Centro de Investigación en Matemáticas, A.C.

> On the Signature of algebraically defined degenerate bilinear forms on Complete Intersection Algebras of Finite Dimension and its Application to the Relative Index of Vector Fields tangent to a Hypersurface with an isolated Singularity in R^{n}

T H E S I S

To obtain the degree of
Doctor in Science
With orientation in
Basic Math
Presents
María de la Paz Suárez
Fernández
Co-Directors of Thesis:
Dr: Xavier Gómez-Mont Ávalos
Dr. Pedro Luis del Ángel Rodriguez

Centro de Investigación en Matemáticas, A.C. CIMAT

On the Signature of algebraically defined degenerate bilinear forms on Complete Intersection Algebras of Finite Dimension and its Application to the Relative Index of Vector Fields tangent to a Hypersurface with an isolated Singularity in R^{n}

Report submitted by

María de la Paz Suárez Fernández,
To obtain the degree of Doctor in Science with orientation in Basic Math

Vo.Bo. of the co-directors of thesis

To my husband and son

First, I express my sincere gratitude to the Professors Xavior CimexnMont Thales and $\mathscr{O}_{\mathrm{c}}^{\mathrm{c}}$ ho \mathscr{L} Lus del Stngel $\mathscr{R}_{\text {podriguex }}$ for allowing me to conduct this research under their auspices. I am especially grateful for their patience and supported me in all stages of this work.

I am deeply grateful to all members of the jury \mathscr{J}. Muciño, Ferran, \mathscr{V}^{2}. Castellanos, R Rosales, for offered me valuable suggestions and to participate in the defense of this thesis.

I extend my sincere thanks to Frael Manxana to helped me with the computational support.

I sincerely thanks for all my Teachers of the cimat, and the academio authorities of the cimat and the University of Cuadaliyiara. Who gave me the opportunity to meet new challenges in my career.

I wish to thanks to \mathscr{L} dita for helping me to resolve administrative issues.
I wish to express my sincere my sincere gratitude to CONSCYOT. For his economical support.

Without the support of all my family. I would never finish this thesis and I never find the courage to overcome all these difficulties during this work. My Thanks go to my parents Gloia y Pubien.

My especially gratitude to my husband Guan Mamuel, who has always supported me.
I would like to extend my warmest thanks to my dear son, Maxion Allbera. Know that I never sopped thinking about you.

Thanks for my dear siblings and aunts Cloia, SRuben, Fimis, Momis, Éme Lile and Slice.

Contents

1 Introduction 4
2 Topological properties of vector fields 13
2.1 Real analytic germs of vector fields 13
2.2 The absolute index; Poincaré-Hopf index 16
2.3 The relative index; GSV-index 17
3 Algebraic properties of vector fields and symmetric forms 23
3.1 Symmetric bilinear forms and Sylvester's theorem. 24
3.2 Examples of bilinear forms in commutative algebra 25
4 The absolute index 31
$4.1 \quad B_{m}$ as an \mathbb{R}-vector space 31
4.2 The socle and the bilinear forms in B_{m} 34
4.3 Multiplicative structure of B_{m} 35
4.4 Calculus of the bilinear forms in B_{m} 39
4.5 The absolute index of B_{m} 41
4.6 An example 43
5 The relative index 45
5.1 An example; computation of the relative index in the local algebra B_{m} 45
5.2 Calculus of the relative index in the local algebra B_{1} 48
5.3 Calculus of the relative index in the local algebra B_{2} 50
5.4 Another example of computation of the relative index 56
6 The finiteness of the algorithm 65
6.1 Transporting the primitive invariants of the relative index, and flags from B_{0} to the algebra \mathbf{A}. 65
6.2 Stabilization of the algebraic formula 67
7 Applications to vector fields tangent to the Milnor fiber 71
7.1 The contact vector field, an example 74

A Appendix; Singular programs 78
References . 84

Abstract

Let $\mathcal{A}_{\mathbb{R}^{n}, 0}$ be the ring of germs of real analytic functions on \mathbb{R}^{n} at 0 and consider $n+1$ germs of real analytic functions $f, f_{1}, \ldots, f_{n}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ such that $\left(f, f_{2}, \ldots, f_{n}\right)$ and $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ are regular sequences (see $\left.[10]\right)$. We denote by f^{m+1} the $(m+1)^{t h}$ power of f. For $m \geq 0$ let us introduce the \mathbb{R}-algebras $$
\begin{equation*} B_{m}:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)} \tag{1} \end{equation*}
$$

They are finite dimensional vector spaces over \mathbb{R}. Their dimensions are $(m+1) d i m_{\mathbb{R}} B_{0}$. Introduce the symmetric bilinear forms $$
\begin{align*} &\langle,\rangle_{m}: B_{m} \times B_{m} \longrightarrow B_{m} \xrightarrow{L_{m}} \mathbb{R} \tag{2}\\ & \quad\left([a]_{m},[b]_{m}\right) \mapsto[a b]_{m} \mapsto L_{m}\left([a b]_{m}\right), \end{align*}
$$

where • denotes multiplication in the algebra B_{m} and L_{m} is an \mathbb{R}-linear map with $L_{m}\left([J]_{m}\right)>0$, where $[J]_{m}$ in B_{m} is the class of the Jacobian determinant of f, f_{2}, \ldots, f_{n}. It is a theorem of Eisenbud and Levine (see [11]) that this bilinear form is nondegenerate and its signature, denoted by σ_{m}, is independent of the chosen L_{m}.

Theorem 0.1. Let $\left\{f, f_{2}, \ldots, f_{n}\right\}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be germs of real analytic functions forming a regular sequence, and σ_{m} the signature of the nondegenerate bilinear form in (2), then we have

$$
\sigma_{m}=\left\{\begin{array}{lllll}
\sigma_{0} & \text { if } & m & \text { is } & \text { even } \tag{3}\\
0 & \text { if } & m & \text { is } & \text { odd } .
\end{array}\right.
$$

Now for $m \geq 0$ define the $m^{\text {th }}$ relative (symmetric degenerate) bilinear form

$$
\begin{align*}
& \langle,\rangle_{m}^{r e l}: B_{m} \times B_{m} \longrightarrow B_{m} \xrightarrow{f_{1}} B_{m} \xrightarrow{L_{m}} \mathbb{R} \tag{4}\\
& \left([a]_{m},[b]_{m}\right) \mapsto[a b]_{m} \mapsto\left[f_{1} a b\right]_{m} \mapsto L_{m}\left(\left[f_{1} a b\right]_{m}\right),
\end{align*}
$$

where $L_{m}: B_{m} \rightarrow \mathbb{R}$ is any linear map such that $L_{m}\left(\left[f^{m} J\right]_{m}\right)>0$ and we are using the multiplication in B_{m} in the expression $f_{1} a b$. Its degeneracy locus is the annihilator of f_{1} on B_{m} :

$$
\operatorname{Ann}_{B_{m}}\left(f_{1}\right):=\left\{b \in \mathcal{C}:\left[b f_{1}\right]_{m}=0 \text { on } B_{m}\right\}
$$

and we denote by $\tilde{\sigma}_{m}^{\text {rel }}$ its signature.
Let $\langle,\rangle_{m, A n n}^{r e l}$ be the degenerate symmetric bilinear form obtained by restricting $\langle,\rangle_{m}^{\text {rel }}$ to $A n n_{B_{m-1}}\left(f_{1}\right) \times f^{m} B_{0}$:

$$
\begin{array}{r}
\langle,\rangle_{m, A n n}^{r e l}:\left(\operatorname{Ann}_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \times\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \\
\quad \dot{\longrightarrow} B_{m} \xrightarrow{f_{1}} B_{m} \xrightarrow{L_{m}} \mathbb{R} . \tag{5}
\end{array}
$$

and denote by $\tilde{\sigma}_{m, A n n}^{r e l}$ its signature.
Our main result is:
Theorem 0.2. Let $\left\{f, f_{2}, \ldots, f_{n}\right\}$ and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be germs of real analytic functions on \mathbb{R}^{n} forming regular sequences, then

1) We have for even $m \geq 0$:

$$
\tilde{\sigma}_{m}^{r e l}=\tilde{\sigma}_{0}^{r e l}+\tilde{\sigma}_{2, A n n}^{r e l}+\tilde{\sigma}_{4, A n n}^{r e l}+\cdots+\tilde{\sigma}_{m, A n n}^{r e l},
$$

and for odd $m \geq 1$:

$$
\tilde{\sigma}_{m}^{r e l}=\tilde{\sigma}_{1}^{r e l}+\tilde{\sigma}_{3, A n n}^{r e l}+\tilde{\sigma}_{5, A n n}^{r e l}+\cdots+\tilde{\sigma}_{m, A n n}^{r e l} .
$$

2) For m large enough, $\tilde{\sigma}_{m, A n n}^{\text {rel }}=0$.
3) For $m \geq 0$ we have the recursive formulas:

$$
\sigma_{m+1}^{r e l}=\sigma_{m-1}^{r e l}+\sigma_{m+1, A n n}^{r e l}
$$

with $\sigma_{-1}^{\text {rel }}:=0$.

Chapter 1

Introduction

The objective of this thesis is to shed light on the following fact:
For a germ of a real analytic function $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ with an algebraically isolated singularity the most basic topological invariant of the Milnor fiber $V_{t}:=\{f=t\}$, its Euler characteristic, can change depending on the sign of t, if n is odd.

For example, for $f=x^{2}+y^{2}-z^{2}$ we pass from 2 2-dimensional discs to a 2 dimensional annulus, changing the Euler characteristic from 2 to 0 .

Our tool to analyse the mathematics around this jump in the Euler characteristic is through a family of vector fields X_{t} on \mathbb{R}^{n} with isolated singularities, each of multiplicity one for $t \neq 0$, and it is tangent to the Milnor fiber V_{t}. The tangency condition may be written as

$$
\sum_{j=0}^{n} \frac{\partial(f-t)}{\partial x_{j}} X_{t}^{j}=(f-t) h_{t}
$$

for a real analytic function $h_{t}(x)$ called the cofactor.
By the Poincaré-Hopf index theorem, we have for t fixed the sum

$$
\sum_{X_{t}(p)=0} \operatorname{Ind}_{\mathbb{R}^{n}}\left(X_{t}, p\right)
$$

is independent of t. At a singular point of the vector field X_{t} at $p \in V_{t}$, with $t \neq 0$, besides the Poincaré-Hopf index, we have the relative Poincaré-Hopf index which is the Poincaré-Hopf index of the restriction $\left.X_{t}\right|_{V_{t}}$ to the $n-1$ dimensional manifold V_{t}. For $t \neq 0$ fixed, the sum

$$
\sum_{X_{t}(p)=0=f(p)-t} \operatorname{Ind}_{V_{t}}\left(\left.X_{t}\right|_{V_{t}}, p\right)
$$

is locally constant so we have a value for $t>0$ and another one for $t<0$. The relation between the 2 indices is, for $t \neq 0$

$$
\operatorname{Ind}_{\mathbb{R}^{n}}\left(X_{t}, p\right)= \pm \operatorname{Ind}_{V_{t}}\left(\left.X_{t}\right|_{V_{t}}, p\right)
$$

where they coincide if $h_{t}(p)>0$ and they differ by the sign if $h_{t}(p)<0$.
For example, the family of contact vector fields

$$
\begin{equation*}
X_{t}:=(f-t) \frac{\partial}{\partial x_{1}}+\sum_{i=1}^{N}\left(\frac{\partial f}{\partial x_{2 i+1}} \frac{\partial}{\partial x_{2 i}}-\frac{\partial f}{\partial x_{2 i}} \frac{\partial}{\partial x_{2 i+1}}\right) \tag{1.1}
\end{equation*}
$$

satisfies the tangency relation

$$
d(f-t)\left(X_{t}\right)=\frac{\partial f}{\partial x_{1}}(f-t)
$$

in an odd dimensional ambient space. All the singular points of X_{t} are contained in this case in V_{t}, so the subindex in the above sums is over the same set, so what is involved are the sign properties of $\frac{\partial f}{\partial x_{1}}$ when restricted to the connected components of the smooth curve $\left\{\frac{\partial f}{\partial x_{2}}=\cdots=\frac{\partial f}{\partial x_{n}}=0\right\}-\{0\} \subset \mathbb{R}^{n}$.

In this thesis, we describe an algebraic method to compute from 'infinitesimal information' of the family of vector fields X_{t} at the point $t=0$ the index of the family to the right and to the left. The vector field $\left.X_{0}\right|_{V_{0}}$ determines only part of this index, and one must look at higher order terms

$$
\left.\frac{\partial^{j} X_{t}}{\partial t^{j}}\right|_{V_{0}}
$$

to see the other contributions.
More generally, let $\mathcal{A}_{\mathbb{R}^{n}, 0}$ be the ring of germs of real analytic functions on \mathbb{R}^{n} at 0 and consider $n+1$ germs of real analytic functions $f, f_{1}, \ldots, f_{n}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ such that $\left(f, f_{2}, \ldots, f_{n}\right)$ and $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ are regular sequences (see [10]). We denote by f^{m+1} the $(m+1)^{t h}$ power of f. For $m \geq 0$ let us introduce the \mathbb{R}-algebras

$$
\begin{equation*}
B_{m}:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)} \tag{1.2}
\end{equation*}
$$

They are finite dimensional vector spaces over \mathbb{R}. Their dimensions are $(m+1) \operatorname{dim}_{\mathbb{R}} B_{0}$.
Let

$$
J:=\operatorname{Det}\left(\begin{array}{ccc}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right) \quad J_{m}:=[J]_{m} \in B_{m}
$$

denote the Jacobian J and its class $[J]_{m}$ in B_{m}.

The absolute index

Introduce the symmetric bilinear forms

$$
\begin{align*}
\langle,\rangle_{m}: B_{m} \times B_{m} \longrightarrow B_{m} \xrightarrow{L_{m}} \mathbb{R} \tag{1.3}\\
\quad\left([a]_{m},[b]_{m}\right) \mapsto[a b]_{m} \mapsto L_{m}\left([a b]_{m}\right),
\end{align*}
$$

where • denotes multiplication in the algebra B_{m} and L_{m} is an \mathbb{R}-linear map with $L_{m}\left([J]_{m}\right)>0$. (See [11]) that this bilinear form is nondegenerate and its signature, denoted by $\tilde{\sigma}_{m}$, is independent of the chosen L_{m}.

Our first result is:
Theorem 1.1. Let $\left\{f, f_{2}, \ldots, f_{n}\right\}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be germs of real analytic functions forming a regular sequence, and $\tilde{\sigma}_{m}$ the signature of the nondegenerate bilinear form in (1.3), then we have

$$
\tilde{\sigma}_{m}=\left\{\begin{array}{lllll}
\tilde{\sigma}_{0} & \text { if } & m & \text { is } & \text { even } \tag{1.4}\\
0 & \text { if } & m & \text { is } & \text { odd. }
\end{array}\right.
$$

The proof relies on choosing $v_{1}, \ldots, v_{s} \in \frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{2}, \ldots, f_{n}\right)}$ such that $\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0} \in B_{0}$ are an \mathbb{R}-basis with $\left[v_{1}\right]_{0}=1$ and $\left[v_{s}\right]=[J]_{0}$, and considering the basis of B_{m} :

$$
\begin{equation*}
\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m},\left[f v_{1}\right]_{m}, \ldots,\left[f v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m} \tag{1.5}
\end{equation*}
$$

that provide \mathbb{R}-vector space isomorphisms

$$
\begin{equation*}
B_{m}=B_{0} \bigoplus f B_{0} \bigoplus \cdots \bigoplus f^{m} B_{0} \tag{1.6}
\end{equation*}
$$

and \mathbb{R}-vector space inclusions

$$
B_{0} \hookrightarrow B_{1} \hookrightarrow \ldots \hookrightarrow B_{m-1} \hookrightarrow B_{m}
$$

We also choose for $L_{m}: B_{m} \longrightarrow \mathbb{R}$ the map sending all the base elements to 0 , except the last where $L_{m}\left(\left[f^{m} J\right]_{m}\right)=1$. Using this block decomposition of B_{m}, the multiplication table

$$
\mu_{m}: B_{m} \times B_{m} \longrightarrow B_{m}
$$

takes the form

$$
Q_{m}=\left[\begin{array}{c|c|c|c}
Q_{0} & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+f\left[\begin{array}{c|c|c|c}
H_{1} & Q_{0} & \cdots & 0 \\
\hline Q_{0} & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+\cdots
$$

$\cdots+f^{m}\left[\begin{array}{l|c|c|c|c}H_{m} & H_{m-1} & \cdot & H_{1} & Q_{0} \\ \hline H_{m-1} & \cdots & H_{1} & Q_{0} & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline H_{1} & Q_{0} & 0 & 0 & 0 \\ \hline Q_{0} & 0 & 0 & 0 & 0\end{array}\right]$,
where $Q_{0}, H_{1}, \ldots, H_{m}$ are symmetric $(s \times s)$-matrices with entries in B_{0}. The expression of these matrices can be obtained from the restriction of μ_{m} to B_{0} and using the isomorphism $B_{m} \simeq \bigoplus_{j=0}^{m} f^{j} B_{0}$ we obtain a bilinear form

$$
\mu_{m}: B_{0} \times B_{0} \longrightarrow B_{m}
$$

with matrix expression

$$
Q_{0}+f H_{1}+\cdots+f^{m} H_{m} .
$$

Q_{0} is the matrix expression of the multiplication μ_{0} on B_{0} and the H_{j} are the higher order terms in the multiplication μ_{m} restricted to $B_{0} \hookrightarrow B_{m}$. These terms contain all the information needed for describing μ_{m}, as can be seen from the expression (1.7). Applying to (1.7) the chosen L_{m}, the matrix for the bilinear form (1.3) is

$$
L_{m *} Q_{m}=\left[\begin{array}{l|c|c|c|r}
L_{0 *} H_{m} & L_{0 *} H_{m-1} & \cdot & L_{0 *} H_{1} & L_{0 *} Q_{0} \tag{1.8}\\
\hline L_{0 *} H_{m-1} & \cdots & L_{0 *} H_{1} & L_{0 *} Q_{0} & 0 \\
\hline \vdots & \ddots & \ddots & 0 & 0 \\
\hline L_{0 *} H_{1} & L_{0 *} Q_{0} & 0 & 0 & 0 \\
\hline L_{0 *} Q_{0} & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Here $L_{m *}: \operatorname{Sym}\left(B_{m}\right) \rightarrow \operatorname{Sym}(\mathbb{R})$ is the operation on matrices with entries in B_{m} to matrices with real entries obtained by applying L_{m} to the entries.

Observing the anti-triangular form of (1.8) and the fact that the anti-diagonal terms are non-singular matrices, we may do then a change basis for the \mathbb{R}-vector space $\left\langle v_{1}, \ldots, f^{m} v_{s}\right\rangle \hookrightarrow \mathcal{A}_{\mathbb{R}^{n}, 0}$ to obtain a matrix representation of $<,>_{m}$ as an anti-diagonal matrix by blocks, with all the anti-diagonal terms being the matrix $L_{0 *} Q_{0}$:

$$
L_{m *} Q_{m}=\left[\begin{array}{l|c|c|c|r}
0 & 0 & \cdot & 0 & L_{0 *} Q_{0} \tag{1.9}\\
\hline 0 & \cdots & 0 & L_{0 *} Q_{0} & 0 \\
\hline \vdots & \ddots & \ddots & 0 & 0 \\
\hline 0 & L_{0 *} Q_{0} & 0 & 0 & 0 \\
\hline L_{0 *} Q_{0} & 0 & 0 & 0 & 0
\end{array}\right]
$$

The matrix (1.9) suggests that we consider the decomposition of B_{m} as:

$$
\begin{equation*}
B_{m}=\left[B_{0} \oplus f^{m} B_{0}\right] \bigoplus\left[f B_{0} \oplus f^{m-1} B_{0}\right] \bigoplus \cdots \tag{1.10}
\end{equation*}
$$

It is an $<,>_{m}$-orthogonal direct sum. The contribution to the signature of each vector space within a bracket is 0 , since they have the form

$$
\left(\begin{array}{cc}
0 & L_{0 *} Q_{0} \tag{1.11}\\
L_{0 *} Q_{0} & 0
\end{array}\right)
$$

Therefore, if m is odd, the brackets in (1.10) are paired off, giving a signature $\sigma_{m}=0$. If m is even, in the above pairing (1.10), we are left with 1 block $L_{0 *} Q_{0}$ which does not have a term to pair with. This term then gives the only non-zero contribution σ_{0} to the signature σ_{m} of B_{m}.

The relative index

We introduce now the main object of analysis in this thesis; the relative bilinear form. Let $\left\{f, f_{1}, \ldots, f_{n}\right\}, B_{m}$ as before (we did not use f_{1} for Theorem 1.1). For $m \geq 0$ define the $m^{\text {th }}$ relative (symmetric degenerate) bilinear form

$$
\begin{align*}
& \langle,\rangle_{m}^{r e l}: B_{m} \times B_{m} \xrightarrow{\cdot} B_{m} \xrightarrow{f_{1}} B_{m} \xrightarrow{L_{m}} \mathbb{R} \tag{1.12}\\
& \left([a]_{m},[b]_{m}\right) \mapsto[a b]_{m} \mapsto\left[f_{1} a b\right]_{m} \mapsto L_{m}\left(\left[f_{1} a b\right]_{m}\right),
\end{align*}
$$

where $L_{m}: B_{m} \rightarrow \mathbb{R}$ is any linear map such that $L_{m}\left[f^{m} J_{m}\right]_{m}>0$ and we are using the multiplication in B_{m} in the expression $f_{1} a b$. Its degeneracy locus is the annihilator of f_{1} on B_{m} :

$$
\operatorname{Ann}_{B_{m}}\left(f_{1}\right):=\left\{b \in \mathcal{C}:\left[b f_{1}\right]_{m}=0 \text { on } B_{m}\right\}
$$

and we denote by $\tilde{\sigma}_{m}^{\text {rel }}$ its signature.
Let $\langle,\rangle_{m, A n n}^{r e l}$ be the degenerate symmetric bilinear form obtained by restricting $\langle,\rangle_{m}^{r e l}$ to $A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}$:

$$
\begin{array}{r}
\langle,\rangle_{m, A n n}^{r e l}:\left(\operatorname{Ann}_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \times\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \\
\quad \stackrel{\cdot}{\longrightarrow} B_{m} \xrightarrow{f_{1}} B_{m} \xrightarrow{L_{m}} \mathbb{R} \tag{1.13}
\end{array}
$$

and denote by $\tilde{\sigma}_{m, A n n}^{r e l}$ its signature.

Our main result is:
Theorem 1.2. Let $\left\{f, f_{2}, \ldots, f_{n}\right\}$ and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be germs of real analytic functions on \mathbb{R}^{n} forming regular sequences, then

1) We have for even $m \geq 0$:

$$
\tilde{\sigma}_{m}^{r e l}=\tilde{\sigma}_{0}^{r e l}+\tilde{\sigma}_{2, A n n}^{r e l}+\tilde{\sigma}_{4, A n n}^{r e l}+\ldots+\tilde{\sigma}_{m, A n n}^{r e l},
$$

and for odd $m \geq 1$:

$$
\tilde{\sigma}_{m}^{r e l}=\tilde{\sigma}_{1}^{r e l}+\tilde{\sigma}_{3, A n n}^{r e l}+\tilde{\sigma}_{5, A n n}^{r e l}+\ldots+\tilde{\sigma}_{m, A n n}^{r e l} .
$$

2) For m large enough, $\tilde{\sigma}_{m, A n n}^{r e l}=0$.
3) For $m \geq 0$ we have the recursive formulas:

$$
\sigma_{m+1}^{r e l}=\sigma_{m-1}^{r e l}+\sigma_{m+1, A n n}^{r e l}
$$

with $\sigma_{-1}^{\text {rel }}:=0$.
Thus we introduce the invariants $\sigma_{\text {even }}^{\text {rel }}$ and $\sigma_{\text {odd }}^{\text {rel }}$ as the corresponding sums above, for m sufficiently large.

For the proof, we begin as in the absolute case, by giving a matrix expression in blocks to the map

$$
\begin{gather*}
\mu_{m}^{\text {rel }}: B_{m} \times B_{m} \longrightarrow B_{m} \quad \mu_{m}^{\text {rel }}\left([a]_{m},[b]_{m}\right)=\left[f_{1} a b\right]_{m} \\
Q_{m}^{\text {rel }}=\left[\begin{array}{l|c|c|c}
Q_{0}^{r e l} & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+f\left[\begin{array}{c|c|c|c}
H_{1}^{\text {rel }} & Q_{0}^{\text {rel }} & \cdots & 0 \\
\hline Q_{0}^{\text {rel }} & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+\cdots \\
 \tag{1.14}\\
\cdots+f^{m}\left[\begin{array}{ll|c|c|c}
H_{m}^{\text {rel }} & H_{m-1}^{\text {rel }} & . & H_{1}^{\text {rel }} & Q_{0}^{\text {rel }} \\
\hline H_{m-1}^{\text {rel }} & \cdots & H_{1}^{\text {rel }} & Q_{0}^{\text {rel }} & 0 \\
\hline \vdots & \ddots & \ddots & 0 & 0 \\
\hline H_{1}^{\text {rel }} & Q_{0}^{\text {rel }} & 0 & 0 & 0 \\
\hline Q_{0}^{\text {rel }} & 0 & 0 & 0 & 0
\end{array}\right]
\end{gather*}
$$

where $Q_{0}^{\text {rel }}, H_{1}^{r e l}, \ldots H_{m}^{\text {rel }}$ are symmetric $(s \times s)$-matrices with entries in B_{0}. These matrices are obtained from the restriction of $\mu_{m}^{r e l}$ to B_{0} and using the isomorphism (1.10):

$$
\left.\mu_{m}^{r e l}\right|_{B_{0} \times B_{0}}: B_{0} \times B_{0} \longrightarrow B_{m}=\bigoplus_{j=0}^{m} f^{j} B_{0}
$$

with matrix expression

$$
Q_{0}^{\text {rel }}+f H_{1}^{\text {rel }}+\cdots+f^{m} H_{m}^{\text {rel }} .
$$

Now $L_{0 *} Q_{0}^{r e l}$ is the basis expression of $\langle,\rangle_{0}^{r e l}$ on B_{0}, so we make a change of \mathbb{R}-basis in $\left\langle v_{1}, \ldots, v_{s}\right\rangle$ so that

$$
L_{0 *} Q_{0}^{\text {rel }}=\left(\begin{array}{ccc}
I_{p_{0}} & 0 & 0 \\
0 & -I_{q_{0}} & 0 \\
0 & 0 & 0
\end{array}\right),
$$

where we have chosen maximal orthogonal subspaces where $\langle,\rangle_{0}^{\text {rel }}$ is positive and negative definite, but the $3^{r d}$ summand, which is the Annihilator of $\langle,\rangle_{0}^{r e l}$ is canonically determined.

