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Abstract

We propose a new way to construct numerical methods for stochastic differential equations (SDEs) via
Steklov means. Here we present two schemes that evidence the properties of this new approach. First,
we construct a scheme for scalar SDEs and prove its convergence and stability under standard globally
Lipschitz and linear growth conditions. Moreover, we give sufficient conditions for the nonlinear asymp-
totic stability in both, multiplicative and additive cases. Finally, we showed the behavior of the explicit
Steklov method for problems with stringent stability requirements as the logistic stochastic equation and
the Langevin equation in Brownian dynamics. In all these studies, we established that the Steklov method
is an accurate scheme for large time scales simulation. The second scheme extends the previous method
towards a multidimensional set up and coefficients with locally Lipschitz and monotone grow conditions.
This method is constructed on the basis that the drift function can be rewritten in a linearized form.
Moreover, strong order one-half convergence has been proved for our explicit linear method and we have
presented several applications formulated with the LS scheme. Also, we present numerical evidence
that confirms our theoretical results and suggests an extension to super-linear growth diffusions. Finally,
high-performance of the Linear Steklov method have been analyzed in diverse problems for which other
methods have failed.
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Chapter 1

Introduction and main results

1.1 Introduction

In the last decades, stochastic differential modeling has become a rapidly-growing research area. Histor-
ically, it appeared as an extension of the deterministic differential modeling of over-idealized situations
with fluctuating behavior of the analyzed physical phenomenon. Actually, it is an important research
area by itself that describes important phenomena such as turbulent diffusion, spread of diseases, genetic
regulation, motion of particles etc. [1, 23, 67]. We can obtain the explicit solution of only few stochastic dif-
ferential equations (SDEs), therefore developing accurate stochastic numerical approximations represent
an option to analyze and confirm (by simulation) the nature of a stochastic model. Stochastic numerics
allow the analysis of some model properties that are difficult or impossible to measure experimentally
in laboratories, for example its long-time behavior. In this cases, we require that a numerical solvers be
able to reproduce asymptotic behavior like mean square stability [29, 30, 59], usually, a linear analysis
can be considered as the first step for understanding a method, but it is not an indicator of qualitative
behavior on the nonlinear case [37]. Thus, some theoretical work on asymptotic stability has appeared for
nonlinear SDEs Bokor [9] Buckwar et al. [12].

The first methods for solving SDEs were stochastic extensions of deterministic algorithms, for example
schemes as the Euler-Maruyama (EM), Taylor and Runge-Kutta [9, 13, 36]. Unfortunately, sometimes their
asymptotic stability conditions are very restrictive, considers for example the Brownian Dynamics Simu-
lations, here the Euler-Maruyama discretization is the standard method to solve the Langevin equation
that describe the motion of particles [10, 14, 20]. However, the operation time step size of this scheme
has to be pint-size, otherwise the scheme becomes unstable. Now, the construction of methods focus on
structural or dynamic properties of a specific SDE. Some examples are the balanced methods for stiff SDE
[53] the quasi-symplectic schemes for stochastic Hamiltonian systems [51] and SDEs with small noise [11].

Numerical convergence and stability are well understood for SDE with globally Lipschitz continu-
ous coefficients, which discard many important models from applications. Moreover, ? report in [? ]
that if a SDE has drift or diffusion, which grows faster that a linear function, then the EM diverges in
strong and weak sense. This result opens a new chapter on the design of numerical methods — stochastic
models in applications as Finance, Biology and Physics use SDEs with locally Lipschitz coefficients. In
addition, Giles proposes in [24] a new variance reducing technique that relies in strong numerical conver-
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Chapter 1. Introduction and main results

gence, which optimizes the traditional Monte Carlo simulation. Thus, developing explicit schemes, which
converges in strong sense with super-linear coefficients attracts the right now attention.

Recently research has been focused on modifying the EM method to obtain strong convergence under
the previous conditions keeping its simple structure and its low computational cost. Several methods
have been developed in this direction: the family of Tamed schemes [32, 34, 68, 70], a special type of
balanced method [66], the stopped scheme [42] . For SDE with super-linear diffusion, Mao and Szpruch
provided results for the strong convergence of implicit methods as the Backward-Euler-Maruyama. How-
ever, the convergence of explicit schemes for SDEs with super-linear growth is still under development.
Works on this subject are Mao [45] with the truncated Euler method and [57] with a new kind of tamed
scheme. There, the strong convergence of the proposed method is proved using the theory developed by
in Higham, Mao, and Stuart [31] or by means of the new approach given by Hutzenthaler and Jentzen
[32]. Both techniques prove strong convergence by verifying boundedness moments of the numerical and
analytical solution of the underlying SDE. In spite of the recent work in this subject, it is still necessary
to get more accurate numerical methods for SDE under super-linear growth and non-globally Lipschitz
coefficients.

1.2 Main Results

Our main contribution follows two lines of research. The first one is to design an explicit numerical scheme
with good stability properties. We focus on explicit methods because we are interested on applications
of Brownian Dynamics, so we seek a simple and fast numerical solver. Also we require a stable scheme
in order to obtain simulations for long periods of time. For example in Brownian Dynamics, the self-
diffusion coefficient is an asymptotic property. We propose the Steklov method, which is a stochastic
extension of an exact deterministic numerical scheme.

The second line consists in generalize the above scheme to a multidimensional setup and with more
general coefficients. Thus, we propose the Linear Steklov (LS) scheme. This explicit method is based on
a linear version of the Steklov average with a split-step formulation. We prove for this scheme a one-
half convergence order with a one sided Lipschitz condition and polynomial growth on the drift; and a
globally Lipschitz condition on the diffusion. Also we provide numerical evidence that this method is
suitable for problems with super-linear growth diffusion where other methods have failed.

1.3 Methodology

Chapter 2 — Preliminaries

After the above introduction, in this chapter we present an overview of basic results from probability
theory that we will need in order in order to set our framework. Next we state useful concepts and
theorems from stochastic process and stochastic calculus. Finally, we give some important qualitative
properties of numerical methods for stochastic differential equations.

2



1.3. Methodology

Chapter 3 — Steklov method for scalar SDEs with Globally Lipschitz coefficients

The chapter contains our first contribution —the Steklov method. First we develop a new numerical
method with asymptotic stability properties for solving stochastic differential equations (SDEs). The
foundations for the new solver are the Steklov mean and an exact discretization for the deterministic
version of the SDEs. Second strong consistency and convergence properties are demonstrated for the
proposed method. Moreover, a rigorous linear and nonlinear asymptotic stability analysis is carried
out for the multiplicative case in a mean-square sense and for the additive case in a path-wise sense
using the pullback limit. In order to emphasize the characteristics of the Steklov discretization we use
as benchmarks the stochastic logistic equation and the Langevin equation with a nonlinear potential of
the Brownian dynamics. We show that the Steklov method has mild stability requirements and allows
long-time simulations in several applications.

Chapter 4 — Steklov Method for SDEs with Non-Globally Lipschitz Continuous Drift

In this chapter we present an explicit numerical method for solving stochastic differential equations with
non-globally Lipschitz coeffcients. A linear version of the Steklov average under a split-step formulation
supports our new solver. The Linear Steklov method converges strongly with a standard one-half order.
Also, we present numerical evidence that the explicit Linear Steklov reproduces almost surely stability
solutions with high-accuracy for diverse application models even for stochastic differential systems with
super-linear diffusion coefficients.

Chapter 5 — Conclusions and future work

Finally, in this Chapter we restate our contribution followed by conclusions and discuss possible future
directions for our research.
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Chapter 2

Preliminaries

Here we present some results from stochastic analysis. This chapter focus on provide the basic information
and tools to understand the nature of a SDE and its numerical approximation. For reference see [5, 36, 52,
55, 69].

2.1 Probability theory and Stochastic Processes

Probability theory is the field that studies the random phenomena. A random event is the set of outcomes
from an experiment conducted under the same conditions with a variability in results . Probability theory
aims to describe this variability. We denote by Ω the set of observable outcomes, ω, from a experiment
or phenomenon. However, not every observable event is measurable, so for the purpose of probability
theory, a family of subsets from Ω with particular properties a —σ-algebra is needed. In the following,
we formalize these concepts, for reference see e.g. [55].

Definition 2.1.1 (σ-algebra). Let Ω a set and F a family of subset of Ω, we call F a σ- algebra if the
following properties hold:

(i) ∅ ∈ F ,

(ii) if F ∈ F then Fc ∈ F where Fc = Ω \ F,

(iii) if {Fi}∞
i=1 ∈ F then

⋃
i≥1

Fi ∈ F .

Let C a collection of subsets of Ω. The σ-algebra generated by C denoted by σ(C), is the smallest
σ-algebra which contains the collection C, that is σ(C) ⊃ C, and if B is an other σ-algebra containing C,
then B ⊃ σ(C).

Definition 2.1.2 (The Borel σ-algebra). If Ω = Rd and C is the family of all open sets in Rd, the Bd = σ(C)
is called the Borel σ-algebra and its elements are called Borel sets.

A probability space is a triple (Ω,F , P) where

• Ω is the set of all possible outcomes of an experiment.

5



Chapter 2. Preliminaries

• F is a chosen σ-algebra of subsets of Ω.

• P is a probability measure; that is a function P : F → [0, 1] such that

(i) P(A) ≥ 0 for all A ∈ F .

(ii) P is σ-additive, that is: If {An, n ≥ 1} is a collection of disjoint events, then

P

(
∞⋃

n=1

An

)
=

∞

∑
n=1

P(An).

(iii) P(Ω) = 1.

Definition 2.1.3 (Random Variable). Let (Ω,F , P) be a probability space and B(Rd) the Borel’s σ-algebra.
A function X : Ω→ Rd is said to be a random variable if X is (F ,B(Rd))-measurable, that is X−1(B(Rd)) ⊂
F .

Every random variable X induces a probability measure µX on Rd by

µX(B) = P(X−1(B)), B ∈ B(Rd).

Having two different measures Q, P, on a measurable space we can transform one measure into the
other via Radon-Nikodym theorem (see for example [69, Thm. 10.1.2]).

Theorem 2.1.1 (Radon-Nikodym). Let P and Q probability measures on the measurable space (Ω,F ). Suppose
that for all B ∈ F Q(B) = 0 implies P(B) = 0. Then there exist a integrable random variable X such that

Q(E) =
∫

E
XdP, ∀E ∈ F .

X is P-a.s. unique and is written as X =
dQ

dP
.

This important result describes the density p of a random variable X as the P-a.s. unique Radon-
Nikodym derivative of the induced distribution µX w.r.t. Lebesgue measure, in other words

µX(B) =
∫

B
p(x)dx.

Definition 2.1.4 (Expectation). Let X be a integrable random variable on a probability space (Ω,F , P).
Then the expectation of X is defined by

E [X] =
∫

Ω
X(ω)P(dω).

A stochastic process X is a system which could stay at each moment on any state of a given set S

Definition 2.1.5 (Stochastic Process). A stochastic process is a collection of random variables X = {Xt :
t ∈ T} on (Ω,F ), which takes values in a measurable space (S, S), and where the index t ∈ [0, ∞),
conveniently receive an interpretation as time. Thus for a fixed ω ∈ Ω, the function Xt(ω), t ≥ 0 is a
sample path of the process X associated with ω, and for any fixed t , Xt(ω), ω ∈ Ω is a random variable.
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2.1. Probability theory and Stochastic Processes

The main purpose of this thesis deals with the numerical approximation of sample paths.

Definition 2.1.6 (Measurable Process). A stochastic process X is measurable if the mapping

(t, ω)→ Xt(ω) : ([0, ∞)×Ω,B ([0, ∞))⊗F )→
(

Rd,B
(

Rd
))

is measurable.

We equip the underlying sample space (Ω,F ) with a filtration {Ft}t≥0 in order to keep track informa-
tion about the past, present and future of a stochastic process. Formally, a filtration is a nondecreasing
family of sub-σ-algebras of F such that Fs ⊆ Ft ⊆ F for 0 ≤ s ≤ t < ∞ and is called right continuous
if Ft =

⋂
r>t Fr for all t ≥ 0. Thus if the underlying probability space is complete, right continuous and

F0 contains all P-null sets, then we say that the filtration {Ft}t≥0 satisfies the usual conditions. In the
following, we will work only on a complete probability space (Ω,F , P) with a filtration {Ft}t≥0 which
verifies the usual conditions.

Given a stochastic process, the simplest choice of a filtration is that generated by the process itself, i.e.
FX

t := σ(Xs; 0 ≤ s ≤ t) the smallest σ-algebra with respect to which Xs is measurable for every s ∈ [0, t].
The introduction of this concept gives sense to the following.

Definition 2.1.7 (Adapted Process). We call a process adapted to the filtration {Ft}t≥0 if, for each t > 0 fixed
Xt is a Ft-measurable random variable.

Clearly, every process X is adapted to {FX
t }.

Definition 2.1.8 (Progressively Measurable Process). The stochastic process X is progressively measurable
if the mapping

(s, ω)→ Xs(ω) : ([0, t]×Ω,B([0, t])⊗Ft)→
(

R,B
(

Rd
))

is measurable for each t ≥ 0, that is, if, for each t > 0 and A ∈ B
(

Rd
)

, the set

{(ω, s) : 0 ≤ s ≤ t, ω ∈ Ω, Xs(ω) ∈ A}

belongs to the product σ-algebra B([0, t])⊗Ft.

2.1.1 Conditional Expectation

Conditional expectation plays a very important role in the modern probability theory. It gives foundation
for the definitions of martingales and Markov processes. In fact, other areas of probability as stochastic
dynamics, conditioning permits to describe and to analyze dynamical systems with randomness. Roughly
speaking, the conditional expectation is an average that considers only a portion of information.

Definition 2.1.9. Let X ∈ L1(Ω,F , P) and let G ⊂ F a sub-σ-algebra. Then the conditional expectation of
the random variable X given G is the new random variable Y = E [X|G] such that

(i) E [X|G] is G-measurable and integrable.

(ii) For all event G ∈ G we have
∫

G
XdP =

∫
G

E [X|G] dP.

7



Chapter 2. Preliminaries

This new random variable is unique in the sense that if there is an other Ỹ satisfying the same two
above properties, then P[Y 6= Ỹ] = 0. In this case Ỹ is said to be a version of the conditional expectation
E [X|G]. Now we list some standard properties of the conditional expectation [69]. Here X1, X2, Z are
integrable random variables, a1,a2 ∈ R, and G, H are sub-σ-algebras of F .

(E1) If Y is any version of E [X|G], then E[X] = E[Y].

(E2) If X is G measurable, then E [X|G] = X, P-a.s.

(E3) (Linearity) E [a1X1 + a2X2|G] = a1E [X1|G] + a2E [X2|G] P-a.s.
Clarification: if Y1 is a version of E [X1|G] and Y2 is a version of E [X2|G], then a1Y1 + a2Y2 is a version
of E [a1X1 + a2X2|G].

(E4) (Positivity) If X ≥ 0, then E [X|G] ≥ 0, P-a.s.

(E5) (Conditional Monotone Convergence) If 0 ≤ Xn ↑ X, then E [Xn|G] ↑ E [X|G], P-a.s.

(E6) (Conditional Fatou) If Xn ≥ 0, then E
[
lim inf

n→∞
Xn|G

]
≤ lim inf

n→∞
E [Xn|G].

(E7) (Conditional Dominated Convergence) If |Xn(ω)|≤ V(ω) for all n, E [V] < ∞, and Xn → X P-a.s.,
then E [Xn|G]→ E [X|G], P-a.s.

(E8) (Conditional Jensen) If f is a real-valued convex function, then

f (E [X|G]) ≤ E [ f (X)|G] .

(E9) (Tower Property) If H is a sub-σ-algebra of G, then

E [E [X|G]|H] = E [X|H] , P-a.s..

(E10) If Z is G-measurable and bounded, then E [ZX|G] = ZE [X|G] .

(E11) If X is independent from H, then E [X|H] = E [X], P-a.s.

Now consider a filtered space (Ω,F , {Ft}t≥0, P) and define

F∞ := σ

(⋃
t≥0
Ft

)
⊂ F .

Definition 2.1.10 (Martingale). A process {Mt}t≥0 is called a martingale (relative to ({Ft}t≥0, P) if

(i) M is adapted,

(ii) E [|Mt|] < ∞ for all t ≥ 0,

(iii) E [Mt|Fs] = Ms, P-a.s., 0 ≤ s ≤ t.
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2.2. Stochastic Calculus and SDEs

In this way, a supermartingale (relative to ({Ft}t≥0, P) is defined similarly, except that (iii) is replaced
by

E [Mt|Fs] ≤ Ms P-a.s., 0 ≤ s ≤ t,

and a submartingale is defined with (iii) replaced by

E [Mt|Fs] ≥ Ms P-a.s., 0 ≤ s ≤ t.

Theorem 2.1.2. Let {Mt}t≥0 be and Rd-valued martingale with respect to {Ft}, and let θ, ρ two finite stopping
times. Then

E
[
Mθ |Fρ

]
= Mθ∧ρ.

Definition 2.1.11 (Local Martingale). An Rd-valued {Ft}-adapted integrable process {Mt}t≥0 is said to
be a local martingale if there exists a nondecreasing sequence {τk}k≥1 of stopping times with τk ↑ ∞ P-a.s.
such that {Mτ∧t −M0} is a martingale.

A fundamental process in this thesis is the Brownian Motion.

Definition 2.1.12 (Brownian Motion). Let (Ω,F , P) be a probability space with filtration {Ft}t≥0. A
standard unidimensional Brownian motion is a real-valued continuous adapted process {Wt}t≥0 which
satisfies:

(i) W0 = 0, P− a. s.;

(ii) the increments Wt −Ws are normally distributed with mean zero and variance t− s for 0 ≤ s ≤ t <
∞;

(iii) Wt −Ws is independent of Fs.

