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Abstract

Let ARn,0 be the ring of germs of real analytic functions on Rn at 0 and consider n+ 1
germs of real analytic functions f, f1, ..., fn : (Rn, 0) → (R, 0) such that (f, f2, ..., fn)
and (f1, f2, ..., fn) are regular sequences (see [10]). We denote by fm+1 the (m + 1)th

power of f . For m ≥ 0 let us introduce the R-algebras

Bm :=
ARn,0

(fm+1, f2, ..., fn)
. (1)

They are finite dimensional vector spaces over R. Their dimensions are (m+1)dimRB0.

Introduce the symmetric bilinear forms

〈 , 〉m : Bm ×Bm
·−→ Bm

Lm−→ R (2)

([a]m, [b]m) 7→ [ab]m 7→ Lm([ab]m),

where · denotes multiplication in the algebra Bm and Lm is an R-linear map with
Lm([J ]m) > 0, where [J ]m inBm is the class of the Jacobian determinant of f, f2, . . . , fn.
It is a theorem of Eisenbud and Levine (see [11]) that this bilinear form is nondegenerate
and its signature, denoted by σm, is independent of the chosen Lm.

Theorem 0.1. Let {f, f2, ..., fn} : (Rn, 0)→ (R, 0) be germs of real analytic functions
forming a regular sequence, and σm the signature of the nondegenerate bilinear form in
(2), then we have

σm =

{
σ0 if m is even
0 if m is odd.

(3)



Now for m ≥ 0 define the mth relative (symmetric degenerate) bilinear form

〈 , 〉relm : Bm ×Bm
·−→ Bm

f1−→ Bm
Lm−→ R (4)

([a]m, [b]m) 7→ [ab]m 7→ [f1ab]m 7→ Lm([f1ab]m),

where Lm : Bm → R is any linear map such that Lm([fmJ ]m) > 0 and we are using
the multiplication in Bm in the expression f1ab. Its degeneracy locus is the annihilator
of f1 on Bm:

AnnBm(f1) := {b ∈ C : [bf1]m = 0 on Bm}

and we denote by σ̃relm its signature.

Let 〈 , 〉relm,Ann be the degenerate symmetric bilinear form obtained by restricting

〈 , 〉relm to AnnBm−1(f1)× fmB0:

〈 , 〉relm,Ann : (AnnBm−1(f1)⊕ fmB0)× (AnnBm−1(f1)⊕ fmB0)

·−→ Bm
f1−→ Bm

Lm−→ R. (5)

and denote by σ̃relm,Ann its signature.

Our main result is:

Theorem 0.2. Let {f, f2, ..., fn} and {f1, f2, ..., fn} be germs of real analytic functions
on Rn forming regular sequences, then

1) We have for even m ≥ 0:

σ̃relm = σ̃rel0 + σ̃rel2,Ann + σ̃rel4,Ann + · · ·+ σ̃relm,Ann,

and for odd m ≥ 1:

σ̃relm = σ̃rel1 + σ̃rel3,Ann + σ̃rel5,Ann + · · ·+ σ̃relm,Ann.

2) For m large enough, σ̃relm,Ann = 0.

3) For m ≥ 0 we have the recursive formulas:

σrelm+1 = σrelm−1 + σrelm+1,Ann

with σrel−1 := 0.

3



Chapter 1

Introduction

The objective of this thesis is to shed light on the following fact:

For a germ of a real analytic function f : (Rn, 0) → (R, 0) with an al-
gebraically isolated singularity the most basic topological invariant of the
Milnor fiber Vt := {f = t}, its Euler characteristic, can change depending on
the sign of t, if n is odd.

For example, for f = x2 + y2 − z2 we pass from 2 2-dimensional discs to a 2-
dimensional annulus, changing the Euler characteristic from 2 to 0.

Our tool to analyse the mathematics around this jump in the Euler characteristic is
through a family of vector fields Xt on Rn with isolated singularities, each of multiplicity
one for t 6= 0, and it is tangent to the Milnor fiber Vt. The tangency condition may be
written as

n∑
j=0

∂(f − t)
∂xj

Xj
t = (f − t)ht

for a real analytic function ht(x) called the cofactor.

By the Poincaré-Hopf index theorem, we have for t fixed the sum∑
Xt(p)=0

IndRn(Xt, p)

is independent of t. At a singular point of the vector field Xt at p ∈ Vt, with t 6= 0,
besides the Poincaré-Hopf index, we have the relative Poincaré-Hopf index which is the
Poincaré-Hopf index of the restriction Xt|Vt to the n− 1 dimensional manifold Vt. For
t 6= 0 fixed, the sum ∑

Xt(p)=0=f(p)−t

IndVt(Xt|Vt , p)

is locally constant so we have a value for t > 0 and another one for t < 0. The relation
between the 2 indices is, for t 6= 0
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IndRn(Xt, p) = ±IndVt(Xt|Vt , p)

where they coincide if ht(p) > 0 and they differ by the sign if ht(p) < 0.

For example, the family of contact vector fields

Xt := (f − t) ∂

∂x1
+

N∑
i=1

(
∂f

∂x2i+1

∂

∂x2i
− ∂f

∂x2i

∂

∂x2i+1
) (1.1)

satisfies the tangency relation

d(f − t)(Xt) =
∂f

∂x1
(f − t)

in an odd dimensional ambient space. All the singular points of Xt are contained in
this case in Vt, so the subindex in the above sums is over the same set, so what is
involved are the sign properties of ∂f

∂x1
when restricted to the connected components of

the smooth curve { ∂f∂x2 = · · · = ∂f
∂xn

= 0} − {0} ⊂ Rn.

In this thesis, we describe an algebraic method to compute from ’infinitesimal in-
formation’ of the family of vector fields Xt at the point t = 0 the index of the family
to the right and to the left. The vector field X0|V0 determines only part of this index,
and one must look at higher order terms

∂jXt

∂tj
|V0

to see the other contributions.

More generally, let ARn,0 be the ring of germs of real analytic functions on Rn at 0
and consider n + 1 germs of real analytic functions f, f1, ..., fn : (Rn, 0) → (R, 0) such
that (f, f2, ..., fn) and (f1, f2, ..., fn) are regular sequences (see [10]). We denote by
fm+1 the (m+ 1)th power of f . For m ≥ 0 let us introduce the R-algebras

Bm :=
ARn,0

(fm+1, f2, ..., fn)
. (1.2)

They are finite dimensional vector spaces over R. Their dimensions are (m+1)dimRB0.

Let

J := Det


∂f
∂x1

. . . ∂f
∂xn

∂f2
∂x1

. . . ∂f2
∂xn

. . .
∂fn
∂x1

. . . ∂fn
∂xn

 Jm := [J ]m ∈ Bm

denote the Jacobian J and its class [J ]m in Bm.
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The absolute index

Introduce the symmetric bilinear forms

〈 , 〉m : Bm ×Bm
·−→ Bm

Lm−→ R (1.3)

([a]m, [b]m) 7→ [ab]m 7→ Lm([ab]m),

where · denotes multiplication in the algebra Bm and Lm is an R-linear map with
Lm([J ]m) > 0. (See [11]) that this bilinear form is nondegenerate and its signature,
denoted by σ̃m, is independent of the chosen Lm.

Our first result is:

Theorem 1.1. Let {f, f2, ..., fn} : (Rn, 0)→ (R, 0) be germs of real analytic functions
forming a regular sequence, and σ̃m the signature of the nondegenerate bilinear form in
(1.3), then we have

σ̃m =

{
σ̃0 if m is even
0 if m is odd.

(1.4)

The proof relies on choosing v1, . . . , vs ∈
ARn,0

(f2,...,fn) such that [v1]0, . . . , [vs]0 ∈ B0 are

an R-basis with [v1]0 = 1 and [vs] = [J ]0, and considering the basis of Bm:

[v1]m, . . . , [vs]m, [fv1]m, . . . , [fvs]m, . . . , [f
mv1]m, . . . , [f

mvs]m (1.5)

that provide R-vector space isomorphisms

Bm = B0

⊕
fB0

⊕
· · ·
⊕

fmB0 (1.6)

and R-vector space inclusions

B0 ↪→ B1 ↪→ . . . ↪→ Bm−1 ↪→ Bm.

We also choose for Lm : Bm −→ R the map sending all the base elements to 0, except the
last where Lm([fmJ ]m) = 1. Using this block decomposition of Bm, the multiplication
table

µm : Bm ×Bm −→ Bm

takes the form

Qm =


Q0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ f


H1 Q0 · · · 0

Q0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ · · ·
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· · ·+ fm


Hm Hm−1 · H1 Q0

Hm−1 · · · H1 Q0 0
...

. . .
. . . 0 0

H1 Q0 0 0 0

Q0 0 0 0 0

 , (1.7)

where Q0, H1, . . . ,Hm are symmetric (s×s)-matrices with entries in B0. The expression
of these matrices can be obtained from the restriction of µm to B0 and using the
isomorphism Bm '

⊕m
j=0 f

jB0 we obtain a bilinear form

µm : B0 ×B0 −→ Bm

with matrix expression
Q0 + fH1 + · · ·+ fmHm.

Q0 is the matrix expression of the multiplication µ0 on B0 and the Hj are the higher
order terms in the multiplication µm restricted to B0 ↪→ Bm. These terms contain all
the information needed for describing µm, as can be seen from the expression (1.7).
Applying to (1.7) the chosen Lm, the matrix for the bilinear form (1.3) is

Lm∗Qm =


L0∗Hm L0∗Hm−1 · L0∗H1 L0∗Q0

L0∗Hm−1 · · · L0∗H1 L0∗Q0 0
...

. . .
. . . 0 0

L0∗H1 L0∗Q0 0 0 0

L0∗Q0 0 0 0 0

 . (1.8)

Here Lm∗ : Sym(Bm) → Sym(R) is the operation on matrices with entries in Bm to
matrices with real entries obtained by applying Lm to the entries.

Observing the anti-triangular form of (1.8) and the fact that the anti-diagonal
terms are non-singular matrices, we may do then a change basis for the R-vector space
〈v1, . . . , f

mvs〉 ↪→ ARn,0 to obtain a matrix representation of < , >m as an anti-diagonal
matrix by blocks, with all the anti-diagonal terms being the matrix L0∗Q0:

Lm∗Qm =


0 0 · 0 L0∗Q0

0 · · · 0 L0∗Q0 0
...

. . .
. . . 0 0

0 L0∗Q0 0 0 0

L0∗Q0 0 0 0 0

 . (1.9)

The matrix (1.9) suggests that we consider the decomposition of Bm as:

Bm = [B0 ⊕ fmB0]
⊕

[fB0 ⊕ fm−1B0]
⊕
· · · , (1.10)
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It is an < , >m-orthogonal direct sum. The contribution to the signature of each vector
space within a bracket is 0, since they have the form(

0 L0∗Q0

L0∗Q0 0

)
. (1.11)

Therefore, if m is odd, the brackets in (1.10) are paired off, giving a signature σm = 0.
If m is even, in the above pairing (1.10), we are left with 1 block L0∗Q0 which does not
have a term to pair with. This term then gives the only non-zero contribution σ0 to
the signature σm of Bm.

The relative index

We introduce now the main object of analysis in this thesis; the relative bilinear form.
Let {f, f1, ..., fn}, Bm as before (we did not use f1 for Theorem 1.1). For m ≥ 0 define
the mth relative (symmetric degenerate) bilinear form

〈 , 〉relm : Bm ×Bm
·−→ Bm

f1−→ Bm
Lm−→ R (1.12)

([a]m, [b]m) 7→ [ab]m 7→ [f1ab]m 7→ Lm([f1ab]m),

where Lm : Bm → R is any linear map such that Lm[fmJm]m > 0 and we are using the
multiplication in Bm in the expression f1ab. Its degeneracy locus is the annihilator of
f1 on Bm:

AnnBm(f1) := {b ∈ C : [bf1]m = 0 on Bm}

and we denote by σ̃relm its signature.

Let 〈 , 〉relm,Ann be the degenerate symmetric bilinear form obtained by restricting

〈 , 〉relm to AnnBm−1(f1)⊕ fmB0:

〈 , 〉relm,Ann : (AnnBm−1(f1)⊕ fmB0)×(AnnBm−1(f1)⊕ fmB0)

·−→ Bm
f1−→ Bm

Lm−→ R. (1.13)

and denote by σ̃relm,Ann its signature.
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Our main result is:

Theorem 1.2. Let {f, f2, ..., fn} and {f1, f2, ..., fn} be germs of real analytic functions
on Rn forming regular sequences, then

1) We have for even m ≥ 0:

σ̃relm = σ̃rel0 + σ̃rel2,Ann + σ̃rel4,Ann + . . .+ σ̃relm,Ann,

and for odd m ≥ 1:

σ̃relm = σ̃rel1 + σ̃rel3,Ann + σ̃rel5,Ann + . . .+ σ̃relm,Ann.

2) For m large enough, σ̃relm,Ann = 0.

3) For m ≥ 0 we have the recursive formulas:

σrelm+1 = σrelm−1 + σrelm+1,Ann

with σrel−1 := 0.

Thus we introduce the invariants σreleven and σrelodd as the corresponding sums above,
for m sufficiently large.

For the proof, we begin as in the absolute case, by giving a matrix expression in
blocks to the map

µrelm : Bm ×Bm −→ Bm µrelm ([a]m, [b]m) = [f1ab]m

Qrelm =


Qrel0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ f


Hrel

1 Qrel0 · · · 0

Qrel0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ · · ·

· · ·+ fm


Hrel
m Hrel

m−1 · Hrel
1 Qrel0

Hrel
m−1 · · · Hrel

1 Qrel0 0
...

. . .
. . . 0 0

Hrel
1 Qrel0 0 0 0

Qrel0 0 0 0 0

 , (1.14)

where Qrel0 , Hrel
1 , . . . Hrel

m are symmetric (s × s)-matrices with entries in B0. These
matrices are obtained from the restriction of µrelm to B0 and using the isomorphism
(1.10):

µrelm |B0×B0 : B0 ×B0 −→ Bm =

m⊕
j=0

f jB0

9



with matrix expression
Qrel0 + fHrel

1 + · · ·+ fmHrel
m .

Now L0∗Q
rel
0 is the basis expression of 〈 , 〉rel0 on B0, so we make a change of R-basis

in 〈v1, . . . , vs〉 so that

L0∗Q
rel
0 =

Ip0 0 0
0 −Iq0 0
0 0 0

 ,

where we have chosen maximal orthogonal subspaces where 〈 , 〉rel0 is positive and ne-
gative definite, but the 3rd summand, which is the Annihilator of 〈 , 〉rel0 is canonically
determined.

In the basis (1.5), the expression of the bilinear form 〈 , 〉rel1 on B1 takes the block
form:

Qrel1 =



A11 A12 A13 Ip0 0 0
At12 A22 A23 0 −Iq0 0
At13 At23 E1 0 0 0

Ip0 0 0 0 0 0
0 −Iq0 0 0 0 0
0 0 0 0 0 0

 . (1.15)

We take a new basis of B1 by applying the product of elementary matrices, as in the
Jordan-Gauss elimination method to the bilinear form Qrel1 , applied simultaneously to
the rows and columns so as to preserve the symmetry of the matrix expression. In this
basis one has the expression

Qrel1 =



0 0 0 Ip0 0 0
0 0 0 0 −Iq0 0
0 0 E1 0 0 0

Ip0 0 0 0 0 0
0 −Iq0 0 0 0 0
0 0 0 0 0 0

 . (1.16)

From this expression we see that the contribution given by the antidiagonal blocks to
the signature is again 0 (even though it is degenerate) and the only contribution to the
signature comes from the matrix E1, which is defined where the bilinear form < , >rel0

is degenerate.

Making a new change of basis of the third summand Ker(Qrel0 ), by choosing ma-
ximal subspaces where E1 is positive and negative definite, but the third summand is
canonically determined by KerE1 ∩ KerQrel0 . The block representation of < , >rel2

takes the form
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Qrel
2 =



A11 A12 A13 A14 A15 A16 A17 0 Ip0 0 0 0
At

12 A22 A23 A24 At
16 A26 A27 0 0 −Iq0 0 0

At
13 At

23 A33 A34 At
17 At

27
Ip1

0
0 −Iq1

0 0 0 0 0

At
14 At

24 At
34 E2 0 0 0 0 0 0 0 0

A15 A16 A17 0 Ip0
0 0 0 0 0 0 0

At
16 A26 A27 0 0 −Iq0 0 0 0 0 0 0

At
17 At

27
Ip1

0
0 −Iq1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
Ip0

0 0 0 0 0 0 0 0 0 0 0
0 −Iq0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(1.17)

After doing a change of basis using the Jordan-Gauss method as before, we obtain
the matrix expression

Qrel
2 =



0 0 0 0 0 0 0 0 Ip0 0 0 0
0 0 0 0 0 0 0 0 0 −Iq0 0 0

0 0 0 0 0 0
Ip1

0
0 −Iq1

0 0 0 0 0

0 0 0 E2 0 0 0 0 0 0 0 0
0 0 0 0 Ip0

0 0 0 0 0 0 0
0 0 0 0 0 −Iq0 0 0 0 0 0 0

0 0
Ip1

0
0 −Iq1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
Ip0

0 0 0 0 0 0 0 0 0 0 0
0 −Iq0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(1.18)

The antidiagonal terms consist of 3 blocks, the 2 extreme ones give a 0 contribution
to the index, and the middle one gives then only 1 contribution to the signature by
p0−q0. The 2 blocks 1 step above the antidiagonal give no contribution to the signature
since they have the form (1.11), and the upper right block gives a contribution to the
signature of Qrel2 by the signature of E2.

