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Abstract

Let Agrn o be the ring of germs of real analytic functions on R™ at 0 and consider n + 1
germs of real analytic functions f, fi, ..., fn : (R™,0) — (R,0) such that (f, fa,..., fn)
and (f1, f2, ..., fn) are regular sequences (see [10]). We denote by f™*! the (m + 1)
power of f. For m > 0 let us introduce the R-algebras

Agrn 0

(fm+17f27"'7fn). (1)

They are finite dimensional vector spaces over R. Their dimensions are (m+1)dimg By.

By, =

Introduce the symmetric bilinear forms
( Vm : Bm X By — By 2B R (2)

([a]m; [blm) = [ablim = Lin([ablm),

where - denotes multiplication in the algebra B,, and L,, is an R-linear map with
Ly ([J]m) > 0, where [J],, in By, is the class of the Jacobian determinant of f, fa, ..., fy.
It is a theorem of Eisenbud and Levine (see [11]) that this bilinear form is nondegenerate
and its signature, denoted by o,,, is independent of the chosen L,,.

Theorem 0.1. Let {f, fa,..., fu} : (R™,0) = (R,0) be germs of real analytic functions
forming a reqular sequence, and oy, the signature of the nondegenerate bilinear form in
(2), then we have

_f oo if m is even
"m_{ 0 if m is odd. 3)



Now for m > 0 define the m!" relative (symmetric degenerate) bilinear form

(ol By X By = B 25 By I3 R ()

([alm, [blm) = [ablm = [f1ab]m = Lin([f10b]m),

where Ly, : B, — R is any linear map such that L,,([f™J]) > 0 and we are using
the multiplication in B,, in the expression fiab. Its degeneracy locus is the annihilator
of f1 on B,:

Annpg, (f1) :={be€ C: [bfi]m =0 on By}

and we denote by ¢ its signature.

Let ( );fl Ann, D€ the degenerate symmetric bilinear form obtained by restricting

< 7>:rc;l to Anan—1(fl) X meO3

< ’ >rme,lAnn : (Anan—1(f1) D meO) X (Anan—l(fl) D meO)

3 B % By IR (5)

and denote by &:’rf’l Ann 1S signature.

Our main result is:

Theorem 0.2. Let {f, fo,..., fn} and {f1, fo, ..., fu} be germs of real analytic functions
on R™ forming reqular sequences, then

1) We have for even m > 0:

~rel __ ~rel ~rel ~rel ~rel
Om =0gp + 09, Ann + 04, Ann +oo-+ Om,Ann>

and for odd m > 1:

~rel __ ~rel ~rel ~rel ~rel
Op =01 + 03, Ann + 05 Ann Tt Om, Ann-

2) For m large enough, &:rf,lAnn =0.

3) For m > 0 we have the recursive formulas:

rel __ _rel rel
Om+1 = Om—1 + Om+1,Ann

with U’f’ll =0.



Chapter 1

Introduction

The objective of this thesis is to shed light on the following fact:

For a germ of a real analytic function f : (R",0) — (R,0) with an al-
gebraically isolated singularity the most basic topological invariant of the
Milnor fiber V; := {f = t}, its Euler characteristic, can change depending on
the sign of ¢, if n is odd.

For example, for f = 22 + y? — 22 we pass from 2 2-dimensional discs to a 2-

dimensional annulus, changing the Euler characteristic from 2 to 0.

Our tool to analyse the mathematics around this jump in the Euler characteristic is
through a family of vector fields X; on R™ with isolated singularities, each of multiplicity
one for ¢t # 0, and it is tangent to the Milnor fiber V;. The tangency condition may be
written as

>0 = (£ =t

for a real analytic function h;(x) called the cofactor.

By the Poincaré-Hopf index theorem, we have for ¢ fixed the sum

Z Indgn (X, p)

Xt(p)=0

is independent of t. At a singular point of the vector field X; at p € V;, with ¢ # 0,
besides the Poincaré-Hopf index, we have the relative Poincaré-Hopf index which is the
Poincaré-Hopf index of the restriction X;|y, to the n — 1 dimensional manifold V;. For
t # 0 fixed, the sum
Z IndW(Xt‘Vmp)
Xi(p)=0=f(p)—t

is locally constant so we have a value for ¢ > 0 and another one for ¢ < 0. The relation
between the 2 indices is, for ¢ # 0



Indgn (X¢,p) = £Indy,(X¢lv;, p)
where they coincide if h¢(p) > 0 and they differ by the sign if h¢(p) < 0.

For example, the family of contact vector fields

VRPN I SR
Xt = (f t) 8331 + Zz; 8£L’2i+1 81;% 85521' a$2i+1)

(1.1)

satisfies the tangency relation

of
d(f —t)(Xy) = =—(f -t
(F =X = 52(f 1)
in an odd dimensional ambient space. All the singular points of X; are contained in
this case in V4, so the subindex in the above sums is over the same set, so what is

involved are the sign properties of 88—;1 when restricted to the connected components of
the smooth curve {887’; == % =0} — {0} CR™

In this thesis, we describe an algebraic method to compute from ’infinitesimal in-
formation’ of the family of vector fields X; at the point ¢ = 0 the index of the family
to the right and to the left. The vector field X|y; determines only part of this index,
and one must look at higher order terms

X,
o0 %

to see the other contributions.

More generally, let Agn ¢ be the ring of germs of real analytic functions on R™ at 0
and consider n + 1 germs of real analytic functions f, fi, ..., fn, : (R™,0) — (R,0) such
that (f, fa, ..., fn) and (f1, fa, ..., fn) are regular sequences (see [10]). We denote by
7+ the (m + 1) power of f. For m > 0 let us introduce the R-algebras

Arn o

(fm+17 f27 ceey fn) .

They are finite dimensional vector spaces over R. Their dimensions are (m+1)dimg By.

B, = (1.2)

Let
of of
J:=Det| 0= 77 Own Jm = [J]m € Bm,
Ofn  Ofa
o1 OTn

denote the Jacobian J and its class [J], in By,.



The absolute index

Introduce the symmetric bilinear forms
( Vm : Bm X B — By, 25 R (1.3)

([a]m, [blm) = [ablm = L ([ab]y),

where - denotes multiplication in the algebra B,, and L,, is an R-linear map with
Ly ([J]m) > 0. (See [11]) that this bilinear form is nondegenerate and its signature,
denoted by G,,, is independent of the chosen L,,.

Our first result is:

Theorem 1.1. Let {f, fo,..., fu} : (R™,0) = (R,0) be germs of real analytic functions
forming a reqular sequence, and G,, the signature of the nondegenerate bilinear form in
(1.3), then we have

- J oo if m is even
om = { 0 4if m is odd. (1.4)
The proof relies on choosing v1,...,vs € % such that [vi]o,. .., [vs]o € By are
an R-basis with [v1]o = 1 and [vs] = [J]o, and considering the basis of Bj,:
[Ul]’my ey [Us]my [fvl]ma DRI [flvs]mn DRI [fmvl]ma DRI [fmlvs]m (15)

that provide R-vector space isomorphisms

By = Bo(D fBo DD " Bo (1.6)
and R-vector space inclusions
By— By — ... By_1— B,.

We also choose for L,, : By, — R the map sending all the base elements to 0, except the
last where L, ([f™J]m) = 1. Using this block decomposition of B,,, the multiplication
table

i : Bm X By — B,

takes the form

Qo| 0 0 Hyi | Qo 0
0 |0 0 Q01 0 0
Qm = 0 0 010 +f 0 0 0 10 | 4
0 : 0
0 [ololo] |0 (o]0 o0




[ Hm Hm—l : Hl QO ]
Hp 1| -+ |Hi | Qo| O
.._|_fm . 0 0 , (17)
H,y Qo 0 0 0
L Qo 0 010 0]
where Qo, Hy, ..., Hy, are symmetric (s X s)-matrices with entries in By. The expression

of these matrices can be obtained from the restriction of u,, to By and using the
isomorphism B, ~ @}T‘:O f? By we obtain a bilinear form

}LmZBQXBo—>Bm

with matrix expression
Qo+ fHi+ -+ f"Hpy.

Qo is the matrix expression of the multiplication po on By and the H; are the higher
order terms in the multiplication pu,, restricted to By < B,,. These terms contain all
the information needed for describing p,,, as can be seen from the expression (1.7).
Applying to (1.7) the chosen L,,, the matrix for the bilinear form (1.3) is

[ Lo«Hpm | LoxHpm1 : Lo« Hy | Lo«Qo |
Lo« Hyp 1 e Lo« Hy | Lo«Qo 0
Ly Qm = | - 0 0 (1.8)
Lo, Hy Lo« Qo 0 0 0
L Lo«Qo 0 0 0 0

Here Ly, : Sym(Bp,) — Sym(R) is the operation on matrices with entries in By, to
matrices with real entries obtained by applying L., to the entries.

Observing the anti-triangular form of (1.8) and the fact that the anti-diagonal
terms are non-singular matrices, we may do then a change basis for the R-vector space
(v1,..., [Mvs) — Arn o to obtain a matrix representation of <, >, as an anti-diagonal
matrix by blocks, with all the anti-diagonal terms being the matrix Lg.Qo:

0 0 : 0 | Lo«Qo |
0 e 0 | Lo«Qo 0
Ls Q= | 0 0 (1.9)
0 LO*QO 0 0 0
| Lo«Qo | O 0 0 0
The matrix (1.9) suggests that we consider the decomposition of By, as:
By = [Bo® £ Bol @I/ Bo & " Bol @)+ . (1.10)

7



It isan <, >,-orthogonal direct sum. The contribution to the signature of each vector
space within a bracket is 0, since they have the form

0 Lo« Qo
<L0*Q0 ‘ ) (1.11)

Therefore, if m is odd, the brackets in (1.10) are paired off, giving a signature o, = 0.
If m is even, in the above pairing (1.10), we are left with 1 block Lo.Qo which does not
have a term to pair with. This term then gives the only non-zero contribution og to
the signature o, of B,.

The relative index

We introduce now the main object of analysis in this thesis; the relative bilinear form.
Let {f, f1, ..., fn}, Bm as before (we did not use f; for Theorem 1.1). For m > 0 define
the mt" relative (symmetric degenerate) bilinear form

(Ve By X By — B 2% B 2% R (1.12)

m

([alm, [B]m) = [ablym = [f1ablm = Lin([f1ab]m),

where Ly, : By, — R is any linear map such that L;,,[f™J,]m > 0 and we are using the
multiplication in B, in the expression fiab. Its degeneracy locus is the annihilator of
f1on By,:

Annp, (f1):={b€ C: [bfi]m =0 on By}

and we denote by 67¢ its signature.

Let ( );fl ann D€ the degenerate symmetric bilinear form obtained by restricting

< 7>:7$l to Anan—1(f1) @ meO:

(ot (Annp,_ (f1) ® f™Bo)x (Anng,,_,(f1) ® f™Bo)

s B, % B, IR (1.13)

~rel

and denote by 7,7, its signature.



Our main result is:

Theorem 1.2. Let {f, fo,..., fn} and {f1, fo, ..., fn} be germs of real analytic functions
on R™ forming reqular sequences, then

1) We have for even m > 0:

~rel __ ~rel ~rel ~rel ~rel
Om =0gp + 09, Ann + 04, Ann ..o+ Om,Ann>

and for odd m > 1:

~rel __ ~rel ~rel ~rel ~rel
Om = 01 + 03, Ann + 05 Ann +.o..+ Om, Ann-
~rel —
2) For m large enough, T Ann = 0-

3) For m > 0 we have the recursive formulas:

rel __ _rel rel
Om+1 = Om—1 + Um—i—l,Arm
with O'Cell =0.

rel

rel :
and 0,9, as the corresponding sums above,

Thus we introduce the invariants o.c.,,

for m sufficiently large.

For the proof, we begin as in the absolute case, by giving a matrix expression in
blocks to the map

,Urmez : Bjp X By, — By Mrmd([a]mv [blm) = [frablm
r Qgel 0 ---]0T r {el Qael 10T
0 ol---]o0 Q| o [---]0
Q:ﬁl — 10 0 0 [0 | ¢ f 0 0 0 10 | 4+
. 0 . 0
| 0 0 0 [0 | L O 0 0 0 |
CHl | Hpt | | H | QT
H | THT QT 0
S fm . . 0 0l (1.14)
H Q" [ 0 ] 0 0
L Qp 0 0 0 0

where Qgel,erl, ... H" are symmetric (s x s)-matrices with entries in By. These
matrices are obtained from the restriction of u’¢ to By and using the isomorphism
(1.10):

m

sl Box o : Bo X Bo — B = @D /By
=0



with matrix expression
vl FHT 4 fMHTE

Now LO*QSd is the basis expression of ( ,)661 on By, so we make a change of R-basis

in (v1,...,vs) so that

ot 00
Lo.Qit=10 -1, 0],
0 0 0

where we have chosen maximal orthogonal subspaces where ( ,)661 is positive and ne-

gative definite, but the 3"¢ summand, which is the Annihilator of ( , >6€l is canonically
determined.

In the basis (1.5), the expression of the bilinear form ( , )7¢ on B takes the block
form:

AH A12 A13 Ipo 0 0
AIiQ AQQ A23 0 _Iqo 0
Al AL, E 0 0 0
rel 13 23 1
— 1.1
@ I, 0 0 0 0 0 (1.15)
0 —I, O 0 0 0
0 0 0 0 0 0

We take a new basis of B; by applying the product of elementary matrices, as in the
Jordan-Gauss elimination method to the bilinear form Q{el, applied simultaneously to
the rows and columns so as to preserve the symmetry of the matrix expression. In this
basis one has the expression

o

|
~ O

(1.16)

)
OOOOO’E'N
O O OO OO

O O OO

From this expression we see that the contribution given by the antidiagonal blocks to
the signature is again 0 (even though it is degenerate) and the only contribution to the
signature comes from the matrix F, which is defined where the bilinear form < , >66l

is degenerate.

