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Preliminaries: Notation and definitions

In this small chapter, we introduce some spaces of functions and basic definitions that will be

used in this thesis. These functions are defined on an open set O ⊆ d, with d ≥ 2, where the

complement, closure, interior and boundary of O are denoted by Oc, O, intO and ∂O, respectively.

We recall that ||·|| is the Euclidean norm and �·, ·� is the inner product. When σ = (σij)d×d ∈ d×d,

we denote tr(·) as the trace of the matrix σ.

An open ball with radius r > 0 and center in an arbitrary x ∈ d is defined as Br. In case that

the center is fixed, we denote the open ball with radius r > 0 and center x ∈ d as Br(x). Let

O ⊆ d be an open set.

0.1 Spaces of continuous functions

Let C0
(O) denote the space of real valued continuous functions on O. The set Ck

(O) consists of

real valued functions on O that are k-fold differentiable, i.e. ∂af ∈ C
0
(O) for every a ∈ Dm,

0 ≤ m ≤ k, where Dm is the set of all multi-indices of order m. For instance, if k = 2, then

∂1f ∈ {∂if : i = 1, . . . , d} and ∂2f ∈ {∂2
ijf : i, j = 1, . . . , d}. Here D

1
u = (∂1u, . . . , ∂du),

D
2
u = (∂2

iju)d×d. We define C
∞
(O) =

�∞
k=0 C

k
(O). The sets C

k
c(O) and C

∞
c (O) consist of

functions in C
k
(O) and C

∞
(O), whose support is compact and contained in O, respectively. The

following result gives an extension for uniformly continuous functions defined on open sets, which

proof is in Section 0.3.

Proposition 0.1. If f : O −→ is uniformly continuous function, then f has a unique extension

to a continuous function f : O −→ .

If f ∈ C
0
(O) is bounded and uniformly continuous on O, by Proposition 0.1, it follows that it

possesses a unique bounded continuous extension to O. The set Ck
(O) is defined as the set of real

valued functions f ∈ C
k
(O) for which ∂af is bounded and uniformly continuous on O for every

1
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a ∈ Dm, with 0 ≤ m ≤ k. This space is equipped with the following norm

||f ||Ck(O) =

k�

m=0

�

a∈Dm

||∂a
f ||C0(O) =

k�

m=0

�

a∈Dm

sup
x∈O

{|∂a
f(x)|},

where
�

a∈Dm
denotes summation over all possible m-fold derivatives of f . For each D ⊆ d,

f : D −→ and 0 < α ≤ 1, the operator [ · ]C0,α(D) is defined as

[f ]C0,α(D) = sup
x,y∈D
x �=y

�
|f(x)− f(y)|
||x− y||α

�
. (0.1)

Next we define different spaces of Hölder continuous functions that will be used in this work. Let

O ⊆ d be an open set, the set C0,α
loc (O) is that of all functions in C

0
(O) such that [f ]C0,α(K) <

∞, for every compact set K ⊆ O. The set C0,α
(O) is the set of all functions f in C

0
(O) that

||f ||C0,α(O) = ||f ||C0(O) + [f ]C0,α(O) < ∞. Define C
k,α
loc (O) as the set of functions in C

k
(O) that

satisfy [∂af ]C0,α(K) < ∞, for every compact set K ⊆ O and every a ∈ Dm, with 0 ≤ m ≤ k.

The set Ck,α
(O) denotes the set of all functions in C

k
(O) such that [∂af ]C0,α(O) < ∞, for every

a ∈ Dm, with 0 ≤ m ≤ k. This set is equipped with the following norm

||f ||Ck,α(O) = ||f ||Ck(O) +

k�

m=0

�

a∈Dm

[∂
a
f ]C0,α(O). (0.2)

Taking k = 2 in (0.2), the norm for the space C
2,α

(O) takes the following form

||f ||Ck,α(O) = ||f ||C0,α(O) +

n�

i=1

||∂if ||C0,α(O) +

n�

i,j=1

||∂2
ijf ||C0,α(O).

The set Ck,α
c (O) consists of all functions in C

k,α
(O) whose support is compact and contained in

O. This space is equipped with the norm || · ||Ck,α(O). We understand C
k,α

( d) as Ck,α
( d), when

O = d, in the sense that [∂af ]C0,α( d) < ∞, for every a ∈ Dm, with 0 ≤ m ≤ k.

0.2 Lp
and Sobolev spaces

As usual, Lp
(O) with 1 ≤ p < ∞, denotes the class of real valued functions on O with finite norm

||f ||pLp(O) =

�

O
|f |pdx < ∞,
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where dx denotes the Lebesgue measure. Also, let Lp
loc(O) consist of functions whose L

p-norm

is finite on any compact subset of O. Define the Sobolev space W
k,p
(O) as the class of functions

f ∈ L
p
(O) with weak or distributional partial derivatives ∂af , see [1, p. 22], and with finite norm

||f ||p
Wk,p(O)

=

k�

m=0

�

a∈Dm

||∂a
f ||pLp(O), for all f ∈ W

k,p
(O). (0.3)

The space W
k,p
loc(O) consists of functions whose W

k,p-norm is finite on any compact subset of O.

When p = ∞, the Sobolev and Lipschitz spaces are related. In particular, Wk,∞
loc (O) = C

k−1,1
(O)

for an arbitrary subset O ⊆ d, and W
k,∞

(O) = C
k−1,1

(O) for a sufficiently smooth domain O,

when it is Lipschitz; see Definition 2.1.

0.3 Proof of Proposition 0.1

In this section we shall give a proof of Proposition 0.1.

Proof. Let f : O −→ be a uniformly continuous function and x ∈ ∂O. There exists a sequence

{xn}n≥1 ⊂ O such that lim
n→∞

xn = x. Thus, {xn}n≥1 is a Cauchy sequence, i.e. for all ρ > 0 there

exists a positive integer N ,

||xn − xm|| ≤ ρ, for all n,m ≥ N.

Since f is uniformly continuous, we have that for each � > 0, there exists a positive integer N ,

|f(xn)− f(xm)| ≤ �, for all n,m ≥ N.

Then, {f(xn)}n≥1 is a Cauchy sequence in . Therefore, by completeness in , f(x):= lim
n→∞

f(xn)

exists. If {yn} ⊂ O is another sequence that converges to x, and proceeding the same way as for

f(x), we can see that f 1(x):= lim
n→∞

f(yn) exists. Now, we shall verify that f(x) = f 1(x), showing

that f(x) is well defined. Since lim
n→∞

xn = x = lim
n→∞

yn, we get that

||xn − yn|| ≤ ||xn + x||+ ||x− yn|| −→
n→∞

0

Then, for each ρ > 0, there exists a positive integer N1,

||xn − yn|| ≤ ρ, for all n ≥ N1. (0.4)

By uniform continuity of f , it follows

|f(xn)− f(yn)| ≤
�

3
, for all n ≥ N1, (0.5)
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for each � > 0. We know that there exist positive integers N2 and N3 such that





|f(x)− f(xn)| ≤
�

3
for all n ≥ N2,

|f 1(x)− f(yn)| ≤
�

3
for all n ≥ N3,

(0.6)

for each � > 0. Taking N = max{N1, N2, N3} and from (0.5)–(0.6), it implies

|f(x)− f 1(x)| ≤ |f(x)− f(xn)|+ |f(yn)− f 1(x)|+ |f(xn)− f(yn)| ≤ �,

for all n ≥ N . Thus, f(x) = f 1(x). Defining f : O −→ as

f(x) =






f(x), if x ∈ O,

lim
n→∞

f(xn), if x ∈ O and {xn}n≥1 ⊂ O such that lim
n→∞

xn = x,

we now show that f is a continuous function. In case that x ∈ O, this is strightforward. When

x ∈ ∂O, we have two cases,

lim
yn −→

n→∞
x

{yn}n≥1⊂O

f(yn) = f(x), and lim
yn −→

n→∞
x

{yn}n≥1⊂∂O

f(yn) = f(x).

Let {yn}n≥1 ⊂ O be a sequence such that lim
n→∞

yn = x. Since {xn}n≥1 is a sequence that converges

to x, it yields (0.4). Then, by uniform continuity of f , it follows that for each � > 0, there exists a

positive integer N1 such that

|f(xn)− f(yn)| ≤
�

2
, for all n ≥ N1.

By definition of f(x), there exists N2 such that

|f(x)− f(xn)| ≤
�

2
, for all n ≥ N2.

Then, taking N = max{N1, N2}, we conclude

|f(x)− f(yn)| ≤ |f(x)− f(xn)|+ |f(xn)− f(yn)| ≤ �, for all n ≥ N .

Thus,

lim
yn −→

n→∞
x

{yn}n≥1⊂O

f(yn) = f(x).

Let {yn}n≥1 ⊂ ∂O be a sequence such that lim
n→∞

yn = x. This means that for any ρ > 0, there

exists a positive integer N1,

||x− yn|| ≤
ρ

3
, for all n ≥ N1. (0.7)



0.3. PROOF OF PROPOSITION 0.1 5

Since 




f(x) = lim
n→∞

f(xn),

f(yn) = lim
m→∞

f(xn,m), for all n ≥ 1,

with {xn}n≥1, {xn,m}m≥1 ⊂ O sequences such that





lim
n→∞

xn = x,

lim
m→∞

xn,m = yn, for all n ≥ 1,

we have that for � > 0 and ρ > 0 given in (0.7), there exists a positive integer N2 that satisfies





|f(x)− f(xn)| ≤
�

3
,

||xn − x|| ≤ ρ

3
,

(0.8)

for all n ≥ N2, and for each n ≥ N1, there exists a positive integer Nn such that





|f(yn)− f(xn,Nn)| ≤
�

3
,

||xn,Nn − yn|| ≤
ρ

3
.

(0.9)

Then, taking N = max{N1, N2}, we get

||xn − xn,Nn || ≤ ||xn − x||+ ||x− yn||+ ||yn − xn,Nn || ≤ ρ, for all n ≥ N .

By uniformly continuous of f , it follows for ε > 0 given in (0.8) and (0.9), that

|f(xn)− f(xn,Nn)| ≤
�

3
, for all n ≥ N. (0.10)

From (0.8)–(0.10), we conclude

|f(x)− f(yn)| ≤ |f(x)− f(xn)|+ |f(xn)− f(xn,Nn)|+ |f(xn,Nn)− f(yn)| ≤ �,

for all n ≥ N . Then

lim
yn −→

n→∞
x

{yn}n≥1⊂∂O

f(yn) = f(x).

Therefore, it yields that f is a continuous function in O. Finally, we shall prove uniqueness of

the extension f . Suppose f and f 1 are two continuous extensions of f from O to O. If x ∈ O,

it is clear from the definition of extension that f(x) = f(x) = f 1(x). If x ∈ ∂O, there exists

{xn}n≥1 ⊂ O a sequence that converges to x. Then

f(x) = lim
n→∞

f(xn) = f 1(x).

Thus, f is the unique continuous extension of f from O to O.





Chapter 1

Introduction and main results

In this thesis, we study a Hamilton-Jacobi-Bellman (HJB) equation in the domain BR(0), with

R > 0, whose operator associated is an elliptic integro-differential operator. The HJB equation

analyzed in this work is closely related to singular stochastic control problems, where the controlled

process is a d-dimensional Lévy process, whose components are a Brownian motion with drift and

a compound Poisson process; see (1.6). We recall that a Lévy process is a càdlàg process with

independent and stationary increments [30]. Our main goal is to establish the existence, uniqueness

and regularity of the solution u to the HJB equation




max{qu(x)− Γu(x)− h(x), ||D1

u(x)||2 − 1} = 0, a.e. in BR(0),

u(x) = 0, on ∂BR(0),

(1.1)

where BR(0) ⊂ d, with R > 0 and d ≥ 2 fixed. The components of this equation are:

(i) A constant q > 0 and a positive function h : BR(0) −→ .

(ii) An integro-differential operator Γ which has two parts, an elliptic partial differential operator

and an integral operator, i.e.

Γu(x):=
1

2
tr(σD

2
u(x)) + �D1

u(x), γ�

+

�

∗
(E(u)(x+ z)− u(x)− �D1

u(x), z�)ν(dz), (1.2)

with x ∈ BR(0). Here γ = (γ1, . . . , γd) ∈ d, σ = (σij)d×d ∈ d×d is a positive definite

matrix, and ν is a finite non-trivial Lévy measure in ∗:= d\{0} such that
�

∗ ||z||ν(dz) <
∞. The operator E : C

k,α
(BR(0)) −→ C

k,α
c ( d), with k ≥ 0 and α ∈ [0, 1], is a continuous

7



8 INTRODUCTION AND MAIN RESULTS

linear operator that has the following properties: there exist constants C = C(k,R) > 0 and

b > 0 such that for every w ∈ C
k,α

(BR(0)),





E(w)
��
BR(0)

= w,

supp[E(w)] is compact,

supp[E(w)] ⊂ BR+ b
2
(0),

||E(w)||Ck,α( d) ≤ C||w||Ck,α(BR(0)),

(1.3)

where supp[E(w)]:= {x ∈ d : E(w)(x) �= 0}. The norm || · ||Ck,α(·) is as in (0.2).

Since
�

∗ ||z||ν(dz) < ∞ and the continuous linear operator E satisfies (1.3), we see that Γ, given

in (1.2), can be written as

Γu(x) =
1

2
tr(σD

2
u(x)) + �D1

u(x), �γ�+
�

∗
(E(u)(x+ z)− u(x))ν(dz), (1.4)

for all x ∈ BR(0), where

�γ:= γ −
�

∗
zν(dz). (1.5)

Note that the operator Γ as in (1.4) is the infinitesimal generator of the d-dimensional Lévy process

Y = {Yt : t ≥ 0} given by

Yt = Wt + �γt+
�

[0,t]

�

∗
z ϑ(ds× dz), for all t ≥ 0, (1.6)

where W = {Wt : t ≥ 0} is a d-dimensional Brownian motion with Gaussian covariance matrix σ,

�γ ∈ d as in (1.5), and ϑ is a Poisson random measure in [0,∞) × ∗ equipped of the σ-algebra

B generated by B[0,∞)× B( ∗), with an intensity measure dt× ν(dz). The last part on the right

side in (1.6) is a compound Poisson process with rate ν( ∗) and the distribution of its jumps is

ν( ∗)−1ν(dz). Recall that the process Y has independent and stationary increments, whose paths

are right continuous with left limits, and Y0 = 0 almost surely. For background of Lévy processes

we refer to [30], which will be our main reference.

The following hypotheses will be assumed throughout the thesis.

Hypotheses

(H1) The function h ∈ C
2
(BR(0)) is positive. Then ||h||C2(BR(0)) ≤ C0, for some constant C0 > 0.

(H2) The Lévy measure ν satisfies ν(dz) = κ(z)dz, with κ ∈ C
0,α

( ∗), for some α ∈ (0, 1) fixed,

ν0:= ν( ∗) < ∞ and ν1:=
�

∗ ||z||ν(dz) < ∞, where ∗ = d \ {0}.
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(H3) There exist real numbers 0 < θ ≤ Θ such that the coefficients of the differential part of Γ

satisfy

θ||ζ||2 ≤ �σζ, ζ� ≤ Θ||ζ||2, for all ζ ∈ d
,

and define Λ := ||γ||.

(H4) The discount parameter q is large enough such that

2A0

�

B
R+ b

2
(0)

ν(dz) < q + ν0 =:q
�
,

where A0 ≈ 1.03727 which is given in (2.25) and b is a constant small enough but fixed.

The paper of Soner and Shreve [32] has been one of the main sources of inspiration of this

work. In that paper the authors consider the following HJB equation

max{u−∆u− h, ||D1
u||2 − 1} = 0, (1.7)

where ∆u: = ∂2
11u + ∂2

22u, h ∈ C
2,1
loc(

d) is an strictly convex function and there exist positive

constants C0 and c0 such that





0 = h(0) ≤ h(x) ≤ C0(1 + ||x||2),

||D1
h(x)|| ≤ C0(1 + h(x)),

c0||y||2 ≤ �D2
h(x)y, y� ≤ C0||y||2(1 + h(x)),

for all x, y ∈ 2. Soner and Shreve [32] proved that there exists a unique solution u ∈ C
2,α

( 2) to

the problem (1.7), which is a non-negative convex function. Also, they showed that the value func-

tion of a stochastic control problem, where the controlled process is a two-dimensional standard

Brownian motion, satisfies the HJB equation (1.7). When the controlled process is a d-dimensional

standard Brownian motion, with d > 2, Kruk [21] showed that the value function of this stochas-

tic control problem is related to the solution of the HJB equation (1.7), with h : d −→ and

∆u: =
�d

i=1 ∂
2
iiu. In this case, the solution to the problem (1.7) is in W

2,∞
loc ( d); see [27]. The

d-dimensional standard Brownian motion is a particular example of continuous Lévy process. In

our setting the controlled process is allowed to be a more general d-dimensional Lévy process, it

has a continuous component given by a Brownian motion with drift and a component with jumps

given by a compound Poisson process, whose jumps occur at exponential times with parameters

ν( d \ {0}) and jump sizes distributed as ν( d \ {0})−1ν(dz). This makes that our HJB equation,
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given in (1.1), differs from (1.7) by an integral term coming from the compound Poisson process in

the controlled process, which is naturally related to the integral term in its infinitesimal generator,

given by (1.4).

Recently, Davis et. al. [6], Bayraktar et. al. [2] and Menaldi and Robin [26] studied a class

of HJB equations in d, with an integro-differential operator. The first two works are interested in

studying regularity properties of the value function for an infinite horizon discounted cost impulse

control problem, where the controlled process is a non-degenerate multidimensional jump diffusion

with infinite activity. By probabilistic, partial differential and viscosity methods, they proved that

this value function belongs to W
2,p
loc(

d), and it is associated to a HJB equation. Davis et. al. [6]

study this problem when the jump process has finite variation, i.e. integro-differential operator of

order [0, 1], and later Bayraktar et. al. [2] generalizes this work, when the jump process has infinite

variation, i.e. integro-differential operator of order (1, 2].

In our case, we consider a HJB equation with constant coefficients, and ν as a finite non-trivial

Lévy measure that satisfies (H2). The existence of the solution u to the HJB equation (1.1) is a

strong sense, i.e., a strong solution of the equation

max{(qu(x)− Γu(x)− h(x), ||D1
u(x)||2 − 1} = 0, in BR(0), (1.8)

is a twice weakly differentiable function on BR(0) that satisfies (1.8) almost everywhere in BR(0).

Under the assumptions (H1)–(H4), the main result obtained in this thesis is the following.

Theorem 1.1. If d < p < ∞, there exists a unique nonnegative strong solution u ∈ C
0,1
(BR(0))∩

W
2,p
loc(BR(0)) to the HJB equation





max{qu(x)− Γu(x)− h(x), ||D1

u(x)||2 − 1} = 0, a.e. in BR(0),

u(x) = 0, on ∂BR(0).

It is worth observing that the solution obtained in this thesis is in a strong sense which should

be contrasted with recent results in the topic, where the solutions are established in the viscosity

sense. This problem has only been studied in the case that Γ is an elliptic differential operator; see,

e.g. [9, 18, 32, 27, 21, 17]. We establish our main result; Theorem 1.1, by probabilistic, integro-

differential and PDE classical methods, which are inspired by Evans [9], Lenhart [23], Gimbert and

Lions [14], Soner and Shreve [32], Garroni and Menaldi [12] and Hynd [17].

The closest to our work is the paper by Menaldi and Robin [26]. They study a singular control

problem for a multidimensional Gaussian-Poisson process, and establish a relationship between the
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value function to this problem and the solution of the corresponding HJB equation. The multidi-

mensional Gaussian-Poisson process is a Lévy process where it only has a d-dimensional standard

Brownian motion and a jump process whose Lévy measure ν satisfies
�

∗ ||z||pν(dz) < ∞, for all

p ≥ 2. Although the proofs of their principal results are not provided in detail, and they left these to

future works, they give enough arguments to show that the solution to the HJB equation associated

with the value function to the singular control problem is in the classical sense.

To guarantee the existence and regularity of the HJB equation (1.1), first we have to analyze

the existence, regularity and uniqueness of the solution uε to the non-linear integro-differential

Dirichlet (NIDD) problem





quε(x)− Γuε(x) + ψε(||D1

uε(x)||2) = h(x), in BR(0),

uε(x) = 0, on ∂BR(0);

(1.9)

see Theorem 1.3. The penalizing function ψε : −→ , with ε ∈ (0, 1), is defined by

ψε(r):= ψ

�
r − 1

ε

�
, for all r ∈ , (1.10)

with ψ ∈ C
∞
( ) such that






ψ(r) = 0, for all r ≤ 0,

ψ(r) > 0, for all r > 0,

ψ(r) = r − 1, for all r ≥ 2,

ψ�(r) ≥ 0, ψ��(r) ≥ 0, for all r ∈ .

The penalty method used in the NIDD problem (1.9), was introduced by L. C. Evans to establish

existence and regularity of solutions to second order elliptic equations with gradient constraints [9].

This method has also been used in other works, like [18, 32, 16, 17]. Deducing uniform estimates

of the solutions to the NIDD problem (1.9) that allow us to pass to the limit as ε → 0 in a weak

sense in (1.9), it is obtained the existence and regularity of the solution to the HJB equation (1.1).

Although the NIDD problem (1.9) is a tool to guarantee the existence of the HJB equation (1.1),

this turns out to be an independent problem of great interest because it can be related with optimal

stochastic control problems where the state process is a controlled d-dimensional Lévy process as

in (1.6). In this work the optimal stochastic control problem related to the HJB equation (1.1) is not

developed, albeit we analyze it for the NIDD problem (1.9); see Section 1.2.
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Previous to this work, Bony [4], Bensoussan and Lions [3], Lenhart [23] and [24], Gimbert and

Lions [14] and Garroni and Menaldi [12], among others, studied the existence, uniqueness and reg-

ularity of the solutions to the linear Dirichlet problem with an integro-differential operator similar to

(1.2), obtaining results in the spaces W2,p and W
1,∞ ∩W

2,p
loc, respectively. We note that the NIDD

problem (1.9) is more general than the linear Dirichlet problem studied in the works mentioned

above, in the sense that our problem has a non-linear part that is determined by ψε(||D1
uε(·)).

Also, we can also highlight that for each ε ∈ (0, 1), the solution uε to the NIDD problem (1.9) is in

C
3,α

(BR(0)); see Lemma 3.9.

The integral part of the operator Γ given in (1.2) has an important component, this is the con-

tinuous linear operator E. The reason for introducing the operator E is that the integral part of

Γ is an operator defined in d, i.e. when u : d −→ the integral operator is given by
�

∗(u(x + z) − u(x) − �D1
u(x), z�ν(dz), and hence we can see that it is not well defined if

the domain of a function u is restricted to a bounded set. For this reason, it is required that E :

C
k,α

(BR(0)) −→ C
k,α
c ( d), be a continuous linear operator that satisfies the properties described

in (1.3). Using this argument the integral operator
�

∗(E(u)(x + z) − u(x) − �D1
u(x), z�)ν(dz)

is well defined and hence the HJB equation (1.1) is also well defined. From (1.3), we know that

supp[E(u)] ⊆ BR+ b
2
(0). Then, the solution to the HJB equation (1.1) depends also of the values

of E(u)(·) on BR+ b
2
(0) \ BR(0), where b is a fixed small constant, as it is explained in Section

2. Since E : C
k,α

(BR(0)) −→ C
k,α
c ( d), we can also verify that the solution uε to the NIDD

problem belongs to C
3,α

(BR(0)). The construction of the continuous linear operator will be given

in Subsection 2.2.

We note that the HJB equation (1.1) and the NIDD problem (1.9) can be defined on any Lips-

chitz, bounded domain O. Then, the results obtained in this thesis when the domains are open balls

of the form BR(0), with R > 0, are the same for Lipschitz, bounded domains O. The reason that

we restrict ourselves to the case where the domains are BR(0), with R > 0, is because the NIDD

problem (1.9) is related in the study of the existence, regularity and uniqueness of the HJB equation

max{qu(x)− Γ
�

1u(x)− h(x), ||D1
u(x)||2 − 1} = 0, in d

, (1.11)

where

Γ
�

1u(x):=
1

2
tr(σD

2
u(x)) + �D1

u(x), γ�+
�

∗
(u(x+ z)− u(x)− �D1

u(x), z�)ν(dz). (1.12)

The existence and regularity of the solution to the HJB equation (1.11) is obtained passing to limits

in a weak sense in (1.9). For this is necessary to find bounds of uε,R, D1
uε,R and D

2
uε,R that are
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independent of (ε, R), where uε,R is the solution to the NIDD problem (1.9). The problem here

is the constant that limits ||D1
uε,R(·)||, since this constant grows exponentially fast with R; see

Lemma 3.19. This is not suitable as it suggests that a bound function for ||D1
uε,R(·)|| in BR(0)

is of the exponential type, and hence it possesses technical issues when we estimate the first and

second derivatives of this bound function; see more in the conclusions of this thesis, page 85.

The HJB equation (1.11) arises in the study of the minimization of an infinite horizon dis-

counted running convex cost, where the state process is a controlled d-dimensional Lévy process

which components are a d-dimensional Brownian motion with Gaussian covariance matrix σ, and

a compound Poisson process with rate ν( ∗) and the distribution of its jumps is ν( ∗)−1ν(dz);

see Section 1.2.