Consider a Brownian motion {Wt}t≥0 and a sequence of times 0 ≤ t0 < t1 < . . . < tk < ∞. Then
{Wt}t≥0 has independent increments, that is, the random variables Wti −Wti−1 1 ≤ i ≤ k are independent.
Moreover, the distribution of Wti −Wti−1 depends only on the difference ti − ti−1, in this sense, we say
that the Brownian motion has stationary distribution. With this in mind, also we can say that this process
is a martingale. As we will see, the above is fundamental for the numerical approximations of SDEs.

2.2 Stochastic Calculus and SDEs

In this section, we recall some basic results of the Itô integral (see for example [38])∫ t

0
f (s)dW(s).

with respect to an m-dimensional Brownian Motion, {W(t)}, for a class of d×m-matrix-valued processes
{ f (t)}.

9



Chapter 2. Preliminaries

Definition 2.2.1. Let 0 ≤ a < b < ∞. We denote byM2 ([a, b]; R) the space of all real-valued measurable
{F}-adapted processes f = { f (t)}a≤t≤b such that

‖ f ‖2
a,b= E

[∫ b

a
| f (t)|2dt

]
< ∞.

Theorem 2.2.1. Assume f ∈ M
(

[a, b]; Rd×m
)

and let ρ, τ be two stopping times such that 0 ≤ ρ ≤ τ ≤ T.
Then

E

[∫ τ

ρ
f (t)dW(t)|Fρ

]
= 0,

E

[∣∣∣∣∫ τ

ρ
f (t)dW(t)

∣∣∣∣2|Fρ

]
= E

[∫ τ

ρ
| f (t)|2dt|Fρ

]
.

Definition 2.2.2 (Itô process). A d-dimensional Itô process is a Rd-valued continuous adapted process
X(t) = (X1(t), . . . , Xd(t))T on t ≥ 0 of the form

X(t) = X(0) +
∫ t

0
f (s)ds +

∫ t

0
g(s)dW(s),

where f = ( f1, . . . , fd)T ∈ L1(R+; Rd) and g = (gij)d×m ∈ L2(R+; Rd×m). We will say that X(t) has stochastic
differential dX(t) on t ≥ 0 given by

dX(t) = f (t)dt + g(t)dW(t).

Theorem 2.2.2 (The multi-dimensional Itô formula). Let X(t) be a d-dimensional Itô process on t ≥ 0 and
differential

dX(t) = f (t)dt + g(t)dW(t),

where f = ( f1, . . . , fd)T ∈ L1(R+; Rd) and g = (gij)d×m ∈ L2(R+; Rd×m). Let V ∈ C2,1(Rd ×R+; R). Then
V(X(t), t) is again an Itô process with stochastic differential given by

dV(X(t), t) =
[

Vt(X(t), t) + Vx(X(t), t) f (t) +
1
2

Tr
(

gT(t)Vxx(X(t), t)g(t)
)]

dt + Vx(X(t), t)g(t)dW(t) P− a. s.

For simplicity of notation and with the same meaning as above, we define a diffusion generator L as

LV(X(t), t) = Vt(X(t), t) + Vx(X(t), t) f (t) +
1
2

Tr
(

gT(X)Vxx(X(t), t)g(t)
)

. (2.1)

2.3 Numerical Methods of SDEs

The topic of this thesis is the development of new numerical solutions for stochastic differential equations
(SDEs)

dy(t) = f (y(t))dt + g(y(t))dW(t), t ∈ [0, T], y(0) = y0. (2.2)

Generally, we know the analytical solution for a few SDEs. So, we need numerical schemes in order to
approximate the solutions of eq. (2.2). In this section we present classical numerical methods for SDEs
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and give fundamental results in numerical analysis of stochastic differential equations. In the following
we consider the next setup: Let (Ω,F , (Ft)t∈[0,T], P) a filtered and complete probability space with the
filtration (Ft)t∈[0,T] generated by the m-dimensional Brownian process Wt = (W(1)

t . . . W(m)
t )T . We denote

the norm of a vector y ∈ Rd and the Frobenious norm of a matrix G ∈ Rd×m by |y| and |G| respectively.
The usual scalar product of two vectors x, y ∈ Rd is denoted by 〈x, y〉. Now we establish the definition of
strong solution and the main theorems of existence and uniqueness.

Definition 2.3.1 (Strong Solution). The strong solution of SDE (2.2) on a probability space (Ω,F , P),
respect to a fixed Brownian motion B and initial condition y0, is a continuous stochastic process y =
{y(t) : 0 ≤ t < ∞} with the following properties:

(SS-1) y is adapted to the filtration {Ft}t∈[0,T],

(SS-2) P[y(0) = y0] = 1,

(SS-3) P

[∫ t

0
f (s, y(s)) + g(s, y(s))ds < ∞

]
= 1,

(SS-4) y(t) = y0 +
∫ t

0
f (y(s))ds +

∫ t

0
g(y(s))dWs a. s.

Now, consider SDE (2.2) where y0 is a constant, f is a measurable d−vector valued function and g is
a measurable d×m-matrix-valued measurable function. In order to assure a unique solution we suppose
the following.

Hypothesis 2.3.1. The coefficients of SDE (2.2) f , g satisfy:

(EU1) Global Lipschitz condition. There is a positive constant L such that

| f (x)− f (z)|∨|g(x)− g(z)|≤ L|x− z|, ∀x, z ∈ Rd.

(EU2) Linear Growth condition. There is a positive constant L such that

| f (x)|2∨|g(x)|2≤ L(1 + |x|2), ∀x ∈ Rd.

Theorem 2.3.1 (Existence and uniqueness of solutions). If Hypothesis 2.3.1 holds, then exists a path-wise
unique strong solution of the SDE (2.2) with initial condition y0 on the time-interval [0, T] and

sup
t∈[0,T]

E
[
|y(t)|2

]
< ∞. (2.3)

Here, path-wise uniqueness means that if x(t) and y(t) are two solutions of SDE (2.2), then

P

[
sup

t∈[0,T]
|x(t)− y(t)|= 0

]
= 1.

It is worth mentioning that there exists a unique solution even when the linear growth conditions are
removed, in [31], the authors have derived a existence and uniqueness result that depend on a weaker
continuity condition on f and g than the Lipschitz condition. Here we enunciate the required hypothesis
and two results which we will need in Chapter 4.

11
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Hypothesis 2.3.2. The coefficients of SDE (2.2) satisfy the following:

(H-1) The functions f , g are in the class C1(Rd).

(H-2) Local, global Lipschitz condition. For each integer n, there is a positive constant L f = L f (n) such
that

| f (u)− f (v)|2≤ L f |u− v|2 ∀u, v ∈ Rd, |u|∨|v|≤ n,

and there is a positive constant Lg such that

|g(u)− g(v)|2≤ Lg|u− v|2, ∀u, v ∈ Rd.

(H-3) Monotone condition. There exist two positive constants α and β such that

〈u, f (u)〉 +
1
2
|g(u)|2≤ α + β|u|2, ∀u ∈ Rd. (2.4)

Theorem 2.3.2 ( Mao and Szpruch [46, Thm. 2.2]). Let Hypothesis 2.3.2 holds. Then for all y(0) = y0 ∈ Rd

given, there exist a unique global solution {y(t)}t≥0 to SDE(4.1). Moreover, the solution has the following properties
for any T > 0,

E |y(T)|2 <
(
|y0|2+2αT

)
exp(2βT),

and

P [τn ≤ T] ≤
(
|y0|2+2αT

)
exp(2βT)

n
,

where n is any positive integer and τn := inf{t ≥ 0 : |y(t)|> n}.

Theorem 2.3.3 ( Mao [44, Thm. 2.4.1] ). Let p ≥ 2 and x0 ∈ Lp(Ω, Rd). Assume that there exits a constant
C > 0 such that for all (x, t) ∈ Rd × [t0, T],

〈x, f (x, t)〉 +
p− 1

2
|g(x, t)|2≤ C(1 + |x|2).

Then
E|y(t)|p≤ 2

p−2
2 (1 + E|y0|p) exp(Cpt) for all t ∈ [0, T].

Lemma 2.3.1 ( [31, Lem 3.2] ). Under Hypothesis 2.3.2, for each p ≥ 2, there is a C = C(p, T) such that

E

[
sup

0≤t≤T
|y(t)|p

]
≤ C (1 + E|y0|p) .

Notice that we need to assure existence and uniqueness of the solution of SDE (2.1) in order to jus-
tify the development of a numerical approximation. Assuming that, we now propose several numerical
approximations for this SDE.
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2.3.1 Explicit and implicit schemes

Consider SDE (2.2) on time interval [0, T], we define a time partition of the time interval PN as a finite
equidistant sequence of N points tk := kh, for 0 ≤ k ≤ N, taking the step size as h = T/N.

Definition 2.3.2 (discrete approximation). We call a process Y = {Y(t), t ≥ 0}, a discrete approximation
of the solution of SDE (2.2) with step-size h over a partition PN

[0,T] = {0, h, 2h, . . . , Nh} if Y(tk) is Ftk -
measurable and Y(tk+1) can be expressed as a function of

Y(t0) . . . Y(tk), 0, t1, . . . , tk , tk+1

and a finite number l of measurable random variables Zk+1,j, j = 1 . . . l.

We present some of the most known numerical schemes which will be useful to show the efficiency of
our method (see for instance [36, 52]). Here, and in the next Chapter we will suppose Hypothesis 2.3.1.

Euler-Maruyama

The most easy implementable, popular and studied method is the Euler-Maruyama (EM) scheme. Given
the SDE (2.2) and a time step-size h it is defined by taking

Yk+1 = Yk + h f (Yk) + g(Yk)∆Wk , Y0 = y0, (2.5)

where ∆Wk = Wtk+1 −Wtk . If we consider a implicit approximation for the drift coefficient, we obtain the
Backward-Euler-Maruyama (BEM) [46], under the same notation as above, it has the recurrence:

Yk+1 = Yk + h f (Yk+1) + g(Yk)∆Wk . (2.6)

The θ-Maruyama scheme

This scheme generalizes the Euler-Maruyama algorithm using the parameter θ to weight contributions of
the explicit and implicit approximations to the drift coefficient. Its recurrence is

Yk+1 = Yk + h(1− θ) f (Yk) + θ f (Yk+1) + g(Yk)∆Wk θ ∈ [0, 1]. (2.7)

Note that if θ = 0 we recover the explicit EM and if θ = 1 we obtain the BEM.

Split Step Backward Euler

Also we will apply the split-step backward Euler (SSBE) method proposed by the authors in [31]. This
scheme is defined by

Y?
k = Yk + h f (Y?

k ), Y0 = y0, (2.8)

Yk+1 = Y?
k + g(Y?

k )∆Wk . (2.9)

13
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2.4 Theoretical Properties of Numerical Methods

It is always important in the construction of new algorithms to study the global discretization error and to
give an estimate of the speed of convergence. Also we will study the stability of our numerical schemes.
While convergence give us information about behavior of a scheme on a fixed time interval letting the
time-step small, the stability analysis allow us to understand behavior of the approximation for a fixed
step size when the time interval expands to infinity. For simplicity, we study these properties for a one-
dimensional autonomous SDE

dy(t) = f y(t))dt + g(y(t))dW(t). (2.10)

As a fist step, we suppose that Hypothesis 2.3.1 is fulfilled. But in Chapter 5 we will work under a more
general setting. Let us state the classic definitions of these concepts (see e.g. [36]).

2.4.1 Strong consistency and convergence

As we mention above we analyze the global discretization error and convergence. Here, they are carried
out with the study of the properties of consistency and convergence, see [36]. Here we state these concepts.

Definition 2.4.1. A time discrete approximation Yn is strongly consistent if there is a nonnegative function
c = c(h) such that the following conditions hold for all fixed values Yn = y, and n = 0, 1, . . . , N,

1. lim
h→0

c(h) = 0,

2. E

(∣∣∣∣E(Yn+1 −Yn

h
|Fτn

)
− f (Yn)

∣∣∣∣2
)
≤ c(h),

3. E

(
1
h
|Yn+1 −Yn −E (Yn+1 −Yn |Fτn )− g (Yn)∆Bn|2

)
≤ c(h).

On sake of clearness we define nt := max
n=1...N

{n : tn ≤ t}.

Definition 2.4.2. A time discrete approximation Yn is strongly convergent if for the end time T is verified

lim
h→0

E |y(T)−YnT | = 0.

Now, we give a theorem that connects both concepts.

Theorem 2.4.1 ([36, Thm. 9.6.2]). If Yn is a strongly consistent time discrete approximation maximum step h of
the solution of the SDE (2.10) with Y0 = y0. Then Yn converges strongly to the solution y.

Definition 2.4.1 (order). A discrete approximation Yk converges strongly with order δ at time T if there exist
a positive constant C independent of the step size h, such that

E [|y(T)−YnT |] ≤ Chδ. (2.11)

In addition, we say that a discrete approximation converges strongly with order δ uniformly on time if

E

[
sup

1≤k≤N
|y(tk)−Yk|

]
≤ Chδ. (2.12)
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2.4. Theoretical Properties of Numerical Methods

2.4.2 Higham-Mao-Stuart proof convergence technique

Now we discuss a technique reported by Higham, Mao, and Stuart [31] to prove strong convergence of
stochastic numerical methods under non-globally Lipschitz conditions. This kind of analysis is useful
whenever moment bounds can be established for the EM scheme and other method that can be shown
to be "close" to it. Recently, several works have used this procedure to establish strong convergence for
some particular scheme [8, 25, 32, 33, 34, 39, 46, 66], among others. To review this technique, we recall the
definition of stopping time. Essentially, a stopping time provides a way to verify the first occurrence of an
random event. This will be useful to justify the results presented on Chapter 4. We enunciate the formal
definition and two results to assure its random meaning.

Definition 2.4.2 (Stopping Time). A random variable τ : Ω → [0, ∞] is called an {Ft}-stopping time if
{ω : τ(ω) ≤ t} ∈ Ft for any t ≥ 0.

Theorem 2.4.2. If {Xt}t≥0 is a progressively measurable process and τ is a stopping time, then Xt1{τ<∞} is
{Ft}-measurable.

Theorem 2.4.3. Let {Xt}t≥0 be and Rd-valued continuous {Ft}-adapted process and D ⊂ Rd an open set. Then
τ := inf {t ≥ 0 : Xt /∈ D} is an {Ft}-stopping time.

Now consider two conveniently versions for the continuous extension of the EM scheme,

Y(t) := Yη(t) + (t− tη(t)) f (Yη(t)) + g(Yη(t))(W(t)−Wη(t)), (2.13)

η(t) := k, for t ∈ [tk , tk+1),

and

Y(t) := Y0 +
∫ t

0
f (Yη(s))ds +

∫ t

0
g(Yη(s))dW(s).

So, with this notation we have Y(tk) = Yk, see Figure 2.1. Using the continuous extension (2.13) and the
uniform mean square norm, the authors use a stronger version of the ms-error

E

[
sup

0≤t≤t
|y(t)−Y(t)|2

]
.

In order to prove strong convergence of the EM method, the following assumptions are required.

Assumption 2.4.1. For each R > 0 there is a positive constant CR, depending only on R, such that

| f (x)− f (y)|2∨|g(x)− g(y)|2≤ CR|x− y|2, ∀x, y ∈ Rd with |x|∨|y|≤ R. (2.14)

And for some p > 2, there is a constant A such that

E

[
sup

0≤t≤T
|Y(t)|p

]
∨E

[
sup

0≤t≤T
|y(t)|p

]
≤ A. (2.15)

In [31], the authors prove that the Assumption 2.4.1 is sufficient to ensure strong convergence for the
EM scheme, namely:
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Figure 2.1: The red line represents the continuous extension of the EM scheme. The continuous gray line is the Yη(t) process defined
in (2.5) and black line denotes the exact solution of SDE (2.2).

Theorem 2.4.4 ( [31, Thm 2.2] ). Under Assumption 2.4.1, the EM scheme (2.5) with continuous extension (2.13)
satisfies

lim
h→0

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
= 0. (2.16)

Applying this result, the strong convergence of an implicit split-step variant of the EM, the SSEM
method is proved . Their technique consist in proving each assertion of the following steps.

Step 1: The SSEM for SDE (4.1) is equivalent to the EM for the following conveniently SDE

dyh(t) = fh(yh(t))dt + gh(yh(t))dW(t). (2.17)

Step 2: The solution of the modified SDE (2.17) has bounded moments and it is "close" to y the sense of
the uniform mean square norm E

[
sup0≤t≤T |·|2

]
.

Step 3: Show that the SSEM method for the SDE (4.1) has bounded moments.

Step 4: There is a continuous extension of the SSEM, Z(t), with bounded moments.

Step 5: Use the above steps and Theorem 2.4.4 to conclude that

lim
h→0

{
E

[
sup

0≤t≤T
|yh(t)− y(t)|2

]
+ E

[
sup

0≤t≤T
|Z(t)− yh(t)|2

]}
= 0. (2.18)
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In Chapter 4, we will use this technique. Moreover, if we are interested in simulating the solution of
the SDE (2.2) for large periods of time, we need to use stable methods. We can interpret the stability of
a numerical scheme, in some sense, as its capacity to preserve the dynamical structure of the solution in
that sense. Here we recall the topics that we will work in the next chapter.

2.4.3 Numerical Stability

With a numerical stability one obtain the step sizes for which a method reproduces behavior of the solution
for a SDE. Therefore, it is important to know some qualitative information about the solution, for example:
if all solution paths tend to a fixed point, or if stay on a bounded set or reach an absorbent process. Usually
the first step in this direction is a linear stability analysis. This study mimics the deterministic context,
which is based in the following steps:

Step 1: Expand in Taylor series around a fixed point the right hand side of a nonlinear ordinary differen-
tial equation x′(t) = f (t, x).

Step 2: Take a linear system with the Jacobian matrix of f evaluated at the equilibrium x′(t) = Ax(t).

Step 3: Diagonalize to decouples the linear system and study equations of the form x′(t) = λx(t), λ ∈ C.

If all eigenvalues of A are different from zero, then the theorem of Hartman (see [27]) justifies the use of
this last equation to study the behavior around a sufficient small neighborhood. So, one seek conditions
to assure that the numerical methods preserves the dynamics of underlying test.

