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Abstract

In this work, we present a detailed study of the connected component of the identity of the group
of homeomorphisms of a solenoid Homeo+(S). We treat the universal one–dimensional solenoid
S as the universal algebraic covering of the circle S1; that is, as the inverse limit of all the n–fold
coverings of S1. Moreover, this solenoid is a foliated space whose leaves are homeomorphic to R
and a typical transversal is isomorphic to the completion of the integers Ẑ.

We are mainly interested in the homotopy type of Homeo+(S). Using the theory of cohomology
group we calculate its second cohomology groups with integer and real coefficients. In fact, we
are able to calculate the associated bounded cohomology groups. That is, we found the Euler
class for the universal central extension of Homeo+(S), which is constructed via liftings to the

covering space R× Ẑ of S. We show that this is a bounded cohomology class. In particular, we
find an analogue of the Poincaré rotation number.
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Introduction

At the end of the 19th century, Henri Poincaré ([Poi]) introduced an invariant of major importance
for the study of the dynamics of homeomorphisms of the unit circle S1, this is the well known
rotation number. There are some equivalent ways of defining this topological invariant. Our
interest lies in the work of E. Ghys ([Ghy]). At the beginning of this century he found the
rotation number using the language of cohomology of groups.

Consider the group Homeo+(S1) of of homeomorphisms of the circle which preserves the

orientation and ˜Homeo+(S1) the group of lifts with respect to the universal covering π : R −→ S1.
There is a surjective homomorphism

p : ˜Homeo+(S1) −→ Homeo+(S1)

with kernel isomorphic to Z. Moreover, p is a universal covering map and this is a universal
central extension

0 −→ Z −→ ˜Homeo+(S1)
p−→ Homeo+(S1) −→ 1.

It is a consequence of a general result of Thurston ([Thu] and [Tsu]) that

H2(Homeo+(S1),Z) ' Z

and a generator eu of this group is known as the Euler class for the given extension. Moreover,
the last is a universal central extension and from the theory of universal central extensions (see
for example [Mil]), the kernel is isomorphic to the Schur multiplier H2(Homeo+(S1),Z). Using
the universal coefficient theorem we can derive the second cohomology as well.

In particular, it can be shown that the Euler class is bounded, in the sense of the cocycles being
bounded maps and represents a generator for the bounded cohomology group H2

b(Homeo+(S1),Z).
If φ : Z −→ Homeo+(S1) is any homomorphism, the corresponding class φ∗(eu) ∈ H2

b(Z,Z) '
R/Z is the rotation number of the homeomorphism φ(1).

The main objective of this thesis is to extend these results to the case of the group of homeo-
morphisms isotopic to the identity of the universal one dimensional solenoid S, which is a compact
connected Abelian topological group and also a foliated space.

The universal one–dimensional solenoid can be defined as

S := lim
←

R/nZ.

S is a compact connected Abelian group, with a canonical inclusion P : R −→ S, such that
L0 := P(R) is the arc–connected component of the identity element in S, and L0

∼= S.

The projection onto the first coordinate S −→ S1 is a Ẑ–principal fiber bundle, with fiber

Ẑ := lim
←

Z/nZ;

where Ẑ is the profinite completion of the integers Z, which is a compact Abelian totally discon-
nected topological group. Also, it is a perfect topological space. That is, Ẑ is isomorphic to the
Cantor topological group. Moreover, S is a foliated space whose leaves are homeomorphic to R
and every transversal is isomorphic to Ẑ.
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Let Homeo+(S) be the component of the identity of Homeo(S) and let ˜Homeo+(S) be the

group of lifts of homeomorphisms in Homeo+(S) via the covering Π : R× Ẑ −→ S, defined as the
quotient map of the diagonal Z–action

γ · (x, k) −→ (x− γ, k + γ), (γ ∈ Z).

There is a surjective homomorphism

p : ˜Homeo+(S) −→ Homeo+(S),

with kernel isomorphic to Z. In fact, Z will be identified with the subgroup of deck transforma-

tions ∆(Z) ⊂ ˜Homeo+(S).

As we said before, the main concern of this work is to emulate the theory as presented by
Ghys to the case of homeomorphisms of the solenoid S. In first place, we prove that Homeo+(S)
has the homotopy type of the group of translations on the base leaf L0 ↪→ Homeo+(S). Then,
we describe a central extension

0 −→ Z −→ ˜Homeo+(S) −→ Homeo+(S) −→ 1

and prove that it is a universal central extension. This can be done by extending the fact that

Homeo+(S) is uniformly perfect, as shown in [AP], to the group of lifts ˜Homeo+(S).
Therefore we have the Schur multiplier

H2(Homeo+(S),Z) ' Z.

Thus, using the universal coefficient theorem, there is an Euler class

eu ∈ H2(Homeo+(S),Z) ' Z.

This class being bounded represents a generator of H2
b(Homeo+(S),Z).

Consider the rotation element

ρ : Homeo+(S) −→ S

as introduced in the work of A. Verjovsky and M. Cruz–López (see [CV]). For f ∈ Homeo+(S)

take a lift of ρ(f) to the covering R× Ẑ. This give us an element τ ∈ R× Ẑ and fixing a height

on the covering we can describe a homogeneous quasimorphism T : ˜Homeo+(S) −→ R. Thus, we
have a quasicorner C(T, p) defined by

˜Homeo+(S)
T //

p

��

R

Homeo+(S).

Since the set of equivalence classes of quasicorners QC(Homeo+(S)) is in a bijective correspon-
dence to H2

b(Homeo+(S),R), the result is that the class [C(−T, p)] ∈ QC(Homeo+(S)) is related
to the class euR

b ∈ H2
b(Homeo+(S),R). Therefore H2

b(Homeo+(S),R) ' R.
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Finally, if we consider the projection of T : ˜Homeo+(S) −→ R to the circle we obtain an
element

% : Homeo+(S) −→ S1,

and we prove that for every homomorphism ϑ : Z −→ Homeo+(S), the class ϑ∗(eub) ∈ H2
b(Z,Z)

is the number %(ϑ(1)). Moreover, in view of Char(S) ' Q we have that H2
b(Q,Z) ' S. Thus, for

every homomorphism ϕ : Q −→ Homeo+(S), the class ϕ∗(eub) is the rotation element of ϕ(1).

In the first chapter we review the theoretical ingredients as cohomology, homology and
bounded cohomology of groups. We also study the connection between the second bounded
cohomology of groups and the theory of quasicorners. We put some emphasis in the case of the
group Homeo+(S1) and how to derive the bounded cohomology class

eub(S1) ∈ H2
b(Homeo+(S1),Z).

In the last section we review the work of E. Ghys ([Ghy]).
In the second chapter we present the general results of Homeo(S). As a consequence of the

work of C. Odden in the two–dimensional case (see [Odd]), there is a decomposition

Homeo(S) ∼= HomeoL0(S)×Z Ẑ;

where HomeoL0(S) is the subgroup of homeomorphisms of S which preserves the base leaf,

the subgroup Ẑ ↪→ Homeo+(S) representing the translations on the fiber and the quotient

HomeoL0(S) ×Z Ẑ = (HomeoL0(S) × Ẑ)/Z due to a generalized diagonal action (see section
2.3). Also, we are able to recognize the isotopy classes of elements in HomeoL0(S) as

HomeoL0(S)/Homeo+(S) ∼= Aut(S).

At the end of this chapter we mention the result of Homeo+(S) being uniformly perfect as in
[AP].