Let us now some comments about the hypotheses (H1)–(H4). Hypotheses (H1) and (H4)

ensures the existence and uniqueness to the positive solution uε of the NIDD problem (1.9) in

C
3,α

(BR(0)); see Theorem 3.8 and Propositions 3.9 and 3.13. The main reason of Hypothesis

(H2) is because this is necessary to guarantee the existence of the solution uε(·;w) to the non-

linear Dirichlet problem (3.5), when w ∈ C
0
(BR(0)); see Lemma 3.2. Defining the map Tε as in

(3.19) and using contraction fixed point Theorem; see Theorem 3.1, we can prove the existence

and uniqueness to the solution uε of the NIDD problem (1.9), which is in C
3,α

(BR(0)). Finally,

Hypothesis (H3) is a classical assumption for differential operators called ellipticity property, see,

e.g. [9, 18, 22, 14, 13, 12, 6, 16, 2].

In the following section, we shall state with an equivalent form of the main result; Theorem 1.1,

and we shall give our main contribution concerning to the NIDD problem (1.9). After, we shall

show a sketch of the proofs of Theorems 1.2 and 1.3. Finally, in Subsection 1.2, we shall explain

the relationship that there exists between the equations (1.9), (1.11) and singular stochastic control

problems; see Lemmas 1.4 and 1.5.

1.1 Main results and sketch of proof

Under the assumptions (H1)–(H4), we establish the existence of the unique strong solution to the

HJB equation (1.1) in C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)), with d < p < ∞. First, since ν( ∗) < ∞, we

have that the HJB equation (1.1) can be written as




max{q�u(x)− Γ

�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, in BR(0),

u(x) = 0, on ∂BR(0),

(1.13)
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where 




q� = q + ν( ∗) = q + ν0,

Γ
�
u(x):=

1
2 tr(σD

2
u(x)) + �D1

u(x), �γ�+
�

∗ E(u)(x+ z)ν(dz)

=:L�
u(x) + I E(u)(x).

(1.14)

The differential and integral part of Γ� are denoted by L� and I, respectively. Then, our main result;

Theorem 1.1, is equivalent to prove the following theorem.

Theorem 1.2. If d < p < ∞, there exists a unique nonnegative strong solution u ∈ C
0,1
(BR(0))∩

W
2,p
loc(BR(0)) to the HJB equation





max{q�u(x)− Γ

�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, a.s. in BR(0),

u(x) = 0, on ∂BR(0).

Using (1.14) we see that the NIDD problem (1.9) is equivalent to the following NIDD problem




q�uε(x)− Γ

�
uε(x) + ψε(||D1

uε(x)||2) = h(x), in BR(0),

uε(x) = 0, on ∂BR(0),

(1.15)

where ψε is given in (1.10). We have the following result.

Theorem 1.3. For each ε ∈ (0, 1), there exists a unique positive solution uε to the NIDD problem

(1.15) in the space C
3,α

(BR(0)).

The key steps in the proofs of these theorems are the following. First, we guarantee the existence

and uniqueness of a sequence of positive functions {uε}ε∈(0,1), where for each ε ∈ (0, 1), uε is the

solution to the NIDD problem (1.15). Define for each ε ∈ (0, 1), the operator Tε : C
0
(BR(0)) −→

C
0
(BR(0)) as Tε(w) = V ε(·;w), whenever w ∈ C

0
(BR(0)), where the value function V ε(·, w) is

as in (3.16). From Lemma 3.5, it follows

Tε(w) = V
ε
(·, w) ∈ C

2,α
(BR(0)) ⊂ C

0
(BR(0)), for each w ∈ C

0
(BR(0)).

Verifying that V ε(·;w) satisfies

||V ε
(·;w1)− V

ε
(·;w2)||C0(BR(0)) ≤

2A0

q�

�

B
R+ b

2
(0)

ν(dz)||w1 − w2||C0(BR(0)),

for each w1, w2 ∈ C
0
(BR(0)); see Lemma 3.6, by Hypothesis (H4), we obtain that Tε is a contrac-

tion mapping in the Banach space (C0
(BR(0)), || · ||C0(BR(0))). By contraction fixed point Theorem;
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see Theorem 3.1, it yields that there exists a unique w∗ ∈ C
0
(BR(0)) such that Tε(w

∗) = w∗;

see Lemma 3.7. Using this and that V ε(;w) is related with the solution uε(·;w) to the non-linear

Dirichlet problem (3.5); see Lemma 3.5, we obtain the existence, uniqueness and regularity of the

solution uε ∈ C
2,α

(BR(0)) to the NIDD problem (3.1); see Theorem 3.8. By Proposition 3.9,

we obtain that uε ∈ C
3,α

(BR(0)), and hence it is obtained the result of Theorem 1.3. Now, from

Lemma 4.6, we know that there exist a decreasing subsequence {εκ(ι)}ι≥1, with εκ(ι) → 0, and

u ∈ C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)), such that






u
εκ(ι) −→

εκ(ι)→0
u, in C

1
loc(BR(0)),

u
εκ(ι) −→

εκ(ι)→0
u, uniformly in BR(0),

u
εκ(ι) −→

εκ(ι)→0
u, weakly in W

2,p
loc(BR(0)).

Moreover, the following limit holds

I E(u
εκ(ι))(x) −→

εκ(ι)→0
I E(u)(x), uniformly in BR(0).

Using Theorem 1.3 and Lemma 4.6, we conclude that u is the solution to the HJB equation (1.13)

and hence it is also solution to (1.1). The proof of the uniqueness of u is given in Subsection 4.1.

1.2 Probabilistic interpretation

Through at this document, we will work on a filtered probabilistic space (Ω, F , = {Ft}t≥0, ),

whose filtration = {Ft}t≥0 satisfies the usual conditions of right-continuity and completeness

with respect to . Let Y = {Yt : t ≥ 0} be a d-dimensional Lévy process as in (1.6), which

is adapted with respect to the filtration . By the Lévy-Khintchine formula [30, p. 37] it is well

known that the Lévy process Y is determined by a triplet (�γ, σ, ν), where �γ ∈ d as in (1.5), σ is a

positive definite matrix of size d×d that satisfies (H3) and ν is a measure on ∗ that satisfies (H2).

In the present case the characteristic exponent has the following form

Ψ(λ) = − log( (e
i�λ,Y �

)) = − i��γ,λ�+ 1

2
�λσ,λ� − ν(

∗
)

�

∗
(e

i�λ,z� −1)
ν(dz)

ν( ∗)
,

for all λ ∈ d, and we recall that its infinitesimal generator is given by (1.4).
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1.2.1 Probabilistic interpretation of the HJB equation on the whole space

In this part, it is established the relationship between the HJB equation (1.11) and the value function

of an optimal stochastic control problem. The state process X = {Xt : t ≥ 0} is defined as

Xt = x+ Yt +

�

[0,t]

Ns dξs, for all t ≥ 0, (1.16)

where x ∈ d is the initial condition and Y is a d-dimensional Lévy process as in (1.6). Here the

corresponding Lévy measure ν to the process Y satisfies
�

∗
ν(dz) < ∞ and

�

∗
(||z|| ∨ ||z||2)ν(dz) < ∞. (1.17)

The control process (N, ξ) = {(Nt, ξt) : t ≥ 0} is -adapted with

||Nt|| = 1, for all t ≥ 0 a.s.,

and, with probability one, ξ is a nondecreasing, left-continuous process with ξ0 = 0. The process

N provides the direction and ξ the intensity of the push applied to the state process X . Observing

that �

[0,t]

Nsdξs =

� t

0

Nsdξ
c
s +

�

0<s≤t

Ns∆ξs, for all t ≥ 0,

where ξc is the continuous part of ξ, we can show that the state process X is a semimartingale

[28, Ch. II] whose paths are right continuous and with left limits. Note that the jumps of the state

process X are inherited from Y and ξ, and we assume that these processes do not jump at the same

time t, i.e.

∆Xt = Xt −Xt− = ∆Yt {∆Yt �=0,∆ξt=0} +Nt∆ξt {∆ξt �=0,∆Yt=0}, (1.18)

for all t ≥ 0. For q > 0 and a control process (N, ξ), the corresponding cost function is defined as

V(N,ξ)(x) = x

��

[0,∞)

e
−qt

(h(Xt) dt+ dξt)

�
, for all x ∈ d

,

where h ∈ C
2,1
loc(

d) is an strictly convex function satisfying for some positive constants C0 and c0,





0 = h(0) ≤ h(x) ≤ C0(1 + ||x||2),

||D1
h(x)|| ≤ C0(1 + h(x)),

c0||y||2 ≤ �D2
h(x)y, y� ≤ C0||y||2(1 + h(x)),

(1.19)
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for all x, y ∈ d. From (1.17) and (1.19), we see (h(Yt)) < ∞. The value function corresponding

to the state process X is given by

V (x) = inf
(N,ξ)

V(N,ξ)(x), for x ∈ d
. (1.20)

Note that the HJB equation (1.11) is equivalent to

max{qu(x)− Γ1u(x)− h(x), ||D1
u(x)||2 − 1} = 0, in d

, (1.21)

where

Γ1u(x):=
1

2
tr(σD

2
u(x)) + �D1

u(x), �γ�+
�

∗
(u(x+ z)− u(x))ν(dz). (1.22)

The relationship between the value function (1.20) and the HJB equation (1.21) is described in the

following result.

Lemma 1.4. Suppose that (1.17) and (1.19) hold true. If u is a convex function in C
2
( d), which

is a solution of the HJB equation (1.21), then

(i) u(x) ≤ V (x), for each x ∈ d;

(ii) given the initial condition X∗
0 = x, x ∈ d, suppose that there exists a control process

(N∗, ξ∗) such that V(N∗,ξ∗)(x) < ∞ and the state process X∗ satisfies





(q − Γ1)u(X
∗
t−)− h(X∗

t−) = 0,

�

[0,t]
{N∗

s=−D1 u(X∗
s−)} dξ

∗
s = ξ

∗
t ,

(u(X∗
t−)− u(X∗

t+)) {∆ξ∗t �=0,∆Yt=0} = ξ∗t+ − ξ∗t ,

for all t ∈ [0,∞) a.s., with Γ1 as in (1.4). Then,

u(x) = V (x) = V(N∗,ξ∗)(x),

i.e. (N∗, ξ∗) is optimal at x.

Proof. Let us assume that u is a convex function in C
2
( d), such that it is a solution of the HJB

equation (1.21).

(i) Let x ∈ d be an initial state and (N, ξ) a control process. Using integration by parts in

e−qt u(Xt) [28, Cor. 2, p. 68], it follows that

e
−qt

u(Xt) =

� t

0

e
−qs

du(Xs)−
� t

0

q e
−qs

u(Xs)ds+ [e
−qt

, u(Xt)],
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where [e−qt, u(Xt)] is the quadratic covariation of e−qt and u(Xt) [28, p. 66]. Since e−qt is

of bounded variation [28, Thm. 23, p. 68], it implies that

[e
−qt

, u(Xt)] = u(x).

Then

e
−qt

u(Xt)− u(x) =

� t

0

e
−qs

du(Xs)−
� t

0

q e
−qs

u(Xs)ds. (1.23)

Applying Itô’s formula to u [28, Thm. 33, p. 81], we get that

u(Xt)− u(x) =

� t

0

�D1
u(Xs−), dXs�+

1

2

� t

0

tr(σD
2
u(Xs))ds

+

�

0<s≤t

(u(Xs)− u(Xs−)− �D1
u(Xs−),∆Xs�). (1.24)

From (1.6) and (1.16), we observe that

dXt = dYt +Ntdξt,

dYt = dWt + �γdt+
�

∗
z ϑ(dt× dz),

and hence, the first term on the right side of (1.24) has the following expression
� t

0

�D1
u(Xs−), dXs� =

� t

0

�D1
u(Xs−), dWs�+

� t

0

�D1
u(Xs), �γ�ds

+

� t

0

�

∗
�D1

u(Xs−), z�ϑ(ds× dz)

+

� t

0

�D1
u(Xs), Ns�dξcs +

�

0<s≤t

�D1
u(Xs−), Ns�∆ξs, (1.25)

where ξc is the continuous part of ξ. Since the state process X jumps only at the times where

the process Y or ξ and these processes do not jump at the same time (see (1.18)), hence
�

0<s≤t

(u(Xs)− u(Xs−)− �D1
u(Xs−),∆Xs�)

=

�

0<s≤t

(u(Xs)− u(Xs−)− �D1
u(Xs−),∆Ys�) {||∆Ys|| �=0, ||∆ξs||=0}

+

�

0<s≤t

(u(Xs)− u(Xs−)− �D1
u(Xs−), Ns�∆ξs) {||∆ξs|| �=0, ||∆Ys||=0}. (1.26)

In case that ||∆Yt|| �= 0 and ||∆ξs|| = 0, (1.16) implies that

Xt = Xt− +∆Yt, for all t ≥ 0,
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and, if ||∆ξt|| �= 0 and ||∆Ys|| = 0, defining the process {At : t ≥ 0} as

At = Xt− +∆Yt, for all t ≥ 0,

it follows that

At = x+ Yt− +

�

[0,t)

Nsdξs +∆Yt

= x+ Yt +

�

[0,t]

Nsdξs −Nt∆ξt

= Xt −Nt∆ξt. (1.27)

Now, recalling that Γ1 is as in (1.22) and combining the equalities (1.24)–(1.27), we get that

u(Xt)− u(x) =

� t

0

Γ1u(Xs)ds+

� t

0

�D1
u(Xs−), Ns�dξcs +

� t

0

�D1
u(Xs), dWs�

+

�

0<s≤t

(u(As +Ns∆ξs)− u(As)) {||∆ξs|| �=0, ||∆Ys||=0}

+

� t

0

�

∗
(u(Xs− + z)− u(Xs−))(ϑ(ds× dz)− ν(dz)ds).

Then, the expression (1.23) has the following form

e
−qt

u(Xt)− u(x) =

� t

0

e
−qs

((Γ1 − q)u(Xs) + h(Xs))ds

−
� t

0

e
−qs

h(Xs)ds+

� t

0

e
−qs�D1

u(Xs−), Ns�dξcs +Mt

+

�

0<s≤t

e
−qs

(u(As +Ns∆ξs)− u(As)) {||∆ξs|| �=0, ||∆Ys||=0}, (1.28)

for all t ≥ 0, where

Mt:=

� t

0

e
−qs�D1

u(Xs), dWs�

+

� t

0

�

∗
e
−qs

(u(Xs− + z)− u(Xs−))(ϑ(ds× dz)− ν(dz)ds).

Since the process M = {Mt : t ≥ 0} is a local martingale and defining the stopping time

τBn(0) as

τBn(0) = inf{t > 0 : Xt /∈ Bn(0)}, for all n ≥ 1,
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the process M τBn (0) = {Mt∧τBn(0)
: t ≥ 0} is a x-martingale with M0 = 0. Then, taking

expected value in (1.28), it follows that

u(x) = x

�
e
−q(t∧τBn(0)) u(Xt∧τBn(0)

)
�
+ x

�� t∧τBn(0)

0

e
−qs

((q − Γ1)u(Xs)− h(Xs))ds

�

+ x

�� t∧τBn(0)

0

e
−qs

h(Xs)ds

�
− x

�� t∧τBn(0)

0

e
−qs�D1

u(Xs−), Ns�dξcs
�

− x

�
�

0<s≤t∧τBn(0)

e
−qs

(u(As +Ns∆ξs)− u(As)) {||∆ξs|| �=0, ||∆Ys||=0}

�
. (1.29)

Given that u is a convex solution to the HJB equation (1.21), we know that





||D1
u(Xt−)||2 − 1 ≤ 0,

(q − Γ1)u(Xt−)− h(Xt−) ≤ 0,

u(At +Nt∆ξ(t))− u(At) ≥ �D1
u(At), Nt�∆ξ(t).

Then,

u(x) ≤ x

�
e
−q(t∧τBn(0)) u(Xt∧τBn(0)

)
�
+ x

�� t∧τBn(0)

0

e
−qs

(h(Xs)ds+ dξs)

�
.

Letting n → ∞, it follows that τBn(0) → ∞ a.s. and hence

u(x) ≤ x

�
e
−qt

u(Xt)
�
+ x

�� t

0

e
−qs

(h(Xs)ds+ dξs)

�
. (1.30)

Since

lim
t→∞ x

�� t

0

e
−qs

(h(Xs)ds+ dξs)

�
= x

�� ∞

0

e
−qs

(h(Xs)ds+ dξs)

�
,

we only need to prove that

lim
t→∞

(e
−qt

u(Xt)) = 0. (1.31)

Assume that x

��∞
0 e−qt h(Xt)dt

�
< ∞. Otherwise (1.30) is always true. This implies that

lim
t→∞

x(e
−qt

h(Xt)) = 0.

By (1.19) and Taylor’s Formula, we can observe that

c0

2
||y||2 ≤

� 1

0

(1− λ)�D2
h(λy)y, y�dλ = h(y).
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Then, using that u is a convex function and ||D1
u(y)||2 < 1, for all y ∈ d, we can see

u(y) ≤ u(0) + �D1
u(y), y�

≤ u(0) + ||D1
u(y)|| ||y||

≤ u(0) + 1 + ||y||2

≤ u(0) + 1 +
2

c0
h(y),

for all y ∈ d. This implies that limt→∞ x(e
−qt u(Xt)) = 0. It follows that u(x) ≤ V (x),

for each x ∈ d.

(ii) Let x ∈ d be an initial state and (N∗, ξ∗) a control process such that V(N∗,ξ∗)(x) < ∞, and

the state process X∗ satisfies

(q − Γ1)u(X
∗
t−)− h(X

∗
t−) = 0, (1.32)

�

[0,t]
{N∗

s=−D1 u(X∗
s−)}dξ

∗
s = ξ

∗
t , (1.33)

(u(X
∗
t−)− u(X

∗
t+)) {∆ξ∗t �=0,∆Yt=0} = ξ

∗
t+ − ξ

∗
t , (1.34)

for all t ∈ [0,∞) a.s., with Γ1 as in (1.22). Applying similar arguments as in the previous

proof of u ≤ V , (1.29) holds for X∗. From (1.33) and (1.34), it is easily verified for τ ∗Bn(0)
=

inf{t > 0 : X∗
t /∈ Bn(0)}, with n ≥ 1, and t ≥ 0, that

� t∧τ∗Bn(0)

0

�D1
u(X

∗
s−), Ns�dξ∗ cs = −

� t∧τ∗Bn(0)

0
{N∗

s=−D1 u(X∗
s−)}dξ

∗ c
s , (1.35)

and

�

0<s≤t∧τ∗Bn(0)

∆ξ
∗
s =

�

0<s≤t∧τ∗Bn(0)

(u(As +Ns∆ξ
∗
s )− u(As)) {||∆ξ∗s || �=0, ||∆Ys||=0}. (1.36)

Using (1.32), (1.35) and (1.36) in (1.30), it follows that

u(x) = x

�
e
−q(t∧τ∗Bn(0)) u(X

∗
t∧τ∗Bn(0)

)
�
+ x

�� t∧τ∗Bn(0)

0

e
−qs

(h(X
∗
s )ds+ dξ

∗
s )

�
. (1.37)

Letting n → ∞ in (1.37) and by (1.31), we get u(x) = V(N∗,ξ∗)(x) = V (x). This means that

(N∗, ξ∗) is the optimal control.
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1.2.2 Probabilistic interpretation of the NIDD problem

Define the convex function gε :
d −→ and its Legendre transform lε :

d −→ by




gε(ζ):= ψε(||ζ||2),

lε(η):= supζ{�η, ζ� − gε(ζ)},
(1.38)

The Legendre transform lε satisfies




lε(η) ≥ ε

2 ||η||2 − gε(
ε
2η) ≥

ε
4 ||η||2,

lε(2ψ
�
ε(||ζ||2)ζ) = 2ψ�

ε(||ζ||2)||ζ||2 − ψε(||ζ||2),
(1.39)

for all η, ζ ∈ d. Since gε is differentiable, it follows that gε(ζ) = supη{�η, ζ� − lε(η)}. Then, the

NIDD problem (1.15) can be written as




quε(x)− Γ1E(uε)(x) + supη{�D1

uε(x), η� − lε(η)} = h(x), in BR(0),

uε(x) = 0, on ∂BR(0),

(1.40)

where

Γ1E(u
ε
)(x) =

1

2
tr(σD

2
E(u

ε
)(x)) + �D1

E(u
ε
)(x), �γ +

�

∗
(E(u

ε
)(x+ z)− E(u

ε
)(x))ν(dz)

=
1

2
tr(σD

2
u
ε
(x)) + �D1

u
ε
(x), �γ�+

�

∗
(E(u

ε
)(x+ z)− u

ε
(x))ν(dz),

for all x ∈ BR(0). A control process is any d-dimensional, absolutely continuous process � = {�t :
t ≥ 0} -adapted and satisfying �0 = 0 almost surely. Given an initial state x ∈ BR(0), we define

the state process Z = {Zt : t ≥ 0} by

Zt:= x+ Yt − �t, for all t ≥ 0,

where Y = {Yt : t ≥ 0}, is a d-dimensional Lévy process as in(1.6). The cost function correspond-

ing to � is given by

V
ε
� (x):= x

�� τBR(0)

0

e
−qs

(h(Zs) + lε(�̇s)) ds

�
,

for all x ∈ BR(0), with τBR(0):= inf{t ≥ 0 : Zt /∈ BR(0)} and �̇t:=
d�t
dt . Finally, the value function

is defined by

V
ε
(x):= inf

�
V

ε
� (x).

Recalling that uε ∈ C
2,α

(BR(0)) is the solution to the NIDD problem (3.15), the following result

is obtained.
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Lemma 1.5. The solution uε to the NIDD problem (3.15) agrees with V ε in BR(0).

Proof. Let � be a control process and x ∈ BR(0) fix an initial state. Integration by parts and Itô’s

formula imply (see [28, Cor. 2 and Thm. 33, pp. 68 and 81, respectively]) that

u
ε
(x)− e

−q(t∧τBR(0)) u
ε
(Zt∧τBR(0)

)

=

� t∧τBR(0)

0

e
−qs

(qu
ε
(Zs))− Γ1E(u

ε
)(Zs) + �D1

u
ε
(Zs), �̇s)� ds−Mt∧τBR(0)

, (1.41)

for all t ≥ 0, with

Mt:=

� t

0

e
−qs�D1

u
ε
(Zs), dWs�

+

� t

0

�

∗
e
−qs

(E(u
ε
)(Zs− + z)− u

ε
(Zs−))(ϑ(ds× dz)− ν(dz)ds),

The process M = {Mt : t ≥ 0} is a local martingale with M0 = 0. Then, the process M τBR(0) :=

{Mt∧τBR(0)
: t ≥ 0} is a x-martingale with M0 = 0. Then, taking the expected value in (1.41), it

follows that

u
ε
(x)− x(e

−q(t∧τBR(0)) u
ε
(Zt∧τBR(0)

))

= x

�� t∧τBR(0)

0

e
−qs

(qu
ε
(Zs))− Γ1E(u

ε
)(Zs) + �D1

u
ε
(Zs), �̇s)� ds

�
. (1.42)

From (3.15), we get that

x(e
−q(t∧τBR(0)) u

ε
(Zt∧τBR(0)

)) ≥ u
ε
(x)− x

�� t∧τBR(0)

0

e
−qs

(h(Zs−) + lε(�̇s))ds

�
. (1.43)

Note that τBR(0) < ∞ or τBR(0) = ∞. If we are over the event {τBR(0) < ∞}, then, letting t → ∞
in (1.43), we have that

u
ε
(x) ≤ x

��� τBR(0)

0

e
−qs

(h(Zs) + lε(�̇s))ds

�
{τBR(0)<∞}

�
. (1.44)

Now, if we are over {τBR(0) = ∞}, we observe that e−q(t∧τBR(0)) = 0 and Zt ∈ BR(0), for all t > 0.

Since uε is a bounded continuous function, we have that

x(e
−q(t∧τBR(0)) u

ε
(Zt∧τBR(0)

) {τBR(0)=∞}) = 0.

Then, by (1.43), it yields that

u
ε
(x) ≤ x

��� ∞

0

e
−qs

(h(Zs) + lε(�̇s))ds

�
{τBR(0)=∞}

�
. (1.45)
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From (1.44) and (1.45), we get uε ≤ V ε. Since ψ�
ε(||D1

uε(x)||2)D1
uε(x) is a Lipschitz continuous

function [28, Thm. 6, p. 255], the process �Z = { �Zt : 0 ≤ t ≤ τBR(0)} is solution to

�Zt = x+ Yt −
� t∧τBR(0)

0

2ψ
�
ε(||D1

u
ε
( �Zs)||2)D1

u
ε
( �Zs)ds, (1.46)

for all 0 ≤ t ≤ τBR(0). Then, its corresponding control process is given by

�̇
R
t = 2ψ

�
ε(||D1

u
ε
( �Zs−)||2)D1

u
ε
( �Zs−), for all 0 ≤ t ≤ τBR(0). (1.47)

The process �X satisfies (1.42) and by (3.13), from a similar it follows that

x(e
−q�(t∧τBR(0)) u

ε
( �Zt∧τBR(0)

)) = u
ε
(x)− x

�� t∧τBR(0)

0

e
−qs

(h( �Zs) + lε(�̇
R
s ))ds

�
,

Proceeding of a similar way that (1.44) and (1.45), we have that uε(x) = V ε,R(x). We finish the

proof.

The rest of this thesis is organized as follows. Section 2 is devoted to the study of the exten-

sion operator E. We first recall an extension theorem for Hölder spaces (Theorem 2.10), whose

proof can be found in [33, p. 353]. Then, Theorem 2.10 gives a continuous linear operator

E : C
k,α

(BR(0)) −→ C
k,α
c ( d), which is used to verify that I E(w) is well defined when w ∈

C
k
(BR(0)), where k ≥ 0. Before that, we need to introduce the definition of Lipschitz domain,

since the construction of the continuous linear operator E depends on the regularity of ∂BR(0). We

also discuss properties of I E(w), when w ∈ C
k
(BR(0)). In Section 3 we present the existence,

regularity and uniqueness to the non-linear Dirichlet problems (1.15) and (3.5); the former with

an integro-differential operator, and the latter with a differential operator. We also discuss some

properties of these solutions. In Section 4 we establish the existence and uniqueness of the HJB

equation (1.13); see Theorem 1.2. We also present some properties of this solution.