In the basis (1.5), the expression of the bilinear form $\langle,\rangle_{1}^{\text {rel }}$ on B_{1} takes the block form:

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{ccc|ccc}
A_{11} & A_{12} & A_{13} & I_{p_{0}} & 0 & 0 \tag{1.15}\\
A_{12}^{t} & A_{22} & A_{23} & 0 & -I_{q_{0}} & 0 \\
A_{13}^{t} & A_{23}^{t} & E_{1} & 0 & 0 & 0 \\
\hline I_{p_{0}} & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q_{0}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

We take a new basis of B_{1} by applying the product of elementary matrices, as in the Jordan-Gauss elimination method to the bilinear form $Q_{1}^{\text {rel }}$, applied simultaneously to the rows and columns so as to preserve the symmetry of the matrix expression. In this basis one has the expression

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{ccc|ccc}
0 & 0 & 0 & I_{p_{0}} & 0 & 0 \tag{1.16}\\
0 & 0 & 0 & 0 & -I_{q_{0}} & 0 \\
0 & 0 & E_{1} & 0 & 0 & 0 \\
\hline I_{p_{0}} & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q_{0}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

From this expression we see that the contribution given by the antidiagonal blocks to the signature is again 0 (even though it is degenerate) and the only contribution to the signature comes from the matrix E_{1}, which is defined where the bilinear form $<,>_{0}^{\text {rel }}$ is degenerate.

Making a new change of basis of the third summand $\operatorname{Ker}\left(Q_{0}^{\text {rel }}\right)$, by choosing maximal subspaces where E_{1} is positive and negative definite, but the third summand is canonically determined by $\operatorname{Ker} E_{1} \cap \operatorname{Ker} Q_{0}^{\text {rel }}$. The block representation of $<,>_{2}^{\text {rel }}$ takes the form

$$
Q_{2}^{\text {rel }}=\left(\begin{array}{cccc|ccccc|cccc}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} & 0 & I_{p_{0}} & 0 & 0 & 0 \tag{1.17}\\
A_{12}^{t} & A_{22} & A_{23} & A_{24} & A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q_{0}} & 0 & 0 \\
A_{13}^{t} & A_{23}^{t} & A_{33} & A_{34} & A_{17}^{t} & A_{27}^{t} & I_{p_{1}} & 0 & 0 & -I_{q_{1}} & 0 & 0 & 0 \\
A_{14}^{t} & A_{24}^{t} & A_{34}^{t} & E_{2} & 0 & 0 & 0 & 0 \\
\hline A_{15} & A_{16} & A_{17} & 0 & I_{p_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q_{0}} & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{17}^{t} & A_{27}^{t} & I_{p_{1}} & 0 & 0 & -I_{q_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

After doing a change of basis using the Jordan-Gauss method as before, we obtain the matrix expression

$$
Q_{2}^{\text {rel }}=\left(\begin{array}{cccc|cccccc|cccc}
0 & 0 & 0 & 0 & 0 & 0 & & 0 & & 0 & I_{p_{0}} & 0 & 0 & 0 \tag{1.18}\\
0 & 0 & 0 & 0 & 0 & 0 & & 0 & 0 & 0 & -I_{q_{0}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & I_{p_{1}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & E_{2} & 0 & 0 & 0 & -I_{q_{1}} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & I_{p_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -I_{q_{0}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{p_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -I_{q_{1}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The antidiagonal terms consist of 3 blocks, the 2 extreme ones give a 0 contribution to the index, and the middle one gives then only 1 contribution to the signature by $p_{0}-q_{0}$. The 2 blocks 1 step above the antidiagonal give no contribution to the signature since they have the form (1.11), and the upper right block gives a contribution to the signature of $Q_{2}^{\text {rel }}$ by the signature of E_{2}.

So we see the same pattern as in the absolute index, having a distinction between even and odd, but with the difference that the new contribution is not 0 as in the nondegenerate absolute index where we had $\tilde{\sigma}_{m}=\tilde{\sigma}_{m-2}+0$, but a new term appears in the Annihilator of the previous form, which the theorem asserts that it eventually becomes 0 .

What remains to be explained is how these new contributions $\tilde{\sigma}_{j, A n n}^{\text {rel }}$ are organized. To do this, we use the method describe in [13] to transport the signatures $\tilde{\sigma}_{j, A n n}^{r e l}$ to the signatures of the primitive components of the algebra $A:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{1}, \ldots, f_{n}\right)}$ with its canonical bilinear form, with respect to multiplication by f. This gives then that $\tilde{\sigma}_{j, A n n}^{r e l}=0$ for $j>\operatorname{dim}\left(B_{0}\right)$.

In chapter 2 we describe the topological properties of vector fields that we will use. In chapter 3 we describe the algebraic properties of vector fields that we will use. In chapter 4 we analyse the absolute index and prove Theorem (1.1). In chapter 5 we describe the relative index and prove Theorem (1.2). In Chapter 6 we transport the signatures $\sigma_{j, A n n}^{r e l}$ to the algebra A. In chapter 7 we give applications of our theorems for 1-parameter families of vector fields tangent to the Milnor fibres and to contact vector fields.

Theorem (1.1) and Theorem (1.2) are the original contributions of this thesis, and the material although motivated by [13], is not contained in it. The paper [13] centers in analysing the Taylor series expansion of the family of bilinear forms $<,>_{t}$ and how far in this expansion one has to go to know the index on the right and the left, and this Thesis centers in the analysis of the family of bilinear forms in the truncated algebras B_{m}.

Chapter 2

Topological properties of vector fields

Our purpose in this chapter is to give the basic theory of the Poincaré-Hopf index and the relative index (abbreviated as GSV). We explain a procedure to compute the GSV index. We provide a natural example, it has been selected to illustrate an interesting and important phenomena.

2.1 Real analytic germs of vector fields

\mathcal{C}^{ω} denotes the class of real analytic functions.
Definition 2.1. Let $U \subset \mathbb{R}^{n}$ be an open subset. A real analytic vector field in U is a map $X: U \rightarrow \mathbb{R}^{n}$ of class \mathfrak{C}^{ω}. We define a singularity of a vector field X to be a point p such that $X(p)=0$. Furthermore, the linear part of the vector field X in p is $D X(p)$, where $D X(p)=\frac{\partial\left(X^{1}, \ldots, X^{n}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}$ i.e. It is the Jacobian matrix valued at p.
Definition 2.2. A germ of a real analytic function at p is an equivalence class of pairs $\left(U, f_{1}\right)$, where U is an open neighborhood of p and f_{1} is a real analytic function of U.

We recall that two pairs $\left(U, f_{1}\right),\left(V, f_{2}\right)$ are equivalent if there exists an open neighborhood $W \subset U \cap V$ of p such that $\left.f_{1}\right|_{W}=\left.f_{2}\right|_{W}$. Where f_{2} is a real analytic function.

Moreover, let U be a neighborhood of p in \mathbb{R}^{n} such that p is an isolated singularity of the real analytic vector field X. If $f: U \subset\left(\mathbb{R}^{n}, p\right) \rightarrow(\mathbb{R}, p)$ is a germ of a real analytic function, then $d f: T U \rightarrow T \mathbb{R}$, and

$$
d f \cdot X:=d f_{p}(X(p))
$$

Definition 2.3. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of a real analytic function and $V(f):=\left\{a \in \mathbb{R}^{n}: f(a)=0\right\}$ be a hypersurface. We say that, p is an isolated singularity of f, or of the hypersurface $V(f)$ if p is an isolated point of $V\left(f, f_{1}, \ldots, f_{n}\right)$, where $V\left(f, f_{1}, f_{2}, \ldots, f_{n}\right):=\left\{a \in \mathbb{R}^{n}: f(a)=f_{1}(a), \ldots, f_{n}(a)=0\right\}$, with $f_{i}:=\frac{\partial f}{\partial_{x_{i}}} i=1, \ldots, n$.

Definition 2.4. If f and $V(f)$ are as in the previous definition, we define a singularity algebraically isolated p of f or $V(f)$ to be an isolated point p of $V\left(f, f_{1}, \ldots, f_{n}\right)$ after we complexify the function f.

Proposition 2.1.1. Let f be a real analytic function and X be a germ of a real analytic vector field with an isolated singularity at 0 , such that it is tangent to a smooth hypersurface

$$
V(f):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n} \mid f\left(a_{1}, \ldots, a_{n}\right)=0\right\} .
$$

Then $\left.d f \cdot X\right|_{V(f)}=0$ if and only if $d f \cdot X=h f$, for some analytic function h. The function h will be called the cofactor.

Proof. Since 0 is an isolated singularity of the vector field X, there exists a change of coordinates $\left(w_{1}, \ldots, w_{n}\right)$, and functions $\varphi, \psi \in \mathcal{C}^{\omega}$ with $\psi=\varphi^{-1}$ such that

$$
f\left(\varphi\left(w_{1}, \ldots, w_{n}\right)\right)=w_{1} . \text { (It is an immediate consequence of the implicit theorem.) }
$$

On the other hand, for the vector field X, let us define the vector field \tilde{X} by $\tilde{X}=D \psi X$. Therefore, $d f \cdot \tilde{X}=\sum_{j=1}^{n} \tilde{X}_{j} \frac{\partial f}{\partial w_{j}}=\tilde{X}_{1}$. Since \tilde{X} is a vector field of class ${ }^{\omega}{ }^{\omega}$, then the Taylor series expansion of \tilde{X}_{1} is

$$
\tilde{X}_{1}=w_{1} h_{1}\left(w_{2}, \ldots, w_{n}\right)+w_{1}^{2} h_{2}\left(w_{2}, \ldots, w_{n}\right)+\ldots+w_{1}^{n} h_{n}\left(w_{2}, \ldots, w_{n}\right)+R_{n}
$$

h_{1} is the cofactor, and R_{n} is the residue of the Taylor series.
Conversely, suppose that $d f \cdot X=h f$ for some analytic function h then $\left.d f \cdot X\right|_{V(f)}=$ $h\left(a_{1}, \ldots, a_{n}\right) f\left(a_{1}, \ldots, a_{n}\right)=0$ and $\left.d f \cdot X\right|_{V(f)}=0$ for all $\left(a_{1}, \ldots, a_{n}\right) \in V(f)$.

Proposition 2.1.2. Let $f, V(f)$ and X be as in Proposition (2.1.1), then the cofactor is invariant under a change of coordinates, i.e.

$$
\begin{equation*}
\tilde{h}(p)=h(\varphi(p)) \text { with } p \in V(f)-\{0\} . \tag{2.1}
\end{equation*}
$$

Proof. Since p is a regular point of f, there exist local functions $\varphi, \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $\varphi(p)=q$ such that

$$
\begin{equation*}
\tilde{f}=f \circ \varphi\left(y_{1}, \ldots, y_{n}\right)=y_{n} \text { and } \psi=\varphi^{-1} . \tag{2.2}
\end{equation*}
$$

It is a consequence of the implicit theorem (see [26], p. 401). So, by the chain rule, we get

$$
\begin{equation*}
(\nabla \tilde{f})_{p}=(\nabla f)_{\varphi(p)} \cdot(D \varphi)_{p} . \tag{2.3}
\end{equation*}
$$

Moreover, if we push forward the real analytic vector field X with $D \psi$, then we get \tilde{X}. i.e.

$$
\begin{equation*}
\tilde{X}(q)=(D \psi)_{\varphi(p)} X_{\varphi(p)} . \tag{2.4}
\end{equation*}
$$

If we see the Proposition (2.1.1). It follows that

$$
\begin{equation*}
\nabla f(p) X(p)=h(p) f(p), \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla \tilde{f}(p) \cdot \tilde{X}(p)=\tilde{h}(p) \tilde{f}(p) \tag{2.6}
\end{equation*}
$$

From (2.3) and (2.4), we obtain

$$
\begin{equation*}
\nabla \tilde{f}(p) \cdot \tilde{X}(p)=\nabla(f)_{\varphi(p)} D \varphi_{p} D \psi_{\varphi(p)} X_{\varphi(p)} . \tag{2.7}
\end{equation*}
$$

Since, $D \varphi D \psi=D(\varphi \circ \psi)=D I=I$ then

$$
\begin{equation*}
\nabla \tilde{f}(p) \cdot \tilde{X}(p)=\nabla(f)_{\varphi(p)} X_{\varphi(p)} \tag{2.8}
\end{equation*}
$$

If we consider (2.5), then the previous equation is

$$
\begin{equation*}
\nabla \tilde{f}(p) \cdot \tilde{X}(p)=h(\varphi(p)) f(\varphi(p)) \tag{2.9}
\end{equation*}
$$

By (2.2), we get

$$
\begin{equation*}
\nabla \tilde{f}(p) \cdot \tilde{X}(p)=h(\varphi(p)) \tilde{f}(p) . \tag{2.10}
\end{equation*}
$$

Thus, if we see the equations (2.6) and (2.10), then

$$
\tilde{h}(p)=h(\varphi(p)) .
$$

Graphically

In this case, $\tilde{X}_{p}=D \psi X_{q}, \varphi(p)=q$.

2.2 The absolute index; Poincaré-Hopf index

We define the sphere of radius ϵ to be

$$
S_{\epsilon}^{n-1}=\left\{x \in \mathbb{R}^{n} \mid\|x\|=\epsilon\right\} .
$$

Indeed, S_{1}^{n-1} denotes the sphere of radius equal to 1 . If X be a real analytic vector field with an isolated singularity at 0 , and $\eta: S_{\epsilon}^{n-1} \rightarrow S_{1}^{n-1}$ is a continuous map, then η induces a homomorphism

$$
\eta_{*}: H_{n-1}\left(S_{\epsilon}^{n-1}\right) \rightarrow H_{n-1}\left(S_{1}^{n-1}\right) .
$$

Since, $H_{n-1}\left(S_{\epsilon}^{n-1}\right) \simeq \mathbb{Z}$ then $\eta_{*}: x \mapsto d x$ for some fixed $d \in \mathbb{Z}$. The integer d will be called the degree of η.

Remark 2.1. If η is a real analytic function with an isolated singularity at 0 , then we define the degree of η, denoted $\operatorname{deg}(\eta)$, to be the sum of the signs of the Jacobian of η, at all regular values $q \in S_{1}^{n-1}$. (See [28] Lemma 3, p. 36, Lemma 4, p. 37).

Definition 2.5. Let X be a real analytic vector field with isolated singularity at 0 then d is the Poincaré-Hopf index, denoted $\left(\operatorname{Ind}_{\mathbb{R}^{n}}(X, 0)\right)$.

Remark 2.2. Since X is a real analytic vector field, then

$$
D X=\left(\begin{array}{ccc}
\frac{\partial X^{1}}{\partial x_{1}} & \cdots & \frac{\partial X^{1}}{\partial x_{n}} \tag{2.11}\\
\cdot & & \cdot \\
\cdot & & \cdot \\
\dot{\cdot} & \dot{X^{n}} & \ldots \\
\frac{\partial X^{n}}{\partial x_{n}} & \cdots
\end{array}\right)
$$

Note that, if p is an isolated singularity of $X:=\left(X^{1}, \ldots, X^{n}\right)$ such that $|D X(p)| \neq 0$, then the Poincaré-Hopf index of X at p can be computed as the sign $|D X(p)|$. (See [3], [27]).

Remark 2.3. We consider X as a real analytic vector field and 0 an isolated singularity of X. If X_{t} is a small perturbation of X of class C^{ω}, then

$$
\begin{equation*}
\operatorname{Ind}_{\mathbb{R}^{n}}(X, 0)=\sum_{X_{t}\left(p_{i}\right)=0, p_{i} \in B} \operatorname{Ind} d_{\mathbb{R}^{n}}\left(X_{t}, p_{i}\right) . \tag{2.12}
\end{equation*}
$$

We will interpret B as a neighborhood of 0 , and the points p_{i} are isolated singularities of X_{t} in B, with $i=1, \ldots, \ell, \ell \in \mathbb{Z}^{>0}$.

Graphically, we have the following situation,

Zero is an isolated singularity.

In this case, $\operatorname{Ind}_{\mathbb{R}^{n}}(X, 0)=\sum_{i=1}^{6} \operatorname{Ind}_{\mathbb{R}^{n}}\left(X_{t}, p_{i}\right), p_{i} \in B$.

2.3 The relative index; GSV-index

Definition 2.6. Let X be germs of a real analytic vector field, with an algebraic isolated singularity at 0 , such that it is tangent to

$$
H:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{n}=0\right\} .
$$

Let $Y:=\left.X\right|_{H}$. We define the relative index of the vector field X, to be the PoincaréHopf index of the real analytic vector field Y.

We will interpret the vector field X in coordinates by defining $X=\left(X^{1}, \ldots, X^{n-1}, x_{n} h\right)$, where h is the real analytic function and $x_{n} \in \mathbb{R}$.

Furthermore, since X is tangent to H and $Y=\left.X\right|_{H}$, then, $D X$ and $D Y$ can be expressed as

$$
D X=\left(\begin{array}{ccc}
\frac{\partial X^{1}}{\partial x_{1}} & \cdots & \frac{\partial X^{1}}{\partial x_{n}} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot \cdot \\
\frac{\partial X^{n-1}}{\partial x_{1}} & \cdots & \frac{\partial X^{n-1}}{\partial x_{n}} \\
x_{n} \frac{\partial h}{\partial x_{1}} & \cdots & h+x_{n} \frac{\partial h}{\partial x_{n}}
\end{array}\right) ; D Y=\left(\begin{array}{ccc}
\frac{\partial X^{1}}{\partial x_{1}} & \cdots & \frac{\partial X^{1}}{\partial x_{n-1}} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\frac{\partial X^{n-1}}{\partial x_{1}} & & \frac{\partial X^{n-1}}{\partial x_{n-1}} \cdot
\end{array}\right)
$$

It follows that

$$
\left.D X\right|_{H}=\left(\begin{array}{cc}
D Y & \star \\
0 & h
\end{array}\right) .
$$

Finally, $|D X(0)|$ is equal to

$$
\begin{equation*}
|D X(0)|=h(0)|D Y(0)| . \tag{2.13}
\end{equation*}
$$

Remark 2.4. According to the previous paragraph, we define the relative index of X, to be sign | $D Y(0) \mid$.

Lemma 2.3.1. Let X be germs of a real analytic vector field with an isolated singularity at 0 , and tangent to H, such that $|D X(0)| \neq 0$. If Y is the restriction of X to H, then

$$
\operatorname{Ind}_{\mathbb{R}^{n}}(X, 0)=\operatorname{sign}(h(0)) \operatorname{Ind} d_{H}(Y, 0) .
$$

Proof. Since, $|D X(0)| \neq 0$ and $|D X(0)|=h(0)|D Y(0)|$, then from the equation (2.13) it follows that $h(0) \neq 0$ and $|D Y(0)| \neq 0$. Namely, if $Y:=\left.X\right|_{H}$ and X has an isolated singularity at 0 , clearly Y has an isolated singularity at 0 . Now, let us consider the sign on (2.13). Then, we get

$$
\operatorname{Ind}_{\mathbb{R}^{n}}(X, 0)=\operatorname{sign}(h(0)) \operatorname{Ind} d_{H}(Y, 0) .
$$

Corollary 2.1. Assuming the hypothesis of Lemma, (2.3.1), and if p is an isolated singularity of the vector field X, then
a) $\quad \operatorname{Ind}_{H}(Y, p)=\operatorname{Ind}_{\mathbb{R}^{n}}(X, p) \Longleftrightarrow h(p)>0$.
b) $\quad \operatorname{Ind}_{H}(Y, p)=-\operatorname{Ind}_{\mathbb{R}^{n}}(X, p) \Longleftrightarrow h(p)<0$.

Proof. The proof of a) and b) follows immediately if we consider

$$
\operatorname{Ind}_{\mathbb{R}^{n}}(X, p)=\operatorname{sign}(h(p)) \operatorname{Ind} d_{H}(Y, p) .
$$

Indeed, if $h(p)>0$ then $\operatorname{Ind}_{H}(Y, p)=\operatorname{Ind}_{\mathbb{R}^{n}}(X, p)$ and $\operatorname{Ind} d_{H}(Y, p)=-\operatorname{Ind} d_{\mathbb{R}^{n}}(X, p)$, when $h(p)<0$.

As an illustration of a change in the topology of the Milnor fibers, we will use the calculus of the GSV-index. To show this, we will exhibit in an example the structure of a singular hypersurface, using a uniparametric non-singular hypersurface when it passes through 0 .

Example 2.3.1.
Let $f:\left(\mathbb{R}^{3}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of a real analytic function, and

$$
X_{t}=\left(f-t,-f_{z}, f_{y}\right)
$$

be a uniparametric family of the vector fields of class C^{ω}, (with $f_{y}=\frac{\partial f}{\partial y}, f_{z}=\frac{\partial f}{\partial z}$). If X_{t} is tangent to the hypersurface $V_{t}(f)=\left\{(a, b, c) \in \mathbb{R}^{3}: f(a, b, c)=t\right\}$, then $d f \cdot X_{t}=\nabla f \cdot X_{t}=\left(f_{x}, f_{y}, f_{z}\right) \cdot\left((f-t),-f_{z}, f_{y}\right)=f_{x}(f-t)$. So, $f_{x}=\frac{\partial f}{\partial x}$ is the cofactor. In particular, if $f=x^{2}+y^{2}-z^{2}$ then the cofactor is $f_{x}=2 x$.

Now, we will study the topology of our smooth family of hypersurfaces. To do so, we consider different values of t in $V_{t}=\left\{(a, b, c) \in \mathbb{R}^{3}: f(a, b, c)=t\right\}$. Indeed, if $t=0$ then hypersurface $V_{0}(f)=\left\{(a, b, c) \in \mathbb{R}^{3}: f(a, b, c)=0\right\}$ is

The hypersurface V_{0}.

Thus, if $t=1$, then we will obtain

The hypersurface $V_{1}=\{f=1\}$.

Finally, when $t=-1$, then we will get

The hypersurface $3 V_{-1}=\{f=-1\}$.

So, let us consider the GSV-index of the vector field X_{t}, for different values of t , and we will observe an interesting phenomenon. Indeed, if $t=0$, then the origin $(0,0,0)$ is an isolated singularity of X_{0}.

We note that, if $t=1$, then the points $p_{1}=(1,0,0), p_{2}=(-1,0,0)$ are the isolated singularities of X_{1}. On the other hand, if $D X_{1}$ is defined to be

$$
\left|D X_{1}\right|=\left|\left(\begin{array}{ccc}
2 x & 2 y & -2 z \\
0 & 0 & 2 \\
0 & 2 & 0
\end{array}\right)\right|=-8 x
$$

then, the sign $\left|D X\left(p_{1}\right)\right|=1$, and the sign $\left|D X\left(p_{2}\right)\right|=-1$. Hence, $\operatorname{Ind}_{\mathbb{R}^{3}}(X, 0)=0$. It is a direct consequence of the additivity property of the Poincare-Hopf index.

Since, $2 x$ is the cofactor, then $h\left(p_{1}\right)=2(1)>0$ and $h\left(p_{2}\right)=2(-1)<0$. Therefore, from Corollary (2.1) we have $\operatorname{Ind}_{\mathbb{R}^{2}}\left(Y, p_{1}\right)=-1$ and $\operatorname{Ind} d_{\mathbb{R}^{2}}\left(Y, p_{2}\right)=-1$. Thus $\operatorname{Ind}_{\mathbb{R}^{2}}(Y, 0)=-2$.

If $t=-1$, then the set of singularities of vector field $X_{-1}=\left(x^{2}+y^{2}-z^{2}+1,2 z, 2 y\right)$ are not considered to be real. So, $\operatorname{Ind}_{\mathbb{R}^{3}}(X, 0)=\operatorname{Ind}_{\mathbb{R}^{2}}(Y, 0)=0$. Hence we conclude that:

1. If $t>0$, then $\operatorname{Ind}_{\mathbb{R}^{3}}(X, 0)=0$ and $\operatorname{Ind}_{V_{t}}(Y, 0)=-2$.
2. If $t<0$, then $\operatorname{Ind}_{\mathbb{R}^{3}}(X, 0)=0$ and $\operatorname{Ind}_{V_{t}}(Y, 0)=0$.

Consequently, by the previous paragraph we have that the relative index changed, but the Poincare-Hopf index of X_{t} for different values of t did not change.

Chapter 3

Algebraic properties of vector fields and symmetric forms

Eisenbud-Levine used a symmetric bilinear form to compute the degree of the function f. Denoted $\operatorname{deg}(f)$, with $f \in \mathcal{C}^{\omega}$. In this chapter, we define the general notion of algebra and study in detail an example of degenerate bilinear form. We will work with Zarisky topology.

Definition 3.1. A sequence of elements $\left\{x_{1}, \ldots, x_{d}\right\}$ on a ring \mathcal{R} is a regular sequence if the ideal $\left(x_{1}, \ldots, x_{d}\right)$ is proper, and the image of x_{i+1} is a nonzero divisor in $\frac{\mathcal{R}}{\left(x_{1}, \ldots, x_{i}\right)}$.

Definition 3.2. A local ring \mathcal{N} is a complete intersection ring if there exists a regular local Noetherian ring \mathcal{R}, and a regular sequence $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ in \mathcal{R} such that

$$
\mathcal{N} \simeq \frac{\mathcal{R}}{\left(x_{1}, \ldots, x_{n}\right)}
$$

Remark 3.1. Let \mathbb{K} be a field of characteristic 0 and $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials with n variables. Namely, if I is an ideal in $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, then

$$
\mathcal{A}=\frac{\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]}{I}
$$

is an algebra and the following are equivalent:

1. \mathcal{A} is a finite-dimensional over \mathbb{K}.
2. The variety $V(I) \in \mathbb{K}^{n}$ is a finite set

$$
V(I):=\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{K}^{n}: f_{\lambda}\left(a_{1}, \ldots, a_{n}\right)=0, \text { and } f_{\lambda} \in I, \lambda \in \Lambda\right\}
$$

where, Λ is a finite set of indices.
3. The ideal I is zero-dimensional.

Definition 3.3. Let V be an affine variety. If $I(V)$ is the ideal of polynomials vanishing on V, then, we define the coordinate ring of V, to be

$$
\mathbb{K}[V]=\frac{\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]}{I(V)} .
$$

An element $f \in \mathbb{K}[V]$ will be called a regular function.
Definition 3.4. Let $\mathcal{A}_{\mathbb{R}^{n}, 0}$ be the ring of germs of regular funcions of \mathbb{R}^{n} at 0 , and $\mathbb{R}\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}$ be the set of convergent power series. If $f_{1}, \ldots, f_{n} \in \mathbb{R}\left\{\left\{x_{1}, \ldots, x_{n}\right\}\right\}$, then 0 is called an algebraically isolated singularity of $\left\{f_{1}, \ldots, f_{n}\right\}$, when $\mathcal{O}=\frac{\mathcal{A}_{\mathbb{R}} n, 0}{\left(f_{1}, \ldots, f_{n}\right)}$ it is finite dimensional.

Moreover, let $\mathcal{O}_{V, p}$ be the ring of germs of regular functions of V at p. If V is an affine variety with a coordinate ring $\mathbb{K}[V]$, then:

1. $\mathcal{O}_{V, p}$ is a local ring, with maximal ideal

$$
\begin{equation*}
m_{p}=\left\{f \in \mathcal{O}_{V, p} \mid f(p)=0\right\} . \tag{3.1}
\end{equation*}
$$

2. $\mathcal{O}_{V, p} \simeq \mathbb{K}[V]_{m_{p}}$, where

$$
\begin{equation*}
\mathbb{K}[V]_{m_{p}}=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in \mathbb{K}[V], \mathrm{g} \notin m_{p}\right\} . \tag{3.2}
\end{equation*}
$$

3. $\operatorname{dim}\left(\mathcal{O}_{V, p}\right)=\max \left\{\operatorname{dim} V_{i} \mid p \in V_{i}\right\}$, where V_{i} are the irreducible components of $V, i \in \Lambda$ and Λ denotes a finite set of indices.
(See [19] page 469.)

3.1 Symmetric bilinear forms and Sylvester's theorem.

In this section, we will give some basic definitions of the symmetric bilinear forms. Next, we will remember the inertia theorem.

