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Summary
Cancer remains one of the most serious medical and health problems of human

society. While there has been significant progress, especially in the prevention,
mortality figures remain relatively stable. Therefore, it is very important to do
research from different points of view. Cancer is a very complex disease that is
multifactorial in origin, some types of cancer have a stronggenetic component
and others determined by environmental factors or unknown factors. Once the
cancer is at an advanced stage there is no cure. In this work weare interested
in early detection of cervical cancer, which is usually preceded by a long phase of
preinvasive lesions, which are characterized microscopically by a series of changes
ranging from cellular atypia to various grades dysplasia orcervical intraepithelial
neoplasia. In our days, the best way to detect cervical cancer is to have regular
screening with a Pap test. Most of the cervical cancer modelsproposed in the
literature are based on a preventive approach, but for the diagnosis and development
of precancerous lesions they are basically nonexistent.

Our principal goal in this dissertation is to propose modelswith a reliable
interaction of Human Papillomanvirus (HPV) infected cells, that provide useful
information on the evolution of these cells before they become cancerous. The
objective is to contribute to early cancer detection and with the aid of other existing
biological tests the diagnosis could be more successful andtimely. We propose
models for the interaction of HPV infected cells related to the different stages of
the evolution of cervical cancer. Such models vary according to the quantitative
information required. We analyze the models in order to provide tools to obtain
biological information regarding the evolution of cervical cancer cells.

We propose two models for the interaction of cells infected by HPV. The first
model consists in a discrete description of the virus invasion stages and we analize
it by considering initial conditions according to characteristics of infection of a
patient and respecting positivity conditions. The second model gives a continuous
version of the first model and consists in a nonlinear advection-diffusion-reaction
equation. We develop different numerical schemes to approximate the solution of
the equation using the method non-standard finite differences. We also analyze the
model from the perspective of perturbation theory, obtaining a numerical scheme
which is sufficiently robust, accurate and efficient for larger time values. With
the aid of these schemes implementation there is a possibility to understand the
evolution of the different stages of the lesions of the cervix. This is an important
aspect because the stage of the cancer is an important factorin selecting a treatment
plan. Overall, this work may serve as a structural basis in the implementation of
specific software to provide clinicians with a reliable benchmark.

viii



0.1. HUMAN PAPILLOMAVIRUS (HPV) AND CERVICAL CANCER (CC)

Introduction
Cervical cancer is one of the most common cancer in women and is caused,

among other factors, by several high-risk serotypes of the Human Papillomavirus
(HPV) found in the majority of the clinical cases, [1]. The development of infected
cells and the control mechanisms involved are very complex and the advance of
mathematical models of HPV infected cell populations is relatively moderate. A
number of models have been presented, most of them are based on a preventive
approach [2, 3, 4, 5], but basically nonexistent for the diagnosis. Our main goal is
to developed mathematical models for the interaction of infected cells of Human
Papillomavirus. The models we consider are simple general interaction models
between the number of infected cells in each stage of the natural evolution of the
cancer. Their purpose is to illustrate some basic ideas and analysis used in the
mathematical modeling of infected cell populations, and toprovide a first step in
the diagnosis in order to avoid taking small samples of surface cells of the cervix.
First, important aspects of Human Papillomavirus (HPV) will be given next.

0.1 Human Papillomavirus (HPV) and Cervical
Cancer (CC)

Human Papillomavirus (HPV) infection is associated with virtually all cases of
cervical cancer. The virus is among the most common sexuallytransmitted diseases
and most women clear the infection within two years without complications.
Long term infection with high-risk strains of Human Papillomavirus can lead
to the development of cervical dysplasia and cancer. Because of the very high
correlation between HPV infection and cervical cancer, is important to describe
the HPV in more detail. Human Papillomaviruses are small (55-nm-diameter),
non-enveloped virions, with icosahedral capsid which contains two proteins L1
and L2. Its double-stranded circular DNA genome contains eight kilobase pairs
encoding eight proteins. HPV Infection occurs in the basal cells or nearby epithelial
basement membrane cells and the viral life cycle is closely related to maturation and
differentiation of these cells [2]. Early diagnosis and control of HPV infection have
become a pressing need, especially in developing countries, where more deaths
are caused. It is important to be informed, since Cervical Cancer (CC) has no
symptoms until it is at an advanced stage; therefore, it is very essential for women
to be regularly screened for CC. The HPV detection methods are: papanicolaou test,
colposcopic examination and molecular detection. The problem can be considered
in three different approaches: epidemiological approach,preventive approach
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(vaccines) and detection. More research is urgently neededin two significant
areas: early detection of HPV through tests that accuratelyindicate abnormalities
of the cervix before, during and after acquiring cervical cancer and preventing it
by creating more effective vaccines, prophylactic as well as therapeutic. There are
models related to the virus transmission, but not to its basal cells in cervix detection
and evolution [5, 4]. Molecular Biology Studies (specialized tests to detect the
viruses) have reported that almost 100% of cervical cancer tumors have HPV. For
many years, HPV was considered a risk factor. However, it is currently accepted
as the causal agent of cervical cancer. There are protocols that ensure that HPV is
necessary but not enough to give rise to cervical cancer. This means, to start a HPV
infection malignancy, it must be associated with one or several risk factors. There
are about 130 HPV types, 30 of which affect the lower genital tract (cervix, vagina,
vulva, and anus.) A number is assigned to each these viruses type, and according to
its aggressiveness level to damage the epithelium (oncogenic risk), they may be low
risk (types 6-11) or high risk (types 16-18-35-45.) The lastmentioned have a greater
capacity to produce epithelial damage and they are responsible for producing 80%
of cervical cancers.The natural history of cervical cancerstarts when women get
HPV during sexual intercourse. HPV infection is more easilydeveloped when there
is a cofactor (a risk factor), in particular when the immune system is impaired.
HPV causes damage to the cervix epithelium causing precursor lesions that may
evolve if not corrected until invasive cancer. In the natural history of cervical cancer
there are two stages pre-invasive stage and invasive stage.The pre-invasive stage is
characterized by maintaining the whole basal membrane (membrane that protects
the epithelium), which allows that cell changes, in despiteof being malignant,
are retained within the epithelial thickness (we could imagine that the lesion is
encapsulated), so the possibility that these malignant cells to spread to other organs
or lymph nodes are almost nil. Then we describe the precursorlesions: Cervical
Intraepithelial Neoplasia grade I (CIN I) or mild dysplasia(the injury has spread
to one third of the thickness of the epithelium); Cervical Intraepithelial Neoplasia
grade II (CIN II) or moderate dysplasia (the injury has extended to two-thirds the
thickness of the epithelium); Cervical Intraepithelial Neoplasia grade III (CIN III)
or severe dysplasia (the injury has spread to more than two thirds of the thickness
of the epithelium); and Carcinoma in situ (the injury has been extended to all the
thickness of the epithelium) [9]. However, in the invasive stage, the injury to the
cervix has caused basal membrane rupture, allowing the malignant cells to extend
into the stroma (supporting tissue), capillaries, lymph nodes, adjacent or distant
organs (metastases).

2



0.2. HPV VACCINES

0.2 HPV vaccines

Protective immunity to HPV is directed to the major capsid (L1) protein. Immunity
is type specific and there is little cross protection with other HPV types. After
natural infection only 50-70% people develop detectable antibody and this takes
many months to develop (as virus evasion delays onset and magnitude of specific
immune response). This accounts for why people can be repeatedly infected
with HPV throughout their sexual active life. A major breakthrough has been
the development of subunit HPV vaccines, based on the L1 protein of specific
HPV types. The vaccines consist of recombinant L1 protein. The L1 protein self
assembles into virus-like particles (VLPs) which are highly immunogenic. A course
of 3 doses induces high levels of type specific antibodies in vaccine recipients (much
higher than is induced by natural HPV infection). To preventinfection, vaccine
needs to be administered before onset of sexual activity (before first exposure to
HPV), currently advised for pre-pubertal girls. Have been licensed two vaccines so
far: the first vaccine is: Cervarix , this vaccine contains VLPs derived from HPV16
and 18. Together these high risk HPV types account for 70% of cervical cancers.
The second vaccine is: Guardasil, this vaccine contains irus-like particles (VLPs)
from HPV16 and 18 as well as for 6 and 11 (the last 2 are the majorcause of genital
warts). Clinical trials of these two vaccines have shown both vaccines to be highly
effective at preventing type specific HPV infection in vaccine recipients. Many
countries, including Mexico, have added this vaccine to their national immunization
programmes (targeting pre-pubertal girls), but they are still very expensive and for
example in South Africa they are not available to the public sector. However, it
has not been demonstrated an effectiveness of these vaccines and therefore we must
seek other methods to help improve the early detection with accurate diagnosis.

0.3 Importance of this dissertation

Early diagnosis and control of HPV infection have become a pressing need,
especially in developing countries, where more deaths are caused. Mathematically,
the modeling problem of Human Papillomavirus (HPV) has beenconsidered
using three different approaches: epidemiological approach, preventive approach
(vaccines) and detection. To the best of my knowledge, in theliterature there
are many research articles in the prevention, transmissionand epidemiological of
HPV but none in the early detection [6, 7, 3, 4]. Thus, more research needs to
be done in the early detection of HPV through tests that may accurately indicate
abnormalities of the cervix before, during and after acquiring cervical cancer. The
relevance of this dissertation is supported by the importance of the topic if we ask
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the question What is the relevance of cancer research? thereare many answers,
the importance of research in cancer is in several aspects: on one hand, from the
scientific perspective, cancer represents a group of diseases that are of great interest
by itself and to help explain processes of importance in different areas of study. It
is also a problem affecting global health economics, so their research is needed
to reduce some of these problems. However, I think the primalimportance of
cancer research is our sensitivity for the human suffering and brotherhood with
our fellow men. The present thesis is a first step to address the detection problem
by proving mathematical models for HPV detection hopping that our approach
provides an alternative method to existing ones and may openup new avenues
to new modeling. It is our main goal to developed mathematical models of the
interaction of infected cells of Human Papillomavirus. As afirst step, we will derive
a general interaction model between the number of infected cells in each stage. The
approach is based in a discrete model for the cell cycle presented by Takahashi [8].
Then by considering a continuous description of the invasion stages, we will derive
an advection diffusion reaction nonlinear model. For the sake of completeness,
we develop nonstandard difference methods based on nonstandard finite difference
methods.

0.4 Methodology

The methodology of the thesis varies in each chapter. In Chapter 1, we analyze the
models that results from considering the evolution of HPV indiscrete stages with
ODE systems theory and solving the resulting systems with Runge Kutta method
of order four. In Chapter 2, we build a continuous model, thenby considering a
continuous description of the invasion stages, we will derive an advection diffusion
reaction nonlinear model. For the sake of completeness, we develop a nonstandard
difference method based on nonstandard finite difference methods [9, 10, 11]. By
testing our numerical scheme in some particular cases of ourmodel, we show that
this new method is robust and efficient. In Chapter 3, such model is approximated
by a consistent explicit difference scheme which is based onRegular Perturbation
Theory. In Chapter 4, we approximate the solutions of the model y constructing
two different non standard schemes to obtain a better approximation for larger times
than the ones obtained in Chapter 2.
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0.5. DESCRIPTION OF THE THESIS

0.5 Description of the thesis

The thesis comprises four chapters and five Appendices. In Chapter 1, we propose
models for the interaction of Human Papillomanvirus infected cells related to the
different stages of the evolution of cervical precancer. Such models will vary
according to the quantitative information obtained. The models we consider are
simple general interaction models between the number of infected cells in each
stage of the natural evolution of the precancer stages. Their purpose is to illustrate
some basic ideas and analysis used in the mathematical modeling of infected cell
populations. We study the linear and nonlinear cases associated with our model. We
obtain and analyze a nonlinear system of ordinary differential equations. Both the
linear system and the nonlinear were considered and studiedfor important cases.
In such analysis, initial conditions were chosen dependingon the patient infection
degree and considering positivity conditions. The resultshelp us to understand the
evolution of cells infected with HPV.

In Chapter 2, we develop a continuous mathematical model forthe interaction
of infected cells of Human Papillomavirus. Such model consists in an advection
diffusion reaction nonlinear model. For the sake of completeness, we develop a
nonstandard difference method based on nonstandard finite difference methods. By
testing our numerical scheme in some particular cases of ourmodel, we show that
this new method is robust and efficient. The drawback of the obtained scheme is
that we can not consider larger times.

In Chapter 3, we consider the equation of interest as a perturbation problem
which evolves smoothly and slowly out of the initial solution. First we propose
to analyze the continuous model under the perspective of perturbation theory by
presenting first an unsatisfactory local approximation andthen presenting a correct
formal parametric approximation based on the original one.We analyze both
cases: perturbed case and unperturbed case, and in the results we obtain that
the behavior of the approximation are very similar. Such numerical scheme is
sufficiently robust, accurate, and efficient for larger values of time. Later, we
use a general framework to derive an analytical-numerical method using a special
discretization of the domain and finally we analyze the approximations including
numerical simulations and discuss the implications of the results.

In Chapter 4, we build two different schemes to approximate the solution of
the proposed continuous model. These schemes were built with no standard finite
difference method considering some subequations with schemes exact and some
subequations with approximated schemes. The advantage of these schemes is that it
could considerably increase the time as well as both schemessatisfies the conditions
of positivity. Both schemes present very similar results for times smaller than
t=200 and for values up to 250 we obtain only slight changes that are insignificant,
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which shows that both approximations are reasonable. This fact is a consequence
of using the discretization of the Duffing equation. It is important to remark that
the only acceptable results have been reported only for times less than 150. As
expected, both approximations deviate initially very slowly from initial data, which
agrees with the fact that HPV infection takes very long time in transforming normal
cervical cells into cancerous ones. Numerical results helped us understand the
evolution of HPV-infected cells for very large times.

In Appendix A, we proof the uniqueness for some subequationsof our model
with the Energy method, while we study the monotone method for parabolic
equation in Appendix B. Appendix C contains the details about the solution of
the linear version of our model. Some properties of ellipticfunctions are given in
Appendix D. In Appendix E some exact schemes of DifferentialEquations known
are given.

In summary, we hope that this work is a motivation for furtherresearch in the
area of detection of infected cells by Human Papillomavirus(HPV) before they
turn cancerous. We have achieved with the results of our models and the detailed
study of important special cases of these models to understand the evolution of
HPV infected cells in short times and large times. This is a very good step forward
in this context as there is scarce literature on this subjectbut we hope that in the
near future increase research and interdisciplinary worksand set of scientists from
different areas converge to a single goal: to improve early accurate detection of
infection of the virus in the basal cells of the cervix.
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Chapter 1

A model for HPV infected cells at

different lesion discrete stages 1

1.1 Introduction

Recently, early detection of uterine cervical cancer is based only on experimental
tests. An important concern is the knowledge of the evolution of infected cells
before they become cancerous in order to avoid such experimental evidence. The
advantages consist of providing accurate and timely detection with less errors in the
diagnosis of the stages in which a patient is diagnosed. Perhaps such goal is very
ambitious and a more realistic aim will be to obtain models ofa simplified stem in
order to get a first step for early detection.

Our first goal of this chapter is to propose models for the interaction of Human
Papillomanvirus infected cells related to the different stages of the evolution of
cervical precancer. Such models will vary according to the quantitative information
obtained. The models we consider are simple general interaction models between
the number of infected cells in each stage of the natural evolution of the precancer
stages.Their purpose is to illustrate some basic ideas and analysis used in the
mathematical modeling of infected cell populations, and toprovide a first step in
the diagnosis in order to avoid taking small samples of cervix surface cells.

Our second goal is to analyze the obtained models in order to provide tools
to obtain biological information regarding the evolution of cervical cancer cells.
It is important too remark that the development of infected cells and the control
mechanisms involved are very complex and the advance of mathematical modeling
of HPV infected cell populations is relatively moderate. There are not works

1This chapter is based on Francisco J. Solis and Luz M. Gonzalez, A model for HPV infected
cells at different lesion discrete stages, International Journal of Complex Systems in Science, Vol.
2(1) (2012), pp. 7-10.
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CHAPTER 1. A MODEL FOR HPV INFECTED CELLS AT DIFFERENT
DISCRETE STAGES

regarding the evolution of infected cells by HPV. Several models have been
presented in the literature, most of them based on a preventive approach [2, 3, 4, 5]
but basically nonexistent for the diagnosis.

The structure of this chapter is as follows: In Section1.2 we present a discrete
model for the cell cycle develop by Takahashi [8]. Such modelconsiders the cell
cycle stages in discrete steps, which is very important because it is the basis of our
model. In Section1.3 we construct our first model assuming that the evolution of
the stages of uterine cervical precancer can be subdivided into discrete steps.The
resulting model is a nonlinear system ofm differential equations, wherem is the
number of stages. In section1.4 we consider the linear approximation of such
system and give the solution of the linear system associatedstudying different
cases, and their asymptotic behavior. In section1.5 we approximate the solution
of the nonlinear system, using a fourth order Runge Kutta method. In this case the
behavior of the solutions is studied for different times.Westudy some biologically
important cases at the end of this section. Finally, conclusions are obtained in
Section1.6.

1.2 A model of cell cycle: a base for our model

In this section we will discuss a model of the cell cycle in discrete steps since our
models will be based in similar ideas. Such model is very important since we want
to understand the evolution and mechanisms of healthy cell in order to generate
models for the evolution and mechanism of infected cells by HPV before it becomes
cancerous cells. Cell cycle regulation was an early subjectof biology inspired
mathematical modeling. Even before the molecular regulators of the cell cycle were
known, mathematical models of the cell cycle were already formulated [8]. As the
molecular details of the underlying regulatory network were revealed, the modeling
of the system became more and more sophisticated. Indeed cell cycle has been
one of the pioneering examples of systems biology approaches, where experiments
and mathematical modeling have guided each other. Thanks tothese efforts now
we are able to better understand the dynamics of the cell cycle regulation and to
explain how the oscillations appear in different cell typesand what roles positive
and negative feedbacks play in cell cycle regulation. Different modeling methods
were used to attack these questions at different levels of complexity.

The cell cycle is the process for which cells multiplicate orproliferate. Its
correct execution in a pluricellular organism as the human,contribute to establish
in an adequate functional and structural integration to face the environmental
conditions. Proliferating cells perform a series of coordinated actions collectively
referred to as the cell cycle. The complex network of regulatory enzymes and

8



1.2. A MODEL OF CELL CYCLE: A BASE FOR OUR MODEL

cellular components that controls these processes enablescells to grow and divide,
to co control or prevent growth when appropriate, to carry out the different stages of
growth and division in the correct order, and to respond to DNA damage by arresting
progression through the cycle so as to allow time for repair to occur before more
DNA.

Since the development of cancer is associated with loss of control over this
regulatory system, the study of the mechanisms and functions of the cell cycle has
gained increased attention in the past decades. The detailed understanding of the
mechanisms underlying tumor growth, DNA damage repair, intercellular signaling
and other cell cycle related processes is therefore of paramount importance to
diagnosis, treatment and prognosis of cancer. The discovery of controls that govern
cell cycle has led us to understand many of the phenomena thatoccur in the cell
life both health and disease, and this last point of particular interest for the study of
potential therapeutic targets where they could cell cycle combat abnormalities that
lead to tumors.Then, for us it is of great interest to study the cell cycle as a series
of discrete events or stages as the basis for later constructa model for the evolution
suffering HPV infected cells. The following simple discrete model for cell cycle,
which is due to Takahashi will form our starting point .