So we see the same pattern as in the absolute index, having a distinction between
even and odd, but with the difference that the new contribution is not 0 as in the
nondegenerate absolute index where we had σ̃m = σ̃m−2 + 0, but a new term appears
in the Annihilator of the previous form, which the theorem asserts that it eventually
becomes 0.
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What remains to be explained is how these new contributions σ̃relj,Ann are organized.

To do this, we use the method describe in [13] to transport the signatures σ̃relj,Ann to the

signatures of the primitive components of the algebra A :=
ARn,0

(f1,...,fn) with its canonical

bilinear form, with respect to multiplication by f . This gives then that σ̃relj,Ann = 0 for
j > dim(B0).

In chapter 2 we describe the topological properties of vector fields that we will use.
In chapter 3 we describe the algebraic properties of vector fields that we will use. In
chapter 4 we analyse the absolute index and prove Theorem (1.1). In chapter 5 we
describe the relative index and prove Theorem (1.2). In Chapter 6 we transport the
signatures σrelj,Ann to the algebra A. In chapter 7 we give applications of our theorems
for 1-parameter families of vector fields tangent to the Milnor fibres and to contact
vector fields.

Theorem (1.1) and Theorem (1.2) are the original contributions of this thesis, and
the material although motivated by [13], is not contained in it. The paper [13] centers
in analysing the Taylor series expansion of the family of bilinear forms < , >t and how
far in this expansion one has to go to know the index on the right and the left, and this
Thesis centers in the analysis of the family of bilinear forms in the truncated algebras
Bm.
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Chapter 2

Topological properties of vector
fields

Our purpose in this chapter is to give the basic theory of the Poincaré-Hopf index and
the relative index (abbreviated as GSV). We explain a procedure to compute the GSV
index. We provide a natural example, it has been selected to illustrate an interesting
and important phenomena.

2.1 Real analytic germs of vector fields

Cω denotes the class of real analytic functions.

Definition 2.1. Let U ⊂ Rn be an open subset. A real analytic vector field in U is a
map X : U → Rn of class Cω. We define a singularity of a vector field X to be a point
p such that X(p) = 0. Furthermore, the linear part of the vector field X in p is DX(p),

where DX(p) = ∂(X1,...,Xn)
∂(x1,...,xn) i.e. It is the Jacobian matrix valued at p.

Definition 2.2. A germ of a real analytic function at p is an equivalence class of pairs
(U, f1), where U is an open neighborhood of p and f1 is a real analytic function of U .

We recall that two pairs (U, f1), (V, f2) are equivalent if there exists an open neigh-
borhood W ⊂ U ∩V of p such that f1 |W= f2 |W . Where f2 is a real analytic function.

Moreover, let U be a neighborhood of p in Rn such that p is an isolated singularity of
the real analytic vector field X. If f : U ⊂ (Rn, p)→ (R, p) is a germ of a real analytic
function, then df : TU → TR, and

df ·X := dfp(X(p)).

Definition 2.3. Let f : (Rn, 0) → (R, 0) be a germ of a real analytic function and
V (f) := {a ∈ Rn : f(a) = 0} be a hypersurface. We say that, p is an isolated singularity
of f , or of the hypersurface V (f) if p is an isolated point of V (f, f1, ..., fn), where
V (f, f1, f2, ..., fn) := {a ∈ Rn : f(a) = f1(a), ..., fn(a) = 0}, with fi := ∂f

∂xi
i = 1, ..., n.
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Definition 2.4. If f and V (f) are as in the previous definition, we define a singularity
algebraically isolated p of f or V (f) to be an isolated point p of V (f, f1, ..., fn) after we
complexify the function f .

Proposition 2.1.1. Let f be a real analytic function and X be a germ of a real ana-
lytic vector field with an isolated singularity at 0, such that it is tangent to a smooth
hypersurface

V (f) := {(a1, ..., an) ∈ Rn | f(a1, ..., an) = 0}.

Then df ·X |V (f)= 0 if and only if df · X = hf , for some analytic function h. The
function h will be called the cofactor.

Proof. Since 0 is an isolated singularity of the vector field X, there exists a change of
coordinates (w1, ..., wn), and functions ϕ,ψ ∈ Cω with ψ = ϕ−1 such that

f(ϕ(w1, ..., wn)) = w1. (It is an immediate consequence of the implicit theorem.)

On the other hand, for the vector field X, let us define the vector field X̃ by X̃ = DψX.
Therefore, df · X̃ =

∑n
j=1 X̃j

∂f
∂wj

= X̃1. Since X̃ is a vector field of class Cω, then the

Taylor series expansion of X̃1 is

X̃1 = w1h1(w2, . . . , wn) + w2
1h2(w2, . . . , wn) + . . .+ wn1hn(w2, . . . , wn) +Rn.

h1 is the cofactor, and Rn is the residue of the Taylor series.

Conversely, suppose that df ·X = hf for some analytic function h then df ·X |V (f)=
h(a1, ..., an)f(a1, ..., an) = 0 and df ·X |V (f)= 0 for all (a1, ..., an) ∈ V (f).

Proposition 2.1.2. Let f , V (f) and X be as in Proposition (2.1.1), then the cofactor
is invariant under a change of coordinates, i.e.

h̃(p) = h(ϕ(p)) with p ∈ V (f)− {0}. (2.1)

Proof. Since p is a regular point of f , there exist local functions ϕ, ψ : Rn → Rn with
ϕ(p) = q such that

f̃ = f ◦ ϕ(y1, ..., yn) = yn and ψ = ϕ−1. (2.2)

It is a consequence of the implicit theorem (see [26], p. 401). So, by the chain rule, we
get

(∇f̃)p = (∇f)ϕ(p) · (Dϕ)p. (2.3)

Moreover, if we push forward the real analytic vector field X with Dψ, then we get X̃.
i.e.

X̃(q) = (Dψ)ϕ(p)Xϕ(p). (2.4)
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If we see the Proposition (2.1.1). It follows that

∇f(p)X(p) = h(p)f(p), (2.5)

and

∇f̃(p) · X̃(p) = h̃(p)f̃(p). (2.6)

From (2.3) and (2.4), we obtain

∇f̃(p) · X̃(p) = ∇(f)ϕ(p)DϕpDψϕ(p)Xϕ(p). (2.7)

Since, DϕDψ = D(ϕ ◦ ψ) = DI = I then

∇f̃(p) · X̃(p) = ∇(f)ϕ(p)Xϕ(p). (2.8)

If we consider (2.5), then the previous equation is

∇f̃(p) · X̃(p) = h(ϕ(p))f(ϕ(p)). (2.9)

By (2.2), we get

∇f̃(p) · X̃(p) = h(ϕ(p))f̃(p). (2.10)

Thus, if we see the equations (2.6) and (2.10), then

h̃(p) = h(ϕ(p)).

Graphically

In this case, X̃p = DψXq, ϕ(p) = q.
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2.2 The absolute index; Poincaré-Hopf index

We define the sphere of radius ε to be

Sn−1
ε = {x ∈ Rn| ‖ x ‖= ε}.

Indeed, Sn−1
1 denotes the sphere of radius equal to 1. If X be a real analytic vector

field with an isolated singularity at 0, and η : Sn−1
ε → Sn−1

1 is a continuous map, then
η induces a homomorphism

η∗ : Hn−1(Sn−1
ε )→ Hn−1(Sn−1

1 ).

Since, Hn−1(Sn−1
ε ) ' Z then η∗ : x 7→ dx for some fixed d ∈ Z. The integer d will be

called the degree of η.

Remark 2.1. If η is a real analytic function with an isolated singularity at 0, then we
define the degree of η, denoted deg(η), to be the sum of the signs of the Jacobian of η,
at all regular values q ∈ Sn−1

1 . (See [28] Lemma 3, p. 36, Lemma 4, p. 37).

Definition 2.5. Let X be a real analytic vector field with isolated singularity at 0 then
d is the Poincaré-Hopf index, denoted (IndRn(X,0)).

Remark 2.2. Since X is a real analytic vector field, then

DX =


∂X1

∂x1
... ∂X1

∂xn
. .
. .
. .

∂Xn

∂x1
... ∂Xn

∂xn

 . (2.11)

Note that, if p is an isolated singularity of X := (X1, ..., Xn) such that |DX(p)| 6= 0,
then the Poincaré-Hopf index of X at p can be computed as the sign|DX(p)|. (See
[3], [27]).

Remark 2.3. We consider X as a real analytic vector field and 0 an isolated singularity
of X. If Xt is a small perturbation of X of class Cω, then

IndRn(X, 0) =
∑

Xt(pi)=0, pi∈B

IndRn(Xt, pi). (2.12)

We will interpret B as a neighborhood of 0, and the points pi are isolated singularities
of Xt in B, with i = 1, . . . , `, ` ∈ Z>0.
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Graphically, we have the following situation,

Zero is an isolated singularity.

In this case, IndRn(X, 0) =
∑6

i=1 IndRn(Xt, pi), pi ∈ B.

2.3 The relative index; GSV-index

Definition 2.6. Let X be germs of a real analytic vector field, with an algebraic isolated
singularity at 0, such that it is tangent to

H := {(x1, x2, ..., xn) ∈ Rn : xn = 0}.

Let Y := X |H . We define the relative index of the vector field X, to be the Poincaré-
Hopf index of the real analytic vector field Y .

We will interpret the vector fieldX in coordinates by definingX = (X1, ..., Xn−1, xnh),
where h is the real analytic function and xn ∈ R.

17



Furthermore, since X is tangent to H and Y = X |H , then, DX and DY can be
expressed as

DX =



∂X1

∂x1
... ∂X1

∂xn
. .
. .
. .

∂Xn−1

∂x1
... ∂Xn−1

∂xn
xn

∂h
∂x1

... h+ xn
∂h
∂xn


;DY =


∂X1

∂x1
... ∂X1

∂xn−1

. .

. .

. .
∂Xn−1

∂x1
∂Xn−1

∂xn−1
.


It follows that

DX |H=

(
DY ?

0 h

)
.

Finally, |DX(0)| is equal to

| DX(0) |= h(0) | DY (0) | . (2.13)

Remark 2.4. According to the previous paragraph, we define the relative index of
X, to be sign | DY (0) |.

Lemma 2.3.1. Let X be germs of a real analytic vector field with an isolated singularity
at 0, and tangent to H, such that | DX(0) |6= 0. If Y is the restriction of X to H, then

IndRn(X, 0) = sign(h(0))IndH(Y, 0).

Proof. Since, |DX(0)| 6= 0 and | DX(0) |= h(0) | DY (0) |, then from the equation
(2.13) it follows that h(0) 6= 0 and |DY (0)| 6= 0. Namely, if Y := X|H and X has an
isolated singularity at 0, clearly Y has an isolated singularity at 0. Now, let us consider
the sign on (2.13). Then, we get

IndRn(X, 0) = sign(h(0))IndH(Y, 0).

Corollary 2.1. Assuming the hypothesis of Lemma, (2.3.1), and if p is an isolated
singularity of the vector field X, then

a) IndH(Y, p) = IndRn(X, p) ⇐⇒ h(p) > 0.
b) IndH(Y, p) = −IndRn(X, p) ⇐⇒ h(p) < 0.

Proof. The proof of a) and b) follows immediately if we consider

IndRn(X, p) = sign(h(p))IndH(Y, p).

Indeed, if h(p) > 0 then IndH(Y, p) = IndRn(X, p) and IndH(Y, p) = −IndRn(X, p),
when h(p) < 0.

18



As an illustration of a change in the topology of the Milnor fibers, we will use the
calculus of the GSV-index. To show this, we will exhibit in an example the structure
of a singular hypersurface, using a uniparametric non-singular hypersurface when it
passes through 0.

Example 2.3.1.

Let f : (R3, 0)→ (R, 0) be a germ of a real analytic function, and

Xt = (f − t,−fz, fy)

be a uniparametric family of the vector fields of class Cω, (with fy = ∂f
∂y , fz = ∂f

∂z ).

If Xt is tangent to the hypersurface Vt(f) = {(a, b, c) ∈ R3 : f(a, b, c) = t}, then
df · Xt = ∇f · Xt = (fx, fy, fz) · ((f − t),−fz, fy) = fx(f − t). So, fx = ∂f

∂x is the
cofactor. In particular, if f = x2 + y2 − z2 then the cofactor is fx = 2x.

Now, we will study the topology of our smooth family of hypersurfaces. To do so,
we consider different values of t in Vt = {(a, b, c) ∈ R3 : f(a, b, c) = t} . Indeed, if t = 0
then hypersurface V0(f) = {(a, b, c) ∈ R3 : f(a, b, c) = 0} is

The hypersurface V0.
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Thus, if t = 1, then we will obtain

The hypersurface V1 = {f = 1}.
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Finally, when t = −1, then we will get

The hypersurface 3 V−1 = {f = −1}.
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So, let us consider the GSV-index of the vector field Xt, for different values of t, and
we will observe an interesting phenomenon. Indeed, if t = 0, then the origin (0, 0, 0) is
an isolated singularity of X0.

We note that, if t = 1, then the points p1 = (1, 0, 0) , p2 = (−1, 0, 0) are the isolated
singularities of X1. On the other hand, if DX1 is defined to be

|DX1| =

∣∣∣∣∣∣
 2x 2y −2z

0 0 2
0 2 0

∣∣∣∣∣∣ = −8x

then, the sign| DX(p1) |= 1, and the sign| DX(p2) |= −1. Hence, IndR3(X, 0) = 0. It
is a direct consequence of the additivity property of the Poincare-Hopf index.

Since, 2x is the cofactor, then h(p1) = 2(1) > 0 and h(p2) = 2(−1) < 0. There-
fore, from Corollary (2.1) we have IndR2(Y, p1) = −1 and IndR2(Y, p2) = −1. Thus
IndR2(Y, 0) = −2.

If t = −1, then the set of singularities of vector field X−1 = (x2 +y2−z2 +1, 2z, 2y)
are not considered to be real. So, IndR3(X, 0) = IndR2(Y, 0) = 0. Hence we conclude
that:

1. If t > 0, then IndR3(X, 0) = 0 and IndVt(Y, 0) = −2.

2. If t < 0, then IndR3(X, 0) = 0 and IndVt(Y, 0) = 0.

Consequently, by the previous paragraph we have that the relative index changed, but
the Poincare-Hopf index of Xt for different values of t did not change.
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Chapter 3

Algebraic properties of vector
fields and symmetric forms

Eisenbud-Levine used a symmetric bilinear form to compute the degree of the function
f . Denoted deg(f), with f ∈ Cω. In this chapter, we define the general notion of
algebra and study in detail an example of degenerate bilinear form. We will work with
Zarisky topology.

Definition 3.1. A sequence of elements {x1, . . . , xd} on a ring R is a regular sequence
if the ideal (x1, . . . , xd) is proper, and the image of xi+1 is a nonzero divisor in R

(x1,...,xi)
.

Definition 3.2. A local ring N is a complete intersection ring if there exists a regular
local Noetherian ring R, and a regular sequence {x1, x2, . . . , xn} in R such that

N ' R

(x1, . . . , xn)
.

Remark 3.1. Let K be a field of characteristic 0 and K[x1, . . . , xn] be the ring of
polynomials with n variables. Namely, if I is an ideal in K[x1, . . . , xn], then

A =
K[x1, . . . , xn]

I

is an algebra and the following are equivalent:

1. A is a finite-dimensional over K.

2. The variety V (I) ∈ Kn is a finite set

V (I) := {(a1, . . . , an) ∈ Kn : fλ(a1, . . . , an) = 0, and fλ ∈ I, λ ∈ Λ}

where, Λ is a finite set of indices.

3. The ideal I is zero-dimensional.
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Definition 3.3. Let V be an affine variety. If I(V ) is the ideal of polynomials vanishing
on V, then, we define the coordinate ring of V, to be

K[V ] =
K[x1, . . . , xn]

I(V )
.

An element f ∈ K[V ] will be called a regular function.