Definition 3.5. Let V be a vector space over field \mathbb{K}. The bilinear form on V $\phi: V \times V \rightarrow \mathbb{K}$ is said to be symmetric if $\phi(u, v)=\phi(v, u)$ for all $u, v \in V$.

Remark 3.2. If $\phi: V \times V \rightarrow \mathbb{K}$ is a symmetric bilinear form, then the associated matrix is symmetric.

Theorem 3.1. Sylvester's Law of inertia.
If V is a real vector space of dimension $n \geq 1$, and $\phi: V \times V \rightarrow \mathbb{R}$ is a symmetric bilinear form on V of rank $r \leq n$, then, there is an integer p with $0 \leq p \leq r$ depending only on ϕ, and a basis $\mathcal{B}=\left\{e_{1}, . ., e_{n}\right\}$ of V. Therefore, the associated matrix to ϕ has the following form

$$
\left(\begin{array}{ccc}
I_{p} & 0 & 0 \\
0 & -I_{q} & 0 \\
0 & 0 & 0_{n-(p+q)}
\end{array}\right)
$$

The symbol $0_{n-(p+q)}$, denotes the zero matrix of suitable size.

3.2 Examples of bilinear forms in commutative algebra

In this section, we motivate our next results with an example of a degenerate symmetric bilinear form on \mathbb{R}^{3}. We will compute the signature in different subspaces of \mathbb{R}^{3}, and the one parameter family. Finally, we will give a specific example that arises from commutative algebra.

Let us consider the degenerate symmetric bilinear form $\langle\rangle:, \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$, with associated matrix Q given by

$$
Q=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If $v_{1}=\left(\begin{array}{c}a_{1} \\ b_{1} \\ c_{1}\end{array}\right), v_{2}=\left(\begin{array}{c}a_{2} \\ b_{2} \\ c_{2}\end{array}\right) \in \mathbb{R}^{3}$. They are arbitrary fixed vectors. Then, $v_{1} Q v_{2}$ or $\left\langle v_{1}, v_{2}\right\rangle$ is

$$
\left\langle\left(\begin{array}{l}
a_{1} \tag{3.3}\\
b_{1} \\
c_{1}
\end{array}\right),\left(\begin{array}{c}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)\right\rangle=-a_{1} b_{2}-b_{1} a_{2}
$$

Since, v_{2} is an arbitrary vector, we get $\left\langle v_{1}, v_{2}\right\rangle=0$ if and only if $-a_{1} b_{2}-b_{1} a_{2}=0$, and $\left(a_{1}, b_{1}\right)=(0,0)$. On the other hand, we define the annihilator of Q, denoted $\operatorname{Ann}\langle$,$\rangle ,$ to be

$$
\begin{equation*}
A n n\langle,\rangle:=\left\{\bar{v} \in \mathbb{R}^{3}: \bar{v} Q \bar{v}_{1}=0\right\} \tag{3.4}
\end{equation*}
$$

With $\overline{v_{1}} \in \mathbb{R}^{3}$, it is a vector fixed in \mathbb{R}^{3}. Therefore, the annihilator of the matrix Q is $\operatorname{Ann}\langle\rangle=,(0,0) \times \mathbb{R}$.

Analysis of the bilinear form restricted to 1-dimensional subspaces

We begin by investigating the symmetric bilinear form when we have a one-dimensional subspace. So, let \mathcal{L} be a line in \mathbb{R}^{3}, namely
$\mathcal{L}=\left\{\left(a_{1}, b_{1}, c_{1}\right) \in \mathbb{R}^{3}:\left(a_{1}, b_{1}, c_{1}\right)=\lambda(a, b, c)\right.$, where $\lambda \in \mathbb{R}-\{0\}$ and (a, b, c) is fixed vector $\}$.
In fact, if $\lambda, \mu \in \mathbb{R}$ then $\lambda\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ and $\mu\left(\begin{array}{l}a \\ b \\ c\end{array}\right) \in \mathcal{L}$. Thus, we can write

$$
\left\langle\lambda\left(\begin{array}{l}
a \tag{3.5}\\
b \\
c
\end{array}\right), \mu\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\rangle=-2 a b \lambda \mu=0 \text { if and only if } a b=0
$$

In particular, if $a=0$ or $b=0$, we can define two planes in \mathbb{R}^{3} to be

$$
\mathcal{P}_{1}=\operatorname{gen}\left\{\left(\begin{array}{l}
0 \\
b \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right)\right\} \text {, and } \mathcal{P}_{2}=\operatorname{gen}\left\{\left(\begin{array}{l}
a \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
c
\end{array}\right)\right\} .
$$

Hence, if $\mathcal{L} \subset \mathcal{P}_{1} \cup \mathcal{P}_{2}$, then $\left.\langle\rangle\right|_{,\mathcal{L}}=0$, and if $\mathcal{L} \not \subset \mathcal{P}_{1} \cup \mathcal{P}_{2}$, then the bilinear form restricted to \mathcal{L} is $\langle(\lambda a, \lambda b, \lambda c),(\mu a, \mu b, \mu c)\rangle=-2 \lambda a \mu b=-2 a_{1} b_{2}$.

So, we conclude that, $\left.Q\right|_{\mathcal{L}}$ is nondegenerate and its signature σ is:

1) $\sigma=-1$ If $a_{1}, b_{2}>0$ or $a_{1}, b_{2}<0$.
2) $\sigma=1$ If $a_{1}>0, b_{2}<0$ or $a_{1}<0, b_{2}>0$.

The intersection of the previous planes divides \mathbb{R}^{3} in four connected components. See the following figure:

We have four connected components: $\mathbb{R}^{3}-\left\{a_{1}=b_{1}=0\right\}$.

Analysis of the bilinear form restricted to 2-dimensional subspaces in \mathbb{R}^{3}
Our next objective is to analyse the degenerate symmetric bilinear form, restricted to planes in \mathbb{R}^{3}.
Let \mathcal{P} be a plane on \mathbb{R}^{3}, such that it is generated by the vectors $\left\{v_{1}, v_{1}\right\}$, where

$$
v_{1}=\left(\begin{array}{l}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right) \text { and } v_{2}=\left(\begin{array}{c}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)
$$

Namely,

$$
\mathcal{P}=\operatorname{gen}\left\{\lambda\left(\begin{array}{c}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right)+\mu\left(\begin{array}{c}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)\right\} .
$$

If we recall the equation (3.4), then $\operatorname{Ann}\langle\rangle:,=\operatorname{gen}\left\{\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)\right\}$. Thus, if $A n n\langle,\rangle \subset \mathcal{P}$, and let us consider the vectors $v_{1}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ and $v_{2}=\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$, then the bilinear form is

$$
\left\langle\lambda_{1}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right), \mu_{1}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)+\mu_{2}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\rangle=-2 \lambda_{2} \mu_{2} a b .
$$

If a or b is zero, then

$$
\begin{equation*}
\left.\langle,\rangle\right|_{\mathcal{P}}=0 . \tag{3.6}
\end{equation*}
$$

Moreover, if $a, b \neq 0$, then $\langle\rangle=,-2 \lambda_{2} \mu_{2} a b$. It has rank 1 , and its signature is equal to ± 1 as in the case of one-dimensional subspace. Indeed, the associated matrix is

$$
\left(\begin{array}{cc}
\left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle & \left\langle\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\rangle \\
\left\langle\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right\rangle\left\langle\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right),\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & -2 a b
\end{array}\right) .
$$

If $\mathcal{P} \cap A n n\langle\rangle=,\{0\}$, and let

$$
v_{1}=\left(\begin{array}{c}
a_{1} \\
b_{1} \\
c_{1}
\end{array}\right), v_{2}=\left(\begin{array}{c}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)
$$

be independent linear vectors in \mathbb{R}^{3}, such that $\mathcal{P}:=\operatorname{gen}\left\{v_{1}, v_{2}\right\}$, then

$$
\operatorname{det}\left(\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2}
\end{array}\right) \neq 0
$$

In particular, we may choose generators of \mathcal{P} as

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
c_{1}
\end{array}\right), v_{2}=\left(\begin{array}{c}
0 \\
1 \\
c_{2}
\end{array}\right)
$$

So, we get

$$
\left\langle\lambda_{1} v_{1}+\lambda_{2} v_{2}, \mu_{1} v_{1}+\mu_{2} v_{2}\right\rangle=-\lambda_{2} \mu_{1}-\lambda_{1} \mu_{2}=\left(\lambda_{1}, \lambda_{2}\right)\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{\mu_{1}}{\mu_{2}}
$$

Therefore, $\mathcal{P}=\mathbb{R} v_{1} \times \mathbb{R} v_{2}$, and \langle,$\rangle is nondegenerate with rank 2$ and its signature is 0 . Consequently, from the previous discussion we get the following lemma,

Lemma 3.2.1. If \mathcal{P} is any plane such that $\left.\langle\rangle\right|_{,\mathcal{P}}$ has rank 2 then the signature is 0.

Analysis of the bilinear form on a one-parameter family

In this case, we will illustrate that the contribution of the signature corresponds to the dimension of the annihilator of the matrix Q.
We start with a one-parameter family of bilinear forms in \mathbb{R}^{3}, with associated matrix defined by

$$
Q_{t}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+t\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{2} & \alpha_{4} & \alpha_{5} \\
\alpha_{3} & \alpha_{5} & \alpha_{6}
\end{array}\right)
$$

With $0<t \ll 1$, it has the property

$$
\begin{equation*}
\left\{t \in \mathbb{R}-\{0\} \mid\langle,\rangle_{t}, \text { it is nondegenerate }\right\} \tag{3.7}
\end{equation*}
$$

Thus, we can write

$$
Q_{t}=\left[\begin{array}{ccc}
t \alpha_{1} & -1+t \alpha_{2} & t \alpha_{3} \\
-1+t \alpha_{2} & t \alpha_{4} & t \alpha_{5} \\
t \alpha_{3} & t \alpha_{5} & t \alpha_{6}
\end{array}\right]
$$

Hence,
$\operatorname{det}\left(Q_{t}\right)=t^{3} \alpha_{1} \alpha_{4} \alpha_{6}-t^{3} \alpha_{1} \alpha_{5}^{2}-t^{3} \alpha_{2}^{2} \alpha_{6}+2 t^{3} \alpha_{2} \alpha_{3} \alpha_{5}-t^{3} \alpha_{3}^{2} \alpha_{4}+2 t^{2} \alpha_{2} \alpha_{6}-2 t^{2} \alpha_{3} \alpha_{5}-t \alpha_{6}$.
Indeed, if $\operatorname{det}\left(Q_{t}\right) \neq 0$, then we can factorize t. Consequently, we obtain
$\operatorname{det}\left(Q_{t}\right)=t\left[t^{2}\left(\alpha_{1} \alpha_{4} \alpha_{6}-\alpha_{1} \alpha_{5}^{2}-\alpha_{2}^{2} \alpha_{6}+\alpha_{2} \alpha_{3} \alpha_{5}-\alpha_{3}^{2} \alpha_{4}\right)+2 t\left(\alpha_{2} \alpha_{6}-\alpha_{3} \alpha_{5}\right)-\alpha_{6}\right]$.
Note that the term t inside of the square brackets in the previous formula is independent from t. So, if $t \ll 1$, the sign of $\operatorname{det}\left(Q_{t}\right)$ depends only on the sign of α_{6}. Therefore, we have the following result.

Lemma 3.2.2. Let us consider α_{6} in (3.8), then

- If $\alpha_{6}>0$, then for small values of t we have that $\operatorname{det}\left(Q_{t}\right)<0$, and the signature is +1 .
- If $\alpha_{6}<0$, then for small values of t we have that $\operatorname{det}\left(Q_{t}\right)>0$, and the signature is -1 .
- If $t=0$, then the rank is 2 and the signature is 0 .

In the previous example, we motivated our main objects of study. In fact, we will explore the relationship between the new contribution to the signature in the relative case. We will get the answer in our main theorem.

Our next example arises from commutative algebra. We will obtain a degenerate symmetric bilinear form with associated matrix equal to the matrix Q defined in the beginning.
Example 3.2.1. Let us consider the real analytic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined to be

$$
f(x, y)=\left(x-y^{2}\right) \cdot\left(x^{2}-y\right)
$$

Thus, $\{x, y\}$ is a reduced Groebner basis of ∇f and $(0,0)$ is an algebraically isolated singularity of f.
Since $\mathbb{R}[x, y]$ is the ring of polynomials on the variables x, y. Then B_{0} is defined by

$$
\begin{equation*}
B_{0}=\frac{\mathbb{R}[x, y]}{\left(f, f_{y}\right)} \tag{3.9}
\end{equation*}
$$

and $\left\{1, y, y^{2}\right\}$ is a basis of B_{0}. Note that the Jacobian class of $\left\{f, f_{y}\right\}$ in B_{0} is

$$
\left[J\left(f, f_{y}\right)\right]_{B_{0}}:=\left[\left(\begin{array}{cc}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial f_{y}}{\partial x} & \frac{\partial f_{y}}{\partial y}
\end{array}\right)\right]_{B_{0}}=y^{2}
$$

Furthermore, if we define the relative symmetric bilinear form to be

$$
\langle,\rangle_{0}^{r e l}: B_{0} \times B_{0} \xrightarrow{\cdot} B_{0} \xrightarrow{f_{x}} B_{0} \xrightarrow{L_{0}} \mathbb{R}
$$

and the linear map $L: B_{0} \rightarrow \mathbb{R}$ by

$$
L_{0}\left(y^{2}\right)=1, L_{0}(y)=L_{0}(1)=0
$$

then we get

Multiplication after $\left[f_{x}\right]_{B_{0}=-y}$			
base	1	y	y^{2}
1	$L_{0}(-y)$	$L_{0}\left(-y^{2}\right)$	0
y	$L_{0}\left(-y^{2}\right)$	0	0
y^{2}	0	0	0

Hence, the associated matrix is

$$
Q=\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

We conclude that $\operatorname{Ann}\langle,\rangle_{0}^{r e l}=A n n_{B_{0}}\left(f_{x}\right)$.

Chapter 4

The absolute index

In this chapter, we will describe an algebraic method to compute the signature of nondegenerate symmetric bilinear forms.

Let V be a finite dimensional vector space, and \langle,$\rangle be a symmetric bilinear form,$ defined by $\langle\rangle:, V \times V \rightarrow \mathbb{R}$. If we consider the inertia theorem, then the associated matrix to the symmetric bilinear form, it is equivalent to a diagonal matrix. So, we define the signature to be

$$
\begin{equation*}
\tilde{\sigma}=(p, q, r) \tag{4.1}
\end{equation*}
$$

or simply

$$
\begin{equation*}
\sigma=p-q \in \mathbb{Z} \tag{4.2}
\end{equation*}
$$

where, p, q, r represent the positive numbers, the negative numbers and the number of zeros.

$4.1 \quad B_{m}$ as an \mathbb{R}-vector space

Let $\mathcal{A}_{\mathbb{R}^{n}, 0}$ be the algebra of germs of real analytic functions on \mathbb{R}^{n}, with coordinates $\left(x_{1}, \ldots, x_{n}\right)$. Thus, if $\left(f, f_{2}, \ldots, f_{n}\right),\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ are regular sequences, where $f, f_{2}, \ldots, f_{n} \in \mathcal{A}_{\mathbb{R}^{n}, 0}$, and $f_{i}=\frac{\partial f}{\partial x_{i}}$, then we define the local algebra \mathcal{C}, to be

$$
\begin{equation*}
\mathcal{C}=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{2}, \ldots, f_{n}\right)}, \tag{4.3}
\end{equation*}
$$

and the finite vector space B_{m}, by

$$
\begin{equation*}
B_{m}=\frac{\mathcal{C}}{\left(f^{m+1}\right)} \simeq \frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)} . \tag{4.4}
\end{equation*}
$$

$m \in \Lambda . \Lambda$ denotes a finite set of indices. The function f^{m+1} is f to the power $m+1$.

Lemma 4.1.1. Let v_{1}, \ldots, v_{s} be real analytic functions, such that $v_{1}, \ldots, v_{s} \in \mathcal{C}$ and $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is a basis of B_{0} as an \mathbb{R}-vector space. $\left[v_{j}\right]_{i}$ denotes the class of v_{j} in B_{i}, with $j=1, \ldots s$, and $i=1, \ldots, m$. So, if $m \geq 0$ then

$$
\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m}\right\} \text { is a basis of } B_{m} .
$$

Proof. We will proceed by induction. Hence, from the hypothesis, the lemma is true for $m=0$. Furthermore, we suppose

$$
\begin{equation*}
\left\{\left[v_{1}\right]_{m-1}, \ldots,\left[v_{s}\right]_{m-1}, \ldots,\left[f^{m-1} v_{1}\right]_{m-1}, \ldots,\left[f^{m-1} v_{s}\right]_{m-1}\right\} \tag{4.5}
\end{equation*}
$$

is a basis of B_{m-1}. So, we will prove the lemma for case m. If

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i}^{1}\left[v_{i}\right]_{m}+\sum_{i=1}^{s} \alpha_{i}^{2}\left[f v_{i}\right]_{m}+\ldots+\sum_{i}^{s} \alpha_{i}^{m}\left[f^{m} v_{i}\right]_{m}=0 \in B_{m} \tag{4.6}
\end{equation*}
$$

then,

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i}^{1} v_{i}+\sum_{i=1}^{s} \alpha_{i}^{2} f v_{i}+\ldots+\sum_{i=1}^{s} \alpha_{i}^{m} f^{m} v_{i}=g_{m} f^{m+1} \in \mathcal{C} \tag{4.7}
\end{equation*}
$$

If we reduce $\bmod \left(f^{m}\right)$ in (4.7), we have,

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i}^{1}\left[v_{i}\right]_{m-1}+\sum_{i=1}^{s} \alpha_{i}^{2}\left[f v_{i}\right]_{m-1}+\ldots+\sum_{i=0}^{s} \alpha_{i}^{m-1}\left[f^{m-1} v_{i}\right]_{m-1}=0 \in B_{m-1} \tag{4.8}
\end{equation*}
$$

but $\left\{\left[v_{1}\right]_{m-1}, \ldots,\left[v_{s}\right]_{m-1}, \ldots,\left[f^{m-1} v_{1}\right]_{m-1}, \ldots,\left[f^{m-1} v_{s}\right]_{m-1}\right\}$ is a basis of B_{m-1}, then

$$
\begin{equation*}
\alpha_{1}^{1}=\alpha_{2}^{1}=\ldots=\alpha_{s}^{1}=\ldots=\alpha_{1}^{m-1}=\ldots=\alpha_{s}^{m-1}=0 . \tag{4.9}
\end{equation*}
$$

Thus, from (4.7) and (4.9) we get,

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i}^{m} f^{m} v_{i}=g_{m} f^{m+1} \in \mathcal{C} \tag{4.10}
\end{equation*}
$$

then,

$$
\begin{equation*}
f^{m}\left(\sum_{i=1}^{s} \alpha_{i}^{m} v_{i}-g_{m} f\right)=0 \in \mathcal{C} \tag{4.11}
\end{equation*}
$$

Since, f^{m} is not a zero divisor in \mathcal{C}, because $\left(f, f_{1}, \ldots, f_{m}\right)$ is a regular sequence, then,

$$
\begin{equation*}
\sum_{i=1}^{s} \alpha_{i}^{m} v_{i}=g_{m} f \tag{4.12}
\end{equation*}
$$

If we reduce $\bmod (f)$, we obtain

$$
\begin{equation*}
0=\sum_{i=1}^{s} \alpha_{i}^{m}\left[v_{i}\right]_{0} \in B_{0} \tag{4.13}
\end{equation*}
$$

Since, $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is a basis of B_{0}, then

$$
\begin{equation*}
\alpha_{1}^{m}=\alpha_{2}^{m}=\ldots=\alpha_{s}^{m}=0 . \tag{4.14}
\end{equation*}
$$

Indeed, from (4.6) and (4.14), the set $\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m}\right\}$ is a set of linearly independent vectors.
Now, we will prove that $\operatorname{dim}\left(B_{m}\right) \leq s m$, with $\operatorname{dim}\left(B_{0}\right)=s$. So, we will proceed in several steps. First, we will define an element $[a]_{m} \in B_{m}$, to be $a=\alpha_{0}+\alpha_{1} f+\alpha_{2} f^{2}+$ $\ldots+\alpha_{m} f^{m}$ then $\varphi\left([a]_{m}\right)=\alpha_{0}$. Hence, we have an exact sequence

$$
\begin{equation*}
0 \rightarrow \operatorname{ker} \varphi \rightarrow B_{m} \xrightarrow{\varphi} B_{0} \rightarrow 0 \tag{4.15}
\end{equation*}
$$

and, $B_{m}=B_{0} \times \operatorname{ker}(\varphi)$. Furthermore, the previous exact sequence is equivalent to

$$
\begin{equation*}
0 \rightarrow \frac{(f)}{\left(f^{m+1}\right)} \rightarrow \frac{\mathcal{C}}{\left(f^{m+1}\right)} \xrightarrow{\varphi} \frac{(\mathcal{C})}{(f)} \rightarrow 0 . \tag{4.16}
\end{equation*}
$$

Moreover, let us define a map $\psi: B_{m-1} \rightarrow \frac{(f)}{\left(f^{m+1}\right)}$ to be

$$
\begin{equation*}
\psi\left([a]_{m-1}\right)=[a f]_{m} . \tag{4.17}
\end{equation*}
$$

It is clearly subjective because, if $[h f] \in \frac{(f)}{\left(f^{m+1}\right)}$, then there exists $[h]_{m-1} \in B_{m-1}$ such that $\psi\left([h]_{m-1}\right)=[h f]_{m}$. It is well defined, since $[a]_{m-1}=[b]_{m-1}$, then $a-b \in\left(f^{m}\right)$. Indeed $(a-b) f=a f-b f \in f^{m} f=f^{m+1}$ and $[a f]_{m}=[b f]_{m}$.

Since, $B_{m}=B_{0} \oplus \operatorname{ker}(\varphi)$, then $\operatorname{dim}\left(B_{m}\right)=\operatorname{dim}\left(B_{0}\right)+\operatorname{dim} \operatorname{ker}(\varphi)$.
If we consider (4.15) and (4.16), then $\operatorname{ker}(\varphi)=\frac{(f)}{\left(f^{m+1}\right)}$, and by (4.17) we get

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker}(\varphi) \leq \operatorname{dim} B_{m-1} \tag{4.18}
\end{equation*}
$$

Therefore,

$$
\begin{array}{llclcc}
\operatorname{dim} B_{m} & \leq & \operatorname{dim} B_{0} & + & \operatorname{dim} B_{m-1} & \text { and from (4.18) } \\
\operatorname{dim} B_{m} & = & s & + & \mathrm{s}(\mathrm{~m}-1) & \text { by the induction hypothesis, we get } \\
\operatorname{dim} B_{m} & =s m . & & &
\end{array}
$$

We note that, B_{m} has $s m$ linearly independent vectors with $\operatorname{dim}\left(B_{m}\right) \leq s m$. Hence, the set $\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m}\right\}$ is a basis of B_{m}.

4.2 The socle and the bilinear forms in B_{m}

In any local algebra, the annihilator of the maximal ideal is called the socle. Let $f_{1}, f_{2}, \ldots, f_{n} \in \mathcal{A}_{\mathbb{R}^{n}, 0}$, such that $\left(f_{1}, \ldots, f_{n}\right)$ is a regular sequence. If $\mathbf{A}:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{1}, \ldots, f_{n}\right)}$ is the algebra, then the class of the Jacobian of $\left\{f_{1}, \ldots, f_{n}\right\}$ denoted $\operatorname{Jac}\left(f_{1}, \ldots, f_{n}\right)$ in the algebra \mathbf{A} is the socle. (See [11]).
In this section, we will compute the socle in the local algebra B_{m}, where B_{m} := $\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, \ldots, f_{n}\right)}, m=1, \ldots, \ell, \ell \in \mathbb{Z}^{\geq 0}$.

Remark 4.1.

- Let I be an ideal in B_{0}, then I^{\perp} is an ideal in B_{0}, and $\operatorname{Ann}_{B_{0}}(I)=I^{\perp}$.
- If B_{0} is a local algebra, then B_{0} has a unique minimal ideal called the socle.
- The socle is generated by the residue class of Jacobian of $\left\{f, f_{2}, \ldots, f_{n}\right\}$ in B_{0}, denoted J_{0} ([11] Proposition 3.2 P.25, Corollary 3.3 P.25, Corollary 4.5 P.35).

Lemma 4.2.1. Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of a real analytic function, and $\left(f, f_{2}, \ldots, f_{n}\right)$ be a regular sequence. If $J_{0}=[J]_{0}$, is the class of the Jacobian in B_{0}, then $J_{m}=[J]_{m}$ denotes the class of the Jacobian in the local algebra B_{m}. If J_{0} generates the socle in B_{0} then $\left[f^{m} J\right]_{m}$ generates the socle of B_{m}.

Proof. Since J_{0} is the Jacobian class of $\left\{f_{1}, \ldots, f_{n}\right\}$, we have

$$
J_{0}=\left[\operatorname{det}\left(\begin{array}{cccc}
f_{1} & f_{2} & \ldots & f_{n} \\
f_{21} & f_{22} & \ldots & f_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
f_{n 1} & f_{n 2} & \ldots & f_{n n}
\end{array}\right)\right]_{0}
$$

where $f_{i}=\frac{\partial f}{\partial x_{i}}$ and $f_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$. Moreover, we consider the Jacobian class of $\left\{f^{m+1}, f_{2}, \ldots, f_{n}\right\}$ defined by

$$
\operatorname{Jac}\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)=\operatorname{det}\left(\begin{array}{lccc}
(m+1) f^{m} f_{1} & (m+1) f^{m} f_{2} & \ldots & (m+1) f^{m} f_{n} \\
f_{21} & f_{22} & \ldots & f_{2 n} \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \ldots & \cdot \\
f_{n 1} & f_{n 2} & \ldots & f_{n n}
\end{array}\right) .
$$

Since $\operatorname{Jac}\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)$ is a determinant we have

$$
\begin{equation*}
\operatorname{Jac}\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)=(m+1) f^{m} \operatorname{Jac}\left(f, f_{2}, \ldots, f_{n}\right) \tag{4.19}
\end{equation*}
$$

If we consider the class of B_{m} in (4.19), then we obtain

$$
\left[(m+1) f^{m} J a c\left(f, f_{2}, \ldots, f_{n}\right)\right]_{m}=\left[(m+1) f^{m} J\right]_{m}=(m+1)\left[f^{m} J\right]_{m} \text {. Hence, }\left[f^{m} J\right]_{B_{m}}
$$ is a positive generator of the socle.

Since, B_{m} is a local algebra, then it has a unique minimal ideal. Therefore, the socle in B_{m} is generated by $\left[f^{m} J\right]_{m}$.

4.3 Multiplicative structure of B_{m}

In this section, we will get a Taylor series decomposition of the spaces B_{m}, in terms of the space B_{0}. We will also introduce symmetric bilinear forms, and we will obtain an algebraic method to compute the signature in the nondegenerate case.