1.2.1 The cell cycle

Cell division is a very important process in all living organism. Each cell undergoes
a process of maturation that begins the moment they are created from parent cells
and continues until they themselves are ready to divide and give rise to daughter
cells. This process, known as the cell cycle, is traditionally divided into five main
stages. Mature cells that are not committed to division are in G0 phase.G1 is a
growth phase characterized by rapid synthesis of RNA and proteins. Following this
is theS phase, during which DNA is synthesized. theG2 phase is marked by further
RNA and protein synthesis preparing for theM phase, in which mitosis occurs, see
Figure 1.1.

1.2.2 A discrete model of the cell cycle (Takahashi)

We present the following discrete model for the cell cycle, which is due
to Takhahashi, [8] which is a generalization of Kendall’s [12] earlier work.
Takahashi’s model is specified by the following postulates.

1. Each cell must pass through a cycle ofk discrete phases. A cell which has
just been born is located in the first phase. A cell which is about to divide in
thekth phase.

9
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Figure 1.1: Cell cycle

2. TheG1, S, G2 andM stages of the cell cycle also decomposed intog1, s, g2
andm phases respectively, whereg1 + s+ g2 = k.

3. Each cell transits from thejth phase to the(j+1)th phasej = 1, 2, · · · , k−1
with probabilityλj△t.

4. Each cell in thekth phase gives birth toβ daughter cells with probability
λk△t. These daughter cells pass into the first phase.

5. The probability of death in any phase isµj△t.

6. Each cell behaves independently of every other cell with regard to transit
times, births and death.

With the aid of the previous postulates we can derive a model by lettingNj be
the number of cells in thejth phase. The change△Nj during a time△t is given by

△Nj(t) = influx of cells intojth phase - efflux of cells out ofjth phase

by the Principle of cellular conservation(j 6= 1). The influx (during a time interval
△t the number of cells entering phase j) into thejth phase in△t is

λj−1Nj−1(t)△t,

and the efflux (number of cells leaving) from it in△t is

(λj + µj)Nj(t)△t.

10
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Hence

△Nj(t) = λj−1Nj−1(t)△t− (λj + µj)Nj(t)△t j = 2, 3, · · · , k. (1.1)

Since each cell leaving the last stage of mitoses(j = k) results inβ cells inG1

(j = 1), the conservation principle yields

△N1 = βλkNk(t)△t− (λ1 + µ1)N1(t)△t. (1.2)

Dividing both sides of equations (1.1) and (1.2) by△t→ 0 yields

dNj

dt
= λj−1Nj−1 − (λj + µj)Nj ,

dN1

dt
= βλkNk − (λ1 + µ1)N1.

For example if we assume that transition probabilitiesλj = λ are the same for all
phases, that is,λj = λG1 = λS = λG2 = λM during the corresponding phases and
assume thatµj = 0 and that cell divides into two daughter cellsβ = 2 then the
model can be written in the following way:

dNj

dt
= λ(Nj−1(t)−Nj(t)),

dN1

dt
= λ(2Nk(t)−N1(t)).

In the next section we develop a model for the evolution of uterine cervical
precancer cells, which is based on this previous model.

1.3 A first HPV model

HPV infection requires epidermal or mucosal epithelial cells that are proliferating
(basal cells). Following entry into the suprabasal layer, the viral genome replicates
and in the upper layers of epidermis complete viral particles are released. HPV
infection thus results in enhanced proliferation of the infected cells and their lateral
expansion. Most often, cervical cancer is marked by a premalignant phase of
various grades of Cervical Intraepithelial Neoplasia. which are characterized by a
spectrum of histological abnormalities. On an average, it takes decades for cancer to
arise. Cervical carcinogenesis thus is a multifactorial process and involves genetic,
environmental, hormonal and immunological factors in addition to HPV [13].
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1.3.1 Developing a model HPV

We assume that the stages of the evolution of cervical cancercan be subdivided
in m discrete stages, whereN1(t) andNj(t) j = 2, . . . , m represent the number
of normal cells and the number of infected cells at timet in stagej, respectively.
Let f1(N1) be the reproductive rate depending only on the number of normal cells.
Let gj(Nj), j = 2, 3, . . . , m be the rates of infected cells with HPV that cause
injury intraepithelial that change from one stage to another. Mj(Nj) represents the
mortality rate associated to each stage. Following the approach based in a discrete
model for the cell cycle presented in the previous section and assuming analyticity
in the functionsf andg, a general model can be written as:

dN1(t)

dt
= f1(N1)− g1(N1)−M1(N1)

dN2(t)

dt
= g1(N1)− g2(N2)−M2(N2)

... (1.3)
dNm(t)

dt
= gm−1(Nm−1)− gm(Nm)−Mm(Nm).

The system can be written in compact form as:

dN1

dt
= H1(N1),

dNj

dt
= Gj−1(Nj−1) +Hj(Nj),

j = 2, 3, . . . , m. (1.4)

Without loss of generality we assumeG′
j−1(0) = H ′

j(0)) ≡ ωj in the system.
Otherwise

Ṅj = aNj−1 − bNj + Aj−1N
2
j−1 +BjN

2
j + · · ·

Ṅj = a(Nj−1 − b/aNj) + Aj−1N
2
j−1 +BjN

2
j + · · ·

Let us do the following change of variable

Ṁj = b/a(Ṅj),

then we have

dNj

dt
= ωj(Nj−1 −Nj) + F (Nj−1) +G(Nj). (1.5)
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The system can be finally written as follows:

dN1(t)

dt
= k1N1 + A0N

2
1 +O(N3

1 ),

dN2(t)

dt
= k2(N1 −N2) + A1N

2
1 +B2N

2
2 +O(N3

1 ) +O(N3
2 ),

...
dNm(t)

dt
= km(Nm−1 −Nm) + Am−1N

2
m−1 +BmN

2
m. (1.6)

1.4 A simplified model: A linear system

The aim of this section is to study the system associated withour model. Since it
is a very complex system we will consider as a first approach itis linear version
which help us to understand the evolution of cells infected with HPV. This study is
done in two cases considering the coefficients of our model, therefore the solution
of the system associated to the model in each case will be different. We study the
cases a) when all the coefficients of the associated linear system are different and
b) when they are all equal. It is important to emphasize that not considered cases
are reduced to the two studied cases (1.4.4). After obtaining the solution of the
linear system in each of the above cases, we study the asymptotic behavior of these
solutions. Finally, we consider a special case when the coefficientk1 is negative in
the system, in biology terms this case represents the presence of the immune system
in the infectious process. For illustrative purposes we produce some graphs of the
solutions obtained in order to observe the evolution of infected cells. In each case
we choose the values of the constants in the linear system to satisfy the positivity
condition.

1.4.1 Solution of the model with different eigenvalues

Consider the linear model obtained from (1.6) (by choosingAj = Bj = 0). We can
rewrite the linear system in matrix form as

Ṅ = AN (1.7)

where

N = (N1(t), N2(t), N3(t), . . . , Nm(t))
T
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and

A =



















k1 0 0 0 0 · · ·
k2 −k2 0 0 0 · · ·
0 k3 −k3 0 0 · · ·
0 0 k4 −k4 0 · · ·
... 0 0

. . . . . .
...

0 0 0
. . . km −km



















. (1.8)

The solution of homogeneous linear system is given by the following basic
theorem

Theorem 1.4.1 If A hasm linearly independent eigenvectorsv1,v2 · · ·vm with
eigenvaluesk1,−k2, · · · − km, then the solution to the linear systeṁN = AN is
given by

N(t) = c1e
k1tv1 + c2e

−k2tv2 + c3e
−k3tv3 + c4e

−k4tv4 + · · ·+ cme
−kmt

vm. (1.9)

We have obtained the explicit solution of the system where the only important
eigenvector isv1 and that indicates the direction in which the solution diverges. It is
important to note that due to the special shape of the matrixA eigenvectors obtained
are special and because of that we find all explicitly, the eigenvectorv1 associated
to the eigenvaluek1 is given by

v1 =

(∏m
n=1(k1 + kn+1)
∏m

n=2 kn
,

∏m
n=2(k1 + kn+1)
∏m

n=3 kn
,

∏m
n=3(k1 + kn+1)
∏m

n=4 kn
, . . . , 1

)T

,

the eigenvectorvp associated to the eigenvalue−kp with p = 2, . . . , m− 1 is given
by

vp =

(

∏m−p−1
n=2 (kp − kn+p)
∏m−1

n=3 kn
,−

∏j−p−1
n=3 (kp − kn+p)
∏m−1

n=4 kn
,

∏j−p−1
n=4 (kp − kn+p)
∏m−1

n=5 kn
, . . . , 1

)T

.

Finally, the eigenvectorvm associated to the eigenvalue−km is given by

vm = (0, 0, 0, 0, . . . , 1)T .

Remark If at least twokj approximate to a common value then the set of their
corresponding associated eigenvectors approximates a setof linearly dependent
eigenvectors. We will study this limit case on the next subsection.
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1.4.2 Solution of the model with equal eigenvalues

If we consider thatks are equal, then the matrixA in linear system (1.7) is

A =



















k 0 0 0 0 · · ·
k −k 0 0 0 · · ·
0 k −k 0 0 · · ·
0 0 k −k 0 · · ·
... 0 0

. . . . . .
...

0 0 0
. . . k −k



















, (1.10)

and the solution of homogeneous system (1.7) is

N = c1e
kt
w0 + e−kt

m
∑

j=1

(

m−1
∑

s=j

cs
ts−j

(s− j)!

)

wj ,

wherecj , j = 1, . . .m are some arbitrary constants and

w0 =























2
1
1/2
1/4
1/8

...
1

2m−1























, w1 =



























0
0
0
0
0
...
0
1



























, w2 =



























0
0
0
0
...
0
1
1



























, w3 =



























0
0
0
...
0
1
1
1



























, . . . ,wm =



























1
1
...
1
1
1
1
1



























are

the eigenvectors.
In the following theorem it proved that the functionsNj(t) are solutions of

system (1.7).

Theorem 1.4.2 Let−k be an eigenvalue with multiplicityr = m− 1 of the matrix
A associated to linear system (1.7), then the functions

N1(t) = w1e
−kt,

N2(t) = (tw1 +w2)e
−kt,

N3(t) = (t2w1 + tw2 +w3)e
−kt,

· · ·
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Figure 1.2: (a) Graph of the solution of the linear system with m = 5 different
eigenvalues andk1 positive and (b) Graph of the solution of linear system for m=5
for equal eigenvalues and k positive.

Nr(t) =

(

tr−1

(r − 1)!
w1 + · · ·+

t2

2
wr−2 + twr−1 +wr

)

e−kt,

are r solutions of the systeṁN = AN.

For the proof of this theorem see appendix C.

1.4.3 Asymptotic behavior of the linear system

The solution of homogeneous linear system (1.7) are the form







N1(t)
...
Nm






=

{

c1e
k1tv1 +

∑m
s=2 cse

−kstvs, if ks are different

c1e
kt
w0 + e−kt

∑m
j=1

(

∑m−1
s=j cs

ts−j

(s−j)!

)

wj , if ks are equal.

Those solutions exponentially diverge in the direction ofv1, namely
(

∏m
n=1(k1+kn+1)
∏m

n=2 kn
,
∏m

n=2(k1+kn+1)
∏m

n=3 kn
,
∏m

n=3(k1+kn+1)
∏m

n=4 kn
,
∏m

n=4(k1+kn+1)
∏m

n=5 kn
, . . . , 1

)T

in the case of different eigenvalues, see Figure 1.2a, and inthe direction of

w0 = (2, 1, . . . , 1/2m)T

for equal eigenvalues, see Figure 1.2b. From this result we immediately conclude
that the number of infected cells grow exponentially, whichis an undesirable
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characteristic of the linear model. Therefore, we have to take in consideration the
nonlinear terms.

It is important to remark that a similar case of this linear model (whenk1 < 0)
has been analyzed in the context of pursuit in [14]. Meaning thatN1 considered a
moving particle follows an independent path in phase space and the rest follows
him in a cyclical fashion, that is,Nj follows Nj−1 for j = 2, . . . , m. In this
way, if we replace the first equation in system (1.6) for one with N1 settling in
a bounded region, for example a closed trajectory, then the rest of the functions will
exponentially settle into that region.

1.4.4 Effect of the immune system

The immune response is regarded as an effector mechanism in tumors and resistance
is related from the initiation phase to the growth and progression of these. evidence
suggests that important system involved in the eliminationof malignant cells that
appear in the host, probably as a result of spontaneous mutations, exposure to
carcinogens and environmental viral activation. It also has a crucial involvement
in progression of established tumors are more aggressive, generally in patients
who suffer from immunosuppression. Many reports state thatthe host response
to infection cellular and humoral components of the immune system involves both.
The immune system has the ability to detect and neutralize orremove any external
agent poses a threat to the body. The answer is complex and based on many
signals that activate one or more routes rejection and attack foreign agent. When
the integrity of this response is not compromised, success is safe and not affected
body function. The papilloma virus infection, most young women without immune
compromise, goes unnoticed. However, the confrontation between the immune
system and HPV infection is complex, both possess highly effective mechanisms
to overcome the other and the slightest advantage or defect in the system immune
is used by the virus to replicate and develop their oncogenicpotential and induce
cancer. The solutions of the system converge to zero as time increases, this means
that the number of infected cells in each stage decreases because of the immune
system [15], [35]. Consider the linear system withk1 negative. In this case the
solution of linear system is given by

Nm(t) =

m
∑

s=1

cse
−kstvs (1.11)

and converges to zero as time increases, this means that the number of infected cells
in each stage decreases because of the immune system. In Figure 1.3 we took the
initial conditions asN1 = 0.1, N2 = 0.4, N3 = 1.7, N4 = 8.6, with the condition
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Figure 1.3: Evolution of different stages case: (a) different eigenvaluesk1 negative
and (b) equal eigenvaluesk negative.

of positivity

cn = Nn(0)−

n−1
∑

j=1

Πn
j=2ki

Πn
i=j+1(ki − kj)

cj ≥ 0,

wherec1 = N1(0) for n = 2, 3, . . . , m.

Remark If the matrixA of m bym of the linear system associated with our model
1.7 has a square submatrixR of r by r where(r < m) andks different and other
submatrix ofA is P of p by p (p < m) with equalks such thatr + p = m then the
solution to the system1.7 is given by combining the solutions studied in paragraphs
1 and 2 then the solution has the form:

N(t) = c1e
k1tv1 +

r−1
∑

s=2

cse
−kstvs + e−kt

p
∑

j=2

(

p−1
∑

s=j

cs
ts−j

(s− j)!

)

wj.

1.5 A simple nonlinear system (up to quadratic
terms)

In this section it will be studied a nonlinear system by considering only the linear
and quadratic terms in (1.6) in order to obtain a more realistic model. By taking
A1 negative in the first equation of (1.6) we obtain a logistic growth for the normal
cells. In general, we takeAj negative andBj positive forj = 2, . . .m in the model.
This study will be divide into three parts, on the first part weconsider the hypothesis
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Figure 1.4: Evolution of different stages varying time and considering number of
cells equal to constant (a) m=4 and (b) m=5.

that the number of cells is a constant and we will study the behavior of the solution
for short times. On the second part we want to understand the asymptotic behavior
of solutions. In the third part we consider some special cases depending on the
initial conditions. This study will be conducted by approximating the solutions in
all cases using Runge Kutta method of order 4 form = 4 andm = 5.

1.5.1 Short time evolution of the system

First, we consider that the total number of cells is almost constant, so we impose
the condition that

∑m
j=1Nj(t) = constant. In this case we want to understand the

evolution of infected cells for short times, also we want ournumerical method is
stable. The coupled differential equations in the model were analyzed numerically
by using classical Runge-Kutta method of order 4, these method were chosen
because both methods are relatively simple to use and precise. We present the
time evolution of the solution of system form = 4, in this particular case the initial
conditions areN1 = 0.5, N2 = 0.3, N3 = 0.15, N4 = 0.05, see Figure 1.4a
and we present the time evolution of the solution of system for m = 5 with initial
conditionsN1 = 0.3, N2 = 0.25, N3 = 0.2, N4 = 0.15, N5 = 0.1, see Figure 1.4b,
which correspond to initial conditions for a patient with mild dysplasia. Notice that
the number of infected cells growths slowly implying that cervical usually develops
very slowly, which is an important fact. This nonlinear model is more reliable than
the linear one since gives us information on the evolution ofinfected cells at each
stage. Similar qualitative behavior is obtained for modelswith higher nonlinear
terms included.
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1.5.2 The evolution in time of the system for large times

Next, we want to understand the evolution of cells for largertimes, in this case, we
do not consider the assumption of a constant number of cells,only approximate the
solution with Runge-Kutta method of order 4, see Figure 1.5 we present the time
evolution of the solution of system form = 5. In this case the initial conditions are
N1 = 0.5, N2 = 0.3, N3 = 0.20, N4 = 0.05, N5 = 0.01. We get the following
behavior: as time passes the number of infected cells in eachstage grows to a
maximum and then decreases, as some of them are infecting even more and become
the next stage and others die; well as the time of maximum grows number of cells
in stagej is less than the maximum number of cells in stagej + 1, this means that
the number of infected cells in advanced stages grows fasterthan in early stages.
Notice in the graph largest 1.5-c) maximum value of infectedcells in larger time
t = 20 is much larger than in previous times.

1.5.3 Some special cases for nonlinear system

Now let us consider some special cases considering the initial conditions, the degree
of infection of a patient at the initial time. These cases arise depending on the degree
of dysplasia of a patient: first, the patients with very smalldegree of infection;
second, the patients with similar levels of infection in each stage and finally, the
patients with the same number of infected cells at each stage.

1. All initial conditions are small.
This case is important because we can observe the evolution of the solution
curves when the degree of infection is very small at the initial time. We
consider in this case the initial conditions:N1 = 0.01, N2 = 0.02, N3 =
0.03, N4 = 0.04, N5 = 0.05 that corresponds to patients with very mild
dysplasia. In this case the solution curves of the nonlinearsystem are
decreasing, and converge to zero as time increases see Figure 1.6. This means
that the immune system eliminates the HPV infection.

2. All initial conditions are significantly similar
In this case, the patient has about the same number of infected cells in each
stage. We consider the initial conditions:N1 = 0.24, N2 = 0.2, N3 =
0.16, N4 = 0.12, N5 = 0.08 see Figure 1.7a and the initial conditions:
N1 = 0.25, N2 = 0.21, N3 = 0.17, N4 = 0.13, N5 = 0.09 see Figure
1.7b. In this case, the patient has infected cells at different stages with a very
similar degree of infection. The solution curves have a verysimilar behavior,
that is, they start increasing, reach their maximum and thendecrease. As
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Figure 1.5: Evolution of different stages varying time, forgreat times: (a) up t=16
(b) up t=20 and (c) up t=25.
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Figure 1.6: Evolution of different stages with initial conditions very small
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Figure 1.7: Evolution of different stages with initial conditions similar

time increases, the maximum value of each of these curves is similar to the
previous one.