Definition 3.4. Let ARn,0 be the ring of germs of regular funcions of Rn at 0, and
R{{x1, . . . , xn}} be the set of convergent power series. If f1, . . . , fn ∈ R{{x1, . . . , xn}},
then 0 is called an algebraically isolated singularity of {f1, . . . , fn}, when O =

ARn,0

(f1,...,fn)
it is finite dimensional.

Moreover, let OV,p be the ring of germs of regular functions of V at p. If V is an affine
variety with a coordinate ring K[V ], then:

1. OV,p is a local ring, with maximal ideal

mp = {f ∈ OV,p | f(p) = 0}. (3.1)

2. OV,p ' K[V ]mp , where

K[V ]mp = {f
g
| f, g ∈ K[V ], g /∈ mp}. (3.2)

.

3. dim(OV,p) = max{dimVi | p ∈ Vi}, where Vi are the irreducible components of
V , i ∈ Λ and Λ denotes a finite set of indices.

(See [19] page 469.)

3.1 Symmetric bilinear forms and Sylvester’s theorem.

In this section, we will give some basic definitions of the symmetric bilinear forms.
Next, we will remember the inertia theorem.

Definition 3.5. Let V be a vector space over field K. The bilinear form on V
φ : V × V → K is said to be symmetric if φ(u, v) = φ(v, u) for all u, v ∈ V.

Remark 3.2. If φ : V × V → K is a symmetric bilinear form, then the associated
matrix is symmetric.
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Theorem 3.1. Sylvester’s Law of inertia.
If V is a real vector space of dimension n ≥ 1, and φ : V × V → R is a symmetric
bilinear form on V of rank r ≤ n, then, there is an integer p with 0 ≤ p ≤ r depending
only on φ, and a basis B = {e1, .., en} of V . Therefore, the associated matrix to φ has
the following form  Ip 0 0

0 −Iq 0
0 0 0n−(p+q)

 .

The symbol 0n−(p+q), denotes the zero matrix of suitable size.

3.2 Examples of bilinear forms in commutative algebra

In this section, we motivate our next results with an example of a degenerate symmetric
bilinear form on R3. We will compute the signature in different subspaces of R3, and
the one parameter family. Finally, we will give a specific example that arises from
commutative algebra.

Let us consider the degenerate symmetric bilinear form 〈 , 〉 : R3 × R3 → R, with
associated matrix Q given by

Q =

 0 −1 0
−1 0 0
0 0 0

 .

If v1 =

 a1

b1
c1

 , v2 =

 a2

b2
c2

 ∈ R3. They are arbitrary fixed vectors. Then, v1Qv2

or 〈v1, v2〉 is

〈

 a1

b1
c1

 ,

 a2

b2
c2

〉 = −a1b2 − b1a2. (3.3)

Since, v2 is an arbitrary vector, we get 〈v1, v2〉 = 0 if and only if -a1b2 − b1a2 = 0, and
(a1, b1) = (0, 0). On the other hand, we define the annihilator of Q, denoted Ann〈 , 〉,
to be

Ann〈 , 〉 := {v̄ ∈ R3 : v̄Qv̄1 = 0}. (3.4)

With v̄1 ∈ R3, it is a vector fixed in R3. Therefore, the annihilator of the matrix Q is
Ann〈 , 〉 = (0, 0)× R.

25



Analysis of the bilinear form restricted to 1-dimensional subspaces

We begin by investigating the symmetric bilinear form when we have a one-dimensional
subspace. So, let L be a line in R3, namely

L = {(a1, b1, c1) ∈ R3 : (a1, b1, c1) = λ(a, b, c), where λ ∈ R− {0} and (a, b, c) is fixed vector }.

In fact, if λ, µ ∈ R then λ

 a
b
c

 and µ

 a
b
c

 ∈ L. Thus, we can write

〈λ

 a
b
c

 , µ

 a
b
c

〉 = −2abλµ = 0 if and only if ab = 0. (3.5)

In particular, if a = 0 or b = 0, we can define two planes in R3 to be

P1 = gen{

 0
b
0

 ,

 0
0
c

}, and P2 = gen{

 a
0
0

 ,

 0
0
c

}.

Hence, if L ⊂ P1 ∪ P2, then 〈 , 〉 |L= 0, and if L 6⊂ P1 ∪ P2, then the bilinear form
restricted to L is 〈(λa, λb, λc), (µa, µb, µc)〉 = −2λaµb = −2a1b2.

So, we conclude that, Q |L is nondegenerate and its signature σ is :

1) σ = −1 If a1, b2 > 0 or a1, b2 < 0.

2) σ = 1 If a1 > 0, b2 < 0 or a1 < 0, b2 > 0.

The intersection of the previous planes divides R3 in four connected components. See
the following figure:

We have four connected components: R3 − {a1 = b1 = 0}.
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Analysis of the bilinear form restricted to 2-dimensional subspaces in R3

Our next objective is to analyse the degenerate symmetric bilinear form, restricted to
planes in R3.
Let P be a plane on R3, such that it is generated by the vectors {v1, v1}, where

v1 =

 a1

b1
c1

 and v2 =

 a2

b2
c2

 .

Namely,

P = gen

λ
 a1

b1
c1

+ µ

 a2

b2
c2

 .

If we recall the equation (3.4), then Ann〈 , 〉 := gen


 0

0
1

 . Thus, if Ann〈 , 〉 ⊂ P,

and let us consider the vectors v1 =

 0
0
1

 and v2 =

 a
b
c

, then the bilinear form is

〈
λ1

 0
0
1

+ λ2

 a
b
c

 , µ1

 0
0
1

+ µ2

 a
b
c

〉 = −2λ2µ2ab.

If a or b is zero, then

〈 , 〉 |P= 0. (3.6)

Moreover, if a, b 6= 0, then 〈 , 〉 = −2λ2µ2ab. It has rank 1, and its signature is equal
to ±1 as in the case of one-dimensional subspace.
Indeed, the associated matrix is

〈

 0
0
1

 ,

 0
0
1

〉 〈

 0
0
1

 ,

 a
b
c

〉

〈

 a
b
c

 ,

 0
0
1

〉 〈
 a

b
c

 ,

 a
b
c

〉


=

(
0 0
0 −2ab

)
.
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If P ∩Ann〈 , 〉 = {0}, and let

v1 =

 a1

b1
c1

 , v2 =

 a2

b2
c2


be independent linear vectors in R3, such that P := gen{v1, v2}, then

det

(
a1 a2

b1 b2

)
6= 0.

In particular, we may choose generators of P as

v1 =

 1
0
c1

 , v2 =

 0
1
c2

 .

So, we get

〈λ1v1 + λ2v2, µ1v1 + µ2v2〉 = −λ2µ1 − λ1µ2 = (λ1, λ2)

(
0 −1
−1 0

)(
µ1

µ2

)
.

Therefore, P = Rv1×Rv2, and 〈 , 〉 is nondegenerate with rank 2 and its signature is 0.
Consequently, from the previous discussion we get the following lemma,

Lemma 3.2.1. If P is any plane such that 〈 , 〉 |P has rank 2 then the signature is 0.

Analysis of the bilinear form on a one-parameter family

In this case, we will illustrate that the contribution of the signature corresponds to the
dimension of the annihilator of the matrix Q.
We start with a one-parameter family of bilinear forms in R3, with associated matrix
defined by

Qt =

 0 −1 0
−1 0 0
0 0 0

+ t

 α1 α2 α3

α2 α4 α5

α3 α5 α6

 .

With 0 < t << 1, it has the property

{t ∈ R− {0} | 〈 , 〉t, it is nondegenerate }. (3.7)

Thus, we can write

Qt =

 tα1 −1 + tα2 tα3

−1 + tα2 tα4 tα5

tα3 tα5 tα6

 .
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Hence,

det(Qt) = t3α1α4α6− t3α1α
2
5− t3α2

2α6 +2t3α2α3α5− t3α2
3α4 +2t2α2α6−2t2α3α5− tα6.

Indeed, if det(Qt) 6= 0, then we can factorize t. Consequently, we obtain

det(Qt) = t[t2(α1α4α6 − α1α
2
5 − α2

2α6 + α2α3α5 − α2
3α4) + 2t(α2α6 − α3α5)− α6].(3.8)

Note that the term t inside of the square brackets in the previous formula is independent
from t. So, if t << 1, the sign of det(Qt) depends only on the sign of α6. Therefore,
we have the following result.

Lemma 3.2.2. Let us consider α6 in (3.8), then

• If α6 > 0, then for small values of t we have that det(Qt) < 0, and the signature
is +1.

• If α6 < 0, then for small values of t we have that det(Qt) > 0, and the signature
is −1.

• If t = 0, then the rank is 2 and the signature is 0.

In the previous example, we motivated our main objects of study. In fact, we will
explore the relationship between the new contribution to the signature in the relative
case. We will get the answer in our main theorem.

Our next example arises from commutative algebra. We will obtain a degenerate sym-
metric bilinear form with associated matrix equal to the matrix Q defined in the be-
ginning.

Example 3.2.1. Let us consider the real analytic function f : R2 → R defined to be

f(x, y) = (x− y2) · (x2 − y).

Thus, {x, y} is a reduced Groebner basis of ∇f and (0, 0) is an algebraically isolated
singularity of f .
Since R[x, y] is the ring of polynomials on the variables x, y. Then B0 is defined by

B0 =
R[x, y]

(f, fy)
, (3.9)

and {1, y, y2} is a basis of B0. Note that the Jacobian class of {f, fy} in B0 is

[J(f, fy)]B0 :=

[(
∂f
∂x

∂f
∂y

∂fy
∂x

∂fy
∂y

)]
B0

= y2.

Furthermore, if we define the relative symmetric bilinear form to be

〈 , 〉rel0 : B0 ×B0
·−→ B0

fx−→ B0
L0−→ R,

and the linear map L : B0 → R by

L0(y2) = 1, L0(y) = L0(1) = 0,
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then we get

Multiplication after [fx]B0=−y
base 1 y y2

1 L0(−y) L0(−y2) 0
y L0(−y2) 0 0
y2 0 0 0

.

Hence, the associated matrix is

Q =

 0 −1 0
−1 0 0
0 0 0

 .
We conclude that Ann〈 , 〉rel0 = AnnB0(fx).
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Chapter 4

The absolute index

In this chapter, we will describe an algebraic method to compute the signature of non-
degenerate symmetric bilinear forms.

Let V be a finite dimensional vector space, and 〈 , 〉 be a symmetric bilinear form,
defined by 〈 , 〉 : V × V → R. If we consider the inertia theorem, then the associated
matrix to the symmetric bilinear form, it is equivalent to a diagonal matrix. So, we
define the signature to be

σ̃ = (p, q, r) (4.1)

or simply

σ = p− q ∈ Z (4.2)

where, p, q, r represent the positive numbers, the negative numbers and the number of
zeros.

4.1 Bm as an R-vector space

Let ARn,0 be the algebra of germs of real analytic functions on Rn, with coordi-
nates (x1, . . . , xn). Thus, if (f, f2, . . . , fn), (f1, f2, . . . , fn) are regular sequences, where
f, f2, . . . , fn ∈ ARn,0, and fi = ∂f

∂xi
, then we define the local algebra C, to be

C =
ARn,0

(f2, ..., fn)
, (4.3)

and the finite vector space Bm, by

Bm =
C

(fm+1)
'

ARn,0

(fm+1, f2, ..., fn)
. (4.4)

m ∈ Λ. Λ denotes a finite set of indices. The function fm+1 is f to the power m+ 1.
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Lemma 4.1.1. Let v1, ..., vs be real analytic functions, such that v1, ..., vs ∈ C and
{[v1]0, ..., [vs]0} is a basis of B0 as an R-vector space. [vj ]i denotes the class of vj in
Bi, with j = 1, ...s, and i = 1, ...,m. So, if m ≥ 0 then

{[v1]m, ..., [vs]m, ..., [f
mv1]m, ..., [f

mvs]m} is a basis of Bm.

Proof. We will proceed by induction. Hence, from the hypothesis, the lemma is true
for m = 0. Furthermore, we suppose

{[v1]m−1, ..., [vs]m−1, ..., [f
m−1v1]m−1, ..., [f

m−1vs]m−1} (4.5)

is a basis of Bm−1. So, we will prove the lemma for case m. If

s∑
i=1

α1
i [vi]m +

s∑
i=1

α2
i [fvi]m + ...+

s∑
i

αmi [fmvi]m = 0 ∈ Bm, (4.6)

then,

s∑
i=1

α1
i vi +

s∑
i=1

α2
i fvi + ...+

s∑
i=1

αmi f
mvi = gmf

m+1 ∈ C. (4.7)

If we reduce mod(fm) in (4.7), we have,

s∑
i=1

α1
i [vi]m−1 +

s∑
i=1

α2
i [fvi]m−1 + . . .+

s∑
i=0

αm−1
i [fm−1vi]m−1 = 0 ∈ Bm−1, (4.8)

but {[v1]m−1, . . . , [vs]m−1, . . . , [f
m−1v1]m−1, . . . , [f

m−1vs]m−1} is a basis of Bm−1, then

α1
1 = α1

2 = . . . = α1
s = . . . = αm−1

1 = . . . = αm−1
s = 0. (4.9)

Thus, from (4.7) and (4.9) we get,

s∑
i=1

αmi f
mvi = gmf

m+1 ∈ C (4.10)

then,

fm(
s∑
i=1

αmi vi − gmf) = 0 ∈ C. (4.11)

Since, fm is not a zero divisor in C, because (f, f1, . . . , fm) is a regular sequence, then,

s∑
i=1

αmi vi = gmf. (4.12)

If we reduce mod(f), we obtain

0 =

s∑
i=1

αmi [vi]0 ∈ B0 (4.13)
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Since, {[v1]0, . . . , [vs]0} is a basis of B0, then

αm1 = αm2 = . . . = αms = 0. (4.14)

Indeed, from (4.6) and (4.14), the set {[v1]m, . . . , [vs]m, . . . , [f
mv1]m, . . . , [f

mvs]m} is a
set of linearly independent vectors.
Now, we will prove that dim(Bm) ≤ sm, with dim(B0) = s. So, we will proceed in
several steps. First, we will define an element [a]m ∈ Bm, to be a = α0 +α1f +α2f

2 +
. . .+ αmf

m then ϕ([a]m) = α0. Hence, we have an exact sequence

0→ kerϕ→ Bm
ϕ→ B0 → 0 (4.15)

and, Bm = B0 × ker(ϕ). Furthermore, the previous exact sequence is equivalent to

0→ (f)

(fm+1)
→ C

(fm+1)

ϕ→ (C)

(f)
→ 0. (4.16)

Moreover, let us define a map ψ : Bm−1 → (f)
(fm+1)

to be

ψ([a]m−1) = [af ]m. (4.17)

It is clearly subjective because, if [hf ] ∈ (f)
(fm+1)

, then there exists [h]m−1 ∈ Bm−1 such

that ψ([h]m−1) = [hf ]m. It is well defined, since [a]m−1 = [b]m−1, then a − b ∈ (fm).
Indeed (a− b)f = af − bf ∈ fmf = fm+1 and [af ]m = [bf ]m.

Since, Bm = B0 ⊕ ker(ϕ), then dim(Bm) = dim(B0) + dim ker(ϕ).

If we consider (4.15) and (4.16), then ker(ϕ) = (f)
(fm+1)

, and by (4.17) we get

dim ker(ϕ) ≤ dimBm−1. (4.18)

Therefore,
dimBm ≤ dim B0 + dim Bm−1 and from (4.18)
dimBm = s + s(m-1) by the induction hypothesis, we get
dimBm = sm.

We note that, Bm has sm linearly independent vectors with dim(Bm) ≤ sm. Hence,
the set {[v1]m, . . . , [vs]m, . . . , [f

mv1]m, . . . , [f
mvs]m} is a basis of Bm.
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4.2 The socle and the bilinear forms in Bm

In any local algebra, the annihilator of the maximal ideal is called the socle.

Let f1, f2, . . . , fn ∈ ARn,0, such that (f1, . . . , fn) is a regular sequence. If A :=
ARn,0

(f1,...,fn)

is the algebra, then the class of the Jacobian of {f1, . . . , fn} denoted Jac(f1, . . . , fn) in
the algebra A is the socle. (See [11]).
In this section, we will compute the socle in the local algebra Bm, where Bm :=

ARn,0

(fm+1,...,fn)
, m = 1, . . . , ` ,` ∈ Z≥0.

Remark 4.1.

• Let I be an ideal in B0, then I⊥ is an ideal in B0, and AnnB0(I) = I⊥.

• If B0 is a local algebra, then B0 has a unique minimal ideal called the socle.

• The socle is generated by the residue class of Jacobian of {f, f2, . . . , fn} in B0,
denoted J0 ([11] Proposition 3.2 P.25, Corollary 3.3 P.25, Corollary 4.5 P.35).