Let $f, f_{2}, \ldots, f_{n}:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be germs of real analytic functions, such that $\left(f, f_{2}, \ldots, f_{n}\right)$, is a regular sequence. If $\mathcal{A}_{\mathbb{R}^{n}, 0}$ is the set of germs of real analytic functions, then we define the local algebra \mathcal{C} by

$$
\begin{equation*}
\mathcal{C}:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{2}, \ldots, f_{n}\right)} \tag{4.20}
\end{equation*}
$$

We also, define the finite vector B_{m} to be

$$
\begin{equation*}
B_{m}:=\frac{\mathcal{C}}{\left(f^{m+1}\right)}=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \ldots, f_{n}\right)} \tag{4.21}
\end{equation*}
$$

Lemma 4.3.1. If f^{m} and f^{m+1} denote f to the power m and $m+1$ respectively, then $\frac{\left(f^{m}\right)}{\left(f^{m+1}\right)} \simeq f^{m} B_{0}$, for $m=1,2, \ldots, \ell, \ell \in \mathbb{Z}^{\geq 0}$.
Proof. First, we define a map $\varphi: f^{m} B_{0} \rightarrow \frac{\left(f^{m}\right)}{\left(f^{m+1}\right)}$, to be $\varphi(b):=\frac{b}{f^{m+1}}$. (We recall that, $\left.\left(f^{m+1}\right) \subset\left(f^{m}\right) \subset, \ldots, \subset(f)\right)$. It is injective. Thus, if $b \in f^{m} B_{0}$ with $\varphi(b)=0$ then $\frac{b}{f^{m+1}}=0$ and $b \in\left(f^{m+1}\right)$. Since $b \in f^{m} B_{0}$, then we can take $b_{0} \in B_{0}$ to define $b=f^{m} b_{0}$. Thus, using the fact $b \in\left(f^{m+1}\right)$ we get $f^{m} b_{0} \in\left(f^{m+1}\right)$ and $b_{0} \in(f)$. Since, $b_{0} \in B_{0}$ and $b_{0} \in(f)$, then $b=0$ and the map φ is injective. To see that the map φ is surjective, if α is an element of $\frac{\left(f^{m}\right)}{\left(f^{m+1}\right)}$, then $\varphi\left(f^{m+1} \alpha\right)=\alpha$. Therefore, φ is a surjective map, and we get the result.

Lemma 4.3.2. If B_{m} is defined as in (4.21), then $B_{m} \simeq B_{0} \oplus f B_{0} \oplus \ldots \oplus f^{m} B_{0}$, as \mathbb{R}-vector spaces.
Proof. First, we will prove the lemma when $m=1$, since $\frac{(f)}{\left(f^{2}\right)} \simeq f B_{0}$ and we define an exact sequence of \mathbb{R}-vector spaces, to be

$$
0 \longrightarrow \frac{(f)}{\left(f^{2}\right)} \xrightarrow{i} B_{1} \xrightarrow{\pi} B_{0} \longrightarrow 0,
$$

then, $B_{1} \simeq B_{0} \oplus \frac{(f)}{(f)^{2}}$,and by Lemma (4.3.1) we have $B_{1} \simeq B_{0} \oplus f B_{0}$.

So proceeding by induction on $m=k$, with $k \in \mathbb{Z}^{\geq 0}$, we obtain

$$
\begin{equation*}
B_{k} \simeq B_{0} \oplus f B_{0} \oplus f^{2} B_{0} \oplus \ldots \oplus f^{k} B_{0} . \tag{4.22}
\end{equation*}
$$

then, we will prove the lemma for $m=k+1$. Thus, let us consider

$$
0 \longrightarrow \frac{\left(f^{k+1}\right)}{\left(f^{k+2}\right)} \xrightarrow{i} B_{k+1} \xrightarrow{\pi} B_{k} \longrightarrow 0
$$

be an exact sequence. Therefore, from Lemma (4.3.1) and the previous equation we get

$$
\begin{equation*}
B_{k+1}=B_{k} \oplus f^{k+1} B_{0} . \tag{4.23}
\end{equation*}
$$

Using (4.22) and (4.23), it follows that

$$
B_{k+1} \simeq B_{0} \oplus f B_{0} \oplus f^{2} B_{0} \oplus \ldots \oplus f^{k+1} B_{0}
$$

Lemma 4.3.3. Let B_{m} be defined as in (4.21). If $\mu_{m}: B_{m} \times B_{m} \longrightarrow B_{m}$ are symmetric bilinear forms, such that for all $v_{i}, v_{j} \in B_{m}$ we have $\mu_{m}\left(\left[v_{i}\right]_{m}\left[v_{j}\right]_{m}\right)=\left[v_{i} v_{j}\right]_{m}$, (where $\left.m=1,2, \ldots, \ell, \quad i, j=1, \ldots, s, \quad \ell, s \in \mathbb{Z}^{\geq 0}\right)$. Then, μ_{m} has the associated matrix given by
$Q_{m}=\left[\begin{array}{l|c|c|r}Q_{0}+f H_{1}+\cdots+f^{m} H_{m} & f Q_{0}+f^{2} H_{1}+\cdots+f^{m} H_{m-1} & \cdots & f^{m} Q_{0} \\ \hline f Q_{0}+f^{2} H_{1}+\cdots+f^{m} H_{m-1} & \cdots & f^{m} Q_{0} & 0 \\ \hline \vdots & \ddots & 0 & 0 \\ \hline f^{m} Q_{0} & 0 & 0 & 0\end{array}\right]=$
$\left[\begin{array}{c|c|c|c}Q_{0} & 0 & \cdots & 0 \\ \hline 0 & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \vdots & \ddots & \cdots & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]+f\left[\begin{array}{c|c|c|c}H_{1} & Q_{0} & \cdots & 0 \\ \hline Q_{0} & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \vdots & \ddots & \cdots & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]+\cdots+f^{m}\left[\begin{array}{c|c|c|c|c}H_{m} & H_{m-1} & . & H_{1} & Q_{0} \\ \hline H_{m-1} & \cdots & H_{1} & Q_{0} & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline H_{1} & Q_{0} & 0 & 0 & 0 \\ \hline Q_{0} & 0 & 0 & 0 & 0\end{array}\right]$.

Proof. We will discuss in detail the cases $m=0,1$. And, we will consider the same steps to get the general case.
Let $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ be an \mathbb{R}-basis of B_{0}, such that $v_{1}=1$ and $v_{s} \in J_{0}$. Since, $B_{m} \simeq$ $B_{0} \oplus f B_{0} \oplus \cdots \oplus f^{m} B_{0}$, then $\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m},\left[f v_{1}\right]_{m}, \ldots,\left[f v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m}\right\}$ is an \mathbb{R}-basis of B_{m}.

Case $m=0$
Let $\mu_{0}: B_{0} \times B_{0} \longrightarrow B_{0}$, be the nondegenerate symmetric bilinear form.
Since, $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is an \mathbb{R}-basis of B_{0}, then we define the associated matrix to the bilinear form μ_{0}, denoted Q_{0}, to be

$$
\begin{equation*}
\mu_{0}\left(\left[v_{i}\right]_{0},\left[v_{j}\right]_{0}\right)=\left[v_{i} \cdot v_{j}\right]_{0}=\left(q_{i j}\right)=Q_{0}, \tag{4.24}
\end{equation*}
$$

where $i, j=1, \ldots, s, s \in \mathbb{Z}^{\geq 0}$.
Case $m=1$
Let $\mu_{1}: B_{1} \times B_{1} \longrightarrow B_{1}$ be the nondegenerate symmetric bilinear form in $B_{1}:=$ $\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{2}, f_{2}, \ldots, f_{n}\right)}$. Since, $B_{1} \simeq B_{0} \oplus f B_{0}$ and $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is an \mathbb{R}-basis of B_{0}, then $\left\{\left[v_{1}\right]_{1}, \ldots,\left[v_{s}\right]_{1},\left[f v_{1}\right]_{1}, \ldots,\left[f v_{s}\right]_{1}\right\}$ is an \mathbb{R}-basis of B_{1}. Thus, we can define the symmetric bilinear form in B_{1}, to be

1) $\mu_{1}\left(\left[v_{i}\right]_{1},\left[v_{j}\right]_{1}\right)=\left[v_{i} \cdot v_{j}\right]_{1}=q_{i j}+f h_{i j}^{1}=\left(Q_{0}+f H_{1}\right)_{i j}$
2) $\left.\mu_{1}\left(\left[f v_{i}\right]_{1},\left[v_{j}\right]_{1}\right)=\mu_{1}\left(\left[v_{i}\right]_{1}, f v_{j}\right]_{1}\right)=\left[f \cdot v_{i} \cdot v_{j}\right]_{1}=f\left(q_{i j}+f h_{i j}^{1}\right)=\left(f Q_{0}\right)_{i j}$
3) $\mu_{1}\left(\left[f v_{i}\right]_{1},\left[f v_{j}\right]_{1}\right)=0$.

Hence, $\mu_{1}($,$) can be represented by the following matrix:$

$$
Q_{1}=\left[\begin{array}{l|r}
Q_{0}+f H_{1} & f Q_{0} \tag{4.25}\\
\hline f Q_{0} & 0
\end{array}\right]=\left[\begin{array}{l|l}
Q_{0} & 0 \\
\hline 0 & 0
\end{array}\right]+f\left[\begin{array}{r|r}
H_{1} & Q_{0} \\
\hline Q_{0} & 0
\end{array}\right]
$$

In general, from Lemma (4.3.2) we have, $B_{m} \simeq B_{0} \oplus f B_{0} \oplus \ldots \oplus f^{m} B_{0}$. Now, if $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is an $\mathbb{R}-$ basis of B_{0}, then $\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m},\left[f v_{1}\right]_{m}, \ldots,\left[f v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}\right.$ $\left., \ldots,\left[f^{m} v_{s}\right]_{m}\right\}$ is an \mathbb{R}-basis of B_{m}. If $\mu_{m}: B_{m} \times B_{m} \longrightarrow B_{m}$ are the nondegenerate symmetric bilinear forms, where $m=1, \ldots, \ell, \ell \in \mathbb{Z} \geq 0$. Then we can define the symmetric bilinear forms μ_{m}, to be

1) $\mu_{m}\left(\left[v_{i}\right]_{m},\left[v_{j}\right]_{m}\right)=\left[v_{i} \cdot v_{j}\right]_{m}=q_{i j}+f h_{i j}^{1}+f^{2} h_{i j}^{2}+, \ldots,+f^{m} h_{i j}^{m}=\left(Q_{0}+f H_{1}+\right.$ $\left.f^{2} H_{2}+, \ldots, f^{m} H_{m}\right)_{i, j}$
2) $\mu_{m}\left(f\left[v_{i}\right]_{m},\left[v_{j}\right]_{m}\right)=\mu_{m}\left(\left[v_{i}\right]_{m},\left[f v_{j}\right]_{m}\right)=\left[f \cdot v_{i} \cdot v_{j}\right]_{m}=\left(f q_{i j}+f^{2} h_{i j}^{1}+f^{3} h_{i j}^{2}+, \ldots,+f^{m} h_{i j}^{m-1}\right)=$ $\left(f Q_{0}+f^{2} H_{1}+f^{3} H_{2}+, \ldots, f^{m} H_{m-1}\right)_{i, j}$
3) $\mu_{m}\left(\left[f v_{i}\right]_{m},\left[f v_{j}\right]_{m}\right)=\mu_{m}\left(\left[f^{2} v_{i}\right]_{m},\left[v_{j}\right]_{m}\right)=\mu_{m}\left(\left[v_{i}\right]_{m},\left[f^{2} v_{j}\right]_{m}\right)=\left[f^{2} \cdot v_{i} \cdot v_{j}\right]=$ $\left(f^{2} Q_{0}+f^{3} H_{1}+\right.$ $\left.{ }^{,}, \ldots,+f^{m} H_{m-2}\right)_{i, j}$.
m) $\mu_{m}\left(\left[f^{i} v_{i}\right]_{m},\left[f^{j} v_{j}\right]_{m}\right)=\left[f^{m} \cdot v_{i} \cdot v_{j}\right]_{m}=\left(f^{m} Q_{0}\right)_{i j}$, with $i+j=m . \mu_{m}($, $)$ is zero in other cases.

Hence, the associated matrix to the symmetric bilinear form $\mu_{m}()$ has the following representation,
$Q_{m}=\left[\begin{array}{l|c|c|r}Q_{0}+f H_{1}+\cdots+f^{m} H_{m} & f Q_{0}+f^{2} H_{1}+\cdots+f^{m} H_{m-1} & \cdots & f^{m} Q_{0} \\ \hline f Q_{0}+f^{2} H_{1}+\cdots+f^{m} H_{m-1} & \cdots & f^{m} Q_{0} & 0 \\ \hline \vdots & \ddots & 0 & 0 \\ \hline f^{m} Q_{0} & 0 & 0 & 0\end{array}\right]=$
$\left[\begin{array}{c|c|c|c}Q_{0} & 0 & \cdots & 0 \\ \hline 0 & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \vdots & \ddots & \cdots & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]+f\left[\begin{array}{c|c|c|c}H_{1} & Q_{0} & \cdots & 0 \\ \hline Q_{0} & 0 & \cdots & 0 \\ \hline 0 & 0 & 0 & 0 \\ \hline \vdots & \ddots & \cdots & 0 \\ \hline 0 & 0 & 0 & 0\end{array}\right]+\cdots+f^{m}\left[\begin{array}{l|c|c|c|c}H_{m} & H_{m-1} & \cdot & H_{1} & Q_{0} \\ \hline H_{m-1} & \cdots & H_{1} & Q_{0} & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline H_{1} & Q_{0} & 0 & 0 & 0 \\ \hline Q_{0} & 0 & 0 & 0 & 0\end{array}\right]$.

Remark 4.2. The matrices $Q_{0}, H_{1}, \ldots, H_{m}$ with coefficients in B_{0} are symmetrics.
If $w, w^{\prime} \in B_{m}$, then $w=a_{0}+f a_{1}+\cdots+f^{m} a_{m}$ and $w^{\prime}=b_{0}+f b_{1}+\cdots+f^{m} b_{m}$. Therefore,
$\mu_{m}\left(w, w^{\prime}\right)=\mu_{m}\left(\left(a_{0}+f a_{1}+\cdots+f^{m} a_{m}\right),\left(b_{0}+f b_{1}+\cdots+f^{m} b_{m}\right)\right)=\mu_{m}\left(a_{0}, b_{0}\right)+$ $\mu_{m}\left(a_{0}, f b_{1}\right)+\cdots+\mu_{m}\left(a_{0}, f^{m} b_{m}\right)+\mu_{m}\left(f a_{1}, b_{0}\right)+\mu_{m}\left(f a_{1}, f b_{1}\right)+\cdots+\mu_{m}\left(f^{m} a_{m}, b_{0}\right)$.

On the other hand,

$$
\mu_{m}\left(w^{\prime}, w\right)=\mu_{m}\left(\left(b_{0}+b a_{1}+\cdots+f^{m} b_{m}\right),\left(a_{0}+f a_{1}+\cdots+f^{m} a_{m}\right)\right)=\mu_{m}\left(b_{0}, a_{0}\right)+
$$ $\mu_{m}\left(b_{0}, f a_{1}\right)+\cdots+\mu_{m}\left(b_{0}, f^{m} a_{m}\right)+\mu_{m}\left(f b_{1}, a_{0}\right)+\mu_{m}\left(f b_{1}, f a_{1}\right)+\cdots+\mu_{m}\left(f^{m} b_{m}, a_{0}\right)$.

Hence,
$a_{0}\left(Q_{0}+f H_{1}+\cdots+f^{m} H_{m}\right) b_{0}+a_{0}\left(f Q_{0}+\cdots+f^{m} H_{m-1}\right) b_{1}+a_{1}\left(f Q_{0}+\cdots+f^{m} H_{m-1}\right) b_{0}+$ $\cdots+a_{m}\left(f^{m} Q_{0}\right) b_{0}=b_{0}\left(Q_{0}+f H_{1}+\cdots+f^{m} H_{m}\right) a_{0}+b_{0}\left(f Q_{0}+\cdots+f^{m} H_{m-1}\right) a_{1}+$ $b_{1}\left(f Q_{0}+\cdots+f^{m} H_{m-1} a_{0}+\cdots+b_{m}\left(f^{m} Q_{0}\right) a_{0}\right.$.
So,

$$
a_{0} Q_{0} b_{0}=b_{0} Q_{0} a_{0}
$$

then $Q_{0}=Q_{0}^{t}$. Similarly, $H_{i}=H_{i}^{t}$, for $i=1, \cdots, m$.

4.4 Calculus of the bilinear forms in B_{m}

Lemma 4.4.1. Let V be a finite vector space of dimension $(m+1) s$, and $\varphi: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form with an associated matrix

$$
Q_{V}=\left(\begin{array}{ccccc}
0 & \cdot & \cdot & \cdot & C \tag{4.26}\\
\cdot & \cdot & \cdot & & \\
\cdot & \cdot & & \\
\cdot & & & 0 & \\
C & & &
\end{array}\right)
$$

Then,

$$
\sigma\left(Q_{V}\right)=\left\{\begin{array}{lllll}
\sigma(C) & \text { if } & m & \text { is even } \tag{4.27}\\
0 & \text { if } & m & \text { is } & \text { odd }
\end{array}\right.
$$

Proof. Let us consider a matrix S such that C is equivalent to the diagonal matrix D, i.e.

$$
D=S^{t} C S=\left(\begin{array}{cccccccc}
1 & & & & & & & \\
& \cdot & & & & & & \\
& & \cdot & & & & & \\
& & & \cdot & & & & \\
& & & 1 & & & & \\
& & & & -1 & & & \\
& & & & & \cdot & & \\
& & & & & & \cdot & \\
& & & & & & & -1
\end{array}\right)
$$

Therefore, the signature of the matrix D is $\tilde{\sigma}=(p, q, r)$ or $\sigma=p-q$, where p, q, r denote, the positive, the negative, and zero numbers in the diagonal. In general, we get

$$
\begin{align*}
& \left(\begin{array}{ccccc}
S^{t} & & & \\
& \cdot & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & & \\
& & & & \\
& & \cdot & \\
& & \cdot & \\
C & & &
\end{array}\right)\left(\begin{array}{llll}
S & & & \\
& \cdot & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right) \tag{4.28}\\
& =\left(\begin{array}{llll}
& & & S^{t} C S \\
& \cdot & \\
& & \\
S^{t} C S & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &
\end{array}\right) . \tag{4.29}
\end{align*}
$$

Note that the matrix (4.29) has ± 1 in the anti diagonal. To see this, we can consider the orthogonal basis on

$$
\mathbb{R}^{(m+1) s}=\underbrace{\mathbb{R}^{s} \oplus \mathbb{R}^{s} \oplus \ldots \oplus \mathbb{R}^{s}}_{(m+1) \text {-times }},
$$

defined by

$$
\begin{equation*}
v_{j r}=\left(0, \ldots, \frac{v_{r}}{\sqrt{2}}, \ldots, 0, \frac{v_{r}}{\sqrt{2}}, \ldots, 0\right) \tag{4.30}
\end{equation*}
$$

and

$$
\begin{gather*}
u_{j r}=\left(0, \ldots, \frac{v_{r}}{\sqrt{2}}, \ldots, 0, \frac{-v_{r}}{\sqrt{2}}, \ldots, 0\right) \tag{4.31}\\
1 \leq j \leq\left[\frac{m+1}{2}\right]
\end{gather*}
$$

where, $\left[\frac{m+1}{2}\right]$ denotes the minor integer of $\frac{m+1}{2}$. The position of $\frac{v_{r}}{\sqrt{2}}$ is in the $j-t h$ and $(m+1-\{j-1\})-t h$ respectively. Moreover, if m is odd

$$
\begin{gather*}
w_{r}=\left(0, \ldots, 0, v_{r}, 0, \ldots, 0\right) \tag{4.32}\\
1 \leq r \leq s
\end{gather*}
$$

In this case the position of v_{r} is in the middle. So, if m is even we get

$$
\left.\begin{array}{c}
v_{j r}^{t}\binom{S^{t} C S}{\cdot} v_{j r} \\
S^{t} C S \tag{4.34}
\end{array}\right) \frac{1}{2}\left(e_{r}^{t} S^{t} C S e_{r}+e_{r}^{t} S^{t} C S e_{r}\right)=e_{r}^{t} S^{t} C S e_{r}= \pm 1 ~ \$
$$

and

$$
\begin{gather*}
u_{j r}^{t}\left(\begin{array}{c}
\\
S^{t} C S \\
S^{t} C S
\end{array}\right) u_{j r} \tag{4.35}\\
=\frac{1}{2}\left(e_{r}^{t} S^{t} C S\left(-e_{r}\right)+\left(-e_{r}^{t}\right) S^{t} C S e_{r}\right)=-e_{r}^{t} S^{t} C S e_{r}=\mp 1 . \tag{4.36}
\end{gather*}
$$

Finally,

$$
\begin{align*}
& w_{r}^{t}\left(\begin{array}{cc}
& \\
& \cdot \\
& \cdot
\end{array}\right) S^{t} C S \tag{4.37}\\
& S^{t} C S \tag{4.38}\\
&=w_{r}^{t} S^{t} C S w_{r} \\
&=e_{r}^{t} D S^{t} C S e_{r}= \pm 1 .
\end{align*}
$$

Hence, from (4.34), (4.36) and (4.38) we have $\sigma\left(Q_{V}\right)=\sigma(C)$ for m even and $\sigma\left(Q_{V}\right)=0$ for m odd.

4.5 The absolute index of B_{m}

Now, we give a proof of Theorem (1.1).
Proof. Since $\left\{f, f_{2}, \ldots, f_{m}\right\}$ is a regular sequence, then B_{m} is a vector space of finite dimension. If $v_{1}, \ldots, v_{s} \in \frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{2}, \ldots, f_{n}\right)}$ such that $\left\{\left[v_{1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\} \in B_{0}$, it is an \mathbb{R}-basis with $v_{1}=1$ and $v_{s}=J_{0}$, then

$$
\left\{\left[v_{1}\right]_{m}, \ldots,\left[v_{s}\right]_{m},\left[f v_{1}\right]_{m}, \ldots,\left[f v_{s}\right]_{m}, \ldots,\left[f^{m} v_{1}\right]_{m}, \ldots,\left[f^{m} v_{s}\right]_{m}\right\}
$$

is an \mathbb{R}-basis of B_{m}. From Lemma (4.3.2), we get

$$
\begin{equation*}
B_{m}=B_{0} \bigoplus f B_{0} \bigoplus \cdots \bigoplus f^{m} B_{0} \tag{4.39}
\end{equation*}
$$

We choose for $L_{m}: B_{m} \longrightarrow \mathbb{R}$ the map sending all the base elements to 0 , except the last where $L_{m}\left(f^{m} J_{m}\right)=1$. Using this block decomposition of B_{m}, the multiplication table

$$
\mu_{m}: B_{m} \times B_{m} \longrightarrow B_{m}
$$

takes the form, (see Lemma 4.3.3)

$$
\begin{align*}
Q_{m}= & {\left[\begin{array}{c|c|c|c}
Q_{0} & 0 & \cdots & 0 \\
\hline 0 & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+f\left[\begin{array}{c|c|c|c}
H_{1} & Q_{0} & \cdots & 0 \\
\hline Q_{0} & 0 & \cdots & 0 \\
\hline 0 & 0 & 0 & 0 \\
\hline \vdots & \ddots & \cdots & 0 \\
\hline 0 & 0 & 0 & 0
\end{array}\right]+\cdots } \\
& \cdots+f^{m}\left[\begin{array}{l|c|c|c|c}
H_{m} & H_{m-1} & \cdots & H_{1} & Q_{0} \\
\hline H_{m-1} & \cdots & H_{1} & Q_{0} & 0 \\
\hline \vdots & \ddots & \ddots & 0 & 0 \\
\hline H_{1} & Q_{0} & 0 & 0 & 0 \\
\hline Q_{0} & 0 & 0 & 0 & 0
\end{array}\right] \tag{4.40}
\end{align*}
$$

where $Q_{0}, H_{1}, \ldots, H_{m}$ are symmetric $(s \times s)$-matrices with entries in B_{0}. The expression of these matrices can be obtained from the restriction of μ_{m} to B_{0} and using the isomorphism (4.39), we obtain a bilinear form

$$
\mu_{m}: B_{0} \times B_{0} \longrightarrow B_{m}=\bigoplus_{j=0}^{m} f^{j} B_{0}
$$

with a matrix expression

$$
Q_{0}+f H_{1}+\cdots+f^{m} H_{m} .
$$

Q_{0} is the matrix expression of the multiplication μ_{0} on B_{0} and the H_{j} are the higher order terms in the multiplication μ_{m} restricted to $B_{0} \hookrightarrow B_{m}$. These terms contain all
the information needed for describing μ_{m}, as can be seen from the expression (4.40). Applying L_{m} to (4.40), $L_{m} Q_{m}$ is
$\left[\begin{array}{l|c|c|c|r}L_{m} Q_{0}+, \cdots,+L_{m}\left(f^{m} H_{m}\right) & & \cdots & L_{m}\left(f^{m} H_{1}\right) & L_{m}\left(f^{m} Q_{0}\right) \\ \hline L_{m}\left(f Q_{0}\right)+, \cdots,+L_{m}\left(f^{m} H_{m-1}\right) & \cdots & & L_{m} f^{m} Q_{0} & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline L_{m}\left(f^{m} H_{1}\right) & L_{m} f^{m} Q_{0} & 0 & 0 & 0 \\ \hline L_{m} f^{m} Q_{0} & 0 & 0 & 0 & 0\end{array}\right]$.

Moreover, L_{m} is a linear map such that $L_{m}\left\langle f^{j} v_{k}, f^{\ell} v_{s}\right\rangle=L_{m}\left(f^{j+\ell} v_{k} v_{s}\right)$, and

1) If $j+\ell>m$ then $L_{m}(0)=0$.
2) If $j+\ell<m$ then $L_{m}\left(f^{j+\ell} v_{j} v_{s}\right)=0$.
3) If $j+\ell=m L_{m}\left(f^{j+\ell} v_{j} v_{s}\right)=1$.

Thus, the anti-diagonal terms of the matrix (4.41) are non-singular. Indeed, we can a change a basis of the \mathbb{R}-vector space to obtain matrix representation of $<,>_{m}$ as an anti-diagonal matrix by blocks, with all the anti-diagonal terms. Hence, we get

$$
L_{m} Q_{m}=\left[\begin{array}{l|c|c|c|r}
0 & 0 & \cdot & 0 & L_{m} f^{m} Q_{0} \tag{4.42}\\
\hline 0 & \cdots & 0 & L_{m} f^{m} Q_{0} & 0 \\
\hline \vdots & \ddots & \ddots & 0 & 0 \\
\hline 0 & L_{m} f^{m} Q_{0} & 0 & 0 & 0 \\
\hline L_{m} f^{m} Q_{0} & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The matrix (4.42) suggests that we consider the decomposition of B_{m} as:

$$
\begin{equation*}
B_{m}=\left[B_{0} \oplus f^{m} B_{0}\right] \bigoplus\left[f B_{0} \oplus f^{m-1} B_{0}\right] \bigoplus, \cdots, \bigoplus\left[f^{m} B_{0} \oplus B_{0}\right] . \tag{4.43}
\end{equation*}
$$

It is an $<,>_{m}$-orthogonal direct sum. The contribution to the signature of each vector space within a bracket is 0 , since they have the form

$$
\left(\begin{array}{cccc}
0 & 0 & \cdots & L_{m} f^{m} Q_{0} \tag{4.44}\\
0 & \ldots & L_{m} f^{m} Q_{0} & 0 \\
\vdots & \vdots & \vdots & \vdots \\
L_{m} f^{m} Q_{0} & \cdots & 0 & 0
\end{array}\right) .
$$

Therefore, if we consider V as B_{m} in the lemma (4.4.1), then the bilinear form \langle,\rangle_{m} : $B_{m} \times B_{m} \longrightarrow B_{m} \xrightarrow{L_{m}} \mathbb{R}$ has the associated matrix (4.44). Thus, if we consider the lemma (4.4.1), we get the proof of the theorem.