3. All initial conditions are equal
In this case the initial conditions indicate that the infection degree of the
patient is the same in each stage. We note that each solution curve grows to
a maximum and then decreases at later stages. The maximum is significantly
larger than each previous solution curve, see Figure 1.8.
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Figure 1.8: Evolution of different stages with equal initial conditions

1.6 Conclusions

In this chapter, we presented a reliable model for the interaction of HPV infected
cells. The model provides useful information regarding theevolution of the infected
cells. This model is the first model known in the literature regarding the evolution
of cells infected with HPV that cause lesions in the cervix before they become
cancerous. We studied the linear and nonlinear cases associated with our model.
We solved the linear system and approximate the solution of the nonlinear system
with Runge Kutta method of order4 for m = 4 andm = 5. Both the linear
and the nonlinear system were considered and studied for important cases. In
such analysis, initial conditions were chosen depending onthe patient infection
degree and considering positivity conditions. The resultshelp us to understand the
evolution of cells infected with HPV. It is only a first step toprovide clinicians with
a reliable benchmark. More research needs to be done to refinethe present model.
A step in this direction is the development of models with a continuous number of
stages for the natural history of cervical cancer which we will do in the next chapter.
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Chapter 2

Modeling the effects of Human

Papillomavirus in cervical cells 1

2.1 Introduction

The present chapter is a second step to address the detectionproblem for HPV by
proving mathematical models hopping that our approach provides an alternative
method to existing ones and open up new avenues to new modeling. It is our
main goal to developed mathematical models of the interaction of infected cells
of Human Papillomavirus. A first step was developed in chapter 1 where we built
a model considering the stages of HPV infection as discrete stages. By considering
a continuous description of the invasion stages, we will derive a general interaction
model between the number of infected cells in each stage, resulting in an advection
diffusion reaction nonlinear model. For the sake of completeness, we develop a
nonstandard difference method based on nonstandard finite difference methods. By
testing our numerical scheme in some particular cases of ourmodel, we show that
this new method is robust and efficient.

This chapter is organized as follows. In Section2.2, we propose a general
framework of structure models, from which we derive a familyof models. In
Section2.3, we present some particular cases of our models in order to provide
insight into biological factors. In Section2.4, we develop a nonstandard numerical
scheme for our models, we include numerical simulations andalso interpret the
biological implications of the results. Finally, conclusions are given in Section2.5.

1This chapter is based on Francisco J. Solis and Luz Maria Gonzalez, Modelling the effects of
human papillomavirus in cervical cells, International Journal of Computer Mathematics, Vol. 91(2)
(2014), pp. 179-187.
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Figure 2.1: A schematic distribution of the different stages of the lesions.

2.2 Model development

The aim of this section is to derive first a general interaction model between
the number of infected cells in each stage. Then by considering a continuous
description of the invasion stages, we proceed to the derivation of a family of
advection diffusion reaction models.

The evolution of cervical cancer is divided into several stages. The first
stage, called pre-invasive stage, is characterized by maintaining the whole basal
membrane, which allows that cell changes, in despite of being malignant, are
retained within the epithelial thickness. The latter stages, called invasive stages
are subdivided in three stages (or more). The first one, knownas mild dysplasia
has spread to approximately one third of the thickness of theepithelium, the second
one, known as moderate dysplasia, is where the injury has extended to two-thirds
the thickness of the epithelium and the last one, known as severe dysplasia, the
injury has been extended to all the thickness of the epithelium, for more detail
see [2]. However, in the invasive stages, the injury to the cervix has caused basal
membrane rupture, allowing the malignant cells to spread into the the supporting or
interior tissue. It is important to establish that this classification on three invasive
stages depends on how deep the epithelium is penetrated by the infected cells, thus
the number of stages may vary depending of the degree of resolution required.

2.2.1 Model with a discrete number of stages

Let us recall the model, with its assumptions, that we introduced in the previous
chapter. Let us assume that the stages of the natural historyof cervical cancer can be
subdivided ink discrete stages, see Figure 2.1, whereNj(t) represents the number

26



2.2. MODEL DEVELOPMENT

of infected cells in stagej, at timet, j = 1, 2, . . . , k. Let fj(Nj) be reproductive
rates depending only on the number of infected cells. Letgj(Nj), j = 2, 3, . . . , k be
rates of cells infected with HPV that cause injury intraepithelial that change from
one stage to another.Mj(Nj) represents the mortality rate associate to each stage.

The system can be written as follows:

dN1

dt
= f1(N1)− g1(N1)−M1(N1),

dN2(t)

dt
= g1(N1)− g2(N2)−M2(N2),

...
...

dNk−1(t)

dt
= gk−2(Nk−2)− gk−1(Nk−1)−Mk−1(Nk−1),

dNk(t)

dt
= gk−1(Nk−1)− gk(Nk)−Mk(Nk),

where functionsfj andgj are continuous, their derivatives exist and are bounded
to ensure that the system has a unique solution for any initial condition for any
particular initial condition. For different cell divisionmodels see for example [16,
17]. The system can be written in a compact form as:

dN1

dt
= H1(N1),

dNj

dt
= Gj−1(Nj−1) +Hj(Nj), j = 2, 3, . . . , k (2.1)

whereGj−1 andHj are given bygj−1(Nj−1) and−gj(Nj)−Mj(Nj), respectively
and j = 2, 3, . . . , k. Without loss in generality we can assume thatG′

j−1(0) =
H ′

j(0)) ≡ ωj in (2.1), since we can rescale the original variables. One assumption
that we make in the following is thatωj = ω for all j > 1. Thus,

dNj

dt
= ω(Nj−1 −Nj) + F (Nj−1) +G(Nj), (2.2)

whereF andG are of orderO(N2
j−1) andO(N2

j ), respectively.

System (2.2) has been already analyzed in [18] for proper functionsF andG.
Furthermore, the system obtained from (2.2) by consideringonly the linear part has
been analyzed in the context of cycle pursuit in [14]. It has been shown that this
linear system contain a globally attracting equilibrium point characterized by the
arithmetic mean of the initial conditions, or in geometric terms by the barycenter of
the initial conditions.
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CHAPTER 2. MODELING THE EFFECTS OF HPV IN CERVICAL CELLS

2.2.2 Models with a continuous number of stages

The previous model has the drawback that one requires to quantify the number
of cells in each stage, which in most cases there is only a qualitative description
of the distribution of infected cells. One may take some averages on the number
of infected cells depending on the information available. Abetter way to deal
with some incomplete data is to use a continuous model, whichonly requires the
initial distribution along with some boundary conditions.Now, let us develop a
continuous model. We begin by assuming the natural history of cervical cancer can
be subdivided ink discrete equal stages with lengthh = 1/k and by defining

η(αj, t) = Nj(t)/h, with αj = jh for j = 1, 2, . . . , k,

which represents infected cell density per time unit in eachstagej. Assuming that
h is small enough, we can expandη(αj−1, t) in a Taylor series, obtaining

η(αj−1, t) = η(αj − h, t) (2.3)

= η(αj, t)−
∂η

∂α

∣

∣

∣

∣

α=αj

h+
∂2η

∂α2

∣

∣

∣

∣

α=αj

h2/2−
∂3η

∂α3

∣

∣

∣

∣

α=αj

h3/6 + · · ·

Dividing by h and substituting (2.3) in (2.2), we get

∂η

∂t
(αj, t) = ω[η(αj−1, t)− η(αj, t)] +

1

h
[F (η(αj−1, t)h) +G (η(αj, t)h)]

= ω[η(αj−1, t)− η(αj, t)] +
1

h

[

l
∑

s=2

fs(η(αj−1, t)h)
s

]

+

1

h

[

l
∑

s=2

gs(η(αj, t)h)
s

]

+O((ηh)l+1)

= ω

[

−
∂η

∂α

∣

∣

∣

∣

α=αj

h +
∂2η

∂α2

∣

∣

∣

∣

α=αj

h2/2 + · · ·

]

+

l
∑

s=2

fsh
s−1ηs(αj−1, t) +

l
∑

s=2

gsh
s−1ηs(αj , t)

∂η

∂t
(αj, t) = ω

[

−
∂η

∂α
h +

∂2η

∂α2
h2/2 + · · ·

]

+
l
∑

s=2

gsh
s−1ηs(αj , t) +

l
∑

s=2

fsh
s−1

(

η −
∂η

∂α
h +

∂2η

∂α2
h2/2 + · · ·

)s

. (2.4)
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2.2. MODEL DEVELOPMENT

From the equation 2.4, we can obtain a series of models depending on the
resolution (powers ofh) required. Considering only the linear terms inh we find

∂η

∂t
= −ωh

∂η

∂α
+ (g2 + f2)hη

2 +O(h2), (2.5)

which is a standard transport equation with a quadratic reaction term. Let us note
that the velocity is small of orderh, Which in a numerical setting means that it will
take a long time for the transient behavior to settle into itsasymptotic behavior.
From this simple model we realize that the invasive stage takes a large period of
time to develop. The analytical solution of this model is given in the next section.

Carrying the nonlinearities to second order only and neglecting third and higher
order terms inh, we get the following equation

∂η

∂t
= ωh(α)

(

−
∂η

∂α
+
∂2η

∂α2

h

2

)

+(g2+f2)h(η
2)−2f2η

∂η

∂α
h2+(f3+g3)h

2η3 (2.6)

which can be rewritten as

∂η

∂t
= c1(α)

∂η

∂α
+ c2(α)

∂2η

∂α2
+ c3η

∂η

∂α
+ c4η

2 + c5η
3. (2.7)

Let us remark that this model can be written in conservative form as follows:

∂η

∂t
+
∂f(η)

∂α
= c2

∂η

∂α2
+ η2(c4 + c5η)− c′1(α)η (2.8)

with
f(η) = −

c3
2
η2 − c1η, (2.9)

whereη is the conservative variable andf(η) is the flux function.
In general if we keep nonlinearities to orderN in h neglecting higher order

terms we get

∂η

∂t
=

N
∑

j=1

aj(α)
∂jη

∂αj
+ PN+1(η) +

∂η

∂α
Qn−1(η), (2.10)

wherePN+1 andQN−1 are polynomials inα of degreeN+1 andN−1, respectively,
for N ≥ 2. For example forN = 3 we obtain:

∂η

∂t
= c1(α)

∂η

∂α
+ c2(α)

∂2η

∂α2
+ c2(α)

∂3η

∂α3
+
∂η

∂α
(−h2η)(2f2 + 3hf3η) (2.11)

+η2h[f2 + g2 + ηh(f3 + g3) + f4h
2η2].
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CHAPTER 2. MODELING THE EFFECTS OF HPV IN CERVICAL CELLS

Notice how forN ≥ 3 the complexity of the models increases dramatically. The
model forN = 1 can be solved explicitly by using the splitting operator technique
which basically consists in decomposing a partial differential equation into simpler
subproblems and treat them individually, see for details [19]. The solution of such
equation is given by

η(α, t) =
f(
∫

(1/hw(α))dα− t)

1− h(f2 + g2)tf(
∫

(1/hwα))dα− t)
, (2.12)

where f is an arbitrary function (initial profile). Therefore the initial profile moves
with time without alteration for very short periods of time,changing the shape of
the initial profile slowly for larger times up to a singularity. In Figure 2.2, we show
the temporary evolution of a patient with a pre-invasive stage, for values of time
(given in months) oft = 10, t = 20 andt = 30.

Our next step is to analyze the nonlinear model (2.7). Solving partial
differential equations similar to Equation (2.7) is very complicated, although some
one-dimensional analytical solutions to some particular equations have been given
by transforming the nonlinear equation into a linear one. Soour approach to analyze
the model is via numerical analysis, but before developing anumerical scheme let us
mention that Equation (2.7) includes some well known partial differential equations
as the nonlinear transport equation with polynomial reaction term, the diffusion
equation and the viscous Burgers equation. The knowledge ofthese particular
cases are essential to understand the behavior of our model,its complexity and
its potential difficulty in numerical integration. It is important to remark that there
are many incomplete biological models that do not include non-constant velocity
and diffusion terms leading to some discrepancies. To alleviate this dilemma,
some modification of those previous models have been made, see for example
[20]. In our case, we know exactly the origin of all the terms and we can regard
our model as complete in the sense discussed previously. It is important to keep
in mind that the constants in Equation (2.7) are not independent, for example
c4/(g2 + f2) = (c5/f3)

1/2 and so on.

2.3 Particular continuous submodels

Solving similar partial differential equations to our model remains a difficult task,
although some one-dimensional analytical solutions to some particular equations
have been given by transforming the non-linear equation into a linear one, as we
show next. So our approach to analyze the model is via numerical analysis, but
before developing a numerical scheme, we review some particular cases of equation
(2.7) along with their formal solutions. These particular cases are essential to
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Figure 2.2: Time evolution of the solution (2.12) at times t =10, t = 20 and t = 30.

understand the behavior of our model, its complexity and itspotential difficulty
in numerical integration.

2.3.1 Transport equation

First, by settingg(η) = c1 + c3η and eliminating the diffusion term (c2 = 0) we get
the following transport equation with linear velocity and with a quadratic and cubic
reaction term, namely

∂η

∂t
+ g(η)

∂η

∂α
= c1η

2 + c2η
3.

We have two cases

1. Consider the nonlinear partial differential equation oforder one

∂η

∂t
+ c0η

∂η

∂α
= c1η

2 + c2η
3, t > 0.

By takingη(α, 0) = f(α) the solution is given by

c2
c12

ln









c1 + c2f(α− c0ηt)

c1f(α− c0ηt)









−
1

c1f(α− c0ηt)
= t + k1, (2.13)

wherek1 is a constant.

2. Consider the nonlinear partial differential equation

∂η

∂t
+ c

∂η

∂α
= −η2.
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By takingη(α, 0) = f(α), the solution is

η(α, t) =
f(α− ct)

tf(α− ct) + 1
. (2.14)

From these two examples we realize that an exact numerical scheme for our
model (if exists) must have a rational form.

2.3.2 Diffusion equation

The diffusion equation describes the diffusion of species or energy starting at an
initial time, with an initial spatial distribution and progressing over time. Setting
c1 = c andc3 = c4 = c5 = 0 we get

∂η

∂t
+ c

∂η

∂α
= c2

∂2η

∂α2
, (2.15)

with solution

η(α, t) =
e

c
2c2

α− c2

4c2
t

(4πc2t)1/2

∫ ∞

−∞
e−

(α−y)2

4kt f(y)e
−c
2k

ydy (2.16)

2.3.3 Viscous Burgers’ equation

Let us setc1 = c4 = c5 = 0, c3 = −1 andc2 = ǫ to obtain Burgers’ equation,
namely

∂η

∂t
+ η

∂η

∂α
− ǫ

∂2η

∂α2
= 0. (2.17)

We impose the conditionη(α, 0) = f(α). Burgers’ equation is an important
partial differential equation from fluid mechanics, which appears in many
applications, such as modeling of gas dynamics and traffic flow. Its importance
also resides in the fact that it is one of the simplest models of non linear system
outside equilibrium. It is also used to test new numerical resolution methods for
nonlinear conservation laws because it belongs to this kindof laws and its solution
can be found easily.

Using the Cole-Hopf transformation (see [21])η ≡ −2ǫ
V

∂V
∂α

and substituting it in
(2.17), we get

1

V

∂V

∂α

(

ǫ
∂2V

∂α2
−
∂V

∂t

)

−
∂

∂α

(

ǫ
∂2V

∂α2
−
∂V

∂t

)

= 0 (2.18)
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Thus, equation (2.18) is satisfied if we selectV to satisfy the diffusion equation
(2.15).

ǫ
∂2V

∂α2
−
∂V

∂t
= 0, V (α, 0) = αe

−1
2
ǫ
∫ α
0 f(s)ds.

Therefore, by using (2.16) we get

η(α, t) =

∫∞
−∞

g(ξ)(α−ξ)
t

e−(α−ξ)2/4ǫtdξ
∫∞
−∞ g(ξ)e−(α−ξ)2/4ǫtdξ

, (2.19)

whereg(α) = e
−1
2
ǫ
∫ α
0 f(s)ds.

From these examples we realize that a numerical scheme must be of a rational
form.

2.4 Numerical scheme and results

The aim of this section is first to develop a nonstandard numerical method to solve
(2.7) and then provide with some numerical results that illustrate the behavior of
our model. The development of the numerical scheme is based on Mickens’ ideas,
[11].

Let us recall our derived model

∂η

∂t
= c1

∂η

∂α
+ c2

∂2η

∂α2
+ c3η

∂η

∂α
+ c4η

2 + c5η
3. (2.20)

Our strategy to derive a numerical scheme is to obtain an exact scheme for
some subequations of (2.20) (see Appendix E) whenever possible and nonstandard
schemes when the previous is no feasible. A subequation of (2.20) is basically the
same equation with some of the involved constants set equal to zero.

Let λ = c4, β = c5/c4, γ = c4/c2 = λ/c2 and δ = c4/c3. The propose
subequations are the following:

Let us first consider the special case without reaction rate.Settingc1 = c3 =
c2 = 0 in (2.20), we get

dη1
∂t

= λη21(1 + βη1). (2.21)

Settingc1 = c2 = 0 and ∂η
∂t

= 0 in (2.20), we get

dη2
dα

+ δη2(1 + βη2) = 0. (2.22)

Settingc1 = c3 = 0 and ∂η
∂t

= 0 in (2.20), we get

d2η3
dα2

+ γη23(1 + βη3) = 0. (2.23)
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Equations (2.21) and (2.22) are ordinary differential equations with known exact
solutions. Dividing the spatial and time domains in intervals of selected length (∆α
and∆t), definingη1(tk) = ηk andη2(xm) = ηm for k = 1, 2, . . . andm = 1, 2, . . .
and using the exact solution, we obtain the following two exact schemes:

ηk+1 − ηk

eλ△t−1
λ

= η2k
(

1 + βηk+1
)

, (2.24)

ηm+1 − ηm
1−e−δ△α

δ

+ ηm(1 + βηm) = 0. (2.25)

For (2.23) we propose the nonstandard scheme taken from [22], which is exact
for second order quadratic ordinary differential equations of the form dw

dα2 = aw2 +
bw. Such scheme is achieve by a discretization of the second derivative as

d2w

dα2
≈
w(α+ h)− 2w(α) + w(α− h)

φ(h)
,

whereφ(h) = 1
b

(

eh
√
b − 2 + e−h

√
b
)

.

Using this nonstandard scheme in (2.23) and settingη3(αm) = ηm, we obtain

ηm+1 − 2ηm + ηm−1

(eγ1/2△α − 2 + e−γ1/2△α)/γ
+ η2m (1 + βηm) = 0. (2.26)

Combining equations (2.24), (2.25) and (2.26) and settingη(αm, tk) = ηkm, we
obtain a numerical scheme for our model:

ηk+1
m − ηkm
eλ△t−1

λ

= c1
ηkm+1 − ηkm

1−e−δ△α

δ

+ c2
ηkm+1 − 2ηkm + ηkm−1

(eγ1/2△α − 2 + e−γ1/2△α)/γ

+c3η
k+1
m

(

ηkm+1 − ηkm
1−e−δ△α

δ

)

+ c4η
2k
m

(

1 + βηk+1
m

)

.