Lemma 4.2.1. Let f : (Rn, 0) → (R, 0) be a germ of a real analytic function, and
(f, f2, . . . , fn) be a regular sequence. If J0 = [J ]0, is the class of the Jacobian in B0,
then Jm = [J ]m denotes the class of the Jacobian in the local algebra Bm. If J0 gene-
rates the socle in B0 then [fmJ ]m generates the socle of Bm.

Proof. Since J0 is the Jacobian class of {f1, . . . , fn}, we have

J0 =

det


f1 f2 ... fn
f21 f22 ... f2n

. . ... .

. . ... .

. . ... .
fn1 fn2 ... fnn




0

,

where fi = ∂f
∂xi

and fij = ∂2f
∂xi∂xj

. Moreover, we consider the Jacobian class of {fm+1, f2, . . . , fn}
defined by

Jac(fm+1, f2, . . . , fn) = det



(m+ 1)fmf1 (m+ 1)fmf2 ... (m+ 1)fmfn
f21 f22 ... f2n

. . ... .

. . ... .

. . ... .
fn1 fn2 ... fnn

 .

Since Jac(fm+1, f2, . . . , fn) is a determinant we have

Jac(fm+1, f2, . . . , fn) = (m+ 1)fmJac(f, f2, . . . , fn). (4.19)
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If we consider the class of Bm in (4.19), then we obtain

[(m+ 1)fmJac(f, f2, . . . , fn)]m = [(m+ 1)fmJ ]m = (m+ 1)[fmJ ]m. Hence, [fmJ ]Bm

is a positive generator of the socle.
Since, Bm is a local algebra, then it has a unique minimal ideal. Therefore, the socle
in Bm is generated by [fmJ ]m.

4.3 Multiplicative structure of Bm

In this section, we will get a Taylor series decomposition of the spaces Bm, in terms of
the space B0. We will also introduce symmetric bilinear forms, and we will obtain an
algebraic method to compute the signature in the nondegenerate case.

Let f, f2, . . . , fn : (Rn, 0) → (R, 0) be germs of real analytic functions, such that
(f, f2, . . . , fn), is a regular sequence. If ARn,0 is the set of germs of real analytic func-
tions, then we define the local algebra C by

C :=
ARn,0

(f2, . . . , fn)
. (4.20)

We also, define the finite vector Bm to be

Bm :=
C

(fm+1)
=

ARn,0

(fm+1, f2, . . . , fn)
. (4.21)

Lemma 4.3.1. If fm and fm+1 denote f to the power m and m+ 1 respectively, then
(fm)

(fm+1)
' fmB0, for m = 1, 2, . . . , `, ` ∈ Z≥0.

Proof. First, we define a map ϕ : fmB0 → (fm)
(fm+1)

, to be ϕ(b) := b
fm+1 . (We recall

that, (fm+1) ⊂ (fm) ⊂, . . . ,⊂ (f)). It is injective. Thus, if b ∈ fmB0 with ϕ(b) = 0
then b

fm+1 = 0 and b ∈ (fm+1). Since b ∈ fmB0, then we can take b0 ∈ B0 to define

b = fmb0. Thus, using the fact b ∈ (fm+1) we get fmb0 ∈ (fm+1) and b0 ∈ (f). Since,
b0 ∈ B0 and b0 ∈ (f), then b = 0 and the map ϕ is injective. To see that the map ϕ is

surjective, if α is an element of (fm)
(fm+1)

, then ϕ(fm+1α) = α. Therefore, ϕ is a surjective

map, and we get the result.

Lemma 4.3.2. If Bm is defined as in (4.21), then Bm ' B0 ⊕ fB0 ⊕ . . . ⊕ fmB0, as
R-vector spaces.

Proof. First, we will prove the lemma when m = 1, since (f)
(f2)
' fB0 and we define an

exact sequence of R-vector spaces, to be

0 −→ (f)

(f2)

i−→ B1
π−→ B0 −→ 0,

then, B1 ' B0 ⊕ (f)
(f)2

,and by Lemma (4.3.1) we have B1 ' B0 ⊕ fB0.
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So proceeding by induction on m = k, with k ∈ Z≥0, we obtain

Bk ' B0 ⊕ fB0 ⊕ f2B0 ⊕ . . .⊕ fkB0. (4.22)

then, we will prove the lemma for m = k + 1. Thus, let us consider

0 −→ (fk+1)

(fk+2)

i−→ Bk+1
π−→ Bk −→ 0

be an exact sequence. Therefore, from Lemma (4.3.1) and the previous equation we
get

Bk+1 = Bk ⊕ fk+1B0. (4.23)

Using (4.22) and (4.23), it follows that

Bk+1 ' B0 ⊕ fB0 ⊕ f2B0 ⊕ . . .⊕ fk+1B0.

Lemma 4.3.3. Let Bm be defined as in (4.21). If µm : Bm×Bm −→ Bm are symmetric
bilinear forms, such that for all vi, vj ∈ Bm we have µm([vi]m[vj ]m) = [vivj ]m, (where
m = 1, 2, . . . , `, i, j = 1, . . . , s, `, s ∈ Z≥0). Then, µm has the associated matrix given
by

Qm =


Q0 + fH1 + · · ·+ fmHm fQ0 + f2H1 + · · ·+ fmHm−1 · · · fmQ0

fQ0 + f2H1 + · · ·+ fmHm−1 · · · fmQ0 0
...

. . . 0 0

fmQ0 0 0 0

 =


Q0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+f


H1 Q0 · · · 0

Q0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+· · ·+fm


Hm Hm−1 · H1 Q0

Hm−1 · · · H1 Q0 0
...

. . .
. . . 0 0

H1 Q0 0 0 0

Q0 0 0 0 0

 .

Proof. We will discuss in detail the cases m = 0, 1. And, we will consider the same
steps to get the general case.
Let {[v1]0, . . . , [vs]0} be an R-basis of B0, such that v1 = 1 and vs ∈ J0. Since, Bm '
B0⊕fB0⊕· · ·⊕fmB0, then {[v1]m, . . . , [vs]m, [fv1]m, . . . , [fvs]m, . . . , [f

mv1]m, . . . , [f
mvs]m}

is an R-basis of Bm.
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Case m = 0

Let µ0 : B0 ×B0 −→ B0, be the nondegenerate symmetric bilinear form.
Since, {[v1]0, . . . , [vs]0} is an R-basis of B0, then we define the associated matrix to the
bilinear form µ0, denoted Q0, to be

µ0([vi]0, [vj ]0) = [vi · vj ]0 = (qij) = Q0, (4.24)

where i, j = 1, . . . , s, s ∈ Z≥0.

Case m = 1

Let µ1 : B1 × B1 −→ B1 be the nondegenerate symmetric bilinear form in B1 :=
ARn,0

(f2,f2,...,fn)
. Since, B1 ' B0 ⊕ fB0 and {[v1]0, . . . , [vs]0} is an R−basis of B0, then

{[v1]1, . . . , [vs]1, [fv1]1, . . . , [fvs]1} is an R-basis of B1. Thus, we can define the sym-
metric bilinear form in B1, to be

1) µ1([vi]1, [vj ]1) = [vi · vj ]1 = qij + fh1
ij = (Q0 + fH1)ij

2) µ1([fvi]1, [vj ]1) = µ1([vi]1, fvj ]1) = [f · vi · vj ]1 = f(qij + fh1
ij) = (fQ0)ij

3) µ1([fvi]1, [fvj ]1) = 0.

Hence, µ1( , ) can be represented by the following matrix:

Q1 =

[
Q0 + fH1 fQ0

fQ0 0

]
=

[
Q0 0

0 0

]
+ f

[
H1 Q0

Q0 0

]
. (4.25)

In general, from Lemma (4.3.2) we have, Bm ' B0 ⊕ fB0 ⊕ ... ⊕ fmB0. Now, if
{[v1]0, . . . , [vs]0} is an R−basis ofB0, then {[v1]m, . . . , [vs]m, [fv1]m, . . . , [fvs]m, . . . , [f

mv1]m
, . . . , [fmvs]m} is an R-basis of Bm. If µm : Bm × Bm −→ Bm are the nondegenerate
symmetric bilinear forms, where m = 1, . . . , `, ` ∈ Z≥0. Then we can define the sym-
metric bilinear forms µm, to be

1) µm([vi]m, [vj ]m) = [vi · vj ]m = qij + fh1
ij + f2h2

ij+, . . . ,+f
mhmij = (Q0 + fH1 +

f2H2+, . . . , fmHm)i,j

2) µm(f [vi]m, [vj ]m) = µm([vi]m, [fvj ]m) = [f ·vi·vj ]m = (fqij+f
2h1
ij+f

3h2
ij+, . . . ,+f

mhm−1
ij ) =

(fQ0 + f2H1 + f3H2+, . . . , fmHm−1)i,j

3) µm([fvi]m, [fvj ]m) = µm([f2vi]m, [vj ]m) = µm([vi]m, [f
2vj ]m) = [f2 · vi · vj ] =

(f2Q0 + f3H1+
,. . . ,+fmHm−2)i,j .

...

37



m) µm([f ivi]m, [f
jvj ]m) = [fm · vi · vj ]m = (fmQ0)ij , with i+ j = m. µm( , ) is zero

in other cases.

Hence, the associated matrix to the symmetric bilinear form µm( ) has the following
representation,

Qm =


Q0 + fH1 + · · ·+ fmHm fQ0 + f2H1 + · · ·+ fmHm−1 · · · fmQ0

fQ0 + f2H1 + · · ·+ fmHm−1 · · · fmQ0 0
...

. . . 0 0

fmQ0 0 0 0

 =


Q0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+f


H1 Q0 · · · 0

Q0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+· · ·+fm


Hm Hm−1 · H1 Q0

Hm−1 · · · H1 Q0 0
...

. . .
. . . 0 0

H1 Q0 0 0 0

Q0 0 0 0 0

 .

Remark 4.2. The matrices Q0, H1, . . . ,Hm with coefficients in B0 are symmetrics.

If w,w
′ ∈ Bm, then w = a0 + fa1 + · · · + fmam and w

′
= b0 + fb1 + · · · + fmbm.

Therefore,
µm(w,w

′
) = µm((a0 + fa1 + · · · + fmam), (b0 + fb1 + · · · + fmbm))=µm(a0, b0) +

µm(a0, fb1) + · · ·+ µm(a0, f
mbm) + µm(fa1, b0) + µm(fa1, fb1) + · · ·+ µm(fmam, b0).

On the other hand,
µm(w

′
, w) = µm((b0 + ba1 + · · · + fmbm), (a0 + fa1 + · · · + fmam))=µm(b0, a0) +

µm(b0, fa1) + · · ·+ µm(b0, f
mam) + µm(fb1, a0) + µm(fb1, fa1) + · · ·+ µm(fmbm, a0).

Hence,
a0(Q0+fH1+· · ·+fmHm)b0+a0(fQ0+· · ·+fmHm−1)b1+a1(fQ0+· · ·+fmHm−1)b0+
· · · + am(fmQ0)b0 = b0(Q0 + fH1 + · · · + fmHm)a0 + b0(fQ0 + · · · + fmHm−1)a1 +
b1(fQ0 + · · ·+ fmHm−1a0 + · · ·+ bm(fmQ0)a0.
So,

a0Q0b0 = b0Q0a0,

then Q0 = Qt0. Similarly, Hi = Ht
i , for i = 1, · · · ,m.
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4.4 Calculus of the bilinear forms in Bm

Lemma 4.4.1. Let V be a finite vector space of dimension (m+1)s, and ϕ : V ×V → R
be a symmetric bilinear form with an associated matrix

QV =


0 . . . C
. . .
. .
. 0
C

 . (4.26)

Then,

σ(QV ) =

{
σ(C) if m is even,
0 if m is odd.

(4.27)

Proof. Let us consider a matrix S such that C is equivalent to the diagonal matrix D,
i.e.

D = StCS =



1
.
.
.

1
−1

.
.
−1


.

Therefore, the signature of the matrix D is σ̃ = (p, q, r) or σ = p− q, where p, q, r
denote, the positive, the negative, and zero numbers in the diagonal.
In general, we get

St

.
.
.

St




C
.

.
.

C




S
.
.
.
S

 (4.28)

=


StCS

.
.

.
StCS

 =


±1

.
.

.
±1

 . (4.29)

Note that the matrix (4.29) has ±1 in the anti diagonal. To see this, we can consider
the orthogonal basis on

R(m+1)s = Rs ⊕ Rs ⊕ ...⊕ Rs︸ ︷︷ ︸
(m+1)−times

,
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defined by

vjr = (0, . . . ,
vr√

2
, . . . , 0,

vr√
2
, . . . , 0) (4.30)

and

ujr = (0, . . . ,
vr√

2
, . . . , 0,

−vr√
2
, . . . , 0) (4.31)

1 ≤ j ≤ [
m+ 1

2
],

where, [m+1
2 ] denotes the minor integer of m+1

2 . The position of vr√
2

is in the j− th and

(m+ 1− {j − 1})− th respectively. Moreover, if m is odd

wr = (0, . . . , 0, vr, 0, . . . , 0) (4.32)

1 ≤ r ≤ s.
In this case the position of vr is in the middle. So, if m is even we get

vtjr


StCS

.
.

.
StCS

 vjr (4.33)

=
1

2
(etrS

tCSer + etrS
tCSer) = etrS

tCSer = ±1 (4.34)

and

utjr


StCS

.
.

.
StCS

ujr (4.35)

=
1

2
(etrS

tCS(−er) + (−etr)StCSer) = −etrStCSer = ∓1. (4.36)

Finally,

wtr


StCS

.
.

.
StCS

wr = wtrS
tCSwr (4.37)

= etrDS
tCSer = ±1. (4.38)

Hence, from ( 4.34),( 4.36) and ( 4.38) we have σ(QV ) = σ(C) form even and σ(QV ) = 0
for m odd.
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4.5 The absolute index of Bm

Now, we give a proof of Theorem (1.1).

Proof. Since {f, f2, ..., fm} is a regular sequence, then Bm is a vector space of finite

dimension. If v1, . . . , vs ∈
ARn,0

(f2,...,fn) such that {[v1]0, . . . , [vs]0} ∈ B0, it is an R-basis
with v1 = 1 and vs = J0, then

{[v1]m, . . . , [vs]m, [fv1]m, . . . , [fvs]m, . . . , [f
mv1]m, . . . , [f

mvs]m}

is an R-basis of Bm. From Lemma (4.3.2), we get

Bm = B0

⊕
fB0

⊕
· · ·
⊕

fmB0 (4.39)

We choose for Lm : Bm −→ R the map sending all the base elements to 0, except the
last where Lm(fmJm) = 1. Using this block decomposition of Bm, the multiplication
table

µm : Bm ×Bm −→ Bm

takes the form, (see Lemma 4.3.3)

Qm =


Q0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ f


H1 Q0 · · · 0

Q0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ · · ·

· · ·+ fm


Hm Hm−1 · · · H1 Q0

Hm−1 · · · H1 Q0 0
...

. . .
. . . 0 0

H1 Q0 0 0 0

Q0 0 0 0 0

 , (4.40)

where Q0, H1, . . . ,Hm are symmetric (s×s)-matrices with entries in B0. The expression
of these matrices can be obtained from the restriction of µm to B0 and using the
isomorphism (4.39), we obtain a bilinear form

µm : B0 ×B0 −→ Bm =

m⊕
j=0

f jB0

with a matrix expression
Q0 + fH1 + · · ·+ fmHm.

Q0 is the matrix expression of the multiplication µ0 on B0 and the Hj are the higher
order terms in the multiplication µm restricted to B0 ↪→ Bm. These terms contain all
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the information needed for describing µm, as can be seen from the expression (4.40).
Applying Lm to (4.40), LmQm is

LmQ0+, · · · ,+Lm(fmHm) · · · Lm(fmH1) Lm(fmQ0)
Lm(fQ0)+, · · · ,+Lm(fmHm−1) · · · Lmf

mQ0 0
...

. . .
. . . 0 0

Lm(fmH1) Lmf
mQ0 0 0 0

Lmf
mQ0 0 0 0 0

 . (4.41)

Moreover, Lm is a linear map such that Lm〈f jvk, f `vs〉 = Lm(f j+`vkvs), and

1) If j + ` > m then Lm(0) = 0.

2) If j + ` < m then Lm(f j+`vjvs) = 0.

3) If j + ` = m Lm(f j+`vjvs) = 1.

Thus, the anti-diagonal terms of the matrix (4.41) are non-singular. Indeed, we can a
change a basis of the R-vector space to obtain matrix representation of < , >m as an
anti-diagonal matrix by blocks, with all the anti-diagonal terms. Hence, we get

LmQm =


0 0 · 0 Lmf

mQ0

0 · · · 0 Lmf
mQ0 0

...
. . .