The third chapter presents a complete study of the covering p : ˜Homeo+(S) −→ Homeo+(S),
we specify the construction of an universal extension for Homeo+(S) and prove that this group
has the homotopy type of the subgroup of translations over the base leaf. Also, we calculate its
second cohomology groups and find an invariant of the dynamics as we mentioned before.
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1. HOMEOMORPHISMS OF THE CIRCLE
AND THE EULER CLASS

This chapter is a collection of some important results of the theory of cohomology of groups,
universal central extensions and bounded cohomology. Most of the results will be presented
without proof and we will made the respective references. Our aim is to understand the universal
central extension of homeomorphisms of the circle that preserves orientation; i.e.

0 −→ Z −→ ˜Homeo+(S1)
p−→ Homeo+(S1) −→ 1.

The last section presents the important results of Homeo+(S1). Also, using the language of
cohomology of groups we can conclude that there is a bounded cohomology class

eu ∈ H2
b(Homeo+(S1),Z) ' Z.

This class will give us information about the Poincaré rotation number for a given f ∈ Homeo+(S1).

1.1 Cohomology of groups

We will present the main results for the theory of cohomology of groups, for a detailed study of
this theory we recommend ([Bro]).

Let G be a group and A an Abelian group, we say that a map c : Gn+1 −→ A is an n–cochain
if it is an homogeneous application; that is,

c(gg0, . . . , ggn) = c(g0, . . . , gn), (g ∈ G).

We write Cn(G,A) for the Abelian group consisting of the n–cochains.
For every n ∈ N, define the coboundary map dn : Cn(G,A) −→ Cn+1(G,A), such that for

every c ∈ Cn(G,A),

dn(c)(g0, . . . , gn+1) =
n+1∑
i=0

(−1)ic(g0, . . . , ĝi, . . . , gn+1);

where (g0, . . . , ĝi, . . . , gn+1) ∈ Gn+1 denotes that gi has been removed. It is a straightforward
calculation to see that for each n ∈ N, dn ◦ dn−1 ≡ 0; therefore im(dn−1) ⊂ ker(dn). We call
n–coboundaries to the elements of im(dn−1) and n–cocycles to the elements of ker(dn).

Definition 1.1.1. The n–th cohomology group of G with coefficients in A is defined by

Hn(G,A) = ker(dn)/im(dn−1).
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Given an n–cochain c, we can associate to c a non–homogeneous map c̄ : Gn −→ A,

c̄(g1, . . . , gn) = c(1, g1, g1g2, . . . , g1 · · · gn).

Conversely, if c̄ : Gn −→ A is a map, we associate the n–cochain c ∈ Cn(G,A) by

c(g0, . . . , gn) = c̄(g−1
0 g1, g

−1
1 g2, . . . , g

−1
n−1gn).

Thus, Cn(G,A) is identified with the A–module of the maps C̄(Gn, A) = {Gn −→ A}. Moreover,
for every n ∈ N, the non–homogeneous coboundary operator

δn : C̄(Gn, A) −→ C̄(Gn+1, A)

it is defined by the relation

δn(c̄)(g1, . . . , gn+1) = c̄(g2, . . . , gn+1) +
n∑

i=1

(−1)ic̄(g1, . . . , gigi+1, . . . , gn+1) + c̄(g1, . . . , gn).

Then, Hn(G,A) ' ker(δn)/im(δn−1).

Let us look at some particular cases:

• In degree 0, the 0–cochains are the constant functions of G in A; i.e. C0(G,A) ' A and
H0(G,A) ' A.

• In degree 1, if c ∈ C1(G,A), then the corresponding non–homogeneous map is a map c̄ : G −→
A and c is a 1–cocycle if and only if c̄ ∈ Hom(G,A). Also, C0(G,A) ' A implies that d0 ≡ 0
and consequently

H1(G,A) ' Hom(G,A).

• In degree 2, let E be a group defining a central extension of G by A; that is, we have an exact
sequence

0 −→ A
i−→ E

p−→ G −→ 1,

with A ' i(A) belonging to the center of E and E/A ' G. We will denote this extension by
(E, p).

We say that a map σ : G −→ E satisfying p ◦ σ ≡ idG is a section and that the given central
extension defined by E splits if there is a section σ which is a homomorphism. The next result
classifies the split extensions ([Bro]).

Proposition 1.1.2. The following are equivalent:

(a) The central extension 0 −→ A
i−→ E

p−→ G −→ 1 splits.

(b) E contains a subgroup H that is mapped isomorphically to G via p; that is, H satisfies

E = i(A) ·H and i(A) ∩H = {1}.

(c) E contains a subgroup H such that every element g̃ ∈ E can be written uniquely as

g̃ = i(a)h (a ∈ A, h ∈ H).
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(d) The central extension 0 −→ A
i−→ E

p−→ G −→ 1 is equivalent to the extension

0 −→ A −→ A×G −→ G −→ 1.

Remark 1.1.3. Condition (d) can be rephrased to say that E and A × G are isomorphic in
the sense of diagrams of exact sequences. We also remark that A is an Abelian group viewed
as a G–module with trivial G–action.

As a consequence, the splittings σ : G −→ E are obviously in 1-1 correspondence with the
elements of Hom(G,A) ' H1(G,A). Let σ : G −→ E be a splitting, then E ' G × A via
the isomorphism (g, a) 7−→ σ(g)i(a). Hence, in order to measure the non–triviality of a central
extension we try to find an obstruction to the existence of a splitting.

Because p is surjective, we can always take a section σ : G −→ E and define the obstruction
map c̄ : G2 −→ E by the rule

c̄(g1, g2) = σ(g1g2)
−1σ(g1)σ(g2).

In particular, using that p is a homomorphism, c̄ projects onto the identity element of G; or
c̄ ∈ ker(p) ' im(i). Therefore, c̄ : G2 −→ A defines a non–homogeneous 2–cochain and we take
the corresponding 2–cochain c ∈ C2(G,A). In fact, it is easy to see that c is a cocycle called
the obstruction cocycle.

If we choose another section σ′ : G −→ E, then σ′ is defined by

σ′(g) = σ(g)i(u(g)), (g ∈ G);

with some function u : G −→ A. Let c′ : G2 −→ A be the obstruction cocycle associated to
σ′. For every g1, g2 ∈ G we have:

c̄′(g1, g2) = σ′(g1g2)
−1σ′(g1)σ

′(g2)

= (σ(g1g2)i(u(g1g2)))
−1σ(g1)i(u(g1))σ(g2)i(u(g2))

= i(u(g1g2))
−1σ(g1g2)

−1σ(g1)i(u(g1))σ(g2)i(u(g2))

= i(u(g1g2))
−1σ(g1g2)

−1σ(g1)σ(g2)i(u(g1))i(u(g2))

= i(u(g1g2))
−1c̄(g1, g2)i(u(g1) + u(g2))

= c̄(g1, g2)i(u(g2)− u(g1g2) + u(g1))

= c̄(g1, g2)i(δ
1(u)(g1, g2)).

Equivalently, c̄′ and c̄ differ by the 1–coboundary associated to u. The same is true for the
cocycles c and c′ and the result is that the cohomology class of c in H2(G,A) does not depend
on the choice of the section. We call this cohomology class the Euler class of the extension
(E, p) and we denote it by eu ∈ H2(G,A).

Theorem 1.1.4. The set of equivalence classes of central extensions of G by A is in bijection
with H2(G,A).