Denoting byα1 = c1δ
λ

(

eλ△t−1
1−e−δ△α

)

, α2 = c2γ(eλ△t−1)

λ(eγ
1/2

△α−2+e−γ1/2△α)
, α3 = c3α1

c1
, α4 =

c4(eλ△t−1)
λ

, we get the following explicit scheme

ηk+1
m − ηkm = α1

(

ηkm+1 − ηkm
)

+ α2

(

ηkm+1 − 2ηkm + ηkm−1

)

+ α3η
k+1
m

(

ηkm+1 − ηkm
)

+α4(η
k
m)

2
(

1 + βηk+1
m

)

.

Which can be explicitly written as
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Figure 2.3: Two approximations of the solutionη for different values of time

ηk+1
m =

(1− α1 − 2α2)η
k
m + (α1 + α2)η

k
m+1 + α4(η

k
m)

2 + α2η
k
m−1

1− α3(ηkm+1 − ηkm)− α4β(ηkm)
2

. (2.27)

Notice that the structure of (2.27) was expected by the explicit solution of (2.7).
It is important to remark that our numerical scheme is positive only in an large
region of the first positive quadrant of the domain, so a careful selection of the
spatial and temporal steps sizes must be done.

2.4.1 Numerical results

Now let us give some numerical results by applying (2.27). Since we do not have
actual data, we will only present a numerical simulation forillustration purposes.
We useη(α, 0) = e−α2

as initial condition see Figure 2.3a along with some values
of the constants namely,c1 = 0.01, c2 = 0.00005, c3 = 0.0002, c4 = 0.01 and
c5 = 0.0001, we useη(α, 0) = e−(α−1)2 in Figure 2.3b in both cases we show
the evolution of the approximation for timest = 8 and t = 30. In the Figure
2.4 we consider the constantsc1 = 0.0117, c2 = 0.00006, c3 = 0.00046, c4 =
0.0231 andc5 = 0.00089 we show the evolution of the approximation for times
t = 10 , t = 30 t = 50 y t = 70 and use the same initial conditions than previous
graphics. Clearly, we could manipulate the constants to modify the shape of the
approximation, but such parametric adjustment will be worthy only in a real data
simulation. As expected, the approximation deviates very slowly from initial data,
which agrees with the fact that HPV infection takes very longtime in transforming
normal cervical cells into cancerous ones.
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Figure 2.4: Two approximations of the solutionη for different values of time

2.5 Conclusions

In this chapter we have presented a family of models for the interaction of infected
cells of Human Papillomavirus. Those models are classified with a degree of
resolution required. By assuming (2.4), we obtained a family of generalized
advection diffusion reaction models, which have biological foundation. We also
give a nonstandard numerical method, which is not exact but have better numerical
properties than the usual difference standard methods. Future work will focus on
obtaining spatial models and numerical methods.The numerical approximations
were made for times up tot = 60 and if this time is increased then numerical
problems arise. In the next chapter our approach is based on anew trend in
numerical analysis that consists in the development of numerical techniques for
perturbation problems.
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Chapter 3

A regular perturbation analytical

numerical method for the evolution of

precancerous lesions caused by the

human papillomavirus 1

3.1 Introduction

The development of infected cells and the control mechanisms involved are
complex processes, which is one of the reasons that the progress in mathematics
models for the evolution of HPV infected cells is relativelyscarce. Most of
the proposed models are based on a preventive approach, [2, 3, 4, 5], but for
the diagnosis and for the development of precancerous lesions are basically
non-existent. A first step to amend this situation has been taken in our previous
chapters, where reliable interaction of HPV infected cellsmodels were presented,
providing useful information on the evolution of the infected cells. Also in
chapter 2, a nonstandard numerical method was developed in order to extract basic
biological information. Such numerical method was shown tobe efficient but was
only valid for small values of time. It was only a first initiative in providing health
professionals with a reliable quantity reference and more research needs to be done
to refine such numerical schemes. A measure in this directionis the development of
new numerical methods such that theirs approximations follow the exact solution
for large values of time.

The goal of this chapter is to construct a numerical scheme that it is

1This chapter is based on Jerez Silvia, Gonzalez Luz, Solis Francisco, A regular perturbation
analytical numerical method for the evolution of precancerous lesions caused by the human
papillomavirus, Numerical Methods for Partial Differential Equations, Vol. 31 (3) (2015), 847-855.
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reliable and provide accurate approximations for large values of time in order
to obtain information on the evolution of precancerous lesions at the cervical
cells caused by human papillomavirus. The numerical schemeis developed to
obtain approximations to the solution of one of the models presented in chapter
2, which consists of one nonlinear advection-diffusion-reaction equation for a
continuous description of the invasion stages. We considerthe equation of interest
as a perturbation problem which evolves smoothly and slowlyout of the initial
solution. It is important to remark that our approach is based on a new trend
in numerical analysis that consists in the development of numerical techniques
for perturbation problems. To achieve our goal, we propose in section3.2 to
analyze such model under the perspective of perturbation theory by presenting
first an unsatisfactory local approximation and then presenting a correct formal
parametric approximation based on the original one. In section 3.3, we use a
general framework in order to derive an analytical-numerical method by using a
special discretization of the domain. In section3.4, we analyze the approximations
including Numerical Methods and Mathematical Modeling in Biology, Medicine
and Social Sciences numerical simulations and discuss the implications of the
results. Finally, conclusions are given in section3.5.

3.2 Models approximations via regular perturbation

The process of establishing how far the cancer has spread is known as staging.
Information from laboratory tests is used to determine how deeply the tumor
has invaded tissues within and around the cervix, and the spread to lymph
nodes or nearby organs. The evolution of cervical cancer historically has been
divided into several stages, or phases, characterized withpotentially premalignant
transformation and abnormal growth of cells on the surface of the cervix that can
either progress, or regress. For example the Bethesda reporting system, used mostly
in the United States, bases its classification in four levels. The first stage called
pre-invasive stage, is distinguished by maintaining the whole basal membrane,
which allows cell changes to be retained within the epithelial thickness. The
posterior phases, called invasive stages are subdivided inthree or more phases,
saym phases. The first phase represents only mild dysplasia, or abnormal cell
growth. It is confined to the first1/m of the thickness of the epithelium, which may
eliminated by the immune system in several years, indicating that the whole process
is very slow. The second phase, known as moderate dysplasia,is where the injury
has extended to2/m the thickness of the epithelium and so on, for more detail see
[2].

Here we will assume that the number of stages of phases is large enough to
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produce an exact indicator of the cancer spread. We denote byη(α, t) the density
of cells that are at stageα at timet, whereα ∈ [0, 1] andt ≥ 0.Our starting point is
to consider the general family of models (given in [23]) thatdescribes the evolution
of η(α, t) such that for any natural numberk we have the following model:

∂η

∂t
(α, t) = ω(α)

[

−
∂η

∂α
ǫ+

∂2η

∂α2
ǫ2/2 + · · ·

]

+

k
∑

s=2

gsǫ
s−1ηs(α, t) +

k
∑

s=2

fsǫ
s−1

(

η −
∂η

∂α
ǫ+

∂2η

∂α2
ǫ2/2 + · · ·

)s

. (3.1)

Whereh has been replaced by the parameterǫ andω is the coefficient of the linear
transition of infected cells to a different stage, henceforth we consider it constant
andǫ is a small parameter that indicates the length of each stage.It is assumed that
ω andǫ are relatively small to obtain parabolic equations to guarantee the existence
and uniqueness of solutions and to avoid discontinuities. The first summation term
in (3.1) indicates the nonlinear rate of infected cells thatgets to a specificα-stage
and the second summation represents the nonlinear rate of the infected cells that
leave that particular stage including the mortality rate.

Our first step is to extract basic information of this model and to get a benchmark
to propose numerical schemes. For practical purposes and simplicity we only
consider the model up to quadratic terms inǫ. So truncating (3.1) and keeping only
up to quadratic terms inǫ we obtain:

∂η

∂t
=

(

−ω(α)
∂η

∂α
+ (f2 + g2)η

2

)

ǫ+

(

ω

2

∂2η

∂α2
+ (f3 + g3)η

3 − 2η
∂η

∂α

)

ǫ2,

(3.2)
with an initial condition given by

η(α, 0) = F0(α) + ǫF1(α).

Here the initial valueF0(α) refers to the patient conditions to the clinic arrival
andF1 accounts for the potential initial error measurements. Notice that model
(3.2) consists in a general transport equation given by a onedimensional nonlinear
advection-diffusion equation with a quadratic and a cubic reaction term. Such
type of equations have been used to describe physical, chemical and biological
phenomena where a quantity of interest is transferred inside a system due to two
processes: diffusion and advection. Equation (3.2) can be written compactly as

∂η

∂t
= L(η)ǫ+M(η)ǫ2, (3.3)
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whereL is the differential operator defined byL(η) = −ω(α) ∂η
∂α

+ (f2 + g2)η
2 and

M is given byM(η) = ω
2
∂2η
∂α2 + (f3 + g3)η

3 − 2η ∂η
∂α
.

Let us start the analysis of equation (3.3) by performing a regular perturbation
[24], that is, let us assume that such equation has a solutionU(α, t, ǫ) which is
analytical in the parameterǫ and seek for solutions of the form

U(α, t, ǫ) = U0(α, t) + ǫU1(α, t) + ǫ2U2(α, t) +O(ǫ3), (3.4)

with initial conditions given by

U0(α, 0) = F0(α), U1(α, 0) = F1(α) andUj(α, 0) = 0 for j ≥ 2.

It would be understood that the neglected terms in (3.4) should be small over the
entire interval for which we want the expansion to be valid. We find after some
algebraic manipulations that

U(α, t, ǫ) = η(α, 0) + ǫt [L(F0(α) + ǫM(F0(α)) + 2F0(α)ǫF1(α) + ωǫF1
′(α)]

+(ǫt)2
(

F0(α)L(F0(α)) +
ω
2
∂L(F0(α)

∂α

)

+O(ǫ3). (3.5)

We emphasize that the solution of (3.3) as given by (3.4) is formal and is
separated into three initial terms: The first one representsthe initial condition
and is independent oft; the second one is proportional totǫ; also note that its
value ist times the right hand side of (3.3) evaluated at the true initial solution,
F0(α), plus an additional expression indicating the propagation of error in the
initial measurements. The third term is proportional to (tǫ)2 and is given by
the linearization of the operatorL aroundF0(α). The higher order terms in the
expansion, which are not shown in equation (3.5), can be generated by continuing
the substitution procedure in the regular perturbation scheme.

So far we have developed a solution that intermixes terms depending only in
α and ǫ in its perturbation expansion. It is basically a time Taylorexpansion of
the solution, which is local in time. Thus such implementation of the solution is
developing an approximation by using an incorrect time-measuring scheme. To
guide us toward a correct perturbation expansion we remark that there is a coupling
betweenǫ and t and we are only able to truncate the approximation if the time
interval under consideration is such that|tǫ| << 1. Which suggest thatǫt should
be the new time scale. What we learned from this perturbationexpansion is that
the inconvenience originates in our decision to use the given time as the basic
time signal that generates the perturbation expansion. Thus, we obtain a partial
correct view of the behavior of the system. We conclude that such expansion is
unsatisfactory, specially for longer times. Therefore we would like to develop
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a systematic perturbation expansion that would give the solution in the correct
time-scale.

3.2.1 Regular perturbation with correct time-scale

We now introduce a transformation of the time variable to a new time that
incorporates a correction to the time scale which will be sufficient for the
development of a consistent perturbation scheme. Such requirement motivates us
to rescale the time variable asτ = ǫt and thus equation (3.3) becomes:

∂η

∂τ
− L(η) =M(η)ǫ. (3.6)

Now we seek solutions of the form:

Ū(α, τ, ǫ) = Ū0(α, τ) + ǫŪ1(α, τ) + ǫ2Ū2(α, τ) +O(ǫ3),

with initial conditions given by

Ū0(α, 0) = F0(α), Ū1(α, 0) = F1(α), andŪj(α, 0) = 0 for j ≥ 2.

Let us consider first the approximation to the lowest order inthe small parameter
ǫ, that is:

∂Ū0

∂τ
+ ω(α)

∂Ū0

∂α
= (f2 + g2)Ū

2
0 . (3.7)

Which is an inhomogeneous parabolic transport equation without diffusion. Iff2+
g2 = 0, the solution becomes̄U0(α, τ) = F0(α− ωτ) which implies that the initial
profile is unchanged in shape at later times, and it is simply translated to the right
as time increases. Now iff2 + g2 6= 0 (which is the correct assumption) we get:

Ū0(α, τ) =
− 1

(f2+g2)
F0(α− ωτ)

τF0(α− ωτ) + 1
,

which still has the transportation properties but with a deformation on the initial
profile consisting in a reduction on its amplitude.

To first order inǫ we obtain that̄U1 satisfies the following equation:

∂Ū1

∂τ
+ω(α)

∂Ū1

∂α
= 2(f2+g2)Ū0Ū1−2(f2+g2)Ū0

∂Ū0

∂α
+(f3+g3)Ū

3
0 +

ω(α)

2

∂2Ū0

∂α2
,

that is,
∂Ū1

∂τ
+ ω(α)

∂Ū1

∂α
= G1(α, τ)Ū1 +G2(α, τ), (3.8)
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where

G1(α, τ) =
−2F0(α− ωτ)

τF0(α− ωτ) + 1

and

G2(α, τ) = −2(f2 + g2)Ū0
∂Ū0

∂α
+ (f3 + g3)Ū

3
0 +

ω(α)

2

∂2Ū0

∂α2
.

Using the method of characteristics, the solution of equation (3.8) can be written
as:

Ū1(α, τ) = F1(α− ωτ)e
∫ τ
0
G1(α+ω(ξ−τ),ξ) dξ +

∫ τ

0

G2(α + ω(ξ − τ), ξ) dξ,

notice thatŪ1(α, 0) = F1(α) as required. Therefore the approximation becomes:

Ū(α, τ, ǫ) =
− 1

(f2+g2)
F0(α− ωτ)

τF0(α− ωτ) + 1
+ ǫ[F1(α− ωτ)e

∫ τ
0
G1(α+ω(ξ− τ),ξ) dξ

+

∫ τ

0

G2(α + ω(ξ − τ), ξ) dξ] +O(ǫ2). (3.9)

Approximation (3.9) has the following behavior: The lowestapproximation is a
solution of a transport equation with a deformed initial profile moving with a
velocity given byωτ which in the original time scale becomesωǫt indicating that
the velocity of the evolution of lesion in the cervix is a slowprocess. The density of
healthy cell is diminished gradually and the initial profilewill be moving to the right
with a decreasing amplitude. These facts confirm the resultsobtained in [23, 18],
but the numerical approximation in that case was only valid for small values oft
and the continuation for larger times was not possible. In this case the continuation
of the approximation is viable and valid for larger values oft. We expect that
the second termǫŪ1 to make only a small correction to the approximation. In
section 3.4, we will analyze the influence of this correctionterm.

3.3 Numerical scheme development

The aim of this section is first to develop a numerical method to approximate
the solutions of (3.6) and then provide some numerical results that illustrate the
behavior of the model for a particular initial condition. Our strategy to derive such
numerical scheme is to obtain different approximations according to theǫ-scale,
meaning that we will obtain an exact scheme to the lowest order in ǫ and a correction
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to next order which will be an approximation that yields a contribution that cancels
the potential secular terms.

Let us start the discretization process by subdividing the domain[0, 1]× [0,∞)
into a rectangular mesh with step sizes given by∆α = k and∆τ = h. In order
to state and prove our main result, we need two intermediate steps given by the
following two lemmas:

Lemma 3.3.1 For a particular discretization of the domain, that is choosing k =
wh, we have that

U0(α + k, τ + h) =
U0(α, τ)

1− h(f2 + g2)U0(α, τ)
, ∀h.

Proof For a general rectangular regular mesh we have that

U0(α+ k, τ + h) =

−1
(f2+g2)

F0(α + k − ω(τ + h))

(τ + h)F0(α + k − ω(τ + h)) + 1
.

If we choosek = wh we get

U0(α + k, τ + h) =

−1
(f2+g2)

F0(α− ωτ)

(τ + h)F0(α− ωτ) + 1
=

−1
(f2+g2)

−1
(f2+g2)U0(α,τ)

+ h
,

therefore

U0(α + k, τ + h) =
U0(α, τ)(1 + τF0(α− ωτ))

1− (f2 + g2)
.

Lemma 3.3.2 There exist two real numbersφ∗
1 andφ∗

2 ∈ [0, h] with k = wh such
that for every point in the mesh

U1(α+ k, τ + h) = U1(α, τ) +G2(α+ ωφ∗
1, τ + φ∗

1)h

+F1(α− ωτ)eG1(α+ωφ∗

2 ,φ
∗

2+τ)h, ∀h.

Proof Consider

U1(α, τ) = F1(α− ωτ)e
∫ τ
0
G1(α+ω(ξ−τ),ξ) dξ +

∫ τ

0

G2(α + ω(ξ − τ), ξ) dξ.

For anyk, h in the mesh we have that

U1(α + k, τ + h) =

∫ τ+h

0

G2(α+ k + ω(ξ − τ + h), ξ) dξ +

F1(α + k − ω(τ + h))e
∫ τ+h
0

G2(α+k+ω(ξ−τ+h),ξ)dξ.
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Now if k = wh we obtain

U1(α + k, τ + h) =

∫ τ+h

0

G2(α + ω(ξ − τ), ξ) dξ

+F1(α− ωτ)e
∫ τ+h
0

G1(α+ω(ξ−τ),ξ) dξ

= U1(α, τ) +

∫ h

0

G2(α + ωφ, φ+ τ) dφ

+F1(α− ωτ)e
∫ h
0 G1(α+ωφ,φ+τ) dφ

= U1(α, τ) +G2(α + ωφ∗
1, τ + φ∗

1)h

+F1(α− ωτ)eG1(α+ωφ∗

2 ,φ
∗

2+τ)h,

where in the last equality we have used the mean value theoremfor integrals.

Therefore we obtain the following proposition:

Proposition 3.3.3 Consider equation(3.6), then there exist two real numbersφ∗
1

andφ∗
2 ∈ [0, h] such that its solution satisfies

Ū(α + k, τ + h, ǫ) =
U0(α, τ)

1 + hU0(α, τ)
+ ǫU1(α, τ) + ǫhG2 (α + ωφ∗

1, τ + φ∗
1)

+ǫF1(α− ωτ)eG1(α+ωφ∗

2 ,τ+φ∗

2)h +O(ǫ2).

A central question is how to choose the intermediate pointsφ∗
1 andφ∗

1 from
proposition 3.3.3. If the functionsG1(α + ωφ, φ + τ) andG2(α + ωφ, φ + τ) are
continuous functions ofφ and as long ash remains small, the pointsφ∗

1 andφ∗
2 are

very close toh
2
. Moreover, the following proposition, see [25] for details, gives a

better estimate for the limiting value of eachφ∗
1 andφ∗

2.

