as it suggests that a bound function for || D' u#(-)|| in B(0) is of the exponential
type, and hence it possesses technical issues when estimating first and second derivatives of this
bound function. In similar studies in the literature a polynomial bound has been obtained, here
a bound of polynomial type with degree two would be enough to take limits in a strong sense in
(3.21), which would allow to establish the existence of the HIB equation (4.30).

Finally, other topic of interest is when the integral operator of I, given in (1.2), is taken as
TBu(w) = | (B +2) = u(w) = (D u(e), 2L a1 w(d),
and v is a Lévy measure in R* that satisfies
/ (LA ||2]2)v(dz) < oo.
Then, the HIB equation for this probllpf:m is
max{qu(z) — Tyu(z) — h(z), || D' u(z)||* — 1} =0, in Bgr(0),
u(z) =0, on 0Bgr(0),

(4.31)
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where
Cou(z):= % tr(o D* u(x)) + (D' u(x),7)
+ [ (B +2) = (o) - (D' ula),2)ojeo)od).

The HIB equation (4.31) is of great interest because it can be related with an optimal stochastic
control problem where the state process is a controlled d-dimensional Lévy process, i.e. a cadlag

rocess in R?, with independent and stationary increments [30].
p Y y
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