In stochastic numerics, the linearization procedure is analogous but here the linear SDE with multi-
plicative noise is the benchmark test. The advantage of this linear SDE is that has the same unique fixed
point as its deterministic analogous, the origin [29] . Another benchmark equation is the linear SDE with
additive noise. However, for these model the concepts of numerical stability were unclear. The first works
with this test[6, 28, 52], differs about the meaning of fixed point and stability. Recently, the works of De la
Cruz Cancino, Biscay, Jimenez, Carbonell, and Ozaki [18] and Buckwar, Riedler, and Kloeden [12] analyze
the additive linear SDE using the theory of random dynamical systems, which in our opinion clarifies this
issue.

Naturally the nonlinear case, is even more complex. Although Lyapunov theory is the usual approach
in applications [35], a more general novel approach based on the theory of random dynamical systems [4]
is a current topic of interest. In the following we provide this notions.

Linear Stability

Multiplicative noise

Consider the scalar linear SDE

dy(t) = λy(t)dt + ξy(t)dW(t), X0 = x0, λ, ξ ∈ C. (2.19)

The solutions of this SDE have the following property

lim
t→∞

E
[
|y(t)|2

]
= 0⇔ Re(λ) +

1
2
|ξ|2< 0. (2.20)
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A solution that satisfies the previous limit is a mean-square stable solution. Note that for ξ = 0 we have,
Re(λ) < 0, which is the stability condition for the deterministic case.

Applying the EM method (2.5) to (2.19), we obtain

Yk+1 =
(

1 + hλ +
√

hξVk

)
Yk , (2.21)

where each Vk is an independent N (0, 1) random variable. In order to study the stability properties of the
EM scheme, we must study the long time behavior of random variables of the form (2.21). Analogously,
we will say that sequence (2.21) is mean-square stable if limk→∞ E

[
|Yk|2

]
= 0. Note that the EM scheme

depends upon the problem parameters λ and ξ, and the method parameter h. Then for a particular
choice of parameters, we will say that the EM scheme is mean-square stable if it produces a mean-square
stable sequence. Our interest lies in finding the parameter values for which the EM method is stable, and
comparing results with the region Re(λ) + 1

2 |ξ|2< 0 in (2.20) for the underlying SDE (see Figure 2.2). There
is the following result.

Theorem 2.4.5. Consider the EM method for the linear scalar SDE (2.19). If the parameters λ, ξ, and the step size
h satisfies

Re(λ) +
1
2

(
|ξ|2+h|λ|2

)
< 0.

Then the EM solution is mean square stable.

Figure 2.2: Mean square regions of stability. The horizontal lines represents the stability region of SDE (2.19) and diagonal lines for
the EM solution.
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Additive noise

Here we study the additive linear SDE:

dy(t) = λy(t)dt + ξdW(t), y0 = y(t0), λ, ξ ∈ R. (2.22)

where λ, ξ ∈ C and Xt0 is the initial value of the process at time t0. Equation (2.22) has the following
exact solution:

y(t) = exp(λ(t− t0))y(t0) + ξ exp(λt)
t∫

t0

exp(−λs)dW(s), t ≥ t0. (2.23)

The stochastic process y(t) defined in (2.23) is known as the Ornstein-Uhlenbeck’s (OU) process. According
to [28], the OU process is asymptotically mean stable if limt→∞ Ey(t) = 0 and is asymptotically mean square
stable if lim

t→∞
E |y(t)|2 = −ξ/2Re(λ). Both limits are verified if λ < 0. Analogous stability properties are

given for stochastic difference equations with additive noise [58]. Now, if we consider λ < 0 then the OU
solution (3.24) does not convergence as t tends to infinity but has the following pullback limit:

lim
t0→−∞

y(t) = Ôt := exp(λt)
t∫

−∞

exp(−λs)dW(s), (2.24)

W(t) is now defined for all t ∈ R, see [4, 37]. Furthermore, the process (3.26) is a stationary solution of
the additive linear SDE which attracts all other solutions in forward time and path-wise sense. Moreover,
it is a finite process for all t ≥ TD(ω) (ω ∈ Ω) for appropriate families D(ω) of bounded sets of initial
conditions, see [56]. Therefore, we can evaluate the numerical stability of a given stochastic method by
examine if this scheme reproduce the pullback asymptotic behavior. For example, the explicit EM scheme
for (2.22)

Yk+1 = (1 + λh)Yn + ξ∆Wn,

given a initial value Yk0 , has the form

Yk+1 = (1 + λh)k−k0Yk0 + ξ
k−1

∑
j=k0

(1 + λh)k−1−j∆Wj.

So, the path-wise pullback limit (taking k0 → ∞ with k held fixed and Yk0 = Y0 for all Yk0 and constant
time step h) exists, provided that 0 < h < 2/(−λ), λ < 0, and is given by

Ô(h)
k := ξ

k

∑
j=−∞

(1 + λh)1−k−j∆Wj,

for more details see the work of Buckwar, Riedler, and Kloeden [12].

Non-Linear Stability

Now we discuss the nonlinear case for multiplicative and additive noise.
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Chapter 2. Preliminaries

Multiplicative Noise

We start with a notion of stability which emulates the continuity respect to initial conditions of determin-
istic ODEs.

Definition 2.4.3 (Baker and Buckwar [7]). Let Yn and Ŷn two different numerical recurrences with corre-
sponding initial process Y0 and Ŷ0. We shall say that a discrete time, Y is numerically zero-stable in quadratic
mean-square sense if given ε > 0, there are positive constants h0 and δ = δ(ε, h0) such that for all h ∈ (0, h0)

and positive integers n ≤ T/h whenever E

∣∣∣Y0 − Ŷ0

∣∣∣2 < δ then

ρn := E

∣∣∣Yn − Ŷn

∣∣∣2 < ε. (2.25)

If the method is stable and ρn → 0 when n → ∞, then the method is asymptotically zero-stable in the
quadratic mean-square sense.

Also, in [7] provides a result to characterizes this type of stability. Here we enunciated it for the EM.

Theorem 2.4.6 ([7, Thm. 4 ]). Let C1, C2 and C3 generic positive constants which not depends on h and V a
N (0, 1) random variable. If the coefficients of SDE (2.2) satisfies the estimates∣∣∣E [ f (x)h + g(x)

√
hV −

(
f (x′)h + g(x′)

√
hV
)]∣∣∣ ≤ C1h

(
|x− x′|

)
,

E

[∣∣∣h f (x) + g(x)
√

hV −
(

f (x′)h + g(x′)
√

hV
)∣∣∣2] ≤ C2h

(
|x− x′|

)
,

then the EM method (2.5) for (2.2) is zero-stable in the quadratic mean-square sense.

Additive noise

Nonlinear differential equations have more complex dynamics than the linear case and the same occurs
for the finite difference equations. So, Caraballo and Kloeden in [15] extend the nonlinear stability theory
of the deterministic numerical analysis given in [37] to the stochastic case. They propose and justify the
use of the following SDE as a test equation with additive noise:

dy(t) = (Ay(ts) + f (y(t))) dt + ξdW(t), (2.26)

where A is a d× d stiff matrix and function f : Rd → Rd is a nonlinear and non-stiff function that satisfies,
a contractive one-sided Lipschitz condition with constant L1 > 0

〈u− v, f (u)− f (v)〉 ≤ −L1|u− v|2 ∀u, v ∈ Rd. (2.27)

Also the authors give sufficient conditions to assure an asymptotically stable stochastic stationary solution
of (2.26). In this context they establish the following result for the stability of θ-EM scheme.

Theorem 2.4.7 ([12, Thm. 3.1]). Suppose that the drift coefficient satisfies a contractive one-sided Lipschitz
condition, and that the vector field f satisfies a globally Lipschitz condition . Then the θ-EM scheme has a unique
stochastic stationary solution which is pathwise asymptotically stable for all step sizes h > 0 if

(1− θ)(|A|+L) < −θ(µ[A]− L1), µ[A] = lim
δ→0+

(|Id + δA|)
δ

,

where L refers to the Lipschitz condition and L1 the to contractive one-sided Lipschitz condition.
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2.4. Theoretical Properties of Numerical Methods

The following chapter shows adaptations of these results for the construction of a new method, the
Steklov method.

21



Chapter 2. Preliminaries

22



Chapter 3

Steklov method for scalar SDEs with
Globally Lipschitz coefficients

23



Chapter 3. Steklov method for scalar SDEs with Globally Lipschitz coefficients

In this chapter, we focus on the following scalar stochastic differential equation

dy(t) = f (t, y(t))dt + g(t, y(t))dW(t), y0 = y(0), (3.1)

considering the drift term as f (t, y(t)) = f1(t) f2(y(t)). Given this functional form of f , we propose an exact
explicit algorithm for solving the deterministic equation linked to (3.1); details of this exact differentiation
are given in [50]. So, the main characteristic of this new method is that it preserves qualitative features
of the deterministic solution associated to the SDE. Next, we prove strong consistency, convergence and
study the linear stability of the proposed method using properties of the Steklov mean [64]. Moreover, we
analyze the nonlinear stability of the Steklov stochastic approximation specifically the asymptotic mean-
square stability in the multiplicative case and the path-wise stability in the additive case. Finally, we
show the efficiency of the new scheme in numerical problems with harsh requirements of stability like
the logistic equation for the multiplicative case and the Langevin equation with a particular potential for
the additive case.

In section 3.1, we construct the explicit Steklov method for the SDE (3.1) and show its development
with some examples. In section 3.2, we prove strong consistency and convergence of the new explicit
method. In section 3.3, sufficient conditions for the asymptotic mean and mean-square stability are given
for both additive and multiplicative cases. A nonlinear stability analysis is carried out in section 3.4,
where we prove that the explicit Steklov approximation is asymptoticly stable in square mean sense in the
multiplicative case and it is path-wise stable under certain conditions in the additive case. In section 3.5,
we test the Steklov method for the stochastic logistic equation in the multiplicative case and and for the
Langevin equation in Brownian dynamics. Also, we show numerical evidence that the Steklov method
is successful with step sizes significantly large reaching larger time scales of simulation. Finally, we give
some conclusions.

3.1 Steklov Method

Under these considerations we construct the Steklov numerical scheme for the SDE (3.1) based on its
integral formulation:

y(t) = X0 +
∫ t

0
f (s, y(s))ds +

∫ t

0
g(s, y(s))dW(s), t ∈ [0, T], Y0 = y0, (3.2)

where y(t) denotes the value of the process at time t with initial value X0. First we discretize the time
domain with a uniform step size h such that tn = nh for n = 0, 1, 2, . . . , N and denote by Yn the numerical
solution at tn. Now we approximate the stochastic integral of (3.2) with the usual form:∫ tn+1

tn
g(s, y(s))dW(s) ≈ g(tn, Yn)∆Wn, ∆Wn := (W(tn+1)−W(tn)) =

√
hVn, (3.3)

where W(tn+1)−W(tn) is a discrete standard Brownian motion such that Vn ∼ N (0, 1). We can obtain
different schemes depending on the numerical integration used for the first integral of (3.2). For example,
if we choose the Euler’s approximation:∫ tn+1

tn
f (s, y(s))ds ≈ f (tn, Yn)(tn+1 − tn), (3.4)
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3.1. Steklov Method

then we obtain the Euler-Maruyama scheme as follows:

Yn+1 = Yn + f (tn, Yn)h + g(tn, Yn)∆Wn, n = 1, . . . , N − 1, Y0 = x0. (3.5)

Assuming that we can rewrite the function f as f (t, y(t)) = f1(t) f2(y(t)), we propose an alternative approach
to (3.4) based on the construction of an exact discretization for the deterministic differential equation
associated to (3.1):

dx
dt

= f1(t) f2(x), x(0) = x0. (3.6)

Integrating this equation in the interval [tn, tn+1) and using the Steklov mean [50], we have∫ tn+1

tn
f1(s) f2(x)ds ≈ φ1(tn)φ2(yn, yn+1)(tn+1 − tn), (3.7)

where

φ1(tn) =
1

tn+1 − tn

∫ tn+1

tn
f1(s)ds and φ2(yn, yn+1) =

(
1

yn+1 − yn

∫ yn+1

yn

du
f2(u)

)−1
.

Thus, the exact scheme for (3.6) is given as:

yn+1 − yn = φ1(tn)φ2(yn, yn+1)h, y0 = x0. (3.8)

Notice that it is an implicit algorithm, so in order to get an explicit formulation we define the following
function:

H(x) :=
∫ x

0

du
f2(u)

, (3.9)

and the exact scheme (3.8) is written as follows:

yn+1 − yn = φ1(tn)
(yn+1 − yn)

H(yn+1)− H(yn)
h.

Now assuming the existence of the function H−1, we can give the following compact formulation of the
scheme (3.8):

yn+1 = Ψh(tn, yn), Ψh(tn, yn) := H−1[H(yn) + hφ1(tn)]. (3.10)

Finally, the numerical method for the SDE (3.1) is proposed as follows:

Yn+1 = Ψh(tn, Yn) + g(tn, Yn)∆Wn, n = 1, . . . , N − 1, Y0 = x0, (3.11)

and we named it Steklov scheme due to the origin of its construction. An important feature of this new
stochastic scheme (3.11) is that it preserves qualitative properties of the deterministic solution if the noise
term does not become dominant. Notice that the main step to develop Steklov approximations is to obtain
the function Ψh, so forthcoming examples show the procedure to construct this function. We choose as
examples some SDEs which appear in important applications and for which harsh conditions of stability
are required for their numerical approximations.
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Chapter 3. Steklov method for scalar SDEs with Globally Lipschitz coefficients

Example 3.1.1. We consider the linear Itô equation

dy(t) = λy(t)dt + ξy(t)dW(t), Y0 = y0, (3.12)

where λ, ξ ∈ C and x0 6= 0 with probability one. We construct the function Ψh for (3.12) using its integral
form and approximating the deterministic integral by (3.7) as:

∫ yn+1

yn
λudu ≈

(
1

λ(yn+1 − yn)
ln
(

yn+1

yn

))−1
h, n = 1, . . . , N − 1.

In order to obtain a explicit Steklov approximation, we consider the exact finite difference algorithm
associated to dx/dt = λx:

yn+1 − yn = λh
(yn+1 − yn)

ln
(

yn+1
yn

) .

By algebraic manipulations, the previous equation is equivalent to the equation

yn+1 = exp(λh)yn

and the explicit function Ψh for the linear SDE is

Ψh(y) = exp(λh)y. (3.13)

Notice that we obtain the same function Ψh that for an additive linear SDE.

Example 3.1.2. Now we consider the logistic growth SDE proposed by Schurz in [61]:

dy(t) = λy(t)(K− y(t))dt + ξy(t)α|K− y(t)|βdW(t), (3.14)

where λ, K, α, β and ξ are nonnegative real coefficients. So using (3.7) we approximate the deterministic
integral of the integral form of (3.14) as:∫ yn+1

yn
λu(K− u)du ≈ yn+1 − yn

1
λK ln

(
yn+1(K−yn)
yn(K−yn+1)

)h, n = 1, . . . , N − 1.

Analogously to the previous example, we develop the Steklov function from the exact finite difference
equation associated to the deterministic counterpart of (3.14), obtaining:

Ψh(y) =
Ky

K− y + exp(λKh)
. (3.15)

Example 3.1.3. As a final example, we consider the following SDE with additive noise:

dy(t) = −y(t)3dt + ξdW(t), (3.16)

where ξ is a positive coefficient. Using (3.7), we get∫ yn+1

yn
−u3du ≈ 2

(yn+1yn)2

yn+1 + yn
h, n = 1, ..N − 1.

26



3.2. Strong consistency and convergence

By algebraic manipulations on the associated deterministic exact algorithm, we obtain the following
Steklov function

Ψh(y) =
y√

1 + 2y2h
. (3.17)

In the section of numerical results, we will show the behavior of the new scheme (3.11) in these three ex-
amples and compare it with standard methods. As a next step, we prove important qualitative properties
of the explicit Steklov method.

3.2 Strong consistency and convergence

It is always important in the construction of new algorithms to study the global discretization error
and give an estimation of the speed of convergence. Here, they are carried out with the analysis of
the properties of consistency and convergence, see [36]. For simplicity, we study these properties for a
one-dimensional autonomous SDE

dy(t) = f (y(t))dt + g(y(t))dW(t), (3.18)

satisfying the necessary conditions of existence and uniqueness of solution.
So, considering Definition 2.4.1 and Theorem 2.4.1 we prove convergence of the explicit Steklov ap-

proximation via strong consistency.

Theorem 3.2.1. A time discrete approximation of SDE (3.18) generated with the explicit Steklov method (3.11) is
strongly convergent.

Proof. We substitute the Steklov recurrence (3.11) in the left hand side of the inequality (2). Given that
F, G and Ψh are continuous functions adapted to the filtration (Ft)t∈[0,T] and using standard conditional
expectation properties [69], it follows that:

E

(∣∣∣∣E(Yn+1 −Yn

h
|Ftn

)
− f (Yn)

∣∣∣∣2
)

= E

(∣∣∣∣Ψh(Yn)−Yn

h
− f (Yn)

∣∣∣∣2
)

= E

(∣∣∣∣H−1(H(Yn) + h)− H−1(H(Yn))
h

− f (Yn)
∣∣∣∣2
)

.

Since the functions F and Ψh are Lipschitz we can apply the Inverse Function theorem and from (3.9), we
have that

(H−1)′(H(Yn)) = f (Yn),

then given any ε > 0 there exists δ = δ(ε) such that whenever 0 < h < δ(ε) then∣∣∣∣H−1(H(Yn) + h)− H−1(H(Yn))
h

− f (Yn)
∣∣∣∣ < ε.