4.6 An example

Example 4.6.1. Let $f:\left(\mathbb{R}^{2}, 0\right) \longrightarrow(\mathbb{R}, 0)$ be a germ of real analytic function defined to be $f(x, y)=x^{2}+y^{2}$. Moreover, if $B_{0}:=\frac{\mathbb{R}[x, y]}{\left(f, f_{y}\right)}$, then $\{1, x\}$ is a basis of B_{0}.
Thus, we consider the nondegenerate bilinear form

$$
\mu_{0}: B_{0} \times B_{0} \xrightarrow{\bullet} B_{0}
$$

Hence, the bilinear product is given by

base	1	x
1	1	x
x	x	0

If $L_{0}: B_{0} \rightarrow \mathbb{R}$ is any linear map, such that $L_{0}(1)=0$ and $L_{0}(x)=0$ then the bilinear form μ_{0} is

$$
\mu_{0}: B_{0} \times B_{0} \longrightarrow B_{0} \xrightarrow{L_{0}} \mathbb{R}
$$

It has the associated matrix defined by

$$
Q_{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Now, we will construct an orthogonal basis of the finite vector space B_{0}. Thus, if $\left\{v_{1}, v_{2}\right\} \in \mathbb{R}^{2}$, it is a basis with $v_{1}=\frac{1}{\sqrt{2}}(\{1,1\})$ and $v_{2}=\frac{1}{\sqrt{2}}(\{1,-1\})$, then $v_{1} C_{0} v_{1}=1$, $v_{1} C_{0} v_{2}=0, v_{2} C_{0} v_{1}=0, v_{2} C_{0} v_{2}=-1$. So, the matrix Q_{0} is equivalent to the following matrix

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Its signature is $\sigma_{0}=0$. If $B_{1}:=\frac{\mathbb{R}[x, y]}{\left(f^{2}, f_{2}\right)}$ the symmetric bilinear form

$$
\mu_{1}: B_{1} \times B_{1} \xrightarrow{\cdot} B_{1} \xrightarrow{L_{1}} \mathbb{R}
$$

has the following representation

$$
Q_{1}=\left(\begin{array}{cc|cc}
0 & 0 & 0 & 1 \tag{4.45}\\
0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The next step is to construct the orthogonal basis of $\mathbb{R}^{(1+1) 2}=\mathbb{R}^{4}$.
Indeed, $\mathbb{R}^{4} \simeq \mathbb{R}^{2} \oplus \mathbb{R}^{2}$ and we can define the orthogonal basis $\left\{v_{11}, v_{12}, u_{11}, u_{12}\right\}$, to be

$$
\left\{v_{11}=\left(\frac{1}{\sqrt{2}}\left(v_{1}\right), \frac{1}{\sqrt{2}}\left(v_{1}\right)\right), v_{12}=\left(\frac{1}{\sqrt{2}}\left(v_{2}\right), \frac{1}{\sqrt{2}}\left(v_{2}\right)\right),\right.
$$

$$
\left.u_{11}=\left(\frac{1}{\sqrt{2}}\left(v_{1}\right),-\frac{1}{\sqrt{2}}\left(v_{1}\right)\right), u_{21}=\left(\frac{1}{\sqrt{2}}\left(v_{2}\right),-\frac{1}{\sqrt{2}}\left(v_{2}\right)\right)\right\}
$$

and it is equal to:

$$
\left\{v_{11}=\frac{1}{2}(1,1,1,1), v_{12}=\frac{1}{2}(1,-1,1,-1), u_{11}=\frac{1}{2}(1,1,-1,-1), v_{11}=\frac{1}{2}(1,-1,-1,1)\right\} .
$$

Then, this basis changes the matrix (4.45) to the diagonal matrix given by

$$
Q_{1}=\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Therefore, $\sigma_{1}=0$.
If we consider $m=2$ and $B_{2}:=\frac{\mathbb{R}[x, y]}{\left(f^{3}, f_{2}\right)}$, then it has a basis defined as $\left\{1, x, x^{2}, x^{3}, x^{4}, x^{5}\right\}$, and $\mathbb{R}^{6} \simeq \mathbb{R}^{2} \oplus \mathbb{R}^{2} \oplus \mathbb{R}^{2}$. Thus, we define the the bilinear product μ_{2}, to be

$$
\mu_{2}: B_{2} \times B_{2} \longrightarrow B_{2} \xrightarrow{L_{2}} R
$$

with $L_{2}\left(x^{5}\right)=1, L_{2}\left(x^{4}\right)=L_{2}\left(x^{3}\right)=L_{2}\left(x^{2}\right)=L_{2}(x)=L_{2}(1)=0$. Therefore, it has the following matricial representation

$$
Q_{2}=\left(\begin{array}{cc|cc|cc}
0 & 0 & 0 & 0 & 0 & 1 \tag{4.46}\\
0 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Let $\left\{v_{11}=\frac{1}{\sqrt{2}}\left(v_{1}, 0, v_{1}\right), v_{12}=\frac{1}{\sqrt{2}}\left(v_{2}, 0, v_{2}\right), u_{11}=\frac{1}{\sqrt{2}}\left(v_{1}, 0,-v_{1}\right), u_{21}=\frac{1}{\sqrt{2}}\left(v_{2}, 0,-v_{2}\right), w_{1}=\right.$ $\left.\left(0, v_{1}, 0\right), w_{2}=\left(0, v_{2}, 0\right)\right\}$ be an orthogonal basis, and it is equal to $\left\{\frac{1}{2}(1,1,0,0,1,1), \frac{1}{2}(1,-1,0,0,1,-1), \frac{1}{2}(1,1,0,0,-1,-1), \frac{1}{2}(1-1,0,0,-1,1),(0,0,1,1,0)\right.$, $(0,0,1,-1,0)\}$. So, it changes the matrix (4.46) by,

$$
Q_{2}=\left(\begin{array}{cc|cc|cc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & -1
\end{array}\right) .
$$

Hence $\sigma_{2}=0$, and so on.

Chapter 5

The relative index

Our purpose in this chapter is to provide an algebraic formula to compute the signature of degenerate symmetric bilinear forms on the finite vector spaces $B_{m} \simeq \frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \cdots, f_{n}\right)}$, $m=1,2, \cdots, \ell, \ell \in \mathbb{Z}^{\geq 0}$.
Before starting the next result, we will introduce some examples and lemmas, that help us understand our main result.

5.1 An example; computation of the relative index in the local algebra B_{m}

Let $f:\left(\mathbb{R}^{2}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of real analytic function defined to be $f=x^{3}+y^{2}$. Since

$$
B_{0}=\frac{\mathbb{R}[x, y]}{\left(f, f_{2}\right)}=\frac{\mathbb{R}[x, y]}{\left(x^{3}+y^{2}, 2 y\right)}
$$

is a local algebra and $\left(f, f_{2}\right)$ is a regular sequence in B_{0}, where $f_{2}=\frac{\partial f}{\partial y}$, then B_{0} is a finite vector space. Hence, $\left\{[1]_{0},[x]_{0},\left[x^{2}\right]_{0}\right\}$ is a basis of B_{0}. Moreover, if we define $\left[f_{1}\right]_{0}=\left[3 x^{2}\right]_{0}$ and the degenerate symmetric bilinear form to be

$$
\begin{align*}
& \mu_{0}^{r e l}: B_{0} \times B_{0} \xrightarrow{\dot{b}} B_{0} \xrightarrow{f_{1}} B_{0}, \tag{5.1}\\
& \left(\left[v_{i}\right]_{0},\left[v_{j}\right]_{0}\right) \mapsto\left[v_{i} \cdot v_{j}\right]_{0} \mapsto\left[f_{1} \cdot v_{i} \cdot v_{j}\right]_{0}
\end{align*}
$$

then, it is represented by

The bilinear form μ_{0} in B_{0}			
$\left[3 x^{2}\right]_{0}$	$[1]_{0}$	$[x]_{0}$	$\left[x^{2}\right]_{0}$
$[1]_{0}$	$\left[3 x^{2}\right]_{0}$	$[0]_{0}$	$[0]_{0}$
$[x]_{0}$	$[0]_{0}$	$[0]_{0}$	$[0]_{0}$
$\left[x^{2}\right]_{0}$	$[0]_{0}$	$[0]_{0}$	$[0]_{0}$

If we define a linear map $L_{0}: B_{0} \rightarrow \mathbb{R}$ to be, $L_{0}\left(\left[x^{2}\right]_{0}\right)=\frac{1}{3}, L_{0}\left([x]_{0}\right)=0, L_{0}\left([1]_{0}\right)=0$, then the associated matrix to the degenerate symmetric bilinear form is

$$
\langle,\rangle_{0}^{r e l}: B_{0} \times B_{0} \xrightarrow{\dot{C}} B_{0} \xrightarrow{f_{1}} B_{0} \xrightarrow{L_{0}} \mathbb{R} .
$$

It has the following matricial representation

$$
Q_{0}^{r e l}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

therefore, its signature is $\tilde{\sigma}_{0}^{\text {rel }}=(1,0,2)$.
Now, let us consider the finite vector space B_{1}. Namely,

$$
B_{1}=\frac{\mathbb{R}[x, y]}{\left(f^{2}, f_{2}\right)}=\frac{\mathbb{R}[x, y]}{\left(\left(x^{3}+y^{2}\right)^{2}, 2 y\right)} \simeq \frac{\mathbb{R}[x]}{\left(x^{6}\right)}
$$

where $f^{2}=x^{6}+2 x^{3} y^{2}+y^{4}$. Thus, we define a degenerate symmetric bilinear form to be

$$
\mu_{1}^{r e l}: B_{1} \times B_{1} \xrightarrow{\cdot} B_{1} \xrightarrow{f_{1}} B_{1} .
$$

So, we get

The bilinear form μ_{1} in B_{1}						
$\left[3 x^{2}\right]_{1}$	$[1]_{1}$	$[x]_{1}$	$\left[x^{2}\right]_{1}$	$[f]_{1}$	$[f x]_{1}$	$\left[f x^{2}\right]_{1}$
$[1]_{1}$	$\left[3 x^{2}\right]_{1}$	$\left[3 x^{3}\right]_{1}$	$\left[3 x^{4}\right]_{1}$	$\left[3 x^{5}\right]_{1}$	$[0]_{1}$	$[0]_{1}$
$[x]_{1}$	$\left[3 x^{3}\right]_{1}$	$\left[3 x^{4}\right]_{1}$	$\left[3 x^{5}\right]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$
$\left[x^{2}\right]_{1}$	$\left[3 x^{4}\right]_{1}$	$\left[3 x^{5}\right]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$
$[f]_{1}$	$\left[3 x^{5}\right]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$
$[f x]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$
$\left[f x^{2}\right]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$	$[0]_{1}$

if we define a degenerate symmetric bilinear form to be

$$
\begin{equation*}
\langle,\rangle_{1}^{\text {rel }}: B_{1} \times B_{1} \longrightarrow B_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{L_{1}} \mathbb{R}, \tag{5.2}
\end{equation*}
$$

where the linear map $L_{1}: B_{1} \rightarrow \mathbb{R}$, is $L_{1}\left(\left[x^{j}\right]_{1}\right)=0, j=0,1,2,3,4, L_{1}\left(\left[x^{5}\right]\right)=1$ and $[f]_{1}=\left(\left[x^{3}\right]_{1}\right)$, then, its associated matrix is given by

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{cccccc}
0 & 0 & 0 & \mid 1 & 0 & 0 \tag{5.3}\\
0 & 0 & 1 & \mid 0 & 0 & 0 \\
0 & 1 & 0 & \mid 0 & 0 & 0 \\
\hline 1 & 0 & 0 & \mid 0 & 0 & 0 \\
0 & 0 & 0 & \mid 0 & 0 & 0 \\
0 & 0 & 0 & \mid 0 & 0 & 0
\end{array}\right) .
$$

Furthermore, we can write the reduced matrix (5.3) as

$$
\left.Q_{1}^{\text {rel }}\right|_{\text {red }}=\left(\begin{array}{cccc}
0 & \mid 0 & 0 & \mid 1 \\
\hline 0 & \mid 0 & 1 & \mid 0 \\
0 & \mid 1 & 0 & \mid 0 \\
\hline 1 & \mid 0 & 0 & \mid 0
\end{array}\right)=\left(\begin{array}{ccc}
& & \tilde{D}_{o} \\
& E_{1} & \\
\tilde{D}_{o} & &
\end{array}\right)
$$

Hence, $\tilde{D}_{0}=(1)$ and

$$
E_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Moreover, we define an orthogonal basis of \mathbb{R}^{6}, to be

$$
\begin{gathered}
\left\{v_{1}=\frac{1}{\sqrt{2}}(1,0,0,1,0,0), v_{2}=\frac{1}{\sqrt{2}}(1,0,0,-1,0,0), v_{3}=\frac{1}{\sqrt{2}}(0,0,1,1,0,0)\right. \\
\left.v_{4}=\frac{1}{\sqrt{2}}(0,0,1,-1,0,0), v_{5}=(0,0,0,0,1,0), v_{6}=(0,0,0,0,0,1)\right\}
\end{gathered}
$$

Consequently, the matrix (5.3) is equivalent to

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence, it has signature $\tilde{\sigma}_{1}^{\text {rel }}=(2,2,2)$.
Since the signature in $\tilde{\sigma}_{0}^{\text {rel }}$ is equal to $(1,0,2)$, and the signature $\tilde{\sigma}_{1}^{\text {rel }}$ is equal to $(2,2,2)$, then, the number of zeros in $\tilde{\sigma}_{0}^{\text {rel }}=\tilde{\sigma}_{1}^{\text {rel }}=2$. Thus, if we consider

$$
\tilde{\sigma}_{1}^{\text {rel }}-\tilde{\sigma}_{0}^{\text {rel }}=(1,2,0),
$$

then, we have

$$
\begin{equation*}
\tilde{\sigma}_{2}^{\text {rel }}=(4,3,2), \tag{5.4}
\end{equation*}
$$

and

$$
(4,3,2)=(2,2,2)+(2,1,0)
$$

i.e.

$$
\tilde{\sigma}_{2}^{\text {rel }}=\tilde{\sigma}_{1}^{\text {rel }}+(2,1,0) .
$$

It is easy to see that in this example, the nexts signatures are constructed via the following algorithm. Therefore,

$$
\begin{equation*}
\tilde{\sigma}_{3}^{\text {rel }}=(5,5,2)=(4,3,2)+(1,2,0) . \tag{5.5}
\end{equation*}
$$

And

$$
\begin{equation*}
\tilde{\sigma}_{4}^{\text {rel }}=(5,5,2)+(2,1,0)=(7,6,2), \tag{5.6}
\end{equation*}
$$

similarly,

$$
\begin{equation*}
\tilde{\sigma}_{5}^{\text {rel }}=(7,6,2)+(1,2,0)=(8,8,2), \tag{5.7}
\end{equation*}
$$

and so on. Indeed, we get a pattern.
The following two lemmas describe a method to simplify the matrix associated to degenerate symmetric bilinear forms.

5.2 Calculus of the relative index in the local algebra B_{1}

Lemma 5.2.1. Let $\tilde{\varphi_{1}}: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form, with V a finite vector space, defined by

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{ccc|ccc}
A_{11} & A_{12} & A_{13} & I_{p} & 0 & 0 \tag{5.8}\\
A_{12}^{t} & A_{22} & A_{23} & 0 & -I_{q} & 0 \\
A_{13}^{t} & A_{23}^{t} & E_{1} & 0 & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Then it is equivalent to the matrix

$$
\left(\begin{array}{ccc}
0 & 0 & \tilde{D}_{0} \tag{5.9}\\
0 & E_{1} & 0 \\
\tilde{D}_{0} & 0 & 0
\end{array}\right)
$$

Where \tilde{D}_{0} is given by

$$
\tilde{D}_{0}=\left(\begin{array}{cc}
I_{p} & 0 \tag{5.10}\\
0 & -I_{q}
\end{array}\right) .
$$

Here, the matrices $A_{i, j}$ are any symmetric matrices, i.e. $A_{i, j}=A_{i j}^{t}, i, j=1,2,3$.
Proof. If $\left.Q_{1}^{\text {rel }}\right|_{\text {red }}$ denotes the reduced matrix corresponding to the matrix (5.8), namely,

$$
\left.Q_{1}^{\text {rel }}\right|_{\text {red }}=\left(\begin{array}{ccc|cc}
A_{11} & A_{12} & A_{13} & I_{p} & 0 \tag{5.11}\\
A_{12}^{t} & A_{22} & A_{23} & 0 & -I_{q} \\
A_{13}^{t} & A_{23}^{t} & E_{1} & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0
\end{array}\right),
$$

then, using Gaussian elimination, it suggests that we can define the matrices, D_{11}, D_{12}, $D_{21}, D_{22}, D_{31}, D_{32}$, to be

$$
D_{11}=-\frac{A_{11}}{2}, \quad D_{12}=\frac{A_{12}}{2}, \quad D_{21}=-\frac{A_{12}^{t}}{2}, \quad D_{22}=\frac{A_{22}}{2}, \quad D_{31}=-A_{13}^{t}, \quad D_{32}=A_{23}^{t}
$$

Since, the bilinear form is symmetric then $A_{11}=A_{11}^{t}, A_{22}=A_{22}^{t}$. Therefore,

$$
\begin{gather*}
\left(\begin{array}{ccccc}
I & 0 & 0 & D_{11} & D_{12} \\
0 & I & 0 & D_{21} & D_{22} \\
0 & 0 & I & D_{31} & D_{32} \\
0 & 0 & 0 & I & 0 \\
0 & 0 & 0 & 0 & I
\end{array}\right)\left(\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & I_{p} & 0 \\
A_{12}^{t} & A_{22} & A_{23} & 0 & -I_{q} \\
A_{13}^{t} & A_{23}^{t} & E_{1} & 0 & 0 \\
I_{p} & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{cccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 \\
D_{11}^{t} & D_{21}^{t} & D_{31}^{t} & I & 0 \\
D_{12}^{t} & D_{22}^{t} & D_{32}^{t} & 0 & I
\end{array}\right) \\
=\left(\begin{array}{cccccc}
\frac{A_{11}}{2} & \frac{A_{12}}{2} & A_{13} & I_{p} & 0 \\
\frac{A_{12}}{2} & \frac{A_{22}}{2} & A_{23} & 0 & -I_{q} \\
0 & 0 & E_{1} & 0 & 0 \\
I_{p} & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccccc}
I & 0 & 0 & 0 & 0 \\
0 & I & 0 & 0 & 0 \\
0 & 0 & I & 0 & 0 \\
D_{11}^{t} & D_{21}^{t} & D_{31}^{t} & I & 0 \\
D_{12}^{t} & D_{22}^{t} & D_{32}^{t} & 0 & I
\end{array}\right) \\
 \tag{5.12}\\
=\left(\begin{array}{ccc}
0 & 0 & \tilde{D}_{0} \\
0 & E_{1} & 0 \\
\tilde{D}_{0} & 0 & 0
\end{array}\right) .
\end{gather*}
$$

Remark 5.1. Remember that

$$
Q_{1}^{\text {rel }}=\left(\right)
$$

so $\operatorname{rank}\left(E_{1}\right) \leq \operatorname{rank}\left(Q_{1}^{\text {rel }}\right)$.
Remark 5.2. The previous lemma is true when $V:=B_{1}$.

5.3 Calculus of the relative index in the local algebra B_{2}

Lemma 5.3.1. If $\tilde{\varphi}_{2}: V \times V \rightarrow \mathbb{R}$ is a degenerate symmetric bilinear form, where V is a finite vector space, then the associated matrix given by

$$
Q_{2}^{\text {rel }}=\left(\begin{array}{cccc|cccc|cccc}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} & 0 & I_{p} & 0 & 0 & 0 \tag{5.13}\\
A_{12}^{t} & A_{22} & A_{23} & A_{24} & A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q} & 0 & 0 \\
A_{13}^{t} & A_{23}^{t} & A_{33} & A_{34} & A_{17}^{t} & A_{27}^{t} & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 \\
A_{14}^{t} & A_{24}^{t} & A_{34}^{t} & E_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline A_{15} & A_{16} & A_{17} & 0 & I_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q} & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{17}^{t} & A_{27}^{t} & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

$A_{i j}, i, j=1.2, \ldots, 7$ are symmetric matrices. So, The matrix (5.13) is equivalent to the following matrix

$$
\left(\begin{array}{ccc|ccc|c}
0 & 0 & 0 & 0 & 0 & 0 & \tilde{D}_{0} \tag{5.14}\\
0 & 0 & 0 & 0 & \tilde{E}_{1} & 0 & 0 \\
0 & 0 & E_{2} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \tilde{D}_{0} & 0 & 0 & 0 \\
0 & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \tilde{D}_{0} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Proof. Since $Q_{2}^{\text {rel }}$ is the associated matrix to the degenerate symmetric bilinear form $\varphi_{2}: V \times V \rightarrow \mathbb{R}$, then the reduced matrix denoted $\left.Q_{2}^{\text {rel }}\right|_{\text {red }}$ is

$$
\left.Q_{2}^{\text {rel }}\right|_{\text {red }}=\left(\begin{array}{cccc|cccc|cc}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} & A_{16} & A_{17} & 0 & I_{p} & 0 \tag{5.15}\\
A_{12}^{t} & A_{22} & A_{23} & A_{24} & A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q} \\
A_{13}^{t} & A_{23}^{t} & A_{33} & A_{34} & A_{17}^{t} & A_{27}^{t} & \tilde{E}_{1} & 0 & 0 & 0 \\
A_{14}^{t} & A_{24}^{t} & A_{34}^{t} & E_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline A_{15} & A_{16} & A_{17} & 0 & I_{p} & 0 & 0 & 0 & 0 & 0 \\
A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q} & 0 & 0 & 0 & 0 \\
A_{17}^{t} & A_{27}^{t} & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Moreover, we consider the submatrix of the matrix (5.15) equivalent to

$$
\left(\begin{array}{cccc|cccc}
A_{15} & A_{16} & A_{17} & 0 & I_{p} & 0 & 0 & 0 \tag{5.16}\\
A_{16}^{t} & A_{26} & A_{27} & 0 & 0 & -I_{q} & 0 & 0 \\
A_{17}^{t} & A_{27}^{t} & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Indeed, it is similar to

$$
\left(\begin{array}{cccc|cccc}
0 & 0 & 0 & 0 & I_{p} & 0 & 0 & 0 \tag{5.17}\\
0 & 0 & 0 & 0 & 0 & -I_{q} & 0 & 0 \\
0 & 0 & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline I_{p} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Finally, if we consider the matrices \tilde{E}_{1}, I_{p} and $-I_{q}$ as pivots from gaussian elimination, then the matrix (5.15) is equivalent to

$$
\left(\begin{array}{ccc|ccc|c}
0 & 0 & 0 & 0 & 0 & 0 & \tilde{D}_{0} \tag{5.18}\\
0 & 0 & 0 & 0 & \tilde{E}_{1} & 0 & 0 \\
0 & 0 & E_{2} & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & \tilde{D}_{0} & 0 & 0 & 0 \\
0 & \tilde{E}_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline \tilde{D}_{0} & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The previous lemmas provide a technique to simplify the matrices associated to the degenerate symmetric bilinear forms, thus, we can consider the general lemma.

Lemma 5.3.2. Let V be a real vector space of dimension n, and $\varphi_{m}: V \times V \rightarrow \mathbb{R}$ be a symmetric bilinear form with associated matrix defined as

$$
Q_{m}^{r e l}=\left(\begin{array}{lccccccc}
E_{m} & \tilde{E}_{m-1} & \tilde{E}_{m-2} & \tilde{E}_{m-3} & \tilde{E}_{m-4} & & \cdots & \tilde{D}_{0} \tag{5.19}\\
\tilde{E}_{m-1} & \tilde{E}_{m-2} & \tilde{E}_{m-3} & \tilde{E}_{m-4} & \cdots & \tilde{E}_{1} & \tilde{D}_{0} & 0 \\
\tilde{E}_{m-2} & \tilde{E}_{m-3} & \tilde{E}_{m-4} & \ldots & \tilde{E}_{1} & \tilde{D}_{0} & 0 & 0 \\
\tilde{E}_{m-4} & & \cdots & \tilde{E}_{1} & \tilde{D}_{0} & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\tilde{E}_{1} & \tilde{D}_{0} & \cdots & 0 & 0 & 0 & 0 & 0 \\
\tilde{D}_{0} & 0 & \cdots & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence, the matrix \tilde{D}_{0} is as in the Lemma (5.2.1) and $\tilde{E}_{i},(i=0,1,2, \ldots, m, m \in \mathbb{Z} \geq 0)$ is a diagonal matrix given by

$$
E_{i}=\left(\begin{array}{lcc}
I_{s_{i}}+ & 0 & 0 \tag{5.20}\\
0 & -I_{s_{i}-} & 0 \\
0 & 0 & 0 s_{i}^{0}
\end{array}\right)
$$

with signature $\tilde{\sigma}\left(E_{i}\right)=\left(s_{i}^{+}, s_{i}^{-}, s_{i}^{0}\right)$ and $s_{i}^{+}, s_{i}^{-}, s_{i}^{0}$ are the positive, the negative and the zero numbers. In particular $E_{0}=\tilde{D}_{0}$. Furthermore,

$$
\begin{equation*}
s_{i}^{+}+s_{i}^{-}+s_{i}^{0}=s_{i-1}^{0} \tag{5.21}
\end{equation*}
$$

If $\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\left(p_{m}, q_{m}, r_{m}\right)$, it is the signature associated to the matrix $Q_{m}^{r e l}$, then

$$
r_{m}=r_{m-1}+s_{m}^{0}
$$

and
$\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\left\{\begin{array}{lll}\tilde{\sigma}\left(Q_{m-1}^{r e l}\right)+\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+ & \ldots & +\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) \text { if } m \text { is even. } \\ \tilde{\sigma}\left(Q_{m-1}^{r e l}\right)+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, 0\right)+ & \ldots & +\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) \text { if m is odd. }\end{array}\right.$ $m=0,1,2, \cdots, \ell, \ell \in \mathbb{Z} \geq 0$.