Chapter 2

Extension theorem and properties of the

integral operator

In the first part of this chapter, we give a brief introduction about Lipchitz domains and some

of their properties. In particular, we focus in BR(0), with R > 0. The reason for doing this is

because we need to have a complete description of the Lipschitz functions that are defined on the

neighborhoods of the points in ∂BR(0). These functions are part of the sets where the continuous

linear operator E is constructed. Recall that E was described in (1.3). After that, we present

an extension theorem for Hölder spaces, where we focus in the construction and analysis of the

continuous linear operator E, defined (2.36). Although Theorem 2.10 is valid for more general

domains, see for instance [5], we are interested in the case that the domains are open balls in d.

At the end of the section, we show useful properties of the integral operator I, which is defined as

I w(x) =
�
R∗ E(w)(x+ z)ν(dz).

2.1 Lipschtz domains

It is well known that the regularity of the solutions to partial differential or integro-differential

equations on a domain O ⊆ d depends on the regularity of ∂O, when ∂O �= ∅; see e.g. [9, 18,

22, 14, 23, 13, 12, 6, 5, 2, 17]. In our case, we are interested in having the property of Lipschitz

domain, since the construction of the continuous linear operator E requires it. For more general

domains, see e.g. [11, 15, 8, 7, 5].

Definition 2.1. An open set O ⊆ d, with ∂O �= ∅, is said to be Lipschitz, or C
0,1, if for every

25
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x ∈ ∂O there exist a neighborhood Ux of x and ϕx ∈ C
0,1
( d−1) such that, up to rotation,

Ux ∩O = Ux ∩ {y = (y
�
, yd) ∈ d−1 × : yd > ϕx(y

�
)}.

The open balls BR(0), with R > 0, satisfies this definition as it is verified below. To show that

∂BR(0) satisfies the Definition 2.1, we use the following Lipschitz extension theorem; its proof is

given in [10, p. 80].

Theorem 2.2. Let f : D −→ be a Lipschitz function, with D ⊆ d. There exists a Lipschitz

function f : d −→ such that




f = f in D,

[f ]C0,1( d) = [f ]C0,1(D),

with [f ]C0,1( d) and [f ]C0,1(D) as in (0.1).

Let ed = (0, . . . , 0, 1) ∈ d and define H: = {ed}⊥, x�: = PH(x), and xd: = �ed, x�, for all

x ∈ d, where H and PH are the orthogonal hyperplane to ed and the orthogonal projection onto

H, respectively. We identify H with Rd−1:= {(z�, 0) ∈ d : z� ∈ d−1}, where this is a d − 1

dimension vectorial subspace, and write x = x�+xded, denoting this vector by (x�, xd). A direction

vector ω in d is identified with a unit vector. Defining the orthogonal subgroup of d× d matrices

as

Od×d:= {A ∈ d×d
: A

T
A = AA

T
= I},

where AT is the transposed matrix of A, the direction vector ω ∈ d can be associated with some

A ∈ Od×d such that ω = Aed. An important property of the orthogonal subgroup is that it preserves

the inner product �·, ·�, i.e. for each A ∈ Od×d and any x1, x2 ∈ Rd, we have that

�Ax1, Ax2� = x
T
1A

T
Ax2 = x

T
1 x2 = �x1, x2�.

This implies that ||Ax|| = ||x|| = ||A−1x||, for all A ∈ Od×d and x ∈ d. Note that the hyperplane

AH is orthogonal to the vector ω and hence for any element x ∈ d can be written in terms of the

hyperplane AH and its orthogonal complement, i.e.

x = A(ζ
�
+ ζded), with ζ

�
= PH(A

−1
x) and ζd = �A−1

x, ed�,

where (ζ �, ζd) ∈ H× . Besides, for each A ∈ Od×d, we have that A−T = A, then

�A−1
x, ed� = x

T
A

−T
ed = x

T
Aed = �x,Aed�, with x ∈ d

.
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In case that ω = x2 − x1, with x1, x2 ∈ d fixed, we have that there exists a matrix Ax1 ∈ Od×d

such that ω = Ax1ed and for any x ∈ d,

x = x1 + Ax1(ζ
�
+ ζded),

with ζ � = PH(A
−1
x1
(x− x1)) and ζd = �A−1

x1
(x− x1), ed�, where (ζ �, ζd) ∈ H× . We note that the

element x1 is the origin of the hyperplane Ax1H, whose is orthogonal to the vector ω = x2 − x1.

Definition 2.3. Let O be an open subset of d, with ∂O �= ∅. The set O is said to be a locally

Lipschitz, or locally C
0,1, if for each x ∈ ∂O there exist

(i) an open neighborhood Ux of x;

(ii) a matrix Ax ∈ Od×d;

(iii) a bounded open neighborhood Vx of 0 in H such that

Ux ⊆ {y ∈ d
: PH(A

−1
x (y − x)) ∈ Vx}; (2.1)

(iv) a function ϕx ∈ C
0,1
(H) such that ϕx(0) = 0 and

Ux ∩ ∂O = Ux ∩ {x+ Ax(ζ
�
+ ζded) : ζ

� ∈ Vx, ζd = ϕx(ζ
�
)}, (2.2)

Ux ∩O = Ux ∩ {x+ Ax(ζ
�
+ ζded) : ζ

� ∈ Vx, ζd > ϕx(ζ
�
)}. (2.3)

Lemma 2.4. The open ball BR(0), with R > 0, is Lipschitz, i.e. for any x ∈ ∂BR(0) there exists a

Lipschitz function ϕx : H −→ such that [ϕx]C0,1(H) ≤ 2.

The above result can be found in [7, Thm. 56, p. 93] for convex subsets of d. Delfour and

Zolésio [7, Thm. 56, p. 93] prove that any convex subset O of d, with O �= d and ∂O �= ∅
is locally Lipschitz. We adapt their proof to show that BR(0) is Lipschitz, since for each point in

∂BR(0), it is defined explicit a locally Lipschitz function, given by (2.4), which is used to construct

and analyze the continuous linear operator E.

Proof Lemma 2.4. Let H be the orthogonal hyperplane to ed = (0, . . . , 0, 1) ∈ d. Taking x ∈
∂BR(0) and 0 < r < 1 fixed, we choose x+ =

R−2r
R x ∈ BR(0), and the direction vector ωx =

1
2r (x

+ − x). We associate a matrix Ax ∈ Od×d such that ωx = Axed. Recall that the hyperplane

AxH is orthogonal to the direction vector ωx. Choosing x− =
R+2r
R x, it follows that x− /∈ BR(0)
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and the minimum distance from x− to BR(0) is ||x− − x|| = 2r. Then, for each ζ � ∈ H, with

||ζ �|| < 2r, the line

Lζ� := {x+ Ax(ζ
�
+ ζ

�
ded) : |ζ �d| ≤ 2r},

from x+ + Axζ
� to x− + Axζ

� in the direction to the vector ωx has a point in BR(0) and a point in

its complement. Note that x+ +Axζ
� ∈ BR(0) and x− +Axζ

� /∈ BR(0). Therefore, there exists �ζd,

with |�ζd| ≤ 2r, such that �y = x + Ax(ζ
� + �ζded) ∈ ∂BR(0) ∩ Lζ� minimizes ζd = �Axed, (y − x)�

over all y ∈ BR(0) ∩ Lζ� . If �y1 and �y2 are two minimizing points such that �ζ1d = �ζ2d, then

�y1 = x+ Ax(ζ
�
+ �ζ1ded) = x+ Ax(ζ

�
+ �ζ2ded) = �y2.

Hence, the function fx : {ζ � ∈ H : ||ζ �|| < 2r} −→ defined as

fx(ζ
�
):= inf

y∈BR(0)∩Lζ�
�Axed, (y − x)� = inf

y∈BR(0)∩Lζ�
�ed, A−1

x (y − x)�, (2.4)

is finite, well defined and there exists a unique �ζd, with |�ζd| < 2r, such that fx(ζ �) = �ζd and

�y = x + Ax(ζ
� + �ζded) is the unique minimizer. When ζ � = 0, we see that x ∈ ∂BR(0) ∩ L0

minimizes over all y ∈ BR(0) ∩ L0, and hence

fx(0) = 0.

Taking the neighborhoods

Vx:= {ζ � ∈ H : ||ζ �|| < 2r},

Ux:= {y ∈ d
: ||PH(A

−1
x (y − x))|| < 2r, |�A−1

x (y − x), ed�| < 2r},

we have that, by construction, these are convex open sets and satisfy the conditions (2.1)–(2.3) from

Definition 2.3. Now, we shall verify that the function f defined in (2.4) is a Lipschitz function in
�Vx:= {ζ � ∈ H : ||ζ �|| < r}. We shall show that f is a convex function in Vx. Since BR(0) and Ux

are convex sets, Ux ∩BR(0) is also a convex set. Then, for all y1, y2 ∈ Ux ∩BR(0), it follows that

ty1 + (1− t)y2 ∈ Ux ∩ BR(0), for all t ∈ (0, 1). (2.5)

From the conditions (2.1)–(2.3) that

Ux ∩BR(0) = Ux ∩ {x+ Ax(ζ
�
+ ζ

�
ded) : ζ

� ∈ Vx, ζ
�
d ≥ fx(ζ

�
)}, (2.6)

and hence, we get that for any y1, y2 ∈ Ux ∩ ∂BR(0),

yi = x+ Ax(ζ
�
i + ζ

�
ided), with ζ

�
id = fx(ζ

�
i) and i = 1, 2. (2.7)
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Then, (2.5) and (2.6) imply that

ty1 + (1− t)y2 = x+ Ax(tζ
�
1 + (1− t)ζ

�
2 + (tζ

�
1d + (1− t)ζ

�
2d)ed) ∈ Ux ∩ BR(0),

and (2.6) it follows that

tζ
�
1d + (1− t)ζ

�
2d ≥ fx(tζ

�
1 + (1− t)ζ

�
2). (2.8)

Hence, from (2.7) and (2.8), we get that

tfx(ζ
�
1) + (1− t)fx(ζ

�
2) ≥ fx(tζ

�
1 + (1− t)ζ

�
2).

Therefore, fx is a convex function in �Vx. Now, taking ζ �1, ζ
�
2 ∈ �Vx, such that ζ �1 �= ζ �2, and ζ �3: =

ζ �2 +
r
ρ(ζ

�
2 − ζ �1), with ρ = ||ζ �2 − ζ �1||, we note that ζ �3 ∈ Vx and write

ζ
�
2 =

r

r + ρ
ζ
�
1 +

ρ

r + ρ
ζ
�
3. (2.9)

Then, by convexity of fx, we have that

fx(ζ
�
2) ≤

r

r + ρ
fx(ζ

�
1) +

ρ

r + ρ
fx(ζ

�
3)

=
ρ

r + ρ
(fx(ζ

�
3)− fx(ζ

�
1)) + fx(ζ

�
1)

≤ ρ

r
|fx(ζ �3)− fx(ζ

�
1)|+ fx(ζ

�
1)

Since |fx(ζ �)| < r for all ||ζ �|| < r, it follows that

fx(ζ
�
2)− fx(ζ

�
1) ≤

ρ

r
|fx(ζ �3)− fx(ζ

�
1)| ≤ 2||ζ �2 − ζ

�
1||.

Interchanging the roles of ζ �1 and ζ �2 in (2.9), we obtain

fx(ζ
�
1)− fx(ζ

�
2) ≤ 2||ζ �2 − ζ

�
1||.

Therefore fx is a Lipschitz function in �Vx, with [fx]C0,1(�Vx)
≤ 2. we conclude, by Theorem 2.2, that

there exists a Lipschitz function ϕx : H −→ such that

ϕx = fx in �Vx, and [ϕx]C0,1( d) = [fx]C0,1(�Vx)
≤ 2.

Note that as a consequence of Lemma 2.4, the Lipschitz constant [ϕx]C0,1(H) is uniformly

bounded. Since ∂BR(0) is a compact set, we can choose an integer N ≥ 1 large enough, xκ ∈
∂BR(0) and bκ > 0 small enough, with κ ∈ {1, . . . , N}, such that

∂BR(0) ⊆
N�

κ=1

Bbκ(xκ). (2.10)
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Taking 0 < b < minκ∈{1,...,N}
�

1
2N , bκ

�
such that ∂BR(0) ⊆

�N
κ=1 Bbκ− b

2
(xκ), we assume that






xκ� /∈ Bbκ(xκ), with κ,κ� ∈ {1, . . . , N} and κ �= κ�,

BbN− b
2
(xN) ∩ Bb1− b

2
(x1) �= ∅,

Bbκ− b
2
(xκ) ∩ Bbκ+1− b

2
(xκ+1) �= ∅, for any κ ∈ {1, . . . , N − 1}.

(2.11)

We also know from the proof of Lemma 2.4 that for each xκ ∈ ∂BR(0), with κ ∈ {1, . . . , N},

there is a neighborhood Uxκ defined as

Uxκ
:= {y ∈ d

: ||PH(A
−1
xκ
(y − xκ))|| < 2bκ, |�A−1

xκ
(y − xκ), ed�| < 2bκ},

where the matrix Axκ ∈ Od×d is associated to the direction vector ωxκ = Axκed. Recall that

ωxκ =
1

2bκ
(x+

κ − xκ), with x+
κ =

R−2bκ
R xκ ∈ BR(0). It is easy to verify that Bbκ(xκ) ⊆ Uxκ ,

for all κ ∈ {1, . . . , N}. Now, taking fxκ as in (2.4), we know that this function is Lipschitz on
�Vxκ

:= {ζ � ∈ H : ||ζ �|| < bκ}, and we can see that

Bbκ(xκ) ∩BR(0) = Bbκ(xκ) ∩ {xκ + Axκ(ζ
�
+ ζded) : ζ

� ∈ �Vxκ , ζd ≥ fxκ(ζ
�
)}, (2.12)

for all κ ∈ {1, . . . , N}. Since fxκ is a Lipschitz function on �Vxκ , from Theorem 2.2, we have that

the Lipschitz extension of fxκ is given by

ϕxκ(ζ
�
):= inf

ζ�1∈�Vxκ

(fxκ(ζ
�
1) + [fxκ ]C0,1(�Vxκ )

||ζ � − ζ
�
1||), (2.13)

for all ζ � ∈ H and κ ∈ {1, . . . , N}, where this extension satisfies

ϕxκ = fxκ in �Vxκ , and [ϕxκ ]C0,1( d) = [fxκ ]C0,1(�Vxκ )
≤ 2, for all κ ∈ {1, . . . , N}.

Defining the set Oϕxκ
as

Oϕxκ
:= {xκ + Axκ(ζ

�
+ ζded) : ζd > ϕκ(ζ

�
)}, (2.14)

from (2.12) we get

Bbκ(xκ) ∩ BR(0) = Bbκ(xκ) ∩Oϕxκ
, for any κ ∈ {1, . . . , N}. (2.15)

In order to define the continuous linear operator E : C
k,α

(BR(0)) −→ C
k,α
c ( d), given in (2.37),

first, for each Oϕxκ
defined in (2.14) with κ ∈ {1, . . . , d}, we shall construct the continuous linear

operator E �
κ : C

k,α
(Oϕκ) −→ C

k,α
( d), given in (2.26). The contruction of the continuous linear
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operator E is given by the sequence the continuous linear operators {E �
κ}Nκ=1. But before, we give

some properties of the Hausdorff distance, which is denoted by �(x):= �(x,O) = inf{||x − y|| :
y ∈ O}, with O an arbitrary open set. The distance of x = xκ +Axκ(ζ

�
1 + ζd1ed) to Oϕxκ

, for some

(ζ �1, ζd1) ∈ H× , is given by

�κ(x):= inf{||x− y|| : y = xκ + Axκ(ζ
�
+ ζd) ∈ Oϕxκ

}

= inf{||ζ �1 − ζ
� − ed(ζd1 − ζd)|| : ζd ≥ ϕxκ(ζ

�
)}, (2.16)

for each κ ∈ {1, . . . , N}. The Hausdorff distance �κ(·) = �κ(·,Oϕxκ
), with κ ∈ {1, . . . , N} and

Oϕxκ
as in (2.14), satisfies the following result, whose proof can be found in [5, Thm. 16.20, p.

346].

Lemma 2.5. Let ϕ ∈ C
0,1
( d−1),

Oϕ:= {x = (x
�
, xd) ∈ d−1 × : xd > ϕ(x

�
)}, and O−:= Oc

ϕ. (2.17)

Then

(1 + [ϕ]C0,1)�ϕ(x) ≥ ϕ(x
�
)− xd, for any x = (x

�
, xd) ∈ O−,

where �ϕ(·) = �ϕ(·;Oϕ). Moreover, for every x, y ∈ O− with x �= y, there exists z ∈ O− such that

[z, x) ∪ [z, y) ⊆ O− and ||x− z||+ ||z − y|| ≤ (2 + 4[ϕ]C0,1)||x− y||.

Where [z, x):= {ω = (ω1, . . . ,ωd) ∈ d : zi ≤ ωi < xi, i ∈ {1, . . . , d}}. This result is true for

O− replaced by Oϕ.

Since the Hausdorff distance �(·) = �(·;O) is not differentiable in general on Oc, with O an

open ball, this is replaced by a regularized distance �∗(·):= �∗(·;O), which is smooth on Oc and

essentially has the same profile as �(·). The existence of this regularized distance is guaranteed by

the following result. Its proof is in [33, 20, Thms. 2 and 17.21, pp.171 and 267, respectively].

Lemma 2.6. Let ϕ ∈ C
0,1
( d−1), Oϕ, O− be defined as in (2.17) and �(·) = �(·;Oϕ) be the

Hausdorf distance. Then, there exists �∗: = �∗(·;Oϕ) ∈ C
∞
(O−; [0,∞)) such that for every

x = (x�, xd), y = (y�, yd) ∈ O−,





�∗(x) ≥ 2(ϕ(x�)− xd),

1
C�(x) ≤ �∗(x) ≤ C�(x),

||Dk
�∗(x)|| ≤ C�(x)1−k,

||Dk
�∗(x)−D

k
�∗(y)|| ≤ C||x− y||α max{�(x)1−k−α; �(y)1−k−α},

(2.18)
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for some constant C = C(k, d, [ϕ]C0,1) > 0, where k ≥ 0 is an arbitrary integer and α ∈ [0, 1] is

an arbitrary real number.

The constant C that appears in (2.18) is of the form C = 2(1 + [ϕ]C0,1)C1 > 0, where C1 =

C1(k, d) > 0 is a constant independent of Oϕ. For more details see [33, 5, pp. 183 and 347,

respectively]. In our case, from Lemma 2.6, we have the following result.

Corollary 2.7. Let Oϕxκ
be as in (2.14), Oϕκ

− := Oc
ϕxκ

, and �κ(·) = �κ(·;Oϕxκ
) be the Hausdorf

distance, with κ ∈ {1, . . . , N} and N as in (2.10). Then, there exists �∗κ(·) = �∗κ(·;Oϕxκ
) ∈

C
∞
(Oϕκ

− ; [0,∞)), such that for every x, y ∈ Oϕκ
− ,






�∗κ(x) ≥ 2(ϕκ(ζ
�
1)− ζd1),

1
C�κ(x) ≤ �∗κ(x) ≤ C�κ(x),

||Dk
�∗κ(x)|| ≤ C�κ(x)

1−k,

||Dk
�∗κ(x)−D

k
�∗κ(y)|| ≤ C||ζ �1 − ζ �2 + (ζd1 − ζd2)ed||α

×max{�κ(x)1−k−α, �κ(y)
1−k−α},

for some constant C1 = C1(k, d) > 0 independent of Oϕxκ
, where k ≥ 0 is an arbitrary integer,

α ∈ [0, 1] is an arbitrary real number, C = 2C1(1 + [ϕκ]C0,1(H)) ≤ 6C1 and (ζ �1, ζd1), (ζ
�
2, ζd2) ∈

H× are such that x = xκ + Axκ(ζ
�
1 + ζd1ed), y = xκ + Axκ(ζ

�
2 + ζd2ed), with xκ ∈ ∂BR(0).

In case that x ∈ Bbκ(xκ)\BR(0), with κ ∈ {1, . . . , N} and N as in (2.10), we obtain that �∗κ(x)

is uniformly bounded with respect to Oϕxκ
.

Corollary 2.8. If κ ∈ {1, . . . , N} and x ∈ Bbκ(xκ) \ BR(0), there exists a constant C2 =

C2(k, d) > 0 independent of Oϕxκ
, such that

�
∗
κ(x) ≤ C2bκ. (2.19)

Proof. Let κ ∈ {1, . . . , N} and x ∈ Bbκ(xκ) \ BR(0) fixed. Then, there exists (ζ �1, ζd1) ∈ H × ,

with ||(ζ �1, ζd1)|| < bκ such that

x = xκ + Axκ(ζ
�
1 + ζd1ed) ∈ Lζ�1

,

where Lζ�1
= {xκ + Ax(ζ

�
1 + ζ �ded) : |ζ �d| ≤ 2bκ}. Recalling the definition of fxκ in (2.4), i.e.

fxκ(ζ
�
) = inf

y∈BR(0)∩Lζ�
�Axκed, (y − xκ)�, with ||ζ �|| < 2bκ,
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we know that there exists a unique �ζd, with |�ζd| < bκ, such that

fxκ(ζ
�
1) =

�ζd and �y = xκ + Axκ(ζ
�
1 +

�ζded) ∈ ∂BR(0) ∩ Lζ�1
.

Besides, there exists a unique �ζd2, with |�ζd2| < bκ, such that





fxκ(ζ
�
2) =

�ζd2,

�z = xκ + Axκ(ζ
�
2 +

�ζd2ed) ∈ ∂BR(0) ∩ Lζ�2
,

�κ(x) = ||(ζ �1 + ζd1ed)− (ζ �2 + ζd2ed)||.

Hence, using the triangle inequality, we get that

�κ(x) = ||(ζ �1 + ζd1ed)− (ζ
�
2 + ζd2ed)||

≤ ||(ζ �1 + ζd1ed)− (ζ
�
1 +

�ζded)||+ ||(ζ �1 + �ζd)ed)− (ζ
�
2 + ζd2ed)||

≤ ||(ζd1 − �ζd)ed||+ ||ζ �1 − ζ
�
2||+ ||(�ζd − ζd2)ed||

≤ 8bκ.

Therefore, from Corollary 2.7, it follows that �∗κ(x) ≤ 8Cbκ ≤ 48C1bκ. Thus, there exists a

constant C2 = C2(k, d) > 0 such that it satisfies (2.19).

Remark 2.9.

(i) Let x /∈ Oϕxκ
, with κ ∈ {1, . . . , N} and N as in (2.10). Defining

xκ(t):= xκ + Aκ(ζ
�
+ (ζd + t�

∗
κ(x))ed), for all t ≥ 1, (2.20)

where x = xκ +Axκ(ζ
� + ζded), Axκ ∈ Od×d, (ζ �, ζd) ∈ H× and �∗κ(·) = �∗κ(·;Oϕxκ

) as in

Corollary 2.7, we observe that xκ(t) ∈ Oϕxκ
. Since ϕxκ(ζ

�) − ζd > 0, by Corollary 2.7, we

get

ζd + t�
∗
κ(x) ≥ ζd + 2t(ϕxκ(ζ

�
)− ζd) ≥ ϕxκ(ζ

�
) + (ϕxκ(ζ

�
)− ζd) > ϕxκ(ζ

�
),

for all t ≥ 1. Hence xκ(t) ∈ Oϕxκ
.

(ii) Now, since Bbκ(xκ) ∩ BR(0) = Bbκ(xκ) ∩ Oϕxκ
, we will need to know when a segment of

xκ(t) is contained in Bbκ(xκ), with xκ(t) given in (2.20). This occurs if and only if there

exists t� > 1 such that

||xκ − xκ(t
�
)|| = bκ, when x = xκ + Axκ(ζ

�
+ ζded) ∈ Bbκ(xκ) \ Oϕxκ

.
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This is equivalent to

||ζ � + (ζd + t
�
�
∗
κ(x))ed|| = bκ, when ||ζ � + ζded|| < bκ and ϕxκ(ζ

�
) > ζd.

Then, it is easy to see that

t
�
=

(b2κ − ||ζ �||2) 1
2 − |ζd|

�∗κ(x)
, when x = xκ + Axκ(ζ

�
+ ζded) ∈ Bbκ(xκ) \ Oϕxκ

.

This implies that

t
� → ∞ when �

∗
κ(x) → 0.

The previous results that were studied in this section, shall be used extensively in the following

section. Specially in the construction and properties of the continuous linear operator

E : C
k,α

(BR(0)) −→ C
k,α
c (

d
), with k ≥ 0 and α ∈ [0, 1],

which is defined in (2.36).

2.2 Extension theorem for Hölder spaces

The following result gives an extension between Hölder spaces Ck,α
(BR(0)) and C

k,α
c ( d), when

k ≥ 0 is an integer and α ∈ [0, 1], whose proof is given in [5, p. 353]. However, we will reproduce

some parts of the proof of Csató et. al. [5], in order to describe in detail the construction of

the continuous linear operator E that satisfies Theorem 2.10. This will be useful to study some

fundamental properties of I E(w), when w ∈ C
k,α

(BR(0)).