So, taking ε =
√

h and c(h) = h(δ(
√

h))2, the condition (ii) is satisfied. With an analogous procedure, the
condition (iii) is verified and the condition (i) follows straightforward from the definition of c(h).
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Chapter 3. Steklov method for scalar SDEs with Globally Lipschitz coefficients

Thus, we can ensure that the explicit Steklov scheme converges on bounded time intervals [56]. How-
ever, if we are interested in simulating the solution of the SDE (3.1) for large periods of time, we need to
use stable methods. We can interpret the stability of a numerical method, in some sense, as its capacity
to preserve the dynamical structure of the solution in that sense. In the next two sections, we study the
stability of the explicit Steklov method (3.11) in mean and mean square sense and extend this study in a
path-wise sense for the additive case.

3.3 Linear Stability

We start the stability analysis for the linear case since the stability conditions for the solution of the linear
SDE in both additive and multiplicative cases are well known. So, we first recall these conditions for the
continuous case and later obtain sufficient conditions to ensure stability and asymptotic stability in mean
and mean square for the explicit Steklov method (3.11). Moreover in the additive case, we analyze the
stability in a path-wise sense based on the work of Buckwar et al. [12].

3.3.1 Multiplicative noise

For the linear multiplicative SDE (3.12), its zero equilibrium solution is called mean stable if limt→∞ Ey(t) =
0, and it is said to be mean square stable if limt→∞ E |y(t)|2 = 0. Then the zero solution of (3.12) is mean
stable if λ < 0 and it is mean square stable if Re(λ) + 1

2 |ξ|2< 0, see [29]. In order to obtain the explicit
Steklov approximation (3.11) for equation (3.12), we use the function Ψh defined in (3.13) so the linear
Steklov discretization is written as follows:

Yn+1 = exp(λh)Yn + ξYn∆Wn. (3.19)

Similarly, we say that the method (3.19) is mean stable if limn→∞ EYn = 0, and we called it mean square stable
if limn→∞ E |Yn|2 = 0. Moreover, a stochastic numerical method is A-stable in some sense, if it is stable for
all step size h when its associated continuous SDE is stable in the same sense.

Proposition 3.3.1. Let λ < 0, then the explicit Steklov method (3.19) for the SDE (3.12) is A-stable in mean.
Moreover, it is mean square stable if

exp (2Re(λh)) + |ξ|2h < 1. (3.20)

Proof. Denoting by p = exp(λh) and q = ξ
√

h, we can rewrite the Steklov method (3.19) as

Yn+1 = (p + qVn)Yn. (3.21)

Taking expectation in (3.21) and iterating this recurrence until the initial step, we obtain

EYn = (p)n+1EY0, (3.22)

thus the limit of the sequence (3.22) as n approaches infinity is zero for λ < 0. Now, applying square
modulus to (3.21) and carrying out an analogous procedure, it follows that:

E

∣∣∣Yh
n

∣∣∣2 = (|p|2+|q|2)n+1E

∣∣∣Yh
0

∣∣∣2 .

Therefore the sequence E

∣∣∣Yh
n

∣∣∣2 approaches to zero as n tends to infinity if and only if |p|2+|q|2< 1.
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3.3. Linear Stability

In Figure 3.1, we show a comparison between the mean square stability region of the zero solution for
the linear SDE and the associated explicit Steklov and Euler-Maruyama approximations [30].

-7 -6 -5 -4 -3 -2 -1 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

hΛ

h
Ξ
2

Figure 3.1: Mean square stability regions: horizontal lines represent the region for the linear SDE (3.12), the vertical lines form the
explicit Steklov region and the diagonal lines draw the Euler-Maruyama region.

3.3.2 Additive noise

Here we study the additive linear SDE:

dy(t) = λy(t)dt + ξdW(t), Xt0 = xt0 . (3.23)

where λ, ξ ∈ C and Xt0 is the initial value of the process at time t0. Equation (3.23) has the following
exact solution:

y(t) = exp(λ(t− t0))y(t0) + ξ exp(λt)
t∫

t0

exp(−λs)dW(s), t ≥ t0. (3.24)

The stochastic process y(t) defined in (3.24) is known as the Ornstein-Uhlenbeck’s (OU) process. According
to [28], the OU process is asymptotically mean stable if limt→∞ Ey(t) = 0 and is asymptotically mean square
stable if lim

t→∞
E |y(t)|2 = −ξ/2Re(λ). Both limits are verified if λ < 0. Now, the explicit Steklov recurrence

to solve additive linear SDE is
Yn+1 = exp(λh)Yn + ξ∆Wn. (3.25)

Analogous stability properties are given for stochastic difference equations with additive noise [58]. Next,
we prove mean-square consistency for the explicit Steklov, that is,

lim
h→0

(
lim

n→∞
E |Yn|2

)
= −ξ/2Re(λ).

Proposition 3.3.2. Let λ < 0, the explicit Steklov method (3.25) for the additive linear SDE (3.23) is A-stable in
mean and mean-square consistent.
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Chapter 3. Steklov method for scalar SDEs with Globally Lipschitz coefficients

Proof. Taking the expected value of (3.25) and iterating backwards this recurrence we obtain the identity
(3.22), so the A-stability in mean is verified for λ < 0. Now, taking the mean square of the recurrence
(3.25) and after some algebraic manipulations we get

E |Yn+1|2 = exp(2Re(λ)h)E |Yn|2 + |ξ|2h

= E |Y0|2 + |ξ|2h{1 + · · · + exp(2nRe(λ)h)}E |Yn+1|2

= exp(2nRe(λ)h)E |Y0|2 + ξ2h
[exp(2Re(λ)h)]n+1 − 1

exp(2Re(λ)h)− 1
.

Given that λ < 0

lim
n→∞
h→0

E |Yn+1|2 = lim
n→∞
h→0

−|ξ|2h
exp(2Re(λ)h)− 1

= − |ξ|2
2Re(λ)

.

So far we have analyzed the asymptotic behavior of the forward motion for the explicit Steklov method
(3.25). Now, if we consider λ < 0 then the OU solution (3.24) does not convergence as t tends to infinity
but has the following pullback limit:

lim
t0→−∞

y(t) = Ôt := exp(λt)
t∫

−∞

exp(−λs)dW(s), (3.26)

Bt is now defined for all t ∈ R, see [4, 37]. Furthermore, the process (3.26) is a stationary solution of
the additive linear SDE which attracts all other solutions in forward time and path-wise sense. Moreover,
it is a finite process for all t ≥ TD(ω) (ω ∈ Ω) for appropriate families D(ω) of bounded sets of initial
conditions, see [56]. Therefore, a study of the pullback asymptotic behavior for the Steklov stochastic
method (3.25) is important in the additive case and in the next subsection we carry it out based on
Caraballo and Kloeden’s work [15].

Path-wise linear stability

Here we obtain a stationary discrete process Ô(h)
n for the linear explicit Steklov and prove that converges

to the continuous process (3.26).

Proposition 3.3.3. Let λ < 0, the explicit Steklov method (3.25) for the additive linear SDE (3.23) has the following
attractor:

Ô(h)
n := ξ

n−1

∑
j=−∞

exp(λh(n− 1− j))∆Wj, (3.27)

for any positive step size h. Moreover, it converges (path-wise) to the Ornstein-Uhlenbeck’s process (3.26).

Proof. We consider a recurrence given by the Steklov method (3.25) and iterate it backwards, obtaining
the explicit numerical solution

Yn = exp(λh(n− n0)) + ξ
n−1

∑
j=n0

exp(λh(n− 1− j))∆Wj, (3.28)
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3.4. Nonlinear Stability

where n0 is the initial point of this recurrence. Taking the path-wise pullback limit of Yn given in (3.28),
i.e. n0 → −∞ for each n fixed, we get

Ô(h)
n := lim

n0→−∞
Yn

= ξ
n−1

∑
j=−∞

exp(λh(n− 1− j))∆Wj.

Now, we take other explicit Steklov recurrence Ŷn and subtract it from the recurrence (3.28). It follows
that

Yn − Ŷn = exp(λh(n− n0))(Yn0 − Ŷn0 ).

For any fixed n0 letting n → ∞ we deduce that Yn − Ŷn → Yn0 − Ŷn0 . So replacing Ŷn by the discrete
process (3.27), we have that this process attracts all explicit Steklov approximations forwards in time in
the path-wise sense. Furthermore, notice that as h → 0 then the series Ôh

0 approaches Ô0 and hence, for
each n.

3.4 Nonlinear Stability

To continue the stability analysis of the explicit Steklov method, we now discuss the nonlinear case since
a linear stable numerical stochastic method does not imply that is stable under same conditions for any
nonlinear problem. So, we study sufficient conditions for the nonlinear stability of the explicit stochastic
method (3.11) applied on the autonomous SDE (3.18) in both multiplicative and additive cases.

3.4.1 Multiplicative Noise

Here we prove the nonlinear asymptotic stability in a quadratic mean-square sense for the Steklov ap-
proximation.

Definition 3.4.1 (Baker and Buckwar [7]). Let Yn and Ŷn two different numerical recurrences with cor-
responding initial process Y0 and Ŷ0. We shall say that a discrete time, Y is numerically zero-stable in
quadratic mean-square sense if given ε > 0, there are positive constants h0 and δ = δ(ε, h0) such that for

all h ∈ (0, h0) and positive integers n ≤ T/h whenever E

∣∣∣Y0 − Ŷ0

∣∣∣2 < δ then

ρn := E

∣∣∣Yn − Ŷn

∣∣∣2 < ε. (3.29)

If the method is stable and ρn → 0 when n → ∞, then the method is asymptotically zero-stable in the
quadratic mean-square sense.

In order to prove that the Steklov method satisfies the definition 3.4.1, we will follow the idea of the
proof given in [7, Thm. 4].

Theorem 3.4.1. If the functions Ψh and G of the Steklov method (3.11) are Lipschitz with constant L, then the
Steklov method for the multiplicative SDE (3.18) is zero-stable in quadratic mean square sense. In addition, if L < 1
then the Steklov method is asymptotically zero-stable stable in quadratic mean-square sense.
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Chapter 3. Steklov method for scalar SDEs with Globally Lipschitz coefficients

Proof. Given two Steklov sequences Yn and Ŷn we have(
Yn+1 − Ŷn+1

)2
≤
(

Ψh(Yn)−Ψh(Ŷn)
)2

+ 2
(

Ψh(Yn)−Ψh(Ŷn)
) (

G(Yn)− G(Ŷn)
)

∆Wn

+ (G(Yn)− G(Ŷn))2(∆Wn)2,

for 0 < n < N with T = Nh. Now, taking expected values conditioned on the σ-algebra Ft0 of the above
inequality and applying properties of the conditional expectation we get

E

∣∣∣Yn+1 − Ŷn+1

∣∣∣2 ≤ E

[∣∣∣Ψh(Yn)−Ψh(Ŷn)
∣∣∣2 |Ft0

]
+ 2
∣∣∣E [(Ψh(Yn)−Ψh(Ŷn)

) (
G(Yn)− G(Ŷn)

)
∆Wn|Ft0

]∣∣∣
+ E

[
|G(Yn)− G(Ŷn)|2|Ft0

]
E
[
|∆Wn|2|Ft0

]
.

The second term in this expression is zero due to the independence properties of Brownian motion. Next,
using the Lipschitz condition for Ψh and G, we obtain:

E
[
|Yn+1 − Ŷn+1|2|Ft0

]
≤ L(1 + h)E

[
|Yn − Ŷn|2|Ft0

]
. (3.30)

The sequence {Rn}n≥0 defined by

Rn = max
0≤r≤n

E
[
|Yr − Ŷr|2|Ft0

]
,

is monotonically non-decreasing. Furthermore, by (3.30) we have

Rn ≤ L(1 + h)Rn−1. (3.31)

First suppose 0 < L < 1, since 1 + h ≤ exp(h) it follows that

Rn ≤ L exp(T)R0, n = 0, . . . , N. (3.32)

Hence, given ε > 0 if we take δ = εL−1 exp(−T) then for all 0 < h < h0 ≤ T and any integer n such that
0 ≤ n ≤ N

E

∣∣∣Y0 − Ŷ0

∣∣∣2 ≤ δ⇒ E

∣∣∣Yn − Ŷn

∣∣∣2 ≤ ε.

On the other hand, if 1 < L < +∞ and with h0 := L−1
L then for 0 < h < h0 we get

L(1 + h) < 1 + 2Lh0.

Thus, it follows that
Rn ≤ exp(2LNh0)R0 = exp(2LT)R0.

Hence, given ε > 0 if we take h ∈ (0, (L− 1)/L), and δ = ε exp(−2LT) then for all integers n such that
0 ≤ n ≤ N we obtain

E

∣∣∣Y0 − Ŷ0

∣∣∣2 ≤ δ⇒ E

∣∣∣Yn − Ŷn

∣∣∣2 ≤ ε.

So far we have proved the quadratic mean square stability for the explicit Steklov method. Notice that the
asymptotic mean-square stability for the method (3.11) is verified for any h ∈ (0, T] if 0 < L < 1. �
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3.4.2 Additive noise

Nonlinear differential equations have more complex dynamics than the linear case and the same occurs
for the finite difference equations. So, Caraballo and Kloeden in [15] extend the nonlinear stability theory
of the deterministic numerical analysis given in [37] to the stochastic numerical case. Following their
work, we consider the non-autonomous additive SDE:

dy(t) = f (y(t))dt + ξdWt, (3.33)

where f satisfies a contractive one-sided Lipschitz condition with constant L1 > 0 as follows

〈x− z, f (x)− f (z)〉 ≤ −L1|x− z|2 ∀x, z ∈ R, (3.34)

and study the path-wise stability for the Steklov method (3.11) for the SDE (3.33).

Theorem 3.4.2. If the Steklov function Ψh satisfies

(A1) (Contractive Lipschitz condition) There exists a constant K1 ∈ (0, 1) such that

|Ψh(x)−Ψh(z)|≤ K1|x− z| ∀x, z ∈ R,

(A2) (Contractive one sided Lipschitz condition) There exists a constant K2 such that

〈Ψh(x)−Ψh(z), x− z〉 ≤ −K2|x− z|2 ∀x, z ∈ R,

(A3) (Linear growth bound) There exists a constant K3 such that

|Ψh(x)|≤ K3(1 + h + |x|) ∀x ∈ R,

and the condition
K3

1 + K2 − K3
< 1, (3.35)

is verified. Then there exists h∗ > 0 such that for all 0 < h < h∗ the Steklov method (3.11) has a unique stochastic
stationary solution which is path-wise asymptotically stable for an additive SDE (3.33).

Proof. In order to obtain the path-wise asymptotic stability for the explicit Steklov method we will show:
(i) the path-wise contractive Lipschitz property for the Steklov numerical solution and (ii) the existence of
a random attractor for the Steklov approximations.

(i) Let Yn+1 and Ŷn+1 two different solutions of the Steklov method (3.11) for the additive SDE (3.33)
and using the Lipschitz condition (A1) we get the following upper bound:

|Yn+1 − Ŷn+1|2 =
〈

Yn − Ŷn, Ψh(Yn)−Ψh(Ŷn)
〉

≤ K1|Yn+1 − Ŷn+1||Yn − Ŷn|.

From this, we deduce that
|Yn − Ŷn|≤ Kn−n0

1 |Yn0 − Ŷn0 |. (3.36)

then for 0 < K1 < 1 the path-wise contractivity. Moreover taking the limit of (3.36) as n0 → −∞ for
fixed n we have that |Yn − Ŷn|→ 0.
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(ii) Defining a new variable by Zn := Yn − Ô(h)
n where Yn is the Steklov approximation and Ô(h)

n is the
Steklov OU process (3.27) we obtain the numerical scheme

Zn+1 = Ψh(Zn + Ô(h)
n )− exp(λh)Ô(h)

n . (3.37)

Taking the inner product with Zn+1 in (3.37) and adding convenient terms we get

|Zn+1|2 =
〈

Zn + Ô(h)
n − (Zn + Ô(h)

n + Zn+1), Ψh(Zn + Ô(h)
n )−Ψh(Zn + Ô(h)

n + Zn+1)
〉

+
〈

Zn+1, Ψh(Zn + Ô(h)
n + Zn+1)

〉
+
〈

Zn+1, exp{(λh)}Ôh
n

〉
≤ −K2|Zn+1|2+ |Zn+1|

∣∣∣Ψh(Zn + Ô(h)
n + Zn+1)

∣∣∣ + exp{(λh)} |Zn+1|
∣∣∣Ôh

n

∣∣∣ .

From the linear growth condition (A3) we deduce that

|Zn+1|2 ≤ (K3 − K2)|Zn+1|2+K3|Zn||Zn+1|

+ K3(1 + h)|Zn+1|+(K3 + exp(λh))|Zn+1||Ô(h)
n |.

Thus, we obtain

|Zn+1|≤
K3

1 + K2 − K3
|Zn|+

K3(1 + h)
1 + K2 − K3

+
(K3 + exp(λh))

1 + K2 − K3
|Ô(h)

n |. (3.38)

Taking

α :=
K3

1 + K2 − K3
and β :=

(K3 + exp(λh))
1 + K2 − K3

,

we can rewrite (3.38) as

|Zn|≤ αn−n0 |Zn0 |+(1 + h)α
n−1

∑
j=n0

αn−1−j + β
n−1

∑
j=n0

αn−1−j|Ô(h)
n |. (3.39)

Then taking the limit as n0 → −∞ for n fixed and assuming the condition (3.35) the first series of
(3.39) converges. From [56] we have that for h small enough and considering the set of the bounded
initial conditions D(ω) for the continuous OU process (3.26), the iterates Zn remain in a ball with
center the origin and random radius:

Rh(ω) = C + β
n−1

∑
j=n0

αn−1−j|Ô(h)
n |,

where C is a bound for the first terms of the right hand of the inequality (3.39). Thus, from theory
of random numerical dynamical systems [37] and since Zn inherits the contractivity from Yn we
conclude the existence of a random attractor for the sequence (3.37) defined by a unique stationary
stochastic process. So, transforming back to the original variables we can assure that the explicit
Steklov method for the SDE (3.33) has a stationary stochastic process Ŷn = Ẑn + Ôn, which is a
pathwise-attractor for all Steklov approximations in both pullback and forward senses. �
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3.5 Numerical Results

Here, we analyze the efficiency of the explicit Steklov method (3.11) for SDEs for which a step size of
the usual stochastic algorithms has to be small enough to preserve numerical stability. In particular, we
consider as benchmarks the examples given in section 3.1 to show the behavior of the Steklov scheme and
compare it with the EM approximation, the CBD method [10] and a balanced implicit method [61]. More-
over, long-time simulations of the new method are carried out in order to evidence its good asymptotic
dynamical properties. But before, we start by evaluating the accuracy of the Steklov method for the linear
SDE where the analytical solution is known.