Making a new change of basis of the third summand Ker(QL), by choosing ma-

ximal subspaces where E; is positive and negative definite, but the third summand is
rel

canonically determined by KerE; N K engel. The block representation of < , >}
takes the form

10



A A A1z As | Ais Ase A7 0 I, 0 00
Al, Ay Ao Aoy | Al Age Aoy 0 0 —I, 0 0
Al Aby Ass Asy | Ab; AL, 181 —(I) 0 0 0 0 0
q1
Ay Asg A1 0 Iy, 0 0 0 0 0 0 0
Qgel — ASG AQG A27 0 0 _Iqo 0 0 0 0 0 0
At AL, I O 0 0 0 0 0 0 0 00
0 71{11
0 0 0 0 0 0 0 0 0 0 0 0
I, 0 0 0 [0 0 0 0 | 0 0 00
0 —1Iy, 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

After doing a change of basis using the Jordan-Gauss method as before, we obtain
the matrix expression

0 0 0 0 0 0 0 0 I, 0 0 0
0 0 0 0 0 0 0 0 0 —-I, 0 O
I, 0
0 0 0 0 0 0 0 I, 0 0 0 0 0
0 0 0 E, 0 0 0 0 0 0 0 0
0 0 0 0 1, 0 0 0 0 0 0 0
rel | O 0 0 0 0 -1 0 0 0 0 0 0
C 0 0 Iy, 0 0 0 0 0 0 0 0 0 0
0 _Lh
0 0 0 0 0 0 0 0 0 0 0 0
Iy, 0 0 0 0 0 0 0 0 0 0 0
0 —1Ig 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

The antidiagonal terms consist of 3 blocks, the 2 extreme ones give a 0 contribution
to the index, and the middle one gives then only 1 contribution to the signature by
po—qo- The 2 blocks 1 step above the antidiagonal give no contribution to the signature
since they have the form (1.11), and the upper right block gives a contribution to the
signature of Q5 by the signature of Es.

So we see the same pattern as in the absolute index, having a distinction between
even and odd, but with the difference that the new contribution is not 0 as in the
nondegenerate absolute index where we had &,, = d;,—2 + 0, but a new term appears
in the Annihilator of the previous form, which the theorem asserts that it eventually
becomes 0.

11
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What remains to be explained is how these new contributions &;‘ffmn

To do this, we use the method describe in [13] to transport the signatures &;efmn to the

are organized.

signatures of the primitive components of the algebra A := (ﬁfk‘fif’j?) with its canonical

bilinear form, with respect to multiplication by f. This gives then that &ﬁflm = 0 for

In chapter 2 we describe the topological properties of vector fields that we will use.
In chapter 3 we describe the algebraic properties of vector fields that we will use. In
chapter 4 we analyse the absolute index and prove Theorem (1.1). In chapter 5 we
describe the relative index and prove Theorem (1.2). In Chapter 6 we transport the
signatures a;’e[fmn to the algebra A. In chapter 7 we give applications of our theorems
for 1-parameter families of vector fields tangent to the Milnor fibres and to contact
vector fields.

Theorem (1.1) and Theorem (1.2) are the original contributions of this thesis, and
the material although motivated by [13], is not contained in it. The paper [13] centers
in analysing the Taylor series expansion of the family of bilinear forms <, >; and how
far in this expansion one has to go to know the index on the right and the left, and this
Thesis centers in the analysis of the family of bilinear forms in the truncated algebras
Byy,.

12



Chapter 2

Topological properties of vector
fields

Our purpose in this chapter is to give the basic theory of the Poincaré-Hopf index and
the relative index (abbreviated as GSV). We explain a procedure to compute the GSV
index. We provide a natural example, it has been selected to illustrate an interesting
and important phenomena.

2.1 Real analytic germs of vector fields

C¥ denotes the class of real analytic functions.

Definition 2.1. Let U C R" be an open subset. A real analytic vector field in U is a

map X : U — R™ of class C¥. We define a singularity of a vector field X to be a point

p such that X (p) = 0. Furthermore, the linear part of the vector field X in p is DX (p),
1 n

where DX (p) = H i.e. It is the Jacobian matriz valued at p.

Definition 2.2. A germ of a real analytic function at p is an equivalence class of pairs

(U, f1), where U is an open neighborhood of p and fy is a real analytic function of U.

We recall that two pairs (U, f1), (V, f2) are equivalent if there exists an open neigh-
borhood W C UNV of p such that fi |w= fo |w . Where f3 is a real analytic function.

Moreover, let U be a neighborhood of p in R™ such that p is an isolated singularity of
the real analytic vector field X. If f : U C (R",p) — (R, p) is a germ of a real analytic
function, then df : TU — TR, and

df - X == dfy(X(p))-

Definition 2.3. Let f : (R™",0) — (R,0) be a germ of a real analytic function and
V(f) :=={a €R": f(a) = 0} be a hypersurface. We say that, p is an isolated singularity
of f, or of the hypersurface V(f) if p is an isolated point of V(f, fi,..., fn), where

V(fa flan?""fn) = {CL eR™: f(a) = fl(a)’ 7fn(a’) = 0}7 with f’L = (‘%{ i = 17 ey T

13



Definition 2.4. If f and V(f) are as in the previous definition, we define a singularity
algebraically isolated p of f or V(f) to be an isolated point p of V(f, f1,..., fn) after we
complezify the function f.

Proposition 2.1.1. Let f be a real analytic function and X be a germ of a real ana-
lytic vector field with an isolated singularity at 0, such that it is tangent to a smooth
hypersurface

V(f) ={(a1,....,an) € R"| f(a1,...,an) = 0}.

Then df - X |y (=0 if and only if df - X = hf, for some analytic function h. The
function h will be called the cofactor.

Proof. Since 0 is an isolated singularity of the vector field X, there exists a change of
coordinates (w1, ..., w,), and functions o, € € with ¢ = ¢! such that

flo(wi,...,wy)) = wi. (It is an immediate consequence of the implicit theorem.)

On the other hand, for the vector field X, let us define the vector field X by X = DyX.
Therefore, df - X = 2?21 Xjaanj = X;. Since X is a vector field of class C“; then the

Taylor series expansion of X7 is
X, = wihy(we, ... wy) + w%hg(wg, consWp) F oo WAy (wa, . wy) + Ry,

hy is the cofactor, and R,, is the residue of the Taylor series.

Conversely, suppose that df - X = hf for some analytic function h then df - X [y (p=
h(a1, ..., an) f(ai,...,an) = 0 and df - X |y (5= 0 for all (a1, ...,an) € V(f). O

Proposition 2.1.2. Let f, V(f) and X be as in Proposition (2.1.1), then the cofactor
1s tnvariant under a change of coordinates, i.e.

h(p) = h(w(p)) with p € V(f) —{0}. (2.1)

Proof. Since p is a regular point of f, there exist local functions ¢, ¥ : R® — R™ with
©(p) = ¢ such that

f=Ffop(i ...yn) =yn and ¥ = .. (2.2)

It is a consequence of the implicit theorem (see [26], p. 401). So, by the chain rule, we
get

(vf)p = (vf)w(z?) ) (D‘P)p- (2.3)

Moreover, if we push forward the real analytic vector field X with D1, then we get X.
i.e.

X(q) = (D¢)¢(p)X¢(P)' (2.4)

14



If we see the Proposition (2.1.1). It follows that
V)X (p) = hp)f(p),

and

Vi) - X(p) = h(p)f(p)-
From (2.3) and (2.4), we obtain

V) X(0) = V(f)pr) DepD¥up X

Since, DpDvp = D(p o) = DI = I then

VIPp) X)) = V(e Xom)

If we consider (2.5), then the previous equation is

Vip)- X(p) = hle ) f (o).

By (2.2), we get

Vip) - X(p) = hle®)f®).
Thus, if we see the equations (2.6) and (2.10), then

h(p) = h((p)).

Graphically

X

/.f’ﬂ ?
\'/

w(p)

R?’L

In this case, Xp = DY Xy, o(p) =q.

15
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2.2 The absolute index; Poincaré-Hopf index
We define the sphere of radius € to be
Set={zeR" | z|=¢}.

Indeed, Sffl denotes the sphere of radius equal to 1. If X be a real analytic vector
field with an isolated singularity at 0, and 5 : S?~! — S?_l is a continuous map, then
7 induces a homomorphism

Ny © Hn,l(SZ‘_l) — anl(S?il).

Since, H,_1(S" 1) ~ Z then 0, :  + dx for some fixed d € Z. The integer d will be
called the degree of 7.

Remark 2.1. If n is a real analytic function with an isolated singularity at 0, then we
define the degree of n, denoted deg(n), to be the sum of the signs of the Jacobian of n,
at all reqular values q € S{l_l. (See [28] Lemma 3, p. 36, Lemma 4, p. 37).

Definition 2.5. Let X be a real analytic vector field with isolated singularity at 0 then
d is the Poincaré-Hopf index, denoted (Indgn (X,0)).

Remark 2.2. Since X is a real analytic vector field, then

ox? ax?
o1 O0Tn
px=| . |- (2.11)
oxX™ oxX"
oz Oxn

Note that, if p is an isolated singularity of X := (X',...,X™) such that |DX(p)| # 0,
then the Poincaré-Hopf index of X at p can be computed as the sign|DX(p)|. (See

(3, [27)-

Remark 2.3. We consider X as a real analytic vector field and 0 an isolated singularity
of X. If Xt is a small perturbation of X of class C¥, then

Indgn(X,0) = > Indgn (Xy,pi). (2.12)
Xi(pi)=0, p;€B

We will interpret B as a neighborhood of 0, and the points p; are isolated singularities
of X; in B, withi=1,...,0, £ € 7”0,
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Graphically, we have the following situation,

E._ L — —
s H“a_ e .
/ 1/ \
& "’ ]_ I

Zero is an isolated singularity.

In this case, Indgn(X,0) = Z?Zl Indgn (X4, pi),pi € B.

2.3 The relative index; GSV-index

Definition 2.6. Let X be germs of a real analytic vector field, with an algebraic isolated
singularity at 0, such that it is tangent to

H :={(z1,22,....,2n) € R" : ;, = 0}.

Let Y := X |g. We define the relative index of the vector field X, to be the Poincaré-
Hopf index of the real analytic vector field Y .

We will interpret the vector field X in coordinates by defining X = (X!, ..., X"~ ! x,h),
where h is the real analytic function and z,, € R.
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Furthermore, since X is tangent to H and Y = X |y, then, DX and DY can be
expressed as

ox! X1

01 Otn ox! ax!
o0z OTpn—_1
DX = ' ’ ;DY =
oxn—1 oxn—1 : :
89% axn axn—l aXn—l )
anm h + xnaaTh ox1 OTpn—1
It follows that
DY «
DX |g= ( 0 & >
Finally, |DX(0)] is equal to
| DX (0) |=h(0) | DY (0) | . (2.13)

Remark 2.4. According to the previous paragraph, we define the relative index of
X, to be sign | DY (0) |.

Lemma 2.3.1. Let X be germs of a real analytic vector field with an isolated singularity
at 0, and tangent to H, such that | DX (0) |# 0. IfY is the restriction of X to H, then

Indgn(X,0) = sign(h(0))Indy(Y,0).

Proof. Since, |[DX(0)| # 0 and | DX(0) |= h(0) | DY (0) |, then from the equation
(2.13) it follows that h(0) # 0 and |DY (0)| # 0. Namely, if Y := X|g and X has an
isolated singularity at 0, clearly Y has an isolated singularity at 0. Now, let us consider
the sign on (2.13). Then, we get

Indgn (X,0) = sign(h(0))Indg(Y,0).
O

Corollary 2.1. Assuming the hypothesis of Lemma, (2.3.1), and if p is an isolated
stngularity of the vector field X, then

a) Indy(Y,p) = Indgn(X,p) <= h(p) >0.

b) Indy(Y,p) = —Indrn(X,p) <= h(p) <O.

Proof. The proof of a) and b) follows immediately if we consider

Indeed, if h(p) > 0 then Indg(Y,p) = Indr~(X,p) and Indg(Y,p) = —Indr~(X,p),
when h(p) < 0. O
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As an illustration of a change in the topology of the Milnor fibers, we will use the
calculus of the GSV-index. To show this, we will exhibit in an example the structure
of a singular hypersurface, using a uniparametric non-singular hypersurface when it
passes through 0.

Example 2.3.1.

Let f: (R3,0) — (R,0) be a germ of a real analytic function, and
Xt = (f —t, *fmfy)

be a uniparametric family of the vector fields of class C*, (with f, = %7 f = %).
If X; is tangent to the hypersurface Vi(f) = {(a,b,c) € R3 : f(a,b,c) = t}, then
df - Xe = V[ Xe = (farfy J2) - ((f =), =F2 fy) = Jo(f = 1), So, fo = 3L is the

cofactor. In particular, if f = 22 + y? — 22 then the cofactor is f, = 2z.

Now, we will study the topology of our smooth family of hypersurfaces. To do so,
we consider different values of t in V; = {(a,b,c) € R®: f(a,b,c) =t} . Indeed, if t = 0
then hypersurface Vo(f) = {(a,b,c) € R?: f(a,b,c) = 0} is

The hypersurface V4.
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Thus, if ¢ = 1, then we will obtain

The hypersurface Vi = {f = 1}.
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Finally, when t = —1, then we will get

The hypersurface 3 V_; = {f = —1}.

21



So, let us consider the GSV-index of the vector field X, for different values of t, and
we will observe an interesting phenomenon. Indeed, if ¢ = 0, then the origin (0,0, 0) is
an isolated singularity of Xj.

We note that, if t = 1, then the points p; = (1,0,0) , po = (—1,0,0) are the isolated
singularities of X;. On the other hand, if DX is defined to be

2z 2y -2z
|DX,| = 0 O 2 = —8z
0 2 0

then, the sign| DX (p1) |= 1, and the sign| DX (p2) |= —1. Hence, Indps(X,0) = 0. It
is a direct consequence of the additivity property of the Poincare-Hopf index.

Since, 2z is the cofactor, then h(p;) = 2(1) > 0 and h(pz) = 2(—1) < 0. There-
fore, from Corollary (2.1) we have Indg2(Y,p1) = —1 and Indg2(Y,p2) = —1. Thus
IndRz (Y, O) =-2.

If t = —1, then the set of singularities of vector field X 1 = (2? +y? — 22 +1, 22, 2y)
are not considered to be real. So, Indgs(X,0) = Indg2(Y,0) = 0. Hence we conclude
that:

1. If ¢ > 0, then Indgs(X,0) =0 and Indy,(Y,0) = —2.

2. If t <0, then Indgs(X,0) =0 and Indy,(Y,0) = 0.

Consequently, by the previous paragraph we have that the relative index changed, but
the Poincare-Hopf index of X; for different values of ¢ did not change.
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Chapter 3

Algebraic properties of vector
fields and symmetric forms

Eisenbud-Levine used a symmetric bilinear form to compute the degree of the function
f. Denoted deg(f), with f € C¥. In this chapter, we define the general notion of
algebra and study in detail an example of degenerate bilinear form. We will work with
Zarisky topology.