. . . 0 0

0 Lmf
mQ0 0 0 0

Lmf
mQ0 0 0 0 0

 . (4.42)

The matrix (4.42) suggests that we consider the decomposition of Bm as:

Bm = [B0 ⊕ fmB0]
⊕

[fB0 ⊕ fm−1B0]
⊕

, · · · ,
⊕

[fmB0 ⊕B0]. (4.43)

It is an < , >m-orthogonal direct sum. The contribution to the signature of each vector
space within a bracket is 0, since they have the form

0 0 · · · Lmf
mQ0

0 . . . Lmf
mQ0 0

...
...

...
...

Lmf
mQ0 · · · 0 0

 . (4.44)

Therefore, if we consider V as Bm in the lemma (4.4.1), then the bilinear form 〈 , 〉m :

Bm × Bm
·−→ Bm

Lm−→ R has the associated matrix (4.44). Thus, if we consider the
lemma (4.4.1), we get the proof of the theorem.
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4.6 An example

Example 4.6.1. Let f : (R2, 0) −→ (R, 0) be a germ of real analytic function defined

to be f(x, y) = x2 + y2. Moreover, if B0 := R[x,y]
(f,fy) , then {1, x} is a basis of B0.

Thus, we consider the nondegenerate bilinear form

µ0 : B0 ×B0
·−→ B0.

Hence,the bilinear product is given by

base 1 x

1 1 x

x x 0

.

If L0 : B0 → R is any linear map, such that L0(1) = 0 and L0(x) = 0 then the bilinear
form µ0 is

µ0 : B0 ×B0 −→ B0
L0−→ R.

It has the associated matrix defined by

Q0 =

(
0 1
1 0

)
.

Now, we will construct an orthogonal basis of the finite vector space B0. Thus, if
{v1, v2} ∈ R2, it is a basis with v1 = 1√

2
({1, 1}) and v2 = 1√

2
({1,−1}), then v1C0v1 = 1,

v1C0v2 = 0, v2C0v1 = 0, v2C0v2 = −1. So, the matrix Q0 is equivalent to the following
matrix (

1 0
0 −1

)
.

Its signature is σ0 = 0. If B1 := R[x,y]
(f2,f2)

the symmetric bilinear form

µ1 : B1 ×B1
·−→ B1

L1−→ R

has the following representation

Q1 =


0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0

 . (4.45)

The next step is to construct the orthogonal basis of R(1+1)2 = R4.
Indeed, R4 ' R2⊕R2 and we can define the orthogonal basis {v11, v12, u11, u12} , to be

{v11 = (
1√
2

(v1),
1√
2

(v1)), v12 = (
1√
2

(v2),
1√
2

(v2)),
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u11 = (
1√
2

(v1),− 1√
2

(v1)), u21 = (
1√
2

(v2),− 1√
2

(v2))},

and it is equal to:

{v11 =
1

2
(1, 1, 1, 1), v12 =

1

2
(1,−1, 1,−1), u11 =

1

2
(1, 1,−1,−1), v11 =

1

2
(1,−1,−1, 1)}.

Then, this basis changes the matrix (4.45) to the diagonal matrix given by

Q1 =


1 0 0 0
0 −1 0 0

0 0 −1 0
0 0 0 1

 .

Therefore, σ1 = 0.
If we considerm = 2 and B2 := R[x,y]

(f3,f2)
, then it has a basis defined as {1, x, x2, x3, x4, x5},

and R6 ' R2 ⊕ R2 ⊕ R2. Thus, we define the the bilinear product µ2, to be

µ2 : B2 ×B2
·−→ B2

L2−→ R

with L2(x5) = 1, L2(x4) = L2(x3) = L2(x2) = L2(x) = L2(1) = 0. Therefore, it has the
following matricial representation

Q2 =



0 0 0 0 0 1
0 0 0 0 1 0

0 0 0 1 0 0
0 0 1 0 0 0

0 1 0 0 0 0
1 0 0 0 0 0

 . (4.46)

Let {v11 = 1√
2
(v1, 0, v1), v12 = 1√

2
(v2, 0, v2), u11 = 1√

2
(v1, 0,−v1), u21 = 1√

2
(v2, 0,−v2), w1 =

(0, v1, 0), w2 = (0, v2, 0)} be an orthogonal basis, and it is equal to
{ 12 (1, 1, 0, 0, 1, 1), 12 (1,−1, 0, 0, 1,−1), 12 (1, 1, 0, 0,−1,−1), 12 (1− 1, 0, 0,−1, 1), (0, 0, 1, 1, 0),

(0, 0, 1,−1, 0)}. So, it changes the matrix (4.46) by,

Q2 =



1 0 0 0 0 0
0 −1 0 0 0 0

0 0 −1 0 0 0
0 0 0 1 0 0

0 0 0 0 1 0
1 0 0 0 0 −1

 .

Hence σ2 = 0, and so on.
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Chapter 5

The relative index

Our purpose in this chapter is to provide an algebraic formula to compute the signature

of degenerate symmetric bilinear forms on the finite vector spaces Bm '
ARn,0

(fm+1,f2,··· ,fn)
,

m = 1, 2, · · · , `, ` ∈ Z≥0.
Before starting the next result, we will introduce some examples and lemmas, that help
us understand our main result.

5.1 An example; computation of the relative index in the
local algebra Bm

Let f : (R2, 0) → (R, 0) be a germ of real analytic function defined to be f = x3 + y2.
Since

B0 =
R[x, y]

(f, f2)
=

R[x, y]

(x3 + y2, 2y)

is a local algebra and (f, f2) is a regular sequence in B0, where f2 = ∂f
∂y , then B0 is

a finite vector space. Hence, {[1]0, [x]0, [x
2]0} is a basis of B0. Moreover, if we define

[f1]0 = [3x2]0 and the degenerate symmetric bilinear form to be

µrel0 : B0 ×B0
·−→ B0

f1−→ B0, (5.1)

([vi]0, [vj ]0) 7→ [vi · vj ]0 7→ [f1 · vi · vj ]0
then, it is represented by

The bilinear form µ0 in B0

[3x2]0 [1]0 [x]0 [x2]0
[1]0 [3x2]0 [0]0 [0]0
[x]0 [0]0 [0]0 [0]0
[x2]0 [0]0 [0]0 [0]0

.
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If we define a linear map L0 : B0 → R to be, L0([x2]0) = 1
3 , L0([x]0) = 0, L0([1]0) = 0,

then the associated matrix to the degenerate symmetric bilinear form is

〈 , 〉rel0 : B0 ×B0
·−→ B0

f1−→ B0
L0−→ R.

It has the following matricial representation

Qrel0 =

 1 0 0
0 0 0
0 0 0

 ,

therefore, its signature is σ̃rel0 = (1, 0, 2).
Now, let us consider the finite vector space B1. Namely,

B1 =
R[x, y]

(f2, f2)
=

R[x, y]

((x3 + y2)2, 2y)
' R[x]

(x6)
,

where f2 = x6 + 2x3y2 + y4. Thus, we define a degenerate symmetric bilinear form to
be

µrel1 : B1 ×B1
·−→ B1

f1−→ B1.

So, we get

The bilinear form µ1 in B1

[3x2]1 [1]1 [x]1 [x2]1 [f ]1 [fx]1 [fx2]1
[1]1 [3x2]1 [3x3]1 [3x4]1 [3x5]1 [0]1 [0]1
[x]1 [3x3]1 [3x4]1 [3x5]1 [0]1 [0]1 [0]1
[x2]1 [3x4]1 [3x5]1 [0]1 [0]1 [0]1 [0]1
[f ]1 [3x5]1 [0]1 [0]1 [0]1 [0]1 [0]1
[fx]1 [0]1 [0]1 [0]1 [0]1 [0]1 [0]1
[fx2]1 [0]1 [0]1 [0]1 [0]1 [0]1 [0]1

if we define a degenerate symmetric bilinear form to be

〈, 〉rel1 : B1 ×B1
·−→ B1

f1−→ B1
L1−→ R, (5.2)

where the linear map L1 : B1 → R, is L1([xj ]1) = 0, j = 0, 1, 2, 3, 4, L1([x5]) = 1 and
[f ]1 = ([x3]1), then, its associated matrix is given by

Qrel1 =



0 0 0 |1 0 0
0 0 1 |0 0 0
0 1 0 |0 0 0

1 0 0 |0 0 0
0 0 0 |0 0 0
0 0 0 |0 0 0

 . (5.3)
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Furthermore, we can write the reduced matrix (5.3) as

Qrel1 |red=


0 |0 0 |1
0 |0 1 |0
0 |1 0 |0
1 |0 0 |0

 =

 D̃o

E1

D̃o

 .

Hence, D̃0 = (1) and

E1 =

(
0 1
1 0

)
.

Moreover, we define an orthogonal basis of R6, to be

{v1 =
1√
2

(1, 0, 0, 1, 0, 0), v2 =
1√
2

(1, 0, 0,−1, 0, 0), v3 =
1√
2

(0, 0, 1, 1, 0, 0),

v4 =
1√
2

(0, 0, 1,−1, 0, 0), v5 = (0, 0, 0, 0, 1, 0), v6 = (0, 0, 0, 0, 0, 1)}.

Consequently, the matrix (5.3) is equivalent to

Qrel1 =



1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .

Hence, it has signature σ̃rel1 = (2, 2, 2).
Since the signature in σ̃rel0 is equal to (1, 0, 2), and the signature σ̃rel1 is equal to

(2, 2, 2), then, the number of zeros in σ̃rel0 = σ̃rel1 = 2. Thus, if we consider

σ̃rel1 − σ̃rel0 = (1, 2, 0),

then, we have

σ̃rel2 = (4, 3, 2), (5.4)

and
(4, 3, 2) = (2, 2, 2) + (2, 1, 0).

i.e.
σ̃rel2 = σ̃rel1 + (2, 1, 0).

It is easy to see that in this example, the nexts signatures are constructed via the
following algorithm. Therefore,

σ̃rel3 = (5, 5, 2) = (4, 3, 2) + (1, 2, 0). (5.5)
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And

σ̃rel4 = (5, 5, 2) + (2, 1, 0) = (7, 6, 2), (5.6)

similarly,

σ̃rel5 = (7, 6, 2) + (1, 2, 0) = (8, 8, 2), (5.7)

and so on. Indeed, we get a pattern.

The following two lemmas describe a method to simplify the matrix associated to
degenerate symmetric bilinear forms.

5.2 Calculus of the relative index in the local algebra B1

Lemma 5.2.1. Let ϕ̃1 : V × V → R be a symmetric bilinear form, with V a finite
vector space, defined by

Qrel1 =



A11 A12 A13 Ip 0 0
At12 A22 A23 0 −Iq 0
At13 At23 E1 0 0 0

Ip 0 0 0 0 0
0 −Iq 0 0 0 0
0 0 0 0 0 0

 . (5.8)

Then it is equivalent to the matrix 0 0 D̃0

0 E1 0

D̃0 0 0

 . (5.9)

Where D̃0 is given by

D̃0 =

(
Ip 0
0 −Iq

)
. (5.10)

Here, the matrices Ai,j are any symmetric matrices, i.e. Ai,j = Atij, i, j = 1, 2, 3.

Proof. If Qrel1 |red denotes the reduced matrix corresponding to the matrix (5.8), namely,

Qrel1 |red=


A11 A12 A13 Ip 0
At12 A22 A23 0 −Iq
At13 At23 E1 0 0

Ip 0 0 0 0
0 −Iq 0 0 0

 , (5.11)
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then, using Gaussian elimination, it suggests that we can define the matrices, D11, D12,
D21, D22, D31, D32, to be

D11 = −A11

2
, D12 =

A12

2
, D21 = −A

t
12

2
, D22 =

A22

2
, D31 = −At13, D32 = At23.

Since, the bilinear form is symmetric then A11 = At11, A22 = At22. Therefore,
I 0 0 D11 D12

0 I 0 D21 D22

0 0 I D31 D32

0 0 0 I 0
0 0 0 0 I




A11 A12 A13 Ip 0
At12 A22 A23 0 −Iq
At13 At23 E1 0 0
Ip 0 0 0 0
0 −Iq 0 0 0




I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
Dt

11 Dt
21 Dt

31 I 0
Dt

12 Dt
22 Dt

32 0 I



=


A11

2
A12

2 A13 Ip 0
At

12
2

A22
2 A23 0 −Iq

0 0 E1 0 0
Ip 0 0 0 0
0 −Iq 0 0 0




I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
Dt

11 Dt
21 Dt

31 I 0
Dt

12 Dt
22 Dt

32 0 I



=

 0 0 D̃0

0 E1 0

D̃0 0 0

 . (5.12)

Remark 5.1. Remember that

Qrel1 =


A11 A12 A13

At12 A22 A23 ∗
At13 At23 E1

∗ 0


so rank(E1) ≤ rank(Qrel1 ).

Remark 5.2. The previous lemma is true when V := B1.
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5.3 Calculus of the relative index in the local algebra B2

Lemma 5.3.1. If ϕ̃2 : V × V → R is a degenerate symmetric bilinear form, where V
is a finite vector space, then the associated matrix given by

Qrel
2 =



A11 A12 A13 A14 A15 A16 A17 0 Ip 0 0 0
At

12 A22 A23 A24 At
16 A26 A27 0 0 −Iq 0 0

At
13 At

23 A33 A34 At
17 At

27 Ẽ1 0 0 0 0 0
At

14 At
24 At

34 E2 0 0 0 0 0 0 0 0
A15 A16 A17 0 Ip 0 0 0 0 0 0 0
At

16 A26 A27 0 0 −Iq 0 0 0 0 0 0

At
17 At

27 Ẽ1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
Ip 0 0 0 0 0 0 0 0 0 0 0
0 −Iq 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



. (5.13)

Aij, i, j = 1.2, ..., 7 are symmetric matrices. So, The matrix (5.13) is equivalent to the
following matrix 

0 0 0 0 0 0 D̃0

0 0 0 0 Ẽ1 0 0
0 0 E2 0 0 0 0

0 0 0 D̃0 0 0 0

0 Ẽ1 0 0 0 0 0
0 0 0 0 0 0 0

D̃0 0 0 0 0 0 0


. (5.14)

Proof. Since Qrel2 is the associated matrix to the degenerate symmetric bilinear form
ϕ2 : V × V → R, then the reduced matrix denoted Qrel2 |red is

Qrel2 |red =



A11 A12 A13 A14 A15 A16 A17 0 Ip 0
At12 A22 A23 A24 At16 A26 A27 0 0 −Iq
At13 At23 A33 A34 At17 At27 Ẽ1 0 0 0
At14 At24 At34 E2 0 0 0 0 0 0

A15 A16 A17 0 Ip 0 0 0 0 0
At16 A26 A27 0 0 −Iq 0 0 0 0

At17 At27 Ẽ1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Ip 0 0 0 0 0 0 0 0 0
0 −Iq 0 0 0 0 0 0 0 0


. (5.15)

Moreover, we consider the submatrix of the matrix (5.15) equivalent to
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A15 A16 A17 0 Ip 0 0 0
At16 A26 A27 0 0 −Iq 0 0

At17 At27 Ẽ1 0 0 0 0 0
0 0 0 0 0 0 0 0

Ip 0 0 0 0 0 0 0
0 −Iq 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (5.16)

Indeed, it is similar to

0 0 0 0 Ip 0 0 0
0 0 0 0 0 −Iq 0 0

0 0 Ẽ1 0 0 0 0 0
0 0 0 0 0 0 0 0

Ip 0 0 0 0 0 0 0
0 −Iq 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (5.17)

Finally, if we consider the matrices Ẽ1, Ip and −Iq as pivots from gaussian elimination,
then the matrix (5.15) is equivalent to

0 0 0 0 0 0 D̃0

0 0 0 0 Ẽ1 0 0
0 0 E2 0 0 0 0

0 0 0 D̃0 0 0 0

0 Ẽ1 0 0 0 0 0
0 0 0 0 0 0 0

D̃0 0 0 0 0 0 0


. (5.18)
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The previous lemmas provide a technique to simplify the matrices associated to the
degenerate symmetric bilinear forms, thus, we can consider the general lemma.

Lemma 5.3.2. Let V be a real vector space of dimension n, and ϕm : V × V → R be
a symmetric bilinear form with associated matrix defined as

Qrelm =



Em Ẽm−1 Ẽm−2 Ẽm−3 Ẽm−4 · · · D̃0

Ẽm−1 Ẽm−2 Ẽm−3 Ẽm−4 · · · Ẽ1 D̃0 0

Ẽm−2 Ẽm−3 Ẽm−4 · · · Ẽ1 D̃0 0 0

Ẽm−4 · · · Ẽ1 D̃0 0 0 0
...