3.5.1 Linear SDE

We apply the explicit Steklov approximation to the multiplicative (3.12) and additive (3.23) linear SDEs
and study its accuracy showing its strong error which is determined by

ε = E (|y(T)−YnT |) , (3.40)

where y(t) is the exact solution and Yn is a time discretization approximation for the linear SDEs. More-
over, we also present numerical results for the EM scheme for the same equations. Numerical results
for the Steklov and Euler-Maruyama (EM) approximations for both additive and multiplicative cases are
shown in tables 3.1 and 3.2 respectively. The confidence interval for the strong error is obtained for 20
samples of 100 trajectories each. We also estimate the mean square error at a discrete time tn = T as
follows:

εMS(T) =

(
1
N

N

∑
k=1

(
y[k](T)−Yh

nT ,k

)2
) 1

2

, (3.41)

for N = 100 000 paths. Table 3.3 shows the results for both Steklov and Euler-Maruyama schemes. Notice
that the Steklov method maintains its accuracy even when the step size is close to one while the Euler-
Maruyama approximation is no longer stable from h = 0.5.

h EM Steklov

0.250 00 4.1463× 10−2±2.9553× 10−3 4.1076× 10−2±2.5145× 10−3

0.500 00 1.2815× 102±1.3437× 10−1 5.5109× 10−2±3.6455× 10−3

0.750 00 7.8644× 102±5.9516× 10−1 6.8446× 10−2±3.7039× 10−3

1.000 00 1.2800× 103±5.7282× 10−1 7.8523× 10−2±6.0528× 10−3

Table 3.1: Intervals at 95% of confidence of the strong error for the additive linear SDE with λ = −5, ξ = 0.1 and initial condition
x0 = 5.

3.5.2 Logistic equation

Here we reconsider the stochastic logistic equation (3.14)

dy(t) = λy(t)(K− y(t))dt + ξy(t)α|K− y(t)|βdW(t),
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h EM Steklov

0.125 00 1.8376× 10−2±8.3217× 10−4 1.8376× 10−2±8.3217× 10−4

0.250 00 1.7452× 10−2±1.3495× 10−3 1.7452× 10−2±1.3495× 10−3

0.500 00 1.2824× 102±1.4210 1.7774× 10−2±1.3205× 10−3

Table 3.2: Intervals at 95% of confidence of the strong error for the multiplicative linear SDE with λ = −5.0, ξ = 0.1 and initial
condition x0 = 5.

Additive noise Multiplicative noise

h EM Steklov EM Steklov

0.2500 2.1300× 10−1 2.0367× 10−1 5.4261× 10−3 9.4396× 10−7

0.5000 3.5206× 102 3.0370× 10−1 2.7560× 102 1.0752× 10−3

0.7500 8.1368× 102 3.9055× 10−1 8.5490× 102 7.1843× 10−2

1.0000 1.2930× 103 4.5875× 10−1 1.3337× 103 2.8987× 10−1

Table 3.3: MS-Error at time T = 4.0 for a linear SDE with λ = −5, ξ = 0.1 and initial condition x0 = 5.

where y(t) represents the number of individuals of certain specie with growth rate λ into an environment
with limited natural resources and K is the maximum capacity population; α, β and ξ are nonnegative co-
efficients linked with the random contribution that models the influence of the environmental fluctuations
or measurement errors [54, 61, 63]. The analytical solution of this equation in general is unknown. Thus
it is necessary to obtain numerical solutions. In order to get an accuracy approximation it is desirable that
the stochastic numerical method preserves the dynamic properties of the solution of (3.14). We choose
this example to emphasize the structural dynamical consistency between the explicit Steklov defined by
the function Ψh (3.15) and the SDE (3.14). In figure 3.2, we show the numerical results of the Steklov and
Euler-Maruyama schemes and a balanced implicit method (BIM) developed to solve the equation (3.14)
in [61]. For step sizes greater than 0.01, we observe that the Euler scheme is outside of its stability region
and the BIM method has a slow convergence. On the other hand, the Steklov preserves the deterministic
solution profile which is consistent with its structural foundation.

3.5.3 Langevin equation in Brownian dynamics

Finally, we study the Langevin equation (LE)

dy(t) = −y(t)3dt + ξdW(t),

where y(t) is the position of a particle at time t which is exposed to deterministic and random forces.
This equation is used in Brownian dynamics like a benchmark test, see [10]. As in the logistic SDE,
the analytical solution for the Langevin equation is only obtained under special conditions. The most
common Brownian dynamics algorithm is the CBD method of Ermak and McCammon [20] which is
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Figure 3.2: Paths obtained with the Euler, Steklov and BIM methods for the logistic SDE (3.14) with X0 = 50 and taking K = 1000,
α = 1, β=0.5, λ=0.25, ρ = 0 and σ=0.05.

based on the Euler discretization of the LE. Although this method is easy to implement, a small time
step size is required, therefore this algorithm runs in relatively small temporal windows. So, to study the
asymptotic behavior of the solution of the LE it is convenient to apply methods with good asymptotic
stability properties and simple structure. Therefore we show the behavior of the Steklov method defined
by the function (3.17) for short-time and long-time dynamics by computing the self-diffusion coefficient
D/D0 associated to the LE, for details of the derivation of this coefficient see [10, 43]. In figure3.3, we
compare the profiles of the Steklov and CBD approximations for several step sizes. According to the
notation in Brownian dynamics, we take Dta=0.00001 as time step size and use 10 000 sample paths to
calculate the self-diffusion coefficient. The Steklov and CBD methods have the same behavior at short
time with small step sizes. However, for step sizes greater than 1 000 Dta the Euler method diverges and
the Steklov method preserves its numerical stability. Thus, it can be used for long-time dynamics with big
step sizes as it is shown in figure 3.3.
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Figure 3.3: Numerical results of the Steklov and CBD methods for the self-diffusion coefficient of the LE with ξ = 1: the graph to
the left shows short-time simulations and the graph to the right shows long-time simulations.
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Chapter 4. Steklov Method for SDEs with Non-Globally Lipschitz Continuous Drift

4.1 Introduction

In this chapter, we develop an explicit method based on a linear version of the Steklov method proposed
in Chapter 3. We consider the vector Itô stochastic differential equation

dy(t) = f (y(t))dt + g(y(t))dW(t), 0 ≤ t ≤ T, y(0) = y0, (4.1)

where ( f (1), . . . , f (d)) : Rd → Rd is one sided Lipschitz and g = (g(j,i))j∈{1,...,d},i∈{1,...,m} : Rd → Rd×m is
global Lipschitz. Also we assume that each component function f (j) can be written of the form

f (j)(x) = aj(x)x(j) + bj(x(−j)), (4.2)

where aj and bj are two scalar functions in Rd and x(−j) =
(

x(1), . . . , x(j−1), x(j+1), . . . x(d)
)

. We work with

a standard multidimensional setup, that is, y(t) ∈ Rd for each t and W(t) is a m-dimensional standard
Brownian motion on a filtered and complete probability space (Ω,F , (Ft)t∈[0,T], P), with the filtration
(Ft)t∈[0,T] generated by the Brownian process. Moreover, the complement of a set E is denoted by Ec and
the indicator function of the set E is denoted by 1{E}.

We recall that the following set of hypotheses assure existence and uniqueness of the solution of
the stochastic differential system (4.1) and a explicit bound for its moments, see Theorem 2.3.3 and
Lemma 2.3.1.

Hypothesis 4.1.1. The coefficients of SDE (4.1) satisfy the conditions:

(H-1) The functions f , g are in the class C1(Rd).

(H-2) Local, global Lipschitz condition. For each integer n, there is a positive constant L f = L f (n) such
that

| f (u)− f (v)|2≤ L f |u− v|2 ∀u, v ∈ Rd, |u|∨|v|≤ n,

and there is a positive constant Lg such that

|g(u)− g(v)|2≤ Lg|u− v|2, ∀u, v ∈ Rd.

(H-3) Monotone condition. There exist two positive constants α and β such that

〈u, f (u)〉 +
1
2
|g(u)|2≤ α + β|u|2, ∀u ∈ Rd. (4.3)

This chapter is organized as follows: In section 4.2, we construct the new explicit method and prove the
always existence of a succession of the Linear Steklov approximation as well as local Lipschitz conditions
for its coefficients. In section 4.3, we prove the strong convergence of the LS method with one-half order
using the Higham, Stuart and Mao (HSM) technique and in section 4.6, its convergence rate is obtained.
In section 4.6, we analyze numerically the accuracy and efficiency of the proposed method applied to
stochastic differential equations with super-linear growth and locally Lipschitz coefficients.
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4.2 Construction of the Linear Steklov Method

For simplicity, we begin the construction of the Linear Steklov (LS ) method considering the scalar case
of SDE (4.1), that is, when d = m = 1, also, to shorten notation we use a, b instead aj, bj. Let 0 = t0 < t1 <
· · · < tN = T a partition of the interval [0, T] with constant step-size h = T/N and such that tk = kh for
k = 0, . . . , N. The main idea of the LS approximation consists in estimating the drift coefficient of (4.1) by

f (y(t)) ≈ ϕ f (y(tη+(t))) =


1

y(tη+(t))− y(tη(t))

y(tη+(t))∫
y(tη(t))

du
a(y(tη(t)))u + b



−1

, t ∈ [0, T], (4.4)

where

η(t) := k for t ∈ [tk , tk+1), k ≥ 0,

η+(t) := k + 1 for t ∈ [tk , tk+1), k ≥ 0.

So we define the LS method for the scalar version of the SDE (4.1) using a split-step formulation as
follows

Y?
k = Yk + hϕ f (Y?

k ), (4.5)

Yk+1 = Y?
k + g(Y?

k )∆Wk , (4.6)

with Y0 = y0 and ϕ f
(
Y?

k
)

defined by

ϕ f (Y?
k ) =

(
1

Y?
k −Yk

∫ Y?
k

Yk

du
a(Yk)u + b

)−1

, (4.7)

where ϕ f is the linearized Steklov average [19, 50]. For higher dimensions, we adapt the same split step
scheme (4.5)–(4.6) as follows. For each component equation j ∈ {1, . . . , d}, on the iteration k ∈ {1, . . . , N}
take

aj,k = aj

(
Y(1)

k , . . . , Y(d)
k

)
, bj,k = bj

(
Y(−j)

k

)
. (4.8)

So, define ϕ f (Y?
k ) =

(
ϕ f (1) (Y?

k ), . . . , ϕ f (d) (Y?
k )
)

by

ϕ f (j) (Y?
k ) =

(
1

Y?(j)
k −Y(j)

k

∫ Y?(j)
k

Y(j)
k

du
aj,ku + bj,k

)−1

. (4.9)

It is worth mentioning that even this formulation is semi implicit, we always can derive a explicit version.
The next result deals with this issue. To simplify notation, we define A(1) = A(1)(h, u), A(2) = A(2)(h, u) and
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b = b(u) by

A(1) :=

eha1(u) 0
. . .0 ehad(u)

 ,

A(2) :=



(
eha1(u) − 1

a1(u)

)
1{Ec

1} 0
. . .

0
(

ehad(u) − 1
ad(u)

)
1{Ec

d}


+ h

1{E1} 0
. . .

0 1{Ed}

 , (4.10)

Ej := {x ∈ Rd : aj(x) = 0}, b(u) :=
(

b1(u(−1)), . . . , bd(u(−d))
)T

.

Also we will need the following results from [40, Thm 2.1], [21, Thm. 1]. The first theorem will help us
with the singularities of set Ej in the case where all elements of this set are limit points. Here we enunciate
the results for R2 but the same theorem holds for real-valued functions of d variables.

Theorem 4.2.1 (Multivariate L’hôpital’s Rule). Let N be a neighborhood in R2 containing a point q at which
two differentiable functions f : N → R and g : N → R are zero. Set

C = {x ∈ N : f (x) = g(x) = 0},

and suppose that C is a smooth curve through q. Suppose there exist a vector v not tangent to C at q such that the
directional derivative Dvg of g in the direction of v is never zero within N . Also we assume that q is a limit point
of N \ C. Then

lim
(x,y)→q

f (x, y)
g(x, y)

= lim
(x,y)→q

(x,y)∈N\C

Dv f
Dvg

,

if the latter limit exists.

For the second theorem we will need the following concepts.

Definition 4.2.1 (Directional derivative referred at a point). Let u, q ∈ R2 and α the positive angle respect
to the x-axis and the segment uq. We denote by

fα(u) = cos(α)
∂ f

∂u(1) (u) + sin(α)
∂ f

∂u(2) (u) =
〈q− u,∇ f (u)〉
|u− q|

the directional derivative respect to the point q on u.

Definition 4.2.2 (Star-like set). A set S ⊂ R2 is star-like with respect a point q, if for each point s ∈ S the
open segment sq is in S.

Whit this in mine, second theorem give us a way to analyze isolated singularities.

Theorem 4.2.2. Let q ∈ R2 and let f ,g be functions whose domains include a set S ⊂ R2 which is star-like with
respect to the point q. Suppose that on S the functions are differentiable and that the directional derivative of g with
respect to q is never zero. With the understanding that all limits are taken from within on S at q and if
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(i) f (q) = g(q) = 0,

(ii) lim
x→q

fα(x)
gα(x)

= L,

then
lim
x→q

f (x)
g(x)

= L.

With this on mind, we additionally require the following.

Hypothesis 4.2.1. For each component function f (j) : Rd :→ R with j ∈ {1, . . . , d}:

(A-1) There are two locally Lipschitz functions of class C1(Rd) denoted by aj : Rd → R and bj : Rd−1 → R

such that the j-component of the drift function can be rewritten as in (4.2).

(A-2) There is a positive constant La such that

aj(x) ≤ La, ∀x ∈ Rd.

(A-3) Each function bj(·) satisfies the linear growth condition

|bj(x(−j))|2≤ Lb(1 + |x|2), ∀x ∈ Rd.

Hypothesis 4.2.2. The set Ej := {x ∈ Rd : aj(x) = 0} satisfies either:

(i) All point q ∈ Ej is a non isolated zero of aj and:

• the set
D := {u ∈ Br(q) : ehaj(u) − 1 = aj(u) = 0},

is a smooth curve through q.

• The canonical vector ej is not tangent to D.

• For each q ∈ Ej, there is an open ball with center on q and radio r Br(q), such that and

aj 6= 0,
∂aj(u)

∂u(j) 6= 0, ∀u ∈ Br(q) \ D.

(ii) All point q ∈ Ej is a isolated zero of aj and:

• For each q ∈ Ej, q is not a limit point of the set Eα := {x ∈ Rd : (aj)α(x) = 0}.
• For each q ∈ Ej there is a star-like set respect to q Eq, such that the directional derivative respect

to q satisfies
(aj)α(x) 6= 0, ∀x ∈ Eq.

By Hypothesis 4.2.1 there is a unique linear Steklov approximation and by Hypothesis 4.2.2 we can ap-
ply Theorem 4.2.1 or Theorem 4.2.2 to deals with possible singularities of the matrix function A(2) defined
on (4.10). Under the previous assumptions we will show that the explicit Linear Steklov approximation
(4.5)–(4.6) exists, the function ϕ f is bounded by the drift function f and also the coefficients ϕ f and g
satisfy a monotone condition. First, we will give the following lemma.
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Lemma 4.2.1. Assume Hypotheses 4.1.1, 4.2.1 and 4.2.2 hold. The function Φj(x) = Φ(h, aj)(x) defined by

Φj(x) :=
ehaj(x) − 1

haj(x)
, (4.11)

is bounded on Rd for each j ∈ {1, . . . , d} by a positive constant LΦ, which could depend on h.

Proof. By Hypothesis 4.1.1, the operator Φ is continuous on Ec
j , thus

lim
h→0

ehaj(x) − 1
haj

= 1, (4.12)

for each fixed x ∈ Ec
j . If x∗ ∈ Ej and fixing any h, by Hypothesis 4.2.2, we obtain one of the following

cases:

lim
x→x∗
x∈Ec

j

Φ(h, aj)(x) = lim
x→x∗
x∈Ec

j

∂aj(x)
∂x(j) hehaj(x)

h
∂aj(x)
∂x(j)

= 1, (4.13)

or

lim
x→x∗
x∈Ec

j

Φ(h, aj)(x) = lim
x→x∗
x∈Ec

j

(
ehaj(x) − 1

)
α(

haj(x)
)

α

= 1, α = 0, π, 2π, . . . (4.14)

From (4.12), (4.13) and (4.14) we can deduce that∣∣∣∣∣ ehaj(x) − 1
haj(x)

∣∣∣∣∣ ≤
∣∣∣∣∣ ehLa − 1

ha∗j

∣∣∣∣∣ , ∀x ∈ Rd, (4.15)

where a∗j := infx∈Ec
j
{|aj(x)|}. So, for each h fixed by inequality (4.15) we can deduce that there a positive

constant LΦ = LΦ(h) such that
|Φj(x)|≤ LΦ, ∀j ∈ {1, . . . , d}.

Finally, if a∗j = 0, then we can use an argument similar to (4.13)–(4.14).

Now we can state the following result.