Definition 3.1. A sequence of elements {x1,...,xq} on a ring R is a reqular sequence

if the ideal (x1,...,xq) is proper, and the image of x;y1 is a nonzero divisor in e R =

Definition 3.2. A local ring N is a complete intersection ring if there exists a regular
local Noetherian ring R, and a regqular sequence {x1,xa,...,xn} in R such that

R

N~y —— o
(T1y. .. Tp)

Remark 3.1. Let K be a field of characteristic 0 and Klzy,...,x,] be the ring of
polynomials with n variables. Namely, if I is an ideal in Klzq, ..., z,], then

Klz1,. ..,z

A= 7

is an algebra and the following are equivalent:
1. A is a finite-dimensional over K.
2. The variety V(I) € K" is a finite set
V(I):={(a1,...,an) € K": fa(a1,...,a,) =0, and fy € I, € A}
where, A is a finite set of indices.

3. The ideal I is zero-dimensional.
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Definition 3.3. Let V be an affine variety. If (V') is the ideal of polynomials vanishing
on V, then, we define the coordinate ring of V, to be

Klz1,. ..,z

="

An element f € K[V] will be called a regular function.

Definition 3.4. Let Agrn g be the ring of germs of regular funcions of R"™ at 0, and
R{{x1,...,xn}} be the set of convergent power series. If f1,..., fn € R{{x1,...,20}},

Agn o

then 0 is called an algebraically isolated singularity of {f1,..., fn}, when O = Tl
it is finite dimensional.

Moreover, let Oy, be the ring of germs of regular functions of V' at p. If V' is an affine
variety with a coordinate ring K[V], then:

1. Oy, is a local ring, with maximal ideal
mp = {f € Ov, | f(p) = 0}. (3.1)

2. Oy, ~ K[V}, where

K[V], = {g | fg€KV], g ¢ my}. (3.2)

3. dim(Oy,) = maz{dimV; | p € V;}, where V; are the irreducible components of
V,i€ A and A denotes a finite set of indices.

(See [19] page 469.)

3.1 Symmetric bilinear forms and Sylvester’s theorem.

In this section, we will give some basic definitions of the symmetric bilinear forms.
Next, we will remember the inertia theorem.

Definition 3.5. Let V' be a vector space over field K. The bilinear form on V
¢V xV — K is said to be symmetric if p(u,v) = ¢p(v,u) for all u,v € V.

Remark 3.2. If ¢ : V x V — K is a symmetric bilinear form, then the associated
matriz is symmetric.
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Theorem 3.1. Sylvester’s Law of inertia.

If V is a real vector space of dimensionn > 1, and ¢ : V xV — R is a symmetric
bilinear form on V' of rank r < n, then, there is an integer p with 0 < p < r depending
only on ¢, and a basis B = {e1,..,en} of V. Therefore, the associated matrix to ¢ has
the following form

I, 0 0
0 -1 0
0 0 Oupro

The symbol 0,,_(,44), denotes the zero matriz of suitable size.

3.2 Examples of bilinear forms in commutative algebra

In this section, we motivate our next results with an example of a degenerate symmetric
bilinear form on R3. We will compute the signature in different subspaces of R?, and
the one parameter family. Finally, we will give a specific example that arises from
commutative algebra.

Let us consider the degenerate symmetric bilinear form ( ,) : R? x R? — R, with
associated matrix @ given by

0 -1 0
Q=1]|-1 0 0
0 0 O
aq a
If v = by , Vg = bo € R3. They are arbitrary fixed vectors. Then, v1Quo
C1 Co
or (vy,v9) is
ai az
< b1 s bQ > = —(Ilbg — blag. (33)
C1 c2

Since, vo is an arbitrary vector, we get (vi,v9) = 0 if and only if -a1b9 — byas = 0, and
(a1,b1) = (0,0). On the other hand, we define the annihilator of @, denoted Ann( ,),
to be

Ann( ) :={v € R®: 5Qu;, = 0}. (3.4)

With o7 € R3, it is a vector fixed in R3. Therefore, the annihilator of the matrix Q is
Ann( ,) = (0,0) x R.
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Analysis of the bilinear form restricted to 1-dimensional subspaces

We begin by investigating the symmetric bilinear form when we have a one-dimensional
subspace. So, let £ be a line in R3, namely

L ={(ay,b1,c1) €R>: (a1,b1,c1) = Ma, b, c), where A € R — {0} and (a, b, c) is fixed vector }.

a a
In fact, if A,y € Rthen A| b | andu| b | € £. Thus, we can write

Al b |,u| b |)=—2abAu =0 if and only if ab= 0. (3.5)

In particular, if a =0 or b= 0, we can define two planes in R? to be

0 0 a 0
Pr=gen{| b |,| O |},and Py =gen{|[ O |,| O |}.
0 c 0 c

Hence, if L C Py U Py, then ( ,) |z= 0, and if L ¢ P; U Po, then the bilinear form
restricted to £ is ((Aa, Ab, \c), (ua, pb, pc)) = =2 apub = —2a1bs.

So, we conclude that, @ |¢ is nondegenerate and its signature o is :
1) o=—1 Ifal,bg > 0 or ay,by <0.
2) o=1 Ifa; >0,bp <0ora <0,by>0.

The intersection of the previous planes divides R? in four connected components. See
the following figure:

We have four connected components: R? — {a; = b; = 0}.
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Analysis of the bilinear form restricted to 2-dimensional subspaces in R3

Our next objective is to analyse the degenerate symmetric bilinear form, restricted to
planes in R3.
Let P be a plane on R?, such that it is generated by the vectors {v1, v1}, where

al ag
v = b1 and Vg = bg
C1 (&)
Namely,
al a9
P=gen< | b1 +pu| be
C1 C2
0
If we recall the equation (3.4), then Ann( ,) := gen 0 . Thus, if Ann(,) C P,
1
0 a
and let us consider the vectors v; = 0 and vy = b |, then the bilinear form is
1 c

0 a 0 a
<)\1 0 + Ao b , U1 0 + U9 b > = —2Xouzab.
1 c 1 c

If a or b is zero, then
(,) [»=0. (3.6)

Moreover, if a,b # 0, then ( ,) = —2X\apu9ab. It has rank 1, and its signature is equal
to £1 as in the case of one-dimensional subspace.
Indeed, the associated matrix is

0 0 0 a
(o],.[o] (o], )
1 1 1
(0 0
u 0 a a <02ab>
( o U DA S

—_
(e
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If PN Ann(,) = {0}, and let

al a
vi=| b1 |,v2=1] b2
C1 C2

be independent linear vectors in R?, such that P := gen{vy,va}, then

ayp a
det( b by ) #0.

In particular, we may choose generators of P as

1 0
v = 0 , V2 = 1
C1 C2

So, we get

0 -1
(A1 + Agua, p1vr + pgve) = —Xopiy — Az = (A1, A2) ( 1 0 ) ( Z; ) :
Therefore, P = Rv; xRuy, and () is nondegenerate with rank 2 and its signature is 0.
Consequently, from the previous discussion we get the following lemma,

Lemma 3.2.1. If P is any plane such that { ,) |p has rank 2 then the signature is 0.

Analysis of the bilinear form on a one-parameter family

In this case, we will illustrate that the contribution of the signature corresponds to the
dimension of the annihilator of the matrix Q.
We start with a one-parameter family of bilinear forms in R3, with associated matrix
defined by
0 -1 0 a; Qa2 Q3
Q= -1 0 0 |+t| g g4 a5
0 0 0 a3 a5 Og

With 0 < t << 1, it has the property

{te R—{0}| (,)¢, it is nondegenerate }. (3.7)
Thus, we can write
taq —1+4+tay tas
Qt = -1+ tao tay tas
tas tas tag
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Hence,
det(Q) = g — t3a1a§ — t?’a%ag +2t3asaas — t3a§a4 + 220 — 262 vy — tag.

Indeed, if det(Q;) # 0, then we can factorize t. Consequently, we obtain

det(Q) = t[t*(1au06 — @102 — a3ag + asazas — ajay) + 2t(asas — azas) — ag). (3.8)

Note that the term ¢ inside of the square brackets in the previous formula is independent
from t. So, if ¢ << 1, the sign of det(Q:) depends only on the sign of ag. Therefore,
we have the following result.

Lemma 3.2.2. Let us consider og in (3.8), then
e If ag > 0, then for small values of t we have that det(Qy) < 0, and the signature
s +1.
e If ag <0, then for small values of t we have that det(Qy) > 0, and the signature
1s —1.
e [ft =0, then the rank is 2 and the signature is 0.

In the previous example, we motivated our main objects of study. In fact, we will
explore the relationship between the new contribution to the signature in the relative
case. We will get the answer in our main theorem.

Our next example arises from commutative algebra. We will obtain a degenerate sym-
metric bilinear form with associated matrix equal to the matrix ) defined in the be-
ginning.

Example 3.2.1. Let us consider the real analytic function f : R> — R defined to be

flay) = (@ —y*) - (2 —y).
Thus, {z,y} is a reduced Groebner basis of Vf and (0,0) is an algebraically isolated
singularity of f.
Since R[xz, y] is the ring of polynomials on the variables x,y. Then By is defined by

Rz, y]
AR &)
and {1,y,y?} is a basis of By. Note that the Jacobian class of {f, f,} in By is
of of
[T(f. fy)lBo = [( 5 of )] =y
Ox Oy Bo

Furthermore, if we define the relative symmetric bilinear form to be

<,>6d:Bo><Bo—.>Boﬁ>Boﬂ>R,
and the linear map L : By — R by
Lo(y*) = 1, Lo(y) = Lo(1) =0,
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then we get

Multiplication after [fy]By=—y

base |1 Y

1 Lo(—y)  Lo(—y?)
y Lo(—y?) O
y? 0 0

o O O
[N

Hence, the associated matrix is
0
QQ=|-1 0 0
0 O

We conclude that Ann{ ,)s¢ = Annp,(f.).
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Chapter 4

The absolute index

In this chapter, we will describe an algebraic method to compute the signature of non-
degenerate symmetric bilinear forms.

Let V be a finite dimensional vector space, and ( ,) be a symmetric bilinear form,
defined by (,) : V x V — R. If we consider the inertia theorem, then the associated
matrix to the symmetric bilinear form, it is equivalent to a diagonal matrix. So, we
define the signature to be

& = (p,g.7) (4.1)
or simply
oc=p—q€cZ (4.2)
where, p, q, r represent the positive numbers, the negative numbers and the number of
ZEros.
4.1 B,, as an R-vector space

Let Agrngo be the algebra of germs of real analytic functions on R", with coordi-
nates (x1,...,2y,). Thus, if (f, fo,..., fn), (f1, f2,..., fn) are regular sequences, where
fifo,o o fn € Arnp, and f; = g—i, then we define the local algebra C, to be

Agn 0
C=——"—, 4.3
(f27 ceey fn) ( )
and the finite vector space B, by
Apn
By = — S~ R0 (4.4)

(f’m-i—l) (fm+luf27"')fn)'

m € A. A denotes a finite set of indices. The function f™*!is f to the power m + 1.
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Lemma 4.1.1. Let vy,...,vs be real analytic functions, such that vi,...,vs € € and
{lv1]o, ---s [Uslo} 4s a basis of By as an R-vector space. [v;]; denotes the class of v in
B, with j=1,...s, andi=1,...,m. So, if m > 0 then

{{v1]my <oy [Us)ms ooy [ 01y ooy [f " 0s)m } @S @ basis of By,

Proof. We will proceed by induction. Hence, from the hypothesis, the lemma is true
for m = 0. Furthermore, we suppose

{['Ul]m—h ey [Us}m_l, . [fmilvl]m_l, et [fmflvs}m_l} (45)

is a basis of B,,_1. So, we will prove the lemma for case m. If

S S S
S A vidm + Y A2 fvidm A+ D AP il = 0 € B, (4.6)
i=1 i=1 i
then,
S S S
Zailvi—kZoz%fvi—k...ﬂ—Zaszmvi =gnfMee. (4.7)
i=1 i=1 i=1

If we reduce mod(f™) in (4.7), we have,

S

S S

Z Oéil [vi}m_l + Z Oé?[f’l)i]m—l + ...+ Z a;-n_l[fmflvi]m_l =0¢c Bm—h (4.8)
i=1 i=1 i=0

but {[v1]m—1, s Wslm1,- s [f™ 1)1y [f™  0s]m_1} is a basis of B, 1, then

a=ad=...=al=...=a = =™ =0 (4.9)

s

Thus, from (4.7) and (4.9) we get,

S
D ol i =gmfmt e (4.10)
i=1
then,
S
O af"vi — gmf) =0€C. (4.11)
i=1
Since, f™ is not a zero divisor in €, because (f, f1,..., fm) is a regular sequence, then,
S
> af'vi = gmf. (4.12)
i=1
If we reduce mod(f), we obtain
S
0="> af"[uio € Bo (4.13)
i=1
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Since, {[v1]o, ..., [vs]o} is a basis of By, then
al'=ay' =...=ay =0. (4.14)

Indeed, from (4.6) and (4.14), the set {[vi]m, .-, [Vslmy -+ [ V1]my - -+, [ 0s]m } is a
set of linearly independent vectors.

Now, we will prove that dim(B,,) < sm, with dim(By) = s. So, we will proceed in
several steps. First, we will define an element [a],, € By, to be a = ag + a1 f + aaf? +
oo+ apm f™ then p([a]m) = ap. Hence, we have an exact sequence

0 — kerp — By, & By — 0 (4.15)

and, B, = By x ker(y). Furthermore, the previous exact sequence is equivalent to

(f) e 4 (©
ey ()

0—

— 0. (4.16)

Moreover, let us define a map ¢ : B,,_1 — % to be

Y([alm-1) = [af]m. (4.17)

It is clearly subjective because, if [hf] € %, then there exists [h];,—1 € By,—1 such
that ¥([h]m—1) = [Af]m. It is well defined, since [a];—1 = [b]m—1, then a — b € (f™).
Indeed (a —b)f =af —bf € f™f = f and [af]m = [bf]m.