Proposition 3.3.4 If G(α+ ωφ, φ+ τ) is a continuous function ofφ for fixedα, ω

andτ and isn-times differentiable atφ = 0 with ∂jG(α,τ)
∂φj = 0 for j = 1, 2, . . . , n−1

but ∂nG(α,τ)
∂φn 6= 0, then

lim
h→0

φ∗

h
=

1

(n + 1)
1
n

,

whereφ∗ is the point required by the mean value theorem for integralsfor the
functionf(φ) = G(α + ωφ, φ+ τ).
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Let us now present the numerical scheme. From proposition (3.3.3) the
differentiability of the functionsG1 andG2 are required and they both depend only
on the initial data. Therefore assuming thatGj is nj-times differentiable at zero for
j = 1, 2 then, the desired scheme becomes:

Ū(α + k, τ + h, ǫ) ≅
U0(α, τ)

1 + hU0(α, τ)
+ ǫU1(α, τ) +

ǫhG2

(

α +
ωh

(n2 + 1)
1
n2

, τ +
h

(n2 + 1)
1
n2

)

+

ǫF1(α− ωτ)e
hG1



α+ ωh

(n1+1)
1
n1

,τ+ h

(n1+1)
1
n1





, (3.10)

wherek = ωh andh is arbitrary small parameter.

3.4 Numerical results

To serve as a baseline for analyzing the behavior of the evolution of the lesions at
the cervical cells caused by human papillomavirus, we have implemented scheme
(3.10). Specifically, the mesh size parameter,h, is fixed at successful time
iterations, only differentiability is assuming on the functionsG1 andG2 thus we
selectφ∗ = h

2
. We have tested a number of particular cases for the validation of the

implementation.
It is important to remark that scheme (3.10) will be specialized to initial

conditions that reflect different stages of the infection. For example for an early
infection we will use functions of the formη(0, α) = exp(−cα2) to illustrate a
typical condition of a person with an infection presenting lesion only in the first
levels (a mild dysplasia). Herec reflects the full width at half maximum of the peak
of the infection meaning the difference between the two extreme values ofα at
whichη(0, α) is equal to half of its maximum value. Mathematically, the parameter
c can also be interpreted as the position where the two inflection points of the initial
function occurs (at±1

c
).

Let us first consider the unperturbed case (ǫ = 0 in (3.10)) to illustrate, grosso
modo, the behavior of the solution. As expected, the approximation obtained
deviates very slowly from initial data. The previous observation agrees with the fact
that HPV infection takes very long time in transforming normal cervical cells into
cancerous ones, presumably due to actions of the immune system in maintaining in
check further developments of the infection. Moreover suchapproximation is valid
for larger values of time. In Figure 3.1 on the left, we show the evolution of the
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Figure 3.1: Numerical simulations of evolution of equationwith ǫ = 0 (left) and
ǫ = 0.01 (right).

approximation for the parameter valuesω = 0.2, c = 6.0, −(f2 + g2) = f3 + g3 =
1.0 and timest = 0, t = 50, t = 100 and t = 150. In previous schemes the
approximations obtained were valid only up tot = 70. It is important to remark that
there is also a non pleasant behavior of the unperturbed approximation: It decays
to zero for values ofα closer to one. A feature that is incorrect since the level of
cancer cells increases for such values ofα. Therefore in order to accept the proposed
scheme a lower order perturbation term must correct this behavior.

For the perturbed case, the behavior of the approximation isvery similar to the
unperturbed case for all values ofα except for those values closer to one. For such
values ofα, we have a pleasant characteristic: The approximation do notdecay to
zero, it changes its concavity from downward to upward aftera large value ofα
and from there it starts increasing. In Figure 3.1 on the left, we show the evolution
of the approximation for the same values of time that the unperturbed case. Notice
how the correction starts for the particular case t= 50 at about α = 0.8. Therefore
the next correction term in the approximation ofǫ will also correct those behaviors
for larger values ofα.

3.5 Conclusions

In this chapter we have developed a numerical scheme for a model of the evolution
of precancerous lesions at the cervical cells caused by human papillomavirus. Such
numerical scheme is sufficiently robust, accurate, and efficient for larger values of
time. With the aid of the scheme implementation there is a possibility to understand
the evolution of the different stages of the lesions of the cervix. This is an important
aspect because the stage of the cancer is an important factorin selecting a treatment
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plan. Overall, this work may serve as a structural basis in the implementation of
specific software to provide clinicians with a reliable benchmark. The drawback of
this work consists in the validation of some of the parametervalues with real data
and the continuation for large times, a problem that we will overcome in the next
chapter.
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Chapter 4

Efficient Numerical schemes for the

precancer lesions 1

4.1 Introduction

In previous chapters we have presented mathematical modelsfor the evolution of
HPV-infected cells. These models have been analyzed using different formulations
regarding from classical approximations of ODE and new numerical methods such
as nonstandard finite differences and perturbation theory obtaining good results for
a reasonable time. Now, we are interested in creating betterapproaches to our model
which give us results reliable for even larger times. In order to achieve this goal,
this chapter proposes two non-standard schemes to approximate the solution of our
model. Finally we obtain that these two schemes presented inthis chapter give us a
better approximation to the solution of our model.

It is very important to remember that Human Papillomavirus (HPV) is
responsible for over five per cent of all cancers worldwide and of 15% of cancer
in women in developing countries [2]. HPV is the necessary cause of cervical
cancer [4], and is thought to be the necessary cause for anal cancer [4]. A certain
number of models have been presented in order to study the evolution of infected
cells by HPV, most of them are based on a preventive approach [2, 3, 4, 5], but
basically nonexistent for the diagnosis. For example thereare several works about
how vaccines can reduce the number of infections and deaths due to cervical cancer,
using a stability analysis to determine the stability of thedisease-free and endemic
equilibria for different vaccination programs, [3].

In this chapter we develop two numerical methods to approximate the solutions
of a pioneer model of the evolution of the lesions at the cervical cells caused

1This chapter is based on Solı́s Francisco, González Luz, Numerical approach for a model of the
precancer lesions caused by HPV (2015).
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by the human papillomavirus (HPV). Such model is given by a a nonlinear
advection-diffusion-reaction partial differential equation and the goal of the
schemes is to analyze the behavior of the evolution of the lesions at the cervical
cells caused by the HPV. The developed schemes consist of twoexplicit NSFD
numerical schemes, which satisfy positivity conditions, by using the subequation
method in the context of the NSFD scheme methodology. Our approach provides
an alternative method to the early diagnosis of the disease and may open up new
avenues of research.

The structure of this chapter is: in Section4.2, we consider some sub-equations
of the HPV model with the aim to obtain exact schemes for most sub-model
equations and approximated ones when the exact schemes are not available. A
special sub-equation is the Duffing equation [28], thus, in section4.3, we construct
a nonstandard functionφ(h) by calculating the exact solution of a second order
differential equation. Our method produces discrete solutions that are exact for
particular equations and therefore have the same properties as their analytical
solutions, [9]. In section4.4, we develop two different schemes with finite
differences nonstandard to approximate the solution of a nonlinear advection
diffusion reaction equation of the HPV model. In both schemes we preoved
positivity properties. In section4.5, we analyze use the schemes to provide
approximations and interpret the results. Finally, conclusions are given in section
4.6.

4.2 A HPV Model

Here we will assume that the number of stages of phases is large enough to produce
an exact indicator of the cancer spread. We denote byη(α, t) the density of cells
that are at stageα at timet, whereα ∈ [0, 1] andt ≥ 0. Our starting point is to
consider the general family of models (given in [18]) that describes the evolution of
η(α, t) such that for any natural numberk we have the following model:

∂η

∂t
(α, t) = ω(α)

[

−
∂η

∂α
ǫ+

∂2η

∂α2
ǫ2/2 + · · ·

]

+
k
∑

s=2

gsǫ
s−1ηs(α, t) +

k
∑

s=2

fsǫ
s−1

(

η −
∂η

∂α
ǫ+

∂2η

∂α2
ǫ2/2 + · · ·

)s

, (4.1)

whereω is the coefficient of the linear transition of infected cellsto a different stage,
henceforth we consider it a positive constant andǫ is a small parameter that indicates
the length of each stage. It is assumed thatω andǫ are relatively small to obtain
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parabolic equations to guarantee the existence and uniqueness of solutions and to
avoid discontinuities. The first summation term in (4.1) indicates the nonlinear rate
of infected cells that gets to a specificα-stage and the second summation represents
the nonlinear rate of the infected cells that leave that particular stage including the
mortality rate. We truncated model (4.1) up to quadratic terms inǫ, namely

∂η

∂t
= ωǫ

(

−
∂η

∂α
+
∂2η

∂α2

ǫ

2

)

+ (f2 + g2)ǫ(η
2)− 2f2ǫ

2η
∂η

∂α
+ (f3 + g3)ǫ

2η3, (4.2)

Our strategy to derive a numerical scheme is to obtain an exact scheme and
approximated schemes ( when there are not exact) for some subequations of (4.2).
A subequation of (4.2) is an ordinary or partial differential equation obtained by
dropping one or more terms appearing in the full equation. Using the change of
variableη = w + 1/ǫ and by assuming thatf2 + g2 = −3(f3 + g3), then equation
(4.2) can be written as

∂w

∂t
= α1

∂w

∂α
+ α2

∂2w

∂α2
+ α3w

∂w

∂α
+ α4w + α5w

3 + α6, (4.3)

whereα1 = (2f2 − ω)ǫ, α2 =
ωǫ2

2
, α3 = 2f2ǫ

2, α4 = 9(f3 + g3), α5 = (f3 + g3)ǫ
2

andα6 = −2(f3 + g3)/ǫ.

Remark The form of equation (4.3) was achieved since it is a standardstep
in solving algebraic cubic equations and also to obtain the duffing equation as
subequation.

The aim of this section is to develop an exact schemes for somesubequations of
(4.3) whenever possible and nonstandard schemes when the previous is no feasible
for others sub-equations. A subequation of (4.3) is basically the same equation with
some of the involved constants set equal to zero.

4.2.1 Exact schemes for some sub-equations HPV Model

In this section we construct an exact schemes for the some subequations of model
(4.3). An exact finite difference scheme is one for which the solution to the
difference equation has the same general solution as the associated differential
equation. By setting values ofα′s in (4.3), we get the following two subequations
(Exponential equation and the Linear Harmonic Oscillator equation):

dw

∂t
= α4w and α2

d2w

dα2
+ α4w = 0.
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which both have exact finite difference schemes, given respectively by

W k+1 −W k

eα4∆t−1
α4

= α4W
k, (4.4)

α2
Wm+1 − 2Wm +Wm−1
(

4α2

α4

)

sin2[(α4

α2
)1/2(△α

2
)]
+ α4Wm = 0 (4.5)

wherew(α, tk) =W k andw(αm, t) =Wm. Also by choosing appropriate values of
theα’s we get the following subequation, known as the cubic Advection-Reaction
Equation

∂w

∂t
− α1

∂w

∂α
= α4w + α5w

3 (4.6)

which can be put in dimensionless form by making the following substitutionsw =
( α4

−α5
)1/2W , t̄ = α4t ᾱ = ( α4

−α1
)α obtaining the partial differential equation:

∂W

∂t̄
+
∂W

∂ᾱ
= W (1−W 2) (4.7)

with an exact finite difference scheme given by

B(m, k)

φ(△t)
+

(

W k
m +W k

m−1

A(m, k)

)

B(m, k)

φ(△α)
= 2

(

W k
m−1

A(m, k)

)

W k
m−1[1− (W k+1

m )2],

whereA(m, k) = W k+1
m +W k

m andB(m, k) = W k+1
m −W k

m, see [29] for details.

4.2.2 Nonstandard schemes for some sub-equations of HPV
Model

So far all the subequations presented have exact differenceschemes. In this
section we present some non-standard finite differences schemes for some nonlinear
subequations of (4.3). The first three that we presented havebeen treated in the
literature, see [9].

Choosing appropriate the values of the constant we obtain the following three
subequations:

dw

∂t
= α4w

(

1 + βw2
)

,

dw

dα
+
α4

α1
w(1 + βw2) = 0,
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∂w

∂t
= α4w + α5w

3,

whereβ = α5

α4
.

For the first two subequations we divide the spatial and time domains in intervals
of selected length (∆α and∆t), and definingw(α, tk) = W k andw(αm, t) =
Wm for k = 1, 2, . . . andm = 1, 2, . . . we obtain the following two approximate
schemes:

W k+1 −W k

eα4∆t−1
α4

= α4W
k+1
(

1 + βW 2k
)

, (4.8)

Wm+1 −Wm

1−e−δ∆α

δ

+ δWm+1(1 + βW 2k
m ) = 0. (4.9)

The finite-difference scheme for the third sub-equation is given by

W k+1
m −W k

m

eα4∆t−1
α4

= α4W
k
m + α5W

2k
m

(

W k+1
m +W k−1

m

2

)

. (4.10)

4.2.3 Special subequation of HPV model:The Duffing Equation

In this section we will study a special subequation of our model: The Duffing
equation. First solve the equation analytically second term build discretization
duffing equation and obtain a nonstandard finite difference scheme for this equation.
Settingα1 = α3 = α6 = 0 and ∂W

∂t
= 0 in (4.3), we get the Duffing Equation

d2w

dα2
+ aw + bw3 = 0 with a =

α4

α2
andb =

α5

α2
(4.11)

The Duffing equation in its various forms is used to describe many nonlinear
systems. Although most physical systems cannot be described accurately in this
way for a wide range of operating conditions, such as frequency and amplitude
of excitation, in many cases it is possible to use this equation as an approximate
description so that their behavior can be studied qualitatively. In this section, we
will study the Duffing equation, see [28], first find the analytical solution and then
we get a non-standard scheme to approximate the solution of the Duffing equation.

4.2.4 Exact solution of Duffing equation

The differential equation:

d2w

dα2
+ aw + bw3 = 0 with b 6= 0 (4.12)
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is called the Duffing oscillator, which is a model of a structural system that includes
nonlinear restoring forces (for example springs). To solvethe Duffing equation we
consider the initial conditionsy(0) = A, y′(0) = 0. Let v = dw

dα
, then

d2w

dα2
=
dv

dα
=
dw

dα

dv

dw
= v

dv

dw
,

to rewrite the equation (4.12)

v
dv

dw
+ aw + bw3 = 0.

Integration of this equation gives the first-integral

v2 + aw2 +

(

b

2

)

w4 = aA2 +

(

b

2

)

A4,

where the integration constant was evaluated using the initial conditions.
Solving forv(w) gives

v = ±
{

(A2 − w2)(a+ (b/2)(A2 + w2))
}

1
2 . (4.13)

The value ofα to go from point(A, 0) to the point(w, v) in the lower half-plane is

α(w) = −

∫ w

A

ds

{(A2 − s2)(a+ (b/2)(A2 + s2))}
1
2

. (4.14)

Let s = Az, then the previous equation becomes

α(w) = (1/A)(2/b)
1
2

∫ 1

w/A

dz
{

(1− z2)
(

2a+bA2

bA2 + z2
)}

1
2

. (4.15)

The integral can be written in terms of an elliptic integral of the first kind, denoted
by F,

α(w) =
F (arccos(w/A), θ)

[a + bA2]
1
2

, (4.16)

where

θ =

[

bA2

2(a+ bA2)

]
1
2

.

Equation (4.16) can be inverted to givew as a function ofα. Doing this gives

w(α) = A cn
(

(a+ bA2)
1
2α, θ

)

Therefore we obtain that
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Theorem 4.2.1 The exact solution of (4.11) with initial conditionsw(0) =
A,w′(0) = 0 is given by

w(α) = A cn

(

(a+ bA2)
1
2α,

[

bA2

2(a+ bA2)

]
1
2

)

. (4.17)

Proof. We substitute (4.17) into (4.11) and use the foregoing elliptic function
identities (see Appendix D). To begin with, let us take the derivative of (4.17) with
respect toα and consider thata2 = (a + bA2)

1
2

dy

dα
= Aa2

∂

∂u
cn = Aa2 sn dn (4.18)

where for brevity we writecn = cn(u, θ), sn = sn(u, θ) and dn = dn(u, θ).
Differentiating (4.18),

d2y

dα2
= −Aa22(sn

∂

∂u
dn+dn

∂

∂u
sn) = −Aa22(cn dn

2−k2 sn2 cn)

= −Aa22(cn(1− θ2 sn2)− θ2(1− cn2) cn)

After simplifications of we have

d2y

dα2
= −Aa22 cn(1− 2θ2 − 2θ2 cn2) (4.19)

Substituting (4.19) and (4.17) into Duffings equation (4.11) and equating to zero
the coefficients ofcn andcn3 gives two equations relatingA, a2 andθ:

− Aa22(cn(1− 2θ2)− 2θ2 cn3) + aA cn+bA3 cn3 = 0 (4.20)

(−Aa22(1− 2θ2) + aA) cn+(−Aa222θ
2 + bA3) cn3 = 0

A(2a22θ
2 − a22 + a) = 0

−A(2a22θ
2 − bA2) = 0

These may be solved fora2 andk in terms ofa1:

a22 = a + A2b, θ2 =
A2b

2(a+ A2b)
(4.21)

Equations (4.21) together with (4.17) is the exact solutionto Duffings equation
(4.11).
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4.2.5 A NSFD for the Duffing Equation

The finite difference algorithm that we develop in this section is based in the
nonstandard difference method introduced by Mickens [9, 10, 11, 27]. The idea in
our case is to use the generalized form of the discretizationof the second derivative,
and obtains a nonstandard functionϕ(h) by calculating the exact solution of a
second order differential equation. Since the discrete second-order derivative takes
the form

∂2w

∂α2
= lim

∆α→0

w(α+∆α, t)− 2w(α, t) + w(α−∆α, t)

ϕ(∆α)
,

then the first stage is to find a nonstandard function,ϕ(∆α) assuming that our
approximated solution,η(α, t) = wt(α) of (4.3), satisfies the following differential
equation:

∂2wt

∂α2
= aw3

t + bwt with
dwt

dα
(0) = 0 (4.22)

wherea andb are constant coefficients. We recall that the exact solutionof (4.22)
is

wt(α) = wt(0) cn(z, θ) (4.23)

wherez = (a + bw2
t (0))

1
2α andθ =

[

bw2
t (0)

2(a+bw2
t (0))

]
1
2
.