That is, two central extensions are equivalent if, and only if, they have the same Euler class.
Also, every element in H2(G,A) represents a central extension.
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Example 1.1.5. For the case A = G = Z we have that every central extension admits one
splitting σ : Z −→ Z, because it is enough to take σ(1) ∈ p−1(1) and to define σ(n) = σ(1)n for
every n ∈ Z. Hence, H2(Z,Z) = 0 and so every central extension of Z by Z is trivial.

In fact, this argument is valid for every free Abelian group G and A = Z.

1.2 Homology and universal central extensions

Define the chain complex C∗(G) as follows: consider the equivalent relation given by the action
of G on Gn+1 as

(g0, . . . , gn) ∼ (gg0, . . . , ggn).

Then the set of equivalence classes [g0, . . . , gn] is the Z–basis of Cn(G) and the boundary map
dn : Cn(G) −→ Cn−1(G) is defined as

dn[g0, . . . , gn] =
n∑

i=0

(−1)i[g0, . . . , ĝi, . . . , gn].

This is the so called homogeneous chain complex of G.
It is easy to see that dn−1 ◦ dn ≡ 0 and then the n–th homology group G with integer

coefficients is defined as

Hn(G,Z) =
ker(dn)

im(dn+1)
.

Note that the definition of homology is based on the standard resolution over Z (see [Bro]).
There is a non–homogeneous description of the previous complex. The set of non–homogeneous

chains Cn is simply the set Gn with the n–th boundary operador

δn(g1, . . . , gn) = (g2, . . . , gn) +
n−1∑
i=1

(−1)i(g1, . . . , gigi+1, . . . , gn) + (−1)n(g1, . . . , gn−1).

Thus, the n–th homology group is Hn(G,Z) = ker
(
δn

)
/im

(
δn+1

)
.

In low dimensions we have that δ1 ≡ 0 and δ2(g, h) = h− (gh) + g. Therefore, H0(G,Z) = 0
and

H1(G,Z) ' G

[G,G]
;

where [G,G] denotes the commutator subgroup of G, that is , the subgroup generated by all the
commutators ghg−1h−1 with g, h ∈ G.

We say that a central extension (G̃, u) of G by an Abelian group A is universal if for any other
central extension (E, p) of G, there is a unique morphism G̃ −→ E that completes a commutative
diagram of exact sequences:

0 // A //

��

G̃
u //

��

G //

��

1

0 // A // E
p // G // 1.
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If the group has a universal central extension, then it is by definition unique up to isomorphism
in the category of central extensions. For a complete treatment of this part of the theory we
recommend the work of Milnor [Mil] and chapter four of [Ros].

In particular, if the group G is perfect; that is, G = [G,G], we have the following main result.

Theorem 1.2.1. G has a universal central extension if and only if G is perfect. In this case,

the extension
(
G̃, u

)
is universal if and only if the following two conditions hold:

(i) G̃ is perfect,

(ii) all central extensions of G̃ are trivial.

Remark that H2(G,A) is in bijection with isomorphism classes of central extensions of G by
A; or equivalently, there exists an Abelian group Ext(G,A) that contains all the isomorphism
classes of central extensions of G by A, such that every element is associated to a central extension
of G and H2(G,A) ' Ext(G,A). Moreover, we have the “Universal Coefficient Theorem”.

Theorem 1.2.2. Let G be a group and A be an Abelian group. There are short exact sequences

0 −→ Ext(Hk−1(G,Z), A) −→ Hk(G,A) −→ Hom(Hk(G,Z), A) −→ 0

for every k, which split. In particular, H2(G,A) = 0 for all Abelian groups A if and only if
G/[G,G] is free (Abelian) and H2(G,Z) = 0.

Our interest lies in the following results.

Corollary 1.2.3. If G is a perfect group, then a central extension
(
G̃, u

)
is universal if and

only if

H1

(
G̃,Z

)
= H2

(
G̃,Z

)
= 0.

Theorem 1.2.4. Let G be a perfect group. Then the kernel of the universal central extension(
G̃, u

)
of G is naturally isomorphic to A = H2(G,Z), and under the isomorphisms

Ext(G,A) ' H2(G,A) ' Hom(H2(G,Z), A)

the class of
(
G̃, u

)
corresponds to the identity map H2(G,Z) −→ A.

Note that in the last result the term Ext derived from the Universal Coefficient Theorem
vanishes since H1(G,Z) = 0.
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1.3 Bounded cohomology of groups

Another important theory introduced by Gromov ([Gro]) is the theory of bounded cohomology of
groups. Let G be a group and A = Z or A = R. Given n ∈ N, a map cb : Gn+1 −→ A is a bounded
n–cochain if it is a bounded homogeneous map. We denote by Cn

b (G,A) the A–submodule of the
bounded n–cochains. Observe that Cn

b (G,A) ⊂ Cn(G,A) and let

dn
b : Cn

b (G,A) −→ Cn+1
b (G,A)

be the n–th bounded coboundary operator defined by the restriction dn
b = dn|Cn

b (G,A). It is a well

defined operator and for every n ∈ N, dn
b ◦ dn−1

b ≡ 0.

Definition 1.3.1. The n–th bounded cohomology group of G with coefficients in A is
defined by

Hn
b (G,A) = ker(dn

b )/im(dn−1
b ).

We also define
iA : Hn

b (G,A) −→ Hn(G,A)

as the map obtained by forgetting that the cocycle is bounded. There are some important
questions involving the surjectivity or injectivity of this map. Following the notation of [Har],
define

EH2
b(G,R) := ker(iR).

Let us review the simple cases: if n = 0 the bounded 0–cochains are still identified with the
constant maps; that is, H0

b(G,A) ' A. For n = 1 as we have seen H1(G,A) ' Hom(G,A), thus
H1

b(G,A) = 0.

Remark 1.3.2. If A is a bounded Abelian group, the cohomology of groups coincides with the
bounded cohomology of groups.

We have the following important result due to Gromov, Brooks, or Ivanov (see [Broo], [Gro]
and [Iva]).

Theorem 1.3.3. Given an arc–connected topological space X with the homotopy type of a count-
able CW–complex,

Hn
b (X,R) ' Hn

b (π1(X),R), Hn
b (X,Z) ' Hn

b (π1(X),Z), (n ≥ 1);

where the left hand side denotes the bounded cohomology of topological spaces and the right hand
side is the bounded cohomology of the fundamental group of X.

The bounded cohomology of amenable groups is well understood. Let G be a group and B(G)
be the Banach space of real valued bounded functions of G, with the norm

||f ||∞ = sup{|f(g)| : g ∈ G}.

A lineal functional m : B(G) −→ R is called a left invariant mean if satisfies the following:
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• m(1) = 1,

• m(f) ≥ 0 if f ≥ 0 and

• m is invariant under left translations; i.e

m(Lg ◦ f) = m(f),

for every f ∈ B(G) and every g ∈ G, where Lg : B(G) −→ B(G) is defined by

Lg(f)(h) = f(gh), (f ∈ B(G), h ∈ G).

Definition 1.3.4. A group G is said to be amenable if there is an invariant mean in B(G).

Finite and Abelian groups are examples of amenable groups.

Remark 1.3.5. Alternatively, a group G is amenable if every action on a compact space has a
fixed point.

Proposition 1.3.6 (Trauber). If G is an amenable group, then Hn
b (G,R) = 0 for all n ≥ 1.