Proof. We will use induction on m to show the lemma.
Case $\mathbf{m}=\mathbf{0}$. Let $Q_{0}^{\text {rel }}$ be the matrix defined in (5.19), then it is given by

$$
Q_{0}^{r e l}=\tilde{D}_{0}=\left(\begin{array}{ccc}
I_{p_{0}} & 0 & 0 \tag{5.22}\\
0 & -I_{q_{0}} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

It has signature

$$
\begin{equation*}
\tilde{\sigma}\left(Q_{0}^{r e l}\right)=\left(p_{0}, q_{0}, r_{0}\right) . \tag{5.23}
\end{equation*}
$$

With

$$
p_{0}+q_{0}+r_{0}=n .
$$

Then,

$$
\begin{equation*}
r_{0}=n-p_{0}-q_{0} . \tag{5.24}
\end{equation*}
$$

Case $\mathbf{m}=\mathbf{1}$. The matrix $Q_{1}^{\text {rel }}$ has the following form

$$
Q_{1}^{\text {rel }}=\left(\begin{array}{ccccc|ccc}
0 & 0 & 0 & 0 & 0 & I_{p_{0}} & 0 & 0 \tag{5.25}\\
0 & 0 & 0 & 0 & 0 & 0 & -I_{q_{0}} & 0 \\
0 & 0 & I s_{1}^{+} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -I s_{1}^{-} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 s_{1}^{0} & 0 & 0 & 0 \\
\hline I_{p_{0}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -I_{q_{0}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

Hence, $\tilde{\sigma}\left(Q_{1}^{\text {rel }}\right)=\left(p_{1}, q_{1}, r_{1}\right)$, and

$$
\begin{equation*}
p_{1}+q_{1}+r_{1}=2 n . \tag{5.26}
\end{equation*}
$$

Since, $s_{1}^{+}+s_{1}^{-}+s_{1}^{0}=s_{0}=r_{0}$ then,

$$
\begin{align*}
& r_{1}=2 n-p_{1}-q_{1} \tag{5.27}\\
& s_{1}^{+}+s_{1}^{-}=r_{0}-s_{1}^{0} . \tag{5.28}
\end{align*}
$$

If we make an orthogonal change in the basis in the matrix (5.25), we have

$$
\begin{equation*}
p_{1}=p_{0}+q_{0}+s_{1}^{+}, \quad q_{1}=q_{0}+p_{0}+s_{1}^{-} . \tag{5.29}
\end{equation*}
$$

From (5.29) and (5.27), we obtain

$$
r_{1}=2 n-p_{0}-q_{0}-s_{1}^{+}-q_{0}-p_{0}-s_{1}^{-} .
$$

So,

$$
\begin{equation*}
r_{1}=n-p_{0}-q_{0}+n-p_{0}-q_{0}-s_{1}^{+}-s_{1}^{-}, \tag{5.30}
\end{equation*}
$$

substituing (5.24) and (5.28) in (5.30) we have

$$
\begin{equation*}
r_{1}=r_{0}+s_{1}^{0} . \tag{5.31}
\end{equation*}
$$

Then, from (5.29) and (5.31), it follows that

$$
\tilde{\sigma}\left(Q_{1}^{r e l}\right)=\left(p_{0}+q_{0}+s_{1}^{+}, q_{0}+p_{0}+s_{1}^{-}, r_{0}+s_{1}^{0}\right)
$$

and

$$
\tilde{\sigma}\left(Q_{1}^{\text {rel }}\right)=\left(p_{0}, q_{0}, r_{0}\right)+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, s_{1}^{0}\right),
$$

hence,

$$
\begin{equation*}
\tilde{\sigma}\left(Q_{1}^{r e l}\right)=\tilde{\sigma}\left(Q_{0}^{r e l}\right)+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, s_{1}^{0}\right) . \tag{5.32}
\end{equation*}
$$

General case. If these formulas are valid for $m-1$ and m is even, then

$$
\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\left(p_{m}, q_{m}, r_{m}\right)
$$

Where

$$
\begin{align*}
& p_{m}=p_{m-1}+p_{0}+s_{1}^{-}+\ldots+s_{m-1}^{-}+s_{m}^{+} \tag{5.33}\\
& q_{m}=q_{m-1}+q_{0}+s_{1}^{+}+\ldots+s_{m-1}^{+}+s_{m}^{-} \tag{5.34}
\end{align*}
$$

and

$$
\begin{gather*}
s_{m}^{+}+s_{m}^{-}+s_{m}^{0}=s_{m-1}^{0} \\
s_{m}^{+}+s_{m}^{-}=s_{m-1}^{0}-s_{m}^{0} \tag{5.35}\\
p_{m}+q_{m}+r_{m}=(m+1) n \tag{5.36}
\end{gather*}
$$

then

$$
\begin{equation*}
r_{m}=(m+1) n-p_{m}-q_{m} . \tag{5.37}
\end{equation*}
$$

So,

$$
r_{m}=m n-p_{m-1}-q_{m-1}+n-p_{0}-q_{0}-\sum_{i=1}^{m}\left(s_{i}^{+}+s_{i}^{-}\right)
$$

if we consider the previous equations and (5.28), (5.33) and (5.34), we get

$$
\begin{equation*}
r_{m}=r_{m-1}+s_{m}^{0} \tag{5.38}
\end{equation*}
$$

Then, it follows that
$\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\left(p_{m}, q_{m}, r_{m}\right)=\left(p_{m-1}+p_{0}+s_{1}^{-}+\ldots+s_{m-1}^{-}+s_{m}^{+}, q_{m-1}+q_{0}+s_{1}^{+}+\ldots+s_{m-1}^{+}+s_{m}^{-}, r_{m-1}+s_{m}^{0}\right)$
so

$$
\begin{align*}
\tilde{\sigma}\left(Q_{m}^{r e l}\right)= & \left(p_{m-1}, q_{m-1}, r_{m-1}\right)+\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+\ldots \\
& +\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) . \tag{5.39}
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \tilde{\sigma}\left(Q_{m}^{r e l}\right)=\tilde{\sigma}\left(Q_{m-1}^{r e l}\right)+\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+\ldots \\
& \quad+\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) . \tag{5.40}
\end{align*}
$$

Analogously, if m is odd

$$
\begin{gather*}
\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\left(p_{m-1}, q_{m-1}, r_{m-1}\right)+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, 0\right)+ \\
\ldots+\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) \tag{5.41}\\
\tilde{\sigma}\left(Q_{m}^{r e l}\right)=\tilde{\sigma}\left(Q_{m-1}^{r e l}\right)+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, 0\right)+ \\
\ldots+\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) . \tag{5.42}
\end{gather*}
$$

Corollary 5.1. Under the hypothesis of the previous lemma, if we define $\tilde{\sigma}\left(Q_{m}^{\text {rel }}\right)=\tilde{\sigma}_{m}^{\text {rel }}$ and $\tilde{\sigma}_{m}^{\text {rel }}=\left(p_{m}, q_{m}, r_{m}\right)$, so $\sigma_{m}^{\text {rel }}=p_{m}-q_{m}$ then, we have that

$$
\sigma_{m}^{r e l}=\sigma_{m-2}^{r e l}+\sigma^{r e l}\left(E_{m}\right) .
$$

Proof. If m is even, we have

$$
\begin{equation*}
\tilde{\sigma}_{m}^{\text {rel }}=\tilde{\sigma}_{m-1}^{\text {rel }}+\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+\ldots+\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) . \tag{5.43}
\end{equation*}
$$

Hence, m is even, so $m-1$ is odd then
$\tilde{\sigma}_{m-1}^{r e l}=\tilde{\sigma}_{m-2}^{r e l}+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, 0\right)+\ldots+\left(s_{m-2}^{-}, s_{m-2}^{+}, 0\right)+\left(s_{m-1}^{+}, s_{m+1}^{-}, s_{m+1}^{0}\right)$.
Substituing (5.44) in (5.43) we get

$$
\begin{aligned}
& \quad \tilde{\sigma}_{m}^{\text {rel }}=\tilde{\sigma}_{m-2}^{r e l}+\left(q_{0}, p_{0}, 0\right)+\left(s_{1}^{+}, s_{1}^{-}, 0\right)+\ldots+\left(s_{m-2}^{-}, s_{m-2}^{+}, 0\right)+\left(s_{m-1}^{+}, s_{m+1}^{-}, s_{m+1}^{0}\right) \\
& +\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+\ldots+\left(s_{m-1}^{-}, s_{m-1}^{+}, 0\right)+\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right) .
\end{aligned}
$$

So, if

$$
\sigma_{m}=p_{m-2}-q_{m-2}+s_{m}^{+}-s_{m}^{-}
$$

then

$$
\sigma_{m}=\sigma_{m-2}+\sigma\left(E_{m}\right)
$$

The proof is similar when m is odd.

5.4 Another example of computation of the relative index

In this example, we will compute the signature using the routine siggen.lib with the singular package. We will obtain a flag, and the signature of the degenerate symmetric bilinear form in the relative case.
Let $f:\left(\mathbb{R}^{3}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of real analytic function defined by

$$
f=\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2} .
$$

If $\left(f, f_{y}, f_{z}\right)$ is a regular sequence of $B_{m}:=\frac{\mathbb{R}[x, y, z]}{\left(f^{m+1}, f_{y}, f_{z}\right)}$, where $f_{y}=\frac{\partial f}{\partial y}, f_{z}=\frac{\partial f}{\partial z}$, then B_{m} is a finite vector space.

Moreover, if we consider the degenerate symmetric bilinear form

$$
\langle,\rangle_{m}^{r e l}: B_{m} \times B_{m} \xrightarrow[\longrightarrow]{\rightarrow} B_{m} \xrightarrow{f_{x}} B_{m} \xrightarrow{L_{m}} \mathbb{R}
$$

and we use the routine bilirelamod, we get

Results of program relative bilinearform.lib			
size			rank
	signature		
B_{0}	15	5	$(3,2,10)$
B_{1}	30	19	$(9,10,11)$
B_{2}	45	34	$(17,17,11)$

In the previous table, $(3,2,10)$ is the signature of the symmetric bilinear form $\left\langle,,_{0}^{\text {rel }}: B_{0} \times B_{0} \longrightarrow B_{0} \xrightarrow{f_{1}} B_{0} \xrightarrow{L_{0}} \mathbb{R}\right.$, such that $L_{0}\left(\left[\operatorname{Jac}\left(f, f_{2}, f_{3}\right)\right]_{0}\right)>0$.
Hence, with an appropriate basis we get

$$
\left(\begin{array}{cc}
\left(\begin{array}{cc}
I_{3} & \\
& -I_{2}
\end{array}\right) & 0_{5 \times 10} \tag{5.45}\\
\hline 0_{10 \times 5} & \left(\begin{array}{cc}
0_{5 \times 5} & \\
& 0_{5 \times 5}
\end{array}\right)
\end{array}\right)
$$

If

$$
\tilde{D}_{0}=\left(\begin{array}{lll}
I_{3} & & \\
& -I_{2}
\end{array}\right)
$$

represents the non singular part of the matrix (5.45), then $\sigma_{0}^{\text {rel }}=(3,2,10)$. Indeed, $(9,10,11)$ is the signature of the symmetric bilinear form $\langle,\rangle_{1}^{\text {rel }}: B_{1} \times B_{1} \longrightarrow B_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{L_{1}} \mathbb{R}$ with $\operatorname{Jac}\left(\left(f^{2}, f_{2}, f_{3}\right)\right)>0$. And, if we consider an orthogonal basis, then we get the following matrix

$0_{5 \times 5}$	$0_{5 \times 10}$	$I_{3} \quad-I_{2}$	$0_{5 \times 10}$
$0_{10 \times 5}$	$\begin{array}{lll} I_{4} & & \\ & -I_{5} & \\ & & 0_{1 \times 1} \end{array}$	$0_{10 \times 5}$	${ }^{0_{5 \times 5}}$
$\begin{array}{ll}I_{3} & \\ & -I_{2}\end{array}$	$0_{5 \times 10}$	$0_{5 \times 5}$	$0_{5 \times 10}$
$0_{10 \times 5}$	$0_{5 \times 5} \quad 0_{5 \times 5}$	$0_{10 \times 15}$	${ }^{0_{5 \times 5}} 0$

or equivalently,

$\left[\right.$| $0_{5 \times 5}$ | $0_{5 \times 10}$ | | |
| :--- | :--- | :--- | :--- |
| $0_{10 \times 5}$ | I_{4} | \tilde{D}_{5} | \tilde{D}_{0} |
| \tilde{D}_{0} | $0_{5 \times 5}$ | | |
| $0_{10 \times 5}$ | | | |$]$.

If we define the matrix \tilde{E}_{1}, to be

$$
\tilde{E}_{1}=\left(\begin{array}{ll}
I_{4} & \\
& -I_{5}
\end{array}\right)
$$

then the matrix(5.46) is equal to
$\left[\begin{array}{l|c|r}0 & 0 & \tilde{D}_{0} \\ \hline 0 & E_{1} & 0 \\ \hline \tilde{D}_{0} & 0 & 0\end{array}\right]$.

Hence, $\tilde{\sigma}_{1}^{\text {rel }}=(3+2+4,2+3+5,10+1)=(9,10,11)$.
Similarly, $(17,17,11)$ is the signature associated to the nondegenerate symmetric bilinear form $\langle,\rangle_{1}^{\text {rel }}: B_{1} \times B_{1} \xrightarrow{\cdot} B_{1} \xrightarrow{f_{1}} B_{1} \xrightarrow{L_{1}} \mathbb{R}$ with $\operatorname{Jac}\left(\left(f^{3}, f_{2}, f_{3}\right)\right)>0$. So, in an appropriate basis we have

0_{5}	0	0_{5}	0	I_{3} $-I_{2}$	0
0	$\begin{array}{llll}0_{4} & & \\ & & \\ & & \\ & \end{array}$	0	$\begin{array}{lll} I_{4} & & \\ & -I_{5} & \\ & & 0_{1 \times 1} \\ \hline \end{array}$	0	${ }^{0_{5}}$
0_{5}	0	$\begin{array}{ll}I_{3} & \\ & -I_{2}\end{array}$	0	0_{5}	0
0	$\begin{array}{lll} \hline I_{4} & & \\ & -I_{5} & \\ & & 0_{1 \times 1} \\ \hline \end{array}$	0	${ }^{0_{5}}$	0	0
$\begin{array}{ll}I_{3} & \\ & -I_{2}\end{array}$	0	0	0	0	0
0	$\begin{array}{ll} 0_{5} & \\ & 0_{5} \end{array}$	0	0	0	0

If we define \tilde{E}_{1} as the nonsingular part of the matrix E_{1}, namely

$$
\tilde{E}_{1}=\left(\begin{array}{ll}
I_{4} & \\
& -I_{5}
\end{array}\right)
$$

then the reduced matrix is
$\left(\begin{array}{c|c|c|c|c}0_{5 \times 5} & 0_{5 \times 10} & 0 & 0 & \tilde{D}_{0} \\ \hline 0_{10 \times 5} & { }^{0_{4}}{ }^{0_{5}} & \tilde{E}_{1} & 0 & 0 \\ \hline \hline 0 & \tilde{E}_{1} & 0 & \tilde{D}_{0} & 0 \\ \hline \tilde{D}_{0} & 0 & 0 & 0 & 0\end{array}\right)$.

Thus, the $\tilde{\sigma}_{2}^{\text {rel }}$ is computed as $\tilde{\sigma}_{2}^{\text {rel }}=(3+2+3+4+5+0,2+3+2+5+4+1,11)=$ $(17,17,11)$, and so on. In this case, we will see that the matrices E_{i} represent the flag in the algebra B_{0}.

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of real analytic function such that $\left(f, f_{2}, \cdots, f_{n}\right)$ is a regular sequence on $B_{m}:=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f^{m+1}, f_{2}, \cdots, f_{n}\right)}$, where $\mathcal{A}_{\mathbb{R}^{n}, 0}$ denotes the germs of real analytic functions with isolated singularity at $0 . f_{i}=\frac{\partial f}{\partial x_{i}} i=1,2, \cdots, n, n \in \mathbb{Z} \geq 0$, and f^{m+1} denotes f to the power $m+1, m \in \mathbb{Z} \geq 0$. Furthermore, we define the annihilator of f_{1} in B_{m}, to be

$$
\operatorname{Ann}_{B_{m}}\left(f_{1}\right):=\left\{b \in \mathcal{C}:\left[f_{1} b\right]_{m}=0 \operatorname{in} B_{m}\right\}
$$

Now, we consider the following lemma
Lemma 5.4.1. Let $\langle,\rangle_{m, A n n}^{\text {rel }}$ be the relative bilinear form restricted to the annihilator, namely,

$$
\begin{equation*}
\langle,\rangle_{m, A n n}^{r e l}:\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \times\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \xrightarrow{\cdot} B_{m} \xrightarrow{f_{1}} B_{m} .(\tag{5.47}
\end{equation*}
$$

It is nondegenerate in $a_{m-1} Q_{m-1} b_{m-1} Q_{m-1} c_{m}$, where Q_{m} is the matrix defined by Lemma (4.3.3). $a_{m-1}, b_{m-1} \in \operatorname{Ann}_{B_{m-1}}\left(f_{1}\right)$ and c_{m} is defined in the following context. Let $\left[f_{1}\right]_{m} \in B_{m}$ be the class of f_{1} in the algebra B_{m}. Thus, if $\left\{\left[v_{1}\right]_{0}, \ldots\left[v_{s}\right]_{0}\right\}$ is a basis of algebra B_{0}, then by Lemma (4.1.1) $\left[f_{1}\right]_{B_{m}}:=\left[f_{1}\right]_{m}$. It is given by

$$
\left[f_{1}\right]_{m}=\sum_{i}^{s} c_{i}^{0}\left[v_{i}\right]_{m}+\sum_{i}^{s} c_{i}^{1}\left[f v_{i}\right]_{m}+\ldots+\sum_{i}^{s} c_{i}^{m}\left[f^{m} v_{i}\right]_{m}
$$

So, if $c_{i}=\left(c_{1}^{i}, \ldots, c_{s}^{i}\right)$, then $\left[f_{1}\right]_{m} \simeq c_{0}+f c_{1}+\ldots+f^{m} c_{m}$.
Proof. First, we show the lemma in little cases to help us understand the general proof.

Case m=0.

Let $\langle,\rangle_{0, A n n}^{r e l}$ be a symmetric bilinear form, defined to be

$$
\left\langle,,_{0, A n n}^{r e l}: B_{0} \times B_{0} \xrightarrow{\dot{\longrightarrow}} B_{0} \xrightarrow{f_{1}} B_{0} .\right.
$$

If $v_{1}, \ldots, v_{s} \in \mathcal{C}$, such that

1) $\left\{\left[v_{\ell+1}\right]_{0}, \ldots,\left[v_{s}\right]_{0}\right\}$ is a basis of $A n n_{B_{0}}\left(f_{1}\right)$,
2) $\left\{\left[v_{1}\right]_{0} \ldots,\left[v_{s}\right]_{0}\right\}$ is a basis of B_{0},
then $\left[v_{1}\right]_{0}, \ldots,\left[v_{\ell}\right]_{0}$ generates a transversal to $\operatorname{Ann}_{B_{0}}\left(f_{1}\right)$. If $q_{i j}=\mu_{0}\left(v_{i}, v_{j}\right)$ is the matrix defined as before, then the matrix $\left(q_{i j}\right)_{i, j=1, \ldots, \ell}$ is a nondegenerate symmetric matrix. And if $i>\ell$ or $j>\ell$ then $q_{i j}=0$. Since $\left[f_{1}\right]_{B_{0}}=\left[c_{0}\right]_{B_{0}}$, then

$$
\left\langle w, w^{\prime}\right\rangle_{\mu_{0}}^{r e l}=\left[a_{0}\right]_{0} Q_{0}\left[b_{0}\right]_{0} Q_{0}\left[c_{0}\right]_{0} .
$$

By simplicity, we can write

$$
\left\langle w, w^{\prime}\right\rangle_{\mu_{0}}^{r e l}=a_{0} Q_{0} b_{0} Q_{0} c_{0},
$$

which is a degenerate symmetric bilinear form. Hence, we observe the associated matrix Q_{0} to $\langle,\rangle_{\mu_{0}}^{r e l}$ degenerates in $A n n_{B_{0}}\left(f_{1}\right)$.

Case m=1.

Since, $B_{1} \simeq B_{0} \oplus f B_{0}$ then $A n n_{B_{0}}\left(f_{1}\right) \oplus f B_{0} \subset B_{1}$. So, we define $\langle,\rangle_{1, A n n}^{r e l}$, to be

$$
\begin{equation*}
\langle,\rangle_{1, A n n}^{r e l}:\left(A n n_{B_{0}}\left(f_{1}\right) \oplus f B_{0}\right) \times\left(A n n_{B_{0}}\left(f_{1}\right) \oplus f B_{0}\right) \xrightarrow{\cdot} B_{1} \xrightarrow{f_{1}} B_{1} . \tag{5.48}
\end{equation*}
$$

Indeed, if $w, w^{\prime} \in\left(A n n_{B_{0}}\left(f_{1}\right) \oplus f B_{0}\right)$ then $w=\sum_{i=1}^{n} \alpha_{i}^{0}\left[v_{i}\right]_{0}+\sum_{i=1}^{n} \alpha_{i}^{1} f\left[v_{i}\right]_{0}$ and $w^{\prime}=\sum_{i=1}^{n} \beta_{i}^{0}\left[v_{i}\right]_{0}+\sum_{i=1}^{n} \beta_{i}^{1} f\left[v_{i}\right]_{0}$. Therefore,

$$
w=\left(\alpha_{1}^{0}, \ldots, \alpha_{n}^{0}, \alpha_{1}^{1}, \ldots, \alpha_{n}^{1}\right)=a_{0}+f a_{1}, \quad w^{\prime}=\left(\beta_{1}^{0}, \ldots, \beta_{n}^{0}, \beta_{1}^{1}, \ldots, \beta_{n}^{1}\right)=b_{0}+f b_{1}
$$

On the other hand, let $\left[f_{1}\right]_{B_{1}}=\sum_{i=1}^{n} c_{i}^{0}\left[v_{i}\right]+\sum_{i=1}^{n} c_{i}^{1}\left[f v_{i}\right]$, thus $\left[f_{1}\right]_{B_{1}}=\left(c_{1}^{0}, \ldots, c_{n}^{0}, c_{1}^{1}, \ldots, c_{n}^{1}\right) \simeq$ $c_{0}+f c_{1}$ in B_{1}. Hence,

$$
\left\langle w, w^{\prime}\right\rangle_{1, A n n}^{r e l}=\left(a_{0}+f a_{1}\right) Q_{1}\left(b_{0}+f b_{1}\right) Q_{1}\left(c_{0}+f c_{1}\right),
$$

where the matrix Q_{1} is defined as in Lemma (4.3.3). Indeed, if

$$
Q_{1}=\left[\begin{array}{l|r}
Q_{0}+f H_{1} & f Q_{0} \\
\hline f Q_{0} & 0
\end{array}\right]=\left[\begin{array}{l|l}
Q_{0} & 0 \\
\hline 0 & 0
\end{array}\right]+f\left[\begin{array}{r|r}
H_{1} & Q_{0} \\
\hline Q_{0} & 0
\end{array}\right],
$$

with

$$
Q_{0}^{\prime}=\left[\begin{array}{l|l}
Q_{0} & 0 \tag{5.49}\\
\hline 0 & 0
\end{array}\right]
$$

and

$$
H_{1}^{\prime}=\left[\begin{array}{r|r}
H_{1} & Q_{0} \\
\hline Q_{0} & 0
\end{array}\right]
$$

then $Q_{1}=Q_{0}^{\prime}+f H_{1}^{\prime}$. Therefore,

$$
\left(a_{0}+f a_{1}\right)\left(Q_{0}^{\prime}+f H_{1}^{\prime}\right)\left(b_{0}+f b_{1}\right)\left(Q_{0}^{\prime}+f H_{1}^{\prime}\right)\left(c_{0}+f c_{1}\right)
$$

is equal to

$$
a_{0} Q_{0}^{\prime} b_{0} Q_{0}^{\prime} c_{0}+f\left(a_{0} Q_{0}^{\prime} b_{0} H_{1}^{\prime} c_{0}+\left[a_{0} H_{1}^{\prime} b_{0}+a_{1} Q_{0}^{\prime} b_{0}+a_{0} Q_{0}^{\prime} b_{1}\right] Q_{0}^{\prime} c_{0}\right)+a_{0} Q_{0}^{\prime} b_{0} Q_{0}^{\prime} c_{1} .
$$

Since, $a_{0}, b_{0} \in A n n_{B_{0}}\left(f_{1}\right)$ and B_{0} is a commutative algebra, then from (5.49) we get

$$
\begin{equation*}
c_{0} Q_{0} a_{0}=0, \quad c_{0} Q_{0} b_{0}=0 \tag{5.50}
\end{equation*}
$$

Hence, we have that

$$
\begin{equation*}
\left\langle w, w^{\prime}\right\rangle_{1, A n n}^{r e l}=\left(0, a_{0} Q_{0} b_{0} Q_{0} c_{1}\right) . \tag{5.51}
\end{equation*}
$$

We observe that the expression in (5.51), the first term is 0 and the next term in $\langle,\rangle_{1, A n n}^{r e l}$ in B_{1} is

$$
a_{0} Q_{0} b_{0} Q_{0} c_{1} .
$$

Indeed, we have only the matrix Q_{0}, therefore so we can consider the algebra B_{0}.

In general.

Let $\langle,\rangle_{m, A n n}^{r e l}$ be the symmetric bilinear form restricted to the annihilator, defined to be

$$
\begin{equation*}
\langle,\rangle_{m, A n n}^{r e l}:\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \times\left(A n n_{B_{m-1}}\left(f_{1}\right) \oplus f^{m} B_{0}\right) \xrightarrow{\dot{\longrightarrow}} B_{m} \xrightarrow{f_{1}} B_{m} . \tag{5.52}
\end{equation*}
$$

If $w=a_{m-1}+f^{m} a_{m}, w^{\prime}=b_{m-1}+f^{m} b_{m}$, with $a_{m-1}, b_{m-1} \in \operatorname{Ann}_{B_{m-1}}\left(f_{1}\right)$, and $\left[f_{1}\right]_{m}=c_{m-1}+f^{m} c_{m}$ where $c_{m-1} \in B_{m-1}$ then

$$
\begin{equation*}
\left\langle w, w^{\prime}\right\rangle_{m, A n n}^{r e l}=\left(\left(a_{m-1}+f^{m} a_{m}\right) Q_{m}\left(b_{m-1}+f^{m} b_{m}\right) Q_{m}\left(c_{m-1}+f^{m} c_{m}\right)\right) \tag{5.53}
\end{equation*}
$$

where Q_{m} is the matrix defined in (4.3.3). If we define the matrix Q_{m-1}^{\prime}, to be
$Q_{m-1}^{\prime}=\left[\begin{array}{l|c|c|c}Q_{0}+f H_{1}+\cdots+f^{m-1} H_{m-1} & f Q_{0}+f^{2} H_{1}+\cdots+f^{m-1} H_{m-2} & \cdots & f^{m-1} Q_{0} \\ \hline f Q_{0}+f^{2} H_{1}+\cdots+f^{m-1} H_{m-2} & \cdots & f^{m-1} Q_{0} & 0 \\ \hline \vdots & \ddots & 0 & 0 \\ \hline f^{m-1} Q_{0} & 0 & 0 & 0\end{array}\right]$,
and

$$
H_{m}^{\prime}=\left[\begin{array}{l|c|c}
H_{m} & \cdots & Q_{0} \\
\hline H_{m-1} & \cdots & Q_{0} \\
\hline \vdots & \ddots & 0 \\
\hline Q_{0} & 0 & 0
\end{array}\right],
$$

then $\left.\left\langle w, w^{\prime}\right\rangle_{m, A n n}^{r e l}=\left(a_{m-1}+f^{m} a_{m}\right) Q_{m}\left(b_{m-1}+f^{m} b_{m}\right) Q_{m}\left(c_{m-1}+f^{m} c_{m}\right)\right)$

$$
=\left(a_{m-1}+f^{m} a_{m}\right)\left(Q_{m-1}^{\prime}+f^{m} H_{m}^{\prime}\right)\left(\left(b_{m-1}+f^{m} b_{m}\right)\left(Q_{m-1}^{\prime}+f^{m} H_{m}^{\prime}\right)\left(c_{m-1}+f^{m} c_{m}\right)\right)
$$

$=\left(a_{m-1} Q_{m-1}^{\prime} b_{m-1} Q_{m-1}^{\prime} c_{m-1}+f^{m}\left(a_{m-1} Q_{m-1}^{\prime} b_{m-1} H_{m}^{\prime} c_{m-1}+a_{m-1} H_{m}^{\prime} b_{m} Q_{m-1}^{\prime} c_{m-1}+\right.\right.$ $\left.a_{m} Q_{m-1}^{\prime} b_{m-1} Q_{m-1}^{\prime} c_{m-1}+a_{m-1} Q_{m-1}^{\prime} b_{m} Q_{m-1}^{\prime} c_{m-1}+a_{m-1} Q_{m-1}^{\prime} b_{m-1} Q_{m-1}^{\prime} c_{m}\right)$.
So, by definition of Q_{m-1}^{\prime} and the commutativity of algebra B_{m}, we get $a_{m-1} Q_{m-1} c_{m-1}=$ $0, b_{m-1} Q_{m-1} c_{m-1}=0$, and

$$
\begin{equation*}
\left\langle w, w^{\prime}\right\rangle_{m, A n n}^{r e l}=\left(0, a_{m-1} Q_{m-1} b_{m-1} Q_{m-1} c_{m}\right) \tag{5.54}
\end{equation*}
$$

We want to make some observations about the bilinear form $\langle,\rangle_{m, A n n}^{r e l}$ in (5.47) and its expression (5.54). The first term in (5.54) is 0 in the decomposition $B_{m}=$ $B_{m-1} \oplus f^{m} B_{0}$. It is clear, since we are restricting to the degeneracy locus of $\langle,\rangle_{\mu_{m-1}}^{\text {rel }}$. The next term in $\langle,\rangle_{\mu_{m}}^{\text {rel }}$ in B_{m} is

$$
a_{m-1} Q_{m-1} b_{m-1} Q_{m-1} c_{m}
$$

The remarkable thing is, the matrix Q_{m-1} which means that we are considering the algebra B_{m-1}. The new term comes from multiplication in B_{0} by c_{m}, which is the second in the expansion of $c=c_{m-1}+f^{m} c_{m}$. We also note that the term H_{m} which determines the extension B_{m} of B_{m-1}, does not enter into the formula (5.54).