Since, By, = By @ ker(y), then dim(B,,,) = dim(By) + dim ker(p).
If we consider (4.15) and (4.16), then ker(p) = A and by (4.17) we get

(fmtt)
dim ker(p) < dimByp,—1. (4.18)
Therefore,
dimB,, < dim By + dim B, and from (4.18)
dimBy, = S + s(m-1) by the induction hypothesis, we get
dimB,, = sm.
We note that, B,, has sm linearly independent vectors with dim(B,,) < sm. Hence,
the set {[v1]m, .- [Us)my -« [f™01]my -« -5 [f™0s]m } is & basis of By,.
O]
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4.2 The socle and the bilinear forms in B,,

In any local algebra, the annihilator of the maximal ideal is called the socle.

Let fi, fa,..., fn € Arnp, such that (fi,..., fn) is a regular sequence. If A := (ffl’“fﬁn)
is the algebra, then the class of the Jacobian of {fi,..., f,} denoted Jac(f1,..., fn) in
the algebra A is the socle. (See [11]).

In this section, we will compute the socle in the local algebra B,,, where B,, :=

s m=1,...,0 L€ T2

Remark 4.1.

o Let I be an ideal in By, then I is an ideal in By, and Annp,(I) = I+,
o If By is a local algebra, then By has a unique minimal ideal called the socle.

e The socle is generated by the residue class of Jacobian of {f, fo,..., fn} in By,
denoted Jy ([11] Proposition 3.2 P.25, Corollary 3.3 P.25, Corollary 4.5 P.35).

Lemma 4.2.1. Let f : (R",0) — (R,0) be a germ of a real analytic function, and
(fs fay- -y fn) be a regular sequence. If Jy = [J]o, is the class of the Jacobian in By,
then Jy, = [J]m denotes the class of the Jacobian in the local algebra By,. If Jy gene-
rates the socle in By then [f™J]m generates the socle of By,.

Proof. Since Jy is the Jacobian class of {fi,..., fn}, we have
[ fi foo o fa \]
far fa2 o fon
Jo= |det| - D ’

L\ fe e e ),

2
where f; = aaTi- and f;; = 82- afzj . Moreover, we consider the Jacobian class of { f™*!, fo, ...

defined by
(m+1f"fi (m+1f"fo .. (m+1)f"fn
J21 f22 fon
Jac(f™ Y, fa, ..., fn) = det
fur fo e
Since Jac(f™*!, fo,..., fn) is a determinant we have
Jac(f™ 1, fo, ooy fo) = (m+ 1) fTac(f, fas -, fn)- (4.19)
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If we consider the class of By, in (4.19), then we obtain

[(m+ 1) f™Jac(f, fo,. .., fo)lm = [(m+ 1) f"T|m = (m+ 1)[f"J]m. Hence, [f™J]B,,
is a positive generator of the socle.
Since, By, is a local algebra, then it has a unique minimal ideal. Therefore, the socle
in By, is generated by [f™J]m. O

4.3 Multiplicative structure of B,,

In this section, we will get a Taylor series decomposition of the spaces B;,, in terms of
the space By. We will also introduce symmetric bilinear forms, and we will obtain an
algebraic method to compute the signature in the nondegenerate case.

Let f, fo,...,fn : (R™,0) — (R,0) be germs of real analytic functions, such that

(f, fa, ..., fn), is a regular sequence. If Agn g is the set of germs of real analytic func-
tions, then we define the local algebra € by
Agrn o
Ci= ————. 4.20
(f2, SRR fn) ( )
We also, define the finite vector B,, to be
Apn
Bpie —o R0 (4.21)

(ferl) (fm+17f2a"'7fn).

Lemma 4.3.1. If f™ and f™*! denote f to the power m and m + 1 respectively, then

% ~ f"By, for m=1,2,...,0,0 € 72",

Proof. First, we define a map ¢ : f™By — %, to be p(b) = fm%bﬂ. (We recall

that, (f™*) C (f™) C,...,C (f)). It is injective. Thus, if b € f™By with ¢(b) = 0
then fm—bH =0and b € (f™*!). Since b € f™By, then we can take by € By to define
b= f™bg. Thus, using the fact b € (f™*!) we get f™by € (f™*1) and by € (f). Since,
by € By and by € (f), then b = 0 and the map ¢ is injective. To see that the map ¢ is
surjective, if  is an element of %, then o(f™*1a) = a. Therefore, ¢ is a surjective

map, and we get the result.
O

Lemma 4.3.2. If B, is defined as in (4.21), then By, ~ By ® fBy @ ... ® f™By, as
R-wvector spaces.

Proof. First, we will prove the lemma when m = 1, since (LQ)) ~ fBy and we define an

—~

exact sequence of R-vector spaces, to be

0—)@$31L>Bo—)0,

(f?)

then, By ~ By @ %,and by Lemma (4.3.1) we have By ~ By @ fBy.
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So proceeding by induction on m = k, with k € Z=°, we obtain
By~ By® fBy® f2B0 D...D ka() (422)
then, we will prove the lemma for m = k + 1. Thus, let us consider

(fk—i—l)
(fk—i—Q)

be an exact sequence. Therefore, from Lemma (4.3.1) and the previous equation we
get

0—>

L>Bk+1i>Bk—>0

Bji1 = By @ f*1B. (4.23)
Using (4.22) and (4.23), it follows that
Bi1~By® fBo® f*By@...® f*'B,.
O

Lemma 4.3.3. Let By, be defined as in (4.21). If iy, : By X By, — By, are symmetric
bilinear forms, such that for all vi,vj € By, we have i ([Vilm[vjlm) = [Vivj]m, (where
m=1,2,....0, i,j=1,...,5, £ s€Z2). Then, p, has the associated matriz given
by

Qo+ fHi+ -+ f™Hy, fQo+ fPHi+ -+ fMHy1 | -+ | Qo
0 — fQo+ fAHy + -+ f"Hy fmQo 0
R - 0 0

Qo 0 0 0
[ Qo | O 07 [ Hy | Qo 07 [ Hy, Hp1| - | Hi | Qo ]
0 [0 ]---]0 Qo | 0 0 Hn1| -+ |Hi|Qo| 0
0 [0 00 |4¢|0 [0]0]0 |4.qpm 1 T1ol o

0 ol 0 H, Q |0 0] 0
0 [olojo] o [o[o0/o0] Qo 0 0] 0] 0]

Proof. We will discuss in detail the cases m = 0,1. And, we will consider the same
steps to get the general case.
Let {[vi]o,- -, [vs]o} be an R-basis of By, such that v; = 1 and v € Jy. Since, B, ~

Bo@fBo®- - @ f™ By, then {[v1]m, - - -, [Us]ms [fV1]ms - s [[Vs]my - - o [ 01 my -+ o [ Vs]m }
is an R-basis of B,,.
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Case m=0

Let pg : Bp x Bg — By, be the nondegenerate symmetric bilinear form.

Since, {[v1]o,- .-, [vs]o} is an R-basis of By, then we define the associated matrix to the
bilinear form pg, denoted Qq, to be

po([vilos [vilo) = [vi - vilo = (¢ij) = Qo, (4.24)
where i, =1,...,s, s € Z=°.

Case m =1

Let u; : By x Bi — Bj be the nondegenerate symmetric bilinear form in B; :=
%. Since, By ~ By @ fBy and {[vi]o,...,[vs|o} is an R—basis of By, then
{[vil1s- -, [vsl1, [fvi]i, -y [fus]1} is an R-basis of B;. Thus, we can define the sym-
metric bilinear form in Bq, to be

1) pa([vils, [v]1) = [vi - vl = gij + fhi; = (Qo + [H1)ij
2) pa([foilss (i) = pa(foils, fojh) = [f -vi - vih = fgi; + ;) = (fQo)ij
3) ma([foilr, [fv]) = 0.

Hence, p1( , ) can be represented by the following matrix:

[ Qo+ fHL|[fQ ] [Qo]O Hy | Qo
- [Fa ] - e ] o e S 429

In general, from Lemma (4.3.2) we have, B,, ~ By ® fBy ® ... ® f™By. Now, if
{[v1]o, - - -, [vs]o} is an R—Dbasis of By, then {[v1]m, - - -, [Vs]m, [fV1]ms - o5 [fUs)my - - [ 01]m
yoo oy [fM0s]m} is an R-basis of By,. If py, : By X By, — By, are the nondegenerate
symmetric bilinear forms, where m = 1,...,¢, £ € Z=°. Then we can define the sym-
metric bilinear forms p,, to be

1) pm([vilm, [vjlm) = [vi - vjlm = qij + fhi; + PR+, +f ™R = (Qo + fH1 +
f2H2+7 ceey mem)z,]

2) i (f[ilms [051m) = pim ([Vilm, [F0jlm) = [f0ivjlm = (Faig+ 2R+ 3R+, .+ ™R =
(fQo+ fPHi+ f*Ha+, ..., [ Hpm1)ij
3) wm([fvilm, [fvjlm) = ,“m([f2vi]mv [Vilm) = pm([vilm, [fZUj]m) = [f2 v ] =

(f?Qo+ fPH1+
ye o ,—i—mem_Q)iJ.

@1
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m) pn([f 0ilms [F05]m) = [F™ - vi - vl = (F7Qo)ij, with i 45 = m. pm(, ) is zero
in other cases.

Hence, the associated matrix to the symmetric bilinear form p,,( ) has the following
representation,

Qo+ fHi+- -+ ["Hy fQo+ fPHy+ -+ f"Hma | - | f"Qo
B T f"Qu| 0
T : 0 0
" Qo 0 0 0
[ Qo | O 0] [ Hi | Qo 0] [ Hyn | Hpo | - [ Hi | Qo
0 0 1---1]0 Qo | O 0 Hyp | -+ |Hi|Qy| O
0 01010 4+f1]0 0100 [4..qpm : 0 0
. 0 : 0 H1 Qo 0 0 0
| 0 0] 0 |0 ] | 0 0] 0|0 | | Qo 0 010 0
O

Remark 4.2. The matrices Qo, Hy, ..., H,, with coefficients in By are symmetrics.

If w,w € By, then w = ag+ fa1 + -+ + fMam and w' = by + fby + --- + f™byy,.
Therefore,

fm(w,w") = pm((a0 + far + -+ f™am), (bo + fb1 + -+ + f™bm))=fim(ao, bo) +
pm(ao, fo1) + -+ + pm(ao, f™bm) + pm(fa, bo) + pm(far, for) + -+ i (f™am, bo)-

On the other hand,
pm (W, w) = pm((bo + bay + -+ + f™b), (ap + far + -+ + f™am))=pm(bo, ao) +
pm (bo, far) + -+ + pm(bo, fam) + pm (fb1,a0) + pm (b1, far) + -+ 4 pm (f™bm, ao).

Hence,
ao(Qo+ fHi+- -+ f"Hp)bo+ao(fQo+- - -+ f" Hp—1)b1+a1(fQo+- -+ " Hp—1)bo+
o am(fMQo)bo = bo(Qo + fHy + -+ + f"Hpy)ag + bo(fQo + -+ + f"Hp—1)ar +
bi(fQo+ -+ fHm—1a0 + - + b (f™Qo)ao.
So,

aoQobo = boQoao,

then Qo = Qf. Similarly, H; = H}, fori=1,---,m.
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4.4 Calculus of the bilinear forms in B,,

Lemma 4.4.1. Let V be a finite vector space of dimension (m+1)s, andp : VxV — R
be a symmetric bilinear form with an associated matriz

o .. . C
v=|. . | (4.26)
. 0
C
Then,
[ o(C) if m is even,
"(QV){ 0 if m s odd. (4.27)

Proof. Let us consider a matrix S such that C is equivalent to the diagonal matrix D,
ie.
1

D=S'CS = 1

-1

Therefore, the signature of the matrix D is & = (p,q,r) or 0 = p — q, where p,q,r
denote, the positive, the negative, and zero numbers in the diagonal.
In general, we get

St C S
(4.28)
St C S
sStcs +1
= . = . . (4.29)
stcs +1

Note that the matrix (4.29) has 1 in the anti diagonal. To see this, we can consider

the orthogonal basis on

R(m+1)s — RS @RS D ... @RS,

(m~+1)—times
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defined by

(U

Up
’Ujr,-:(0,...,5,...,075,...,0) (430)
and
Uy —y
U]‘T:(O,...,ﬁ7...,0,ﬁ,...,0) (431)
1<i <™,
where, [mTH] denotes the minor integer of mTH The position of % is in the j —th and

(m+1—{j—1}) — th respectively. Moreover, if m is odd
wy = (0,...,0,v,,0,...,0) (4.32)
1<r<s.

In this case the position of v, is in the middle. So, if m is even we get

StCcs
vl . Vjy (4.33)
StCs
= %(eiStCSer + el S'CSe,) = el S'CSe, = +1 (4.34)
and
StCs
uf, . Ujp (4.35)
stCs
= %(eﬁStCS(—er) + (—el)S'CSe,) = —eL.S'CSe, = F1. (4.36)
Finally,
stCs
wt . wy = w.S'CSw, (4.37)
StCs
= el DS'CSe, = +1. (4.38)
Hence, from (4.34),(4.36) and ( 4.38) we have 0(Qy) = o(C) for m even and o(Qy) = 0
for m odd. O
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4.5 The absolute index of B,,

Now, we give a proof of Theorem (1.1).

Proof. Since {f, fa,..., fm} is a regular sequence, then B, is a vector space of finite
dimension. If vi,...,vs € 220 such that {[vi]o, ..., [vs]o} € Bo, it is an R-basis

: (T2 n)
with v; = 1 and vy = Jy, then

{[valms s sl [forlms - [fvshms - [ 01 s o [ 0s]m }

is an R-basis of By,. From Lemma (4.3.2), we get

Bszo@fBo@'“@meo (4.39)

We choose for Ly, : B, — R the map sending all the base elements to 0, except the
last where L,,(f™J,,) = 1. Using this block decomposition of B,,, the multiplication
table

tm : Bm X By — By

takes the form, (see Lemma 4.3.3)

[ Qo | O 0 Hy | Qo 0
0 |00 Qo] 0 0
Qm = 0 0 0 [0 | & f 0 0 0 10 | 4
0 } 0
| 0 0| 0|0 ] | 0 0] 0|0
[ Hm Hm—l ce Hl QO i
Hy 1| -+ | Hi [Qo| O
H, Qo |00 0
L Qo 0 00| 0]
where Qo, Hy, ..., Hy, are symmetric (s X s)-matrices with entries in By. The expression

of these matrices can be obtained from the restriction of u,, to By and using the
isomorphism (4.39), we obtain a bilinear form

m
MmiBOXBOHBm:@ijo
=0

with a matrix expression
Qo+ fHi+ -+ ["Hp.