Example 1.3.7. We calculate H2
b(Z,Z). Consider the exponential exact sequence

0 −→ Z −→ R −→ S1 −→ 1,

and the associated long exact sequence in bounded cohomology

0 −→ Z −→ R −→ S1 −→ H1
b(Z,Z) −→ H1

b(Z,R) −→ H1
b(Z,S1) −→

−→ H2
b(Z,Z) −→ H2

b(Z,R) −→ H2
b(Z,S1) −→ · · · .

Using that Z is an amenable group, Hn
b (Z,R) = 0 for every n ≥ 1. Calculating these groups for

n = 1 and n = 2 we obtain that

H2
b(Z,Z) ' H1

b(Z,S1) ' Hom(Z,S1) ' S1.

If G is any group, the next step is to study the kernel of the comparison map iR. Let
α = [c] ∈ EH2

b(G,R); thus, there is f : G −→ R such that δ1f = c. Since

sup
g,h∈G

|f(h)− f(gh) + f(g)| = sup
g,h∈G

|δ1f(g, h)| = sup
g,h∈G

|c(g, h)| <∞,

we have that f is a quasimorphism. We say that two quasimorphisms are equivalent if

||f1 − f2||∞ <∞.

Denote by Q(G) the space of equivalence classes of quasimorphisms (see [Har] for details).

Proposition 1.3.8. There is an isomorphism

EH2
b(G,R) ' Q(G)

Hom(G,R)
.
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The next result about canonical representatives of classes of quasimorphisms follows.

Proposition 1.3.9. Let f : G −→ R be a quasimorphism. For every g ∈ G the limit

f̃(g) := lim
n−→∞

f(gn)

n

exists and it is a quasimorphism. Moreover, it is homogeneous, i.e. f̃ (gn) = nf̃(g) for all n ≥ 0
and equivalent to f . In fact, f̃ is the unique homogeneous quasimorphism equivalent to f .

As a consequence, Q(G) can be identified with the space of homogeneous quasimorphisms on
G. Also, the comparison map iR is injective if and only if every homogeneous quasimorphism is
a homomorphism. Furthermore, we have:

Corollary 1.3.10. If G is an amenable group, then every homogeneous quasimorphism is an
homomorphism.

Our interest lies in some other properties of homogeneous quasimorphism:

Lemma 1.3.11. Let f : G −→ R be a homogeneous quasimorphism. Then the following hold:

1. f(g−1) = −f(g).

2. f(gn) = nf(g), ∀n ∈ Z.

3. f is invariant under conjugation.

4. If N � G is normal, p : G −→ G/N is the canonical projection and f |N ≡ 0, then there
exists a homogeneous quasimorphism F : G/N −→ R with f = F ◦ p.

5. f is a homomorphism if and only if f |[G,G] ≡ 0.

In the case of the free group generated in two letters F2, we have that H2
b and EH2

b are infinite
dimensional as R–vector spaces (see [Broo]). In general it is not easy to calculate the bounded
cohomology in second degree.

The next definition is due to T. Hartnick ([Har]), who suggested that since H2(G,R) classifies
R–central extensions and EH2

b(G,R) classifies quasimorphisms, then it is reasonable to expect
that H2

b classifies a combination of the two and suggest introduced the following terminology.

Definition 1.3.12. A quasi–corner C(f, p) over G is a diagram

G̃
f //

p

��

R

G,

with p surjective, ker(p) central in G̃ and f a homogeneous quasimorphism.
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Observe that every quasimorphism f : G −→ R defines a quasi–corner C(f, idG). The follow-
ing discussion generalizes the notion of being cohomologous for quasimorphisms. Let C(f1, p1)
and C(f2, p2) be two quasi–corners over G. Let p : G̃ −→ G be the map induced by the pushout
functions π1 and π2:

G̃
π1

����
��

��
�

π2

��>
>>

>>
>>

p

��

G̃1

p1
��?

??
??

??
G̃2

p2
����

��
��

�

G .

Since the kernels of p1 and p2 are Abelian and therefore amenable, ker p is amenable and then(
G̃, p

)
is an amenable extension.

We also have the respective quasimorphisms f1 and f2 and the induced ones from G̃:

G̃

π1����
��

��
�

π∗1f1

wwoooooooooooooooo

π2 ��>
>>

>>
>>

p

��

π∗2f2

''OOOOOOOOOOOOOOOO

R G̃1

p1
��?

??
??

??f1

oo G̃2

p2
����

��
��

� f2

// R

G .

It is said that two quasi–corners C(f1, p1) and C(f2, p2) are equivalent if

(π∗1f1 − π∗2f2) |[G̃,G̃] ≡ 0.

Observing Lemma 1.3.11, two quasi–corners as before are equivalent if the homogeneous quasi-
morphism

π∗1f1 − π∗2f2 : G̃ −→ R

is a homomorphism. Denote by QC(G) the set of equivalence classes of quasi–corners over G.
The main result is that QC(G) is in bijection with H2

b(G,R). First, an easy consequence of the
so called five–term exact sequence.

Proposition 1.3.13. For any amenable (in particular central) extension p : G̃ −→ G the map

p∗ : H2
b(G,R) −→ H2

b

(
G̃,R

)
is an isomorphism.

Proof. Consider the short exact sequence

0 −→ A
i−→ G̃

p−→ G −→ 1,

using the five–exact sequence in bounded cohomology:

0 −→ H2
b(G,R) −→ H2

b(G̃,R) −→ H2
b(A,R) −→ H3

b(G,R) −→ H3
b(G̃,R).
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As A is an amenable group, we have that

H2
b (A,R) = 0.

y

Now, given a quasi–corner C = C(f, p), define the class

αb(C) := (p∗)−1
(
d1

bf
)
∈ H2

b(G,R)

and say that C realizes the class αb(C). Note that two equivalent quasi–corners realize the same
bounded cohomology class. There is a well defined map

α : QC(G) −→ H2
b(G,R)

[C] 7−→ αb(C).

Proposition 1.3.14. The map α : QC(G) −→ H2
b(G,R) is a bijection.

Proof. Two quasi–corners C(f1, p1) and C(f2, p2) represent the same bounded cohomology class
if and only if [d1

bπ
∗
1f1] = [d1

bπ
∗
2f2], which means that π∗1f1 − π∗2f2 is a homomorphism; or by

definition, the two quasi–corners are equivalent. Thus we have proved the injectivity.
Let αb ∈ H2

b(G,R) and take α = iR(αb) ∈ H2(G,R). There is a result (see Corollary 2.8 of
[Har]) that enables us to find a central extension p : G̃ −→ G along which the pullback of α
vanishes. We fix such an extension

0 −→ C −→ G̃ −→ G −→ 1,

where C is a subgroup of R and p∗α = 0. Therefore we have

ĩR (p∗(αb)) = p∗iR(αb) = p∗α = 0;

i.e.
p∗αb ∈ EH2

b

(
G̃,R

)
.

This in fact says that there exists a quasimorphism f : G̃ −→ R, which is homogeneous and

d1
bf = p∗αb;

hence, C(f, p) realizes the class αb, or

(p∗)−1(d1
bf) = αb.

y
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1.4 Homeomorphisms of S1 which preserve orientation

Consider the group of homeomorphisms of the unit circle Homeo(S1). It is a well known result
that it has a decomposition of the form

Homeo(S1) ' Aut(S1)× Homeo+(S1);

where the subgroup of automorphisms Aut(S1) = {id,−id} ' Z/2Z and Homeo+(S1) is the
subgroup of homeomorphisms of S1 that preserve orientation. Equivalently, if f ∈ Homeo+(S1),
then f is isotopic to the identity and we write f ∼ id. The mapping class group for S1 is given
by

Homeo(S1)/Homeo+(S1) ' Aut(S1).