...
. . .

...
...

...
...

...

Ẽ1 D̃0 · · · 0 0 0 0 0

D̃0 0 · · · 0 0 0 0 0


. (5.19)

Hence, the matrix D̃0 is as in the Lemma (5.2.1) and Ẽi, (i = 0, 1, 2, ...,m, m ∈ Z≥0)
is a diagonal matrix given by

Ei =

 Isi+ 0 0
0 −Isi− 0
0 0 0s0i

 (5.20)

with signature σ̃(Ei) = (s+
i , s

−
i , s

0
i ) and s+

i , s
−
i , s

0
i are the positive, the negative and the

zero numbers. In particular E0 = D̃0. Furthermore,

s+
i + s−i + s0

i = s0
i−1. (5.21)

If σ̃(Qrelm ) = (pm, qm, rm), it is the signature associated to the matrix Qrelm , then

rm = rm−1 + s0
m,

and

σ̃(Qrelm ) =

{
σ̃(Qrelm−1) + (p0, q0, 0) + (s−1 , s

+
1 , 0)+ ... +(s−m−1, s

+
m−1, 0) + (s+

m, s
−
m, s

0
m) if m is even.

σ̃(Qrelm−1) + (q0, p0, 0) + (s+
1 , s

−
1 , 0)+ ... +(s−m−1, s

+
m−1, 0) + (s+

m, s
−
m, s

0
m) if m is odd.

m = 0, 1, 2, · · · , `, ` ∈ Z≥0.

Proof. We will use induction on m to show the lemma.

Case m=0. Let Qrel0 be the matrix defined in (5.19), then it is given by

Qrel0 = D̃0 =

 Ip0 0 0
0 −Iq0 0
0 0 0

 . (5.22)
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It has signature

σ̃(Qrel0 ) = (p0, q0, r0). (5.23)

With
p0 + q0 + r0 = n.

Then,

r0 = n− p0 − q0. (5.24)

Case m=1. The matrix Qrel1 has the following form

Qrel1 =



0 0 0 0 0 Ip0 0 0
0 0 0 0 0 0 −Iq0 0
0 0 Is+

1 0 0 0 0 0
0 0 0 −Is−1 0 0 0 0
0 0 0 0 0s0

1 0 0 0

Ip0 0 0 0 0 0 0 0
0 −Iq0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (5.25)

Hence, σ̃(Qrel1 ) = (p1, q1, r1), and

p1 + q1 + r1 = 2n. (5.26)

Since, s+
1 + s−1 + s0

1 = s0 = r0 then,

r1 = 2n− p1 − q1 (5.27)

s+
1 + s−1 = r0 − s0

1. (5.28)

If we make an orthogonal change in the basis in the matrix (5.25), we have

p1 = p0 + q0 + s+
1 , q1 = q0 + p0 + s−1 . (5.29)

From (5.29) and (5.27), we obtain

r1 = 2n− p0 − q0 − s+
1 − q0 − p0 − s−1 .

So,

r1 = n− p0 − q0 + n− p0 − q0 − s+
1 − s

−
1 , (5.30)

substituing (5.24) and (5.28) in (5.30) we have

r1 = r0 + s0
1. (5.31)
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Then, from (5.29) and (5.31), it follows that

σ̃(Qrel1 ) = (p0 + q0 + s+
1 , q0 + p0 + s−1 , r0 + s0

1)

and
σ̃(Qrel1 ) = (p0, q0, r0) + (q0, p0, 0) + (s+

1 , s
−
1 , s

0
1),

hence,

σ̃(Qrel1 ) = σ̃(Qrel0 ) + (q0, p0, 0) + (s+
1 , s

−
1 , s

0
1). (5.32)

General case. If these formulas are valid for m− 1 and m is even, then

σ̃(Qrelm ) = (pm, qm, rm).

Where

pm = pm−1 + p0 + s−1 + ...+ s−m−1 + s+
m (5.33)

qm = qm−1 + q0 + s+
1 + ...+ s+

m−1 + s−m (5.34)

and
s+
m + s−m + s0

m = s0
m−1

s+
m + s−m = s0

m−1 − s0
m (5.35)

pm + qm + rm = (m+ 1)n (5.36)

then

rm = (m+ 1)n− pm − qm. (5.37)

So,

rm = mn− pm−1 − qm−1 + n− p0 − q0 −
m∑
i=1

(s+
i + s−i )

if we consider the previous equations and (5.28), (5.33) and (5.34), we get

rm = rm−1 + s0
m. (5.38)

Then, it follows that

σ̃(Qrel
m ) = (pm, qm, rm) = (pm−1+p0+s−1 +...+s−m−1+s+m, qm−1+q0+s+1 +...+s+m−1+s−m, rm−1+s0m)
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so
σ̃(Qrelm ) = (pm−1, qm−1, rm−1) + (p0, q0, 0) + (s−1 , s

+
1 , 0) + ...

+(s−m−1, s
+
m−1, 0) + (s+

m, s
−
m, s

0
m). (5.39)

Therefore,
σ̃(Qrelm ) = σ̃(Qrelm−1) + (p0, q0, 0) + (s−1 , s

+
1 , 0) + ...

+(s−m−1, s
+
m−1, 0) + (s+

m, s
−
m, s

0
m). (5.40)

Analogously, if m is odd

σ̃(Qrelm ) = (pm−1, qm−1, rm−1) + (q0, p0, 0) + (s+
1 , s

−
1 , 0)+

...+ (s−m−1, s
+
m−1, 0) + (s+

m, s
−
m, s

0
m) (5.41)

σ̃(Qrelm ) = σ̃(Qrelm−1) + (q0, p0, 0) + (s+
1 , s

−
1 , 0)+

...+ (s−m−1, s
+
m−1, 0) + (s+

m, s
−
m, s

0
m). (5.42)

Corollary 5.1. Under the hypothesis of the previous lemma, if we define σ̃(Qrelm ) = σ̃relm

and σ̃relm = (pm, qm, rm), so σrelm = pm − qm then, we have that

σrelm = σrelm−2 + σrel(Em).

Proof. If m is even, we have

σ̃relm = σ̃relm−1 + (p0, q0, 0) + (s−1 , s
+
1 , 0) + ...+ (s−m−1, s

+
m−1, 0) + (s+

m, s
−
m, s

0
m). (5.43)

Hence, m is even, so m− 1 is odd then

σ̃relm−1 = σ̃relm−2 + (q0, p0, 0) + (s+
1 , s

−
1 , 0) + ...+ (s−m−2, s

+
m−2, 0) + (s+

m−1, s
−
m+1, s

0
m+1). (5.44)

Substituing (5.44) in (5.43) we get

σ̃relm = σ̃relm−2 + (q0, p0, 0) + (s+
1 , s

−
1 , 0) + ...+ (s−m−2, s

+
m−2, 0) + (s+

m−1, s
−
m+1, s

0
m+1)

+ (p0, q0, 0) + (s−1 , s
+
1 , 0) + ...+ (s−m−1, s

+
m−1, 0) + (s+

m, s
−
m, s

0
m).

So, if
σm = pm−2 − qm−2 + s+

m − s−m
then

σm = σm−2 + σ(Em).

The proof is similar when m is odd.
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5.4 Another example of computation of the relative index

In this example, we will compute the signature using the routine siggen.lib with the
singular package. We will obtain a flag, and the signature of the degenerate symmetric
bilinear form in the relative case.
Let f : (R3, 0)→ (R, 0) be a germ of real analytic function defined by

f = (x3 + y2)(x2 + y3) + z2.

If (f, fy, fz) is a regular sequence of Bm := R[x,y,z]
(fm+1,fy ,fz)

, where fy = ∂f
∂y , fz = ∂f

∂z , then

Bm is a finite vector space.

Moreover, if we consider the degenerate symmetric bilinear form

〈 , 〉relm : Bm ×Bm
·−→ Bm

fx−→ Bm
Lm−→ R

and we use the routine bilirelamod, we get

Results of program relative bilinearform.lib

size rank signature

B0 15 5 (3, 2, 10)

B1 30 19 (9, 10, 11)

B2 45 34 (17, 17, 11)

.

In the previous table, (3, 2, 10) is the signature of the symmetric bilinear form

〈 , 〉rel0 : B0 ×B0
·−→ B0

f1−→ B0
L0−→ R, such that L0([Jac(f, f2, f3)]0) > 0.

Hence, with an appropriate basis we get

(
I3
−I2

)
05×10

010×5
 05×5

05×5




. (5.45)

If

D̃0 =

(
I3

−I2

)
represents the non singular part of the matrix (5.45), then σrel0 = (3, 2, 10). Indeed,
(9, 10, 11) is the signature of the symmetric bilinear form

〈 , 〉rel1 : B1 ×B1
·−→ B1

f1−→ B1
L1−→ R with Jac((f2, f2, f3)) > 0. And, if we consider

an orthogonal basis, then we get the following matrix
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05×5 05×10
I3
−I2 05×10

010×5

I4
−I5

01×1
010×5

05×5

05×5

I3
−I2 05×10 05×5 05×10

010×5
05×5

05×5
010×15

05×5

05×5


,

or equivalently, 
05×5 05×10 D̃0

010×5

I4
−I5

01×1
010×5

D̃0 05×5 05×5

 . (5.46)

If we define the matrix Ẽ1, to be

Ẽ1 =

(
I4

−I5

)
,

then the matrix(5.46) is equal to
0 0 D̃0

0 E1 0

D̃0 0 0

 .
Hence, σ̃rel1 = (3 + 2 + 4, 2 + 3 + 5, 10 + 1) = (9, 10, 11) .
Similarly, (17, 17, 11) is the signature associated to the nondegenerate symmetric bilin-

ear form 〈 , 〉rel1 : B1 × B1
·−→ B1

f1−→ B1
L1−→ R with Jac((f3, f2, f3)) > 0. So, in an

appropriate basis we have

05 0 05 0
I3
−I2

0

0
04

05
−1

0
I4
−I5

01×1
0

05

05

05 0 I3
−I2 0 05 0

0
I4
−I5

01×1
0

05

05
0 0

I3
−I2 0 0 0 0 0

0
05

05
0 0 0 0



.
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If we define Ẽ1 as the nonsingular part of the matrix E1, namely

Ẽ1 =

(
I4

−I5

)
,

then the reduced matrix is

05×5 05×10 0 0 D̃0

010×5

04
05

−1
Ẽ1 0 0

0 Ẽ1 0 D̃0 0

D̃0 0 0 0 0


.

Thus, the σ̃rel2 is computed as σ̃rel2 = (3 + 2 + 3 + 4 + 5 + 0, 2 + 3 + 2 + 5 + 4 + 1, 11) =
(17, 17, 11), and so on. In this case, we will see that the matrices Ei represent the flag
in the algebra B0.

Let f : (Rn, 0)→ (R, 0) be a germ of real analytic function such that (f, f2, · · · , fn)

is a regular sequence on Bm :=
ARn,0

(fm+1,f2,··· ,fn)
, where ARn,0 denotes the germs of real

analytic functions with isolated singularity at 0. fi = ∂f
∂xi

i = 1, 2, · · · , n, n ∈ Z≥0, and

fm+1 denotes f to the power m+ 1, m ∈ Z≥0. Furthermore, we define the annihilator
of f1 in Bm, to be

AnnBm(f1) := {b ∈ C : [f1b]m = 0 inBm}.

Now, we consider the following lemma

Lemma 5.4.1. Let 〈 , 〉relm,Ann be the relative bilinear form restricted to the annihilator,
namely,

〈 , 〉relm,Ann : (AnnBm−1(f1)⊕ fmB0)× (AnnBm−1(f1)⊕ fmB0)
·−→ Bm

f1−→ Bm. (5.47)

It is nondegenerate in am−1Qm−1bm−1Qm−1cm, where Qm is the matrix defined by
Lemma (4.3.3). am−1, bm−1 ∈ AnnBm−1(f1) and cm is defined in the following context.
Let [f1]m ∈ Bm be the class of f1 in the algebra Bm. Thus, if {[v1]0, ...[vs]0} is a basis
of algebra B0, then by Lemma (4.1.1) [f1]Bm := [f1]m. It is given by

[f1]m =
s∑
i

c0
i [vi]m +

s∑
i

c1
i [fvi]m + ...+

s∑
i

cmi [fmvi]m.

So, if ci = (ci1, ..., c
i
s), then [f1]m ' c0 + fc1 + ...+ fmcm.

Proof. First, we show the lemma in little cases to help us understand the general proof.
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Case m=0.

Let 〈 , 〉rel0,Ann be a symmetric bilinear form, defined to be

〈 , 〉rel0,Ann : B0 ×B0
·−→ B0

f1−→ B0.

If v1, ..., vs ∈ C, such that

1) {[v`+1]0, ..., [vs]0} is a basis of AnnB0(f1),

2) {[v1]0..., [vs]0} is a basis of B0,

then [v1]0, ..., [v`]0 generates a transversal to AnnB0(f1). If qij = µ0(vi, vj) is the matrix
defined as before, then the matrix (qij)i,j=1,··· ,` is a nondegenerate symmetric matrix.
And if i > ` or j > ` then qij = 0. Since [f1]B0 = [c0]B0 , then

〈w ,w
′〉relµ0 = [a0]0Q0[b0]0Q0[c0]0.

By simplicity, we can write

〈w ,w
′〉relµ0 = a0Q0b0Q0c0,

which is a degenerate symmetric bilinear form. Hence, we observe the associated ma-
trix Q0 to 〈 , 〉relµ0 degenerates in AnnB0(f1).

Case m=1.

Since, B1 ' B0 ⊕ fB0 then AnnB0(f1)⊕ fB0 ⊂ B1. So, we define 〈 , 〉rel1,Ann, to be

〈 , 〉rel1,Ann : (AnnB0(f1)⊕ fB0)× (AnnB0(f1)⊕ fB0)
·−→ B1

f1−→ B1. (5.48)

Indeed, if w,w
′ ∈ (AnnB0(f1) ⊕ fB0) then w =

∑n
i=1 α

0
i [vi]0 +

∑n
i=1 α

1
i f [vi]0 and

w
′

=
∑n

i=1 β
0
i [vi]0 +

∑n
i=1 β

1
i f [vi]0 . Therefore,

w = (α0
1, ..., α

0
n, α

1
1, ..., α

1
n) = a0 + fa1, w

′
= (β0

1 , ..., β
0
n, β

1
1 , ..., β

1
n) = b0 + fb1.

On the other hand, let [f1]B1 =
∑n

i=1 c
0
i [vi]+

∑n
i=1 c

1
i [fvi], thus [f1]B1 = (c0

1, ..., c
0
n, c

1
1, ..., c

1
n) '

c0 + fc1 in B1. Hence,

〈w,w′〉rel1,Ann = (a0 + fa1)Q1(b0 + fb1)Q1(c0 + fc1),

where the matrix Q1 is defined as in Lemma (4.3.3). Indeed, if

Q1 =

[
Q0 + fH1 fQ0

fQ0 0

]
=

[
Q0 0

0 0

]
+ f

[
H1 Q0

Q0 0

]
,
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with

Q
′
0 =

[
Q0 0

0 0

]
(5.49)

and

H
′
1 =

[
H1 Q0

Q0 0

]
then Q1 = Q

′
0 + fH

′
1. Therefore,

(a0 + fa1)(Q
′
0 + fH

′
1)(b0 + fb1)(Q

′
0 + fH

′
1)(c0 + fc1)

is equal to

a0Q
′
0b0Q

′
0c0 + f(a0Q

′
0b0H

′
1c0 + [a0H

′
1b0 + a1Q

′
0b0 + a0Q

′
0b1]Q

′
0c0) + a0Q

′
0b0Q

′
0c1.

Since, a0, b0 ∈ AnnB0(f1) and B0 is a commutative algebra, then from (5.49) we get

c0Q0a0 = 0, c0Q0b0 = 0. (5.50)

Hence, we have that

〈w,w′〉rel1,Ann = (0, a0Q0b0Q0c1). (5.51)

We observe that the expression in (5.51), the first term is 0 and the next term in
〈 , 〉rel1,Ann in B1 is

a0Q0b0Q0c1.

Indeed, we have only the matrix Q0, therefore so we can consider the algebra B0.

In general.

Let 〈 , 〉relm,Ann be the symmetric bilinear form restricted to the annihilator, defined to
be

〈 , 〉relm,Ann : (AnnBm−1(f1)⊕ fmB0)× (AnnBm−1(f1)⊕ fmB0)
·−→ Bm

f1−→ Bm. (5.52)

If w = am−1 + fmam, w
′

= bm−1 + fmbm, with am−1, bm−1 ∈ AnnBm−1(f1), and
[f1]m = cm−1 + fmcm where cm−1 ∈ Bm−1 then

〈w,w′〉relm,Ann = ((am−1 + fmam)Qm(bm−1 + fmbm)Qm(cm−1 + fmcm)) (5.53)

where Qm is the matrix defined in (4.3.3). If we define the matrix Q
′
m−1, to be

Q
′
m−1 =


Q0 + fH1 + · · ·+ fm−1Hm−1 fQ0 + f2H1 + · · ·+ fm−1Hm−2 · · · fm−1Q0

fQ0 + f2H1 + · · ·+ fm−1Hm−2 · · · fm−1Q0 0
...