Qo is the matrix expression of the multiplication po on By and the Hj are the higher
order terms in the multiplication p,, restricted to By < By,. These terms contain all
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the information needed for describing p,,, as can be seen from the expression (4.40).
Applying L, to (4.40), L,,Qy, is

L7nQ0+7"' 7+Lm(mem) e Lm(mel) Lm(meO)
Lm(fQO)""a 7+Lm(mem71) memQO 0
Lm(mel) memQO 0 0 0

Moreover, Ly, is a linear map such that L,,{f7vy, fvs) = Ly (fivgv,), and
1) If j+ ¢ > m then L,,(0) = 0.
2) If j + ¢ < m then Ly, (f/*vjuvs) = 0.
3) If j+ £ =m Ly (fitvvs) = 1.
Thus, the anti-diagonal terms of the matrix (4.41) are non-singular. Indeed, we can a

change a basis of the R-vector space to obtain matrix representation of < , >,, as an
anti-diagonal matrix by blocks, with all the anti-diagonal terms. Hence, we get

0 0 - 0 Linf™Qo ]
0 e 0 | Linf™Qo 0
LinQm = | 0 0 (4.42)
[ Lin [ Qo 0 0 0 0
The matrix (4.42) suggests that we consider the decomposition of By, as:
By = [Bo ® f™Bol @PIfBo @ ™ 'Bol €D, -+ . €Pf™Bo @ Bol. (4.43)

It isan <, >,,-orthogonal direct sum. The contribution to the signature of each vector
space within a bracket is 0, since they have the form

0 0 : L f™Qo
. L fm
Lo e (140
Lnf™Qo - 0 0

Therefore, if we consider V' as B, in the lemma (4.4.1), then the bilinear form ( , ), :

B,, x B,, — B, Lm R has the associated matrix (4.44). Thus, if we consider the
lemma (4.4.1), we get the proof of the theorem. O
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4.6 An example

Example 4.6.1. Let f: (R?,0) — (R,0) be a germ of real analytic function defined

to be f(x,y) = 2? 4+ y*. Moreover, if By := ]ﬁc[xfj)], then {1,z} is a basis of By.

Thus, we consider the nondegenerate bilinear form

MOZBOXBO—.>B().

Hence,the bilinear product is given by

base
1
T T

oIR8

If Lo : By — R is any linear map, such that Lo(1) = 0 and Lo(z) = 0 then the bilinear
form pyg is

,uo:BQXBo—>B()ﬂ>]R.

It has the associated matrix defined by

0 1
Qo = < 1 0 ) :
Now, we will construct an orthogonal basis of the finite vector space Bg. Thus, if

{v1,v2} € R2, it is a basis with v; = %({1, 1}) and vy = %({1, —1}), then v1Covq =1,
v1Coue = 0, 12Cyuy = 0, 12Cyvg = —1. So, the matrix (Jg is equivalent to the following

matrix
1 0
0o -1/

R[z,y]
(f2 7f2)

Its signature is o9 = 0. If By := the symmetric bilinear form

,lLlSBlXBl—.>Bli)R

has the following representation

(4.45)

The next step is to construct the orthogonal basis of RU+12 = R4,
Indeed, R* ~ R? @ R? and we can define the orthogonal basis {v11, v12,u11, 412} , to be

1 1

1 1
{onn = (\ﬁ(vl), ﬁ(vl))ﬂm = (ﬁm)’ T(Uz)),

[\
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wy = <¢1§<v1>, _;5@1)),@1 - <;§<vz>, —\ng))},

and it is equal to:

1 1 1 1
{Ull = 7(17 17 17 1))“12 = 5(17 _17 17 _1)7U11 = 5(17 17 _la _1)7’011 = 5(17_17 _17 1)}

2

Then, this basis changes the matrix (4.45) to the diagonal matrix given by

1 0]l0 o0
0 -1/ 0 0
Q=701 0
0 0|0 1

Therefore, o1 = 0.
If we consider m = 2 and By := (ﬂf;?;g]) , then it has a basis defined as {1, z, 22, 23, 2%, 2°},

and R% ~ R? @ R? @ R2. Thus, we define the the bilinear product psg, to be

’LLQ:BQXB2—.>BQE>R

with La(2%) = 1, La(z*) = La(23) = La(2?) = La(x) = La(1) = 0. Therefore, it has the
following matricial representation

0 0/0o 0|0 1
0 0/0 0|1 0
0 0/]0 1]0 0

Q=19 0l1 0l0 0 (4.46)
0 110 0|0 0
1 0/0 0[0 0

Let {v1; = %(Uhoﬂh),vu = %(U%O’Uz),un = %(01,0, —v1), U2 = %(U%O, —V2), Wy =

(0,v1,0), w2 = (0,v2,0)} be an orthogonal basis, and it is equal to
{%(17 17()’ Oa 1) 1)7 %(17 _1a 07 07 17 _1)7 %(la 1) 0707 _15 _1)7 %(1 - 17 0707 _la 1)7 (07 Oa 17 170)7
(0,0,1,—1,0)}. So, it changes the matrix (4.46) by,

1 olo olo o
0 -1/ 0 0|0 0
0 0|—-1 0/0 0
Q=9 glo 1]/0 o
0 0|0 0|1 0
1 0/0 0/0 —1

Hence o5 = 0, and so on.
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Chapter 5

The relative index

Our purpose in this chapter is to provide an algebraic formula to compute the signature
of degenerate symmetric bilinear forms on the finite vector spaces By, ~ Wﬁlﬂj‘%’

m=1,2---,0, 07>,
Before starting the next result, we will introduce some examples and lemmas, that help
us understand our main result.

5.1 An example; computation of the relative index in the
local algebra B,,

Let f: (R?,0) — (R,0) be a germ of real analytic function defined to be f = 2% + 32.

Since
By = Ryl Rlz.y]
(fa f2) (.’L’S+y2,2y)
_ of

is a local algebra and (f, f2) is a regular sequence in By, where fo = 3 then By is

a finite vector space. Hence, {[1]o, [z]o, [z%]o} is a basis of By. Moreover, if we define
[f1]o = [322%]p and the degenerate symmetric bilinear form to be

Mgel : B() X B() — B() L) B[), (51)

([vio, [vjlo) = [vi - vilo = [f1 - vi - vjlo

then, it is represented by

The bilinear form pug in By
3270 [1o  [z]o [+°]o
(o 3270 [0]o [0]o
[zlo |00  [0Jo [O]o
[0 |[0]o (0] [0]o
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If we define a linear map Lo : By — R to be, Lo([z%]o) = L, Lo([z]o) =0, Lo([1]o) = 0,

37
then the associated matrix to the degenerate symmetric bilinear form is

<’>7’el B()XB()—>BQL>B()—>R

It has the following matricial representation

10
Q=100
00

o O O

therefore, its signature is 65¢ = (1,0, 2).
Now, let us consider the finite vector space B;. Namely,
R[z, y] Rlz,y]  _ Rlz]

b= T @t @)

where f? = 25 4 2232 + y*. Thus, we define a degenerate symmetric bilinear form to

be
,LLeZZBlXBl—.>Bli>Bl.

So, we get

The bilinear form pp in By
Bzl [ [zl [ [fli [fzh [f2*h
[1]1 Bz%]1 [32°)1 [3z']1 [32°l [0 [0}
[]1 B2, [32%y [3«°]1 [0 [0 [0}
[y |B2'ly B« [0 [0 [0r  [Oh
[T [32°]1 [0}y [0]1 [0]1 [0]: [0
[f 96] [0 [0 [0 [0 [0} [0}
[f*i [0 [0 [0 [0 [0} [0y

if we define a degenerate symmetric bilinear form to be

<>rel leBl—>Bl—>Bl—>R

where the linear map L; : By — R, is Li([z/]1) =0, j = 0,1,2,3,4, Ly([2°

[f]1 = ([#3]1), then, its associated matrix is given by

000 10O
0011000
et | 01 010 00
L7111 0010 00
0001 0 O0°O0
0001 0 O0°O0

(5.2)

]) =1 and

(5.3)



Furthermore, we can write the reduced matrix (5.3) as

000 |1 -

o | 0T o
1 Ired 0 ‘1 0 ’O D~ 1
110 0 |0 ©
Hence, Dy = (1) and
0 1
b(00).
Moreover, we define an orthogonal basis of RS, to be
{ 1(100100) 1(100 1,0,0) 1(001100)
v = —(=(L,U,U, 1,U,U), 02 = —=(1,U,U, =1,U,U),v3 = —=(U, U, 1, 1,U,U),
1 /2 2 /2 3 /2
1
V4 = 7(0707 17 _17070)71)5 = (07070707 170)706 = (0,0,0,0,0, 1)}
V2
Consequently, the matrix (5.3) is equivalent to
1 0 0 00O
0 -1 0 000
e _ | 0 0 =100 0
! 00 0 100
0 0 0 00O
0 0 0 O0O00O
Hence, it has signature 57¢ = (2,2, 2).
Since the signature in 65¢ is equal to (1,0,2), and the signature 57 is equal to
(2,2,2), then, the number of zeros in 65¢ = 67¢ = 2. Thus, if we consider
o7 = 64! = (1,2,0),
then, we have
55" = (4,3,2), (5.4)
and
(4,3,2) = (2,2,2) + (2,1,0).
i.e.

arel = 57+ (2,1,0).

It is easy to see that in this example, the nexts signatures are constructed via the
following algorithm. Therefore,

55 = (5,5,2) = (4,3,2) + (1,2,0). (5.5)
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And

a1 = (5,5,2) + (2,1,0) = (7,6,2), (5.6)
similarly,

oL = (7,6,2) + (1,2,0) = (8,8,2), (5.7)
and so on. Indeed, we get a pattern.

The following two lemmas describe a method to simplify the matrix associated to
degenerate symmetric bilinear forms.

5.2 Calculus of the relative index in the local algebra B;

Lemma 5.2.1. Let o1 : V XV — R be a symmetric bilinear form, with V a finite
vector space, defined by

A Ap Az
Aly Agy Asg
rel __ Ali?; At23 E1
Y7l L0
0 —1,
0 0

|
o
o

oo o
o O olo oL
o o olo
oo olooc o

—~

ot

o0

N—

Where Dy is given by

Dy = < ép _qu > . (5.10)

Here, the matrices A; j are any symmetric matrices, i.e. A;; = Agj, i,7=1,2,3.

Proof. If Q7¢,cq denotes the reduced matrix corresponding to the matrix (5.8), namely,

An A A |, 0
AtIQ Agg Aoz | 0 —Iq
Q1 |peq=| ALy Ay E; |0 0 |, (5.11)
I, 0 00 0
0 I, 0]0 0
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then, using Gaussian elimination, it suggests that we can define the matrices, D11, D12,

Do1, Daa, D31, D3, to be
An _ Aw Al Agy

Dy =——=, D=7~ Dn=-—7% Dyp-= - Dai= —Als, D3y = A,

2 2

Since, the bilinear form is symmetric then Ay = A%}, Agy = Ab,. Therefore,

AtlQ A22 A23
Aly Ay E
L, 0 0
0 -1, 0

©C OO O~
coo~O
co~NO O
S
©
S
[N}
oo o of
\
o oo
2~

Dy D12) A A Agg
A

P A L, 0\ /T 0
t
G Ay o0 g | [0 T
= 0 0 Ey O 0 0 0
I, 0 0 0 0 Di, Dj
0o —-I, 0 0 0 Di, Db,
0 0 Dy
= 0 Ey O
Dy O 0
Remark 5.1. Remember that
A Aip Ais
el _ | Alp Az Asg | x
! Aﬁ:& At23 Ey

* ‘ 0
so rank(Ey) < rank(Q}e).

Remark 5.2. The previous lemma is true when V := Bj.
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0 0 0
I 0 0
0 I 0
D%l D%l I
D22 D32 0

O ~N O O O
~N O O O O

~N O O O O

(5.12)



5.3 Calculus of the relative index in the local algebra B,

Lemma 5.3.1. If o2 : V XV — R is a degenerate symmetric bilinear form, where V

s a finite vector space, then the associated matriz given by

A A Az A | Ais As Air O I, 0 00
A§2 A22 A23 A24 A§6 A26 A27 0 0 —Iq 0 0
Aty Ab, Azz Agg | AL, AL, Ep 0 0 0 00
Al, AL, AL, B, 0 0 0 0 0 0 00
Ay A Ay 0 I, 0 0 0 0 0 0 0
v | Aly Ags Asr 0 0 —I, 0 0 0 0 00
27 AL AL B0 0O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 00
I, 0 0 0 0 0 0 0 0 0 0 0
0o -1, 0 0 0 0 0 0 0 0 00
0 0 0 0 0O 0 0 0 0 0 00
0 0 0 0 0 0 0 0 0 0 00

Aij, 1,5 =1.2,...,7 are symmetric matrices. So,

following matrix

0 0 0]0 0 0D
0 0 0|0 E 0|0
0 0 Ey| 0 0 0]O
0 0 O0]|Dy 0 0]O
0 F, 0|0 0 0|O0
0O 0 0|0 0 0]O
Dy 0 0]0 0 0]O

(5.13)

The matriz (5.13) is equivalent to the

(5.14)

Proof. Since Q4% is the associated matrix to the degenerate symmetric bilinear form
@2 : V x V — R, then the reduced matrix denoted Q4¢|,cq is

di |7‘ed =

Moreover, we consider the submatrix of the matrix (5.15) equivalent to

A A Az A |Ais A Air 0|1, O
Ay Agy Asg Ay | Alg Asg Az 010 —J4
Aty AL, Asy Ay | Al AL By 00 0
A, oAb, AL, By |0 0 0 0|0 o0
Ay A Az 0 | I, 0 0 0]0 0
Ay Ay Ay 0 | O I, 0 0]0 0
A, A Bi 0 |0 0 0 0]0 o0
0 0 0 0 0 0 0O 010 0
I, 0 0 0 0 0 0O 010 0
0 I, O 0 0 0 0O 010 0
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Ais A Az 0 I, 0 00
Al Ags Ay 0] 0 -1, 00
0 0 0O 0of 0 0O 0O
5.16
I, 0 0O o] 0 0O 0O (5.16)
0 -, 0 0 0 O 00O
0 0 0O o] 0 0 0O
0 0 0O 0of 0 0 0O
Indeed, it is similar to
0 0O 0 oI, 0 00
0 0o 0 O0f 0 —-I, 00
0 0O E, 0 0 0 0O
0 0O 0 oL 0 O 0O
5.17
I, 0 0 O O O 0O (5:17)
0O -1, 0 O0f 0 O 00
0 0O 0 oL 0 O 0O
0 0O 0 oL 0 O 0O

Finally, if we consider the matrices E, I, and —I; as pivots from gaussian elimination,
then the matrix (5.15) is equivalent to

0 0 0|0 0 oD
0 0 0|0 E 0|O0
0 0 E, |0 0 0|0
0 0 0]|Dy 0 0O (5.18)
0 E; 0|0 0 0|0
0O 0 0|0 0 0|oO
Do 0 0|0 0 ofo0
O
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The previous lemmas provide a technique to simplify the matrices associated to the
degenerate symmetric bilinear forms, thus, we can consider the general lemma.