Let π : R −→ S1 be the universal covering map and consider the group of lifts of elements in
Homeo+(S1):

˜Homeo+(S1) =
{
f̃ ∈ Homeo(R) : π ◦ f̃ ≡ f ◦ π, f ∈ Homeo+(S1)

}
.

Observe that every f̃ ∈ ˜Homeo+(S1) commutes with integer translations; i.e. f̃(x+1) = f̃(x)+1
for every x ∈ R. Thus, there is a surjective homomorphism

p : ˜Homeo+(S1) → Homeo+(S1),

with kernel identified with the subgroup of integer translations {x 7−→ x+γ : γ ∈ Z} ' Z. This
defines a central extension

0 −→ Z −→ ˜Homeo+(S1)
p−→ Homeo+(S1) −→ 1.

Note that both Homeo+(S1) and ˜Homeo+(S1) are topological groups with the compact–open
topology. An important result from [Ghy] is that, up to conjugacy Homeo+(S1) admits a unique
maximal compact subgroup ([Ghy]).

Proposition 1.4.1. Up to conjugacy, the subgroup of rotations SO(2,R) is the maximal compact
subgroup of Homeo+(S1).

The group SO(2,R) is canonically identified with S1 and therefore, there is a well defined
inclusion S1 ↪→ Homeo+(S1).

Proposition 1.4.2. Homeo+(S1) is homotopically equivalent to S1.

Proof. In the first place, the group of homeomorphisms of R that preserves orientation is
a convex set because it is identified with the set of strictly increasing functions from R to R
tending to ±∞ as the variable tends to ±∞.

If f̃ ∈ ˜Homeo+(S1), then f̃ can be written as f̃ ≡ id + φ, with φ : R −→ R a continuous
Z–periodic function. Moreover, φ can be decomposed in a unique way as φ ≡ c+φ0, where c ∈ R
is a constant and φ0 : R −→ R is a Z–periodic function whose average over each period vanishes.
Take λ ∈ [0, 1] and define f̃λ : R −→ R by

f̃λ(x) = x+ c+ (1− λ)φ0(x).
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Using the first observation we notice that f̃λ ∈ ˜Homeo+(S1) for every λ ∈ [0, 1]. Also f̃0 ≡ f̃

and f̃1 ≡ id + c. Consequently, we obtain a continuous retraction of ˜Homeo+(S1) onto the
subgroup of real translations, which is isomorphic to R. Moreover, this retraction commutes with
integer translations and therefore, there is a continuous retraction of the quotient Homeo+(S1) '

˜Homeo+(S1)/Z onto the subgroup of rotations R/Z ∼= S1.
y

The last proof shows that Homeo+(S1) is homeomorphic to the product of S1 and a convex
set. Also, note that it implies that the fundamental group π1(Homeo+(S1)) is isomorphic to
π1(S1) ' Z.

In order to measure the non–triviality of the extension

0 −→ Z −→ ˜Homeo+(S1)
p−→ Homeo+(S1) −→ 1,

we calculate H2(Homeo+(S1),Z). The next result is crucial to this end (see [Thu] or [Tsu]).

Theorem 1.4.3 (Thurston–Mather). Let M be a manifold, there is an isomorphism

Hn(BHomeo(M),Z) ' Hn(Homeo(M)δ,Z), (n ≥ 1);

where BHomeo(M) denotes the classifying space of Homeo(M), the left hand side is the bounded
cohomology of topological spaces and the right hand side is the bounded cohomology of the abstract
group Homeo(M).

Hence, using that S1 ↪→ Homeo+(S1) is an homotopy equivalence, we have that

BHomeo+(S1) = BS1 ∼= CP∞.

Therefore,

Hn(Homeo+(S1),Z) ' Hn(BHomeo+(S1),Z) ' Hn(CP∞,Z) ' Z[eu], (n ≥ 1);

where eu is the free generator for H2(Homeo+(S1),Z) ' Z; or equivalently, eu is the Euler class
associated to the given extension.

Analogously, it can be seen that the group Homeo+(S1) is uniformly perfect; that is, every

element is generated by two commutators. Thus, the central extension
(

˜Homeo+(S1), p
)

is

universal. Therefore, we have that H2(Homeo+(S1),Z) ' Z and in consequence

H2(Homeo+(S1),R) ' R, H2(Homeo+(S1),Z) ' Z,

by the universal coefficient theorem.

Choose a section σ : Homeo+(S1) −→ ˜Homeo+(S1) satisfying that σ(f)(0) ∈ [0, 1) ⊂ R in
p−1(f) for all f ∈ Homeo+(S1). Take the non–homogeneous obstruction cocycle

c̄(f1, f2) = σ(f1 ◦ f2)
−1 ◦ σ(f1) ◦ σ(f2).
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Lemma 1.4.4. The 2–cocycle c̄ takes only the values 0 or 1.

Proof. We know that σ(f1 ◦ f2) and σ(f1) ◦ σ(f2) are lifts of the same element f1 ◦ f2. Thus,
they must differ by an integer translation; i.e,

σ(f1 ◦ f2) ◦ τγ ≡ σ(f1) ◦ σ(f2),

and τγ : R −→ R is the integer translation by γ ∈ Z. In fact, γ = 0 or γ = 1:
σ(f1 ◦ f2)(0) ∈ [0, 1), implies that σ(f1 ◦ f2)(τγ(0)) ∈ [γ, γ + 1). However,

σ(f1 ◦ f2)(τγ(0)) = σ(f1)(σ(f2)(0)) ∈ [σ(f1)(0), σ(f1)(0) + 1) ⊂ [0, 2).

Consequently, γ is equal to 0 or 1.
y

Hence the 2–cocycle associated to the Euler class is bounded and therefore we can think it
as eub(S1) ∈ H2

b(Homeo+(S1),Z) ' Z. It is a well defined bounded cohomology class because
changing the value of the section in 0 will only change the choice of the section by a bounded
amount. We call eub(S1) the bounded Euler class.

Denote by euR(S1) and euR
b (S1) the corresponding cohomology classes with real coefficients.

Observe that under the comparison map iR(euR
b (S1)) = euR(S1). Moreover, the class euR

b (S1) in
H2

b(Homeo+(S1),R) can be translated in the quasi–corner model to

˜Homeo+(S1)
T //

p

��

R

Homeo+(S1),

where T : ˜Homeo+(S1) −→ R is uniquely determined as the Poincaré translation number. This

holds because Homeo+(S1) is perfect. Equivalently, for every x ∈ R the map Tx : ˜Homeo+(S1) −→
R given by Tx

(
f̃
)

= f̃(x)− x is a quasimorphism; moreover, any two of these are at uniformly

bounded distance and therefore there is a common homogenization

T : ˜Homeo+(S1) −→ R

f̃ 7−→ lim
n−→∞

f̃n(x)− x

n
,

which is independent of x ∈ R.

Theorem 1.4.5. If p : ˜Homeo+(S1) −→ Homeo+(S1) is the canonical projection, then euR
b (S1)

is represented by the quasi–corner C(−T, p).