Lemma 4.2.2. Let Hypotheses 4.1.1, 4.2.1 and 4.2.2 holds, and A(1), A(2), b defined by (4.10). Then given u ∈ Rd,
the equation

v = u + hϕ f (v), (4.16)

has a unique solution
v = A(1)(h, u)u + A(2)(h, u)b(u). (4.17)

If we define the functions Fh(·), ϕ fh
(·) and gh(·) by

Fh(u) = v, ϕ fh
(u) = ϕ f (Fh(u)), gh(u) = g(Fh(u)), (4.18)

then Fh(·), ϕ fh
(·), gh(·) are local Lipschitz functions and for all u ∈ Rd and each h fixed, there is a positive constant

LΦ such that
|ϕ fh

(u)|≤ LΦ| f (u)|. (4.19)
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Moreover, for each h fixed, there are positive constants α∗ and β∗ such that〈
ϕ fh

(u), u
〉
∨ |gh(u)|2≤ α∗ + β∗|u|2, ∀u ∈ Rd. (4.20)

Proof. Let us first prove that (4.17) is solution of equation (4.16). Note that

v(j) = u(j) + h ϕ f (j) (v), (4.21)

for each j ∈ {1, . . . , d} and using the linear Steklov function (4.4), we can derive that

v(j) = ehaj(u)u(j) +
[

hΦj(u)1{Ec
j } + h1{Ej}

]
bj(u(−j)), (4.22)

which is the j-component of the vector A(1)u + A(2)b(u). Now let us prove inequality (4.19). Given that
v = ϕ f (Fh(u)), we can also rewrite (4.21) as

ϕ
(j)
fh

(u) =
F(j)

h (u)− u(j)∫ F(j)
h (u)

u(j)

dz
aj(u)z + bj(u(−j))

.

If u ∈ Ej then ϕ
(j)
fh

(u) = bj(u(−j)) = f j(u), so LΦ ≥ 1 fulfills (4.19). On the other hand, if u ∈ Ec
j then

ϕ
(j)
fh

(u) =
(F(j)

h (u)− u(j))aj(u)

ln
(

aj(u)F(j)
h (u) + bj(u(−j))

)
︸ ︷︷ ︸

:=R1

− ln
(
aj(u)u(j) + bj(u(−j))

) = Φj(u) f j(u), (4.23)

where
R1 = ln

{
aj(u)

[
ehaj(u)u(j) + hΦj(u)bj(u(−j))

]
+ bj

(
u(−j)

)}
= haj(u) + ln

(
f (j)(u)

)
.

By lemma 4.2.1, inequality (4.19) is satisfied for all u ∈ Ej ∪ Ec
j . As gh(x) = g (Fh(x)) by Hypothesis 4.1.1,

then

|gh(u)− gh(v)|2≤ Lg|Fh(u)− Fh(v)|2≤ 2Lg |A(1)u− A(1)v|2︸ ︷︷ ︸
:=R2

+2Lg |A(2)b(u)− A(2)b(v)|2︸ ︷︷ ︸
:=R3

. (4.24)

Let us consider each term of the right hand of inequality (4.24). First, note that A(1) is a continuous
differentiable function on all Rd, so using the mean value theorem, we have

R2 ≤ LA(1) |u− v|2, u, v ∈ Rd, |u|∨|v|≤ n, (4.25)

for a positive constant LA(1) ≥ sup0≤t≤1|∂A(1)(h, u + t(v− u))|2. Meanwhile,

R3 =
d

∑
j=1

[
1{Ec

j }(u)Φj(u)bj(u(−j)) + h1{Ej}(u)bj(u(−j))− 1{Ec
j }(v)Φj(v)bj(u(−j))

− h1{Ej}(v)bj(v(−j))
]2
≤ 4

d

∑
j=1

[ (
1{Ec

j }(u)LΦbj(u(−j))
)2

+
(

h1{Ej}(u)bj(u(−j))
)2

+
(

1{Ec
j }(v)LΦbj(v(−j))

)2
+
(

h1{Ej}(v)bj(v(−j)
)2 ]

. (4.26)
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Since b2
j (·) is a function of class C1(Rd), there is a constant Lb = Lb(n) such that

(4.27)|bj(u)|2 ≤ Lb, ∀u ∈ Rd, |u|∨|v|≤ n,

for each j ∈ {1, · · · , d}. Using this bound in (4.26), we obtain

R3 ≤ 4
d

∑
j=1

[
2LΦLb + 2h2Lb

]
≤ L0, ∀u, v ∈ Rd, |u|∨|v|≤ n, (4.28)

where L0 = 8dLb(n)(LΦ + h2). By inequalities (4.25) and (4.28), we get

|gh(u)− gh(v)|2≤ Lgh (n)|u− v|2, ∀u, v ∈ Rd, |u|∨|v|≤ n, (4.29)

where Lgh (n) ≥ n2 + 1 + L0 + LA(1) . Then gh(·) is a locally Lipschitz function. Furthermore, note that under
some modifications this argument can be used to prove that Fh(·) is also a locally Lipschitz function,
which implies that ϕ fh

is a locally Lipschitz function. Finally, we will demonstrate inequality (4.20). By
Hypotheses 4.1.1 and 4.2.1, we have

〈 f (u), u〉 =
d

∑
j=1

aj(u)
(

u(j)
)2

+
d

∑
j=1

bj(u)u(j) ≤ α + β|u|2,

and
〈b(u), u〉 ≤ α + (β + La)|u|2.

Using these inequalities and (4.19), we deduce that

〈
ϕ fh

(u), u
〉

=
d

∑
j=1

Φj(u) f (j)(u)u(j) ≤ LΦLa|u|+LΦ(α + (La + β)|u|2) ≤ Lϕ fh
(1 + |u|2). (4.30)

where Lϕ fh
≥ 2LΦ max{La, α, β} + 1. Meanwhile, g is globally Lipschitz then

|gh(u)|2≤ 2|g(Fh(u))− g(Fh(0))|2+2|g(Fh(0))|2≤ 4Lg|Fh(u)|2+8Lg|Fh(0)|2+4|g(0)|2. (4.31)

Now, we bound each term on the right-hand side of (4.31). By the monotone condition (4.3), |g(0)|2≤ 2α.
Moreover,

|F(j)
h (0)|= hΦj(0) |bj(0)|1{Ec

j }(0) + h |bj(0)|1{Ej}(0) ≤
b∗0
a∗0

ehLa (1 + h), ∀j ∈ {1, · · · , d}.

where a∗0 := minj∈{1,···,d}
aj(0) 6=0

{
|aj(0)|

}
and b∗0 := maxj∈{1,···,d}

{
|bj(0)|

}
. Then

|Fh(0)|2≤ d
(

b∗0
a∗0

)2
e2hLa (1 + h)2. (4.32)

Since Φj is bounded, from (4.22) we get

F(j)
h (u) ≤ ehaj(u)|u(j)|+hLΦ|bj(u)|1{Ec

j }(u) + h|bj(u)|1{Ej}(u).
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And by Hypothesis 4.2.1,

|F(j)
h (u)|2≤ 3e2hLa |u|2+(3h2L2

ΦLb + 3h2Lb)(1 + |u|2) ≤ LF(1 + |u|2), (4.33)

where LF ≥ 3d max{e2hLa , h2Lb(L2
Φ + 1)}. Using (4.32) and (4.33) in inequality (4.31) yields

|gh(u)|2≤ 4LgLF(1 + |u|2) + 8Lgd
(

b∗0
a∗0

)2
e2hLa (1 + h)2 + 8α.

Therefore, if Lgh ≥ 4LgLF + 8Lgd
(

b∗0
a∗0

)2
e2hLa (1 + h)2 + 8α then

|gh(u)|2≤ Lgh (1 + |u|2). (4.34)

Hence, from inequalities (4.30) and (4.34) and taking for each fixed h > 0, α∗ := Lϕ fh
∨ Lgh and β∗ := 2α∗,

we obtain inequality (4.20).

Remark 4.2.1. Note that if bj = 0, then Hypothesis 4.2.1 and Hypothesis 4.2.2 are unnecessary to prove
Lemma 4.2.2 which is the case for stochastic Lotka-Volterra systems [48, 49], the Ginzburg-Landau SDE
[36] or the damped Langevin equations where the potential lacks of a constant term [34]. On the other
hand, there are several applications with bj 6= 0 among others the stochastic SIR [65], the noisy Duffing-Van
der Pol oscillator [60] and the stochastic Lorenz equation [22].

Remark 4.2.2. Note that by Lemma 4.2.2, we have that lim
h→0
| f (x)− ϕ fh

(x)|= 0. Hence it is convenient to

consider the following modified SDE

dyh(t) = ϕ fh
(yh(t))dt + gh(yh(t))dW(t), yh(0) = y0, t ∈ [0, T],

as a perturbation of SDE (4.1). Moreover, the functions ϕ fh
(·) and gh(·) in (4.18) are respectively defined as

the functions ϕ f and g, but evaluated in the solution of c = d + hϕ(c), then we can rewrite the LS method
(4.5)–(4.6) as

Y?
k = Yk + hϕ fh

(Yk),

Yk+1 = Y?
k + gh(Yk)∆Wk .

We formalize these ideas in the following sections.

4.3 Strong Convergence of the Linear Steklov method

Here, we state and prove the main result of this chapter, the strong convergence of the LS method (4.5)–
(4.6) for the solution of SDE (4.1). The main idea of the proof consists in applying the technique discussed
in Section 2.4.2. We begin establishing the underlying convergence theorem.

Theorem 4.3.1. Let Hypotheses 4.1.1 and 4.2.1 hold, consider the LS method (4.5)–(4.6) for the SDE (4.1). Then
there is a continuous-time extension Y(t) of the LS solution {Yk} for which Y(tk) = Yk and

lim
h→0

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
= 0.
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To proof this result, we initiate with the first step of the HMS technique, that is, we will show that the
LS method for SDE (4.1) is equivalent to the EM scheme applied to the conveniently modified SDE

dyh(t) = ϕ fh
(yh(t))dt + gh(yh(t))dW(t), yh(0) = y0, t ∈ [0, T]. (4.35)

We formalize this as a Corollary of Lemma 4.2.2.

Corollary 4.3.1. Let Hypotheses 4.1.1 and 4.2.1 hold, then the LS method for SDE (4.1) is equivalent to the EM
scheme applied to the modified SDE (4.35).

Proof. Using the functions ϕ fh
(·) and gh(·) defined in (4.18) of Lemma 4.2.2, we can rewrite the LS method

(4.5)–(4.6) as
Yk+1 = Yk + hϕ fh

(Yk) + gh(Yk)∆Wk ,

which is the EM approximation for the modified SDE (4.35).

Now we proceed with the Step 2, that is, we will prove that the solution of the modified SDE (4.35) has
bounded moments and is close in uniform mean square norm to the solution of the SDE (4.1). In what
follows we denote by C a universal constant, that is, a positive constant independent on h which value
could change in occurrences.

Lemma 4.3.1. Let Hypotheses 4.1.1, 4.2.1 and 4.2.2 hold, then there is a universal constant C = C(p, T) > 0 and
a sufficiently small step size h, such that for all p > 2

E

[
sup

0≤t≤T
|yh(t)|p

]
≤ C (1 + E|y0|p) . (4.36)

Moreover

lim
h→0

E

[
sup

0≤t≤T
|y(t)− yh(t)|2

]
= 0. (4.37)

Proof. By theorem 2.3.3 and inequality (4.20), we have bound (4.36). On the other hand, to prove (4.37) we
will use the properties of ϕ fh

and the Higham’s stopping time technique employed in [31, Thm 2.2]. Note
that by relation (4.23) of Lemma 4.2.2 we have

ϕ fh
(x) = Φ(h, aj)(u) f (j)(u)1{Ec

j }(u) + f (j)(u)1{Ej}(u).

By Hypothesis 4.2.2 and since f ∈ C1(Rd), Φ(h, aj)(·) is bounded, hence, there is a positive constant Rn
which depends on n such that

|ϕ(j)
fh

(u)− f (j)(u)| ≤ 1{Ec
j }(u)| f (j)(u)|

∣∣Φ(h, aj)(u)− 1
∣∣

≤ 1{Ec
j }(u) (LΦ + 1) | f (u)|

≤ 1{Ec
j }(u)Rn(LΦ + 1), ∀u ∈ Rd, |u|≤ n,

for each j ∈ {1, . . . , d}. Moreover, we know by the proof of Lemma 4.2.2 that

lim
h→0
u∈Ec

j

Φ(h, aj)(u) = 1.
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4.3. Strong Convergence of the Linear Steklov method

Also, we note that for each j ∈ {1, . . . , d}

lim
h→0

F(j)
h (u) = lim

h→0
ehaj(u)u(j) + lim

h→0

(
ehaj(u) − 1

aj(u)
1{Ec

j }(u) + h1{Ej}(u)

)
bj(u(j)) = u(j),

hence lim
h→0

Fh(u) = u. Consequently, given n > 0 there is a function Kn(·) : (0, ∞) → (0, ∞), such that

Kn(h)→ 0 when h→ 0 and

|ϕ fh
(u)− f (u)|2∨|gh(u)− g(u)|2≤ Kn(h) ∀u ∈ Rd, |u|≤ n. (4.38)

Now, using that both f , g are C1, there is a constant Hn > 0 such that

| f (u)− f (v)|2∨|g(u)− g(v)|2≤ Hn|u− v|2 ∀u, v ∈ Rd, |u|∨|v|≤ n. (4.39)

On the other hand, by Lemma 2.3.1 and inequality (4.36) we obtain

E

[
sup

0≤t≤T
|y(t)|p

]
∨E

[
sup

0≤t≤T
|yh(t)|p

]
≤ K := C (1 + E|y0|p) .

Now, we define the stopping times

τn := inf{t ≥ 0 : |y(t)|≥ n}, ρn := inf{t ≥ 0 : |yh(t)|≥ n}, θn := τn ∧ ρn, (4.40)

and the difference function
eh(t) := y(t)− yh(t).

From the Young’s inequality (A.2), we deduce that for any δ > 0

E

[
sup

0≤t≤T
|eh(t)|2

]
= E

[
sup

0≤t≤T
|eh(t)|21{τn>T,ρn>T}

]
+ E

[
sup

0≤t≤T
|eh(t)|21{τn≤T or ρn≤T}

]

≤ E

[
sup

0≤t≤T
|eh(t ∧ θn)|21{θn≥T}

]
+

2δ

p
E

[
sup

0≤t≤T
|eh(t)|p

]

+
1− 2/p
δ2/(p−2)

P [τn ≤ T or ρn ≤ T] . (4.41)

We proceed to bound each term on the right-hand side of inequality (4.41). By Lemma 2.3.1, y(t) has
bounded moments, hence there is a positive constant A such that

P [τn ≤ T] = E

[
1{τn<T}

|y(τn)|p
np

]
≤ 1

np E

[
sup

0≤t≤T
|y(t)|p

]
≤ A

np , for p ≥ 2. (4.42)

The same conclusion can be drawn for ρn, then

P [τn ≤ T or ρn ≤ T] ≤ P [τn ≤ T] + P [ρn ≤ T] ≤ 2A
np . (4.43)
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Now, using inequality (A.4) and Lemma 2.3.1 we have

E

[
sup

0≤t≤T
|eh(t)|p

]
≤ 2p−1E

[
sup

0≤t≤T
(|y(t)|p+|yh(t)|p)

]
≤ 2p A. (4.44)

So, combining bound (4.43) with (4.44) in inequality (4.41) we obtain

E

[
sup

0≤t≤T
|eh(t)|2

]
≤ E

[
sup

0≤t≤T
|eh(t ∧ θn)|21{θn≥T}

]
+

2p+1δA
p

+
2(p− 2)A

pδ2/(p−2)np
. (4.45)

Next, we show that the first term of (4.45) is bounded. Adding conveniently terms yields

eh(t ∧ θn) =
∫ t∧θn

0

[
f (y(s))− f (yh(s)) + f (yh(s))− ϕ fh

(yh(s))
]

ds

+
∫ t∧θn

0
[g(y(s))− g(yh(s)) + g(yh(s))− gh(yh(s))] dW(s).

Using bounds (4.38) and (4.39), the Cauchy-Schwarz, and Doob martingale inequalities, we get

E

[
sup

0≤t≤τ

|eh(t ∧ θn)|2
]
≤ 4Hn(T + 4)

∫ τ

0
E

[
sup

0≤t≤τ

|eh(t ∧ θn)|2
]

ds + 4T(T + 4)Kn(h).

The Gronwall inequality now yields

E

[
sup

0≤t≤T
|eh(t ∧ θR)|2

]
≤ 4T(T + 4)Kn(h) exp(4Hn(T + 4)T).

Hence, given ε > 0 for any δ > 0 such that 2p+1δA/p < ε/3, we can take n > 0 verifying (p −
2)2A/(pδ2/(p−2)np) < ε/3. Moreover, we can take h sufficiently small such that 4T(T + 4)Kn(h)e4Hn(T+4)T <
ε/3. It follows immediately that

E

[
sup

0≤t≤T
|eh(t)|2

]
< ε/3 + ε/3 + ε/3 = ε,

which is the desired conclusion.

Next, we proceed with Step 3, in which we establish that LS method has bounded moments.

Lemma 4.3.2. Let Hypotheses 4.1.1, 4.2.1 and 4.2.2 hold. Then for each p ≥ 2 there is a universal positive constant
C = C(p, T) such that the explicit LS method

E

[
sup

kh∈[0,T]
|Yk|2p

]
≤ C.