Since

wt(α +∆α)− 2wt(α) + wt(α−∆α)

wt(0)

= cn(z + a2∆α, θ)− 2 cn(z, θ) + cn(z − a2∆α, θ)

= [cn(z + a2∆α, θ)− 2cn(z, θ) + cn(z − a2∆α, θ)]

=

[

(cn(z, θ)cn(a2∆α, θ)− sn(z, θ)sn(a2∆α, θ)dn(z, θ)dn(a2∆α, θ) + cn(z, θ)cn(a2∆α, θ)

1− θ2sn2(z, θ)sn2(a2∆α, θ)

]

+

[

sn(z, θ)sn(a2∆α, θ)dn(z, θ)dn(a2∆α, θ)

1− θ2sn2(z, θ)sn2(a2∆α, θ)

]

− 2cn(z, θ)

=
2 cn(z, θ) cn(a2∆α, θ)

1− θ2 sn2(z, θ) sn2(a2∆α, θ)
− 2 cn(z, θ)

= −2 cn(z, θ)

(

1−
cn(a2∆α, θ)

1− θ2 sn2(z, θ) sn2(a2∆α, θ)

)

≈ −2 cn(z, θ)(1− cn(a2∆α, θ)) +O(∆α2)),

then we obtain that

ϕ(∆α) =
2

a22
(1− cn(a2∆α, θ)) with a2 = (a+ bA2)

1
2 .
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Finally, settingwtk(αm) = W k
m, we obtain a nonstandard scheme for equation

(4.22)

W k
m+1 − 2W k

m +W k
m−1

2
a22
(1− cn(a2∆α, θ))

= bW k
m+1

(

1 + (a/b)(W k
m)

2
)

, (4.24)

with a = −α5/α2, b = −α4/α2.

4.3 NSFD schemes for HPV Model

In this section we develop two different non-standard schemes to approximate the
solution of nonlinear equation model of HPV. In both schemesthe property of
positivity is satisfied.

4.3.1 Scheme 1

Combining the discretizations from equations (4.4) (4.8) (4.24) we obtain a NSFD

for the HPV Model. Denoting byA1 =
eα4∆t−1
1−e−δ∆α , A2 =

α2a22(e
α4∆t−1)

2α4(1−cn(a2∆α,θ))
A3 =

α3A1

α1
,

A4 = eα4∆t−1 andA5 = (α6/α4)(e
α4∆t−1), we get the following explicit scheme

W k+1
m −W k

m = A1

(

W k
m+1 −W k

m

)

+ A2

(

W k
m+1 − 2W k

m +W k
m−1

)

+

A3W
k+1
m

(

W k
m+1 −W k

m

)

+ A4(W
k+1
m )

(

1 + βW 2k
m

)

+ A5.

Which can be explicitly written as

W k+1
m =

(1−A1 − 2A2)W
k
m + (A1 + A2)W

k
m+1 + A2W

k
m−1 + A5

1− A3(W
k
m+1 −W k

m)−A4(1 + β(W k
m)

2)
. (4.25)

Notice that the structure of (4.25) was expected by having (4.6) as a
subequation.

Positivity of Scheme 1

It is important to remark that our numerical scheme is positive only in an large
region of the first positive quadrant of the domain, so a careful selection of the
spatial and temporal steps sizes must be done. The corresponding positivity
requirement for our discrete scheme isW k

m ≥ 0 ≥ 0 implies thatW k+1
m ≥ 0

for k fixed and all relevant values ofm. Notice that in our case we have to show
that for any value ofk and for an arbitrary but fixed value ofm we haveW k+1

m ≥ 0
given thatW k

m, W
k
m−1 andW k

m+1 are nonnegative. We have the following result:
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Theorem 4.3.1 The scheme (4.25) is positive, that is,W k
m ≥ 0 for all m andk if

1.
1− A1 − 2A2 ≥ 0, A1 + A2 ≥ 0, A2 ≥ 0, A5 ≥ 0

2. For allm,

max

{

0,
1

2Q
−

√

P

Q

}

< W 1
m <

1

2Q
+

√

P

Q
,

0 < W 1
m+1 < P −Q

(

W 1
m −

1

2Q

)2

,

withP =
4βA4(1−A4)+A2

3

4βA3A4
andQ = βA4

A3
.

3.
V1 + A5 ≤ V2

(

1−A4(1 + βV 2
2 + A3V2)

)

,

whereV1 = 1
2Q

+
√

P
Q

andV2 = min{V1, P}.

Remark Assumptions 1 and 2 are required in order to show that the numerator and
denominator of (4.25) are positive respectively, whereas assumption 3 is required
to prove invariance.

Proof.
Consider the numerator and denominator of (4.25) separately. Such numerator

is
(1−A1 − 2A2)W

k
m + (A1 + A2)W

k
m+1 + A2W

k
m−1 + A5, (4.26)

whereA1 =
eα4∆t−1
1−e−δ∆α , A2 =

α2a22(e
α4∆t−1)

2α4(1−cn(a2∆α,θ))
A3 =

α3A1

α1
, A4 = eα4∆t − 1 andA5 =

(α6/α4)(e
α4∆t − 1). Then positivity of the numerator is assured if the coefficients

of this expression are non-negative, namely:

1−A1 − 2A2 ≥ 0, A1 + A2 ≥ 0, A2 ≥ 0, andA5 ≥ 0.

The denominator can not have a definite sign everywhere, but we will construct
a region where the denominator is positive. In the followinglemma, we show the
details of this idea.

Lemma 4.3.2 Let y = W k
m+1 andx = W k

m. The denominator is positive for the
region of points(x, y) with

max

{

0,
A3

2βA4
−

√

P

Q

}

< x <
A3

2βA4
+

√

P

Q
,

58



4.3. NSFD SCHEMES FOR HPV MODEL

0 < y < P −Q

(

x−
A3

2βA4

)2

,

with P =
4βA4+a23
β2A3A2

4
andQ = βA4

A3
.

Proof. Consider the denominator of (4.25)

1− A3(W
k
m+1 −W k

m)−A4(1 + β(W k
m)

2).

To show that this expression is positive is equivalent to show that the following
inequality holds:

(1− A4)− AY + AX −BX2 > 0

After some straightforward calculations we obtain that

y < P −Q

(

x−
A3

2βA4

)2

.

Finally we need to prove invariance of the region, that is, ifwe start in such
region, then each iteration will remain in such place. Since(1 − A1 − 2A2)W

k
m +

(A1 + A2)W
k
m+1 + A2W

k
m−1 + A5 ≤ V1 + A5 and since1 − A3(W

k
m+1 −W k

m) −
A4(1 + β(W k

m)
2) > 1−A4(1 + βV 2

2 ) +A3V2, then0 < W k
m < V3 for all k and for

all m.

Dynamical consistency of scheme 1.

Here we will show that equation (4.3) and its discretization(4.25) have the same
equilibrium points and also they have the same local dynamical behavior. The
equilibrium points of (4.3) satisfy:

α5w
3 + α4w + α6 = 0, (4.27)

whereas the equilibrium points of (4.25) satisfy:

A4βw
3 + A4w + A5 = 0. (4.28)

But sinceA4β
∆t

= α5 + α4∆t + O(∆2t), A4

∆t
= α4 + α2

4∆t + O(∆2t) and A5

∆t
=

α6+α4α6∆t+O(∆
2t) we have that for arbitrary small∆t both equations have the

same roots. Now since
α3
4

27α3
5

+
α2
6

4α2
5

> 0,

then both (4.27) and (4.28) have only one real root which is negative and therefore
of non biological interest.
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4.3.2 Scheme 2

Now let us we construct a new NSFD scheme for HPV model considering the cubic
term approximated by the discretization (4.10) combined with the discretizations
from equations (4.4) and (4.24). Thus,

W k+1
m −W k

m

eα4∆t−1
α4

= α1

W k
m+1 −W k

m

1−e−δ∆α

δ

+ α2

W k
m+1 − 2W k

m +W k
m−1

2
a22
(1− cn(a2h, θ))

+ α6 + α4W
k
m

+α3W
k+1
m

(

W k
m+1 −W k

m

1−e−δ∆α

δ

)

+ α5W
2k
m

(

W k+1
m +W k−1

m

2

)

.

Denoting byA1 = α1δ
α4

(

eα4∆t−1
1−e−δ∆α

)

, A2 =
α2a22(e

α4∆t−1)

α42(1−cn(a2∆α,θ))
, A3 = α3A1

α1
, A4 =

eα4∆t − 1, A5 = (α6/α4)(e
α4∆t − 1) andβ = α5

α4
, we get the following explicit

scheme:

W k+1
m −W k

m = A1

(

W k
m+1 −W k

m

)

+ A2

(

W k
m+1 − 2W k

m +W k
m−1

)

+ A4W
k
m +

A3W
k+1
m

(

W k
m+1 −W k

m

)

+ A4βW
2k
m

(

W k+1
m +W k−1

m

2

)

+ A5.

Which can be explicitly written as

W k+1
m =

Ā1W
k
m + Ā2W

k
m+1 + A2W

k
m−1 + A4β/2W

2k
m W k−1

m + A5

1−A3(W
k
m+1 −W k

m)− A4β/2W 2k
m

, (4.29)

with Ā1 = 1−A1 − 2A2 + A4 andĀ2 = A1 + A2.

Positivity of Scheme 2

Consider thenumeratorof equation (4.29), positivity is assured if the coefficients
of this expression are non-negative, that is,

Theorem 4.3.3 The scheme (4.29) is positive, that is,W k+1
m ≥ 0 if

1− A1 − 2A2 + A4 ≥ 0, A1 + A2 ≥ 0, A2 ≥ 0, A4β/2 ≥ 0, A5 ≥ 0

and for allm

max

{

0,
1

Q
−

√

2P

Q

}

< W 1
m <

1

Q
+

√

2P

Q
,
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0 < W 1
m+1 < P −

Q

2

(

W 1
m −

1

Q

)2

,

with P =
4βA4+A2

3

4βA3A4
andQ = βA4

A3
.

The proof is analogous as the one for theorem 4.3.1.

Remark The dynamical consistency of scheme 2 is basically the same as the
one from scheme 1 since the equilibrium points of both schemes satisfy the same
condition, namely (4.28).

4.4 Numerical results

Now let us give some numerical results by applying (4.25) y (4.29). Since we do
not have actual data, we will only present numerical simulations for illustration
purposes. We useη(α, 0) = e−8α2

as initial condition to represent an infected
patient with a mild dysplasia. The values of the constants were chosen to satisfy
positivity conditions and they are given byα1 = 0.01164, α2 = 0.06, α3 =
0.00046, α4 = −0.0267, andα5 = 0.00089 andα6 = 0.00356. Clearly, we could
adjust the values of the constants in a real data simulation.

Both schemes present very similar results for times smallerthan t=200 and for
values up to 250 we obtain only slight changes that are insignificant, which shows
that both approximations are reasonable, see Figure 4.1. This fact is a consequence
to have used the discretization of the Duffing equation. It isimportant to remark
that the only acceptable results have been reported only fortimes less than 150. As
expected, both approximations deviate initially very slowly from initial data, which
agrees with the fact that HPV infection takes very long time in transforming normal
cervical cells into cancerous ones. As time increases, we observe a slowly formation
of a parabolic shape denoting the increment of mature infected cells. Finally in
Figure 4.2, we show the deviation of both approximations forlarger times.

4.5 Conclusions

Two different NSFD schemes was constructed for the nonlinear
advection-diffusion-reaction model of HPV. This new schemes satisfies positivity
conditions. Such numerical schemes are sufficiently efficient for larger values of
time. The simulations show that the numerical solutions of our methods help us
understand the behavior and evolution of infected cells forvery large times. In
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Figure 4.1: Numerical approximations of the model using both schemes for
different times.
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Figure 4.2: Numerical approximations of the model using both schemes at different
times.
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both schemes, we obtained similar results, however the second scheme allows us to
continue the simulation for larger times.

Finally we note that these two schemes presented in this chapter give us a better
approximation to the solution of our model as we increase thetime for values up
to 250, this helps us to understand the detailed evolution ofHPV-infected cells for
larger times.
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Chapter 5

Conclusions and Future Research

In this dissertation we have presented a family of models forthe interaction of
infected cells of HPV. We also have proposed and analyzed twodifferent models
for the evolution of these cells.

We presented a family of models considering that precancer stages are given
by discrete stages, thus obtaining a nonlinear system of differential equations. We
solved the linearized systems and we approximated the solution of the nonlinear
system. Both systems have been analyzed for several important cases. In such
analysis, initial conditions were chosen depending on the infection degree of the
patient and technically considering positivity conditions. Such family of models
has the drawback that one requires to quantify the number of cells in each stage,
which in most cases, there is only a qualitative descriptionof the distribution of
infected cells. In this case, one may take some averages on the number of infected
cells depending on the information available.

A better way to deal with some incomplete data is to use a continuous
model, which only requires the initial distribution along with some boundary
conditions. Thus, we developed and analyzed a family of continuous models, the
family of generalized advection diffusion reaction models, which have a biological
foundation. We developed these models using nonstandard finite difference
schemes which are dynamically consistent and present advantages over the classic
methods because low computational time is required. In thiscase different
numerical schemes were constructed to approximate the solutions of our continuous
model of the evolution of precancerous lesions at the cervical cells caused by human
papillomavirus. As a first approximation to the solution of the continuous model we
gave a nonstandard numerical method, which is not exact but have good numerical
efficient properties, but was only valid for small values of time. To overcome
this issue, we approximate the solution of our second familyof models using
perturbation theory, in order to construct reliable numerical schemes that provide
accurate approximations for large values of time. So we considered the equation

65



CHAPTER 5. CONCLUSIONS AND FUTURE RESEARCH

of interest as a perturbation problem which evolves smoothly and slowly out of the
initial solution. It is important to remark that our approach is based on a new trend
in numerical analysis that consists in the development of numerical techniques for
perturbation problems. The numerical schemes were sufficiently robust, accurate,
and efficient for larger values of time.

Finally, we built two more efficient schemes to approximate the solution of
our continuous model using the non standard finite difference method with a
pre-scaling of the problem. For this, first we constructed special schemes for some
sub-equations that includes the Duffing equation. Some of these subequations have
exact schemes and satisfy the positivity conditions. With these two new schemes we
increased the approximation time, which allowed us to understand the evolution of
HPV-infected cells for greater times values than the ones obtained from our previous
schemes.

The results have helped us to understand the evolution of cells infected with
HPV. So far, it is only a first step to provide clinicians with areliable benchmark,
hoping that our approach gives a desirable method and may open up new avenues
to new modeling.

Regarding future research after this work, there are some interesting projects
that we may address and we briefly list them as follows:

• Obtaining spatial models with efficient numerical methods.

• Implementation of specific software to provide clinicians with a reliable
benchmark.
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Appendix A

Uniqueness with energy method

In this appendix we use the energy method to prove the uniqueness of some
sub-equations of our HPV model

∂w

∂t
= α1

∂w

∂α
+ α2

∂2w

∂α2
+ α3w

∂w

∂α
+ α4w + α5w

3 + α6 (A.0.1)

Theorem A.0.1 The boundary-initial value problem,

∂u

∂t
=

∂2u

∂α2
+ au, 0 < α < 1, 0 < t < T, a > 0 (A.0.2)

u(α, 0) = f(α), 0 < α < 1,

u(0, t) = g(t), u(1, t) = h(t), 0 < t < T.

wheref ∈ C[0, 1] andg, h ∈ C[0, T ] has a unique solutionu(α, t) on the rectangle
R : 0 ≤ α ≤ l, 0 ≤ t ≤ T , for anyT > 0.

Proof By way of contradiction assume solutions are not unique and there are two
distinct solutionsu1(α, t) andu2(α, t) to A.0.2.Then their differenceU(α, t) ≡
u1(α, t)− u2(α, t) must satisfy the boundary value problem

∂U

∂t
=

∂2U

∂α2
+ aU, 0 < α < 1, 0 < t < T, a > 0 (A.0.3)

U(α, 0) = 0, 0 < α < 1,

U(0, t) = U(1, t) = 0, 0 < t < T.

If we showU(α, t) ≡ 0 onR, thenu1(α, t) = u2(α, t) onR, wich is a contradiction.
Multiply the differential equation A.0.3 byU and integrate over(0, 1) to find
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∫ 1

0

U
∂U

∂t
dα =

∫ 1

0

U
∂2U

∂α2
dα+ a

∫ 1

0

U2dα (A.0.4)

and consider the function of time

E(t) =
1

2
‖U(t)‖2,

(

E(t) =
1

2

∫ 1

0

U2(α, t)dα

)

,

(such thatE(0) = 0 andE(t) ≥ 0 which represents the energy of the functionU).
Integrate by parts in the second integral of equation A.0.4 we have:

∫ 1

0

U
∂2U

∂α2
dα = −

∫ 1

0

(

∂U

∂α

)2

dα + U
∂U

∂α
]10 = −‖Ux‖

2 (A.0.5)

then, the equation A.0.4 becomes

dE

dt
= −‖Ux‖

2+a‖U‖2, (‖Uα‖
2 6= 0),

= −a‖Uα‖
2

(

1

a
−

‖U‖2

‖Uα‖2

)

,

≤ −a‖Ux‖
2

(

1

a
−maxH

‖U‖2

‖Uα‖2

)

. (A.0.6)

whereH is the space of admissible functions over which we seek a maximum. Set

H =
{

U ∈ C2(0, 1)| U = 0 when α = 0, 1
}

.

Now defineRE by
1

RE
= maxH

‖U‖2

‖Uα‖2
;

then the energy inequality may be rewritten

dE

dt
≤ −a‖Uα‖

2

(

1

a
−

1

RE

)

.

If a < RE , then1/a− 1/RE > 0, say1/a− 1/RE = c(> 0), and so

dE

dt
≤ −ac‖Uα‖

2 ≤ 0.

SincedE
dt
< 0 soE(t) = 0, andU ≡ 0, thenu1(α, t) = u2(α, t), ∀t > 0.
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Theorem A.0.2 The boundary-initial value problem,

∂u

∂t
+u

∂u

∂α
=
∂2u

∂α2
+βu2, 0 < α < 1, 0 < t < T, β > 0 (A.0.7)

u(α, 0) = f(α), 0 < α < 1,

u(0, t) = g(t), u(1, t) = h(t), 0 < t < T,

wheref ∈ C[0, 1] andg, h ∈ C[0, T ] has a unique solutionu(α, t) on the rectangle
R : 0 ≤ α ≤ 1, 0 ≤ t ≤ T , for anyT > 0.

Proof A way to find a contradiction supposeu1(α, t) y u2(α, t) are two solutions
of A.0.7 then their differenceU(α, t) = u1(α, t)−u2(α, t) must satisfy the problem
initial boundary conditions:

∂U

∂t
+ U

∂U

∂α
=
∂2U

∂α2
+ βU2, 0 < α < 1, 0 < t < T, β > 0 (A.0.8)

U(α, 0) = 0, 0 < α < 1,

U(0, t) = U(1, t) = 0, 0 < t < T.