Proof. If σ : Homeo+(S1) −→ ˜Homeo+(S1) is the unique section with σ(f)(0) ∈ [0, 1) and euσ

is the corresponding cocycle representative of the Euler class of the extension p, we will prove
that

p∗euσ = −d1A;
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where A(f̃) = bf̃(0)c.
That is, A(f̃) is the greatest integer such that A(f̃) ≤ f̃(0). Since |A(f̃) − T0(f̃)| < 1, this

implies the statement.

The observation is that for f̃ , g̃ ∈ ˜Homeo+(S1), we have

b(f̃ g̃)(0)c = −b(f̃ g̃)−1(0)c.

Thus, if we denote f̄ = f̃ − A(f̃), then

(p∗eσ)(f̃ , g̃) = i−1
(
σ(p(f̃)p(g̃))−1σ(p(f̃))σ(p(g̃))

)
=

(
(fg)−1fg

)
(0)

=
(
(fg)−1f(g̃ − bg̃(0)c)

)
(0)

=
(
(fg)−1(f̃ g̃ − bg̃(0)c − bf̃(0)c)

)
(0)

= 0− bg̃(0)c − bf̃(0)c − b(f̃ g̃)−1(0)c
= b(f̃ g̃)(0)c − bg̃(0)c − bf̃(0)c

= −d1A
(
f̃ , g̃

)
.

y

Let G be a group and ψ : G −→ Homeo+(S1) a homomorphism. Consider the pull–back of
the given extension; that is,

G̃ =
{

(g, f̃) ∈ G× ˜Homeo+(S1) : ψ(g) = p(f̃)
}
,

and the natural projection G̃ −→ G which gives us the central extension

0 −→ Z −→ G̃ −→ G −→ 1.

The Euler class of this extension is called the Euler class of the homomorphism ψ and it is
denoted by eu(S1)(ψ) ∈ H2(G,Z).

It is easy to see that two conjugated homomorphisms ψ1, ψ2 : G −→ Homeo+(S1) have the
same Euler class eu(S1)(ψ1) = eu(S1)(ψ2) ∈ H2(G,Z). Also, eu(S1)(ψ) = 0 if and only if ψ has

a lift ψ̃ : G̃ −→ ˜Homeo+(S1) such that ψ ≡ p ◦ ψ̃.
We have a well defined bounded cohomology class eub(S1)(ψ) ∈ H2

b(G,Z) called the bounded
Euler class of the homomorphism ψ.

Theorem 1.4.6 (Ghys). There is a cohomology class eub(S1) ∈ H2
b(Homeo+(S1),Z) satisfying:

(a) For every homomorphism ψ : G −→ Homeo+(S1), the image of eu(S1)b(ψ) in H2(G,Z) via
the map iZ is the Euler class of the homomorphism ψ.
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(b) If ψ : Z −→ Homeo+(S1) is an homomorphism, then eub(S1)(ψ) ∈ H2
b(Z,Z) ' S1 is the

rotation number of the homeomorphism ψ(1).

(c) If ψ1 and ψ2 are two homomorphisms from G to Homeo+(S1) that are conjugate by an element
of Homeo+(S1), then

eub(S1)(ψ1) = eu(S1)b(ψ2).



2. HOMEOMORPHISMS OF THE
SOLENOID

In this chapter we will introduce the main object of our study, the solenoid S. This is a one–
dimensional compact connected Abelian group, with a dense inclusion of the one parametric
group R. S is also a Ẑ–principal bundle with base space S1 and a foliated space whose leaves are
homeomorphic to R and a typical fiber is isomorphic to Ẑ. The solenoid is also known as “the
universal algebraic covering of the circle”.

Our purpose is to investigate the isotopy classes of the group of homeomorphisms of the
solenoid. In order to do that we will review some results for the continuous functions S −→ S
which preserve the zero element and important decompositions for the group of homeomorphisms
of the solenoid. The most relevant subgroups are the group of automorphisms, the group of
homeomorphisms that preserves the base leaf and the subgroup of translations over the fiber.

We will introduce the connected component of the identity of the group of homeomorphisms,
which turns out to be open in the subgroup of homeomorphisms that preserve all the leaves of
the solenoid and it is a simple and uniformly perfect group.

2.1 The solenoid

Let π : R −→ S1 be the universal covering map of the circle; equivalently, we identify S1 as the
quotient R/Z and then S1 is a topological compact connected Abelian group. If for every n ∈ N
we identify S1 ∼= R/nZ, we have the universal covering maps πn : R −→ S1.

Consider N as a preordered set of indices with the relation of divisibility. Thus, for every
n,m ∈ N such that n|m, there is only a covering map pnm : S1 −→ S1 such that the following
diagram is commutative:

R
πm

��

πn

}}||
||

||
||

S1 S1.
pnmoo

That is, {S1, pnm}N is an inverse system of circles and continuous homomorphisms.

Definition 2.1.1. The universal one–dimensional solenoid S is the inverse limit of the
system {S1, pnm}N; that is,

S = lim
←

S1 ∼=

{
z = (zn) ∈

∏
N

S1 : n|m⇒ pnm(zm) = zn

}
.
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S is a Hausdorff compact Abelian topological group because it is the inverse limit of Hausdorff
compact Abelian topological groups and the operation is defined on the coordinates. Also, S
admits a dense inclusion of R defined by the injective homomorphism

P : R −→ S

x 7−→ (πn(x)).

The image P(R) is the path–connected component of the zero element 0 ∈ S. We denote by
L0 = P(R) and call it the base leaf of S.

Using the density of L0 we see that S is connected. Alternatively, we can use S ∼= Char(Q),
where Char(Q) denotes the character group of Q; i.e. the group of continuous homomorphisms

Q −→ S1.

By the Pontrjagin duality theorem, Char(S) ∼= Q and we can use the fact that Q is torsion free
to conclude that S is a connected group (see [HM]).

Denote by pn : S −→ S1 the projection onto the n–th coordinate. In particular, set p = p1.
For every ω ∈ S1, p−1(ω) ∼= Ẑ, where Ẑ is the profinite completion of Z; that is,

Ẑ = lim
←

Z/nZ ∼=

{
k = (kn) ∈

∏
N

Z/nZ : n|m⇒ km ≡ kn mod nZ

}
.

Ẑ is a topological compact Abelian totally disconnected and perfect group. Hence, Ẑ is homeo-
morphic to the Cantor set and admits a dense inclusion Z ↪→ Ẑ (see [Wil] for details). For every

n ∈ N, let ρn : Ẑ → Z/nZ be the projection onto the n–th coordinate.
There is a continuous and effective action defined by

Ẑ× S −→ S

(k, z) 7−→ k · z := (zn + kn).

Proposition 2.1.2. p : S −→ S1 is a Ẑ–principal fiber bundle.

Proof. Let ω ∈ S1 and Uω be an open simply connected neighborhood of ω. For every n ∈ N the
covering maps p1,n are regular, so Uω is totally covered by p1,n. Since π : R −→ S1 is a covering,
given y ∈ π−1(ω) there is a unique open neighborhood Uy of y in R, such that π(Uy) ∼= Uω.

We have the following continuous map

g : Uy × Ẑ −→ p−1(Uω)

(x, k) 7−→ k · P(x) = (πn(x) + kn).

Let us prove that this map is in fact a homeomorphism.
In the first place, g is surjective because π(Uy) = Uω and Uω is totally covered by every map

p1,n. g is also injective because if (πn(x) + kn) = (πn(y) + ln); then π(x) = π(y). Hence, there is

a unique q ∈ Ẑ such that q · P(x) = P(y); that is,

g(Uy × Ẑ) = p−1(Uω).
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Therefore, g is bijective.