Theorem 2.10 (Extension theorem for Hölder spaces). For any integer k ≥ 0 and any 0 ≤ α ≤ 1,

there exists a continuous linear extension operator

E : C
k,α

(BR(0)) −→ C
k,α
c (

d
),

that satisfies





E(w)
��
BR(0)

= w,

supp[E(w)] is compact,

supp[E(w)] ⊆ BR+ b
2
(0),

||E(w)||Ck,α( d) ≤ C||w||Ck,α(BR(0)),

for all w ∈ C
k,α

(BR(0)), (2.21)

for some constants C = C(k,R) > 0 and b > 0. The norms || · ||Ck,α( d) and || · ||Ck,α(BR(0)) are as

in (0.2).
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2.2.1 Proof of Theorem 2.10

We shall show some steps of the proof of Theorem 2.10, where we shall give some previous results

for the construction of the operator E; see (2.36).

Step 1. The proof of the following result can be found in [33, Lemma 1, p. 182].

Lemma 2.11. There exists Ψ ∈ C
0
([1,∞)) such that for every positive integer k ≥ 1, there exists

Ak > 0 such that

|Ψ(t)| ≤ Ak

tk
, for every t ∈ [1,∞), (2.22)

and for every k ≥ 1, � ∞

1

Ψ(t)dt = 1 and
� ∞

1

t
k
Ψ(t)dt = 0.

Stein [33] proves that Ψ : [1,∞) −→ given by

Ψ(t):=
e

πt
Im(exp(− e

−iπ
4 (t− 1)

1
4 )), (2.23)

satisfies Lemma 2.11. Note that

A0:=

� ∞

1

|Ψ(t)|dt ≈ 1.03727, (2.24)

Defining Ak as

Ak:= sup
t∈[1,∞)

{tk|Ψ(t)|}, for each k ≥ 1, (2.25)

we can see that Ak satisfies (2.22).

Step 2. Taking N ≥ 1 and Ψ as in (2.10) and (2.23), respectively, we define the continuous linear

operator E �
κ : C

k,α
(Oϕxκ

) −→ C
k,α

( d) by

E
�
κ(w)(x):=





w(x), if x = xκ + Axκ(ζ

� + ζded) ∈ Oϕxκ
,

�∞
1 Ψ(t)w(xκ(t))dt, if x = xκ + Axκ(ζ

� + ζded) /∈ Oϕxκ
,

(2.26)

for all w ∈ C
k,α

(Oϕxκ
) and κ ∈ {1, . . . , N}. Here Oϕxκ

and xκ(t) are given in (2.14) and (2.20),

respectively. By Remark 2.9(i), we have E �
κ is well defined, for each κ ∈ {1, . . . , N}. This operator

is part of the construction of the continuous linear operator E, that was announced in Theorem 2.10,

and satisfies the following result, whose proof is given in [5, p. 348].

Theorem 2.12. Let ϕxκ ∈ C
0,1
( d−1) and Oϕxκ

defined as in (2.14), with κ ∈ {1, . . . , N}. For

any integer k ≥ 0 and any 0 ≤ α ≤ 1, the continuous linear operator E �
κ given in (2.26),
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satisfies E �
κ(w) ∈ C

k,α
( d), for all w ∈ C

k,α
(Oϕxκ

). In particular, there exists a constant

C = C(k,Oϕxκ
) > 0 such that for every w ∈ C

k,α
(Oϕxκ

),

||E �
κ(w)||Ck,α( d) ≤ C||w||Ck,α(Oϕκ )

.

We claim that the continuous linear operator E �
κ, with κ ∈ {1, . . . , N}, satisfies the following

inequality

|E �
κ(w)(x)| ≤ A0||w||Ck,α(Oϕxκ ), (2.27)

for all x ∈ d and w ∈ C
k,α

(Oϕxκ
), with A0 as in (2.24). When x = xκ + Axκ(ζ

� + ζded) ∈ Oϕκ ,

with (ζ �, ζd) ∈ H× , it is easy to prove the inequality (2.27),

|E �
κ(w)(x)| = |w(x)| ≤ ||w||Ck,α(Oϕxκ ) < A0||w||Ck,α(Oϕxκ ).

In the other case, when x = xκ + Axκ(ζ
�, ζded) /∈ Oϕκ , by definition of E �

κ, we get that

|E �
κ(w)(x)| ≤

� ∞

1

|Ψ(t)| |w(xκ(t))|dt ≤ A0||w||Ck,α(Oϕxκ ).

Therefore, it satisfies (2.27). Note that E �
κ is differentiable and it is given by (2.28).

Lemma 2.13. Let Oϕxκ
be as in (2.14), with κ ∈ {1, . . . , N}. If x /∈ Oϕxκ

and w ∈ C
k,α

(Oϕxκ
),

then

∂iE
�
κ(w)(x) =

� ∞

1

Ψ(t)(∂iw(xκ(t)) + λ∂dw(xκ(t))∂i�
∗
κ(x))dt, (2.28)

with i ∈ {1, . . . , d}.

Proof. Let κ ∈ {1, . . . , N}, x = xκ + Axκ(ζ
� + ζded) /∈ Oϕxκ

, for some (ζ �, ζd) ∈ H × ,

Axκ ∈ Od×d and xκ ∈ ∂BR(0). Taking w ∈ C
k,α

(Oϕxκ
), define g(x, t): = w(xκ(t)), where

xκ(t) = xκ + Axκ(ζ
� + (ζd + t�∗κ(x))ed), with t ≥ 1, and �∗κ(·) = �∗κ(·;O) as in Lemma 2.6. First

we show that
|Ψ(t)| |g((x+ ρei), t)− g(x, t)|

ρ
,

is an integrable function with respect to the Lebesgue measure dt. Computing first derivatives of

g(x, t), with respect to x, we have that

∂ig(x, t) = ∂iw(xκ(t)) + t∂dw(xκ(t))∂id
∗
κ(x)), for all i ∈ {1, . . . , d}.
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Then, for � > 0, there exists ρ� ∈ (0, 1) such that if ρ ∈ (0, ρ�), it follows that

|Ψ(t)| |g((x+ ρei), t)− g(x, t)|
ρ

≤ |Ψ(t)|(�+ |∂ig(x, t)|)

≤ |Ψ(t)|(�+ |∂iw(xκ(t))|+ t|∂dw(xκ(t))| |∂i�∗κ(x)|)

≤
A2(�+ ||∂iw||C0(Oϕxκ )) + A3|∂i�∗κ(x)| ||∂dw||C0(Oϕxκ )

t2
, (2.29)

for all i ∈ {1, . . . , d}. Here A2 and A3 are given in (2.25). Since ||∂iw||C0(Oϕ) and ||∂dw||C0(Oϕ)

are finite, the last right part in inequality (2.29) is integrable with respect to the Lebesgue measure

dt. Thus, by the Dominate Convergence Theorem, we get

∂iE
�
κ(w)(x) =

� ∞

1

Ψ(t)(∂iw(xκ(t)) + t∂dw(xκ(t))∂i�
∗
κ(x))dt,

for all i ∈ {1, . . . , d}.

Step 3. Now, we proceed to construct the continuos linear extension operator E, which was an-

nounced in Theorem 2.10. First, recall that for any R > 0 fixed, we can choose an integer N ≥ 1

large enough, xκ ∈ ∂BR(0) and bκ > 0 small enough, with κ ∈ {1, . . . , N}, such that ∂BR(0) ⊆
�N

κ=1 Bbκ(xκ). Taking 0 < b < minκ∈{1,...,N}
�

1
2N , bκ

�
such that ∂BR(0) ⊆

�N
κ=1 Bbκ− b

2
(xκ), we

assume that





xκ� /∈ Bbκ(xκ), with κ,κ� ∈ {1, . . . , N} and κ �= κ�,

BbN− b
2
(xN) ∩ Bb1− b

2
(x1) �= ∅,

Bbκ− b
2
(xκ) ∩ Bbκ+1− b

2
(xκ+1) �= ∅, for any κ ∈ {1, . . . , N − 1}.

(2.30)

We define the following auxiliary functions. Let λκ ∈ C
∞
c ( d), with κ ∈ {1, . . . , N}, be such that

λκ ∈ [0, 1], λκ = 1, in Bbκ− b
2
(xκ), and supp[λκ] ⊆ Bbκ− b

4
(xκ), (2.31)

and λ0,λ+,λ− ∈ C
∞
c ( d) satisfying that






λ0,λ+,λ− ∈ [0, 1],

λ0 = 1, in BR(0), and supp[λ0] ⊆ BR+ b
2
(0),

λ+ = 1, in BR+ b
2
(0) \BR− b

2
(0) and supp[λ+] ⊆ BR+b(0) \BR−b(0),

λ− = 1, in BR− b
2
(0) and supp[λ−] ⊆ BR(0).

(2.32)
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Defining the functions Λ+,Λ− as

Λ+:= λ0
λ+

λ+ + λ−
, and Λ−:= λ0

λ−
λ+ + λ−

,

we get that

Λ+ ≤ 1, in supp[Λ+] ⊆ BR+ b
2
(0) \BR− b

2
(0) ⊆

N�

κ=1

Bbκ− b
2
(xκ), (2.33)

Λ− ≤ 1, in supp[Λ−] ⊆ BR(0),

since

λ+ + λ− ≥ 1, in supp[λ+ + λ−] ⊆ BR+b(0),

supp[λ0] ⊆ {x ∈ d
: λ+ + λ− ≥ 1}.

Then, Λ+,Λ− ∈ C
∞
c ( d) and Λ+ + Λ− = λ0. Note that by (2.30),

1 ≤
N�

κ=1

λ
2
κ ≤ 2, in

N�

κ=1

Bbκ− b
2
(xκ), (2.34)

and hence

Λ+�N
κ=1 λ

2
κ

∈ C
∞
c (

d
) and

Λ+�N
κ=1 λ

2
κ

≤ 1 in supp[Λ+] ⊆
N�

κ=1

Bbκ− b
2
(xκ). (2.35)

Finally, we define the continuous linear extension operator

E : C
k,α

(BR(0)) −→ C
k,α
c (

d
),

as

E(w)(x):= Λ+(x)

��N
κ=1 λκ(x)E

�
κ(wκ)(x)�N

κ=1 λ
2
κ(x)

�
+ Λ−(x)w(x), (2.36)

for all x ∈ d and w ∈ C
k,α

(BR(0)), with k ≥ 0 an integer and α ∈ [0, 1]. For each κ ∈
{1, . . . , N}, the operator E �

κ is defined in (2.26) and the function wκ : Oϕxκ
−→ is given by

wκ(x):=





λκ(x)w(x), if x = xκ + Axκ(ζ

� + ζded) ∈ Oϕxκ
∩ Bbκ(xκ),

0, if x = xκ + Axκ(ζ
� + ζded) ∈ Oϕxκ

\Bbκ(xκ).

(2.37)

To verify that wκ ∈ C
k,α

(Oϕxκ
), see for instance [5, p. 355]. The continuous linear extension

operator E is well defined by the properties previously reviewed and it is also possible to show that

supp[E(w)] ⊆ BR+ b
2
(0) and E(w) = w in BR(0).
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Remark 2.14. From the construction of the linear continuous operator E, (2.36), we clearly observe

that

E(w)(x) =






w(x), if x ∈ BR(0),

λ0(x)
�N

κ=1 λκ(x)E�
κ(wκ)(x)�N

κ=1 λ
2
κ(x)

, if x ∈ BR+ b
2
(0) \BR(0),

0, if x ∈ BR+ b
2
(0)c,

for each w ∈ C
k,α

(BR(0)).

In the following two subsections, we shall give some properties of the continuous linear operator

E and the integral operator I.

2.2.2 Some properties of the continuous linear operator E

Define the following sets

D1:= BbN− b
4
(xN) ∩Bb1− b

4
(x1),

Dκ:= Bbκ−1− b
4
(xκ−1) ∩Bbκ− b

4
(xκ), with κ = 2, . . . , N,

Gκ:= Bbκ− b
4
(xκ) \ Dκ, with κ = 1, . . . , N,

Jκ:= (BR+ b
2
(0) \BR(0)) ∩ Gκ, with κ = 1, . . . , N, (2.38)

J �
1:= (BR+ b

2
(0) \BR(0)) ∩D1, (2.39)

J �
κ:= (BR+ b

2
(0) \BR(0)) ∩Dκ, with κ = 2, . . . , N. (2.40)

Note that B�:= BR+ b
2
(0) \BR(0) =

�N
κ=1 Jκ, Dκ �= ∅, Jκ ∩Jκ� = ∅, for any κ,κ� ∈ {1, . . . , N},

with κ �= κ�, and




Jκ = (Jκ \ J �

κ+1) ∪ J �
κ+1, if κ ∈ {1, . . . , N − 1},

JN = (JN \ J �
1) ∪ J �

1, if κ = N.

If x ∈ B�, there exists κ ∈ {1, . . . , N} such that x ∈ Jκ. Then, when κ ∈ {1, . . . , N − 1}, we get

that

E(w)(x) = λ0(x)E
�
κ(wκ)(x) Jκ\J �

κ+1
(x)

+
λ0(x)

λ2
κ(x) + λ2

κ+1(x)
(λκ(x)E

�
κ(wκ)(x) + λκ+1(x)E

�
κ+1(wκ+1)(x)) J �

κ+1
(x), (2.41)
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for all x ∈ Jκ. When κ = N , we obtain that

E(w)(x) = λ0(x)E
�
N(wN)(x) JN\J �

1
(x)

+
λ0(x)

λ2
N(x) + λ2

1(x)
(λN(x)E

�
N(wN)(x) + λ1(x)E

�
1(w1)(x)) J �

1
(x). (2.42)

for all x ∈ JN . Recall that E �
κ and wκ are given in (2.26) and (2.37), respectively.

Proposition 2.15. If w ∈ C
0
(BR(0)), then

|E(w)(x)| ≤ 2A0||w||C0(BR(0)), for all x ∈ d
, (2.43)

with A0 as in (2.24).

Proof. Let w ∈ C
0
(BR(0)). Observe that when x ∈ BR+ b

2
(0)c, (2.43) is trivially true. When

x ∈ BR(0) it follows that

|E(w)(x)| = |w(x)| ≤ ||w||C0(BR(0)) ≤ 2A0||w||C0(BR(0)).

If x ∈ B� = BR+ b
2
(0) \ BR(0), we know there exits κ ∈ {1, . . . , N − 1} such that x ∈ Jκ =

(Jκ \ J �
κ+1) ∪ J �

κ+1, or x ∈ JN = (JN \ J �
1) ∪ J �

1, where Jκ and J �
κ are given in (2.38)–(2.40).

Suppose that x ∈ Jκ = (Jκ \ J �
κ+1) ∪ J �

κ+1, for some κ ∈ {1, . . . , N − 1}. From (2.26), (2.31),

(2.32), (2.35), (2.37), (2.41), and taking Bκ:= BR(0) ∩ Bbκ(xκ), with κ ∈ {1, . . . , N}, it follows

that

|E(w)(x)| ≤ |E �
κ(wκ)(x)| Jκ\J �

κ+1
(x)

+ (|E �
κ(wκ)(wκ)(x)|+ |E �

κ+1(wκ+1)(x)|) J �
κ+1

(x)

= |E �
κ(x)|+ |E �

κ+1(wκ+1)(x)| J �
κ+1

(x)

≤
� ∞

1

|Ψ(t)|λκ(xκ(t))|w(xκ(t))| Bκ(xκ(t))dt

+

� ∞

1

|Ψ(t)|λκ+1(xκ+1(t))|w(xκ+1(t))| Bκ+1(xκ+1(t))dt (2.44)

≤ (||w||C0(Bκ) + ||w||C0(Bκ+1))

� ∞

1

|Ψ(t)|dt (2.45)

≤ 2A0||w||C0(BR(0)),

with A0 as in (2.24). When x ∈ JN = (JN \ J �
1) ∪ J �

1, we use (2.42) and proceeding in a similar

way to obtain (2.43).
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Now, since Λ+, λκ ∈ C
∞
c ( d), with

supp[λκ] ⊆ Bbκ− b
4
(xκ) and supp[Λ+] ⊆

N�

κ=1

Bbκ− b
2
(xκ),

we can assume that

|∂iΛ+| ≤ C2 and |∂iλκ| ≤ C2, for all i ∈ {1, . . . , d}, (2.46)

for some constant C2 > 0.

Lemma 2.16. If w ∈ C
1
(BR(0)), there exists a constant C3 = C3(k, d) > 0 such that for each

x ∈ B� = BR+ b
2
(0) \BR(0),

|∂iE(w)(x)| < C3||w||C1(BR(0)), for all i ∈ {1, . . . , d}. (2.47)

Proof. Let x ∈ B� and w ∈ C
k,α

(BR(0)) fixed. Then, there exists κ ∈ {1, . . . , N} such that

x ∈ Jκ. When κ ∈ {1, . . . , N − 1}, from (2.41), we know that

E(w)(x) = λ0(x)E
�
κ(x) Jκ\J �

κ+1
(x)

+
λ0(x)

λ2
κ(x) + λ2

κ+1(x)
(λκ(x)E

�
κ(wκ)(x) + λκ+1(x)E

�
κ+1(wκ+1)(x)) J �

κ+1
(x).

Then, the first derivatives are given by

∂iE(w)(x) = (E
�
κ(wκ)(x)∂iλ0(x) + λ0(x)∂iE

�
κ(wκ)(x)) Jκ\J �

κ+1
(x)

+

�
λκ(x)E

�
κ(wκ)(x) + λκ+1(x)E

�
κ+1(wκ+1)(x)

(λκ(x)
2 + λκ+1(x)

2)2

× ((λ
2
κ(x) + λ

2
κ+1(x))∂iλ0(x)− 2λ0(x)(λκ(x)∂iλκ(x) + λκ+1(x)∂iλκ+1(x)))

+
λ0(x)

λ2
κ(x) + λ2

κ+1(x)
(E

�
κ(wκ)(x)∂iλκ(x) + λκ(x)∂iE

�
κ(wκ)(x))

+ E
�
κ+1(wκ+1)(x)∂iλκ+1(x) + λκ+1(x)∂iE

�
κ+1(wκ+1)(x))

�
J �
κ+1

(x).

Recall that the sets Jκ, J �
κ are given in (2.38)–(2.40). By (2.37), for each ι ∈ {κ,κ+ 1}, we know

that wι(xι(t)) = λι(xι(t))w(xι(t)), if xι(t) ∈ Bι:= BR(0) ∩ Bbι− b
4
(xι). Then, from Lemma 2.13

and computing the first derivatives of wι, it is follows that

∂iE
�
ι(wι)(x) =

� ∞

1

Ψ(t)(∂iwι(xι(t)) + t∂dwι(xι(t))∂i�
∗
ι (x))dt

=

� ∞

1

Ψ(t)(λι(xι(t))∂iw(xι(t)) + w(xι(t))∂iλι(xι(t))

+ t(λι(xι(t))∂dw(xι(t)) + w(xι(t))∂dλι(xι(t)))∂i�
∗
ι (x)) Bι(xι(t))dt,
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for all i ∈ {1, . . . , d}. Where �∗ι , xι(t) and Ψ are given in Corollary 2.7, (2.20) and (2.23), respec-

tively. Hence, using Corollary 2.7, Lemma 2.11, (2.24) and (2.46), we get

|∂iE �
ι(wι)(x)| ≤

� ∞

1

|Ψ(t)|(|∂iw(xι(t))|+ C2|w(xι(t))|

+ tC(|∂dw(xι(t))|+ C2|w(xι(t))|)) Bι(xι(t))dt (2.48)

≤ ||w||C1(B�
1)
(1 + C2)

� ∞

1

|Ψ(t)|(1 + Ct)dt

≤ ||w||C1(B�
1)
(1 + C2)(A0 + CA3),

with C, A0, A3, C2 are constants given in Corollary 2.7, (2.24), (2.25), (2.46), respectively, and

B�
1:= BR(0)∩

N�

κ=1

Bbκ− b
4
(xκ) . Taking C �

3:= (1 +C2)(A0 +CA3), from (2.31)–(2.35) and (2.46)–

(2.48), it follows that

|∂iE(w)(x)| ≤ (C2(|E �
κ(wκ)(x)|+ |E �

κ+1(wκ+1)(x)|)

+ |∂iE �
κ(wκ)(x)|+ |∂iE �

κ+1(wκ+1)(x)|) Jκ\J �
κ+1

(x)

+ (7C2(|E �
κ(wκ)(x)|+ |E �

κ+1(wκ+1)(x)|)

+ |∂iE �
κ(wκ)(x)|+ |∂iE �

κ+1(wκ+1)(x)|) J �
κ+1

(x)

≤ 2(A0C2 + C
�
3)||w||C1(B�

1) Jκ\J �
κ+1

(x)

+ 2(7A0C2 + C
�
3)||w||C1(B�

1) J �
κ+1

(x)

≤ 2(7A0C2 + C
�
3)||w||C1(B�

1)
, (2.49)

Taking C3 = 2(7A0C2 + C �
3), it follows (2.47). When x ∈ JN = (JN \ J �

1) ∪ J �
1, computing first

derivatives in (2.42) and proceeding in a similar way, it yields (2.47).

2.3 Properties of the integral operator I

Recall that the integral operator I is defined for each w ∈ C
0
(BR(0)) as

I E(w)(x) =

�

∗
E(w)(x+ z)ν(dz),

for all x ∈ BR(0). Some properties of I E(w) shall be analyzed below. These results will be

helpful in order to show some properties of the solutions to the non-linear Dirichlet problems (3.5)

and (3.21).
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Lemma 2.17. Let BR(0) be an open ball in d.

(i) If w ∈ C
0
(BR(0)), then

| I E(w)(x)| ≤ 2A0ν0||w||C0(BR(0)), for all x ∈ d
,

where ν0, A0 are as in (H2) and (2.24), respectively.

(ii) If w ∈ C
0
(BR(0)), then I E(w) ∈ C

0,α
( d).

(iii) If w ∈ C
1
(BR(0)), then ∂

∂xi
I E(w) ∈ C

0,α
( d) and ∂

∂xi
I E(w) = I ∂

∂xi
E(w), for each

i ∈ {1, . . . , d}.

Proof. Let w ∈ C
0
(BR(0)) and x, y ∈ d such that x �= y fixed. The proof of (i) is as follows. By

Proposition 2.15, we have

| I E(u)(x)| ≤
�

∗
|E(w)(x+ z)|ν(dz) ≤ 2A0ν0||w||C0(BR(0)). (2.50)

To prove (ii) we use that ν(dz) = κ(z)dz with κ ∈ C
0,α

( ∗), for some α ∈ (0, 1) fixed. Then,

from Proposition 2.15, doing variable chance and using that supp[E(w)] ⊂ BR+ b
2
(0), we get

| I E(w)(x)− I E(w)(y)| =
����
�

∗
(E(w)(x+ z)− E(w)(y + z))ν(dz)

����

=

����
�

∗
E(w)(z

�
)(κ(z

� − x)− κ(z
� − y))dz

�
����

≤
�

∗
|E(w)(z

�
)| |κ(z� − x)− κ(z

� − y)|dz�

≤ ||κ||C0,α( ∗)||x− y||α
�

B
R+ b

2 (0)

|E(w)(z
�
)|dz�

≤ K1||x− y||α. (2.51)

Here K1 = 2A0||w||C0(BR(0))||κ||C0,α( ∗)

� �
B

R+ b
2
(0) dz

�
, where A0 as in (2.24). This implies that

[I E(w)]C0,α(BR(0)) ≤ K1 < ∞. Note that from (2.51), it follows that I E(w) is Hölder continuous.

Using (2.50), we get

|| I E(w)||C0(BR(0)) ≤ 2A0ν(BR+ b
2
(0))||w||C0(BR(0)) < ∞. (2.52)

By (2.51) and (2.52) we conclude that I E(w) ∈ C
0,α

( d). Let w ∈ C
1
(BR(0)). To prove (iii), we

should first show that for each i ∈ {1, . . . , d},

E(w)(x+ z + ρei)− E(w)(x+ z)

ρ
, (2.53)
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is bounded by an integrable function with respect to the Lévy measure ν, for all ρ ∈ (0, 1). Since

E(w) ∈ C
1
c(

d), we get that

|E(w)(x+ z + ρei)− E(w)(x+ z)| ≤ C||w||C1(BR(0))ρ,

where C = C(2, R) > 0 is a constant as in (2.21). It follows that (2.53) is bounded by C||w||C1(BR(0)),

which is integrable with respect to the Lévy measure ν. Thus, by the dominated convergence The-

orem, it follows that

∂

∂xi

�

∗
E(w)(x+ z)ν(dz) =

�

∗
lim
ρ→0

E(w)(x+ z + ρei)− E(w)(x+ z)

ρ
ν(dz)

=

�

∗

∂

∂xi
E(w)(x+ z)ν(dz).

Finally, we proceed to show that
∂

∂xi
I E(w) ∈ C

0,α
( d), for each i ∈ {1, . . . , N}. Since E(w) ∈

C
1
c(BR(0)), then, by (i), we conclude

∂

∂xi
I E(w) ∈ C

0,α
( d), for each i ∈ {1, . . . , N}.

The following corollary is a consequence of the previous lemma. Recall that Dm, with 0 ≤
m ≤ k, is the set of all multi-indices of order m.

Corollary 2.18. Let BR(0) be an open ball in d and k ≥ 0 an integer. If w ∈ C
k
(BR(0)), then

I E(w) ∈ C
k,α

( d).

From Corollary 2.18, note that the integral operator I maps C
k
(BR(0)) into C

k,α
( d), with

k ≥ 0. The following two lemmas describe the behavior of the integral of E(w)(x + z) and

∂iE(w)(x+ z) with respect to the Lévy measure ν(dz) when x+ z ∈ BR(0)
c

and x ∈ BR(0).

Lemma 2.19. If w ∈ C
0
(BR(0)), then

����
�

{||x+z||>R}
E(w)(x+ z)ν(dz)

���� ≤ 2A0||w||C0(B�
1)

�

∗
B�(x+ z)ν(dz),

for all x ∈ BR(0), where A0 is a constant given in (2.24), B� = BR+ b
2
(0) \ BR(0) and B�

1: =

BR(0) ∩
�N

κ=1 Bbκ− b
4
(xκ).