If we show thatU(α, t) ≡ 0 en R then u1(α, t) = u2(α, t) en R, which is a
contradiction. Consider the function of time

E(t) =
1

2
‖U(t)‖2,

(

E(t) =
1

2

∫ 1

0

U2(α, t)dα

)

(A.0.9)

(such thatE(0) = 0 andE(t) ≥ 0 which represents the Energy of the functionU)
We multiply the differential equation byU and integrate over(0, 1) to obtain

1

2

d

dt
‖U‖2 =

∫ 1

0

U
∂2U

∂α2
+ β

∫ 1

0

U3dα. (A.0.10)

We have
∫ 1

0

U2∂U

∂α
dα = 0, (A.0.11)

and integrating by parts,

∫ 1

0

U
∂2U

∂α2
dα = −‖Uα‖

2. (A.0.12)
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The Energy equation

1

2

d

dt
‖U‖2 = −‖Uα‖

2 + β

∫ 1

0

U3dα. (A.0.13)

We write

∫ 1

0

U3dα =

∫ 1

0

U2Udα ≤

(
∫ 1

0

U4dα

)1/2(∫ 1

0

U2dα

)1/2

, (A.0.14)

by use of the Cauchy-Schwarz inequality. From the Sobolev embedding inequality
we know that

∫ 1

0

U4dα ≤
1

4

(∫ 1

0

U2
αdα

)2

. (A.0.15)

Using this leads to

∫ 1

0

U3dx ≤

(
∫ 1

0

U2
αdα

)(
∫ 1

0

U2dα

)1/2

=
1

2
‖U‖‖Uα‖

2. (A.0.16)

Put A.0.16 into A.0.13 to find

1

2

d

dt
‖U‖2 ≤ −‖Ux‖

2

(

1−
1

2
β‖U(t)‖

)

. (A.0.17)

Next, assume that

‖U0‖ < 2β−1

(

i.e,

∫ 1

0

U0(α)dα < 4β2

)

.

Then either
i) ‖U(t)‖ < 2β−1, ∀t > 0,
or
ii) there exists an η <∞ such that‖U(η)‖ = 2β−1, with

‖U(η)‖ < 2β−1, on [0, η).

Suppose (ii) holds.Then on[0, η), 1− β‖U(t)‖ > 0, so A.0.17 shows

d

dt
‖U‖2 < 0, for 0 ≤ t < η. (A.0.18)

Hence
‖U(t)‖2 ≤ ‖U(0)‖2 = ‖U0‖

2 < 4β−2, t ∈ [0, η).
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Since ‖U(t)‖ is assumed continuous in t, this means‖U(η)‖ 6= 2/β, a
contradiction. Hence, (ii) is false and (i) holds. (We are assuming the solutions
we are dealing with are “classical”, and soU ∈ C2, in α, U ∈ C1 in t). Therefore,
provided

‖U0‖ < 2/β,

it follows that
‖U(t)‖ ≤ 2/β, ∀t ≥ 0.

Further, A.0.18, now holds∀t ≥ 0, and hence,

‖U(t)‖2 ≤ ‖U0‖
2, ∀t ≥ 0.

We have shown that1− β‖U(t)‖ ≥ 1− β‖U0‖(> 0). Now, use this in A.0.17

1

2

d

dt
‖U‖2 ≤ −‖Uα‖

2

(

1−
1

2
β‖U(t)‖

)

≤ −‖Uα‖
2

(

1−
1

2
β‖U0‖

)

. (A.0.19)

Next, from Poincare’s inequality,‖Uα‖
2 ≥ π2‖U‖2 and since1 − β‖U0‖ > 0, we

find
1

2

d

dt
‖U‖2 ≤ −π2

(

1−
1

2
β‖U0‖

)

‖U‖2 = −A‖U‖2, (A.0.20)

then
1

2

d‖U‖2

dt
≤ 0

andE(t) it is not growing, together with the facts thatE(t) ≥ 0 andE(0) = 0 then
E(t) = 0. Therefore the integrand in A.0.9 must be0 in 0 < α ≤ l and0 ≤ t ≤ T
sinceU is continuous, thenU ≡ 0 enR and uniqueness is showed.

Theorem A.0.3 The problem with boundary value

∂w

∂t
− α1

∂w

∂α
− α2

∂2w

∂α2
− α3w

∂w

∂α
− α4w − α5w

3 = 0, (A.0.21)

(A.0.22)

0 < α < 1, 0 < t < T,

w(α, 0) = f(α), 0 < α < 1,

w(0, t) = g(t), w(1, t) = h(t), 0 < t < T,

wheref ∈ C[0, 1] andg, h ∈ C[0, T ] has a unique solutionu(α, t) on the rectangle
R : 0 ≤ α ≤ 1, 0 ≤ t ≤ T , for anyT > 0.
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Proof A way to find a contradiction supposew1(α, t) y w2(α, t) are two solutions
of A.0.21 then their differenceW (α, t) = w1(α, t) − w2(α, t) must satisfy the
problem initial boundary conditions

∂W

∂t
− α1

∂W

∂α
− α2

∂2W

∂α2
− α3W

∂W

∂α
− α4W − α5W

3 = 0. (A.0.23)

W (α, 0) = 0, 0 < α < 1,

W (0, t) = W (1, t) = 0, 0 < t < T.

If we show thatW (α, t) ≡ 0 enR thenw1(α, t) = w2(α, t) enR, which is a
contradiction. We define the integral of energy

E(t) =

∫ 1

0

W 2(α, t)dα, (A.0.24)

we haveE(t) ≥ 0 y E(0) = 0, then

dE

dt
=

∫ 1

0

2WWtdα (A.0.25)

and

1

2

dE

dt
=

∫ l

0

W

[

α1
∂W

∂α
+ α2

∂2W

∂α2
+ α3W

∂W

∂α
+ α4W + α5W

3

]

dα. (A.0.26)

For the last equality we consider each integral separately.In the first integral, we
integrated by parts and use the boundary conditions

α1

∫ l

0

WWαdα = α1

(

[W 2]l0 −

∫ l

0

WWαdα

)

(A.0.27)

(2α2)

∫ 1

0

WWαdα = 0. (A.0.28)

We solve the second integral for parts,

α2

∫ 1

0

WWααdα = α2

(

[WWα]
1
0 −

∫ 1

0

W 2
αdα

)

(A.0.29)

α2

∫ 1

0

WWααdα = −α2

∫ 1

0

W 2
αdα = −α2‖Wα‖

2 (A.0.30)
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The third integral we have

α3

∫ 1

0

W 2Wαdα = α3

(

[W 3]10 − 2

∫ 1

0

W 2Wαdα

)

(A.0.31)

(3α3)

∫ 1

0

W 2Wαdα = 0, (A.0.32)

the fourth integral

α4

∫ 1

0

W 2dα = α4‖W‖2, (A.0.33)

dondeα4 < 0 the fifth integral and From the Sobolev embedding inequalitywe
know that

α5

∫ 1

0

W 4dα ≤
α5

4

{
∫ 1

0

W 2
αdα

}2

, (A.0.34)

then

1

2

dE

dt
= −α2‖Wα‖

2 + α4‖W‖2 + α5

∫ l

0

W 4dα (A.0.35)

≤ −α2‖Wα‖
2 + α4‖W‖2 + α5/4‖Wα‖

4 (A.0.36)

≤ −α2‖Wα‖
2

(

1−
α4‖W‖2

α2‖Wα‖2
−

α5

4α2
‖Wα‖

2

)

, (A.0.37)

where we choose the coeficients such that
(

1−
α4‖W‖2

α2‖Wα‖2
−

α5

4α2
‖Wα‖

2

)

> 0,

where‖Wα‖
2 6= 0 thenE(t) it is not growing, together with the facts thatE(t) ≥ 0

andE(0) = 0 thenE(t) = 0.Therefore the integrand in A.0.24 must be0 in 0 <
α ≤ l and0 ≤ t ≤ T sinceW is continuous, thenW ≡ 0 enR and uniqueness is
showed.
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Appendix B

Monotone method for parabolic

equations

The basic idea of the monotone method is that by using an uppersolution or a
lower solution as the initial iteration in a suitable iterative process the resulting
sequence of iterations is monotone and converges to a solution of the problem.
This appendix shows limit of the monotone sequence is indeedthe solution of the
parabolic problem for each of the three basic boundary conditions. First we need to
review some results already established for linear parabolic equations.

B.1 A Review of the Linear Parabolic Problem

The Ḧolder function spaces
Let Ω be either a bounded or an unbounded open domain inRn, and let∂Ω be

the boundary ofΩ. For eachT > 0, letDT = (0, T ]×Ω, ST = (0, T ]×∂Ω. Denote
by Cm(Ω) the set of all continuous functions whose partial derivatives up to the
mth order are continuous inΩ, and byC l,m(DT ) the set of functions whose l-times
derivatives int and m-times derivatives inx are continuous inDT . In particular, the
setC1,2(DT ) consists of all functions that are once continuously differentiable int
and twice continuously differentiable inx for all (t, x) ∈ DT . Similar notations are
used forCm(Ω̄) andC l,m(D̄T ), whereΩ̄, D̄T are the respective closures ofΩ and
DT . Whenm = 0 we denote byC(Ω), C(Ω̄), C(D̄T ), and the set of continuous
functions inΩ, Ω̄, DT , andD̄T , respectively. In the following discussion we state
some basic definitions and collect some facts from the theoryof linear parabolic
equations.

Parabolic Problem
The monotone method, can be used to parabolic boundary-value problems.To

justify that the limit of the monotone sequence is a classical solution we need
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to review some of the well established results for the following linear parabolic
equation:

ut − Lu+ cu = g(t, x) in DT (B.1.1)

under the boundary and initial conditions

Bu ≡ α0(t, x)
∂u

∂v
+ β0(t, x)u = h(t, x) on ST (B.1.2)

u(0, x) = u0(x) in Ω

whereDT = (0, T ] × Ω, ST = (0, T ] × ∂Ω andΩ ∈ R
n open and bounded.

Furthermore, c is a continuous function and the functionsg, h, andu0 are given
functions and assumed Hölder continuous in their respective domains. and for each
fixed t, L is a uniformly elliptic operator given by

Lu =

n
∑

i,j=1

aij(t, x)
∂2u

∂xi∂xj
+

n
∑

i=1

bi(t, x)
∂u

∂x

where≡ denotes definition or identity.L uniformly elliptical is in the sense that the
matrix (aij) is positive definite inD̄T that is, there exist positive constantsd0, d1
such that for every vectorξ = (ξ1, ξ2 · · · , ξn) inRn

d0|ξ|
2 ≤

n
∑

i,j=1

aij(t, x)ξiξj ≤ d1|ξ|
2 (t, x) ∈ D̄T

where
|ξ|2 = ξ1

2 + ξ2
2 + . . .+ ξn

2.

We assume that the coefficients ofL andc are Hölder continuous inDT , α0 y β0
are continuous onST with α0 ≥ 0, andα0 + β0 ≥ 0. We call problem B.1.1 the
first (or Dirichlet) boundary-value problem whenα0 = 0, β0 > 0, and the second
B.1.2(or Neumann) boundary-value problem whenα0 > 0, β0 ≥ 0.

(1) Fundamental solution
A functionΓ(t, x; τ, ξ) is called a fundamental solution of the parabolic operator

Lc ≡ (∂/∂t − L+ c) in(0, T ]× R
n

if for any fixed(τ, ξ)ǫ(0, T ]×Rn , Γ satisfies the equation

Lc[Γ] ≡ Γt − LΓ + cΓ = δ(t− τ)δ(x− ξ)
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whereδ is the Diracδ-function. IfL = D▽2 andc = c0 is a constant, is given by:

Γ(t, x; τ, ξ) = [4πD(t− τ)]−n/2exp[−(c0t + |x− ξ|2/4D|t− τ |)]

For the general parabolic operatorLc , is a positive function in(0, T ] × R
n except

at the singular point(τ, ξ). Furthermore, for anyx, ξ in R
n and0 ≤ τ < t ≤ T it

has the estimates

Γ(t, x; τ, ξ) ≤
K0

(t− τ)µ
1

|x− ξ|n−2+µ , (0 < µ < 1)

∂Γ

∂vx
(t, x; τ, ξ) ≤

K0

(t− τ)µ
,

1

|x− ξ|n+1−2µ−γ , (1− γ/2 < µ < 1)

where ∂
∂vx

; is the outward normal derivative with respect to thex variable andK0

is a constant independent of(t, x) and(τ, ξ).

B.2 Upper and lower sequence

We consider the semilinear parabolic equation:

ut − Lu = f(t, x, u) in DT (B.2.1)

under the initial and boundary conditions

Bu ≡ α0(t, x)
∂u

∂v
+ β0(t, x)u = g(t, x, u) on ST (B.2.2)

u(0, x) = u0(x) in Ω

whereg(t, x, u) is in general nonlinear inu. We assume thatg is continuous on
ST × J and thatf , β0, u0 andL are assumed Hölder continuous in their respective
domains. WhereJ is the sector between upper and lower solutions. The definition
of upper and lower solutions is given by:

Definition A function ũ ∈ C(D̄T ) ∩ C1,2(DT ) is called anUpper solution of
(B.2.1) if it satisfies all the inequalities

ũt − Lũ ≥ f(t, x, ũ) in DT (B.2.3)

Bũ ≥ g(t, x, ũ) on ST

ũ(0, x) ≥ u0(x) in Ω
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Definition A function û ∈ C(D̄T ) ∩ C1,2(DT ) is called anLower solution of
(B.2.1) if it satisfies all the inequalities

ût − Lû ≤ f(t, x, û) in DT (B.2.4)

Bû ≤ g(t, x, û) on ST

û(0, x) ≤ u0(x) in Ω

It is clear from the above definition that every solution of (B.2.1) is an upper solution
as well as a lower solution. For a given pair of ordered upper and lower solutions
ũ y û, in D̄T We assume that there exist bounded functionsc̄ = c̄(t, x), c = c(t, x)
andb̄, b enC(ST ) such that

− c(u1 − u2) ≤ f(t, x, u1)− f(t, x, u2) ≤ c̄(u1 − u2) (B.2.5)

−b(u1 − u2) ≤ f(t, x, u1)− f(t, x, u2) ≤ b̄(u1 − u2)

for û ≤ u2 ≤ u1 ≤ ũ

The above condition implies that the functions

F (t, x, u) ≡ c(t, x)u+ f(t, x, u) (B.2.6)

G(t, x, u) ≡ b(t, x)u+ g(t, x, u)

are monotone nondecreasing inu and satisfy the Lipschitz condition

|F (t, x, u1)− F (t, x, u2| ≤ K|u1 − u2| (B.2.7)

|G(t, x, u1)−G(t, x, u2| ≤ K|u1 − u2|

(for u1, u2 ∈ 〈û, ũ〉)

WhereK may be taken as an upper bound of|c(t, x)| + |c̄(t, x)| in DT . Note that
(B.2.4) holds whenf is Lipschitz continuous inu. However, in the construction of
the monotonous succession only the left side of the Lispchitz condition in (B.2.4)
is needed; the right side of the condition Lipschitz is used to ensure the uniqueness
of the solution. In terms of F and G, problem (B.2.1) may be written as

Lcu = F (t, x, u) in DT (B.2.8)

Bu+ bu = G(t, x, u) on ST

u(0, x) = u0(x) in Ω

We consider the same initial and boundary conditions as in (B.2.2) whereF is a
given by (B.2.6) andLcu is given by (B.2.8) withc = c. Starting from an initial
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iteration appropriateu(0) is possible to construct a sequenceu(k) Then consider the
iteration process

Lcu
(k) = F (t, x, u(k−1)) in DT (B.2.9)

Bu(k) + bu(k) = G(t, x, u(k−1)) on ST

u(k)(0, x) = u0(x) in Ω

wherek = 1, 2, 3 . . . . We denote the sequences withu(0) = ũ andu0 = û by ū(k)

andu(k), respectively, and refer to them as upper and lower sequences. We show
that under the condition on (B.2.5) each of the sequences converge monotonically
on a unique solution of (B.2.1). The following lemma gives the monotone property
of these two sequences.

Lemma B.2.1 Let f , g satisfy condition (B.2.5). Then the sequencesū(k), u(k),
are well defined and possess the monotone property. Moreoverū(k) andu(k) are
ordered upper and lower solutions of (B.2.1) for everyk.

Proof Let
w = ū(0) − ū(1) = ũ− ū(1)

From the definition of superior solution and (B.2.9) we have

Lcw = Lcũ− F (t, x, ū(0)) = ũt − Lũ − f(t, x, ũ) ≥ 0 (B.2.10)

Bw + bw = Bũ+ bũ −G(t, x, ū(0))

= Bũ− g(t, x, ũ) ≥ 0

w(0, x) = ũ(0, x) = u0(x) ≥ 0.

The positivity lemma implies thatw ≥ 0 that is,ū(1) ≤ ū(0). A similar argument
givesu(1) ≥ u(0). Letw(1) = ū(1) − u(1). By (B.2.9) and the monotone property of
F , G, u(0) ≥ 0 It follows from w(1)(0, x) = 0 thatw(1) ≥ 0 The above conclusion
shows thatu(0) ≤ u(1) ≤ ū(1) ≤ ū(0) Assume by induction that

u(k−1) ≤ u(k) ≤ ū(k) ≤ ū(k−1) in D̄T .

Then by (B.2.9) and the monotone property ofF , the functionw(k) = ū(k) − ū(k+1)

satisfies the relation

Lcw
(k) = F (t, x, ū(k−1))− F (t, x, ū(k)) ≥ 0

and the boundary and initial conditions as forw(1). This leads to the conclusion
w(k) ≥ 0 and thusū(k+1) ≤ ū(k). The same argument givesu(k+1) ≥ u(k) and
ū(k+1) ≥ u(k). The conclusion of the lemma follows by the principle of induction.
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Lemma B.2.2 The pointwise limits

lim
k→∞

ū(k)(t, x) = ū(t, x) and lim
k→∞

u(k)(t, x) = u(t, x) (B.2.11)

exist and satisfy the relation

û ≤ u(k) ≤ u(k+1) ≤ u ≤ ū ≤ ū(k+1) ≤ ū(k) ≤ ũ in D̄T (B.2.12)

wherek = 1, 2, . . .

Proof Since by lemma B.2.1 the sequenceū(k) is monotone non increasing and
is bounded from below and the sequenceu(k) is monotone nondecreasing and is
bounded from above, the point wise limits of these sequencesexist and their limits
are denoted bȳu andu as in (B.2.11). Moreover, by lemma (B.2.1 ) the limitsū
andu satisfy the relation B.2.12.

Lemma B.2.3 If the limits ū and u are solutions of (B.2.1) then̄u = u is the
solution in< û, ũ >.

Proof Letw = u− ū.Then w satisfies the relation

wt − Lw = f(t, x, u)− f(t, x, ū) ≥ −c̄(ū− u) = cw

and the boundary and initial conditionsBw = 0 onDT , w(0, x) = 0 in ST , where
c = c(t, x) is the function in (B.2.5). For the positivity lemma,w ≥ 0 inDT , which
ensures that̄u = u. Now if u∗ is any other solution in the sector< û, ũ > then by
consideringu∗, û andũ, u∗ as ordered upper and lower solutions thenu∗ ≥ u and
u∗ ≤ ū. This implies that̄u = u∗ = u andu∗ is the unique solution of B.2.1.

We next show that̄u(k) andu(k) are ordered upper and lower solutions of B.2.1.

Lemma B.2.4 For eachk, ū(k) is an upper solution,u(k) is a lower solution, and
u(k) ≤ ū(k) in DT .