We will also prove that g is an open map. Let kn ∈ Z/nZ and W = ρ−1
n (kn) an open subset

of Ẑ. If U ⊂ R is open, then U×W is an open subset of R× Ẑ and g(U×W ) = p−1
n (πn(U)+kn).

Indeed, take x ∈ g(U ×W ), then xn ∈ πn(U) + kn; i.e., x ∈ p−1
n (πn(U) + kn). Conversely, if

x ∈ p−1
n (πn(U) + kn), we have that xn = πn(u) + kn for some u ∈ U and

x1 = p1,n(xn) = p1,n(πn(u) + kn) = π(u).

Thus, there exists only a l ∈ Ẑ such that x = g(u, l). As a consequence,

πn(u) + kn = xn = πn(u) + ln;

or l ∈ W . We conclude that x ∈ g(U ×W ).
Hence g(U ×W ) = p−1

n (πn(U) + kn) implies that g is open. Consequently, g is a homeomor-
phism because it is a bijective and open map. In particular, the following diagram is commutative

Uy × Ẑ

��

g // p−1(Uω)

p

��
Uy

π // Uω

.

Because this construction is independent of the choice of ω ∈ S1 we get the desired fiber bundle
structure.

Moreover, the bundle is locally trivial because

p(g(x, k)) = p(πn(x) + kn) = π(x).

In order to finish the proof we see that the action of Ẑ in S is compatible with the fiber bundle
structure: for every k, l ∈ Ẑ and x ∈ Uy,

g(k · (x, l)) = g(x, k + l) = (πn(x) + kn + ln)

= k · (πn(x) + ln)

= k · g(x, l).

y

Remark 2.1.3. From the last proof, there is an atlas of open charts on S given by

gα : Vα −→ (a, b)× Ẑ,

where (a, b) is an open interval of R. Without loss of generality we assume that the atlas is

maximal and call Vα = g−1
α ((a, b)× Ẑ) an open box of S. We say that a collection of boxes {Vi}l

i=1

in S is a box decomposition if the following two conditions are satisfied:

• i 6= j ⇒ Vi ∩ Vj = ∅,

•
{
Vi

}
forms a cover of S.
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This notion was introduced in [BBG], where it was shown that S admits a box decomposition.
Moreover, for every box cover {Vi}n

i=1 of S, there exists a box decomposition {Wi}l
i=1; such that

if Wi ∩ Vj 6= ∅ then Wi ⊂ Vj.

The solenoid also admits a product foliated structure: define the diagonal action of Z on the
product R× Ẑ by

Z× (R× Ẑ) −→ R× Ẑ
(γ, (x, k)) 7−→ (x− γ, k + γ).

Observe that in the second coordinate we are thinking of γ as the image of γ under the inclusion
Z ↪→ Ẑ. Obviously, R× Ẑ has a trivial foliated structure and we also have this property for the
quotient R×Z Ẑ := (R× Ẑ)/Z. Moreover, R×Z Ẑ is a Ẑ–fiber bundle over S1 (see [CC]).

Next we show that S is canonically identified with R×Z Ẑ, the proof is analogous to the one
for the bi–dimensional solenoid given in [Odd].

Theorem 2.1.4. S ∼= R×Z Ẑ.

Set Π : R × Ẑ −→ S to the quotient function which is a covering map ([MR]). The next

observations are plain: the space of leaves is isomorphic to Ẑ/Z, all the leaves are dense on S
and the base leaf L0 is identified with Π(R× Z) = R×Z Z.

Moreover, the identification of an open box now reads

V = (a, b)×Z Ẑ,

with (a, b) ⊂ R. We will be writing V ' (a, b)× Ẑ for a box. Thus, for every z ∈ V , which reads

in coordinates inside the chart (x, k), the sets (a, b) × {k} and {x} × Ẑ are called the slice and
the vertical of z respectively.

Remark 2.1.5. There are also boxes of S of the form W ' (a, b) × C with C a proper Cantor

subset of Ẑ. However, for most of the details in this work, it suffices to consider boxes with a
vertical isomorphic to Ẑ. We will mention, if necessary, the use of this kind of boxes.

2.2 Continuous functions preserving the zero element

We recall the main results about continuous functions S −→ S that preserve the zero element
(for the complete details see [Kee]).

Denote by C(S) the space of continuous functions S −→ S and let C∗(S) be the subspace of
functions that preserve the zero element; i.e., f ∈ C∗(S) satisfies f(0) = 0. If Hom(S) is the
subspace of homomorphisms of the solenoid, then Hom(S) ⊂ C∗(S).

It is a consequence of a result of W. Scheffer (see Theorem 2 of [Sch]) that

C∗(S) ∼= C∗(S,Hom(Char(S),R))× Hom(S).

This is a topological isomorphism; that is, we are thinking of the respective spaces as topological
groups, with the additive operation under evaluation and the compact–open topology.
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As we mentioned before, it is well known that Char(S) ∼= Q and consequently

Hom(Char(S),R) ∼= Hom(Q,R) ∼= R.

Thus,
C∗(S) ∼= C∗(S,R)× Hom(S).

Let C0(S) := {f0 ∈ C∗(S) : f0 ∼ 0} be the subset of null–homotopic functions preserving
the zero element. The main observation is that due to the lifting property C0(S) ∼= C∗(S,R) and
therefore

C∗(S) ∼= C0(S)× Hom(S).

Remark 2.2.1. As a consequence of this result every continuous function of the solenoid which
preserves the neutral element is null–homotopic or is homotopic to a homomorphism.

2.3 The group of homeomorphisms of the solenoid

Recall that Π : R× Ẑ −→ S is a covering map induced by the the diagonal action of Z. For every
γ ∈ Z define the deck transformation associated to the action by γ as

∆γ : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (x− γ, k + γ).

We write ∆(Z) = {∆γ : γ ∈ Z}.

Definition 2.3.1. The group of homeomorphisms of the solenoid is defined by

Homeo(S) = {f : S −→ S : f is a homeomorphism }.

The operation on Homeo(S) is by composition and using that S is a Hausdorff compact metric
space we know that Homeo(S) is also a topological group with the compact–open topology ([Are]).

J. Keesling ([Kee]) has proved that there is a homeomorphism

Homeo(S) ' S× H0(S)× Aut(S),

where S is identified with the translation subgroup by elements in S and H0(S) is the subspace
of homeomorphisms of the form id + φ0 with φ0 : S −→ S a continuous function which preserves
the zero element, φ0(S) ⊂ L0 and φ0 is null–homotopic, or φ0 ∈ C0(S). In particular, H0(S) is a
contractible space homeomorphic to the Hilbert space `2.

Finally, Aut(S) is the subgroup of automorphisms of S as a group. Later in this chapter we
will give a complete description of this object, allowing us to find an algebraic decomposition of
Homeo(S).

The next are two important examples of homeomorphisms of the solenoid.
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Example 2.3.2. Fix an element q ∈ Ẑ and define

Sq : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (x, k + q).

Observe that Sq is continuous and commutes with the diagonal action in R× Ẑ; i.e.,

Sq ◦∆γ ≡ ∆γ ◦ Sq, (γ ∈ Z).

Hence, Sq descends to a well defined sq ∈ C(S). We call sq the translation over the fiber by
q. Moreover, s−1

q = s−q ∈ C(S) implies that in fact sq ∈ Homeo(S) and there is an injective

homomorphism Ẑ ↪→ Homeo(S).