Lemma 5.3.2. Let V' be a real vector space of dimension n, and ¢, : V XV — R be
a symmetric bilinear form with associated matrixz defined as

E:m Ejm—l E -2 E:Im—?) Em—4 150
Em-1 Eps Em-3 E Ey Do 0
Em—2 Ep-3 By . Ey Dp 0 O
Qe — | By . Eq Dy 0 0 0 (5.19)
E\ Dy - 0 0 0 0 0
Dy 0 0 0 0 0 0

Hence, the matriz Dy is as in the Lemma (5.2.1) and E;, (i=0,1,2,...m, m € Z=°)
s a diagonal matriz given by

I+ 0 0
Ei=|0 -I,- 0 (5.20)
0 0 0y

with signature (E;) = (sj, 5, s9) and sZ )55 s; , 89 are the positive, the negative and the

zero numbers. In particular Eg = Do Furthermore,
si s s =80 (5.21)
If 5(Q™Y) = (P G, Tm), it is the signature associated to the matriz QI, then
Tm = Tm—1 1 321,
and

@ = { £ 0o 00 Ot 4l ) s ) i e
m a( :,fl_l) + (90, p0,0) + (sf,sf,O)—i— "‘(3;1—1:3;;—170) + (s, 87, 80) if m is odd.

m:071a2a”'v€;€€ZZO'

Proof. We will use induction on m to show the lemma.

Case m=0. Let Q¢ be the matrix defined in (5.19), then it is given by

i I, 0 0
l=Do=| 0 —I, 0 : (5.22)
0 0 0
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It has signature

&(di) = (p07 q0, TO)'
With
Po+ qo + 710 =n.
Then,
To =N — Po — qo-

Case m=1. The matrix Q’{el has the following form

0 0 0 0 0|, 0 0
0 0 0 0 0|0 —I, 0

0 0 Isf 0 00 0 0

v | O 0 0 —Is; 0[]0 0 0
@ =1 0 0 0 o0sf/0 0 0
I, O 0 0 00 0 0

0 —-I, 0 0 0o[0 0 o

0 0 0 0 00 0 0

Hence, 5(Q’1"el) = (p1,q1,7m1), and
p1+q+nr = 2n.
Since, s{ + s7 + s = s9 = ro then,

r=2n—-p1—q

sf—i—sl_:ro—s?.

If we make an orthogonal change in the basis in the matrix (5.25), we have
p1=po+qo+si, q1=qo+po+s-
From (5.29) and (5.27), we obtain
=20 —py—qo— ] —qo— Do~ 5]
1 — 40 —Po— Sy -
So,
r=n—po—qo+n—po—qgo—s —s,

substituing (5.24) and (5.28) in (5.30) we have

0
T =170+ S7.
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Then, from (5.29) and (5.31), it follows that
5(Q1) = (po+ qo + 51,90 + po + 57,70 + 57)

and
5-( ;el) = (p07q07T0) + (QOaPOaO) + (ST,SI,S?),

hence,
&) = 5(Q5™) + (0,0, 0) + (57,57, 8Y). (5.32)

General case. If these formulas are valid for m — 1 and m is even, then

Q") = (Pms Gms Tm).

Where
Pm =DPm—1+po+s +..ts, 1 +sh (5.33)
Gm = Gm-1+qo+ s +...+s5_ |+, (5.34)
and
s:{l + s, + s?n = 321_1
st s, =80 | —s% (5.35)
Pm + Gm +7Tm = (m+1)n (5.36)
then
rm = (m+1)n = pm — Gm. (5.37)
So,
m

rm:mn—pmfl—qu1+n—p0—QO—Z(3;r+5i_)
i=1

if we consider the previous equations and (5.28), (5.33) and (5.34), we get

T = Tm—1 + So. (5.38)
Then, it follows that

F(Qr") = (Pm: G Tm) = (Pm-14+P0+57 ot S 18, Gmo1Hq0+5T b8 50, Tmo1+50,)
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S0
Q") = (Pm—1, Gm—1,Tm—1) + (P0, 90, 0) + (s, 57,0) + ...
+(87_n—1787—:1—170) + (3;7’—7,78;”821)- (539)
Therefore,
Q) = 5(Qr ) + (po, 90, 0) + (s7,57,0) + ...
+(S7;L—17$1—”"Y_L—170) + (87—”:—178;178971)- (540)

Analogously, if m is odd
5(Qp") = (Pm—1,Gm—1,7m—1) + (40,20, 0) + (s7, 57, 0)+
et (55 st 1 0) 4+ (s, s, 55) (5.41)
5(Qn) = 5(Qnl1) + (90,90, 0) + (57,57, 0)+

o G 5;71, 0) + (s;;, S s?n). (5.42)
]

Corollary 5.1. Under the hypothesis of the previous lemma, if we define 5(Q¢) = 57¢
and 57 = (Dry Gy Tm) 5 80 07 = ppy — G then, we have that

Proof. If m is even, we have

~rel

Om :&:sl—l+(p0’q070)+(81781’0)+ +( m 1 T+n 1’0)+(S'r—;75;w89n)' (543)
Hence, m is even, so m — 1 is odd then
Gret =60ty + (0, P0, 0) + (57,57,0) 4 o 4 (Sp_os Sih 0, 0) + (871, 870410 85 41). (5.44)
Substituing (5.44) in (5.43) we get

6—:7? & + (CIprO’O) +( i‘— 1_ 0) -
,0)

il ) —270) + (37—:1—1’3;1—1-173%—1—1)
+(p07q()7) (1817)+ +(m1 )

So, if
Om = Pm—2 — qm—2+ S5, — 51y
then
Om = Om—2 + 0(Ep).
The proof is similar when m is odd. O
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5.4 Another example of computation of the relative index
In this example, we will compute the signature using the routine siggen.lib with the

singular package. We will obtain a flag, and the signature of the degenerate symmetric
bilinear form in the relative case.

Let f: (R3,0) — (R,0) be a germ of real analytic function defined by
f=@+y)@* +y%) + 22

If (f, fy, f-) is a regular sequence of By, := %, where f, = g—]yc, f. = %, then
B,, is a finite vector space.

Moreover, if we consider the degenerate symmetric bilinear form

(Ve Byy X By —— By 2% B 2 R

and we use the routine bilirelamod, we get

Results of program relative bilinearform.lib

size rank signature
By 15 ) (3,2,10)
By 30 19 (9,10,11)
By 45 34 (17,17,11)

In the previous table, (3,2,10) is the signature of the symmetric bilinear form

()6l By x By — By -1 By =% R, such that Lo([Jac(f, f2, f3)]o) > 0.
Hence, with an appropriate basis we get

<IB —I > O5><10

055
0105 ( Os. - )

~ I

represents the non singular part of the matrix (5.45), then 0661 = (3,2,10). Indeed,
(9,10, 11) is the signature of the symmetric bilinear form

(,)¢: By x By — By LN B L1 R with Jac((f?, fa, f3)) > 0. And, if we consider
an orthogonal basis, then we get the following matrix

(5.45)

If
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or equivalently,

I3 T
055 O5x10 1 0510
14 05x5
O10x5 ~I5 O10x5 0
lel 5x5 :
I3
1 0510 O5x5 0510
O5X5 O5x5
O10x5 0 O10x15 0
5x5 5x5
O5x5 O5x10 Dy
I,
O10x5 ~I; O10x5
O1x1
D O5x5 O5x5

If we define the matrix Ey, to be

then the matrix(5.46) is equal to

0 | 0| Dy
0 | B | 0
Do 0] 0

Hence, 67% = (3+2+4,2+3+ 5,10+ 1) = (9,10, 11) .
Similarly, (17,17,11) is the signature associated to the nondegenerate symmetric bilin-

ear form (, )¢ : By x B — By LN By L1y R with Jac((f3, fa, f3)) > 0. So, in an
appropriate basis we have

(5.46)

o7

05 0 05 0 b 0
04 Iy
0 . 0 s o ",
O1x1
0 0 b 0 0 0
Iy

0 15 0 S 0 0
01x1 5

b 0 0 0 0 0

0 S 0 0 0 0
5




If we define E; as the nonsingular part of the matrix E;, namely

~ I

then the reduced matrix is

O5x5 0510 0 0 Dy
O10x5 "o . El 0 0
0 £y 0Dy | 0
Dy 0 0l 0| 0

Thus, the &gd is computed as &gel =B+2+3+4+54+0,2+3+2+5+4+1,11) =
(17,17,11), and so on. In this case, we will see that the matrices E; represent the flag
in the algebra By.

Let f: (R™,0) — (R,0) be a germ of real analytic function such that (f, fa,--- , fn)

is a regular sequence on B, := (fmfllﬂjc%f), where Arn o denotes the germs of real
analytic functions with isolated singularity at 0. f; = % i=1,2,---,n,necZ2 and

f™*+! denotes f to the power m + 1, m € Z=%. Furthermore, we define the annihilator
of f1 in By,, to be

Annpg,, (f1) :={b € C: [fib]; = 0 inB,,}.

Now, we consider the following lemma

Lemma 5.4.1. Let ( 7>:7$,1Ann be the relative bilinear form restricted to the annihilator,
namely,

() yon  (Anng, (fi) @ f™Bo) x (Anng,, ,(f1) ® f™Bo) — Bum % By, (5.47)

It is nondegenerate i Gpm—1Qm—10m—1Qm—1¢m, where Q, is the matrix defined by
Lemma (4.3.3). am—1,bm—1 € Annp,, ,(f1) and c,, is defined in the following context.
Let [f1]m € B, be the class of fi1 in the algebra B,,. Thus, if {[vi]o,...[vs]o} is a basis
of algebra By, then by Lemma (4.1.1) [fi]B,, := [film- It is given by

i = Sloilm + D e [fvidm + -+ D> [ vilm.

So, if ¢; = (c’i, ...,cg), then [fi]lm ~co+ fe1 + ... + fMem.

Proof. First, we show the lemma in little cases to help us understand the general proof.
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Case m=0.

Let ( ,)6?4% be a symmetric bilinear form, defined to be

()6 : Bo x By — By L By.
If v1,...,us € €, such that
1) {[ve+1]o, -, [Us]o} s a basis of Annpg,(f1),
2) {[v1]o..., [vs]o} is a basis of By,

then [v1]o, ..., [v¢]o generates a transversal to Annpg,(f1). If ¢;j = po(vs, v5) is the matrix
defined as before, then the matrix (g;j)i j=1,.. ¢ is a nondegenerate symmetric matrix.
And if ¢ > £ or j > /£ then ¢;; = 0. Since [fi]B, = [co]B,, then

(w aw/xff = [ao]oQo[bo]oQolco]o-
By simplicity, we can write
rel

(w,w)reh = agQoboQuco,

which is a degenerate symmetric bilinear form. Hence, we observe the associated ma-
trix Qo to ( ,)L‘f)l degenerates in Annpg,(f1).

Case m=1.

Since, By ~ By @ fBy then Annpg,(f1) ® fBy C B;i. So, we define ( ,)71"76}4%, to be

() i%an © (Anng,(£1) @ £Bo) x (Anng,(f1) & fBo) — By 1% By. (5.48)

Indeed, if w,w' € (Annp,(fi) ® fBy) then w = Y7 a¥v;]o + 327, af flvi]o and
w =3 Bl + S0, BFflvilo - Therefore,

w=(a,...,a% al,....,al) = ag+ fay, w = (B, ...,8% 8%, ..., BL) = by + fbr.

On the other hand, let [f1]5, = >, Dfvs]+> 0, cl[fvi], thus [fi]B, = (¢}, ..., 2, cf, ..., cl) ~
co + fe1 in Bi. Hence,

(w, ") % = (a0 + fa1)Q1(bo + f01)Qi(co + fer),
where the matrix @)1 is defined as in Lemma (4.3.3). Indeed, if

_ Q0+fH1fQo]:[Q00]+f[H1Q0]
fQo |0 0 |0 Q| 0]

o)
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with

Qo

r | Hi | Qo
Hl_[Qo 0}

then @1 = Q6 + in Therefore,

[ o | 0 } (5.49)

and

(a0 + far)(Qq + FH)(bo + for)(Q) + JHy)(co + fer)
is equal to
a0QoboQoco + f(aoQuboHyco + [agHbo + a1Qobo + aoQub1]Quco) + aoQuboQpcr
Since, ag, by € Annpg,(f1) and By is a commutative algebra, then from (5.49) we get
CQQ()CLO == 0, CoQobo = 0. (550)

Hence, we have that

(w, w,>qil4nn = (0, aoQoonocl). (5.51)
We observe that the expression in (5.51), the first term is 0 and the next term in
(s )i, in By is

apQoboQoci-

Indeed, we have only the matrix (), therefore so we can consider the algebra By.

In general.