Proof. Let x ∈ BR(0) and w ∈ C
0
(BR(0)) fixed. Then

����
�

{||x+z||>R}
E(w)(x+ z)ν(dz)

���� ≤
�

{||x+z||>R}
|E(w)(x+ z)|ν(dz). (2.54)
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By construction of the linear operator E (see (2.36)), we know that E(w)(x + z) = 0, for all

||x+ z|| ≥ R +
b

2
. Then,

�

{||x+z||>R}
|E(w)(x+ z)|ν(dz) =

�

∗
|E(w)(x+ z)| B�(x+ z)ν(dz), (2.55)

with B� = BR+ b
2
(0) \ BR(0). Since B� =

�N
κ=1 Jκ, where {Jκ}Nκ=1 is a sequence of disjoint sets

given in (2.38), we have that
�

∗
|E(w)(x+ z)| B�(x+ z)ν(dz) =

N�

κ=1

�

∗
|E(w)(x+ z)| Jκ(x+ z)ν(dz). (2.56)

Using (2.45), we get
�

∗
|E(w)(x+ z)| Jκ(x+ z)ν(dz) ≤ 2A0||w||C0(B�

1)

�

∗
Jκ(x+ z)ν(dz),

where B�
1 = BR(0) ∩

�N
κ=1 Bbκ− b

4
(xκ). Then,

N�

κ=1

�

∗
|E(w)(x+ z)| Jκ(x+ z)ν(dz) ≤ 2A0||w||C0(B�

1)

N�

κ=1

�

∗
Jκ(x+ z)ν(dz)

= 2A0||w||C0(B�
1)

�

∗
B�(x+ z)ν(dz). (2.57)

From (2.54)–(2.57), it follows
����
�

{||x+z||>R}
E(w)(x+ z)ν(dz)

���� ≤ 2A0||w||C0(B�
1)

�

∗
B�(x+ z)ν(dz).

Lemma 2.20. If w ∈ C
1
(BR(0)), then

����
�

{||x+z||>R}
∂iE(w)(x+ z)ν(dz)

���� ≤ C3||w||C1(B�
1)

�

∗
B�(x+ z)ν(dz),

for all x ∈ BR(0), where C3 is a constants given in (2.24) and Lemma 2.16, respectively, B� =

BR+ b
2
(0) \BR(0) and B�

1:= BR(0) ∩
�N

κ=1 Bbκ− b
4
(xκ).

Proof. Let x ∈ BR(0), i ∈ {1, . . . , d}, and w ∈ C
1
(BR(0)) fixed. Then

����
�

{||x+z||>R}
∂iE(w)(x+ z)ν(dz)

���� ≤
�

{||x+z||>R}
|∂iE(w)(x+ z)|ν(dz). (2.58)

Proceeding in a similar way than (2.55) and (2.56), it yields that
�

{||x+z||>R}
|∂iE(w)(x+ z)|ν(dz) =

N�

κ=1

�

∗
|∂iE(w)(x+ z)| Jκ(x+ z)ν(dz), (2.59)
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where {Jκ}Nκ=1 is a sequence of disjoint sets given in (2.38). From (2.49), we get that
�

∗
|∂iE(w)(x+ z)| Jκ(x+ z)ν(dz) ≤ C3||w||C1(B�

1)

�

∗
Jκ(x+ z)ν(dz), (2.60)

with C3 given in Lemma 2.16 and B�
1 = BR(0)∩

�N
κ=1 Bbκ− b

4
(xκ). From (2.58)–(2.60), we conclude

that
����
�

{||x+z||>R}
∂iE(w)(x+ z)ν(dz)

���� ≤ C3||w||C1(B�
1)

N�

κ=1

�

∗
Jκ(x+ z)ν(dz)

= C3||w||C1(B�
1)

�

∗
B�(x+ z)ν(dz),

with B� = BR+ b
2
(0) \BR(0).

Remark 2.21. Observe that when N → ∞, b → 0, since 0 < b <
1
2N . It follows that B� =

BR+ b
2
(0) \BR(0) −→

b→0
∅. Then,

�

∗
B�(x+ z)ν(dz) −→

b→0
0.

This implies that we can choose N > 1 arbitrary large in (2.10) but fixed, such that the argu-

ments realized in this chapter are valid, with the difference that b is small enough, and the value of
�

∗ B�(x + z)ν(dz) can be taken arbitrarily small. From the condition (2.30), we can also note

when N > 1 increases, the values bκ > 0 decreases, for all κ ∈ {1, . . . , N}. This implies that

B�
1 = BR(0) ∩

�N
κ=1 Bbκ− b

4
(xκ) −→

N→∞
∂BR(0), and hence that for each w ∈ C

0,1
(BR(0)) fixed, we

have that

||w||C0(B�
1)

−→
N→∞

||w||C0(∂BR(0)).



Chapter 3

Non-linear Dirichlet problems

In this chapter, we are interested in establishing the existence, uniqueness and regularity of the

solution to the non-linear integro-differential Dirichlet (NIDD) problem given in (1.15), i.e.




q�uε(x)− Γ

�
uε(x) + ψε(||D1

uε(x)||2) = h(x), in BR(0),

uε(x) = 0, on ∂BR(0).

(3.1)

We recall that

q
�
= q + ν0 > 0, (3.2)

with ν0 = ν( ∗) and

Γ
�
w(x) =

1

2
tr(σD

2
w(x)) + �D1

w(x), �γ�+
�

∗
E(w)(x+ z)ν(dz)

= L�
w(x) + I E(w)(x),

where �γ = γ −
�

∗ zν(dz), the continuous linear extension E : C
k,α

(BR(0)) −→ C
k,α
c ( d) is

defined in (2.36), and the penalizing function ψε : −→ is defined by

ψε(r) = ψ

�
r − 1

ε

�
, for r ∈ , (3.3)

with ψ ∈ C
∞
( ) such that






ψ(r) = 0, for r ≤ 0,

ψ(r) > 0, for r > 0,

ψ(r) = r − 1, for r ≥ 2,

ψ�(r) ≥ 0, ψ��(r) ≥ 0, for r ∈ .

(3.4)

47
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Recall the hypotheses (H1)–(H4) in pages 8 and 9, are in force all thorough this chapter.

The arguments to guarantee existence, uniqueness and regularity of the solution to the NIDD

problem (3.1) are based in the contraction fixed point Theorem which is recalled below; see [13,

Thm. 5.1 p.74]. If (B, || · ||B) is a Banach space with norm || · ||B, a mapping T : B −→ B is called

a contraction in (B, || · ||B) if there exists a constant 0 < K < 1 such that

||T (b1)− T (b2)||B ≤ K||b1 − b2||B, for all b1, b2 ∈ B.

Theorem 3.1 (Contraction fixed point Theorem). A contraction mapping in a Banach space (B, || ·
||B) has a unique fixed point, i.e., there exists a unique solution b∗ ∈ B to the equation T (b∗) = b∗.

To use this result, we define the operator Tε : C
0
(BR(0)) −→ C

0
(BR(0)) as

Tε(w) = V
ε
(·;w), for each w ∈ C

0
(BR(0)),

where the value function V ε(·, w) is as in (3.16). From Lemma 3.5, it follows

Tε(w) = V
ε
(·, w) ∈ C

2,α
(BR(0)) ⊂ C

0
(BR(0)), for each w ∈ C

0
(BR(0)).

Verifying that V ε(·;w) satisfies

||V ε
(·;w1)− V

ε
(·;w2)||C0(BR(0)) ≤

2A0

q�
ν(BR+ b

2
(0))||w1 − w2||C0(BR(0)),

for each w1, w2 ∈ C
0
(BR(0)); see Lemma 3.6. By Hypothesis (H4), we obtain that Tε is a contrac-

tion mapping in the Banach space (C0
(BR(0)), || · ||C0(BR(0))). By contraction fixed point Theorem;

Theorem 3.1, it yields that there exists a unique w∗ ∈ C
0
(BR(0)) such that Tε(w

∗) = w∗; see

Lemma 3.7. Using this and that V ε(;w) is related with the solution uε(·;w) to the non-linear

Dirichlet problem (3.5); see Lemma 3.5, we obtain the existence, uniqueness and regularity of the

solution uε to the NIDD problem (3.1); see Theorem 3.8.

Finally, in Subsection 3.2.1, we shall show some properties of the solution uε to the NIDD

problem (3.1), which shall be used in Chapter 4 to prove the existence and regularity of the solution

u to the Hamilton-Jacobi-Bellman equation




max{qu(x)− Γu(x)− h(x), ||D1

u(x)||2 − 1} = 0, in BR(0),

u(x) = 0, on ∂BR(0).
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3.1 Non-linear Dirichlet problem with an elliptic differential

operator

For each w ∈ C
0
(BR(0)), define �h(·;w) : BR(0) −→ as

�h(x;w) = h(x) + I E(w)(x), for all x ∈ BR(0).

Since h ∈ C
2
(BR(0)) and I E(w) ∈ C

0,α
( d), whenever w ∈ C

0
(BR(0)); see Hypothesis (H1)

and Lemma 2.17(ii) respectively, we have that �h(·;w) ∈ C
0,α

(BR(0)). Then, from [13, Thm 15.10

p. 380], we have the following result.

Lemma 3.2. For each w ∈ C
0
(BR(0)) and ε ∈ (0, 1) fixed, the non-linear Dirichlet problem





q�uε(x;w)− L�uε(x;w) + ψε(||D1 uε(x;w)||2) = �h(x;w), in BR(0),

uε(x;w) = 0, on ∂BR(0),

(3.5)

has a solution uε(·;w) ∈ C
2,α

(BR(0)).

To guarantee the existence of the solution uε(·;w) to the non-linear Dirichlet problem (3.5), we

only need to verify the conditions in [13, Thm 15.10 p.380], which is recalled below. A quasi-linear

operator Q is an operator of the form

Qv:=

�

ij

aij(x, v,D
1
v)∂ijv + b(x, v,D

1
v), with aij = aji. (3.6)

We say that the operator Q is elliptic in U , a subset of Ω × × d, if there exist functions

λ,Λ : U −→ , such that

0 < λ(x, η, ζ)||ξ||2 ≤
�

ij

aij(x, η, ζ)ξiξj ≤ Λ(x, η, ζ)||ξ||2, (3.7)

for all ξ = (ξ1, . . . , ξd) ∈ d\{0} and for all (x, η, ζ) ∈ U . Define E(x, η, ζ):=
�

ij aij(x, η, ζ)ζiζj .

If Q is elliptic in U , from (3.7), it follows that

λ(x, η, ζ)||ζ||2 ≤ E(x, η, ζ) ≤ Λ(x, η, ζ)||ζ||2, for all (x, η, ζ) ∈ U . (3.8)
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Before stating Theorem 3.3, we introduce the conditions that should satisfy the coefficients aij
and b of Q. Namely, 





aij = O(λ),

�ζ,D1
ζ aij� = O(λ),

D
1
η aij + ||ζ||−2�ζ,D1

ζ aij� = o(λ),

b = O(λ||ζ||2),

�ζ,D1
ζ b� ≤ O(λ||ζ||2),

D
1
η b+ ||ζ||−2�ζ,D1

ζ b� ≤ o(λ||ζ||2).

(3.9)

as ||ζ|| → ∞, uniformly for x ∈ Ω and bounded η. Recall that f = O(g) if only if there exists a

constant M such that for some x0, it satisfies |f(x)| ≤ M |g(x)|, for all x ≥ x0, and f = o(g) if

only if lim||x||→∞
f(x)
g(x) = 0. Furthermore, suppose that there exist non-negative constant µ1 and µ2

such that
b(x, η, ζ) sgn(η)

E(x, η, ζ) ≤ µ1||ζ||+ µ2

||ζ||2 , for all (x, µ, ζ) ∈ Ω× × d
. (3.10)

Theorem 3.3. Let Ω be a bounded domain in d and suppose that the operator Q in (3.6) is

elliptic, with coefficients aij, b ∈ C
1
(Ω× × d), which satisfy (3.9) together with the condition

(3.10). Then, if ∂Ω ∈ C
2,α, and ϕ ∈ C

2,α
(Ω), 0 < α < 1, there exists a solution v ∈ C

2,α
(Ω) of the

Dirichlet problem Qv = 0, in Ω, and v = ϕ, on ∂Ω.

Although Theorem 3.3 is valid for more general quasi-linear elliptic operators, we are interested

in the case when the coefficients of the quasi-linear elliptic operator are given by





aij(x, η, ζ):=

1
2σij,

b(x, η, ζ):= �h(x) + �ζ, �γ� − q�η − ψε(||ζ||2),
(3.11)

for all (x, η, ζ) ∈ BR(0)× × d.

Proof of Lemma 3.2. Existence. To guarantee the existence of the solution uε(·;w) ∈ C
2,α

(BR(0))

to the equation (3.5), with w ∈ C
0
(BR(0)) fixed, we only need to verify the conditions (3.9)

and (3.10), when aij and b are given by (3.11). Recall from Hypothesis (H3) that there exist real

numbers 0 < θ ≤ Θ such that the coefficients of the differential part of Γ satisfy

θ||ζ||2 ≤ �σζ, ζ� ≤ Θ||ζ||2, for all ζ ∈ d
.
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In our case we have that λ,Λ are θ,Θ, respectively. Then, since aij is a constant, it follows that

aij = O(θ), �ζ,Dζ aij� = O(θ) and D
1
η aij + ||ζ||−2�ζ,D1

ζ aij� = o(θ). Furthermore, by (3.4) and

since �h is in C
0,α

(BR(0)), we have that there exists a positive constant M such that for some ζ0 we

have that |b(x, η, ζ)| ≤ Mθ||ζ||2, for all ||ζ|| ≥ ||ζ0||, i.e., b = O(θ||ζ||2). Note that




�ζ,D1

ζ b(x, η, ζ)� = �ζ, �γ� − 2ψ�
ε(||ζ||2)||ζ||2,

D
1
η b(x, η, ζ) + ||ζ||−2�ζ,D1

ζ b(x, η, ζ)� = −q� − 2ψ�
ε(||ζ||2) + ||ζ||−2�ζ, �γ�.

Then, we can see that there exists a positive constant M , such that for some ζ0, we have that

|�ζ,D1
ζ b(x, η, ζ)�| ≤ Mθ||ζ||2, for all ||ζ|| ≥ ||ζ0||, and

lim
||ζ||→∞

D
1
η b(x, η, ζ) + ||ζ||−2�ζ,D1

ζ b(x, η, ζ)�
θ||ζ||2 = 0.

Finally, we prove that b, given by (3.11), satisfies the condition (3.10). By (H3), we have
1

Θ||ζ||2 ≤ 1

E(x, η, ζ) ≤ 1

θ||ζ||2 .

Then, since q� > 0 and ψε(||ζ||2) ≥ 0, we get

b(x, η, ζ) sgn(η)

E(x, η, ζ) =
−q�|η|− ψε(||ζ||2) sgn(η) + �ζ, �γ� sgn(η) + �h(x;w) sgn(η)

E(x, η, ζ)

≤ �ζ, �γ� sgn(η) + �h(x;w) sgn(η)
E(x, η, ζ)

≤
||ζ|| ||�γ||+ ||�h(·;w)||C0(BR(0))

θ||ζ||2 .

Taking µ1 =
||�γ||
θ and µ2 =

||�h(·;w)||
C0(BR(0))

θ we obtain the inequality given in (3.10). Therefore, from

Theorem 3.3, we conclude the existence of the solution uε(·;w) to the Dirichlet problem (3.5).

The uniqueness of the solution uε(·;w) to the non-linear Dirichlet problem (3.5) is obtained in

the following result.

Lemma 3.4. Let w ∈ C
0
(BR(0)) and ε ∈ (0, 1) fixed. Then, the non-linear Dirichlet problem (3.5)

has a unique solution.

Proof. Let w ∈ C
0
(BR(0)) and ε ∈ (0, 1) be fixed. If uε

1(·;w) and uε
2(·;w) are two solutions to

the non-linear Dirichlet problem (3.5), we define f(·):= uε
1(·;w) − uε

2(·;w) in BR(0), which is in

C
2,α

(BR(0)) and




q�f(x)− L�

f(x) + ψε(||D1
uε
1(x;w)||2)− ψε(||D1

uε
2(x;w)||2) = 0, in BR(0),

f(x) = 0, on ∂BR(0).

(3.12)
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Let x∗ ∈ BR(0) be the point where f attains its maximum. If x∗ ∈ ∂BR(0), from (3.12), it follows

that f(x) ≤ f(x∗) = 0. Suppose now that x∗ ∈ BR(0). Then, we have




D

1
f(x∗) = D

1 uε
1(x

∗;w)−D
1 uε

2(x
∗;w) = 0,

1
2 tr(σD

2
f(x∗)) ≤ 0,

which implies that ψε(||D1 u1(x∗;w)||2) − ψε(||D1 u2(x∗;w)||2) = 0. Evaluating x∗ in (3.12), we

get that 0 ≥ 1
2 tr(σD

2
f(x∗)) = q�f(x∗), and hence uε

1(x;w) − uε
2(x;w) ≤ f(x∗) ≤ 0 in BR(0).

By symmetry we have also that uε
2(·;w) − uε

1(·;w) ≤ 0 in BR(0). Therefore uε
1(·;w) = uε

2(·;w),
and then, the non-linear Dirichlet problem (3.5) has a unique solution.

The convex function gε :
d −→ was defined in (1.38) as gε(ζ) = ψε(||ζ||2), together with

its Legendre transform lε : d −→ , which is given by lε(η) = supζ{�η, ζ� − gε(ζ)}. The

Legendre transform lε satisfies




lε(η) ≥ ε

2 ||η||2 − gε

�
ε
2η
�
≥ ε

4 ||η||2,

lε(2ψ
�
ε(||ζ||2)ζ) = 2ψ�

ε(||ζ||2)||ζ||2 − ψε(||ζ||2),
(3.13)

for all η ∈ d. Since gε is differentiable, it follows that

gε(ζ) = sup
η
{�η, ζ� − lε(η)}. (3.14)

Then, the non-linear Dirichlet problem (3.5) can be written as





q�uε(x;w)− L�
E(uε)(x;w)

+ supη{�D1 uε(x;w), η� − lε(η)} = �h(x;w), in BR(0),

uε(x;w) = 0, on ∂BR(0).

(3.15)

Next we describe the stochastic control problem associated with this equation. A control process is

any d-dimensional, absolutely continuous process � = {�t : t ≥ 0} -adapted and satisfying �0 =

0 almost surely. Given an initial state x ∈ BR(0), we define the state process X = {Xt : t ≥ 0} by

Xt:= x+Wt + �γt− �t, for all t ≥ 0,

where W = {Wt : t ≥ 0} is a d-dimensional Brownian motion with Gaussian covariance matrix σ

and drift �γ is as in (3.2). The cost function corresponding of �, depending on w ∈ C
0
(BR(0)), is

given by

V
ε
� (x;w):= x

�� τBR(0)

0

e
−q�s

(�h(Xs;w) + lε(�̇s)) ds

�
,
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for all x ∈ BR(0), with τBR(0):= inf{t ≥ 0 : Xt /∈ BR(0)} and �̇t =
d�t
dt . The constant q� > 0 is

given in (3.2). Finally, the value function is defined by

V
ε
(x;w):= inf

�
V

ε
� (x;w). (3.16)

Recalling that uε(·;w) ∈ C
2,α

(BR(0)), with w ∈ C
0
(BR(0)), is the solution to the non-linear

Dirichlet problem (3.15).

Lemma 3.5. The solution uε(·;w) to the non-linear Dirichlet problem (3.15) agrees with V ε(·;w)
in BR(0).

Proof. Let � and x ∈ BR(0) be a control process and an initial state, respectively. Since uε(·;w) ∈
C

2,α
(BR(0)), by integration by parts and Itô’s formula (see [28, Cor. 2 and Thm. 33, pp. 68 and

81, respectively]), we have that

e
−q�(t∧τBR(0)) uε

(Xt∧τBR(0)
;w)− uε

(x;w)

=

� t∧τBR(0)

0

e
−q�s

((L� − q
�
)uε

(Xs;w))− �D1 uε
(Xs;w), �̇s)�ds+Mt∧τBR(0)

= −
� t∧τBR(0)

0

e
−q�s

(�h(Xs;w) + �D1 uε
(Xs;w), �̇s� − ψε(||D1 uε

(Xs;w)||2))ds+Mt∧τBR(0)
,

(3.17)

with Mt:=
� t

0 e
−q�s�D1 uε(Xs;w), dWs�, for all t ≥ 0. The process M = {Mt : t ≥ 0} is a local

martingale. Then, the process M
τBR(0) := {Mt∧τBR(0)

: t ≥ 0} is a x-martingale with M0 = 0.

Taking the expected value in (3.17), it follows that

x(e
−q�(t∧τBR(0)) uε

(Xt∧τBR(0)
;w)) = uε

(x;w)− x

�� t∧τBR(0)

0

e
−q�s

(�h(Xs;w)

+ �D1 uε
(Xs;w), �̇s� − ψε(||D1 uε

(Xs;w))||2))ds
�
. (3.18)

By definition of lε, it implies

x(e
−q�(t∧τBR(0)) uε

(Xt∧τBR(0)
;w)) ≥ uε

(x;w)− x

�� t∧τBR(0)

0

e
−q�s

(�h(Xs;w) + lε(�̇s))ds

�
.

Proceeding in a similar way as in (1.44) and (1.45), we obtain that uε(·;w) ≤ V ε(·;w). Since

ψ
�
ε(||D1 uε

(x;w)||2)D1 uε
(x;w),
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is a Lipschitz continuous function [19, Thm. 2.5, p. 287], we define the process �X = { �X : 0 ≤
t ≤ τBR(0)} as the unique strong solution to

�Xt = x+Wt + �γt−
� t∧τBR(0)

0

2ψ
�
ε(||D1 uε

( �Xs;w)||2)D1 uε
( �Xs;w)ds,

for all 0 ≤ t ≤ τBR(0). Then, its corresponding control process is given by

�̇
R
t = 2ψ

�
ε(||D1 uε

( �Xs;w)||2)D1 uε
( �Xs;w), for all 0 ≤ t ≤ τBR(0).

The process �X satisfies (3.18) and by (3.14), it follows that

x(e
−q�(t∧τBR(0)) uε

( �Xt∧τBR(0)
;w)) = uε

(x;w)− x

�� t∧τBR(0)

0

e
−q�s

(h( �Xs;w) + lε(�̇
R
s ))ds

�
,

Proceeding of a similar way that (1.44) and (1.45), we have that uε(x;w) = V ε,R(x;w). This ends

the proof.

Defining Tε : C
0
(BR(0)) −→ C

0
(BR(0)) as

Tε(w) = V
ε
(·;w), for each w ∈ C

0
(BR(0)), (3.19)

from Lemma 3.5, we see that Tε is well defined. Now, by Hypothesis (H4) and using the following

result; Lemma 3.6, we obtain that Tε is a contraction mapping in (C
0
(BR(0)), || · ||C0(BR(0))), and

hence, by contraction fixed point Theorem; seeTheorem 3.1, we have that Tε has a unique point in

C
0
(BR(0)); see Lemma 3.7.

Lemma 3.6. If w1, w2 ∈ C
0
(BR(0)), then

||V ε
(·;w1)− V

ε
(·;w2)||C0(BR(0)) ≤

2A0ν(BR+ b
2
(0))

q�
||w1 − w2||C0(BR(0)).

Proof. Let w1, w2 ∈ C
0
(BR(0)). For each x ∈ BR(0), we have

V
ε
(x;w1) = inf

�
{V ε

� (x;w1)− V
ε
� (x;w2) + V

ε
� (x;w2)}

≤ inf
�

�
sup
�
{V ε

� (x;w1)− V
ε
� (x;w2)}+ V

ε
� (x;w2)

�

≤ sup
�
{V ε

� (x;w1)− V
ε
� (x;w2)}+ V

ε
(x;w2). (3.20)
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Therefore V ε(x;w1) − V ε(x;w2) ≤ sup�{V ε
� (x;w1) − V ε

� (x;w2)}. Proceeding of the same way

than (3.20), it yields V ε(x;w2) − V ε(x;w1) ≤ sup�(V
ε
� (x;w2) − V ε

� (x;w1)). Then, using Propo-

sition 2.15 and that supp[E(w2 − w1)] ⊂ BR+ b
2
(0), we conclude that

|V ε
(x;w2)− V

ε
(x;w1)| ≤ sup

�
|V ε

� (x;w2)− V
ε
� (x;w1)|

≤ sup
�

x

� τBR(0)

0

e
−q�s |�h(Xs;w2)− �h(Xs;w1)| ds

= sup
�

x

� τBR(0)

0

e
−q�s | I E(w2 − w1)(Xs)| ds

≤ sup
�

x

� τBR(0)

0

e
−q�s

�

∗
|E(w2 − w1)(Xs + z)|ν(dz) ds

≤ x

� ∞

0

e
−q�s

�

B
R+ b

2
(0)

2A0||w2 − w1||C0(BR(0))ν(dz) ds

≤
2A0ν(BR+ b

2
(0))

q�
||w2 − w1||C0(BR(0)),

Lemma 3.7. Let Tε : C
0
(BR(0)) −→ C

0
(BR(0)) be as in (3.19). Then, there exists a unique

solution w∗ ∈ C
0
BR(0) to the equation Tε(w

∗) = w∗.

Proof. Recall that Tε : C
0
(BR(0)) −→ C

0
(BR(0)) is defined as Tε(w) = V ε(·;w), for each

w ∈ C
0
(BR(0)), where V ε(·;w) is given by (3.16). Then, by Hypothesis (H4) and Lemma 3.6, we

obtain that Tε is a contraction mapping in (C
0
(BR(0)), || · ||C0(BR(0))). Therefore, from contraction

fixed point Theorem; see Theorem 3.1, there exists a unique solution w∗ ∈ C
0
(BR(0)) to the

equation Tε(w
∗) = w∗.