Proof. Denoting by A(i)
k := A(i)(h, Yk) for i = 1, 2 and bk := b(Yk), we use a split formulation of the LS

scheme (4.5)–(4.6) as follows:

Y?
k = A(1)

k Yk + A(2)
k bk ,

Yk+1 = Y?
k + g(Y?

k ) ∆Wk ,
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from the first step of this split scheme, using (A-3) and the Cauchy-Schwartz inequality, we get

|Y?
k |

2 ≤ |A(1)
k |

2|Yk|2+2
〈

A(1)
k Yk , A(2)

k Ykbk

〉
+ |A(2)

k |
2|bk|2

≤ |A(1)
k |

2|Yk|2+2
√

Lbd|A(1)
k ||A

(2)
k ||Yk|(1 + |Yk|) + Lb|A

(2)
k |

2(1 + |(Yk)|2). (4.46)

From (A-2), we can deduce that

(4.47)|A(1)
k |

2 =
∣∣∣diag

(
eha1(Yk), . . . , ehad(Yk)

)∣∣∣2 ≤ LA(1) ,

where LA(1) = d e2TLa and also by (4.15), we can derive that

|A(2)(h, Yk)|2 =
∣∣∣h diag

(
1{E1}(Yk) + 1{Ec

1}(Yk)Φ1(Yk), . . . , 1{Ed}(Yk) + 1{Ec
d}

(Yk)Φd(Yk)
)∣∣∣2

≤
d

∑
j=1

(
1{Ec

j }|hΦj(Yk)|2+h2
)
≤ 2e2LaT

d

∑
j=1

1
a∗j

+ dT2 ≤ LA(2) . (4.48)

Substituting (4.47) and (4.48) on inequality (4.46) yields

|Y?
k |

2 ≤ LA(1) |Yk|2+2d
√

LA(1) LA(2) Lb |Yk|(1 + |Yk|) + LA(2) Lb(1 + |Yk|2) ≤ C(1 + |Yk|2),

where C ≥ LA(1) + 2d
√

LA(1) LA(2) Lb + LA(2) Lb. Applying bound (4.49) in the second step of the split scheme,
we get

|Yk+1|2≤ C
(
|Yk|2+1

)
+ 2 〈Y?

k , g(Y?
k )∆Wk〉 + |g(Y?

k )∆Wk|2 .

Now, we choose two integers N, M such that Nh ≤ Mh ≤ T. So, adding backwards we obtain

|YN |2≤ SN

(
N−1

∑
j=0

(1 + |Yj|2) + 2
N−1

∑
j=0

〈
Y?

j , g(Y?
j )∆Wj

〉
+

N−1

∑
j=0

∣∣∣g(Y?
j )∆Wj

∣∣∣2) ,

where SN := ∑N−1
j=0 CN−j. Raising both sides to the power p, we get

|YN |2p ≤ 6pSp
N

(
Np−1

N−1

∑
j=0

(1 + |Yj|2p) +

∣∣∣∣∣N−1

∑
j=0

〈
Y?

j , g(Y?
j )∆Wj

〉∣∣∣∣∣
p

+ Np−1
N−1

∑
j=0

∣∣∣g(Y?
j )∆Wj

∣∣∣2p
)

. (4.49)

Now we will show that the second and third terms of inequality (4.49) are bounded. We denote by
C = C(p, T) a generic positive constant which does not depend on the step size h and whose value may
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change between occurrences. Next, applying the Bunkholder-Davis-Gundy inequality [44], we have

E

[
sup

0≤N≤M

∣∣∣∣∣N−1

∑
j=0

〈
Y?

j , g(Y?
j )∆Wj

〉∣∣∣∣∣
p]
≤ CE

[
N−1

∑
j=0
|Y?

j |2|g(Y?
j )|2h

]p/2

≤ Chp/2Mp/2−1E
M−1

∑
j=0
|Y?

j |p(α + β|Y?
j |2)p/2

≤ 2p/2−1CTp/2−1hE
M−1

∑
j=0

(αp/2|Y?
j |p+βp/2|Y?

j |2p)

≤ ChE
M−1

∑
j=0

(1 + 2|Y?
j |p+|Y?

j |2p)

≤ C + Ch
M−1

∑
j=0

E|Yj|2p, (4.50)

Now, using the Cauchy-Schwartz inequality, the monotone condition (4.3) and bound (4.49), we obtain

E

[
sup

0≤N≤M

N−1

∑
j=0

∣∣∣g(Y?
j )∆Wj

∣∣∣2p
]
≤

M−1

∑
j=0

E

∣∣∣g(Y?
j )
∣∣∣2p

E
∣∣∆Wj

∣∣2p

≤ Chp
M−1

∑
j=0

E
[
α + β|Y?

j |2
]p

≤ Chp
M−1

∑
j=0

E
[
αp + βp|Y?

j |2p
]

≤ Chp−1 + Chp
M−1

∑
j=0

E|Yj|2p. (4.51)

Thus, combining bounds (4.50) and (4.51) with inequality (4.49), we can assert that

E

[
sup

0≤N≤M
|YN |2p

]
≤ C + C(1 + h)

M−1

∑
j=0

E

[
sup

0≤N≤j
|YN |2p

]
. (4.52)

Finally, using the discrete-type Gronwall inequality [44], we conclude that

E

[
sup

0≤N≤M
|YN |2p

]
≤ CeC(1+h)M ≤ CeC(1+T) < C,

since the constant C does not depend on h, the proof is complete.

Since the LS scheme has bounded moments, we now proceed whit Step 4, that is, we will obtain a
continuous extension of the LS method with bounded moments. Let {Yk} denote the LS solution of SDE
(4.1). By Corollary 4.3.1, we conveniently made a continuous extension for the LS approximation, from
the time continuous extension of the EM method (2.13). Also, we prove that the moments of the Linear
Steklov extension remains bounded.
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Corollary 4.3.2. Let Hypotheses 4.1.1, 4.2.1 and 4.2.2 hold and suppose 0 < h < 1 and p ≥ 2. Then there is a
continuous extension Y(t) of {Yk} and a universal constant C = C(T, p) such that

E

[
sup

0≤t≤T
|Y(t)|2p

]
≤ C.

Proof. We take t = s + tk in [0, T], ∆Wk(s) := W(tk + s)−W(tk) and 0 ≤ s < h. Then we define

Y(tk + s) := Yk + sϕ fh
(Yk) + gh(Yk)∆Wk(s), (4.53)

as a continuous extension of the LS scheme. We proceed to show that Y(t) has bounded moments. By
Lemma 4.2.2, we have Y?

k = Yk + hϕ fh
(Yk). Then for γ = s/h, it follows that

Yk + sϕ fh
(Yk) = γ(Yk + hϕ fh

(Yk)) + (1− γ)Yk

= γY?
k + (1− γ)Yk .

Hence, we can rewrite the continuous extension (4.53) as

Y(t) = γY?
k + (1− γ)Yk + gh(Yk)∆Wk(s).

Combining this relation with the inequalities (4.49) and (A.4), we get

|Y(tk + s)|2 ≤ 3
[
γC + (γC + 1− γ) |Yk|2+|gh(Yk)∆Wk(s)|2

]
≤ C + C

(
|Yk|2+|gh(Yk)∆Wk(s)|2

)
.

Thus,

sup
0≤t≤T

|Y(t)|2p ≤ sup
0≤kh≤T

[
sup

0≤s≤h
|Y(tk + s)|2p

]

≤ sup
0≤kh≤T

[
sup

0≤s≤h
C
(

1 + |Yk|2p+|gh(Yk)∆Wk(s)|2p
)]

, (4.54)

for t ∈ [0, T]. Now taking a non negative integer 0 ≤ k ≤ N such that 0 ≤ Nh ≤ T. From the bond (4.54),
we get

sup
0≤t≤T

|Y(t)|2p ≤ C

(
1 + sup

0≤kh≤T
|Yk|2p+ sup

0≤s≤h

N

∑
j=0
|gh(Yj)∆Wj(s)|2p

)
. (4.55)

So, using the Doob’s Martingale inequality (A.5), Lemma 4.3.2 and that gh is a locally Lipschitz function,
we can bound each term of the inequality (4.55), as follows

E

[
sup

0≤s≤h
|g(Yj)∆Wj(s)|2p

]
≤
(

2p
2p− 1

)2p
E|gh(Yj)∆Wj(h)|2p

≤ CE|gh(Yj)|2pE|∆Wj(h)|2p

≤ Chp
(

1 + E|Yj|2p
)

≤ Ch, (4.56)
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for each j ∈ {0, . . . , N}. Since Nh ≤ T, combining the bounds (4.55) and (4.56) we get the desired
conclusion.

Once we have carried out all the previous steps, we can prove Theorem 4.3.1 by Step 5.

Proof of Theorem 4.3.1. First, note that by inequality (A.4), we have

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
≤ 2E

[
sup

0≤t≤T
|Y(t)− yh(t)|2

]
+ 2E

[
sup

0≤t≤T
|yh(t)− y(t)|2

]
. (4.57)

Using Lemma 4.3.1, which was established in the Step 2, yields

lim
h→0

E

[
sup

0≤t≤T
|yh(t)− y(t)|2

]
= 0. (4.58)

It remains to prove that the first term of the right hand side in inequality (4.57) decreases to zero when
h tends to zero. Recalling that:

i) By Lemma 4.3.1, the solution of the modified SDE (4.35), yh, has p-bounded moments (p ≥ 2).

ii) By Corollary 4.3.2, the LS continuous extension for the SDE (4.1), Y(t), has bounded moments and it
is equivalent to the EM extension for the modified SDE (4.35).

Hence, we can apply Theorem 2.4.4 to conclude that

lim
h→0

E

[
sup

0≤t≤T
|Y(t)− yh(t)|2

]
= 0. (4.59)

Finally, combining the limits (4.58) and (4.59) with inequality (4.57) gives

lim
h→0

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
≤ 2 lim

h→0
E

[
sup

0≤t≤T
|Y(t)− yh(t)|2

]

+ 2 lim
h→0

E

[
sup

0≤t≤T
|yh(t)− y(t)|2

]
= 0,

which proves the theorem.

4.4 Convergence Rate

In this section we show that the Linear Steklov method (4.5)–(4.6) converges with a standard one-half
order. For that, we use a similar procedure as in [31]. In addition to Hypotheses 4.1.1, 4.2.1 and 4.2.2 we
also require the following.

Hypothesis 4.4.1. There exist constants L f , D ∈ R and q ∈ Z+ such that ∀u, v ∈ Rd

〈u− v, f (u)− f (v)〉 ≤ L f |u− v|2, (4.60)

| f (u)− f (v)|2 ≤ D(1 + |u|q+|v|q)|u− v|2. (4.61)

54



4.4. Convergence Rate

Hypothesis 4.4.2. The SDE (4.1), the EM solution and its continuous extension satisfy

E

[
sup

0≤t≤T
|y(t)|p

]
, E

[
sup

0≤t≤T
|Y(t)|p

]
, E

[
sup

0≤t≤T
|Y(t)|p

]
< ∞, ∀p ≥ 1. (4.62)

Theorem 4.4.1. [Higham et al. [31, Thm 4.4]] Under Hypotheses 4.2.1–4.4.1 the EM solution with continuous
extension (2.13) satisfies

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
= O(h2). (4.63)

Lemma 4.4.1. Under Hypotheses 4.4.1 and 4.4.2 and sufficiently small h, there exist constants D′ ∈ R and q′ ∈ Z

such that for all u, v ∈ Rd

|ϕ fh
(u)− ϕ fh

(v)|2 ≤ D′
(

1 + |u|q′+|v|q′
)
|u− v|2, (4.64)

| f (u)− ϕ fh
(u)|2 ≤ D′

(
1 + |u|q′

)
h2, (4.65)

|g(u)− gh(u)|2 ≤ D′
(

1 + |u|q′
)

h2. (4.66)

Proof. From inequality (4.19), we have

|ϕ fh
(u)− ϕ fh

(v)|2≤ (2 + LΦ)| f (u)− f (v)|2≤ (2 + LΦ)D(1 + |u|q+|v|q).

Moreover, if u ∈ Ej then ϕ fh
(u) = f (j)(u). On the other hand, if u ∈ Ec

j then

| f (u)− ϕ fh
(u)|2=

d

∑
j=1
|1−Φ(h, aj)(u)|2| f (j)(u)|2,

By the L’Hôpital theorem, we get

lim
h→0
|1−Φ(h, aj)(u)| =

∣∣∣∣∣1− lim
h→0

ehaj(u) − 1
haj(u)

∣∣∣∣∣ ≤
∣∣∣∣1− lim

h→0
ehLa

∣∣∣∣ = 0.

Thus, there is a sufficiently small h > 0 such that |1−Φj(u)|< Ch for all u ∈ Ec
j and

| f (u)− ϕ fh
(u)|2≤ Ch2| f (u)|2≤ D′(1 + |u|q)h2,

as we require. Given that gh(u) = g(Fh(u)) from theorem 4.2.2 we get

|g(u)− gh(u)|2≤ Lg|u− u + hϕ fh(u)|2≤ 2(1 + LΦ)h2| f (u)|2≤ 2(1 + LΦ)D(1 + |u|q)h2.

Lemma 4.4.2. Assume Hypotheses 4.4.1 and 4.4.2 hold then the solution yh(t) of the modified SDE (2.17) satisfies

E

[
sup

0≤t≤T
|yh(t)− y(t)|2

]
= O(h2). (4.67)
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Proof. We define e(t) := y(t)− yh(t) where

y(t) = y0 +
∫ t

0
f (y(s))ds +

∫ t

0
g(y(s))dW(s),

yh(t) = y0 +
∫ t

0
ϕ fh

(yh(s))ds +
∫ t

0
gh(yh(s))dW(s).

Using Itô’s formula over the function V(t, x, y) = |x− y|2 for all x, y ∈ Rd, we obtain

de(t) =
(

f (y(t))− ϕ fh
(y(t))dt

)
+ (g(y(t))− gh(yh(t))) dW(t),

Thus,

|e(t)|2 = 2
∫ t

0

〈
e(s), f (y(s))− ϕ fh

(yh(s))
〉

ds︸ ︷︷ ︸
:=I1

+
∫ t

0
|g(y(s))− gh(yh(s))|2ds︸ ︷︷ ︸

:=I2

+ 2
∫ t

0
〈e(s), [g(y(s))− gh(yh(s))] dW(s)〉︸ ︷︷ ︸

:=I3

. (4.68)

Now we proceed to bound each integral of inequality (4.68). By Hypothesis 4.4.1 and the Young inequality,
we get

I1(t) ≤ 2
∫ t

0
〈y(s)− yh(s), f (y(s))− f (yh(s))〉 ds +

∫ t

0

〈
y(s)− yh(s), f (yh(s))− ϕ f (yh(s))

〉
ds

≤ 3
∫ t

0
|y(s)− yh(s)|2ds + D′h2

∫ t

0
1 + |yh(s)|q′ds.

Since yh(t) has bonded moments, there exists a universal constant L which does not depends on h such
that

E [I1(s)] ≤ L
∫ t

0
E|e(s)|2ds + Lh2. (4.69)

Using Hypotheses 4.1.1 and 4.4.1 it is followed

I2(t) ≤ 2Lg

∫ t

0
|y(s)− yh(s)|2ds + 2D′h2

∫ t

0
1 + |yh(s)|qds,

thus

E [I2(s)] ≤ L
∫ t

0
E|e(s)|2ds + Lh2. (4.70)

Note that E [I3(t)] ≤ E
[
sup0≤s≤t|I3(s)|

]
. From the Burkholder-Davis-Gaundy inequality, Hypotheses 4.1.1
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and 4.4.1 and as yh(t) has bounded moments, we obtain

E

[
sup

0≤s≤t
|I3(s)|

]
≤ 24E

[
sup

0≤s≤t
|e(s)|2

∫ t

0
|g(y(s))− gh(y(s))|2ds

]1/2

≤ 24E

[
1

2 · 29

(
sup

0≤s≤t
|e(s)|2

)
+

29

2

(∫ t

0
|g(y(s))− gh(yh(s))|2ds

)2
]

≤ 2LgE

[∫ t

0
|y(s)− yh(s)|2ds

]
+ D′Th2 + D′Th2

∫ t

0
E|yh(s)|q′ds

≤ L
∫ t

0
E|e(s)|2ds + Lh2. (4.71)

Substituting inequalities (4.69), (4.70) and (4.71) on equation (4.68), we deduce that

E

[
sup

0≤s≤t
|e(t)|2

]
≤ L

∫ t

0
E|e(s)|2ds + Lh2 ≤ L

∫ t

0
E

[
sup

0≤r≤s
|e(s)|2

]
ds + Lh2.

By the Gronwall inequality, we conclude that

E

[
sup

0≤t≤T
|e(t)|2

]
≤ L exp(LT)h2 ≤ Ch2.

We can now obtain the convergence rate of the explicit Linear Steklov method.

Theorem 4.4.2. Under Hypotheses 4.1.1–4.4.1 and consider the explicit LS method (4.10) for the SDE (4.1). Then
there exists a continuous-time extension Y(t) of the LS numerical approximation for which

E

[
sup

0≤t≤T
|Y(t)− y(t)|2

]
= O(h). (4.72)

Proof. Using bound (4.57) then by lemma 4.4.2 and since the LS continuous-time extension (4.53) is equiv-
alent to the EM continuous-time extension (2.13), we can use Theorem 4.4.1 and conclude that the LS has
order one-half.

4.5 Almost Sure Stability

In this section we study the globally almost surely asymptotic stability (as-stability) of the Linear Steklov
method (4.5)–(4.6), in the scalar case. For simplicity we assume that the drift coefficient satisfies

f (x) = a(x)x,

for some suitable nonlinear function a : R → R. Here, we will follow the same technique reported by
Mao and Szpruch in [46]. First, we need sufficient conditions to characterize when the solution of the SDE
(4.1) is as-stable. The following result deals with it.
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Theorem 4.5.1 (Mao and Szpruch [46, Thm. 2.2]). Let hypothesis 4.1.1 hold and suppose that there exists a
function z ∈ C(Rd, R+) such that

〈x, f (x)〉 +
1
2
|g(x)|2≤ −z(x), ∀x ∈ Rd,

then

(i) For any y0 ∈ Rn the solution of the SDE (4.1), y(t), satisfies

lim sup
t→∞

|y(t)|2≤ ∞ a. s. and lim
t→∞

z(y(t)) = 0 a. s.

(ii) additionally, if z(x) = 0 only when it is evaluated at x = 0, then

lim
t→∞

y(t) = 0 a. s. ∀y0 ∈ Rd.

Next, we prove that LS method verifies the as-stability. The proof of this result depends on the
Lemma 4.5.1 see for instance [41, Th. 7, pg. 139]. We will denote by {Z →} the set of all ω ∈ Ω for which
the scalar process Z has the property that limk→∞ Zk exists and is finite.