Let ( ,)’"mel Ann D€ the symmetric bilinear form restricted to the annihilator, defined to
be

CVolsn + (Anng,, (F1) @ £ Bo) x (Anng,_,(f1) © f"By) = B -5 By, (5.52)

If w = am_1+ fMam, W = b1 4+ fPby, with ap_1,bm_1 € Annp,_,(f1), and
[film = ¢m—1 + f™cm where ¢p—1 € By,—1 then

(w, w/>:rilAnn = ((@am—1+ ["am)Qm(bm—1 + f"bm)Qm(cm-1 + f"cm)) (5.53)

where Q,,, is the matrix defined in (4.3.3). If we define the matrix Q/, ;, to be
Qo+ fHi++ " Hpy | fQo+ fPHi+ -+ f" "Hyo| -~ |f"'Qo
: fQu+ fPH 4+ f" 'Hpo Qo 0
Qm—l - .
: E 0 0
™1 Qo 0 0 0
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and

Hy |- Qo

! Hmil tt QO
Hm = . . b

: |0

Qo 010

then (w, w/>:,f;fAnn = (am—1+ ["am)Qm(bm-1 + ["bm)Qm(cm—1 + f™em))

/

= (am—1+ f"am)( Q1 + [ Hp) (b1 + [0m) Qg + f™Hy) (Cmet + f™em))

= (amle;n_lbmle/m_lcmfl +fm(amle;n_1bmle»:nCmfl +am71H7,nme;n_1Cmfl +
alem_lbmle/m_lcmfl + amle;n_lme,m_lcmfl + amlelm_lbmlefm_lcm)-

So, by definition of Q;nfl and the commutativity of algebra B,,, we get a,n—1Qm—1Cm—1 =
0, bpp—1Q@m-1¢m—1 =0, and

<w7 w/>:rffAnn = (07 am—lQm—lbm—lQm—lcm)- (554)

We want to make some observations about the bilinear form ( ,>7;er Ann, 1 (5.47)

and its expression (5.54). The first term in (5.54) is 0 in the decomposition B, =

Bp—1® f™By. It is clear, since we are restricting to the degeneracy locus of ( ,)Lfi_ L

rel

The next term in (,)}% in By, is

am—lQm—lbm—lQm—lcm-

The remarkable thing is, the matrix @),,—1 which means that we are considering the
algebra B,,_1. The new term comes from multiplication in By by ¢, which is the
second in the expansion of ¢ = ¢;,—1 + f™¢m. We also note that the term H,,, which
determines the extension B, of B,,_1, does not enter into the formula (5.54).

O
Flag in the finite vector space Bj.
In the following paragraph, we get a flag in the finite vector space By.
Remark 5.3. Let
Bj = Bj 1 25 B, 5 .. ™ B T4 By (5.55)

be surjective morphisms, such that w; are maps given by mj(v) = v mod(f7~1), with
(G =1, ,m, m¢eZ>) If B; = % are finite dimensional vector spaces, and
Anng;(f1) ={b€ C: [bfi]; =0 in B;} is the annihilator of fi in B;, then

pj =Tj0mj_10...0m are surjective maps from B; to By. (5.56)
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Proposition 5.4.1. If we consider the surjective map defined in (5.55), then

mj(Annp;(f1)) C Anng,_, (f1).

Proof. If | € Annp,(f1), then [Ifi]; = 0 € B;. Indeed, [-fi € (f7tY) c (f7) and
[lfl]j_l =0€ Bj_l, then 7le € AnnBjil(fl).

O]

We observe that the map 7; carries Annpg;(f1) to Annp, ,(f1) and the map p;
carries the Annp,(f1) to algebra By. So, we get the following flag

By O pi(Annp, (f1)) D p2(Annp,(f1)) D ps(Annp,(f1))... O pe(Annp,(f1)), (5.57)

for some ¢ € 720,

Proof to the theorem (1.2).

Proof. Let us consider the matrix defined in lemma (4.3.3) and ()7¢ : B,, x B, —
B, fy B, Lmy R, So, it has the associated matrix given by

[ LnfiQo | O 071 [ LnfifH1 | LinfifQo 0
0 01---10 Lonf1.f Qo 0 10
0 00 0]|,]|0 0 00 |4
: o : .. o
0 ololo] |0 0 00
[ Lo fif™ *Hypo1 | Linfrf™ 1 Hypo . Lonfif™ *Hy | Lnfif™ Qo | 0
L f1f™ "Hm o Lo f1f™ THy | L 1 /™1 Qo 0 0
+ 0 0 0
melfmilHl melfmilQ() 0 0 0 0
L f1f™ Qo 0 0 0 0 0
0 0 0 0 0 0
[ Ly fif™Hy, Ly f1f™Hp—1 . Ly fif™Hy | Ly f1 Qo ]
L fifmHpy—1 e Lypfifm™Hy | Linf1f™Qo 0
+ . 0 0 |- (5.58)
Ly f1f™Hy Ly, f1™Qo 0 0 0
| L f1/™Qo 0 0 0 0 |

Hence, from Lemma (5.4.1) the bilinear form is nondegenerate in a,;,—1Qm—1bm—1Qm—1¢m

if a; 1Qj-1bj1Qj-1¢; € (f" o), (j =0, ..., (m—1)), then Ly (a; 1Q;-1b1Qj-1¢5) >
0. So, we get the flag given in (5.57) and the matrix has the form of Lemma (5.19).
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Hence, the matrix (5.58) is equivalent to:

I _
Qm =

Using the theorem (1.1) in (5.59), we get
1) If m > 0 is even then

0

o O O

0

o O O

&rel

0
0
0

0
0

© O Oy
3

~rel

0

0
Dy

O O e

o O O O

~rel

Do
0

)

0
0

~rel

Do
0
0

oo o &

o O o o

o O O O

)
o O O O

)
@)

~rel

o O O O

= 0p + 092 Ann + 04, Ann +ooet Om, Ann>»

and if m > 1 is odd then

2) For m large enough, &7
From the Corollary (5.1) we get 3) of Theorem (1.2).

rel
m,Ann

arel +

~rel

~rel

~rel

03, Ann + 05, Ann +eet Om,Ann-

0.
)
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0 0
... E
E, 0

0 0

0 0

0 0

(5.59)
0

c oo

—_

o O O O

O e




~rel __

Corollary 5.2. Under the hypothesis of theorem (1.2), we consider 675" = (Pm, Gm, 'm)
and 67, = (s}, 55,89 such that vy, = rp_1. If we define (p',q ,0) to be

m,Ann mr°ms °m
(p.q,0) = a1 — et (5.60)
Then, we have:
~7nel ! / . .
- +((,q,0) if m is even
O'rel 1= { ?:m / ’ . . (561)
mt T 4+ (q',p,0) if m is odd.

Proof. From (5.38), we have that
Tm = Tm—1+ 821.

Since, 7y, = ;1 then s%H_k =80 =0,k=1,---£,0 7"
Thus, by (5.60) and if we consider m = 2n, then

~rel

(p,q,0) = (55 — G5 1) = (P2ns G2ns T2n—1) — (P2n—1, G2n—1,T2n—1)- (5.62)

From (5.33) we obtain

Pan = Pan—1+po+ 87 + ... + 53, (5.63)
and by (5.34), we get
P =P — Pon-1=po+ ST 4 o+ 55 (5.64)
Similarly,
q = @0 — Q1= Qo+ 5T + o + 55, (5.65)
So,
(0,q,0) = (po+s7 + ..+ 55,00+ 57 + ... + 55,,0). (5.66)

Moreover, from Lemma (5.3.2) we have

5—5% = 5521_1 + (po, 90, 0) + (s7, sf, 0) + ... + (85,52, 0).

Therefore, from the previous equation and (5.66) we get

Ghel =5+ (p,q,0). (5.67)

Similarly for m = 2n + 1
Ghelyy = G55 + (¢ ,p',0). (5.68)
O
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Chapter 6

The finiteness of the algorithm

In this section, we get an argument for the stabilization of the formula of the theorem
(1.2).

6.1 Transporting the primitive invariants of the relative
index, and flags from B, to the algebra A.

Let {f1, fo, ..., fn} be a regular sequence of germs at 0 of class C¥, f; = g&i'

Ife= % is a local algebra, and Agn ¢ is the ring of germs of real analytic func-

tions at 0, then A = % is a finite dimensional vector space.

On the other hand, let f € Arn g and My(a) be the action to multiply by f. It is
defined to be M¢(a) = f - a, for all a € A.

L.Giraldo, X.Gémez-Mont and P.MardeSic (see [14]), proved the following result:
For j =1,...,¢+1, there are linear subspaces P; of A, called primitive subspaces, such
that
41 j—1
A=EPIEP mip). (6.1)
1 k=0

+
<.

i

J

with M}_l : P; — A injective map and MJZ(PJ) = 0. The mapping My : A — Ais a
Jordan cononical form in any basis obtained by choosing bases of each of the spaces P;
and extending them to a basis of A by the action of My as in (6.1).
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Hence, it is convenient to present the direct sum decomposition (6.1) by the matrix:

P P P3 Py Py Py
0 MiP, M;Py MiPy MiP,  MPr
0 0 M]%P3 MJ%P4 M]%Pg M}%Pgﬂ
A= | . . . . . . (6.2)
0 0 0 0 Mf—lpé Mfi—lpgﬂ
0 0 0 0 0 M{ Py

If Anna(f) :={a€C]af =0, in A} is the annihilator of f in the algebra A, then
M§(Pry1) & M (P) @ -+ @ M7(Ps) & My(Py) @ P1 = Anna(f).

The ideal (f™) is formed by the last /4+1—m rows of the matrix (6.2), where, m = 1,...,¢
and ¢ € Z=0. (See [14]).

Anna(f7) = ker(M}), (f7) = Im(M3).
Moreover, we consider the flag
0oc(fHc(f“YHc...c(f) cA, (6.3)
and, if we define
Ky o= Anna ()N (" H cA (6.4)
then we obtain the following flag
0CKi1CKyC...CKi CKy=A. (6.5)

Similarly, let By := % It is a finite dimensional vector space, K,, is defined as the

projection of the annihilator of f; in By, to By, i.e. From(5.57), pm(Anng, (f1)) = Km.
Namely,

N m+1 .
o ;{1) . (6.6)
(SHyn(fmtt: fi)
Where, (fm* : f1) :={a € C:afy € (f™)}, and f™*! denotes f to the power
m + 1. Therefore, we have the following flag of ideals in By

0C Kppq C...C Ky C Ky = By. (6.7)
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6.2 Stabilization of the algebraic formula

Theorem 6.1. If we consider the flags defined earlier in (6.5) and (6.7). Then there
exists a bijection between the flag defined in (6.7) and the flag defined in (6.5). There
is also an integer £ with dim(ky) = ¢, where the algebraic formulas (1.2) are stabilized.

1K, — K.,

Proof. If ¢ : K, — Km is a morphism defined to be ¢(b) = bf1 and ¢

is given by ¢ ~!(c) = f , then, it is an is isomorphism and

1) g sends (f™: fi) — (fr: /)N (f")
2) o(f™) = (f""*fr).

We will proof 1). If b € K,, then bfi = cf™. Hence, % = cfm 1t e (fm1) and

P =bfi. Thus, b€ (fi: f) and @(b) € (f1: )0 (/" 1)
Similarly, if ¢ € (f1 : f) N (f™ 1), then ¢~ !(c) = ﬁ and ¢ = df™!. Indeed,

e Ydfm ) = dfﬂ}illf = ‘%m. So fldfc—lm = df™ € (f™ : f1). The proof of 2) is
similar.

In particular, if m = 1 then ¢ sends Annpg,(f1) in Anna(f).

On the other hand, since the map M; corresponds to the Jordan blocks, and if we

consider the flag defined in (6.5), then we get the following table:

A

Anna(f) 0 (f)
Anna(f) N (f?)

7,
Anna (f) —  all eigenvectors of My
— all eigenvectors coming from Jordan blocks of My of size > 2
N

all eigenvectors coming from Jordan blocks of My of size > 3

Anna(f) N (f) =
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The previous table is equivalent to the following matrix

01
0,

01

O =
N~

o O O
O O =
o~ O

g

Therefore, we have a flag 0 C K, C ... C K3 C Ko C Ko = Anna(f) C A.
So, the algebraic formula stops when it reaches the maximal size of Jordan blocks of
map My : A — A.
Moreover, we consider the bilinear forms defined by
(,): Ky x Kpy — R
a
(a, a’> = <W7GI>LA
(,): Kn,o® K, —R
afi

{a,d") = (—m,a'>Lm.

And, if we define Ly = L4 o (), the flag in the algebra in A is carried to the flag in
By. The algorithm stops in £ as well. O
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Example 6.2.1. Let f : (R3,0) — (R,0) be a germ of real analytic function defined
to be f(z,y,2) = (3 + y?)(z? + y3) + 22, and we consider the degenerate symmetric
bilinear form given by

L

(Ve By x By <> B 15 B 22 R,

m

where B,,, is defined as in (1.2) with m = 1,2,3. So, the routine bilinearform.lib and
the kanula give the following results

’ Results of program relative bilinearform.lib ‘

size rank signature
By 15 5 (3,2,10)
By 30 19 (9,10,11)
By 45 34 (17,17,11)
B3 60 49 (24,25,11)

Results of program kanulabil

size  an(i) rank
By 15 10 5
By 30 1 19
By 45 0 34
B3 60 0 49

Therefore, it is an immediate consequence of the previous tables that the signature
associated with By is 69 = (3,2,10). It corresponds to three positive numbers, two
negative numbers, and ten zeros. Furthermore, the signature associated with the alge-
bra Bj is given by 1 = (9,10, 11), and it is computed like ( 5.3.2). To explain this, we
consider the relative bilinear form ( ,)7¢ defined to be

I3
055 O5x10 1 O5x10
Iy 0
5x5
O10x5 —I5 O10x5 “ 0
01><1 5x5
I3
1 O5x10 055 O5x10
0545 O5x5
O10x5 0 O10x15 “ 0
L 5X5 5X5

Hence, from (5.3.2) 61 = (p1,q1,7m1) = (9,10,11) =3+ 2+ 4,2+ 3 + 5,10 + 1, where,
(E1) = (4,5,1), the next signatures are computed in a similar form.
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On the other hand, from table kanula.lib we get the flag
f(l C f(o C Bo,

which is equivalent to
R C R c R,

As we can see, in this case the flag defines a 1 Jordan block of size 2, and an 8 Jordan
block of size 1. i.e.
1(2) + 8(1) = 10.

Thus, 10 corresponds to the dimension of the annihilator of f; in the algebra By. i.e.
dim(Annpg,(f1)) = 10. If we consider the isomorphism ¢, then dim(Anna(f)) = 10,
and we get the stabilization of the algebraic formula (5.3.2).