3.2 Non-linear Dirichlet problem with an elliptic integro-differ-

ential operator

We begin this section showing the existence, regularity and uniqueness of the solution uε to the

non-linear integro-differential Dirichlet problem (NIDD) (3.21). To prove this, we use Lemmas

3.5–3.7, stated in the previous section.

Theorem 3.8. For each ε ∈ (0, 1) fixed, there exists a unique solution uε ∈ C
2,α

(BR(0)) to the
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NIDD problem




q�uε(x)− L�

uε(x)− I E(uε)(x) + ψε(||D1
uε(x)||2) = h(x), in BR(0),

uε(x) = 0, on ∂BR(0).

(3.21)

Proof. From Lemma 3.7, we know that there exists a unique solution w∗ ∈ C
0
BR(0) to the equa-

tion Tε(w
∗) = w∗, where Tε is given by (3.19). Furthermore, Lemmas 3.2 and 3.4 imply that there

exists a unique solution uε(·;w∗) ∈ C
2,α

(BR(0)) to the Dirichlet problem




q�uε(x;w∗)− L�uε(x;w∗) + ψε(||D1 uε(x;w∗)||2) = �h(x;w∗), in BR(0),

uε(x;w∗) = 0, on ∂BR(0),

and by Lemma 3.5, we obtain that

uε
(·;w∗

) = V
∗
(·;w∗

) = Tε(w
∗
) = w

∗
, in BR(0).

Therefore, taking uε as w∗, we conclude that uε is in C
2,α

(BR(0)), and it is the unique solution to

the NIDD problem (3.21).

3.2.1 Some properties of the solution to the NIDD problem

In this subsection, we shall show some properties of the solution uε to the NIDD problem (3.21),

such properties will in turn be used in Chapter 4 to establish the existence and regularity of the

solution to the HJB equation (1.1). Since h ∈ C
2
(BR(0)), the proposition below, establishes that

uε ∈ C
3,α

(BR(0)), and it satisfies (3.22).

Proposition 3.9. The solution uε to the NIDD problem (3.21) is in C
3,α

(BR(0)) and it satisfies,

1

2
tr(σD

2
∂iu

ε
(x)) = q

�
∂iu

ε
(x)− �D1

∂iu
ε
(x), �γ�

− ∂ih(x)− I ∂iE(u
ε
)(x) + ψ

�
ε(g(x))∂ig(x), (3.22)

with i, j ∈ {1, . . . , d}. Where

g(x):= ||D1
u
ε
(x)||2, for all x ∈ BR(0),

and its first and second derivatives are, respectively,




∂ig(x) = 2

�
k ∂ku

ε(x)∂2
iku

ε(x),

∂2
jig(x) = 2

�
k

�
∂2
kju

ε(x)∂2
kiu

ε(x) + ∂ku
ε(x)∂3

jiku
ε(x)

�
,

(3.23)

with i, j ∈ {1, . . . , d}.
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To verify this statement, we state three results on partial differential equations whose proofs

can be found in [13, Thm. 3.3, Corollary 6.9 and Thm. 6.17 pp. 33, 101 and 109, respectively].

Although Theorems 3.10–3.12 are valid for more general differential operators, we are interested

in the case that the differential operator L� is given by L�
v =

1
2 tr(σD

2
v) + �D1

v, �γ�.

Theorem 3.10 ([13], Thm. 3.3, p. 33). Suppose that u, v ∈ C
2
(BR(0)) ∩ C

0
(BR(0)) satisfying





q�u− L�

u = q�v − L�
v, in BR(0),

u = v, on ∂BR(0).

Then u = v in BR(0).

Theorem 3.11 ([13], Corollary 6.9, p. 101). If f ∈ C
0,α

(BR(0)), then the Dirichlet problem




q�v − L�

v = f, in BR(0),

v = 0, on ∂BR(0),

has a unique solution v ∈ C
2,α

(BR(0)).

Theorem 3.12 ([13], Thm. 6.17, p. 109). Let v ∈ C
2
(BR(0)) be a solution of the equation

q�v − L�
v = f in BR(0), where f ∈ C

k,α
(BR(0)). Then v ∈ C

k+2,α
(BR(0)).

Proof of Proposition 3.9. Defining f := h(x) + I E(uε)(x) − ψε(||D1
uε(x)||2), we see that f ∈

C
1,α

(BR(0)), since h ∈ C
2
(BR(0)) and ψε(||D1

uε||2), I E(w) ∈ C
1,α

(BR(0)). Then, by Theorem

3.11, we have 



q�v − L�

v = f, in BR(0),

v = 0, on ∂BR(0),

has a unique solution v ∈ C
2,α

(BR(0)). Also, from Theorem 3.12, it follows that v ∈ C
3,α

(BR(0)).

Furthermore, we know that uε ∈ C
2,α

(BR(0)) is the unique solution to




q�uε(x)− L�

uε(x) = h(x) + I E(uε)(x)− ψε(||D1
uε(x)||2), in BR(0),

uε = 0, on ∂BR(0).

Then, we get 



q�uε(x)− L�

uε(x) = q�v(x)− L�
v(x), in BR(0),

uε = v on ∂BR(0),

since f = h(x) + I E(uε)(x)− ψε(||D1
uε(x)||2). Using Theorem 3.10, we conclude that uε = v

and hence uε ∈ C
3,α

(BR(0)).
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From Lemma 1.5, it is easy to verify that uε is a positive function. This fact is proved below.

Proposition 3.13. The solution uε to the NIDD problem (3.21) is a positive function.

Proof. From the proof of Lemma 1.5, it is known uε(x) = x

�� t∧τBR(0)

0 e−qs(h( �Zs) + lε(�̇
R
s ))ds

�
,

where �Z and �̇R are given by (1.46) and (1.47), respectively. Since h is a positive function, it

follows uε(x) ≥ x

�� t∧τBR(0)

0 e−qs h( �Zs)ds
�
> 0. Therefore, uε > 0.

Now, we shall establish estimates for uε, ||D1
uε||, ψε(||D1

uε||2) and ||D2
uε||Lp(Br), with

Br ⊂ BR(0) an open ball, such that these estimates are independent of ε; see Lemmas 3.16, 3.21,

3.23 and 3.24. The reason for doing this is because in Chapter 4 we will need to extract a convergent

subsequence {uεκ}κ≥1 of {uε}ε∈(0,1) such that u:= limεκ→0 u
εκ is the solution of the HJB equation

(1.1).

The following result is based in the weak maximum principle for integral-differential equations.

Although Theorem 3.14 is valid for more general domains and integro-differential operators, see

for instance [12, Thm. 3.1.3], we are interested in the case that the domain and integro-differential

operator are BR(0) ⊆ d and q − L− I �
E(·), respectively, where q > 0 and






Lu(x):= 1
2 tr(σD

2
u(x)) + �D1

u(x), γ�,

I �
u(x):=

�
∗(E(u)(x+ z)− u(x)− �D1

u(x), z�)ν(dz).
(3.24)

Theorem 3.14 (Weak maximum principle). If w ∈ C
2
(BR(0)) ∩ C

0
c(BR+ b

2
(0)) satisfies qw −

Lw − I �
E(w) ≤ 0, in BR(0), then sup d E(w) = supB

R+ b
2
(0)\BR(0)[E(w)]+, where [E(w)]+:=

max{E(w), 0}.

Note that the NIDD problem (3.21) is equivalent to




quε(x)− Luε(x)− I �

E(uε)(x) + ψε(||D1
uε(x)||2) = h(x), in BR(0),

uε(x) = 0, on ∂BR(0).

(3.25)

Remark 3.15. Observe that the linear integro-differential Dirichlet problem




qη(x)− Lη(x)− I �

E(η)(x) = h(x), in BR(0),

η(x) = 0, on ∂BR(0),

(3.26)

has a unique solution η ∈ C
2,α

(BR(0)) [12, Thm. 3.1.12]. We can see that the linear integro-

differential Dirichlet problem (3.26) is equivalent to




q�η(x)− L�

η(x)− I E(η)(x) = h(x), in BR(0),

η(x) = 0, on ∂BR(0).



3.2. NON-LINEAR DIRICHLET PROBLEM WITH AN ELLIPTIC INTEGRO-DIFFERENTIAL OPERATOR 59

Since h + I E(η) ∈ C
1,α

(BR(0)) and using similar arguments that the proof of Proposition 3.9, it

is easy to verify that η ∈ C
3,α

(BR(0)).

Lemma 3.16. There exists a finite constant K5 > 0, independent of (ε, R), such that

u
ε
(x) ≤ K5, in BR(0).

Proof. Let uε, η ∈ C
3,α

(BR(0)) be solutions to (3.21) and (3.26), respectively. Note that

qu
ε
(x)− Luε

(x)− I �
E(u

ε
)(x)

≤ qu
ε
(x)− Luε

(x)− I �
E(u

ε
)(x) + ψε(||D1

u
ε
(x)||2) = h(x),

in BR(0). Then




q(uε − η)(x)− L(uε − η)(x)− I �

E(uε − η)(x) ≤ 0, in BR(0),

(uε − η)(x) = 0, on ∂BR(0).

(3.27)

From Theorem 3.14, it follows that (uε− η) ≤ supB
R+ b

2
(0)\BR(0)[E(uε− η)]+, in BR(0). We prove

below that uε − η ≤ 0 in BR(0). Let x∗ ∈ BR(0) be the point where uε − η in BR(0) attains its

maximum. Observe that (uε − η)(x∗) ≤ supB
R+ b

2
(0)\BR(0)[E(uε − η)]+. If x∗ ∈ ∂BR(0), we have

trivially

(u
ε − η) ≤ 0, in BR(0). (3.28)

Now, if x∗ ∈ BR(0), we shall prove the statement (3.28) by contradiction. Suppose

(u
ε − η)(x

∗
) > 0. (3.29)

Since uε − η attains its maximum at x∗ ∈ BR(0) and u− η = 0 on ∂BR(0), we get that





D
1
(uε − η)(x∗) = 0,

1
2 tr(σD

2
(uε − η)(x∗)) ≤ 0,

(uε − η)(x∗ + z)− (uε − η)(x∗) ≤ 0, for all x∗ + z ∈ BR(0).

(3.30)

Since (uε−η)(x∗+z)− (uε−η)(x∗) ≤ 0, for all x∗+z ∈ BR(0), and b is small enough, it follows

0 ≥ I �
E(u

ε − η)(x
∗
) =

�

{||x∗+z||≤R}
((u

ε − η)(x
∗
+ z)− (u

ε − η)(x
∗
))ν(dz)

+

�

{R<||x∗+z||≤R+ b
2}
(E(u

ε − η)(x
∗
+ z)− (u

ε − η)(x
∗
))ν(dz). (3.31)
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From (3.27) and (3.30), we have 0 ≥ 1
2 tr(σD

2
(uε − η)(x∗)) ≥ q(uε − η)(x∗)− I �

E(uε − η)(x∗).

Then, by (3.31), we get q(uε − η)(x∗) ≤ I �
E(uε − η)(x∗) ≤ 0, which is a contradiction of (3.29)

and hence uε − η ≤ 0 in BR(0). Since η is a function independent of ε, we conclude that uε ≤ K5

in BR(0), where K5:= ||η||C0(BR(0)).

From Remark 2.21, we know that we can choose N > 1 large enough in (2.10) but fixed, such

that 0 < b <
1
2N is small enough and the value of

�
∗ B�(x + z)ν(dz), is also arbitrarily small,

where B� = BR+ b
2
(0) \BR(0). Using this and Proposition 3.13, we have the following result.

Lemma 3.17. The solution uε to the NIDD problem (3.21) satisfies that I E(uε)(x) ≥ 0, for any

x ∈ BR(0).

Proof. Let us write I E(uε)(x) in the following way

I E(u
ε
)(x) =

�

{||x+z||≤R}
u
ε
(x+ z)ν(dz) +

�

{||x+z||>R}
E(u

ε
)(x+ z)ν(dz)

=

�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) +

�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz)

+

�

∗
E(u

ε
)(x+ z) B�(x+ z)ν(dz)

=

�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) +

�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz)

+

N�

κ=1

�

∗
E(u

ε
)(x+ z) Jκ(x+ z)ν(dz), (3.32)

where B� = BR+ b
2
(0) \ BR(0) =

�N
κ=1 Jκ, with {Jκ}Nκ=1 a sequence of disjoint sets given in

(2.38), B�
1 = BR(0) ∩

�N
κ=1 Bbκ− b

4
(xκ) and B�

2:= BR(0) \
�N

κ=1 Bbκ− b
4
(xκ). Recall that 0 < b <

minκ∈{1,...,N}
�

1
2N , bκ

�
, such that ∂BR(0) ⊆

�N
κ=1 Bbκ− b

2
(xκ), with xκ ∈ ∂BR(0). Estimating the

last term on the right hand side of (3.32), we have
N�

κ=1

�

∗
E(u

ε
)(x+ z) Jκ(x+ z)ν(dz) =

N�

κ=1

�

{E(uε)(x+z)≥0}
E(u

ε
)(x+ z) Jκ(x+ z)ν(dz)

−
N�

κ=1

�

{E(uε)(x+z)<0}
|E(u

ε
)(x+ z)| Jκ(x+ z)ν(dz).

Using (2.45), it follows
�

{E(uε)(x+z)<0}
|E(u

ε
)(x+ z)| Jκ(x+ z)ν(dz)

≤ 2A0||uε||C0(B�
1)

�

{E(uε)(x+z)<0}
Jκ(x+ z)ν(dz), (3.33)
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for each κ ∈ {1, . . . , N}. From (3.32) and (3.33), we get
�

∗
E(u

ε
)(x+ z)ν(dz)

≥
�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) +

�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz)

+

N�

κ=1

�

{E(uε)(x+z)≥0}
E(u

ε
)(x+ z) Jκ(x+ z)ν(dz)

− 2A0||uε||C0(B�
1)

N�

κ=1

�

{E(uε)(x+z)<0}
JN (x+ z)ν(dz)

=

�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) +

�

{E(uε)(x+z)≥0}
E(u

ε
)(x+ z) B�(x+ z)ν(dz)

+

�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz)− 2A0||uε||C0(B�

1)

�

{E(uε)(x+z)<0}
B�(x+ z)ν(dz). (3.34)

By Proposition 3.13, we know that uε > 0 in BR(0). This implies
�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) > 0 and

�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz) > 0.

Observe that
�

∗
u
ε
(x+ z) B�

2
(x+ z)ν(dz) ≥

����
�

∗
u
ε
(x+ z) B�

1
(x+ z)ν(dz)

− 2A0||uε||C0(B�
1)

�

{E(uε)(x+z)<0}
B�(x+ z)ν(dz)

����, (3.35)

because
�

∗ B�(x + z)ν(dz) can be chosen arbitrarily small, and ||uε||C0(B�
1)

≤ ||uε||C0(BR(0)),

where ||uε||C0(BR(0)) is bounded by a constant independent of ε; see Lemma 3.16. From (3.34) and

(3.35), we conclude that
�

∗ E(uε)(x+ z)ν(dz) ≥ 0.

Defining η1 as

η1(x) =





eK6R2 − eK6||x||2 , if x ∈ BR(0),

E(uε)(x), if x ∈ BR(0)
c,

(3.36)

with K6 > 0 a constant, we can see that η1 ∈ C
2
(BR(0)) ∩ C

0
(BR(0)

c) is a positive concave

function in BR(0). We have the following result.

Lemma 3.18. Let η1 be defined as in (3.36). Then, choosing K6 > 0 large enough,

qη1(x)− Lη1(x)− I �
η1(x) ≥ C0(1 + ||x||2) ≥ h(x), in BR(0). (3.37)
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This statement will be helpful in finding a constant, independent of ε, which bounds by above

|∂ϑuε| in ∂BR(0). Recall that ∂ϑf denotes the directional derivative of the function f with respect

to the unit vector ϑ ∈ d, i.e. ∂ϑf(x):= limδ→0
f(x)−f(x−δϑ)

h , with x ∈ d.

Proof of Lemma 3.18. Let η1 be as in (3.36). Calculating their first and second derivatives in BR(0),




∂iη1(x) = −2K6 e
K6||x||2 xi,

∂2
iiη1(x) = −2K6 e

K6||x||2(1 + 2K6x
2
i ),

∂2
jiη1(x) = −4K2

6 e
K6||x||2 xixj,

(3.38)

with i, j ∈ {1, . . . , d} and i �= j, by (H3) and (3.38), we see that

−Lη1(x) = 2K6 e
K6||x||2

�
1

2

�

i

σii +K6�σx, x�+ �x, γ�
�

≥ 2K6 e
K6||x||2

�
K6θ||x||2 − Λ||x||+ θd

2

�
. (3.39)

Since η1 is a positive concave function in BR(0), we have that

η1(x+ z)− η1(x) ≤ �D1
η1(x), z�, for all ||x+ z|| < R.

Then, using Lemma 2.19, we obtain the following inequalities

− I �
η1(x) = −

�

{||x+z||<R}
(η1(x+ z)− η1(x)− �D1

η1(x), z�)ν(dz)

−
�

{||x+z||≥R}
(E(u

ε
)(x+ z)− η1(x)− �D1

η1(x), z�)ν(dz)

≥ −
�

{||x+z||≥R}
(E(u

ε
)(x+ z)− η1(x)− �D1

η1(x), z�)ν(dz)

≥ −
�

{||x+z||≥R}
|E(u

ε
)(x+ z)|ν(dz) + η1(x)

�

{||x+z||≥R}
ν(dz)

+ 2K6 e
K6||x||2

�

{||x+z||≥R}
�x, z�ν(dz)

≥ −2K6

�
A0

�

∗
B�(x+ z)ν(dz) + ν0 e

K6||x||2 ||x||
�
. (3.40)

Recall that B� = BR+ b
2
(0) \BR(0) and ν0, A0 are constants given by (H2) and (2.24), respectively.

Using (3.39)–(3.40), we get that

qη1(x)− Lη1(x)− I �
η1(x) ≥ 2K6 e

K6||x||2
�
θK6||x||2 −

�
Λ+ ν0

�
||x||+ θd

2

�

− 2K6A0

�

∗
B�(x+ z)ν(dz),

for all x ∈ BR(0). From (H1) and choosing K6 large enough, it implies (3.37).
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We obtain the following result as a consequence of the previous lemma.

Lemma 3.19. Let K6 > 0 be the constant given in Lemma 3.18. Then

|∂ϑuε
(x)| ≤ 2K6R e

K6R2
, in ∂BR(0).

Proof. Let x ∈ ∂BR(0), ϑ a unit vector and η1 as in (3.36). Since





q(uε − η1)− L(uε − η1)− I �
(E(uε)− η1) ≤ 0, in BR(0),

supB
R+ b

2
\BR(0)[E(uε)− η1]

+ = 0,

by the weak maximum principle, Theorem 3.14, it follows that uε ≤ η1. Since these functions

agree in BR(0)
c and uε > 0, we get that

∂ϑu
ε,R

(x) = lim
h→0

uε(x)− uε(x− hϑ)

h
= lim

h→0

−uε(x− hϑ)

h
≤ 0,

∂ϑη1(x) = lim
h→0

−η1(x− hϑ)

h
≤ lim

h→0

−uε(x− hϑ)

h
= ∂ϑu

ε
(x).

Then ∂ϑη1(x) ≤ ∂ϑu
ε(x) ≤ 0. It implies that |∂ϑuε(x)| ≤ ||D1

η1(x)|| in ∂BR(0). Recalling

the definition of η1 and its first derivatives, see (3.38), it follows that |∂ϑuε(x)| ≤ 2K6R eK6R2 in

∂BR(0).

Before showing that ||D1
uε|| is bounded by a positive constant in BR(0), which is independent

of ε; see Lemma 3.21, we establish an auxiliary result.

Lemma 3.20. Define the auxiliary function ϕ : BR(0) −→ as

ϕ(x):= ||D1
u
ε||2 −Mu

ε
(x), for all x ∈ BR(0), (3.41)

where M := maxx∈BR(0) ||D1
uε(x)||. Then

1

2

�

ij

σij∂
2
ijϕ(x) ≥ ψ

�
ε(g(x))(2�D1

ϕ(x),D
1
u
ε
(x)�+M ||D1

u
ε
(x)||2)

− (K8 +MK9)||D1
u
ε
(x)||−M(K7 +K10)− �D1

ϕ(x), �γ�, (3.42)

for all x ∈ BR(0), where the constants K7, . . . , K10 are independent of ε.

Proof. Note that ϕ ∈ C
2,α

(BR(0)), since uε ∈ C
3,α

(BR(0)). Then, calculating first and second

derivatives of ϕ in BR(0),




∂iϕ(x) = 2

�
k ∂ku

ε(x)∂2
kiu

ε(x)−M∂iu
ε(x),

∂2
ijϕ(x) = 2

�
k(∂

2
kju

ε(x)∂2
kiu

ε(x) + ∂ku
ε(x)∂3

kiju
ε(x))−M∂2

iju
ε(x),
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we have that

1

2

�

ij

σij∂
2
ijϕ(x) =

�

kij

σij∂
2
kju

ε
(x)∂

2
kiu

ε
(x) +

�

kij

σij∂ku
ε
(x)∂

3
kiju

ε
(x))− M

2

�

ij

σij∂
2
iju

ε
(x).

Using (3.21) and (3.22), we get for each x ∈ BR(0),





−M
2

�
ij σij∂

2
iju

ε(x) = M(h(x)− q�uε(x)− ψε(g(x)) + �D1
uε(x), �γ�+ I E(uε)(x)),

1
2

�
kij σij∂ku

ε(x)∂3
kiju

ε(x)) = q�||D1
uε(x)||2 − �D1

uε(x),D
1
h(x)�

+ψ�
ε(g(x))�D1

uε(x),D
1
g(x)� − �D2

uε(x)D
1
uε(x), �γ�

−
�

i ∂iu
ε(x)

�
∗ E(∂iu

ε)(x+ z)ν(dz),

where the first and second derivatives of g(x) are given in (3.23). Then,

1

2

�

ij

σij∂
2
ijϕ(x)

=

�

kij

σij∂
2
kju

ε
(x)∂

2
kiu

ε
(x)− 2�D1

u
ε
(x),D

1
h(x)�+Mh(x)

+ q
�
(2||D1

u
ε
(x)||2 −Mu

ε
(x)) + 2ψ

�
ε(g(x))�D1

u
ε
(x),D

1
g(x)� −Mψε(g(x))

+M

�

∗
E(u

ε
)(x+ z)ν(dz)− 2

�

i

∂iu
ε
(x)

�

∗
E(∂iu

ε
)(x+ z)ν(dz)

− 2�D2
u
ε
(x)D

1
u
ε
(x), �γ�+M�D1

u
ε
(x), �γ�. (3.43)

Lemma 3.16 implies

q
�
(2||D1

u
ε
(x)||2 −Mu

ε
(x)) ≥ −MK7, (3.44)

where K7:= q�K5. The constant K5 is as in Lemma 3.16. By (H1) and (H3), it follows

−K8||D1
u
ε
(x)|| ≤ θ||D2

u
ε
(x)||2 −K8||D1

u
ε
(x)||

≤
�

kij

σij∂
2
kju

ε
(x)∂

2
kiu

ε
(x)− 2�D1

u
ε
(x),D

1
h(x)�+Mh(x), (3.45)

where K8:= 2C0. Recall that the constants θ and C0 are given in (H1) and (H3), respectively. Since

ψε(g(x)) ≤ ψ�
ε(g(x))g(x) and ∂iϕ(x) = 2

�
k ∂ku

ε(x)∂2
kiu

ε(x)−M∂iu
ε(x) for all i ∈ {1, . . . , d},

we have that





�D1
ϕ(x), �γ� = 2�D2

uε(x)D
1
uε(x), �γ� −M�D1

uε(x), �γ�,

2ψ�
ε(g(x))�D1

uε(x),D
1
g(x)� −Mψε(g(x))

≥ ψ�
ε(g(x))(2�D1

ϕ(x),D
1
uε(x)�+M ||D1

uε(x)||2).

(3.46)
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Since
�

∗ E(uε)(x+ z)ν(dz) ≥ 0 and from Lemma 2.20, it follows that

− ||D1
u
ε
(x)||MK9 −MK10

≤ M

�

∗
E(u

ε
)(x+ z)ν(dz)− 2

�

i

∂iu
ε
(x)

�

∗
E(∂iu

ε
)(x+ z)ν(dz), (3.47)

where K9:= d
�
ν0+dC3

�
∗ B�(x+z)ν(dz)

�
, and K10:= dC3K5

�
∗ B�(x+z)ν(dz). Recall that

the constants ν0 and C3 are as in (H2) and Lemma 2.20, respectively, and B� = BR+ b
2
(0) \ BR(0).

Applying (3.44), (3.45), (3.46) and (3.47) in (3.43), it yields (3.42).

Lemma 3.21. There exists a constant K11 > 0 independent of ε such that

||D1
u
ε
(x)|| ≤ K11, in BR(0).

Proof. Consider the auxiliary function ϕ as in (3.41). Observe that if

M = sup

x∈BR(0)

||D1
u
ε
(x)|| ≤ 1,

we obtain a bound for M that is independent of ε. We assume henceforth that M ≥ 1. Taking

x∗ ∈ BR(0) as a point where ϕ attains its maximum on BR(0), it suffices to bound ||D1
uε(x∗)||2

for a constant independent of ε, since

||D1
u
ε
(x)||2 ≤ ||D1

u
ε
(x

∗
)||2 +M(u

ε
(x

∗
) + u

ε
(x)) ≤ ||D1

u
ε
(x

∗
)||2 + 2MK5, (3.48)

for all x ∈ BR(0). The last inequality in (3.48) is obtained from Lemma 3.16. If x∗ ∈ ∂BR(0), by

Lemma 3.19, it is easy to deduce ϕ(x∗) = ||D1
uε(x∗)||2 ≤ 2K6R eK6R2 , where K6 is as in Lemma

3.19. Then, from (3.48),

||D1
u
ε
(x)||2 ≤ 2K6R e

K6R2
+2MK5, for all x ∈ BR(0).