Flag in the finite vector space B_{0}.

In the following paragraph, we get a flag in the finite vector space B_{0}.
Remark 5.3. Let

$$
\begin{equation*}
B_{j} \xrightarrow{\pi_{j}} B_{j-1} \xrightarrow{\pi_{j-1}} B_{j-2} \xrightarrow{\pi_{j-2}} \ldots \xrightarrow{\pi_{2}} B_{1} \xrightarrow{\pi_{1}} B_{0} \tag{5.55}
\end{equation*}
$$

be surjective morphisms, such that π_{j} are maps given by $\pi_{j}(v)=v \bmod \left(f^{j-1}\right)$, with ($j=1, \cdots, m, m \in \mathbb{Z}^{\geq 0}$). If $B_{j}=\frac{e}{\left(f^{j+1}\right)}$ are finite dimensional vector spaces, and $A n n_{B_{j}}\left(f_{1}\right)=\left\{b \in \mathcal{C}:\left[b f_{1}\right]_{j}=0\right.$ in $\left.B_{j}\right\}$ is the annihilator of f_{1} in B_{j}, then

$$
\begin{equation*}
\rho_{j}=\pi_{j} \circ \pi_{j-1} \circ \ldots \circ \pi_{1} \text { are surjective maps from } B_{j} \text { to } B_{0} \text {. } \tag{5.56}
\end{equation*}
$$

Proposition 5.4.1. If we consider the surjective map defined in (5.55), then

$$
\pi_{j}\left(A n n_{B_{j}}\left(f_{1}\right)\right) \subset A n n_{B_{j-1}}\left(f_{1}\right)
$$

Proof. If $l \in \operatorname{Ann_{B_{j}}}\left(f_{1}\right)$, then $\left[l f_{1}\right]_{j}=0 \in B_{j}$. Indeed, $\tilde{l} \cdot f_{1} \in\left(f^{j+1}\right) \subset\left(f^{j}\right)$ and $\left[{ }_{l} f_{1}\right]_{j-1}=0 \in B_{j-1}$, then $\pi_{j} l \in \operatorname{Ann}_{B_{j-1}}\left(f_{1}\right)$.

We observe that the map π_{j} carries $\operatorname{Ann}_{B_{j}}\left(f_{1}\right)$ to $\operatorname{Ann}_{B_{j-1}}\left(f_{1}\right)$ and the map ρ_{i} carries the $\operatorname{Ann}_{B_{i}}\left(f_{1}\right)$ to algebra B_{0}. So, we get the following flag

$$
\begin{equation*}
B_{0} \supset \rho_{1}\left(\operatorname{Ann}_{B_{1}}\left(f_{1}\right)\right) \supset \rho_{2}\left(\operatorname{Ann}_{B_{2}}\left(f_{1}\right)\right) \supset \rho_{3}\left(\operatorname{Ann}_{B_{3}}\left(f_{1}\right)\right) \ldots \supset \rho_{\ell}\left(\operatorname{Ann}_{B_{\ell}}\left(f_{1}\right)\right), \tag{5.57}
\end{equation*}
$$

for some $\ell \in \mathbb{Z}^{\geq 0}$.

Proof to the theorem (1.2).

Proof. Let us consider the matrix defined in lemma (4.3.3) and $\left\rangle_{m}^{r e l}: B_{m} \times B_{m} \longrightarrow\right.$ $B_{m} \xrightarrow{f_{1}} B_{m} \xrightarrow{L_{m}} \mathbb{R}$. So, it has the associated matrix given by

	$L_{m} f_{1} Q_{0}$	0		0	$\frac{L_{m} f_{1} f H_{1}}{L_{m} f_{1} f Q_{0}}$	$L_{m} f_{1} f Q_{0}$			0	$+\cdots$	
	0	0	\cdots	$]+$		0		\cdots	0		
	0	0	0		0	0		0	0		
	:	\ddots.	.			\cdot		\ldots	0		
	0	0	0		0	0		0	0		
	$L_{m} f_{1} f^{m-1} H_{m-1}$		$L_{m} f_{1}$	${ }^{m-1} H_{m}$	2.		$L_{m} f$	$f_{1}{ }^{m-}$	${ }^{1} H_{1}$	$L_{m} f_{1} f^{m-1} Q_{0}$	0
	$L_{m} f_{1} f^{m-1} H_{m-2}$			\cdots	$L_{m} f_{1} f^{m}$	${ }^{-1} H_{1}$	$L_{m} f$	$1 f^{m-}$	${ }^{1} Q_{0}$	0	0
+	:			\because	\because			0		0	0
+	$L_{m} f_{1} f^{m-1} H_{1}$		$L_{m} f$	${ }_{1} f^{m-1} Q_{0}$	0			0		0	0
	$L_{m} f_{1} f^{m-1} Q_{0}$			0	0			0		0	0
	0			0	0			0		0	0

$+\left[\begin{array}{l|c|c|c|r}L_{m} f_{1} f^{m} H_{m} & L_{m} f_{1} f^{m} H_{m-1} & . & L_{m} f_{1} f^{m} H_{1} & L_{m} f_{1} f^{m} Q_{0} \\ \hline L_{m} f_{1} f^{m} H_{m-1} & \cdots & L_{m} f_{1} f^{m} H_{1} & L_{m} f_{1} f^{m} Q_{0} & 0 \\ \hline \vdots & \ddots & \ddots & 0 & 0 \\ \hline L_{m} f_{1} f^{m} H_{1} & L_{m} f_{1} f^{m} Q_{0} & 0 & 0 & 0 \\ \hline L_{m} f_{1} f^{m} Q_{0} & 0 & 0 & 0 & 0\end{array}\right]$

Hence, from Lemma (5.4.1) the bilinear form is nondegenerate in $a_{m-1} Q_{m-1} b_{m-1} Q_{m-1} c_{m}$ if $a_{j-1} Q_{j-1} b_{j-1} Q_{j-1} c_{j} \in\left(f^{m} J_{0}\right),(j=0, \ldots,(m-1))$, then $L_{m}\left(a_{j-1} Q_{j-1} b_{j-1} Q_{j-1} c_{j}\right)>$ 0 . So, we get the flag given in (5.57) and the matrix has the form of Lemma (5.19).

Hence, the matrix (5.58) is equivalent to:

$$
\begin{align*}
& Q_{m}^{\text {rel }}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \ldots & \tilde{D}_{0} \\
0 & 0 & 0 & 0 & \ldots & 0 & \tilde{D}_{0} & 0 \\
0 & 0 & 0 & \ldots & 0 & \tilde{D}_{0} & 0 & 0 \\
0 & 0 & \ldots & 0 & \tilde{D}_{0} & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \tilde{D}_{0} & \cdots & 0 & 0 & 0 & 0 & 0 \\
\tilde{D}_{0} & 0 & \cdots & 0 & 0 & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & \tilde{E}_{1} & 0 \\
0 & 0 & 0 & 0 & \ldots & \tilde{E}_{1} & 0 & 0 \\
0 & 0 & 0 & \ldots & \tilde{E}_{1} & 0 & 0 & 0 \\
0 & 0 & \ldots & \tilde{E}_{1} & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\tilde{E}_{1} & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
&+\ldots+\left(\begin{array}{cccccccc}
E_{m} & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0
\end{array}\right) . \tag{5.59}
\end{align*}
$$

Using the theorem (1.1) in (5.59), we get

1) If $m \geq 0$ is even then

$$
\tilde{\sigma}_{m}^{\text {rel }}=\tilde{\sigma}_{0}^{r e l}+\tilde{\sigma}_{2, A n n}^{r e l}+\tilde{\sigma}_{4, A n n}^{r e l}+\cdots+\tilde{\sigma}_{m, A n n}^{r e l},
$$

and if $m \geq 1$ is odd then

$$
\tilde{\sigma}_{m}^{\text {rel }}=\tilde{\sigma}_{1}^{\text {rel }}+\tilde{\sigma}_{3, A n n}^{r e l}+\tilde{\sigma}_{5, A n n}^{r e l}+\cdots+\tilde{\sigma}_{m, A n n}^{r e l} .
$$

2) For m large enough, $\tilde{\sigma}_{m, A n n}^{\text {rel }}=0$.

From the Corollary (5.1) we get 3) of Theorem (1.2).

Corollary 5.2. Under the hypothesis of theorem (1.2), we consider $\tilde{\sigma}_{m}^{\text {rel }}=\left(p_{m}, q_{m}, r_{m}\right)$ and $\tilde{\sigma}_{m, A n n}^{r e l}=\left(s_{m}^{+}, s_{m}^{-}, s_{m}^{0}\right)$ such that $r_{m}=r_{m-1}$. If we define $\left(p^{\prime}, q^{\prime}, 0\right)$ to be

$$
\begin{equation*}
\left(p^{\prime}, q^{\prime}, 0\right)=\tilde{\sigma}_{m}^{r e l}-\tilde{\sigma}_{m-1}^{r e l} \tag{5.60}
\end{equation*}
$$

Then, we have:

$$
\tilde{\sigma}_{m+1}^{r e l}=\left\{\begin{array}{llll}
\tilde{\sigma}_{m}^{r e l}+\left(p^{\prime}, q^{\prime}, 0\right) & \text { if } m & \text { is even } \tag{5.61}\\
\tilde{\sigma}_{m}^{\text {rel }}+\left(q^{\prime}, p^{\prime}, 0\right) & \text { if } m & \text { is odd. }
\end{array}\right.
$$

Proof. From (5.38), we have that

$$
r_{m}=r_{m-1}+s_{m}^{0}
$$

Since, $r_{m}=r_{m-1}$ then $s_{m+k}^{0}=s_{m}^{0}=0, k=1, \cdots \ell, \ell \in \mathbb{Z}^{>0}$.
Thus, by (5.60) and if we consider $m=2 n$, then

$$
\begin{equation*}
\left(p^{\prime}, q^{\prime}, 0\right)=\left(\tilde{\sigma}_{2 n}^{r e l}-\tilde{\sigma}_{2 n-1}^{r e l}\right)=\left(p_{2 n}, q_{2 n}, r_{2 n-1}\right)-\left(p_{2 n-1}, q_{2 n-1}, r_{2 n-1}\right) \tag{5.62}
\end{equation*}
$$

From (5.33) we obtain

$$
\begin{equation*}
p_{2 n}=p_{2 n-1}+p_{0}+s_{1}^{-}+\ldots+s_{2 n}^{+} \tag{5.63}
\end{equation*}
$$

and by (5.34), we get

$$
\begin{equation*}
p^{\prime}=p_{2 n}-p_{2 n-1}=p_{0}+s_{1}^{-}+\ldots+s_{2 n}^{+} \tag{5.64}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
q^{\prime}=q_{2 n}-q_{2 n-1}=q_{0}+s_{1}^{+}+\ldots+s_{2 n}^{-} \tag{5.65}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left(p^{\prime}, q^{\prime}, 0\right)=\left(p_{0}+s_{1}^{-}+\ldots+s_{2 n}^{+}, q_{0}+s_{1}^{+}+\ldots+s_{2 n}^{-}, 0\right) \tag{5.66}
\end{equation*}
$$

Moreover, from Lemma (5.3.2) we have

$$
\tilde{\sigma}_{2 n}^{r e l}=\tilde{\sigma}_{2 n-1}^{r e l}+\left(p_{0}, q_{0}, 0\right)+\left(s_{1}^{-}, s_{1}^{+}, 0\right)+\ldots+\left(s_{2 n}^{\prime} s_{2 n}^{-}, 0\right)
$$

Therefore, from the previous equation and (5.66) we get

$$
\begin{equation*}
\tilde{\sigma}_{2 n}^{r e l}=\tilde{\sigma}_{2 n-1}^{r e l}+\left(p^{\prime}, q^{\prime}, 0\right) \tag{5.67}
\end{equation*}
$$

Similarly for $m=2 n+1$

$$
\begin{equation*}
\tilde{\sigma}_{2 n+1}^{r e l}=\tilde{\sigma}_{2 n}^{r e l}+\left(q^{\prime}, p^{\prime}, 0\right) \tag{5.68}
\end{equation*}
$$

Chapter 6

The finiteness of the algorithm

In this section, we get an argument for the stabilization of the formula of the theorem (1.2).

6.1 Transporting the primitive invariants of the relative index, and flags from B_{0} to the algebra A.

Let $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a regular sequence of germs at 0 of class $\mathcal{C}^{\omega}, f_{i}=\frac{\partial f}{\partial x_{i}}$.
If $\mathcal{C}=\frac{\mathcal{A}_{\mathbb{R}^{n}, 0}}{\left(f_{2}, \ldots, f_{n}\right)}$ is a local algebra, and $\mathcal{A}_{\mathbb{R}^{n}, 0}$ is the ring of germs of real analytic functions at 0 , then $\mathbf{A}=\frac{\mathcal{C}}{\left(f_{1}\right)}$ is a finite dimensional vector space.

On the other hand, let $f \in \mathcal{A}_{\mathbb{R}^{n}, 0}$ and $M_{f}(a)$ be the action to multiply by f. It is defined to be $M_{f}(a)=f \cdot a$, for all $a \in \mathbf{A}$.
L.Giraldo, X.Gómez-Mont and P.Mardeŝic (see [14]), proved the following result:

For $j=1, \ldots, \ell+1$, there are linear subspaces P_{j} of A, called primitive subspaces, such that

$$
\begin{equation*}
A=\bigoplus_{j=1}^{\ell+1}\left[\bigoplus_{k=0}^{j-1} M_{f}^{k} P_{j}\right] \tag{6.1}
\end{equation*}
$$

with $M_{f}^{j-1}: P_{j} \rightarrow A$ injective map and $M_{f}^{j}\left(P_{j}\right)=0$. The mapping $M_{f}: A \rightarrow A$ is a Jordan cononical form in any basis obtained by choosing bases of each of the spaces P_{j} and extending them to a basis of A by the action of M_{f} as in (6.1).

Hence, it is convenient to present the direct sum decomposition (6.1) by the matrix:

$$
A=\left(\begin{array}{ccccccc}
P_{1} & P_{2} & P_{3} & P_{4} & \ldots & P_{\ell} & P_{\ell+1} \tag{6.2}\\
0 & M_{f} P_{2} & M_{f} P_{3} & M_{f} P_{4} & \ldots & M_{f} P_{\ell} & M_{f} P_{\ell+1} \\
0 & 0 & M_{f}^{2} P_{3} & M_{f}^{2} P_{4} & \ldots & M_{f}^{2} P_{\ell} & M_{f}^{2} P_{\ell+1} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & M_{f}^{\ell-1} P_{\ell} & M_{f}^{\ell-1} P_{\ell+1} \\
0 & 0 & 0 & 0 & \ldots & 0 & M_{f}^{\ell} P_{\ell+1}
\end{array}\right) .
$$

If $A n n_{\mathbf{A}}(f):=\{a \in \mathcal{C} \mid a f=0$, in $\mathbf{A}\}$ is the annihilator of f in the algebra \mathbf{A}, then

$$
M_{f}^{\ell}\left(P_{\ell+1}\right) \oplus M_{f}^{\ell-1}\left(P_{\ell}\right) \oplus \cdots \oplus M_{f}^{2}\left(P_{3}\right) \oplus M_{f}\left(P_{2}\right) \oplus P_{1}=A n n_{\mathbf{A}}(f)
$$

The ideal $\left(f^{m}\right)$ is formed by the last $\ell+1-m$ rows of the matrix (6.2), where, $m=1, \ldots, \ell$ and $\ell \in \mathbb{Z}^{\geq 0}$. (See [14]).

$$
\operatorname{Ann}_{\mathbf{A}}\left(f^{j}\right)=\operatorname{ker}\left(M_{f}^{j}\right), \quad\left(f^{j}\right)=\operatorname{Im}\left(M_{f}^{j}\right)
$$

Moreover, we consider the flag

$$
\begin{equation*}
0 \subset\left(f^{\ell}\right) \subset\left(f^{\ell-1}\right) \subset \ldots \subset(f) \subset \mathbf{A} \tag{6.3}
\end{equation*}
$$

and, if we define

$$
\begin{equation*}
K_{m}:=A n n_{\mathbf{A}}(f) \cap\left(f^{m-1}\right) \subset \mathbf{A} \tag{6.4}
\end{equation*}
$$

then we obtain the following flag

$$
\begin{equation*}
0 \subset K_{\ell+1} \subset K_{\ell} \subset \ldots \subset K_{1} \subset K_{0}=\mathbf{A} \tag{6.5}
\end{equation*}
$$

Similarly, let $B_{0}:=\frac{\mathrm{e}}{(f)}$. It is a finite dimensional vector space, \tilde{K}_{m} is defined as the projection of the annihilator of f_{1} in B_{m} to B_{0}, i.e. $\operatorname{From}(5.57), \rho_{m}\left(A n n_{B_{m}}\left(f_{1}\right)\right)=\tilde{K}_{m}$. Namely,

$$
\begin{equation*}
\tilde{K}_{m}=\frac{\left(f^{m+1}: f_{1}\right)}{(f) \cap\left(f^{m+1}: f_{1}\right)} \tag{6.6}
\end{equation*}
$$

Where, $\left(f^{m+1}: f_{1}\right):=\left\{a \in \mathcal{C}: a f_{1} \in\left(f^{m+1}\right)\right\}$, and f^{m+1} denotes f to the power $m+1$. Therefore, we have the following flag of ideals in B_{0}

$$
\begin{equation*}
0 \subset \tilde{K}_{\ell+1} \subset \ldots \subset \tilde{K}_{1} \subset \tilde{K}_{0}=B_{0} \tag{6.7}
\end{equation*}
$$

6.2 Stabilization of the algebraic formula

Theorem 6.1. If we consider the flags defined earlier in (6.5) and (6.7). Then there exists a bijection between the flag defined in (6.7) and the flag defined in (6.5). There is also an integer ℓ with $\operatorname{dim}\left(k_{\ell}\right)=\ell$, where the algebraic formulas (1.2) are stabilized.

Proof. If $\varphi: \tilde{K}_{m} \longrightarrow K_{m}$ is a morphism defined to be $\varphi(b)=\frac{b f_{1}}{f}$ and $\varphi^{-1}: K_{m} \longrightarrow \tilde{K}_{m}$ is given by $\varphi^{-1}(c)=\frac{c f}{f_{1}}$, then, it is an is isomorphism and

1) φ sends $\left(f^{m}: f_{1}\right) \longrightarrow\left(f_{1}: f\right) \cap\left(f^{m-1}\right)$
2) $\varphi\left(f^{m}\right)=\left(f^{m-1} f_{1}\right)$.

We will proof 1). If $b \in \tilde{K}_{m}$ then $b f_{1}=c f^{m}$. Hence, $\frac{b f_{1}}{f}=c f^{m-1} \in\left(f^{m-1}\right)$ and $f \frac{b f_{1}}{f}=b f_{1}$. Thus, $b \in\left(f_{1}: f\right)$ and $\varphi(b) \in\left(f_{1}: f\right) \cap\left(f^{m-1}\right)$.
Similarly, if $c \in\left(f_{1}: f\right) \cap\left(f^{m-1}\right)$, then $\varphi^{-1}(c)=\frac{c f}{f_{1}}$ and $c=d f^{m-1}$. Indeed, $\varphi^{-1}\left(d f^{m-1}\right)=\frac{d f^{m-1} f}{f_{1}}=\frac{d f^{m}}{f_{1}}$. So $f_{1} \frac{d f^{m}}{f_{1}}=d f^{m} \in\left(f^{m}: f_{1}\right)$. The proof of 2$)$ is similar.
In particular, if $m=1$ then φ sends $A n n_{B_{0}}\left(f_{1}\right)$ in $A n n_{\mathbf{A}}(f)$.
On the other hand, since the map M_{f} corresponds to the Jordan blocks, and if we consider the flag defined in (6.5), then we get the following table:

\mathbf{A}	$\xrightarrow{\cdot f}$	\mathbf{A}
\cup		
$A n n_{\mathbf{A}}(f)$	\longrightarrow	all eigenvectors of M_{f}
$\cup n_{\mathbf{A}}(f) \cap(f)$	\longrightarrow	all eigenvectors coming from Jordan blocks of M_{f} of size ≥ 2
\cup		
$A n n_{\mathbf{A}}(f) \cap\left(f^{2}\right)$	\longrightarrow	all eigenvectors coming from Jordan blocks of M_{f} of size ≥ 3
\cup		
\cdot		
\cdot		
\cup		
$A n n_{\mathbf{A}}(f) \cap\left(f^{\ell}\right)=0$		

The previous table is equivalent to the following matrix

Therefore, we have a flag $0 \subset K_{\ell} \subset \ldots \subset K_{3} \subset K_{2} \subset K_{0}=A n n_{A}(f) \subset \mathbf{A}$.
So, the algebraic formula stops when it reaches the maximal size of Jordan blocks of $\operatorname{map} M_{f}: \mathbf{A} \rightarrow \mathbf{A}$.
Moreover, we consider the bilinear forms defined by

$$
\begin{aligned}
& \langle,\rangle: K_{m} \times K_{m} \longrightarrow \mathbb{R} \\
& \left\langle a, a^{\prime}\right\rangle=\left\langle\frac{a}{f^{m-1}}, a^{\prime}\right\rangle_{L_{A}} \\
& \langle,\rangle: \tilde{K}_{m} \oplus \tilde{K}_{m} \longrightarrow \mathbb{R} \\
& \left\langle a, a^{\prime}\right\rangle=\left\langle\frac{a f_{1}}{f^{m}}, a^{\prime}\right\rangle_{L_{m}}
\end{aligned}
$$

And, if we define $L_{0}=L_{A} \circ(\varphi)$, the flag in the algebra in A is carried to the flag in B_{0}. The algorithm stops in ℓ as well.

Example 6.2.1. Let $f:\left(\mathbb{R}^{3}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of real analytic function defined to be $f(x, y, z)=\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2}$, and we consider the degenerate symmetric bilinear form given by

$$
\langle,\rangle_{m}^{r e l}: B_{m} \times B_{m} \rightarrow B_{m} \xrightarrow{f_{7}} B_{m} \xrightarrow{L_{m}} \mathbb{R},
$$

where B_{m}, is defined as in (1.2) with $m=1,2,3$. So, the routine bilinearform.lib and the kanula give the following results

Results of program relative bilinearform.lib			
size			
rank	signature		
B_{0}	15	5	$(3,2,10)$
B_{1}	30	19	$(9,10,11)$
B_{2}	45	34	$(17,17,11)$
B_{3}	60	49	$(24,25,11)$

Results of program kanulabil			
size			
B_{0}	15	an (i)	rank
B_{1}	30	1	5
B_{2}	45	0	34
B_{3}	60	0	49

Therefore, it is an immediate consequence of the previous tables that the signature associated with B_{0} is $\tilde{\sigma}_{0}=(3,2,10)$. It corresponds to three positive numbers, two negative numbers, and ten zeros. Furthermore, the signature associated with the algebra B_{1} is given by $\tilde{\sigma}_{1}=(9,10,11)$, and it is computed like (5.3 .2). To explain this, we consider the relative bilinear form $\langle,\rangle_{1}^{\text {rel }}$ defined to be

$0_{5 \times 5}$	$0_{5 \times 10}$	I_{3} $-I_{2}$	$0_{5 \times 10}$
$0_{10 \times 5}$	$\begin{array}{lll} \hline I_{4} & & \\ & -I_{5} & \\ & & 0_{1 \times 1} \\ \hline \end{array}$	$0_{10 \times 5}$	${ }^{0_{5 \times 5}}$
I_{3} $-I_{2}$	$0_{5 \times 10}$	$0_{5 \times 5}$	$0_{5 \times 10}$
$0_{10 \times 5}$	$\begin{array}{ll} 0_{5 \times 5} & \\ & 0_{5 \times 5} \end{array}$	$0_{10 \times 15}$	${ }^{0_{5 \times 5}}$

Hence, from (5.3.2) $\tilde{\sigma}_{1}=\left(p_{1}, q_{1}, r_{1}\right)=(9,10,11)=3+2+4,2+3+5,10+1$, where, $\tilde{\sigma}\left(E_{1}\right)=(4,5,1)$, the next signatures are computed in a similar form.

On the other hand, from table kanula.lib we get the flag

$$
\tilde{K}_{1} \subset \tilde{K}_{0} \subset B_{0}
$$

which is equivalent to

$$
\mathbb{R} \subset \mathbb{R}^{10} \subset \mathbb{R}^{15}
$$

As we can see, in this case the flag defines a 1 Jordan block of size 2, and an 8 Jordan block of size 1. i.e.

$$
1(2)+8(1)=10
$$

Thus, 10 corresponds to the dimension of the annihilator of f_{1} in the algebra B_{0}. i.e. $\operatorname{dim}\left(A n n_{B_{0}}\left(f_{1}\right)\right)=10$. If we consider the isomorphism φ, then $\operatorname{dim}\left(\operatorname{Ann} n_{A}(f)\right)=10$, and we get the stabilization of the algebraic formula (5.3.2).
Hence, we can conclude that $r_{2}=r_{1}=11$, and $a_{2}=a_{3}=0$, Indeed, from (5.1) we can define p^{\prime}, q^{\prime} as $p^{\prime}=17-9=8, q^{\prime}=17-8=7$, therefore, $\tilde{\sigma}_{2}=\tilde{\sigma}_{1}+\left(p^{\prime}, q^{\prime}, 0\right)=$ $(9+8,10+7,11+0)=(17,17,11)$, and so on.

Chapter 7

Applications to vector fields tangent to the Milnor fiber

In this chapter, we will describe holomorphic and real analytic vector fields. We will also give an interesting example where we exhibit the changes in the topology of the Milnor fiber.