. . . 0 0

fm−1Q0 0 0 0

 ,
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and

H
′
m =


Hm · · · Q0

Hm−1 · · · Q0
...

. . . 0

Q0 0 0

 ,
then 〈w,w′〉relm,Ann = (am−1 + fmam)Qm(bm−1 + fmbm)Qm(cm−1 + fmcm))

= (am−1 + fmam)(Q
′
m−1 + fmH

′
m)((bm−1 + fmbm)(Q

′
m−1 + fmH

′
m)(cm−1 + fmcm))

= (am−1Q
′
m−1bm−1Q

′
m−1cm−1+fm(am−1Q

′
m−1bm−1H

′
mcm−1+am−1H

′
mbmQ

′
m−1cm−1+

amQ
′
m−1bm−1Q

′
m−1cm−1 + am−1Q

′
m−1bmQ

′
m−1cm−1 + am−1Q

′
m−1bm−1Q

′
m−1cm).

So, by definition ofQ
′
m−1 and the commutativity of algebraBm, we get am−1Qm−1cm−1 =

0, bm−1Qm−1cm−1 = 0, and

〈w,w′〉relm,Ann = (0, am−1Qm−1bm−1Qm−1cm). (5.54)

We want to make some observations about the bilinear form 〈 , 〉relm,Ann in (5.47)
and its expression (5.54). The first term in (5.54) is 0 in the decomposition Bm =
Bm−1 ⊕ fmB0. It is clear, since we are restricting to the degeneracy locus of 〈 , 〉relµm−1

.

The next term in 〈 , 〉relµm in Bm is

am−1Qm−1bm−1Qm−1cm.

The remarkable thing is, the matrix Qm−1 which means that we are considering the
algebra Bm−1. The new term comes from multiplication in B0 by cm, which is the
second in the expansion of c = cm−1 + fmcm. We also note that the term Hm which
determines the extension Bm of Bm−1, does not enter into the formula (5.54).

Flag in the finite vector space B0.

In the following paragraph, we get a flag in the finite vector space B0.

Remark 5.3. Let

Bj
πj−→ Bj−1

πj−1−→ Bj−2
πj−2−→ ...

π2−→ B1
π1−→ B0 (5.55)

be surjective morphisms, such that πj are maps given by πj(v) = v mod(f j−1), with
(j = 1, · · · ,m, m ∈ Z≥0). If Bj = C

(fj+1)
are finite dimensional vector spaces, and

AnnBj (f1) = {b ∈ C : [bf1]j = 0 in Bj} is the annihilator of f1 in Bj, then

ρj = πj ◦ πj−1 ◦ ... ◦ π1 are surjective maps from Bj to B0. (5.56)
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Proposition 5.4.1. If we consider the surjective map defined in (5.55), then

πj(AnnBj (f1)) ⊂ AnnBj−1(f1).

Proof. If l ∈ AnnBj (f1), then [lf1]j = 0 ∈ Bj . Indeed, l̃ · f1 ∈ (f j+1) ⊂ (f j) and

[l̃f1]j−1 = 0 ∈ Bj−1, then πjl ∈ AnnBj−1(f1).

We observe that the map πj carries AnnBj (f1) to AnnBj−1(f1) and the map ρi
carries the AnnBi(f1) to algebra B0. So, we get the following flag

B0 ⊃ ρ1(AnnB1(f1)) ⊃ ρ2(AnnB2(f1)) ⊃ ρ3(AnnB3(f1))... ⊃ ρ`(AnnB`
(f1)), (5.57)

for some ` ∈ Z≥0.

Proof to the theorem (1.2).

Proof. Let us consider the matrix defined in lemma (4.3.3) and 〈 〉relm : Bm × Bm
·−→

Bm
f1→ Bm

Lm−→ R. So, it has the associated matrix given by
Lmf1Q0 0 · · · 0

0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+


Lmf1fH1 Lmf1fQ0 · · · 0

Lmf1fQ0 0 · · · 0

0 0 0 0
...

. . . · · · 0

0 0 0 0

+ · · ·

+



Lmf1f
m−1Hm−1 Lmf1f

m−1Hm−2 · Lmf1f
m−1H1 Lmf1f

m−1Q0 0

Lmf1f
m−1Hm−2 · · · Lmf1f

m−1H1 Lmf1f
m−1Q0 0 0

...
. . .

. . . 0 0 0

Lmf1f
m−1H1 Lmf1f

m−1Q0 0 0 0 0

Lmf1f
m−1Q0 0 0 0 0 0

0 0 0 0 0 0



+


Lmf1f

mHm Lmf1f
mHm−1 · Lmf1f

mH1 Lmf1f
mQ0

Lmf1f
mHm−1 · · · Lmf1f

mH1 Lmf1f
mQ0 0

...
. . .

. . . 0 0

Lmf1f
mH1 Lmf1f

mQ0 0 0 0

Lmf1f
mQ0 0 0 0 0

 . (5.58)

Hence, from Lemma (5.4.1) the bilinear form is nondegenerate in am−1Qm−1bm−1Qm−1cm
if aj−1Qj−1bj−1Qj−1cj ∈ (fmJ0), (j = 0, ..., (m−1)), then Lm(aj−1Qj−1bj−1Qj−1cj) >
0. So, we get the flag given in (5.57) and the matrix has the form of Lemma (5.19).

62



Hence, the matrix (5.58) is equivalent to:

Qrelm =



0 0 0 0 0 0 . . . D̃0

0 0 0 0 . . . 0 D̃0 0

0 0 0 . . . 0 D̃0 0 0

0 0 . . . 0 D̃0 0 0 0
...

...
. . .

...
...

...
...

...

0 D̃0 · · · 0 0 0 0 0

D̃0 0 · · · 0 0 0 0 0


+



0 0 0 0 0 0 Ẽ1 0

0 0 0 0 . . . Ẽ1 0 0

0 0 0 . . . Ẽ1 0 0 0

0 0 . . . Ẽ1 0 0 0 0
...

...
. . .

...
...

...
...

...

Ẽ1 0 · · · 0 0 0 0 0
0 0 · · · 0 0 0 0 0



+ . . .+



Em 0 0 0 0 0 . . . 0
0 0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0 0
0 0 . . . 0 0 0 0 0
...

...
. . .

...
...

...
...

...
0 0 · · · 0 0 0 0 0
0 0 · · · 0 0 0 0 0


. (5.59)

Using the theorem (1.1) in (5.59), we get
1) If m ≥ 0 is even then

σ̃relm = σ̃rel0 + σ̃rel2,Ann + σ̃rel4,Ann + · · ·+ σ̃relm,Ann,

and if m ≥ 1 is odd then

σ̃relm = σ̃rel1 + σ̃rel3,Ann + σ̃rel5,Ann + · · ·+ σ̃relm,Ann.

2) For m large enough, σ̃relm,Ann = 0.
From the Corollary (5.1) we get 3) of Theorem (1.2).
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Corollary 5.2. Under the hypothesis of theorem (1.2), we consider σ̃relm = (pm, qm, rm)
and σ̃relm,Ann = (s+

m, s
−
m, s

0
m) such that rm = rm−1. If we define (p

′
, q
′
, 0) to be

(p
′
, q
′
, 0) = σ̃relm − σ̃relm−1. (5.60)

Then, we have:

σ̃relm+1 =

{
σ̃relm + (p

′
, q
′
, 0) if m is even

σ̃relm + (q
′
, p
′
, 0) if m is odd.

(5.61)

Proof. From (5.38), we have that

rm = rm−1 + s0
m.

Since, rm = rm−1 then s0
m+k = s0

m = 0, k = 1, · · · `, ` ∈ Z>0.
Thus, by (5.60) and if we consider m = 2n, then

(p
′
, q
′
, 0) = (σ̃rel2n − σ̃rel2n−1) = (p2n, q2n, r2n−1)− (p2n−1, q2n−1, r2n−1). (5.62)

From (5.33) we obtain

p2n = p2n−1 + p0 + s−1 + ...+ s+
2n, (5.63)

and by (5.34), we get

p
′

= p2n − p2n−1 = p0 + s−1 + ...+ s+
2n. (5.64)

Similarly,

q
′

= q2n − q2n−1 = q0 + s+
1 + ...+ s−2n. (5.65)

So,

(p
′
, q
′
, 0) = (p0 + s−1 + ...+ s+

2n, q0 + s+
1 + ...+ s−2n, 0). (5.66)

Moreover, from Lemma (5.3.2) we have

σ̃rel2n = σ̃rel2n−1 + (p0, q0, 0) + (s−1 , s
+
1 , 0) + ...+ (s,2ns

−
2n, 0).

Therefore, from the previous equation and (5.66) we get

σ̃rel2n = σ̃rel2n−1 + (p
′
, q
′
, 0). (5.67)

Similarly for m = 2n+ 1

σ̃rel2n+1 = σ̃rel2n + (q
′
, p
′
, 0). (5.68)
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Chapter 6

The finiteness of the algorithm

In this section, we get an argument for the stabilization of the formula of the theorem
(1.2).

6.1 Transporting the primitive invariants of the relative
index, and flags from B0 to the algebra A.

Let {f1, f2, ..., fn} be a regular sequence of germs at 0 of class Cω, fi = ∂f
∂xi
.

If C =
ARn,0

(f2,...,fn) is a local algebra, and ARn,0 is the ring of germs of real analytic func-

tions at 0, then A = C
(f1) is a finite dimensional vector space.

On the other hand, let f ∈ ARn,0 and Mf (a) be the action to multiply by f . It is
defined to be Mf (a) = f · a, for all a ∈ A.

L.Giraldo, X.Gómez-Mont and P.Mardeŝic (see [14]), proved the following result:
For j = 1, . . . , `+1, there are linear subspaces Pj of A, called primitive subspaces, such
that

A =

`+1⊕
j=1

[

j−1⊕
k=0

Mk
f Pj ]. (6.1)

with M j−1
f : Pj → A injective map and M j

f (Pj) = 0. The mapping Mf : A → A is a
Jordan cononical form in any basis obtained by choosing bases of each of the spaces Pj
and extending them to a basis of A by the action of Mf as in (6.1).
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Hence, it is convenient to present the direct sum decomposition (6.1) by the matrix:

A =



P1 P2 P3 P4 ... P` P`+1

0 MfP2 MfP3 MfP4 ... MfP` MfP`+1

0 0 M2
fP3 M2

fP4 ... M2
fP` M2

fP`+1

...
...

...
... ...

...
...

0 0 0 0 ... M `−1
f P` M `−1

f P`+1

0 0 0 0 ... 0 M `
fP`+1


. (6.2)

If AnnA(f) := {a ∈ C | af = 0, in A} is the annihilator of f in the algebra A, then

M `
f (P`+1)⊕M `−1

f (P`)⊕ · · · ⊕M2
f (P3)⊕Mf (P2)⊕ P1 = AnnA(f).

The ideal (fm) is formed by the last `+1−m rows of the matrix (6.2), where, m = 1, ..., `
and ` ∈ Z≥0. (See [14]).

AnnA(f j) = ker(M j
f ), (f j) = Im(M j

f ).

Moreover, we consider the flag

0 ⊂ (f `) ⊂ (f `−1) ⊂ ... ⊂ (f) ⊂ A, (6.3)

and, if we define

Km := AnnA(f) ∩ (fm−1) ⊂ A (6.4)

then we obtain the following flag

0 ⊂ K`+1 ⊂ K` ⊂ ... ⊂ K1 ⊂ K0 = A. (6.5)

Similarly, let B0 := C
(f) . It is a finite dimensional vector space, K̃m is defined as the

projection of the annihilator of f1 in Bm to B0, i.e. From(5.57), ρm(AnnBm(f1)) = K̃m.
Namely,

K̃m =
(fm+1 : f1)

(f) ∩ (fm+1 : f1)
. (6.6)

Where, (fm+1 : f1) := {a ∈ C : af1 ∈ (fm+1)}, and fm+1 denotes f to the power
m+ 1. Therefore, we have the following flag of ideals in B0

0 ⊂ K̃`+1 ⊂ ... ⊂ K̃1 ⊂ K̃0 = B0. (6.7)
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6.2 Stabilization of the algebraic formula

Theorem 6.1. If we consider the flags defined earlier in (6.5) and (6.7). Then there
exists a bijection between the flag defined in (6.7) and the flag defined in (6.5). There
is also an integer ` with dim(k`) = `, where the algebraic formulas (1.2) are stabilized.

Proof. If ϕ : K̃m −→ Km is a morphism defined to be ϕ(b) = bf1
f and ϕ−1 : Km −→ K̃m

is given by ϕ−1(c) = cf
f1

, then, it is an is isomorphism and

1) ϕ sends (fm : f1) −→ (f1 : f) ∩ (fm−1)

2) ϕ(fm) = (fm−1f1).

We will proof 1). If b ∈ K̃m then bf1 = cfm. Hence, bf1
f = cfm−1 ∈ (fm−1) and

f bf1f = bf1. Thus, b ∈ (f1 : f) and ϕ(b) ∈ (f1 : f) ∩ (fm−1).

Similarly, if c ∈ (f1 : f) ∩ (fm−1), then ϕ−1(c) = cf
f1

and c = dfm−1. Indeed,

ϕ−1(dfm−1) = dfm−1f
f1

= dfm

f1
. So f1

dfm

f1
= dfm ∈ (fm : f1). The proof of 2) is

similar.
In particular, if m = 1 then ϕ sends AnnB0(f1) in AnnA(f).
On the other hand, since the map Mf corresponds to the Jordan blocks, and if we
consider the flag defined in (6.5), then we get the following table:

˙

A
·f−→ A

∪
AnnA(f) −→ all eigenvectors of Mf

∪
AnnA(f) ∩ (f) −→ all eigenvectors coming from Jordan blocks of Mf of size ≥ 2
∪
AnnA(f) ∩ (f2) −→ all eigenvectors coming from Jordan blocks of Mf of size ≥ 3
∪
.
.
.
∪
AnnA(f) ∩ (f `) = 0
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The previous table is equivalent to the following matrix

Mf =



01
01

.
.
.

01 (
0 1
0 0

)
(

0 1
0 0

)
.

.
.  0 1 0

0 0 1
0 0 0





.

Therefore, we have a flag 0 ⊂ K` ⊂ ... ⊂ K3 ⊂ K2 ⊂ K0 = AnnA(f) ⊂ A.
So, the algebraic formula stops when it reaches the maximal size of Jordan blocks of
map Mf : A→ A.
Moreover, we consider the bilinear forms defined by

〈 , 〉 : Km ×Km −→ R

〈a, a′〉 = 〈 a

fm−1
, a′〉LA

〈 , 〉 : K̃m ⊕ K̃m −→ R

〈a, a′〉 = 〈af1

fm
, a′〉Lm .

And, if we define L0 = LA ◦ (ϕ), the flag in the algebra in A is carried to the flag in
B0. The algorithm stops in ` as well.
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Example 6.2.1. Let f : (R3, 0) → (R, 0) be a germ of real analytic function defined
to be f(x, y, z) = (x3 + y2)(x2 + y3) + z2, and we consider the degenerate symmetric
bilinear form given by

〈 , 〉relm : Bm ×Bm
·→ Bm

f1→ Bm
Lm→ R,

where Bm, is defined as in (1.2) with m = 1, 2, 3. So, the routine bilinearform.lib and
the kanula give the following results

Results of program relative bilinearform.lib

size rank signature

B0 15 5 (3, 2, 10)

B1 30 19 (9, 10, 11)

B2 45 34 (17, 17, 11)

B3 60 49 (24, 25, 11)

.

Results of program kanulabil

size an(i) rank

B0 15 10 5

B1 30 1 19

B2 45 0 34

B3 60 0 49

.

Therefore, it is an immediate consequence of the previous tables that the signature
associated with B0 is σ̃0 = (3, 2, 10). It corresponds to three positive numbers, two
negative numbers, and ten zeros. Furthermore, the signature associated with the alge-
bra B1 is given by σ̃1 = (9, 10, 11), and it is computed like ( 5.3.2). To explain this, we
consider the relative bilinear form 〈 , 〉rel1 defined to be

05×5 05×10
I3

−I2
05×10

010×5

I4

−I5

01×1

010×5
05×5

05×5

I3

−I2
05×10 05×5 05×10

010×5
05×5

05×5
010×15

05×5

05×5


.