Note that for all �, there exists x0 ∈ BR(0) such that (M − �)2 ≤ ||D uε(x0)||2. Then

(M − �)
2 ≤ 2K6R e

K6R2
+2MK5, for all x ∈ BR(0). (3.49)

Letting � → 0 in (3.49), it follows M ≤ 2K6R eK6R2
+2K5, where 2K6R eK6R2

+2K5 is a constant

independent of ε. When x∗ ∈ BR(0), we have that D1
ϕ(x∗) = 0 and 1

2

�
ij σij∂ijϕ(x

∗) ≤ 0. Then,

from (3.42), we get

0 ≥ Mψ
�
ε(g(x

∗
))||D1

u
ε
(x

∗
)||2 − (K8 +MK9)||D1

u
ε
(x

∗
)||−M(K7 +K10). (3.50)
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If ψ�
ε(g(x

∗)) < 1 <
1

ε
, by definition of ψε, given in (3.3), we obtain that ψε(g(x

∗)) ≤ 1. It follows

that ||D1
uε(x∗)|| ≤ 2ε+1 ≤ 2. Then, by (3.48) and arguing as in (3.49), we obtain M ≤ 4+2K5,

where 4 + 2K5 is a constant independent of ε. If ψ�
ε(g(x

∗)) ≥ 1, from (3.50), we get

0 ≥ M ||D1
u
ε
(x

∗
)||2 − (K8 +MK9)||D1

u
ε
(x

∗
)||−M(K7 +K10),

and hence

0 ≥
�
||D1

u
ε
(x

∗
)||− K8 +MK9 + ((K8 +MK9)

2 + 4M2(K7 +K10))
1
2

2M

�

×
�
||D1

u
ε
(x

∗
)||− K8 +MK9 − ((K8 +MK9)

2 + 4M2(K7 +K10))
1
2

2M

�
. (3.51)

Since K8 +MK9 − ((K8 +MK9)
2 + 4M2(K7 +K10))

1
2 ≤ 0, it implies

||D1
u
ε
(x

∗
)||− K8 +MK9 − ((K8 +MK9)

2 + 4M2(K7 +K10))
1
2

2M
≥ 0.

From (3.51), it yields

||D1
u
ε
(x

∗
)|| ≤ K8 +MK9 + ((K8 +MK9)

2 + 4M2(K7 +K10))
1
2

2M

≤ 2(K8 +MK9) + 2M(K7 +K10)
1
2

2M

≤ K8 +K9 + (K7 +K10)
1
2 .

Using (3.48) and a similar argument that (3.49), we conclude

M ≤ (K8 +K9 + (K7 +K10)
1
2 )

2
+ 2K5,

where (K8 + K9 + (K7 + K10)
1
2 )2 + 2K5 is a constant independent of ε. Therefore, in this case

we also have that there exists a constant K11 > 0, independent of ε, such that ||D1
uε(x)|| ≤ K11

in BR(0).

In Lemma 3.23, we shall establish that ψε(||D1
uε||2) is locally bounded by a constant indepen-

dent of ε. Previous, we give an auxiliary result.

Lemma 3.22. For each cutoff function ξ in C
∞
c (Br) satisfying 0 ≤ ξ ≤ 1, with Br ⊂ BR(0), define

the function φ : Br −→ as

φ(x) = ξ(x)ψε(g(x)). (3.52)
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Then,

1

2

�

ij

σij∂
2
ijφ(x) ≥ −K16(K15 +K14||D2

u
ε
(x)||)

+ ψ
�
ε(g(x))

�
θξ(x)||D2

u
ε
(x)||2 − (2K11||�γ||+K17)||D2

u
ε
(x)||

− (2K18 + dK11K13 +K11K15K16) + 2�D1
φ(x),D

1
u
ε
(x)�

�
, (3.53)

for all x ∈ Br, where K11, . . . , K18 are positive constants independent of ε.

Proof. Since uε(·) and ||D1
uε(·)|| are uniformly bounded with respect ε in BR(0) (Lemmas 3.16

and 3.21), we have 



uε(x) ≤ K5,

||D1
(uε)(x)|| ≤ K11,

in x ∈ Br. (3.54)

Furthermore, from Lemmas 2.19 and 2.20, we see that
����
�

∗
E(u

ε
)(x+ z)ν(dz)

���� ≤ K12, (3.55)
����
�

∗
E(∂iu

ε
)(x+ z)ν(dz)

���� ≤ K13, (3.56)

for all x ∈ Br and for each i ∈ {1, . . . , d}, where

K12:= K5

�
ν0 + 2A0

�

∗
B�(x+ z)ν(dz)

�
,

K13:= K11ν0 + C3(K5 + dK11)

�

∗
B�(x+ z)ν(dz),

are constants independent of ε. Recall ν0, A0, C3, K5 and K11 are constants given in (H2), (2.24)

and Lemmas 2.16, 3.16 and 3.21, respectively. Then, using the Hypothesis (H1), (3.54) and (3.55)

in (3.21), we have that

ψε(g(x)) = h(x)− q
�
u
ε
(x) + L�

u
ε
(x) +

�

∗
E(u

ε
)(x+ z)ν(dz)

≤ K14||D2
u
ε
(x)||+K15, (3.57)

for all x ∈ Br, where g(x) = ||D1
uε(x)||2 and

K14:=

�

ij

|σij|,

K15:= (C0 + q
�
K5) +K11||�γ||+K12,
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Then, calculating the first and second derivatives of φ in Br,




∂iφ(x) = ψε(g(x))∂iξ(x) + ξ(x)ψ�
ε(g(x))∂ig(x),

∂2
jiφ(x) = ψε(g(x))∂

2
jiξ(x) + ψ�

ε(g(x))∂iξ(x)∂jg(x) + ξ(x)ψ��
ε (g(x))∂jg(x)∂ig(x)

+ψ�
ε(g(x))∂jξ(x)∂ig(x) + ξ(x)ψ�

ε(g(x))∂
2
jig(x),

where i, j ∈ {1, . . . , d} and the derivatives of g(x) are given in (3.23), by (3.43), we get
1

2

�

ji

σji∂
2
jiφ(x) =

ψε(g(x))

2

�

ji

σji∂
2
jiξ(x) +

ξ(x)ψ��
ε (g(x))

2

�

ji

σji∂jg(x)∂ig(x)

+ ψ
�
ε(g(x))

��

ji

σji∂iξ(x)∂jg(x)

+ ξ(x)

�

jik

σji

�
∂
2
kju

ε
(x)∂

2
kju

ε
(x) + ∂ku

ε
(x)∂

3
jiku

ε
(x)

��

=
ψε(g(x))

2

�

ji

σji∂
2
jiξ(x) +

ξ(x)ψ��
ε (g(x))

2

�

ji

σji∂jg(x)∂ig(x)

+ ψ
�
ε(g(x))

��

ji

σji∂iξ(x)∂jg(x) + ξ(x)

�

jik

σji∂
2
kju

ε
(x)∂

2
kju

ε
(x)

+ 2ξ(x)

�
q
�||D1

u
ε
(x)||2 − �D1

u
ε
(x),D

1
h(x)�

+ ψ
�
ε(g(x))�D1

u
ε
(x),D

1
g(x)� − �D2

u
ε
(x)D

1
u
ε
(x), �γ�

−
�

i

∂iu
ε
(x)

�

∗
E(∂iu

ε
)(x+ z)ν(dz)

��
. (3.58)

From Hypothesis (H3) and (3.57), it implies

ψε(g(x))

2
tr(σD

2
ξ(x)) +

ξ(x)ψ��
ε (g(x))

2
�σD

1
g(x),D

1
g(x)�

≥ −K16(K15 +K14||D2
u
ε
(x)||) + θξ(x)ψ��

ε (g(x))

2
||D1

g(x)||2,

where K16 > 0 is a constant that only depends on ξ. Since ξ(x) ≥ 0 and ψ��
ε (x) ≥ 0, it follows

−K16(K15 +K14||D2
u
ε
(x)||)

≤ ψε(g(x))

2
tr(σD

2
ξ(x)) +

ξ(x)ψ��
ε (g(x))

2
�σD

1
g(x),D

1
g(x)�, (3.59)

Using Hypothesis (H3) and (3.54), it implies

−K17||D2
u
ε
(x)||+ θξ(x)||D2

u
ε
(x)||2

≤
�

ji

σji∂iξ(x)∂jg(x) + ξ(x)

�

jik

σji∂
2
kju

ε
(x)∂

2
kju

ε
(x), (3.60)
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where K17:= 2dK11K14K16 is a constant that only depends on ξ. From Hypothesis (H1), it follows

−K18 ≤ q
�||D1

u
ε
(x)||2 − �D1

u
ε
(x),D

1
h(x)�. (3.61)

where K18:= K11C0 is a constant independent of ε. Since

∂iφ(x) = ψε(g(x))∂iξ(x) + ξ(x)ψ
�
ε(g(x))∂ig(x),

we see

ξ(x)ψ
�
ε(g(x))�D1

g(x),D
1
u
ε
(x)� = �D1

φ(x),D
1
u
ε
(x)� − ψε(g(x))�D1

ξ(x),D
1
u
ε
(x)�.

From (3.57), it yields

ξ(x)ψ
�
ε(g(x))�D1

g(x),D
1
u
ε
(x)�

≥ �D1
φ(x),D

1
u
ε
(x)� −K16K11(K15 +K14||D2

u
ε
(x)||). (3.62)

Finally, (3.54) and (3.56) implies

−K11||�γ|| ||D2
u
ε
(x)||− dK11K13

≤ −�D2
u
ε
(x)D

1
u
ε
(x), �γ� −

�

i

∂iu
ε
(x)

�

∗
E(∂iu

ε
)(x+ z)ν(dz). (3.63)

Then, applying (3.59), (3.60), (3.61), (3.62) and (3.63) in (3.58), we conclude

1

2
tr(σD

2
φ(x)) ≥ −K16(K15 +K14||D2

u
ε
(x)||)

+ ψ
�
ε(g(x))(θξ(x)||D2

u
ε
(x)||2 − (2K11||�γ||ξ(x) +K17)||D2

u
ε
(x)||

− (2K18ξ(x) + dK11K13 +K11K15K16) + 2�d1
φ(x),D

2
u
ε
(x)�)

≥ −K16(K15 +K14||D1
u
ε
(x)||)

+ ψ
�
ε(g(x))(θξ(x)||D2

u
ε
(x)||2 − (2K11||�γ||+K17)||D2

u
ε
(x)||

− (2K18 + dK11K13 +K11K15K16) + 2�D1
φ(x),D

1
u
ε
(x)�).

Lemma 3.23. Let Br ⊂ BR(0) be an open ball. For each ξ ∈ C
∞
c (Br) satisfying 0 ≤ ξ ≤ 1, there

exist non-negative constants K14, K15, K19, K20 independent of ε, such that

ξ(x)ψε(||D1
u
ε
(x)||2) ≤ K14(K19 + (θK20)

1
2 )

θ
+K15,

for all x ∈ Br. The constant θ > 0 is as in the Hypothesis (H3).
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Proof. Let Br ⊂ BR(0) and for each cutoff function ξ in C
∞
c (Br) satisfying 0 ≤ ξ ≤ 1, define φ as

in (3.52). Taking x∗ ∈ Br as a point where φ attains its maximum on Br, it suffices to bound φ(x∗)

by a constant independent of ε. If x∗ ∈ ∂Br then φ(x) ≤ φ(x∗) = 0. When x∗ ∈ BR(0), we have

D
1
φ(x

∗
) = 0 and

1

2

�

ij

σij∂
2
ijφ(x

∗
) ≤ 0.

Then, from (3.53), we get that

0 ≥ −K16(K15 +K14||D2
u
ε
(x

∗
)||) + ψ

�
ε(g(x

∗
))
�
θξ(x

∗
)||D2

u
ε
(x

∗
)||2

− (2K11||�γ||+K17)||D2
u
ε
(x

∗
)||− (2K18 + dK11K13 +K11K15K16)

�
, (3.64)

where K11, . . . , K18 are constants independent of ε. If ψ�
ε(g(x

∗)) ≤ 1 <
1

ε
, by the definition of ψε,

given in (3.3), we obtain that ψε(g(x
∗)) ≤ 1. Then,

φ(x) ≤ φ(x
∗
) = ξ(x

∗
)ψε(g(x

∗
)) ≤ 1.

In the case where ψ�
ε(g(x

∗)) ≥ 1, from (3.64), we get that

0 ≥ ψ
�
ε(g(x

∗
))(θξ(x

∗
)||D2

u
ε
(x

∗
)||2 −K19||D2

u
ε
(x

∗
)||−K20),

where

K19:= 2K11||�γ||+K17 +K14K16,

K20:= 2K18 + dK11K13 +K11K15K16 +K15K16,

are constants that only depend on ξ. Since ψ�
ε(x

∗) ≥ 0, this implies that

0 ≥ θξ(x
∗
)||D2

u
ε
(x

∗
)||2 −K19||D2

u
ε
(x

∗
)||−K20,

and hence

0 ≥
�
||D2

u
ε
(x

∗
)||− K19 + (K2

19 + 4θξ(x∗)K20)
1
2

2θξ(x∗)

�

×
�
||D2

u
ε
(x

∗
)||− K19 − (K2

19 + 4θξ(x∗)K20)
1
2

2θξ(x∗)

�
.

Since K19 − (K2
19 + 4θξ(x∗)K20)

1
2 ≤ 0, it follows

||D2
u
ε
(x

∗
)|| ≤ K19 + (K2

19 + 4θξ(x∗)K20)
1
2

2θξ(x∗)
.
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Therefore, from (3.57), we conclude that

φ(x) ≤ φ(x
∗
)

= ξ(x
∗
)ψε(g(x

∗
))

≤ ξ(x
∗
)(K14||D2

u
ε
(x

∗
)||+K15)

≤ ξ(x
∗
)

�
K14

K19 + (K2
19 + 4θξ(x∗)K20)

1
2

2θξ(x∗)
+K15

�

≤ K14(K19 + (θK20)
1
2 )

θ
+K15.

We finish the proof.

Lemma 3.24. Let 1 ≤ p < ∞ and β ∈ (0, 1) such that Bβ�r ⊂ BR(0), with β� = β+1
2 . There exists

a constant K23 = K23(βr, p) > 0 independent of ε such that

||D2
u
ε||Lp(Bβr) ≤ K23

�
||h||Lp(Bβ�r) + || I E(u

ε
)||Lp(Bβ�r)

+ ||ξψε(||D1
u
ε||)||Lp(Bβ�r) + ||D1

u
ε||Lp(Bβ�r) + ||uε||Lp(Bβ�r)

�
. (3.65)

Proof. Let r > 0, β ∈ (0, 1) and ξ ∈ C
∞
c (Br) a cutoff function such that 0 ≤ ξ ≤ 1, ξ = 1 on

Bβr and ξ = 0 on Bc
β�r, with β� = β+1

2 . Suppose that ||D1
ξ|| ≤ K21 and ||D2

ξ|| ≤ K21, for some

constant K21 > 0. Defining w = ξuε, we obtain

||D2
u
ε||Lp(Bβr) ≤ ||D2

u
ε||Lp(Bβr) + ||D2

ξu
ε||Lp(Bβ�r\Bβr) = ||D2

w||Lp(Bβ�r). (3.66)

Calculating first and second derivatives of w in Bβ�r,

∂iw(x) = u
ε
(x)∂iξ(x) + ∂iu

ε
(x)ξ(x),

∂
2
jiw(x) = ∂ju

ε
(x)∂iξ(x) + u

ε
(x)∂

2
jiξ(x) + ∂iu

ε
(x)∂jξ(x) + ξ(x)∂

2
jiu

ε
(x),

with j, i ∈ {1, . . . , d}, by (3.21), we get




q�w(x)− L�w(x) = f(x), in Bβ�r,

w(x) = 0, on ∂Bβ�r,

(3.67)

where

f(x):= ξ(x)(h(x) +

�

∗
E(u

ε
)(x+ z)ν(dz)− ψε(||D1

u
ε
(x)||2))

− u
ε
(x)

�
1

2

�

ji

σji∂
2
jiξ(x) + �D1

ξ(x), �γ�
�
−�σD

1
ξ(x),D

1
u
ε
(x)�. (3.68)
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We know that for the linear Dirichlet problem (3.67) (see [23, Lemma 3.1]), there exists a constant

K22 = K22(βr, p) > 0 independent of w, such that

||D2
w||Lp(Bβ�r) ≤ K22||f ||Lp(Bβ�r).

Estimating the terms on the right hand side of (3.68) with the norm || · ||Lp(Bβ�r) and by the choice

of ξ, it follows

||D2
w||Lp(Bβ�r) ≤ K23

�
||h||Lp(Bβ�r) + || I E(u

ε
)||Lp(Bβ�r)

+ ||ξψε(||D1
u
ε||2)||Lp(Bβ�r) + ||D1

u
ε||Lp(Bβ�r) + ||uε||Lp(Bβ�r)

�
, (3.69)

for some constant K23 = K23(βr, p) > 0 independent of ε. Hence, from (3.66) and (3.69), we have

the inequality (3.65).

By (0.3) and Lemmas 3.24 it is easy to obtain the following result.

Lemma 3.25. Let 1 ≤ p < ∞ and β ∈ (0, 1) such that Bβ�r ⊂ BR(0), with β� = β+1
2 . There exists

a constant K24 > 0 independent of ε such that

||uε||W2,p(Bβr) ≤ K24

�
||h||Lp(Bβ�r) + || I E(u

ε
)||Lp(Bβ�r)

+ ||ξψε(||D1
u
ε||)||Lp(Bβ�r) + ||D1

u
ε||Lp(Bβ�r) + ||uε||Lp(Bβ�r)

�
,

with β� =
β + 1

2
.



Chapter 4

Existence, uniqueness and regularity to the

HJB equation

As in Chapter 3, the hypotheses (H1)–(H4) are in force all through this chapter. Our main purpose

here is to establish Theorem 1.2, that we recall below for case of reference. A strong solution of

the equation

max{(q�u(x)− Γ
�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, in BR(0), (4.1)

with 




q� = q + ν( ∗) = q + ν0,

Γ
�
u(x) =

1
2 tr(σD

2
u(x)) + �D1

u(x), �γ�+
�

∗ E(u)(x+ z)ν(dz)

= L�
u(x) + I E(u)(x).

(4.2)

is a twice weakly differentiable function on BR(0) satisfying (4.1) almost everywhere in BR(0).

With this at hand we can now recall the statement of Theorem 1.2.

Therem 1.2. If d < p < ∞, there exists a unique nonnegative strong solution u ∈ C
0,1
(BR(0)) ∩

W
2,p
loc(BR(0)) to the HJB equation





max{(q�u(x)− Γ

�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, a.e. in BR(0),

u(x) = 0, on ∂BR(0),

(4.3)

Note that by the definition of q� and Γ
� , the HJB equation (4.3) can be written as





max{(qu(x)− Lu(x)− I �

E(u)(x)− h(x), ||D1
u(x)||2 − 1} = 0, a.e. in BR(0),

u(x) = 0, on ∂BR(0),

(4.4)

73
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where q > 0 is as in Hypothesis (H4), and





Lu(x) = 1

2
tr(σD

2
u(x)) + �D1

u(x), γ�,

I �
u(x) =

�
∗(E(u)(x+ z)− u(x)−D

1
uε(x+ z))ν(dz).

In order to show Theorem 1.2, first we shall prove the existence of the solution to HJB equation

(4.3). Finally, we shall prove the uniqueness of the solution to the HJB equation (4.3). To verify

this last part, we use Bony’s maximum principle [25], which quoted next.

Theorem 4.1 (Bony’s maximum principle, [25]). Let Ω be an open set in d and let u ∈ W
2,p
loc(Ω).

Then, if x0 is a point of local maximum of u and p > d, we have

lim inf ess
y→x0

�

ij

aij(y)∂iju(y) ≤ 0,

where (aij) d× d is a positive definite matrix a.e. and aij ∈ L
∞
loc(Ω).

Before proceeding to prove Theorem 1.2, we state without proof some auxiliary results. They

shall help us to obtain the existence of a convergent subsequence of uε, whose limit is the solution

to the HJB equation (4.3); see Lemma 4.6. The first can be seen in [29], and the last two in [1].

Recall that {fn}n≥1 is uniformly bounded, if there exists a positive constant M such that

supn≥1 supx∈K |f(x)| ≤ M , and {fn}n≥1 is equicontinuous, if for every � > 0, there exists δ > 0

such that |fn(x)− fn(y)| < �, for all n ≥ 1 whenever ||x− y|| < δ.

Theorem 4.2 (Arzelà-Ascoli Theorem, [29], Thm. 7.25, p. 158). Let K ⊂ d be compact and

let {fn}n≥1 ⊂ C
0
(K). If {fn}n≥1 is uniformly bounded and equicontinuous, then there exists a

subsequence {fnκ}κ≥1 of {fn}n≥1 which converges uniformly.

Theorem 4.3 (Reflexivity of Lp
(Br), [1], Thm. 2.46, p. 49). The Banach space (Lp

(Br), ||·||Lp(Br))

is reflexive if and only if 1 < p < ∞. Then, for any bounded sequence in (L
p
(Br), || · ||Lp(Br)) has

a weakly convergent subsequence, i.e., let {fn}n≥1 be a bounded sequence (L
p
(Br), || · ||Lp(Br)).

Then, there exist a subsequence {fnκ}κ≥1 of {fn}n≥1 and f ∈ L
p
(Br) such that

�

Br

fnκφdx −→
�

Br

fφdx, for any φ ∈ L
p�
(Br),

where 1
p +

1
p� = 1.
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Theorem 4.4 (Sobolev embedding theorem, [1], Thm. 4.12, p. 85). If p > d, then

W
2,p
(Br) �→ C

1,α�
(Br), with α

�
= 1− d

p
.

Moreover, there exists a positive constant C = C(d, p, r) such that

||v||C1,β(Br) ≤ C||v||W2,p(Br), for all v ∈ W
2,p
(Br).

Having stated the auxiliary results, we can now proceed to prove Theorem 1.2, this proof will

be carried on in several lemmas. For that end we start by noticing that by Lemmas 3.16 and 3.21,

we obtain that there exists a constant K25 > 0 independent of ε, such that

||uε||C0,1(BR(0)) < K25, for all ε ∈ (0, 1), (4.5)

Moreover, Proposition 2.15 and Lemmas 3.16, 3.21, 3.23–3.25, guarantee that for each Br ⊂
BR(0) there exist positive constants K26, K27 independent of ε such that





||D2

uε||Lp(Bβr) ≤ K26,

||uε||W2,p(Bβr) < K27,

(4.6)

for all ε ∈ (0, 1), where β ∈ (0, 1) and 1 ≤ p < ∞ fixed. Finally, if we take d < p < ∞ in (4.6),

then, from Theorem 4.4, we have that for each Br ⊂ BR(0), there exists a positive constant K28

independent of ε such that

||uε||C1,α�
(Bβr)

≤ K28, for all ε ∈ (0, 1), (4.7)

with β ∈ (0, 1) fixed and α� = 1− d
p .

Recall that for each ε ∈ (0, 1), uε is the unique solution to the non-linear integro-differential

Dirichlet problem (3.21). As a consequence of Theorems 4.2–4.3 and (4.5)–(4.7), we obtain the

following key results.

Lemma 4.5. Let d < p < ∞, Br ⊂ BR(0) an open ball and β ∈ (0, 1) fixed. There exist a

decreasing subsequence {εκ(ι)}ι≥1, with εκ(ι) −→
ι→∞

0, and ur ∈ C
0,1
(BR(0)) ∩W

2,p
(Bβr) such that






u
εκ(ι) −→

εκ(ι)→0
ur, in C

1
(Bβr),

u
εκ(ι) −→

εκ(ι)→0
ur, uniformly in BR(0),

u
εκ(ι) −→

εκ(ι)→0
ur, weakly in W

2,p
(Bβr).