Proof By the iteration process B.2.9 and the conditions B.2.5 and B.2.12, ū(k)

satisfies the relation

ū
(k)
t − Lū(k) = c(ū(k−1) − ū(k)) + (f(t, x, ū(k−1)) (B.2.13)

= c(ū(k−1) − ū(k)) + (f(t, x, ū(k−1))− f(t, x, ū(k))) + f(t, x, ū(k))

≥ f(t, x, ū(k))
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andu(k) satisfies the relation

u
(k)
t − Lu(k) = −c(u(k) − ū(k−1)) + (f(t, x, u(k−1)) (B.2.14)

= −c[(u(k) − ū(k−1)) + f(t, x, u(k))− f(t, x, u(k−1))] + f(t, x, u(k))

≥ f(t, x, u(k))

It follows from the boundary and initial conditions in B.2.9that ū(k) andu(k) are
upper and lower solutions, respectively. The relationu(k) ≤ ū(k) follows from
lemma B.2.1

In lemma B.2.4 it is assumed that the upper and lower solutionsũ, û are ordered.
The following lemma states that iff is aC1-function (or is Lipschitz continuous)
in u thenũ andû are necessarily ordered.

Lemma B.2.5 Let ũ, û be upper and lower solutions of B.2.1, and letf be aC1

function inu. Thenũ ≥ û. In particular, if ũ is an upper solution (resp.,̂u is a
lower solution) andu is the solution of B.2.1, theñu ≥ u∗ (resp.,û ≤ u∗).

Proof Letw = ũ− û.Then by the definition of̃u, û and the mean value theorem,

wt − Lw ≥ f(t, x, ũ)− f(t, x, û) = fu(t, x, η̂(t, x))w (B.2.15)

Bw ≥ h− h = 0

w(0, x) ≥ u0 − u0 = 0

whereη̂ is an intermediate value betweenũ andû. By Lemma B.2.1,̃u ≥ û. Since
every solutionu∗ may be considered as a lower solution or an upper solution the
relationsũ ≥ û andũ ≤ û follow immediately.

For details of this method see [30], and [31].
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Appendix C

Solution of the linear version of the

model

Theorem C.0.6 Let −k eigenvalue with multiplicityr = m − 1 of the matrixA
associated to linear system (1.7), then the functions

N1(t) = w1e
−kt,

N2(t) = (tw1 +w2)e
−kt,

N3(t) = (t2w1 + tw2 +w3)e
−kt,

· · ·

Nr(t) =

(

tr−1

(r − 1)!
w1 + · · ·+

t2

2
wr−2 + twr−1 +wr

)

e−kt,

are r solutions of the systeṁN = AN.

Proof A chain of generalized eigenvectors of lengthr gives usr independent
solutions, then we only will proof that the functionsNj(t) are solutions of the
system (1.7). We have

Nj = e−kt

(

j
∑

i=1

tj−i

(j − i)!
wi

)

(C.0.1)

and

Ṅj = e−kt

(

j
∑

i=1

tj−i−1

(j − i− 1)!
wi

)

+ e−kt

(

j
∑

i=1

(−k)
tj−1

(j − i)!
wi

)

(C.0.2)
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on the other hand,

ANj = e−kt

j
∑

i=1

tj−i

(j − i)!
Awi (C.0.3)

and we have

(A+ kI)w1 = 0, (C.0.4)

(A+ kI)w2 = w1,
...

(A+ kI)wr = wr−1

thenAwi = wi−1 − kwi for i = 1, 2, · · · , r and

ANj(t) = e−kt

j
∑

i=1

tj−i

(j − i)!
(wi−1 − kwi) (C.0.5)

= e−kt

j
∑

i=1

tj−i

(j − i)!
wi−i + e−kt

j
∑

i=1

tj−i

(j − i)!
wi

= e−kt

j−i
∑

i=1

tj−i−1

(j − i− 1)!
wi + e−kt

j
∑

i=1

(−k)
tj−i

(j − i)!
wi

Then,Nj(t)
r
j=1 arer linearly independent solutions of system (1.7).
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Appendix D

Elliptic functions

The Jacobi elliptic functions are defined as the inverses of the elliptic integral of the
firt kind. Let

u =

∫ φ

0

dθ
√

1− k2 sin2(θ)
,

0 ≤ k2 ≤ 1 and define the indicated functions as follows:

sn(u, k) ≡ sin(φ), (D.0.1)

cn(u, k) ≡ cos(φ),

dn(u, k) ≡
√

1− k2sin2(φ),

am(u, k) ≡ φ,

tan(u, k) ≡
sn(u, k)

cn(u, k)
= tan(φ).

These functions have the associated names:
sn(u, k) : Jacobi sine functions,
cn(u, k) : Jacobi cosine functions,
am(u, k) : Amplitude ofu.
Note that ifk2 = 0 thenu = φ and

sn(u, 0) = sin(u), (D.0.2)

cn(u, 0) = cos(u),

dn(u, 0) = 1,

am(u, 0) = u.

These result suggest that the Jacobi sine and cosine functions are generalization
of the sine cosine trigonometric functions. The following properties of the Jacobi
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elliptic functions are a direct consecuence of their definitions given by D.0.1

sn(0, k) = 0, (D.0.3)

cn(0, k) = 1,

dn(0, k) = 1,

am(u, 0) = 0.

Each of the Jacobi elliptic functions depend on a parameter k, called the modulus.
We also have the complementary modulusk defined by(k)2 + (k′)2 = 1

sn2(u, k) + cn2(u, k) = 1, (D.0.4)

k2 sn2(u, k) + dn2(u, k) = 1,

dn2(u, k)− k2 cn2(u, k) = 1− k2 = (k′)2.

sn(−u, k) = − sn(u, k), (D.0.5)

dn(−u, k) = dn(u, k),

am(−u, k) = −am(u, k).

sn(u, 1) = tanh(u), (D.0.6)

cn(u, 1) = dn(u, 1),

cn(u, 1) = sech(u).

Theorem D.0.7 From now on we will ommit the second argument in the functions.
The derivatives of the Jacobi elliptic functions are

d

du
(sn(u)) = cn(u) dn(u), (D.0.7)

d

du
(cn(u)) = sn(u) dn(u),

d

du
(dn(u)) = k2 sn(u) dn(u),

Proof By differentiation of D.0.1 we have,

du

d(φ)
=

1
√

1− k2 sin2 (φ)
=

1

(dn(u))
,
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and usingsn(u, k) ≡ sin(φ) we obtain

d

du
(sn(u)) =

d(sin(φ))

du
= (cos(φ))

d(φ)

du
= (cn(u))(dn(u)).

Similarly, it follows that

d

du
(cn(u)) =

d(cos(φ))

du
= (− sin(φ))

dφ

du
= (− sn(u)) dn(u)

and d
du
(dn(u)) = −k2(sn(u))(cn(u)).

The corresponding second derivatives are,

d2

du2
(sn(u)) = 2k2(sn3(u))− (1 + k2)(sn(u)), (D.0.8)

d2

du2
(cn(u)) = (2k2 − 1)(cn(u))− 2k2(cn3(u)),

d2

du2
(dn(u)) = 2(2− k2)− 2(dn3(u)).

Theorem D.0.8 The addition formulas for the Jacobi elliptic functions are

sn(u1 + u2) =
(sn(u1))(cn(u2))(dn(u2)) + (sn(u2))(cn(u1))(dn(u1))

1− k2(sn2(u1))(sn2(u2))
,

cn(u1 + u2) =
(cn(u1))(cn(u2))− (sn(u1))(sn(u2))(dn(u1))(dn(u2))

1− k2(sn2(u1))(sn2(u2))
,

dn(u1 + u2) =
(dn(u1))(dn(u2))− k2(sn(u1))(sn(u2))(cn(u1))(cn(u2))

1− k2(sn2(u1))(sn2(u2))
.

Proof We denotes1 = (sn(u1)), s2 = (sn(u2)), c1 = (cn(u1)), c2 = (cn(u2)),
d1 = (dn(u1)) andd2 = (dn(u2)). Let

w =
s1c2d2 + s2c1d1
1− k2s21s

2
2

Then, by partial differentiation with respect tou1, and after simplification we have,

dw

du1
=
c1d1c2d2(1 + k2s

2
1s

2
2)− s1s2(d

2
1d

2
2 + k2c21c

2
2)

(1− k2s21s
2
2)

2
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Therefore,dw/du1 is symmetric inu1 andu2, and asw is symmetric, it follows that
dw/du2 is equal todw/du1. Hence, for a functionf(u1 + u2) of u1 + u2, we have
w = f(u1 + u2), and it follows that

f(u1 + u2) =
s1c2d2 + s2c1d1
(1− k2s21s

2
2)

Puttingu2 = 0 givesf(u1) = s1, while u1 = 0 givesf(u2) = s2. Therefore,
f(u1 + u2) = sn(u1 + u2). Now, we have

cn2(u1 + u2) = 1− sn2(u1 + u2) =
(1− k2s21s

2
2)− (s1c2d2 + s2c1d1)

2

(1− k2s21s
2
2)

2

If we express(1− k2s21s
2
2)

2 in the form(c21 + s21d
2
2)(c

2
2 + s22d

2
1), then

cn2(u1 + u2) =
(c1c2 − s1s2d1d2)

2

(1− k2s21s
2
2)

2
.

We then take the square root, and to remove the ambiguity in sign we note that both
of these expressions are one-valued functions ofu1 except at isolated poles, so, by
the theory of analytic continuation, either the positive sign, or else the negative sign
must always be taken. By settingu2 = 0, it follows that the positive sign must be
taken. The formula fordn(u1 + u2) follows by a similar argument.
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Figure D.1: Jacobi sn; for k=0, 0.5, 0.75, 0.95, 1

Figure D.2: Jacobi cn; for k=0, 0.5, 0.75, 0.95, 1
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Figure D.3: Jacobi dn; for k=0, 0.5, 0.75, 0.95, 1

Figure D.4: Jacobi Functions k=1/3
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Appendix E

Exact finite differences schemes for ODE

and PDE

E.1 Exact Finite-difference schemes

Consider a dynamical system described by a first-order scalar equation

du

dt
= f(u, t, λ), u(t0) = u0 (E.1.1)

whereλ is the system parameters andf(u, t, λ) is such that a unique solution exists
for 0 ≤ t < T . Let the solution to Eq. E.1.1 be

u(t) = φ(λ, u0, t0, t), (E.1.2)

with
φ(λ, u0, t0, t0) = u0. (E.1.3)

Denote a finite difference model of Eq.E.1.1

uk+1 = F (λ, h, uk, tk), (E.1.4)

whereh =△ t; tk = hk; anduk ≈ u(tk). Let the solution of Eq. E.1.4 written

uk = ψ(λ, h, u0, t0, tk), (E.1.5)

where

ψ(λ, h, u0, t0, tk) = u0. (E.1.6)
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Definition Equations (E.1.1) and (E.1.4) are said to have the same general solution
if and only if

uk = u(tk) (E.1.7)

for h > 0

Definition An exact finite difference scheme is one for which the solution of the
difference equation has the same general solution as the associated differential
equation.

Theorem E.1.1 The first order differential equation

du

dt
= f(u, t, λ), u(t0) = u0 (E.1.8)

has an exact finite difference scheme given by

uk+1 = φ[λ, uk, tk, tk+1] (E.1.9)

where the functionφ is the same as that in equation E.1.2

Proof The group property of the solutions to E.1.8 gives (Appendixe D of [32])

u(t+ h) = φ[λ, u(t), t, t+ h]. (E.1.10)

If we make the identifications

t→ tk, u(t) → uk, (E.1.11)

then eq.E.1.10 becomes

uk+1 = φ(λ, yk, tk, tk+1). (E.1.12)

This is the required ordinary difference equation that has the same general solution
as eq. E.1.8.

E.2 Examples of Exact Schemes for ODE

The following interesting result is often useful in the construction of exact schemes
for linear ODE’s [33]. Letu(i)(t); i = 1, 2, ..., N ; be the set of linearly independent
functions. It is possible to construct anN − th order linear difference equation that
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has the corresponding discrete functions as solutions.{u
(i)
k ≡ u(i)(tk)} tk =△ tk =

hk, The required equation is given by the following determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

uk u
(1)
k u

(2)
k · · · u

(N)
k

uk+1 u
(1)
k+1 u

(2)
k+1 · · · u

(N)
k+1

...
...

...
...

...
uk+N u

(1)
k+N u

(2)
k+N · · · u

(N)
k+N

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (E.2.1)

As an elementary illustration of the above procedure consider the following
examples [10, 11]:

E.2.1 Decay equation

du

dt
= −λu, u(0) = u0 (E.2.2)

with solutionu(t) = u0e
−λu(t) Therefore,

∣

∣

∣

∣

uk e−λtk

uk+1 e−λtk+1

∣

∣

∣

∣

(E.2.3)

= e−λtk

∣

∣

∣

∣

uk 1
uk+1 e−λth

∣

∣

∣

∣

= 0 (E.2.4)

and the exact scheme for Eq.E.2.2 is

uk+1 = e−λhuk (E.2.5)

However, a more instructive form can be obtained by subtracting uk from both
sides of Eq.E.2.5

uk+1 − uk = (e−λh − 1)uk = −λ

(

1− e−λh

λ

)

uk (E.2.6)

and finally,
uk+1 − uk
(

1−e−λh

λ

) = −λuk (E.2.7)

The discrete first-derivative for the decay equation is given by the expression

du

dt
→

uk+1 − uk
φ

(E.2.8)
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where the denominator functionφ is

φ =

(

1− e−λh

λ

)

and has the property
φ(λ, h) = h+O(λh2) (E.2.9)

We consider the simplest differential equation, the exponential equation,

du

dt
= λu; u(t0) = u0, (E.2.10)

whereλ is a number not equal to0. The solution of this equation is given by,

u(t) = u0e
λ(t−t0).

We assume that the initial condition isu(tk) = uk and evaluating the solution
in k + 1, u(tk+1) = uk+1, we get that the equation (E.2.10) is equivalent to the
following difference equation:

uk+1 = u(tk+1) = uke
λ(∆t), (E.2.11)

where∆t = tk+1 − tk. Subtractinguk on both sides of the equation (E.2.11),
multiplying byλ, and doing some algebraic manipulations, we get,

uk+1 − uk
(eλ∆t − 1)/λ

= λuk. (E.2.12)

With an analogous process, we obtain this equivalent equation,

uk+1 − uk
(1− e−λ∆t)/λ

= λuk+1. (E.2.13)

So, equations (E.2.12) and (E.2.13) correspond to two exactnonstandard finite
difference schemes.

For these schemes the discrete representation for the first order derivative is,

du

dt
≈
uk+1 − uk
ϕ(∆t)

,

where

ϕ(∆t) =
eλ∆t − 1

λ
o ϕ(∆t) =

1− e−λ∆t

λ
and u can be replaced byuk in the scheme (E.2.12) or byuk+1 in the scheme
(E.2.13).
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E.2.2 The harmonic oscillator differential equation

We consider the harmonic oscillator differential equation

d2u

dt2
+ w2u = 0 (E.2.14)

wherew is a real constant. The two linearly independent solutions are

u(1)(t) = cos(wt), and u(2)(t) = sin(wt),

or in complex form

ū(1)(t) = eiwt, and ū(2)(t) = e−iwt.

Therefore

∣

∣

∣

∣

∣

∣

uk eiwhk e−iwhk

uk+1 eiwh(k+1) e−iwh(k+1)

uk+2 eiwh(k+2) e−iwh(k+2)

∣

∣

∣

∣

∣

∣

= 0, (E.2.15)

and

uk+2 − [2cos(wh)uk+1] + uk = 0. (E.2.16)

Shifting downward the index k by one unit and using the identity

2cos(wh) = 2− 4sin2(wh/2),

Eq.E.2.16 can be put in the form

uk+1 − 2uk + uk−1

(4/w2)sin2(hw/2)
+ w2uk = 0. (E.2.17)

This is the exact finite difference scheme for E.2.14

E.3 Examples of Exact Schemes for PDE

We now turn to some examples of partial differential equations for which exact
discrete models exists.
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E.3.1 Non linear reaction-advection equation

Consider the nonlinear reaction-advection equation

ut + ux = u(1− u), (E.3.1)

with the initial value
u(x, 0) = f(x) (E.3.2)

wheref(z) is bounded with a bounded derivative. The nonlinear transformation

u(x, t) =
1

w(x, t)
(E.3.3)

reduces Eq.E.3.1 to the linear equation

wt + wx = 1− w. (E.3.4)

The general solution of this equation can be easily determined by standard methods
[34]. It is

w(x, t) = g(x− t)e−t + 1, (E.3.5)

where g(z) is an arbitrary function ofz having a bounded firs derivative. Imposing
the initial condition of Eq. E.3.2 allows g to be calculated,i.e,

g(x) + 1 =
1

f(x)
(E.3.6)

or

g(x) =
1− f(x)

f(x)
. (E.3.7)

Using this result with Eqs.E.3.3 and E.3.5, we can obtain thesolution to Eqs E.3.1
and E.3.2; it is given by the expresion

u(x, t) =
f(x− t)

e−t + (1− e−t)f(x− t)
. (E.3.8)

To proceed, we firt construc the exact finite-difference scheme for the unidirectional
wavw equation

ut + ux = 0. (E.3.9)

the general solution of this equation is [34]

u(x, t) = H(x− t), (E.3.10)
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where H is an arbitrary function. Now the partial differenceequation

uk+1
m = ukm−1 (E.3.11)

has as its general solution an arbitrary function of(m− k) [33], i.e.,

ukm = F (m− k). (E.3.12)

if we impose the condition
△ x =△ t, (E.3.13)

then Eq. E.3.11 can be rewritten in the following form

uk+1 − ukm
β(△ t)

+
ukm − ukm−1

β(△ x)
= 0, (E.3.14)

whereβ(z) has the property

β(z) = z +O(z2), z → 0. (E.3.15)

The general solution of Eq.E.3.14, which is formally equivalent to Eq.E.3.11, is

ukm = F1[h(m− k)] = F1(xm − tk), (E.3.16)

donde(h =△ x =△ t) andF1 is an arbitrary function of its argument. Thus,
the exact difference scheme for de unidirectional wave equation is Eq.E.3.14. We
can use this result to calculate the exact difference schemefor Eq.E.3.1. Solving
Eq.E.3.8 forf(x− t) gives

f(x− t) =
e−tu(x, t)

1− (1− e−t)u(x− t)
. (E.3.17)

Now make the following substitutions in the last equation

x→ xm = (△ x)m, t→ tk = (△ t)k, △ x =△ t = h,

u(x, t) = ukm,

f(x− t) → f [h(m− k)] = fk
m.

Doing this gives

fk
m =

e−hkukm
1− (1− e−hk)ukm

. (E.3.18)

However,from Eqs.E.3.11 and E.3.12, we know thatfk
m satisfies the following

partial difference equation
fk+1
m = fk

m−1.
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Therefore, we have

e−h(k+1)uk+1
m

1− (1− e−h(k+1))uk+1
m

=
e−hkukm−1

1− (1− e−hk)ukm−1

. (E.3.19)

After some algebraic manipulations, this expression becomes

uk+1
m − ukm
e△t − 1

+
ukm − ukm−1

e△x − 1
= ukm−1(1− uk+1

m ),

△ t =△ x.
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