Hence, from (5.3.2) σ̃1 = (p1, q1, r1) = (9, 10, 11) = 3 + 2 + 4, 2 + 3 + 5, 10 + 1, where,
σ̃(E1) = (4, 5, 1), the next signatures are computed in a similar form.
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On the other hand, from table kanula.lib we get the flag

K̃1 ⊂ K̃0 ⊂ B0,

which is equivalent to
R ⊂ R10 ⊂ R15.

As we can see, in this case the flag defines a 1 Jordan block of size 2, and an 8 Jordan
block of size 1. i.e.

1(2) + 8(1) = 10.

Thus, 10 corresponds to the dimension of the annihilator of f1 in the algebra B0. i.e.
dim(AnnB0(f1)) = 10. If we consider the isomorphism ϕ, then dim(AnnA(f)) = 10,
and we get the stabilization of the algebraic formula (5.3.2).
Hence, we can conclude that r2 = r1 = 11, and a2 = a3 = 0, Indeed, from (5.1) we
can define p

′
, q
′

as p
′

= 17 − 9 = 8, q
′

= 17 − 8 = 7, therefore, σ̃2 = σ̃1 + (p
′
, q
′
, 0) =

(9 + 8, 10 + 7, 11 + 0) = (17, 17, 11), and so on.
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Chapter 7

Applications to vector fields
tangent to the Milnor fiber

In this chapter, we will describe holomorphic and real analytic vector fields. We will
also give an interesting example where we exhibit the changes in the topology of the
Milnor fiber.

Let f : (Cn+1, 0) −→ (C, 0) be a germ of a holomorphic function with an isolated
singularity at 0. We consider, V C

t (f) = f−1(t) the Milnor fiber, and Xt a family of
germs of holomorphic vector fields in Cn+1, such that X0 has an isolated singularity at
0.
If Xt is tangent to the hypersurface V C

t (f), then

d(f − t)Xt = ht(x)(f − t),

where ht(x) is the cofactor and it is a holomorphic function.
On the other hand, if Z is the singular set of the family of holomorhic vector fields,
namely

Z := {(t, x) ∈ C× Cn+1|X0
t (x) = ... = Xn

t (x) = 0}.

Then,

OZ :=
OC×Cn+1

(X0
t , ..., X

n
t )

is a multilocal algebra and the map Π1 : Z → C is a finite analytic map. The sheaf
(Π1)∗OZ is a free OC module of rank n.
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Let {Γ1 ∪ Γ2 ∪ ... ∪ Γn} be the set of irreducible components of Z, each Γi, (i =
1, 2, ·, n, n ∈ Z≥0) has dimension 1, due to the hypothesis that X0 has an isolated
singularity at 0. See the following figure:

This figure represents the curves Γi, with i = 1, 2, ..., n, n ∈ Z≥0.

Futhermore, let BC
t be a multilocal algebra, defined to be

BC
t =

⊕
p∈Z∩f−1(t)

OCn+1,p

(X0
t , X

1
t , ..., X

n
t )
,

and 〈 , 〉relt be a degenerate bilinear form, namely

〈 , 〉relt : BC
t ×BC

t
·−→ BC

t
ht−→ Bt

C Lt−→ C. (7.1)

We consider, W the set defined to be W := {(t, x) ∈ C× Cn+2|f(x)− t = 0} then,

1) Γi 6⊂W if and only if the map f − t|Γi 6= 0 if and only if V C
0 (f) ∩ Γi = {0}.

2) Γi ⊂W if and only if f−t|Γi ≡ 0, if and only if Γi∩Π−1
1 } ⊂ Vt = {p1(t), ..., pn(t)}.

Remark 7.1.

• Similarly, for case 1) we have {pi(t)} ⊂ Cn+1 − V C
t (f) if and only if the points

{pi(t)} are zeros of the vector field Xt in Cn+1−V C
t (f), t ∈ (C, 0), i = 1, 2, ..., n, n ∈

Z≥0 .

• In case 2), the points {pi(t)} ⊂ V C
t (f) if and only if {pi(t)} are zeros of Xt|V C

t (f).
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See the next picture:

Therefore, if Γi 6⊂W then f − t|Γi 6= 0.
Since, d(f−t)Xt = (f−t)ht then d(f−t)Xt = 0, indeed, (f−t)ht = 0 and f−t|Γi 6= 0.
So, ht|Γi = 0 and AnnBt(ht) = 0, where, AnnBt(ht) = 0 is the annihilator of ht on Bt.
In this case, we get neither a flag nor the new contribution to the signature.

Moreover, if Γi ⊂W , then d(f − t)Xt = 0, and (f − t)ht = 0, thus, f |Γi = 0 and ht 6= 0.
So, AnnBt(ht) 6= 0. Indeed, we get a flag and we focus in the real case.

Let Π1∗O
+
Z be a free O(ε,ε)-sheaf of rank s, where its sections are the fixed points of

the conjugation map, and its stalk over 0 is

C = (Π1∗Oz)
+
0 =

OR2n+2,0

(X1
t , ..., X

n
t )
. (7.2)

We define a 1-parameter family of R-algebras to be

B+
t = Π1∗O

+
Z ⊗R R[t]0 = [

⊕
p∈Z∩Π−1

1 (t)

OCn+1,p

(X0
t , X

1
t , ..., X

n
t )

]+. (7.3)

It is obtained by evaluation where B+
t is a multilocal algebra and B0 is a local algebra.

If 〈 , 〉 is a bilinear map defined by

〈, 〉relt : B+
t ×B

+
t

·−→ B+
t

ht−→ B+
t

Lt−→ R, (7.4)

then bilinear forms are nondegenerate for t 6= 0, and for t = 0, the relative bilinear
form 〈, 〉relt , degenerates on AnnB0([f1]B0 .
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7.1 The contact vector field, an example

In this example, we will compute the GSV-index using the corollary (2.1), and we will
exhibit the topologycal changes of the Milnor fiber.

Let f : (Rn, 0)→ (R, 0) be a germ of real analytic function with isolated singularity
at 0. If Xt = (f − t, f2,−f3, ....f2n,−f2n+1) is the contact vector field, where fi = ∂f

∂xi
then, d(f − t)Xt = f1(f − t), and the cofactor is f1.

Example 7.1.1. In particular, if the germ f : (R3, 0)→ (R, 0) is defined to be

f = (x3 + y2)(x2 + y3) + z2,

then the hypersurfaces Vt(f), for t < 0, t = 0 and t > 0, are:

Therefore, we define the contact vector field Xt, to be

Xt = (f − t, fy,−fz) = ((x3 + y2)(x2 + y3) + z2 − t, 2x2y + 5y4 + 3x3y2,−2z).

Indeed, d(f − t) ·Xt = fx(f − t) = (2xy2 + 5x4 + 3x2y3)((x3 + y2)(x2 + y3) + z2 − t)).

Since, the vector field is Xt = (f − t, fy,−fz) and fz = −2z = 0, then we can
consider the vector field in the plane xy.
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If Xt = (f−0.00002, fy) is a vector field in the plane xy, then we have the following
picture

Thus, the vector field Xt, for t > 0 is

X0.00002 = ((x3 + y2)(x2 + y3) + z2 − 0.00002, 2x2y + 5y4 + 3x3y2,−2z).

Since z = 0, then the real roots ofXt, with t = 0.00002 are p1 = (0.0542741,−0.105318, 0),
p2 = (0.11487, 0, 0), p3 = (−0.0547462,−0.106541, 0).
Hence,

|DX0.00002| =

∣∣∣∣∣∣
 2xy2 + 5x4 + 3x2y3 2x2y + 5y4 + 3x3y2 −2z

4xy + 9x2y2 2x2 + 20y3 + 6x3y 0
0 0 2

∣∣∣∣∣∣ ,
and |DXt| = 36x5y4+60x7y−54x4y4+30x2y6+200x4y3+20x6−24x3y3+40xy5−8x3y2.
Furthermore, |DXt(p1)| = −0.000392937, |DXt(p2)| = 0.0000459483, |DXt(p3)| =
0.0000386401. Since, the IndR3(X, t) satisfies the conservation sign law, we have

IndR3(X, 0.00002) = −1 + 1 + 1 = 1.

Similarly, let Xt be the vector field with t < 0. In this case we have

X−0.00002 = ((x3 + y2)(x2 + y3) + z2 + 0.00002, 2x2y + 5y4 + 3x3y2,−2z).
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See the following figure,

Since z = 0, then we have only one point that Xt(p) = 0, where t = −0.00002 and
p = (−0.11487, 0, 0), thus

|DX−0.00002| =

∣∣∣∣∣∣
 2xy2 + 5x4 + 3x2y3 2x2y + 5y4 + 3x3y2 −2z

4xy + 9x2y2 2x2 + 20y3 + 6x3y 0
0 0 2

∣∣∣∣∣∣ ,
hence, |DXt| = 36x5y4 + 60x7y−54x4y4 + 30x2y6 + 200x4y3 + 20x6−24x3y3 + 40xy5−
8x3y2 and

|DXt(p)| = 0.000459483.

So,
IndR3(X,−0.00002) = 1.

It follows that, if t > 0, then p1 = (0.0542741,−0.105318, 0) is the singular point of
X0.00002 and fx(p1) = 0.0123707. Furthermore, fx(p1) > 0, and IndR3(Yt, p1) =
IndR3(Xt, p1) = −1. Thus, we consider the point p2 = (0.11487, 0, 0), fx(p2) =
0.000870556. So, fx(p2) > 0 and IndR3(Yt, p2) = IndR3(Xt, p2) = 1.
Since p3 = (−0.0547462,−0.106541, 0) thenfx(p3) = −0.0120881. So, fx(p3) < 0 and
IndR3(Yt, p3) = −IndR3(Xt, p1) = −1. Then by conservation the sign law, the relative
index is IndR3(Y, t) = −1.
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If t < 0 or t = −0.00002 then only one real point exits, namely ,p = (−0.11487, 0, 0),
such that Xt(p) = 0, and fx(p) = 0.00870556 > 0. Therefore,

IndR3(Yt, p) = IndR3(Xt, p) = 1.

Hence, we have the following conclusions

t > 0, Ind(X1, 0) = 1, Ind(Y1, 0) = −1

t < 0, Ind(X−1, 0) = 1, Ind(Y−1, 0) = 1.

We recall, Eisenbud-Levine proved that the signature of the bilinear form is equal to the
degree of real analytic function f . Indeed, we got an algebraic formula to reconstruct
the signature of degenerate relative bilinear forms with (1.2), in the real case.
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Appendix A

Appendix; Singular programs

Singular Programs

The following routines compute the signature of symmetric bilinear forms, for the non-
degenerate and degenerate cases. Since, (f, f2, · · · , fn) is a regular sequence, then we
can use a routine of the singular package to compute de krull dimension of (f, f2, · · · , fn).
In particular, we need to prove that the krull dimension of (f, f2, · · · , fn) is zero. It
is also necessary to change the expression of the function f in the program by the
expression we need to compute.
The routine kanula.lib constructs the flag defined in B0.

proc siggen(int iii)
{
LIB ”general.lib”;
LIB ”PHindex.lib”;
LIB ”Linalg.lib”;
ring r = 0, (x, y, z),ds;
int n = nvars(r);
option(redSB);
poly f = x2 + y2 + z2;

for (int m = 1; m <= iii; m = m+ 1)

{

ideal i(m) = f ∗ ∗m, diff(f, y), diff(f, z);
ideal g(m) = std(i(m));
ideal kb(m) = kbase(g(m));
”Number of iteration ”;m;
// ”The groebner base is”;
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// g(m);

int m1(m) = size(kb(m));
ideal kb1(m) = kb(m)[m1(m)..1];
// ”The base is kb1”;
//kb1(m);

ideal k2(m) = transpose(kb1(m)) ∗ kb1(m);
ideal k3(m) = reduce(k2(m), g(m));

matrix b(m)[m1(m)][m1(m)] = k3(m);

// ”The bililinear product is”;
// print(mulq);

//Calculus of the socle
ideal j(m) = jacob(i(m));
matrix jac(m)[n][n] = j(m);
”The Jacobian matrix is”;
print(jac(m));
poly s(m) = det(jac(m));
poly sk(m) = reduce(s(m), g(m));
”The socle of ring B is”; sk(m);

matrix L(m)[m1(m)][m1(m)];
poly lc(m) = lead(sk(m)); poly lcb(m) = lc(m)/absV alue(leadcoef(sk(m)));
// ”The sign of socle is”;
// lcb(m);
int gr(m)=degree(lc(m));
poly divis(m);

int t2, t3;
for (t2 = 1; t2 <= m1(m); t2 + +)
{
for (t3 = 1; t3 <= m1(m); t3 + +)
{
divis(m) = division(jet(b(m)[t2, t3], gr(m))−jet(b(m)[t2, t3], gr(m)−1), lcb(m))[1][1, 1];
L(m)[t2, t3] = divis(m);

}

}

// print (L(m));
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”The determinant of the matrix in the bilinear form de la matriz <,>Lm is”;
det(L(m));
”The signature is”;
signatureL(L(m));
”The rank of matrix L is”;
matrk(L(m));

} }
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Calculus of the signature in the relative case

proc bilinrelamod (iii)
{
LIB ”general.lib”;
LIB ”PHindex.lib”;
LIB ”Linalg.lib”;
ring r = 0, (x, y, z),ds;
for (int m = 1, m <= 3, m = m+ 1)
{
ideal i(m) = (fm, diff(f, y), diff(f, z));
ideal g(m) = std i(m);
ideal kb(m) = kbase(g(m));
”Number of iteration”; m;
”The groebner basis is”;
g(m);
”The kbasis is”;
kb(m);
int m1 = size(kb(m));
ideal kb1(m) = kb(m)[m1, .., 1];
”The new order in the kbasis is”;
kb1(m);
ideal k2(m) = transpose(kb1(m)) ∗ kb1(m);
ideal k3(m) = reduce(k2(m), g(m));
matrix mulq[m1(m)][m1(m)] = reduce(diff(f, x) ∗ k3(m), g(m));
std(i(m));
”The bilinear product is”;
print(mulq);
”The socle calculus”;
idealj(m) = jacob(i(m));
matrixjac(m)[n][n] = j(m);
”The Jacobian matrix is”;
print(jac(m));
poly s(m) = det(jac(m));
poly sk(m) = reduce(s(m), g(m));
”The socle of ring B is”; sk(m);
matrixb(m)[m1(m)][m1(m)] = mulq;
matrixL(m)[m1(m)][m1(m)];
poly lc(m) = lead(sk(m));
poly lcb(m) = lc(m)/absV alue(leadcoef(sk(m));
”The sign of socle is”;
”lcb(m)”;
int gr(m) = degree(lc(m));
poly divis(m);
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intt2, t3;
for (t2 = 1, t2 <= m1(m); t2 + +)
{
for (t3 = 1, t3 <= m1(m); t3 + +)
{
divis(m) = division(jet(b(m)[t2, t3], gr(m))−jet(b(m)[t2, t3], gr(m)−1), lcb(m))[1][1, 1];
Lm[t2, t3] = divis(m);
};
};
print(L(m));
”The determinant of matrix associated to the symmetric bilinear form denoted by 〈, 〉relm
is”;
det(L(m));
”The signature is”;
signatureL(L(m));
”The rank of the matrix L is”;
matrk(L(m));
};
};
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Calculus of a basis of a flag in the algebra B0

proc Kanulabil(int iii)
{
ring r = 0, (x, y, z),ds;
option(redSB);
poly f = (x3 + y2) ∗ (x2 + y3) + z2;
ideal i0 = f, diff(f, y), diff(f, z);
ideal g0 = std(i0);
”An R-Basis of B0 is”;
module K0 = Kbase(g0);
K0;
”We will calculate the j-flag in B0”;
for (intn = 1;n <= 4;n+ +)
{
ideal i(n) = f ∗ ∗n, diff(f, y), diff(f, z);
ideal g(n) = std(i(n));
ideal q(n) = quotient(i(n), diff(f, x));
”The quotient ideal (i : fx) is”; q(n)
ideal qq(n) = q(n) + g0;
ideal h(n) = std(qq(n));
int t(n) = size(h(n));
t(n);
matrix ϕ(n)[1][t(n)] = h(n);
module ker(n) = syz(ϕ(n));
ker(n);
list d(n) = division(g0, h(n));
module b(n) = d(n)[1];
module ker2(n) = ker(n), b(n);
module ker3(n) = std(ker2(n));
ideal an(n) = reduce(ϕ(n) ∗ k(n), g0);
”A basis as vector space of the corresponding flag is”;
an(n);
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[17] X. Gómez-Mont, P. Mardešić. Index of a Vector Field Tangent to an Odd-
Dimensional Hypersurface and the Signature of the Relative Hessian. Functional
Analysis and Its Applications, Vol. 33 No.1 (1999), 1-10.
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