(4.8)
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Moreover, the following convergence also holds
�

∗
E(u

εκ(ι))(·+ z)ν(dz) −→
εκ(ι)→0

�

∗
E(ur)(·+ z)ν(dz), uniformly in BR(0). (4.9)

Proof. Let d < p < ∞, Br ⊆ BR(0) an open ball and β ∈ (0, 1) fixed. Since the sequence

{uε}ε∈(0,1) satisfies (4.6), i.e. ||uε||W2,p(Bβr) ≤ K27, by Theorem 4.3, there exist a decreasing

subsequence {εκ}κ≥1, with εκ −→
κ→∞

0, and fa ∈ L
p
(Bβr), with a ∈ Dm and m ∈ {0, 1, 2}, such

that �

Bβr

∂
a
u
εκφdx −→

εκ→0

�

Bβr

faφdx, for any φ ∈ L
p�
(Bβr), (4.10)

where 1
p +

1
p� = 1. Recall that Dm is the set of all multi-indices of order m. Observing that the

sequence {uεκ}κ≥0 satisfies (4.7), i.e., ||uεκ ||C1,α�
(Bβr)

≤ K28, for all κ ≥ 0, we obtain

|∂a
u
εκ(x)| ≤ ||uεκ ||C1,α�

(Bβr)
≤ K28, for all κ ≥ 1, a ∈ Dm, m ∈ {0, 1}, and x ∈ BR(0). (4.11)

Taking � > 0 and ρ ≤ (
�

K28
)1/α

� , it follows that if ||x− y|| ≤ ρ, with x, y ∈ Bβr, then

|∂a
u
εκ(x)− ∂

a
u
εκ(y)| ≤ ||uεκ ||C1,α�

(Bβr)
||x− y||α� ≤ �, (4.12)

for all κ ≥ 1, a ∈ Dm, m ∈ {0, 1}. From (4.11) and (4.12), {∂auεκ}n≥0 is uniformly bounded

and equicontinuous, for all a ∈ Dm, with m ∈ {0, 1}, and hence Arzelà-Ascoli Theorem, Theorem

4.2, implies that for each a ∈ Dm, with m ∈ {0, 1}, there exists a subsequence {∂au
εκ(ι)}κ(ι)≥1 ⊆

{∂auεκ}κ≥1 such that

∂
a
u
εκ(ι) −→

εκ(ι)→0
f
(1)
a , uniformly in Bβr,

where f
(1)
a is a continuous function in Bβr; see, for instance, [29, Thorem 7.12]. We need to prove

that f (1)
0 is differentiable and ∂1f

(1)
0 = f

(1)
1 in Bβr. Define φi

κ(ι),φ
i : Bβr × (0, 1) −→ as

φ
i
κ(ι)(x, h) =

u
εκ(ι)(x+ hei)− u

εκ(ι)(x)

h
and φ

i
(x, h) =

f
(1)
0 (x+ hei)− f

(1)
0 (x)

h
,

with i ∈ {1, . . . , d}. Hence,

∂iu
εκ(ι)(x) = lim

h→0
φ
i
κ(ι)(x, h). (4.13)

Since u
εκ(ι) −→

κ(ι)→∞
f
(1)
0 uniformly in Bβr, then

|φi
κ(ι)(x, h)− φ

i
(x, h)| =

����
u
εκ(ι)(x+ hei)− u

εκ(ι)(x)− (f
(1)
0 (x+ hei)− f

(1)
0 (x))

h

����

≤
����
u
εκ(ι)(x+ hei)− f

(1)
0 (x+ hei)

h

����+
����
u
εκ(ι)(x)− f

(1)
0 (x)

h

����

−→
εκ(ι)→0

0,
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for each x ∈ Bβr and h ∈ (0, 1) such that x+ hei ∈ BR(0). This implies that

φ
i
κ(ι) −→

κ(ι)→∞
φ
i
, uniformly, with i ∈ {1, . . . , d}. (4.14)

Then, (4.13), (4.14) and Theeorem 7.11 in [29], imply that

∂if
(1)
0 (x) = lim

h→0
φ
i
(x, h) = lim

εκ(ι)→0
∂iu

εκ(ι)(x) = f
(1)
i , for all x ∈ Bβr.

Therefore ∂1f
(1)
0 = f

(1)
1 in Bβr. Now, the sequence {uεκ(ι)} satisfies (4.5), i.e., ||uεκ(ι) ||C0,1(BR(0)) ≤

K25, for all κ(ι) ≥ 1. Then, of a similar way than (4.11) and (4.12), we can verify that {uεκ(ι)} is

uniformly bounded and equicontinuous in BR(0). By Arzelà-Ascoli Theorem, we obtain that there

exist a subsequence {uεκ1(ι)}κ1(ι)≥1 of {uεκ(ι)} and ur ∈ C
0,1
(BR(0)) such that

u
εκ1(ι) −→

εκ1(ι)→0
ur, uniformly in BR(0).

Since {uεκ1(ι)}κ1(ι)≥1 ⊂ {uεκ(ι)}κ(ι)≥1 ⊂ {uεκ}κ≥1, we have that

f0 = f
(1)
0 = ur and f1 = f

(1)
1 = ∂

1
ur, a.e. in Bβr. (4.15)

Finally, from (4.10), we have
�

Bβr

∂
2
u
εκ1(ι)φdx −→

εκ2(ι)→0

�

Bβr

f2φdx, for any φ ∈ L
p�
(Bβr), (4.16)

where 1
p +

1
p� = 1. Furthermore, by integration by parts, we get

�

Bβr

∂
2
u
εκ1(ι)φdx =

�

Bβr

u
εκ1(ι)∂

2
φdx, for any φ ∈ C

2
c(Bβr). (4.17)

Then, using (4.15), (4.16) and letting εκ1(ι) → 0 in (4.17), we have
�

Bβr

f2φdx =

�

Bβr

ur∂
2
φdx, for any φ ∈ C

2
c(Bβr),

which is the definition of weakly derivative of second order to ur, and hence ∂iju
εκ1(ι) −→

εκ1(ι)→0

∂ijur weakly in L
p
(Bβr), where ∂ijur represents the second weakly derivative of u, with i, j ∈

{1, . . . , d}. Therefore 




u
εκ(ι) −→

εκ(ι)→0
ur, in C

1
(Bβr),

u
εκ(ι) −→

εκ(ι)→0
ur, uniformly in BR(0),

u
εκ(ι) −→

εκ(ι)→0
ur, weakly in W

2,p
(Bβr).
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Note that for each x ∈ BR(0), by Proposition 2.15, we have

| I E(u
εκ1(ι))(x)− I E(ur)(x)| ≤

�

∗
|E(u

εκ1(ι) − ur)(x+ z)|ν(dz)

≤ 2A0ν0||uεκ1(ι) − ur||C0(BR(0))

−→
εκ(ι)→0

0, (4.18)

and hence I E(u
εκ(ι)) −→

εκ1(ι)→0
I E(ur), uniformly in BR(0). We conclude that there exist a de-

creasing subsequence {εκ(ι)}ι≥1, with εκ(ι) −→
ι→∞

0, and ur ∈ C
0,1
(BR(0)) ∩ W

2,p
(Bβr) satisfying

(4.8) and (4.9)

Lemma 4.6. Let d < p < ∞. There exists a decreasing subsequence {εκ(ι)}ι≥1, with εκ(ι) → 0,

and u ∈ C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)), such that





u
εκ(ι) −→

εκ(ι)→0
u, in C

1
loc(BR(0)),

u
εκ(ι) −→

εκ(ι)→0
u, uniformly in BR(0),

u
εκ(ι) −→

εκ(ι)→0
u, weakly in W

2,p
loc(BR(0)).

(4.19)

Moreover, the following convergence also holds
�

∗
E(u

εκ(ι))(·+ z)ν(dz) −→
εκ(ι)→0

�

∗
E(u)(·+ z)ν(dz), uniformly in BR(0). (4.20)

Proof. Let d < p < ∞, β ∈ (0, 1) and {rn}n≥1 an increasing sequence of + = {r ∈ : r > 0}
such that βrn ↑ R, when n → ∞. This implies that Bβrn(0) ↑ BR(0), when n → ∞. Taking

n = 1, Lemma 4.5 implies that there exist a decreasing subsequence {εκ1(ι)}, with εκ1(ι) −→
ι→∞

0,

and ur1 ∈ C
0,1
(BR(0)) ∩W

2,p
(Bβr1(0)) such that






u
εκ1(ι) −→

εκ1(ι)→0
ur1 , in C

1
(Bβr1(0)),

u
εκ1(ι) −→

εκ1(ι)→0
ur1 , uniformly in BR(0),

u
εκ1(ι) −→

εκ1(ι)→0
ur1 , weakly in W

2,p
(Bβr1(0)).

and

I E(u
εκ1(ι))(·+ z)ν(dz) −→

εκ1(ι)→0
I E(ur1)(·+ z)ν(dz), uniformly in BR(0).
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Now, taking n = 2 and using Lemma 4.5 over {uεκ1(ι)}ι>1, we extract a subsequence {εκ2(ι)}ι≥1 of

{εκ1(ι)}ι≥1 such that





u
εκ2(ι) −→

εκ2(ι)→0
ur2 , in C

1
(Bβr2(0)),

u
εκ2(ι) −→

εκ2(ι)→0
ur2 , uniformly in BR(0),

u
εκ2(ι) −→

εκ2(ι)→0
ur2 , weakly in W

2,p
(Bβr2(0)).

and

I E(u
εκ2(ι))(·+ z)ν(dz) −→

εκ2(ι)→0
I E(ur2)(·+ z)ν(dz), uniformly in BR(0).

where ur2 ∈ C
0,1
(BR(0)) ∩ W

2,p
(Bβr2(0)). Continuing this process, it gives that there exists a

subsequence {εκn(ι)} of {εκn−1(ι)} such that





u
εκn(ι) −→

εκn(ι)→0
urn , in C

1
(Bβrn(0)),

u
εκn(ι) −→

εκn(ι)→0
urn , uniformly in BR(0),

u
εκn(ι) −→

εκn(ι)→0
urn , weakly in W

2,p
(Bβrn(0)).

and

I E(u
εκn(ι)) −→

εκn(ι)→0
I E(urn), uniformly in BR(0).

where urn ∈ C
0,1
(BR(0))∩W

2,p
(Bβrn(0)). Since {uεκn(ι)}ι>0 is a subsequence of {uεκn−1(ι)

,R}ι>0,

it follows that

urn = urn−1 , in Brn−1(0) ⊆ Brn(0).

Now, taking u
εκn(n) of {uεκn(ι)}ι>0, for each n ≥ 1, the sequence {uεκn(n)}n≥1 satisfies

lim
εκn(n)→0

u
εκn(n) = urn� , in Bβrn� (0), for each n

� ≥ 1.

Defining

u:= lim
εκn(n)→0

u
εκn(n) ,

we observe that u ∈ C
0,1
(BR(0))∩W

2,p
loc(BR(0)) and for any compact set K ⊂ BR(0), there exists

rn� ∈ {rn}n≥1 such that K ⊂ Brn� (0) and

u = urn� , in K.
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Hence, the sequence {uεκn(n)} satisfies





u
εκn(n) −→

εκn(n)→0
u, in C

1
loc(BR(0)),

u
εκn(n) −→

εκn(n)→0
u, uniformly in BR(0),

u
εκn(n) −→

εκn(n)→0
u, weakly in W

2,p
loc(BR(0)).

Since u
εκn(n) −→

εκn(n)→0
u uniformly in BR(0) and proceeding of a similar way than in (4.18) and

(4.20), we conclude (4.20).

4.1 Proof of Theorem 1.2

We proceed to show the existence and uniqueness to the solution of the HJB equation (4.3).

Remark 4.7. Note if
�
Br

fφdx =
�
Br

gφdx, for any non-negative function φ in C
∞
c (Br) then f = g

almost everywhere in Br. The same way we have that if
�
Br

fφdx ≤
�
Br

gφdx, for any non-

negative function φ in C
∞
c (Br) then f ≤ g almost everywhere in Br.

4.1.1 Existence

Proof of Theorem 1.2. Existence. Let d < p < ∞. From Lemma 4.6, we know that there exist a

decreasing subsequence {εκ(ι)}ι≥1, with εκ(ι) −→
ι→∞

0, and u ∈ C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)) satisfy-

ing (4.19) and (4.20). Since for each εκ(ι) ∈ (0, 1), the function u
εκ(ι) is the unique solution of the

NIDD problem (3.21), we get

q
�
u
εκ(ι)(x)− L�

u
εκ(ι)(x)− I E(u

εκ(ι))(x) ≤ h(x), in BR(0). (4.21)

Then, for each Br ⊂ BR(0) and β ∈ (0, 1) fixed, we get
�

Bβr

(q
�
u
εκ(ι) − L�

u
εκ(ι) − I E(u

εκ(ι)))φdx ≤
�

βr

hφdx, (4.22)

for each non-negative function φ in C
∞
c (Bβr). Letting εκ(ι) → 0 in (4.22), from Lemma 4.6, we

obtain �

Bβr

(q
�
u− L�

u− I E(u))φdx ≤
�

Bβr

hφdx,

for each non-negative function φ in C
∞
c (Bβr). By Remark 4.7, it follows that

q
�
u(x)− L�

u(x)− I E(u)(x) ≤ h(x), a.e. in BR(0). (4.23)



4.1. PROOF. EXISTENCE AND UNIQUENESS 81

Now, since ψε(||D1
u
εκ(ι)(x)||2) is locally uniform bounded (Lemma 3.23), independent of εκ(ι),

we have

||D1
u(x)||2 ≤ 1, in BR(0). (4.24)

Suppose that ||D1
u(x∗)||2 < 1, for some x∗ ∈ BR(0). Then, by the continuity of D1

u, there exists

an small neighborhood Vx∗ of x∗ such that

||D1
u(x)||2 < 1, for all x ∈ Vx∗ .

Since D
1
u
εκ(ι) −→

εκ(ι)→0
D

1
u uniformly in Vx∗ , we obtain that there exists εκ(ι0) ∈ (0, 1) such that

||D1
u
εκ(ι)(x)||2 < 1, for all x ∈ Vx∗ and εκ(ι) ≤ εκ(ι0).

Then, from (3.21) and the definition of ψε, it follows that

q
�
u
εκ(ι)(x)− L�

u
εκ(ι)(x)− I E(u

εκ(ι))(x+ z)ν(dz) = h(x),

for all x ∈ Vx∗ and εκ(ι) ≤ εκ(ι0). Then,
�

Vx∗

(q
�
u
εκ(ι) − L�

u
εκ(ι) − I E(u

εκ(ι)))φdx =

�

Vx∗

hφdx, (4.25)

for each non-negative function φ in C
∞
c (Bβr). Letting εκ(ι) → 0 in (4.25), from Lemma 4.6, we

obtain �

Vx∗

(q
�
u− L�

u− I E(u))φdx =

�

Vx∗

hφdx,

for each non-negative function φ in C
∞
c (Bβr). By Remark 4.7, it yields

q
�
u(x)− L�

u(x)− I �
E(u)(x) = h(x), a.e. in Vx∗ . (4.26)

Finally, since u
εκ(ι)(x) = 0 on ∂BR(0) and u

εκ(ι) −→
εκ(ι)→0

u uniformly in BR(0), it yields

u(x) = 0, on ∂BR(0). (4.27)

From (4.23)–(4.27), we conclude that u is a solution to the HJB equation (4.3) a.e. in BR(0).

4.1.2 Uniqueness

Proof of Theorem 1.2. Uniqueness. To show the uniqueness of the HJB equation (4.3), we shall

use the HJB equation (4.4) which is equivalent to it. Let d < p < ∞. Suppose that there exist
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u1, u2 ∈ C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)) two solutions to the HJB equation (4.4). Let x∗ ∈ BR(0) be

the point where u1 − u2 attains its maximum. If x∗ ∈ ∂BR(0), it is easy to see

(u1 − u2)(x) ≤ (u1 − u2)(x
∗
) = 0 in BR(0). (4.28)

If x∗ ∈ BR(0), we shall prove (4.28) by contradiction. Suppose (u1−u2)(x
∗) > 0. For ρ > 0 small

enough, the function (1−ρ)u1−u2 is positive at some point of BR(0), with ((1−ρ)u1−u2)(x) = 0

on ∂BR(0), and hence that ((1 − ρ)u1 − u2)(x
∗
1) > 0, where x∗

1 ∈ BR(0) is the point where

(1− ρ)u1 − u2 attains its maximum. Besides, we have




D

1
((1− ρ)u1 − u2)(x

∗
1) = 0,

((1− ρ)u1 − u2)(x
∗
1 + z) ≤ ((1− ρ)u1 − u2)(x

∗
1), for all x∗

1 + z ∈ BR(0).

Since ((1− ρ)u1 − u2)(x
∗
1 + z) ≤ ((1− ρ)u1 − u2)(x

∗
1) for all x∗

1 + z ∈ BR(0), it follows that

0 ≥ I �
E((1− ρ)u1 − u2)(x

∗
1)

=

�

∗
(((1− ρ)u1 − u2)(x

∗
1 + z)− ((1− ρ)u1 − u2)(x

∗
1)) BR(0)(x

∗
1 + z)ν(dz)

+

�

∗
(E((1− ρ)u1 − u2)(x

∗
1 + z)− ((1− ρ)u1 − u2)(x

∗
1)) B�(x

∗
1 + z)ν(dz),

with B� = BR+ b
2
(0) \BR(0). Since D

1
((1− ρ)u1 − u2)(x

∗
1) = 0, ||D1

u1(x1)|| ≤ 1 and ρ > 0, we

get that

||D1
u2(x

∗
1)|| = (1− ρ)||D1

u1(x
∗
1)|| < 1.

This implies that there exists Vx∗
1

a neighborhood of x∗
1 such that





qu2(x)− Lu2(x)− I �

E(u2)(x) = h(x),

qu1(x)− Lu1(x)− I �
E(u1)(x) ≤ h(x),

for all x ∈ Vx∗
1
.

Then,

q((1− ρ)u1 − u2)(x)− L((1− ρ)u1 − u2)(x)− I �
E((1− ρ)u1 − u2)(x) ≤ −ρh(x),

for all x ∈ Vx∗
1
, and hence,

1

2

�

ij

σij∂
2
ij((1− ρ)u1 − u2)(x) ≥ q((1− ρ)u1 − u2)(x)

− I �
E((1− ρ)u1 − u2)(x)− �(D1

(1− ρ)u1 − u2)(x), γ�+ ρh(x),
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for all x ∈ Vx∗
1
. Using Bony’s maximum principle; see Theorem 4.1, it yields

0 ≥ lim inf ess
x→x∗

1

1

2

�

ij

σij∂
2
ij((1− ρ)u1 − u2)(x)

≥ q((1− ρ)u1 − u2)(x
∗
1)− I �

E((1− ρ)u1 − u2)(x
∗
1) + ρh(x

∗
1),

which is a contradiction, since ((1− ρ)u1 − u2)(x
∗
1) > 0 implies that

q((1− ρ)u1 − u2)(x
∗
1)− I �

E((1− ρ)u1 − u2)(x
∗
1) + ρh(x

∗
1) > 0.

Therefore, we have

(u1 − u2)(x) ≤ (u1 − u2)(x
∗
1) ≤ 0, for all x ∈ BR(0).

Taking u2 − u1 and proceeding of the similar way as before, it follows that

(u2 − u1)(x) ≤ (u2 − u1)(x
∗
1) ≤ 0, for all x ∈ BR(0),

and hence we conclude that the solution u to the HJB equation (4.3) is unique.





Conclusions and some open problems

Let us start by reviewing the main results in the thesis and the techniques used, so that later we

point towards which directions our results can be extend and discuss related problems. Under the

hypotheses (H1)–(H4) given in pages 8 and 9, it was shown that the solution u to the HJB equation

(4.3) there exists in C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)) and this is unique, if d < p < ∞; see Chapter 4.

Recall that R > 0 is fixed, and the linear operator Γ� that appears in the HJB equation (4.3) is an

elliptic integro-differential operator given in (4.2), where the principal ingredients of this operator

are the integral operator I and the continuous linear operator E, which is defined in (2.36).

In order to obtain the existence and regularity of the solution u to the HJB equation (4.3), first

we had to verify that the value function V ε(·;w) related with the solution uε(·;w) to the non-linear

Dirichlet problem (3.5) is in C
2,α

(BR(0)) ⊂ C
0
(BR(0)) see Lemma 3.5, and it satisfies that if

w1, w2 ∈ C
0
(BR(0)), then

||V ε
(·;w1)− V

ε
(·;w2)||C0(BR(0)) ≤

2A0

q�
||w1 − w2||C0(BR(0));

see Lemma 3.6. Then, defining the mapping Tε : C
0
(BR(0)) −→ C

0
(BR(0)) as Tε(w) = V ε(·;w),

for each w ∈ C
0
(BR(0)), we verified that Tε is a contraction mapping in the Banach space

(C
0
(BR(0)), || · ||C0(BR(0))), and hence, using contraction point fixed Theorem; see Theorem 3.1,

we solved the NIDD problem (3.21), guaranteeing that its solution uε ∈ C
3,α

(BR(0)) is unique, for

each ε ∈ (0, 1); see Theorem 3.8.

Note that to accomplish this step, it has been fundamental to transform the NIDD problem

(3.21) in a classic non-linear Dirichlet problem, i.e. we fixed the integral part of the operator Γ� , to

guarantee the existence of its unique solution in C
2,α

(BR(0)). Also, it has been very important to

have a very good understanding of the continuous linear operator E defined in (2.36), which plays

a crucial role in the definition of the non-linear Dirichlet problems (3.5) and (3.21), and to establish

that their solutions belong to C
2,α

(BR(0)).

After completing the above described step, for each ε ∈ (0, 1), we verified, by probabilistic,
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integro-differential and partial differential methods, that the solution uε to the NIDD problem (3.21)

is positive and bounded by a positive constant independent of ε in BR(0); see Proposition 3.13 and

Lemma 3.16. We succeeded in proving that the norm of its gradient is bounded by a constant

independent of ε in BR(0), see Lemma 3.21, and evaluating the matrix of its second derivatives in

the norm of the Sobolev space W2,p
loc(BR(0)), with d < p < ∞, we obtained that the this estimation

is locally bounded by a constant independent of ε; see Lemma 3.24. Using these, we established

the convergence of a subsequence of {uε}ε∈(0,1) in C
0,1
(BR(0)) ∩W

2,p
loc(BR(0)), with d < p < ∞;

see Lemma 4.6. Taking {uεκ(ι)}κ(ι)≥1 and u as in Lemma 4.6, and using that ψε(||D1
uε(·)||2) is

locally bounded by a constant independent of ε in BR(0), we obtained that u is the solution to the

HJB equation (4.3), and finally, by Bony’s maximum principle, see Theorem 4.1, it is shown that

this solution is unique.

The closer to our work is to Menaldi and Robin [26]. They are interested in to study a singular

control problem for a multidimensional Gaussian-Poisson process, and to establish a relationship

between the value function to this problem and the solution a HJB equation. The multidimensional

Gaussian-Poisson process is a Lévy process where it only has a d-dimensional standard Brownian

motion and a jump process which Lévy measure ν satisfies
�

d\{0}
||z||pν(dz) < ∞, for all p ≥ 2.

Although the proofs of their principal results are not provided in detail, and they left these to future

works, they give enough arguments to show that the solution to the HJB equation associated with

the value function to the singular control problem is in the classic sense. Besides that our problem

is also related to a singular control problem, there are several differences between this problem and

ours. Our problem is related to an optimal stochastic control problem where the controlled process

is a d-dimensional Lévy process as in (1.6).

Now, there are many lines of research in the theory of the optimal control and integro-differen-

tial equations that can be explored to extend the results obtained in the present work, we will next

describe some of them.

First, observe that the solution u to the HJB equation (4.3) depends on the constants p and b.

An improvement to this result would establish that the solution u to the HJB equation (4.3) belongs

to C
0,1
(BR(0)) ∩W

2,∞
loc (BR(0)). For this, we need to show that for each open ball Br ⊂ BR(0), it

satisfies ||D2
uε||W2,∞(Br) ≤ C, for some constant C independent of ε, where uε is the solution to

the NIDD problem (3.21).

Second, observe that the HJB equation (4.3) is stated in terms of the extension operator E, and



CONCLUSIONS AND SOME OPEN PROBLEMS 87

it would be suitable to remove this from the equation to have a standard formulation of the HJB

equation. For that end one should make b go to zero, which according to Remark 2.21 is equivalent

to make N tend to infinity. For that end one should prove that the solution u to the HJB equation

(4.3), their first and weakly second derivatives are uniformly bounded with respect to b, we could

pass the limit in (4.3) when b → 0, and guarantee the existence and regularity of the solution to the

following HJB equation




max{q�u(x)− Γ

�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, in BR(0),

u(x) = 0, outside BR(0),

where

Γ
�
u(x) =

1

2
tr(σD

2
u(x)) + �D1

u(x), �γ�+
�

∗
(u(x+ z))ν(dz). (4.29)

Another very important related problem is the HJB equation (1.11) defined in d, i.e.

max{q�u(x)− Γ
�
u(x)− h(x), ||D1

u(x)||2 − 1} = 0, in d
, (4.30)

with Γ
� as in (4.29). In order to obtain the existence and regularity of the solution to this HJB

equation, we need to pass to limits in a strong sense in (3.21). For this is necessary to find bounds

of uε,R, D1
uε,R and D

2
uε,R that are independent of (ε, R), where uε,R is the solution to the NIDD

problem (3.21). Now, in Lemma 3.19, it was shown that ||D1
uε,R(·)|| is bounded by a positive

constant on ∂BR(0). This constant is independent of ε but grows exponentially fast with R. This

is not suitable as it suggests that a bound function for ||D1
uε,R(·)|| in BR(0) is of the exponential

type, and hence it possesses technical issues when estimating first and second derivatives of this

bound function. In similar studies in the literature a polynomial bound has been obtained, here

a bound of polynomial type with degree two would be enough to take limits in a strong sense in

(3.21), which would allow to establish the existence of the HJB equation (4.30).

Finally, other topic of interest is when the integral operator of Γ� , given in (1.2), is taken as

IEu(x) =

�

∗
(E(u)(x+ z)− u(x)− �D1

u(x), z� {||z||<1})ν(dz),

and ν is a Lévy measure in ∗ that satisfies
�

∗
(1 ∧ ||z||2)ν(dz) < ∞.

Then, the HJB equation for this problem is




max{qu(x)− Γ2u(x)− h(x), ||D1

u(x)||2 − 1} = 0, in BR(0),

u(x) = 0, on ∂BR(0),

(4.31)
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where

Γ2u(x):=
1

2
tr(σD

2
u(x)) + �D1

u(x), γ�

+

�

∗
(E(u)(x+ z)− u(x)− �D1

u(x), z� ||z||<1)ν(dz).

The HJB equation (4.31) is of great interest because it can be related with an optimal stochastic

control problem where the state process is a controlled d-dimensional Lévy process, i.e. a càdlàg

process in d, with independent and stationary increments [30].
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[4] J. M. Bony, Problème de Dirichlet et semi-groupe fortement fellérien associés à un opérateur
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