Hence, we can conclude that 7o = r; = 11, and az = a3 = 0, Indeed, from (5.1) we
can define p',¢ asp = 17— 9 =28, ¢ = 17 — 8 = 7, therefore, 6o = 51 + (p/,q/,O) =
(94+8,10+ 7,114 0) = (17,17,11), and so on.
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Chapter 7

Applications to vector fields
tangent to the Milnor fiber

In this chapter, we will describe holomorphic and real analytic vector fields. We will
also give an interesting example where we exhibit the changes in the topology of the
Milnor fiber.

Let f : (C"*1,0) — (C,0) be a germ of a holomorphic function with an isolated
singularity at 0. We consider, V,C(f) = f~'(t) the Milnor fiber, and X; a family of
germs of holomorphic vector fields in C**!, such that X has an isolated singularity at
0.

If X; is tangent to the hypersurface V.2(f), then

d(f =) Xe = he(2)(f — 1),

where h;(x) is the cofactor and it is a holomorphic function.
On the other hand, if Z is the singular set of the family of holomorhic vector fields,
namely

Z :={(t,x) € Cx C"|X2(z) = ... = X]'(x) = 0}.
Then,
Ocxentt
0z =<0 wm
(XD, ..., X[

is a multilocal algebra and the map II; : Z — C is a finite analytic map. The sheaf
(I1)*Oz is a free Oc module of rank n.
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Let {I'; UT9 U ...UT,} be the set of irreducible components of Z, each I';, (i =
1,2,-,n,n € Z=Y) has dimension 1, due to the hypothesis that Xy has an isolated
singularity at 0. See the following figure:

n+1

C

This figure represents the curves I';, with i =1,2,...,n,n € Z=0°.

Futhermore, let B;C be a multilocal algebra, defined to be

o Ocnin,
By _pezﬁl(t) (X9, XE, ., X))
and (, )7 be a degenerate bilinear form, namely
(et BS x BS — B I, B¢ Ity . (7.1)

We consider, W the set defined to be W := {(t,z) € C x C"*2|f(z) — t = 0} then,

1) T; ¢ W if and only if the map f — t|r, # 0 if and only if V°(f) N T; = {0}.

2) T; € Wifand only if f—t|r, = 0, if and only if T;NTI; 'Y €V = {p1(t), .., pu(t)}.
Remark 7.1.

e Similarly, for case 1) we have {p;(t)} € C"** — V.C(f) if and only if the points
{pi(t)} are zeros of the vector field Xy in C"*' —V,E(f), t € (C,0),i=1,2,....,n,n €
720 .

e In case 2), the points {p;(t)} C VC(f) if and only if {p;(t)} are zeros of Xilye(p)-
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See the next picture:

Therefore, if I'; ¢ W then f — t|r, # 0.

Since, d(f —t)X: = (f —t)hs then d(f —t)X; = 0, indeed, (f —t)hs = 0 and f—t|p, # 0.
So, ht|r, = 0 and Annp,(h:) = 0, where, Annp,(h:) = 0 is the annihilator of h; on B;.
In this case, we get neither a flag nor the new contribution to the signature.

Moreover, if I'; C W, then d(f —t)X; = 0, and (f —t)h; = 0, thus, f|r, =0 and hy # 0.
So, Annp,(h:) # 0. Indeed, we get a flag and we focus in the real case.

Let HMOJZr be a free O )-sheaf of rank s, where its sections are the fixed points of
the conjugation map, and its stalk over 0 is

OR2n+2 0
C=(I1.0.)0 = o172 (7.2)
O (X)L X
We define a 1-parameter family of R-algebras to be
Ocn
Bf =,0} @xRith =] P LU S (7.3)

X0 xt ... Xn
pGZﬂHl_l(t)( 00 Xesoons XE)

It is obtained by evaluation where B;" is a multilocal algebra and By is a local algebra.
If (,) is a bilinear map defined by
()it B x Bff = B I B 14 R, (7.4)

then bilinear forms are nondegenerate for ¢ # 0, and for t = 0, the relative bilinear

form (,)7¢, degenerates on Annp,([f1]B,-
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7.1 The contact vector field, an example

In this example, we will compute the GSV-index using the corollary (2.1), and we will
exhibit the topologycal changes of the Milnor fiber.

Let f: (R™ 0) — (R,0) be a germ of real analytic function with isolated singularity
at 0. If Xy = (f —t, fa,—f3, - fon, —fon+1) is the contact vector field, where f; = g—é
then, d(f —t)X; = f1(f —t), and the cofactor is fj.

Example 7.1.1. In particular, if the germ f : (R3,0) — (R, 0) is defined to be
f=6"+y*)@” +y°) + 2%

then the hypersurfaces Vi(f), for t <0, ¢t =0 and ¢ > 0, are:

Therefore, we define the contact vector field Xy, to be

Xt = (f - tv fy7 _fz) = ((‘/L‘B + y2)(l‘2 + y3) + 22 - t? 2$2y + 5y4 + 35153.7!27 _2Z)
Indeed, d(f —t) - X; = fo(f —t) = (22y® + 52* + 32%93) (23 + v?) (22 + v°) + 22 — 1)).

Since, the vector field is X; = (f — ¢, fy,—f:) and f, = —2z = 0, then we can
consider the vector field in the plane zy.
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If Xy = (f—0.00002, f,) is a vector field in the plane zy, then we have the following
picture

0.0

71‘.0 4;5 0‘.0 0‘5 1‘.0
Thus, the vector field X3, for ¢t > 0 is
Xo.00002 = (2 + y?)(2? + y3) + 22 — 0.00002, 222y + 5y* + 32392, —22).

Since z = 0, then the real roots of X;, with ¢ = 0.00002 are p; = (0.0542741, —0.105318, 0),
ps = (0.11487,0,0), ps = (—0.0547462, —0.106541, 0).

Hence,
2xy? + bat + 322y% 222y + 5yt + 323y? -2z
| D X0.00002] = 4y + 9z2y? 222 + 20y3 + 623y 0 ,
0 0 2
and |DX;| = 362°y*+60x7y —54xty* + 30225420024y +2020 — 242313 +402y° — 823y,
Furthermore, |DX;(p1)| = —0.000392937, |DX;(p2)| = 0.0000459483, |DX(ps)| =
0.0000386401. Since, the Indgs(X,t) satisfies the conservation sign law, we have
Indgs(X,0.00002) = -1+1+1=1.
Similarly, let X; be the vector field with ¢ < 0. In this case we have

X_0.00002 = (23 + ) (2 + %) + 22 + 0.00002, 22y + 5y* + 3232, —22).
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See the following figure,

Since z = 0, then we have only one point that X;(p) = 0, where ¢ = —0.00002 and
p = (—0.11487,0,0), thus

2xy? + 5t 4 322%y>  22%y + 5yt + 3239?22
|IDX _g.00002| = || 4zy + 92%y? 222 +20y% + 623y 0 ,
0 0 2

hence, |DX;| = 362°y* + 6027y — 54xty* + 3022y0 + 20024 y3 4 2025 — 242393 + 4027 —
8z3y? and
IDX,(p)| = 0.000459483.

So,
Indgs (X, —0.00002) = 1.

It follows that, if ¢ > 0, then p; = (0.0542741, —0.105318,0) is the singular point of
X(.00002 and f,(p1) = 0.0123707. Furthermore, f.(p1) > 0, and Indgs(Yy,p1) =
Indgs(X¢,p1) = —1. Thus, we consider the point po = (0.11487,0,0), fi(p2) =
0.000870556. So, f(p2) > 0 and Indgs (Y, p2) = Indgs (X, p2) = 1.

Since p3 = (—0.0547462, —0.106541,0) thenf,(p3) = —0.0120881. So, f.(p3) < 0 and
Indgs (Y, p3) = —Indgs(X¢, p1) = —1. Then by conservation the sign law, the relative
index is Indgs(Y,t) = —1.
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If t <0 or t = —0.00002 then only one real point exits, namely ,p = (—0.11487,0,0),
such that X(p) =0, and f5(p) = 0.00870556 > 0. Therefore,

IndR?’(}/t)p) = I?’Lng(Xt,p) =L

Hence, we have the following conclusions

t>0, Ind(X1,0)=1, Ind(Y1,0)=—1
t <0, Ind(X_1,0) =1, Ind(Y_1,0)=1.

We recall, Eisenbud-Levine proved that the signature of the bilinear form is equal to the
degree of real analytic function f. Indeed, we got an algebraic formula to reconstruct
the signature of degenerate relative bilinear forms with (1.2), in the real case.
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Appendix A

Appendix; Singular programs

Singular Programs

The following routines compute the signature of symmetric bilinear forms, for the non-
degenerate and degenerate cases. Since, (f, fa, -, fn) is a regular sequence, then we
can use a routine of the singular package to compute de krull dimension of (f, fa,- -, fn)-
In particular, we need to prove that the krull dimension of (f, fo,--, fn) is zero. It
is also necessary to change the expression of the function f in the program by the
expression we need to compute.

The routine kanula.lib constructs the flag defined in By.

proc siggen(int iii)
{
LIB ”general.lib”;
LIB "PHindex.lib”;
LIB ”Linalg.lib”;
ring r = 0, (z,vy, 2),ds;
int n = nvars(r);
option(redSB);
poly f = a2+ y?> + 2%

for (int m =1; m <=iii; m=m+ 1)
{

ideal i(m) = f +*m, dif f(f,y), dif [(f, 2);
ideal g(m) = std(i(m));
ideal kb(m) = kbase(g(m));
”"Number of iteration ”;m;
// 7 The groebner base is”;
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// g(m);

int m1(m) = size(kb(m));
ideal kbl(m) = kb(m)[m1(m)..1];
// 7 The base is kb1”;
//kb1(m);

ideal k2(m) = transpose(kbl(m)) = kbl(m);
ideal k3(m) = reduce(k2(m), g(m));

matrix b(m)[ml(m)][ml(m)] = k3(m);

// 7 The bililinear product is”;
// print(mulq);

//Calculus of the socle
ideal j(m) = jacob(i(m));
matrix jac(m)[n]|[n] = j(m);
”The Jacobian matrix is”;
print(jac(m));
poly s(m) = det(jac(m));
poly sk(m) = reduce(s(m), g(m));
”The socle of ring B is”; sk(m);

matrix L(m)[m1(m)][ml(m)];
poly le(m) = lead(sk(m)); poly lcb(m) = le(m)/absV alue(leadcoe f (sk(m)));
// 7 The sign of socle is”;
// leb(m);
int gr(m)=degree(lc(m));
poly divis(m);

int to,ts;

for (to = 1;to <= mq(m);te + +)
{
for (t3 = 1;t3 <=my(m);ts + +)

%{ﬁﬁf&; i@ifff;?ﬁfff(bw 2, t3], gr(m))—jet (b(m)[ta, t3], gr(m) 1), leb(m)) [1][1, 1);
}
}
// print (L(m)):
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”

"The determinant of the matrix in the bilinear form de la matriz <, >, is”;
det(L(m));

”The signature is”;

signatureL(L(m));

”The rank of matrix L is”;

mat,k(L(m));

)
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Calculus of the signature in the relative case

proc bilinrelamod (iii)

{

LIB 7general.lib”;

LIB ”PHindex.lib”;

LIB 7Linalg.lib”;

ring r =0, (z,y, z),ds;

for (int m=1 m<=3, m=m+1)

{

ideal i(m) = (f™, dif f(f,9), dif{(f,2));

ideal g(m) = std i(m);

ideal kb(m) = kbase(g(m));

” Number of iteration”; m;

”The groebner basis is”;

g(m);

7”The kbasis is”;

kb(m);

int my = size(kb(m));

ideal kby(m) = kb(m)[m1, .., 1];

7The new order in the kbasis is”;

kbi(m);

ideal ko(m) = transpose(kby(m)) = kby(m);

ideal k3(m) = reduce(ka(m), g(m));

matriz mulgmq(m)]|[mi(m)] = reduce(dif f(f,z) x ks(m), g(m));
std(i(m));

”The bilinear product is”;
print(mulg);

”The socle calculus”;
idealj(m) = jacob(i(m));
matrizjac(m)n][n] = j(m);
7The Jacobian matriz is”;
print(jac(m));

poly s(m) = det(jac(m));
poly sk(m) = reduce(s ( ) g(m
"The socle of ring B is”; sk(m
matrizb(m)[mi(m)|[m (m)] =
matrizL(m) [my (m)] i (m));
poly le(m) = lead(sk(m));
poly leb(m) = le(m) /absV alue(leadcoe f (sk(m));
”The sign of socle is”;

"leb(m)”;

int gr(m) = degree(lc(m));

poly divis(m);

);
);

mulq;
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’inttz, t3,’

for (ta = 1,to <=my(m);te + +)

{

for (ts = 1,t3 <=mq(m);t3++)

{

divis(m) = division(jet(b(m)[ta, ts], gr(m))—jet(b(m)[te, t3], gr(m)—1),lcb(m))[1][1, 1];
Ly, [ta, ts] = divis(m);

)5

}

print(L(m));

”The determinant of matriz associated to the symmetric bilinear form denoted by (, )yei,,
’LS 77;

det(L(m));

7The stgnature is”;
signatureL(L(m));

”The rank of the matriz L is”;
mat,(L(m));

}s

}s
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Calculus of a basis of a flag in the algebra B

proc Kanulabil(int iii)

{
ring r= 07 (.%', Y, 2),dS;
option(redSB);

poly f = (2 +¢*) * (2 + ¢*) + 2%

ideal ig = f, dlff(f’ y)a dsz(f? Z);

ideal gg = std(ip);

” An R-Basis of By is”;

module Ko = Kbase(go);

Ko;

”We will calculate the j-flag in By”;

for (intn =1;n <=4;n+ +)

{

ideal i(n) = f % #n, dif f(f,1), dif £(f, 2);
ideal g(n) = std(i(n));

ideal g(n) = quotient(i(n),dif f(f,x));
”The quotient ideal (i : f;) is”; q¢(n)
ideal gg(n) = q(n) + go;

ideal h(n) = std(qq(n));

int t(n) = size(h(n));

t(n);

matrix o(n)[1]ft(n)] =
module ker(n) = sy (go(n))

ker(n);

list d(n) = division(go, h(n));

module b(n) = d(n)[1];

module ker2(n) = ker(n),b(n);
module ker3(n) = std(ker2(n));

ideal an(n) = reduce(¢(n) * k(n), go);
” A basis as vector space of the corresponding flag is”;
an(n);
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