Lemma 4.5.1 ([41, Thm. 7, pg. 139]). Let Z = {Zk} be a nonnegative semimartingale with E|Z|< ∞ and Doob
decomposition

Z = Z0 + A(1) − A(2) + M,

where A(1) := {A(1)
k }k∈N and A(2) := {A(2)

k }k∈N are a. s. nondecreasing predictable processes with A(1)
0 = A(2)

0 = 0
and M := {Mk}k∈N is a local {Fk}-martingale with M0 = 0. Then{

A(1) →
}
⊆
{

A(2) →
}
∩ {Z →} a. s.

Theorem 4.5.2. Let Hypothesis 4.1.1 hold. Suppose that there is a function z ∈ C(Rn, R+) and a step size h∗ > 0
such that for all x ∈ R and for all h in (0, h∗),

〈x, f (x)〉 +
1
2
|g(x)|2 ≤ −z(x), (4.73)

|x|2 (exp(2ha(x))− 1)
h

+ |gh(x)|2 ≤ −z(x), (4.74)

Then the LS method defined by (4.5)–(4.6) satisfies

lim sup
k→∞

|Yk|2 < ∞ and lim
k→∞

w(Yk) = 0.

In addition, if z(x) = 0 only when x = 0, then lim
k→∞

Yk = 0.

Proof. Taking advantage of Lemma 4.5.1, we proceed to construct a conveniently semimartingale. To

|Yk+1|2 = |Yk|2+h2|ϕ fh
(Yk)|2+|gh(Yk)∆Wk|2+2h

〈
Yk , ϕ fh

(Yk)
〉

+ 2 〈Yk , gh(Yk)∆Wk〉 + 2h
〈

ϕ fh
(Yk), gh(Yk)∆Wk

〉
. (4.75)
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Let

∆Mk+1 := |gh(Yk)∆Wk+1|2−|gh(Yk)|2h

+ 2 〈Yk , gh(Yk)∆Wk+1〉 + 2h
〈

ϕ fh
(Yk), gh(Yk)∆Wk+1

〉
,

which is a local martingale. Taking Bj := −
[
2
〈

Yj, ϕ fh
(Yj)
〉

+ |gh(Yj)|2+h|ϕ fh
(Yj)|2

]
, and fixing N ∈ N, we

can rewrite (4.75) as

|YN+1|2= |Y0|2−
N

∑
j=0

Bjh +
N

∑
j=0

∆Mj+1. (4.76)

To prove that (4.76) is the required decomposition to apply Lemma 4.5.1, we use that

ϕ fh
(x) = x

(exp(ha(x))− 1)
h

. (4.77)

By algebraic manipulations, we obtain

Bj = −
[
|Yj|2

(exp
(
2ha(Yj)

)
− 1)

h
+ |gh(Yj)|2

]
, j = 0, . . . , N.

Given that inequality (4.74) holds, we can deduce that

Bj ≥ z(Yj) ≥ 0, j = 0, . . . N.

Consequently, A(2)
k := ∑k

j=0 Bjh is a non decreasing process. Finally, taking A(1) = 0, Z = |Yk|2 and

Mk = ∑k
j=0 ∆Mj+1. We can deduce by Lemma 4.5.1 that {A(1) →} = Ω, thus

lim sup
k→∞

|Yk|2< ∞ a. s., and
∞

∑
j=0

z(Yk) ≤
∞

∑
j=0

Bjh < ∞.

Consequently limk→∞ z(Yk) = 0, and the theorem follows.

4.6 Numerical Simulations

Here we analyze the behavior of the explicit LS method for scalar and vector SDEs. The tests confirm
the convergence order 1/2 for stochastic differential systems with locally Lipschitz drift and suggest that
the LS scheme reproduces almost surely stability (a.s.). We validate the efficiency of the new method by
comparing with other actual methods like the Euler-Maruyama, Backward-Euler-Maruyama (BEM) [46]
and Tamed-Euler-Maruyama (TEM) [34]. All simulations are implemented in Python 2.7 and we use the
Mersenne random number generator with fixed seed 100.

Example 4.6.1. Here we illustrate the stability Theorem 4.5.2 through an numerical example presented in
[2, sec 7, pg. 420]. Here, Appleby and Kelly, proved that the EM method does not satisfies the almost
sure stability of the test SDE

dy(t) = −βy(t)|y(t)|pdt + σ(t)|y(t)|ρdW(t). (4.78)
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So, the EM approximation explodes to infinity on finite time when p + 1 > 2ρ. But, with the same
parameters limt→∞ y(t) = 0 a. s., see [2, 3] for more details. In particular for the following SDE

dy(t) = −y3dt +
1

[log(t + 1)]1.1 dWt, t > 0, (4.79)

and deduce conditions for the step-size h and initial condition y(t0) = y0 in order to claim with high prob-
ability when the EM scheme for SDE (4.79) is as-stable or diverge [2, Cor 7.1 pg. 421]. More specifically,
given h < 0.0384 and the EM for SDE (4.79)

Xk+1 = Xk − hX3
k +

1
[log(n + 1)]1.1 ∆Wk , X0 = y(t0). (4.80)

(i) If X0 ∈
(
−
√

2
h

+ 7
√

h,

√
2
h
− 7
√

h

)
, then P

[
lim
k→∞

Xk = 0
]
> 0.95 .

(ii) If X0 ∈
(
−∞,−

√
2
h
− 7
√

h

)⋃(√
2
h

+ 7
√

h, ∞

)
, then

P

[
lim sup

n→∞
Xk = ∞ or lim inf

n→∞
Xk = −∞

]
> 0.95 .

Thus we perform a simulation with step size h = 0.2 using the EM, Tamed Euler-Maruyama (TEM) and
the LS schemes with unstable EM initial conditions. Figure 4.1 shows how the EM scheme produces
spurious solutions. Meanwhile, the TEM ans LS approximations reproduce the asymptotic behavior, also
we observe a better initial precision of the LS approximation.

0 5 10 15 20

t

0

5

10

15

20

y

Exact h = 2e-05
TEM h =0.2
LS h = 0.2
EM h = 0.2

Figure 4.1: Likening between the EM, TEM and LS approximations with unstable EM conditions. Here "exact" means a BEM
solution with step size h = 2× 10−5.
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Example 4.6.2. We examine the LS method using a SDE with super-linear grow diffusion. We consider
the SDE reported by Tretyakov and Zhang in [66, Eq. (5.6)]

dy(t) =
(

1− y5(t) + y3(t)
)

dt + y2(t)dW(t), y0 = 0. (4.81)

Tretyakov and Zhang show via simulation of (4.81) that the increment-tamed scheme [32, Eq(1.5)]

Xk+1 = Xk +
f (Xk)h + g(Xk)∆Wk

max (1, h |h f (Xk) + g(Xk)∆Wk|)
(4.82)

produces spurious oscillations. Hutzenthaler and Jentzen prove the convergence of this scheme under
linear growth condition over diffusion. So, this suggests us that only certain kind of explicit schemes
with convergence under globally Lipschitz and linear growth diffusion conditions can extended their
convergence to a locally Lipschitz diffusion and other kind of growth bound. Using a(x) := −x4 + x2,
b := 1 and E = {−1, 0, 1}, we construct the LS method

Yk+1 = exp(ha(Yk))Yk +
exp(ha(Yk))− 1

a(Yk)
1{Ec} + h1{E} + Y2

k ∆Wk . (4.83)

Figure 4.2 shows the numerical solution of SDE (4.81) with the Increment-Tamed (I-TEM) (4.82), LS
method (4.83), and the Tamed (TEM) scheme. We consider the implicit Midpoint scheme [66, Eq.(5.3)]
with h = 10−4 as reference.

0 10 20 30 40 50

t

−4

−2

0

2

4

6

8

y

Mid TEM I-TEM LS

Figure 4.2: Numerical solution of SDE (4.81) using the I-TEM (4.82), LS method (4.83) and TEM with h = 0.1. The reference solution
is a Midpoint rule approximation with h = 10−4.

Example 4.6.3. Now we compare the order of convergence and the run time of the LS method with
the TEM scheme as in [34]. That is, we consider a Langevin equation under the d-dimensional potential
U(x) = 1

4 |x|4−
1
2 |x|2, and d-dimensional Brownian additive noise. The corresponding SDE reads

dy(t) =
(

y(t)− |y(t)|2·y(t)
)

dt + dW(t), y(0) = 0. (4.84)
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TEM LS BEM

h ms-error ECO ms-error ECO ms-error ECO

2−2 1.703 88 — 1.553 94 — 1.381 57 —
2−3 1.169 77 0.54 1.107 75 0.48 1.053 09 0.39
2−7 0.278 95 0.48 0.277 95 0.48 0.276 895 0.48
2−11 0.070 10 0.50 0.070 09 0.50 0.070 07 0.50
2−15 0.017 39 0.51 0.017 39 0.51 0.017 39 0.51

Table 4.1: Mean square errors and the experimental convergence order (ECO) for the SDE (4.84) with a TEM with h = 2−19 as
reference solution.

This model describes the motion of a Brownian particle of unit mass immersed on the potential U(x).
Taking aj(x) := 1− |x| and bj = 0, j ∈ {1, . . . , d} we obtain the LS method

Yk+1 = diag
[
eha1(Yk), . . . , ehad(Yk))

]
Yk + ∆Wk . (4.85)

Table 4.1 shows the root means square errors at a final time T = 1, which is approximated by

√
E [|YN − y(T)|2] ≈ 1

M

(
M

∑
i=1
|yi(T)−YN,i|2

)1/2

, (4.86)

over a sample of M =10 000 trajectories of the TEM, LS and BEM solutions to SDE (4.84) with dimension
d = 10. We consider the TEM solution with step h = 2−19 as reference solution. In this experiment we
confirm that the LS method converges with standard order 1/2 and is almost equal accurate as the TEM
approximation.

In some applicationa as in Brownian Dynamics Simulations [16], the dimension of a SDE increases
considerable the complexity and computational cost — this excludes the use of implicit methods. In Fig-
ure 4.3, we observe that the runtime of the BEM method grows quadratically depending on the dimension,
meanwhile the LS and TEM methods grow linearly.

Example 4.6.4. Let us recall the following stochastic model for internal HIV dynamics given by Dalal et al.
in [17]:

dy1(t) = (λ− δy1(t)− (1− γ)βy1(t)y3(t)) dt− σ1y1(t)dW(1)
t ,

dy2(t) = ((1− γ)βy1(t)y3(t)− αy2(t)) dt− σ1y2(t)dW(1)
t , (4.87)

dy3(t) = ((1− η)N0αy2(t)− µy3(t)− (1− γ)βy1(t)y3(t)) dt− σ2y3(t)dW(2)
t .

Under certain conditions Dalal et al. prove that system (4.87) has a unique almost surely exponential
stability solution, that is, y = (y1, y2, y3) tends exponentially to an equilibrium (ȳ1, 0, 0) with probability
1. Now, we want to verify if the EM, TEM, TEM-Sabanis [57] and LS approximations can reproduce this
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Figure 4.3: Runtime calculation of YN with h = 2−17, using the BEM, LS and TEM methods for SDE (4.84).
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Figure 4.4: Likening between EM, LS , TEM approximations for SDE (4.87) with γ = 0.5, η = 0.5, λ = 106, δ = 0.1, β = 10−8, α = 0.5,
N0 = 100, µ = 5, σ1 = 0.1, σ2 = 0.1, y0 = (10 000, 10 000, 10 000.)T , h = 0.125. Here the reference solution means a BEM simulation with
the same parameters but with a step-size h = 10−5.

property of the solution. Taking

E1 :=
{

(x, y, z)T ∈ R3 : z = 0 or z = 0
−δ

β(1− γ)

}
, E2 := ∅,

E3 :=
{

(x, y, z)T ∈ R3 : x = 0 or x =
−µ

β(1− γ)

}
.
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The LS method for (4.87) is given by

a1(Yk)) := −
(

δ + (1− γ)βY(3)
k

)
, b1(Y(−1)

k ) := λ,

a2(Yk) := −α, b2(Y(−2)
k ) := (1− γ)βY(1)

k Y(3)
k ,

a3(Yk) = −
(

µ + (1− γ)βY(1)
k

)
, b3(Y(−3)

k ) := (1− η) N0αY(2)
k ,

and its explicit form reads,

Yk+1 = A(1)(h, Yk) Yk + A(2)(h, Yk)b(Yk) + g(Yk) ∆Wk , ∆Wk =
(

W(1)
k , W(2)

k

)T
,

A(1)(h, Yk) :=

eha1(Yk) 0 0
0 eha2(Yk)) 0
0 0 eha3(Yk))

 ,

A(2) :=


hΦ1(Yk)1{Ec

1} 0 0

0

(
e−hα − 1

α

)
0

0 0 hΦ3(Yk)1{Ec
3}

 + h

1{E1} 0 0
0 0 0
0 0 1{E3}

 ,

b(Yk) :=

b1(Y(−1)
k )

b2(Y(−2)
k )

b3(Y(−3)
k )

 , g(Yk) :=

−σ1Y(1)
k 0

−σ1Y(2)
k 0

0 −σ2Y(3)
k

 . (4.88)

Figure 4.4 shows the LS , TEM and TEM-Sabanis approximations with the parameters reported in [17]. The
EM approximation blows up so it is not drawn. We observe how the TEM approximation (components
y2 and y3) oscillates about the initial condition and the TEM-Sabanis approximation (components y2 and
y3) is almost constant, while the LS method reproduces the asymptotic behavior of the solution. It is
important to remark that the Tamed family methods improve convergence of the Euler method by taming
the drift increment term with the factor 1/(1 + h| f (Yk)|), bounding the norm of h f (Yk)/(1 + h| f (Yk)|) by
1. This norm controls the drift contribution of the Tamed methods at each step. Such modification is
recommended for SDEs with drift contributions and initial conditions with similar scales. We observe
that for models where such terms have different scales the TEM over damps the drift contribution.
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Chapter 5

Conclusions and future work

5.1 Conclusions

We have constructed a new way to design numerical methods for SDEs based on the Steklov average.
First we presented a scalar scheme originated in an exact discretization for the deterministic version of
the SDEs with desired stability properties — the Steklov method. We verified its convergence and stability
over a standard globally Lipschitz setup and compared its performance with a competitive solvers. Also,
we have extended the explicit Steklov scheme for vector SDE by developing a new version based on
a linearized Steklov average. This method is constructed on the basis that the drift function can be
rewritten in the linearized form. Moreover, strong order one-half convergence has been proved for our
explicit linear method and we have presented several applications formulated with the LS scheme. Finally,
high-performance of the Linear Steklov method have been analyzed in diverse problems, even for SDEs
with super-linear diffusion. Future work will be focused on the following problems:

• Numerical evidence suggests that the Steklov methods are suitable for SDEs with super- linear
growth diffusion. So, one should prove this claim.

• Since we have proved strong convergence, we would to apply the Multilevel Monte Carlo approach
to the Brownian Dynamics Simulation using Steklov type schemes.

• The schemes presented here have a simple structure like the Euler-Maruyama family, so it is possible
to formulate versions of the Tamed, Milstein, Balanced, Theta, Runge-Kutta methods by approxi-
mating the drift term by its Steklov average.

• Also, it is viable to study stability of the LS method usibg the theory of random dynamical systems.

• Furthermore, a natural extension of this work would be to design Steklov type schemes for more
general SDEs, that is, SDEs with delay, Poisson jumps or partial derivatives.
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Appendix A

Useful Inequalities

In this appendix we enunciate basic results that are extensively used through our analysis. Here the main
reference are [62] and [44].

Hölder ([62, pg. 193]).

E[XTY] ≤ (E|X|p)
1
p (E|X|q)

1
q . (A.1)

Young ([26, pg. 111]).

|a||b|≤ δ

p
|a|p+

δ

qδq/p
|b|q. (A.2)

Minkowski ([62, pg. 194]).

(E|X + Y|p)
1
p ≤ (E|X|p)

1
p + (E|Y|p)

1
p . (A.3)

A standard inequality. Fix 1 < p < ∞ and consider a sequence of real numbers {ai}N
i=1 with N ∈ N.

Then one can formulate this usefully inequality(
N

∑
j=1

aj

)p

≤ Np−1
N

∑
j=1

ap
j . (A.4)

Doob’s Martingale Inequality ([44, Thm. 3.5]). Let {Mt}t≥0 be a Rd-valued martingale. Let [a, b] be a
bounded interval in R+. If p > 1 and Mt ∈ Lp(Ω; Rd) then

E

(
sup

a≤t≤b
|Mt|p

)
≤
(

p
p− 1

)p
E|Mb|p. (A.5)

Burkholder–Davis–Gundy inequality ([44, Thm. 7.3]). Let g ∈ L(R+; Rd×m). Define for t ≥ 0

x(t) =
∫ t

0
g(s)dW(s) and A(t) =

∫ t

0
|g(s)|2ds. (A.6)
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Then for all p > 0, there exist universal positive constants cp, Cp such that

cpE|A(t)|
p
2≤ E

[
sup

0≤s≤t
|x(s)|p

]
≤ CpE|A(t)|

p
2 , (A.7)

for all t ≥ 0. In particular, one may take

cp = (p/2)p, Cp = (32/p)
p
2 if 0 < p < 2;

cp = 1, Cp = (32/p)
p
2 if p = 2;

cp = (2p)−
p
2 , Cp =

p + 1

2(p− 1)
p
2

if p > 2.

Gronwall inequality ([44, Thm. 8.1]). Let T > 0 and c ≥ 0. Let u(·) be a Borel measurable bounded
nonnegative function on [0, T], and let v be a nonnegative integrable function on [0, T] If

u(t) ≤ c +
∫ t

0
v(s)u(s)ds ∀t ∈ [0, T],

then

u(t) ≤ c exp
(∫ t

0
v(s)ds

)
∀t ∈ [0, T]. (A.8)

Discrete Gronwall Inequality ([46, Lm. 3.4]). Let M be a positive integer. Let uk and vk be non-negative
numbers for k = 0, 1, . . . , M. If

uk ≤ u0 +
k−1

∑
j=0

ujvj

then

uk ≤ u0 exp

(
k−1

∑
j=0

vj

)
. (A.9)
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