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \longrightarrow(\mathbb{C}, 0)$ be a germ of a holomorphic function with an isolated singularity at 0 . We consider, $V_{t}^{\mathbb{C}}(f)=f^{-1}(t)$ the Milnor fiber, and X_{t} a family of germs of holomorphic vector fields in \mathbb{C}^{n+1}, such that X_{0} has an isolated singularity at 0.

If X_{t} is tangent to the hypersurface $V_{t}^{\mathbb{C}}(f)$, then

$$
d(f-t) X_{t}=h_{t}(x)(f-t),
$$

where $h_{t}(x)$ is the cofactor and it is a holomorphic function.
On the other hand, if Z is the singular set of the family of holomorhic vector fields, namely

$$
Z:=\left\{(t, x) \in \mathbb{C} \times \mathbb{C}^{n+1} \mid X_{t}^{0}(x)=\ldots=X_{t}^{n}(x)=0\right\}
$$

Then,

$$
\mathcal{O}_{Z}:=\frac{\mathcal{O}_{\mathbb{C} \times \mathbb{C}^{n+1}}}{\left(X_{t}^{0}, \ldots, X_{t}^{n}\right)}
$$

is a multilocal algebra and the map $\Pi_{1}: Z \rightarrow \mathbb{C}$ is a finite analytic map. The sheaf $\left(\Pi_{1}\right) * \mathcal{O}_{Z}$ is a free $\mathcal{O}_{\mathbb{C}}$ module of rank n.

Let $\left\{\Gamma_{1} \cup \Gamma_{2} \cup \ldots \cup \Gamma_{n}\right\}$ be the set of irreducible components of Z, each Γ_{i}, $(i=$ $1,2, \cdot, n, n \in \mathbb{Z} \geq 0$) has dimension 1 , due to the hypothesis that X_{0} has an isolated singularity at 0 . See the following figure:

$$
\mathbb{C}^{\mathrm{n}+1}
$$

This figure represents the curves Γ_{i}, with $i=1,2, \ldots, n, n \in \mathbb{Z} \geq 0$.
Futhermore, let $B_{t}^{\mathbb{C}}$ be a multilocal algebra, defined to be

$$
B_{t}^{\mathbb{C}}=\bigoplus_{p \in Z \cap f^{-1}(\mathbf{t})} \frac{\mathcal{O}_{\mathbb{C}^{n+1}, p}}{\left(X_{t}^{0}, X_{t}^{1}, \ldots, X_{t}^{n}\right)},
$$

and $\langle,\rangle_{t}^{r e l}$ be a degenerate bilinear form, namely

$$
\begin{equation*}
\langle,\rangle_{t}^{\text {rel }}: B_{t}^{\mathbb{C}} \times B_{t}^{\mathbb{C}} \rightarrow B_{t}^{\mathbb{C}} \xrightarrow{h_{t}} B_{t}^{\mathbb{C}} \xrightarrow{L_{t}} \mathbb{C} . \tag{7.1}
\end{equation*}
$$

We consider, W the set defined to be $W:=\left\{(t, x) \in \mathbb{C} \times \mathbb{C}^{n+2} \mid f(x)-t=0\right\}$ then,

1) $\Gamma_{i} \not \subset W$ if and only if the map $f-\left.t\right|_{\Gamma_{i}} \neq 0$ if and only if $V_{0}^{\mathbb{C}}(f) \cap \Gamma_{i}=\{0\}$.
2) $\Gamma_{i} \subset W$ if and only if $f-\left.t\right|_{\Gamma_{i}} \equiv 0$, if and only if $\left.\Gamma_{i} \cap \Pi_{1}^{-1}\right\} \subset V_{t}=\left\{p_{1}(t), \ldots, p_{n}(t)\right\}$.

Remark 7.1.

- Similarly, for case 1) we have $\left\{p_{i}(t)\right\} \subset \mathbb{C}^{n+1}-V_{t}^{\mathbb{C}}(f)$ if and only if the points $\left\{p_{i}(t)\right\}$ are zeros of the vector field X_{t} in $\mathbb{C}^{n+1}-V_{t}^{\mathbb{C}}(f), t \in(\mathbb{C}, 0), i=1,2, \ldots, n, n \in$ $\mathbb{Z}^{\geq 0}$.
- In case 2$)$, the points $\left\{p_{i}(t)\right\} \subset V_{t}^{\mathbb{C}}(f)$ if and only if $\left\{p_{i}(t)\right\}$ are zeros of $\left.X_{t}\right|_{V_{t}(f)}$.

See the next picture:

Therefore, if $\Gamma_{i} \not \subset W$ then $f-\left.t\right|_{\Gamma_{i}} \neq 0$.
Since, $d(f-t) X_{t}=(f-t) h_{t}$ then $d(f-t) X_{t}=0$, indeed, $(f-t) h_{t}=0$ and $f-\left.t\right|_{\Gamma_{i}} \neq 0$. So, $\left.h_{t}\right|_{\Gamma_{i}}=0$ and $A n n_{B_{t}}\left(h_{t}\right)=0$, where, $A n n_{B_{t}}\left(h_{t}\right)=0$ is the annihilator of h_{t} on B_{t}. In this case, we get neither a flag nor the new contribution to the signature.

Moreover, if $\Gamma_{i} \subset W$, then $d(f-t) X_{t}=0$, and $(f-t) h_{t}=0$, thus, $\left.f\right|_{\Gamma_{i}}=0$ and $h_{t} \neq 0$. So, $A n n_{B_{t}}\left(h_{t}\right) \neq 0$. Indeed, we get a flag and we focus in the real case.

Let $\Pi_{1 *} \mathcal{O}_{Z}^{+}$be a free $\mathcal{O}_{(\epsilon, \epsilon)}$-sheaf of rank s, where its sections are the fixed points of the conjugation map, and its stalk over 0 is

$$
\begin{equation*}
\mathcal{C}=\left(\Pi_{1 *} O_{z}\right)_{0}^{+}=\frac{\mathcal{O}_{\mathbb{R}^{2 n+2}, 0}}{\left(X_{t}^{1}, \ldots, X_{t}^{n}\right)} \tag{7.2}
\end{equation*}
$$

We define a 1 -parameter family of \mathbb{R}-algebras to be

$$
\begin{equation*}
B_{\mathbf{t}}^{+}=\Pi_{1 *} O_{Z}^{+} \otimes_{\mathbb{R}} \mathbb{R}[t]_{0}=\left[\bigoplus_{p \in Z \cap \Pi_{1}^{-1}(\mathbf{t})} \frac{\mathcal{O}_{\mathbb{C}^{n+1}, p}}{\left(X_{t}^{0}, X_{t}^{1}, \ldots, X_{t}^{n}\right)}\right]^{+} \tag{7.3}
\end{equation*}
$$

It is obtained by evaluation where B_{t}^{+}is a multilocal algebra and B_{0} is a local algebra. If \langle,$\rangle is a bilinear map defined by$

$$
\begin{equation*}
\langle,\rangle_{t}^{\text {rel }}: B_{t}^{+} \times B_{t}^{+} \xrightarrow{\cdot} B_{t}^{+} \xrightarrow{h_{t}} B_{t}^{+} \xrightarrow{L_{t}} \mathbb{R} \tag{7.4}
\end{equation*}
$$

then bilinear forms are nondegenerate for $t \neq 0$, and for $t=0$, the relative bilinear form $\langle,\rangle_{t}^{r e l}$, degenerates on $\operatorname{Ann}_{B_{0}}\left(\left[f_{1}\right]_{B_{0}}\right.$.

7.1 The contact vector field, an example

In this example, we will compute the GSV-index using the corollary (2.1), and we will exhibit the topologycal changes of the Milnor fiber.

Let $f:\left(\mathbb{R}^{n}, 0\right) \rightarrow(\mathbb{R}, 0)$ be a germ of real analytic function with isolated singularity at 0 . If $X_{t}=\left(f-t, f_{2},-f_{3}, \ldots . f_{2 n},-f_{2 n+1}\right)$ is the contact vector field, where $f_{i}=\frac{\partial f}{\partial x_{i}}$ then, $d(f-t) X_{t}=f_{1}(f-t)$, and the cofactor is f_{1}.

Example 7.1.1. In particular, if the germ $f:\left(\mathbb{R}^{3}, 0\right) \rightarrow(\mathbb{R}, 0)$ is defined to be

$$
f=\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2},
$$

then the hypersurfaces $V_{t}(f)$, for $t<0, t=0$ and $t>0$, are:

Therefore, we define the contact vector field X_{t}, to be

$$
X_{t}=\left(f-t, f_{y},-f_{z}\right)=\left(\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2}-t, 2 x^{2} y+5 y^{4}+3 x^{3} y^{2},-2 z\right) .
$$

Indeed, $\left.d(f-t) \cdot X_{t}=f_{x}(f-t)=\left(2 x y^{2}+5 x^{4}+3 x^{2} y^{3}\right)\left(\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2}-t\right)\right)$.
Since, the vector field is $X_{t}=\left(f-t, f_{y},-f_{z}\right)$ and $f_{z}=-2 z=0$, then we can consider the vector field in the plane $x y$.

If $X_{t}=\left(f-0.00002, f_{y}\right)$ is a vector field in the plane $x y$, then we have the following picture

Thus, the vector field X_{t}, for $t>0$ is

$$
X_{0.00002}=\left(\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2}-0.00002,2 x^{2} y+5 y^{4}+3 x^{3} y^{2},-2 z\right) .
$$

Since $z=0$, then the real roots of X_{t}, with $t=0.00002$ are $p_{1}=(0.0542741,-0.105318,0)$, $p_{2}=(0.11487,0,0), p_{3}=(-0.0547462,-0.106541,0)$.
Hence,

$$
\left|D X_{0.00002}\right|=\left|\left(\begin{array}{lcc}
2 x y^{2}+5 x^{4}+3 x^{2} y^{3} & 2 x^{2} y+5 y^{4}+3 x^{3} y^{2} & -2 z \\
4 x y+9 x^{2} y^{2} & 2 x^{2}+20 y^{3}+6 x^{3} y & 0 \\
0 & 0 & 2
\end{array}\right)\right|,
$$

and $\left|D X_{t}\right|=36 x^{5} y^{4}+60 x^{7} y-54 x^{4} y^{4}+30 x^{2} y^{6}+200 x^{4} y^{3}+20 x^{6}-24 x^{3} y^{3}+40 x y^{5}-8 x^{3} y^{2}$. Furthermore, $\left|D X_{t}\left(p_{1}\right)\right|=-0.000392937,\left|D X_{t}\left(p_{2}\right)\right|=0.0000459483,\left|D X_{t}\left(p_{3}\right)\right|=$ 0.0000386401 . Since, the $\operatorname{Ind}_{\mathbb{R}^{3}}(X, t)$ satisfies the conservation sign law, we have

$$
\operatorname{Ind}_{\mathbb{R}^{3}}(X, 0.00002)=-1+1+1=1 .
$$

Similarly, let X_{t} be the vector field with $t<0$. In this case we have

$$
X_{-0.00002}=\left(\left(x^{3}+y^{2}\right)\left(x^{2}+y^{3}\right)+z^{2}+0.00002,2 x^{2} y+5 y^{4}+3 x^{3} y^{2},-2 z\right)
$$

See the following figure,

Since $z=0$, then we have only one point that $X_{t}(p)=0$, where $t=-0.00002$ and $p=(-0.11487,0,0)$, thus

$$
\left|D X_{-0.00002}\right|=\left|\left(\begin{array}{lcc}
2 x y^{2}+5 x^{4}+3 x^{2} y^{3} & 2 x^{2} y+5 y^{4}+3 x^{3} y^{2} & -2 z \\
4 x y+9 x^{2} y^{2} & 2 x^{2}+20 y^{3}+6 x^{3} y & 0 \\
0 & 0 & 2
\end{array}\right)\right|
$$

hence, $\left|D X_{t}\right|=36 x^{5} y^{4}+60 x^{7} y-54 x^{4} y^{4}+30 x^{2} y^{6}+200 x^{4} y^{3}+20 x^{6}-24 x^{3} y^{3}+40 x y^{5}-$ $8 x^{3} y^{2}$ and

$$
\left|D X_{t}(p)\right|=0.000459483 .
$$

So,

$$
\operatorname{Ind}_{\mathbb{R}^{3}}(X,-0.00002)=1 .
$$

It follows that, if $t>0$, then $p_{1}=(0.0542741,-0.105318,0)$ is the singular point of $X_{0} .00002$ and $f_{x}\left(p_{1}\right)=0.0123707$. Furthermore, $f_{x}\left(p_{1}\right)>0$, and $\operatorname{Ind} d_{\mathbb{R}^{3}}\left(Y_{t}, p_{1}\right)=$ $\operatorname{Ind}_{\mathbb{R}^{3}}\left(X_{t}, p_{1}\right)=-1$. Thus, we consider the point $p_{2}=(0.11487,0,0), f_{x}\left(p_{2}\right)=$ 0.000870556 . So, $f_{x}\left(p_{2}\right)>0$ and $\operatorname{Ind}_{\mathbb{R}^{3}}\left(Y_{t}, p_{2}\right)=\operatorname{Ind}_{\mathbb{R}^{3}}\left(X_{t}, p_{2}\right)=1$.

Since $p_{3}=(-0.0547462,-0.106541,0)$ then $f_{x}\left(p_{3}\right)=-0.0120881$. So, $f_{x}\left(p_{3}\right)<0$ and $\operatorname{Ind}_{\mathbb{R}^{3}}\left(Y_{t}, p_{3}\right)=-\operatorname{Ind} d_{\mathbb{R}^{3}}\left(X_{t}, p_{1}\right)=-1$. Then by conservation the sign law, the relative index is $\operatorname{Ind}_{\mathbb{R}^{3}}(Y, t)=-1$.

If $t<0$ or $t=-0.00002$ then only one real point exits, namely,$p=(-0.11487,0,0)$, such that $X_{t}(p)=0$, and $f_{x}(p)=0.00870556>0$. Therefore,

$$
\operatorname{Ind}_{\mathbb{R}^{3}}\left(Y_{t}, p\right)=\operatorname{Ind}_{\mathbb{R} 3}\left(X_{t}, p\right)=1
$$

Hence, we have the following conclusions

$$
\begin{aligned}
& t>0, \quad \operatorname{Ind}\left(X_{1}, 0\right)=1, \quad \operatorname{Ind}\left(Y_{1}, 0\right)=-1 \\
& t<0, \quad \operatorname{Ind}\left(X_{-1}, 0\right)=1, \quad \operatorname{Ind}\left(Y_{-1}, 0\right)=1 .
\end{aligned}
$$

We recall, Eisenbud-Levine proved that the signature of the bilinear form is equal to the degree of real analytic function f. Indeed, we got an algebraic formula to reconstruct the signature of degenerate relative bilinear forms with (1.2), in the real case.

Appendix A

Appendix; Singular programs

Singular Programs

The following routines compute the signature of symmetric bilinear forms, for the nondegenerate and degenerate cases. Since, $\left(f, f_{2}, \cdots, f_{n}\right)$ is a regular sequence, then we can use a routine of the singular package to compute de krull dimension of $\left(f, f_{2}, \cdots, f_{n}\right)$. In particular, we need to prove that the krull dimension of $\left(f, f_{2}, \cdots, f_{n}\right)$ is zero. It is also necessary to change the expression of the function f in the program by the expression we need to compute.
The routine kanula.lib constructs the flag defined in B_{0}.

```
    proc siggen(int iii)
{
LIB "general.lib";
LIB "PHindex.lib";
LIB "Linalg.lib";
ring r=0,(x,y,z),ds;
int n=nvars(r);
option(redSB);
poly }f=\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+\mp@subsup{z}{}{2}\mathrm{ ;
    for (int m=1; m<= iii; m=m+1)
    {
    ideal i(m)=f**m,\operatorname{diff}(f,y),\operatorname{diff}(f,z);
ideal }g(m)=std(i(m))
ideal }kb(m)=kbase(g(m))
"Number of iteration ";}m\mathrm{ ;
// "The groebner base is";
```

// g(m);
int $m 1(m)=\operatorname{size}(k b(m)) ;$
ideal $k b 1(m)=k b(m)[m 1(m) . .1]$;
// "The base is kb1";
//kb1(m);
ideal $k 2(m)=$ transpose $(k b 1(m)) * k b 1(m)$;
ideal $k 3(m)=\operatorname{reduce}(k 2(m), g(m))$;
$\operatorname{matrix} b(m)[m 1(m)][m 1(m)]=k 3(m) ;$
// "The bililinear product is";
// print(mulq);
//Calculus of the socle ideal $j(m)=j a c o b(i(m))$;
matrix $j a c(m)[n][n]=j(m)$;
"The Jacobian matrix is";
print(jac(m));
poly $s(m)=\operatorname{det}(\operatorname{jac}(m))$;
poly $s k(m)=\operatorname{reduce}(s(m), g(m))$;
"The socle of ring B is"; sk(m);
matrix $\mathrm{L}(\mathrm{m})[\mathrm{m} 1(\mathrm{~m})][\mathrm{m} 1(\mathrm{~m})]$;
poly $l c(m)=l e a d(s k(m))$; poly $l c b(m)=l c(m) / a b s V a l u e(l e a d c o e f(s k(m)))$;
// "The sign of socle is";
// lcb(m);
int $\operatorname{gr}(\mathrm{m})=\operatorname{degree}(\mathrm{lc}(\mathrm{m}))$;
poly divis(m);
int t_{2}, t_{3};
for $\left(t_{2}=1 ; t_{2}<=m_{1}(m) ; t_{2}++\right)$
\{
for $\left(t_{3}=1 ; t_{3}<=m_{1}(m) ; t_{3}++\right)$
\{
$\operatorname{divis}(m)=\operatorname{division}\left(j e t\left(b(m)\left[t_{2}, t_{3}\right], \operatorname{gr}(m)\right)-\operatorname{jet}\left(b(m)\left[t_{2}, t_{3}\right], g r(m)-1\right), \operatorname{lcb}(m)\right)[1][1,1] ;$
$\mathrm{L}(\mathrm{m})\left[t_{2}, t_{3}\right]=\operatorname{divis}(\mathrm{m})$;
\}
\}
// print $(L(m))$;
"The determinant of the matrix in the bilinear form de la matriz $<,>_{L_{m}}$ is"; $\operatorname{det}(L(m))$;
"The signature is";
signatureL(L(m));
"The rank of matrix L is";
$m a t_{r} k(L(m))$;
\} \}

Calculus of the signature in the relative case

```
proc bilinrelamod (iii)
{
LIB "general.lib";
LIB "PHindex.lib";
LIB "Linalg.lib";
ring r = 0, (x,y,z),ds;
for (int m=1,m<=3,m=m+1)
{
ideal i(m)=( fm},\operatorname{diff}(f,y),\operatorname{diff(f,z));
ideal g(m)=std i(m);
ideal kb(m) = kbase(g(m));
"Number of iteration"; m;
"The groebner basis is";
g(m);
"The kbasis is";
kb(m);
int m}\mp@subsup{m}{1}{}=\operatorname{size}(kb(m))
ideal kb1 (m)=kb(m)[m}, ...,1]
"The new order in the kbasis is";
kb
ideal k}\mp@subsup{k}{2}{}(m)=\mathrm{ transpose (kb}(m))*k\mp@subsup{b}{1}{}(m)
ideal }\mp@subsup{k}{3}{}(m)=\operatorname{reduce}(\mp@subsup{k}{2}{}(m),g(m))
matrix mulq[m}[m)][\mp@subsup{m}{1}{}(m)]=\operatorname{reduce}(\operatorname{diff}(f,x)*\mp@subsup{k}{3}{}(m),g(m))
std(i(m));
"The bilinear product is";
print(mulq);
"The socle calculus";
idealj(m)=jacob(i(m));
matrixjac(m)[n][n]=j(m);
"The Jacobian matrix is";
print(jac(m));
poly s(m)=\operatorname{det}(jac(m));
poly sk(m)=reduce(s(m),g(m));
"The socle of ring B is"; sk(m);
matrixb (m)[m
matrixL(m)[m, (m)][m
poly lc(m)=lead(sk(m));
poly lcb(m)=lc(m)/absValue(leadcoef(sk(m));
"The sign of socle is";
"lcb(m)";
int gr(m)=degree(lc(m));
poly divis(m);
```

```
intt 2, t_;
for (t2 = 1, t2 <= m
{
for ( }\mp@subsup{t}{3}{}=1,\mp@subsup{t}{3}{<}==\mp@subsup{m}{1}{}(m);\mp@subsup{t}{3}{}++
{
```



```
Lm}[\mp@subsup{t}{2}{},\mp@subsup{t}{3}{}]=\operatorname{divis(m);
};
};
print(L(m));
    "The determinant of matrix associated to the symmetric bilinear form denoted by }\langle,\mp@subsup{\rangle}{re\mp@subsup{l}{m}{}}{
is";
det(L(m));
"The signature is";
signatureL(L(m));
"The rank of the matrix L is";
matrk
};
};
```


Calculus of a basis of a flag in the algebra B_{0}

```
    proc Kanulabil(int iii)
{
ring}r=0,(x,y,z),\textrm{ds}
option(redSB);
poly }f=(\mp@subsup{x}{}{3}+\mp@subsup{y}{}{2})*(\mp@subsup{x}{}{2}+\mp@subsup{y}{}{3})+\mp@subsup{z}{}{2}\mathrm{ ;
ideal i}\mp@subsup{i}{0}{}=f,\operatorname{diff}(f,y),\operatorname{diff}(f,z)
ideal g}\mp@subsup{g}{0}{}=std(\mp@subsup{i}{0}{})
"An R-Basis of B0 is";
module K}\mp@subsup{K}{0}{}=\operatorname{Kbase}(\mp@subsup{g}{0}{})\mathrm{ ;
K
"We will calculate the j-flag in }\mp@subsup{B}{0}{}"
for (intn = 1;n<= 4;n++)
{
ideal i(n)=f**n, diff(f,y),\operatorname{diff(f,z);}
ideal }g(n)=\operatorname{std}(i(n))
ideal q(n)=quotient(i(n), diff(f,x));
"The quotient ideal (i:ff
ideal qq(n) = q(n) + go;
ideal h(n)=std(qq(n));
int t(n)=size(h(n));
t(n);
matrix }\varphi(n)[1][t(n)]=h(n)
module ker (n)=syz(\varphi(n));
ker(n);
list d(n)=division(g},\mp@code{,
module b(n)=d(n)[1];
module ker2(n)=ker(n),b(n);
module ker3(n)=std(ker2(n));
ideal an(n)=reduce(\varphi(n)*k(n), go);
"A basis as vector space of the corresponding flag is";
an(n);
```


Bibliography

[1] V. I. Arnold. Index of a singular point of a vector field, the Petrovskii-Oleinik inequality and mixed Hodge structures. Functional Analysis and its Applications, Vol 12, No. 1 (1978), 1-14.
[2] V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko. Singularities of Differentiable Maps Volume 1. Birkhäuser, Boston Basel Berlin (1988).
[3] V. I. Arnold. Equations differentielles ordinares. Mir, Moscou (1981).
[4] Ch. Bonatti, X. Gómez-Mont. The index of a holomorphic vector field on a singularity variety I. Astérisque, 222 (1994), 9-35.
[5] M. Brunella. Vanishing holonomy and monodromy of certain centres and foci. Astérisque, 222, (1994), 37-48.
[6] D. Cox, J. Little, D. O'Shea. Ideals, Varieties, and Algoritms. 2nd edition, Springer-Verlag, New York, (1996).
[7] D. Cox, J. Little, D. O'Shea. Using Algebraic Geometry. Springer, New York, (1997).
[8] Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-0-2 - A computer algebra system for polynomial computations. http://www.singular.unikl.de (2015).
[9] M. J. Dias, M. Gomes. Introduc̣ão ã topologia de singularidades complexas. Instituto de Matemática Pura e Aplicada, Rio de Janeiro, (1985).
[10] D. Eisenbud. Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag, New York, (1995).
[11] D. Eisenbud, H. Levine. An algebraic formula for the degree of a C^{∞} map germ. Ann. Math., 106 (1977), 19-38.
[12] W. Fulton. Algebraic Topology. Graduate Texts in Mathematics 153, Springer, New York, (1997).
[13] L. Giraldo, X. Gómez-Mont, P. Mardešić. On the Index of vector fields tangent to hypersurfaces with non-isolated singularities. J. London Math. Soc., (2) 65 (2002), 418-438.
[14] L. Giraldo, X. Gómez-Mont, P. Mardešić. Flags in zero dimensional complete intersection algebras and indices of real vector fields. Math. Z., 260 no. 1, (2008), 77-91.
[15] X. Gómez-Mont, J. Seade, A. Verjovsky. The index of a holomorphic flow with an isolated singularity. Math. Ann., 291 (1991), 737-752.
[16] X. Gómez-Mont, P. Mardešicic. The index of vector field tangent to a hypersurface and the signature of the relative Jacobian determinant. Ann. Inst. Fourier, Grenoble, 47, 5 (1997), 1523-1539.
[17] X. Gómez-Mont, P. Mardešić. Index of a Vector Field Tangent to an OddDimensional Hypersurface and the Signature of the Relative Hessian. Functional Analysis and Its Applications, Vol. 33 No. 1 (1999), 1-10.
[18] X. Gómez-Mont, P. Mardešić. Index of a vector field tangent to an odd-dimensional hypersurface and the signature of the relative Hessian. Functional Analysis and It is Applications, Vol. 33 No. 1, (1999), 1-10.
[19] G. Greuel, G. Pfister. A Singular Introduction to Conmmutative Algebra. Springer-Verlag, Berlin (2002).
[20] R.C. Gunning. Lectures on Riemann Surfaces. Princeton University Press, New Jersey, Princenton (1966).
[21] R.C. Gunning. Lectures on Vector Bundles over Riemann Surfaces. Princeton University Press, New Jersey, Princeton (1967).
[22] M. W. Hirsh. Differential Topology. 2nd edition, Springer-Verlag, New York, (1976).
[23] G. N. Khimshiashvilli. On the local degree of a smooth map. Trudy Tbilisi Math. Inst., 64, (1980), 105-124.
[24] V. S. Kulikov. Mixed Hodge Structures and Singularities. Cambridge University Press, (1998).
[25] E. Looijenga. Isolated Singular Points on Complete Intersections. Cambridge University Press, New York, (1983).
[26] J. E. Marsden, M. Hoffman. Elementary Classical Analysis. W. H. Freeman and Company, New York, (1995).
[27] J. E. Marsden, A. J. Tromba. Vector Calculus. W. H. Freeman and Company, New York, (1999).
[28] J. Milnor. Topology from a Differencial Viewpoint. The University Press of Virginia, Charlottesville, (1965).
[29] J. Milnor. Singular Points of Complex Hypersurfaces. Princeton University Press and the University of Tokyo Press, Princeton, New Jersey, (1968).
[30] D. Mumford, J. Forgarty. Geometric Invariant Theory. Third Ed. Springer-Verlag, New York, (1994).
[31] J. Seade. On the Topology of Isolated Singularities in Analytic Spaces. Progress in Math. 241, Birkhäuser, Boston Basel Berlin (2006).
[32] D. A.Vogan, Jr. Unitaizability of certain series of representations. Annals of Mathematics, 120 (1984), 141-187.
[33] V. Castellanos, The index of non algebraically isolated singularities.Boletin de la SMM, Vol. 8, No. 2 Pgs 141-147 (octubre 2002).
[34] V. Castellanos phindex.lib. A Singular 4-0-2 library for computing the Poincaré-Hopf index of real analytic vector fields (2009).