Example 2.3.3. Given y ∈ R, define the map

Dy : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (x+ y, k);

which is a continuous function and as in the previous example commutes with the diagonal action.
Thus, Dy descends to a continuous function dy : S −→ S. Note that d−1

y = d−y ∈ C(S) and
therefore dy ∈ Homeo(S). We call dy the translation on the leaves by y.

The last example belongs to a special subgroup of Homeo(S).

Definition 2.3.4. The group of homeomorphisms that preserves the base leaf L0 is
defined by

HomeoL0(S) = {h ∈ Homeo(S) : h(L0) = L0}.

The subgroup of translations over the fiber and the group of homeomorphisms that preserves
L0 have a non–empty intersection. Indeed, take γ ∈ Z and (x, k) ∈ R× Ẑ, then

Sγ(x, k) = (x, k + γ) = (x+ γ − γ, k + γ)

= ∆γ(x+ γ, k)

= ∆γ(Dγ(x, k)).

Hence, Sγ and Dγ descend to the same element in Homeo(S); or equivalently, sγ ≡ dγ in

HomeoL0(S). Moreover, if h ∈ HomeoL0(S) ∩ Ẑ, it is clear that h = sγ with γ ∈ Z. There-
fore,

HomeoL0(S) ∩ Ẑ = Z.

Define an action by Z on the product HomeoL0(S)× Ẑ as following:

Z× (HomeoL0(S)× Ẑ) −→ HomeoL0(S)× Ẑ
(γ, (h, sq)) 7−→ (d−γ ◦ h, sq ◦ sγ) = (d−γ ◦ h, sq+γ).

From the ideas of C. Odden for the bi–dimensional solenoid ([Odd]) we prove that Homeo(S)
is canonically identified with the orbit space of this action.
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Theorem 2.3.5. Homeo(S) ∼= HomeoL0(S)×Z Ẑ

Proof. Define the map

Υ : HomeoL0(S)× Ẑ −→ Homeo(S)

(h, sq) 7−→ sq ◦ h.

This map induces a well defined map on the quotient HomeoL0(S)×Z Ẑ which turns out to be a
homeomorphism.

Let f ∈ Homeo(S) be such that f(L0) = Lr, with Lr the leaf passing through r ∈ Ẑ ⊂ S.
Thus, h1 := s−r ◦ f ∈ HomeoL0(S) and Υ(h1, sr) = sr ◦ h1 = f . That is, Υ is a surjective map.

Suppose that there are elements t ∈ Ẑ, t 6= r and h2 ∈ HomeoL0(S), h2 6= h1 and that they
satisfy Υ(h2, st) = st ◦ h2 = f . Calculating

s−r+t ≡ s−r ◦ st ≡ s−r ◦ (f ◦ f−1) ◦ st

≡ (s−r ◦ f) ◦ (f−1 ◦ st)

≡ h1 ◦ (h−1
2 ◦ s−t ◦ st)

≡ h1 ◦ h−1
2

we see that s−r+t ∈ HomeoL0(S); that is, we have a γ ∈ Z such that t = r + γ. Consequently,

f ≡ st ◦ h2 ≡ sr+γ ◦ h2

≡ sr ◦ (sγ ◦ h2)

≡ sr ◦ (dγ ◦ h2),

and then
(h1, sr) ≡ (dγ ◦ h2, st−γ) ≡ (dγ ◦ h2, st ◦ s−γ), (γ ∈ Z).

That is, there exists a well defined bijective map

ΥZ : HomeoL0(S)×Z Ẑ −→ Homeo(S).

Moreover, Υ is continuous because it is defined by a composition of continuous functions, and
using the properties of the quotient topology, we can also see that ΥZ is continuous and has a
continuous inverse.

y

2.4 Isotopy classes of Homeo(S)

We say that f ∈ Homeo(S) is homotopic to the identity if there exists a continuous map

λ : [0, 1]× S −→ S,

such that λ(0, ∗) ≡ id and λ(1, ∗) ≡ f . If in addition, for every t ∈ [0, 1] we have that λ(t, ∗) is
a homeomorphism, f is said to be isotopic to the identity and we will write f ∼ id.
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Let HomeoL(S) be the subgroup of homeomorphisms that preserves all the leaves of the
solenoid. In particular, HomeoL(S) is a subgroup of HomeoL0(S) and every f ∈ HomeoL(S) is
homotopic to the identity. Also, following J. Kwapisz ([Kwa2]) for every f ∈ HomeoL(S), there
exists a continuous map φ̃ : S −→ R uniquely determined by

f ≡ id + P ◦ φ̃.

The function φ̃ is called the displacement of f and if ||φ̃||∞ < ε, it is said that the displacement
of f is smaller than ε.

Moreover, HomeoL(S) is open in Homeo(S) and if Homeo0(S) denotes the connected compo-
nent of the identity in Homeo(S), then Homeo0(S) is open in Homeo(S) and

Homeo0(S) = Homeo0
L(S)

(see [AP] for the full details).

Definition 2.4.1. The group of homeomorphisms isotopic to the identity is defined by

Homeo+(S) = {f ∈ Homeo(S) : f ∼ id}.

It is clear that Homeo+(S) is a subgroup of HomeoL(S); in fact,

Homeo+(S) = Homeo0(S) = Homeo0
L(S).

Hence Homeo+(S) is open in Homeo(S). Also, Homeo+(S) is a subgroup of HomeoL0(S) and

Homeo+(S) ∩ Ẑ = Z;

that is, the translations over the fiber which are isotopic to the identity are the integer transla-
tions.

Using lifts of homeomorphisms to R × Ẑ we will be able to describe the different isotopy
classes on Homeo(S). The idea of lifting to the covering map Π : R × Ẑ −→ S goes back to the
work of J. Kwapisz ([Kwa]).

Every translation along the leaves dy ∈ HomeoL0(S) is isotopic to the identity because trivially
for every λ ∈ [0, 1], d(1−λ)y ∈ HomeoL0(S) defines an isotopy between dy and id.

Proposition 2.4.2. Let q, r ∈ Ẑ. Then, sq ∼ sr if and only if there is γ ∈ Z such that q = r+γ.

Proof. Since Ẑ acts transitively on itself, it is enough to consider r = 0; that is, we are going to
prove that sq ∼ id if and only if q ∈ Z.

As we have seen, if q ∈ Z and sq is the translation over the fiber by q, then sq ≡ dq; i.e.
sq ∼ id.

Conversely, suppose that sq ∼ id and consider the homotopy

δλ : S −→ S, (λ ∈ [0, 1]),

satisfying δ0 ≡ sq and δ1 ≡ id. For every z ∈ S, λ 7−→ δλ(z) define a path.
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By the unique path lifting property for the covering Π : R× Ẑ −→ S, for every λ ∈ [0, 1] there

is δ̃λ : R × Ẑ −→ R × Ẑ, such that δ̃0 ≡ Sq and δ̃1 ≡ ∆κ(·), where κ : Ẑ −→ Z is a continuous
function.

Since Ẑ is totally disconnected, the path δ̃λ is defined over a leaf; that is, the projection onto
the second coordinate pr2 : R × Ẑ −→ Ẑ is constant in δ̃λ for each λ ∈ [0, 1]. Then, for every

(x, k) ∈ R× Ẑ:

pr2(δ̃λ(x, k)) = pr2(δ̃0(x, k)) = pr2(sq(x, k)) = k + q.

In particular,

k + q = pr2(δ̃0(x, k)) = pr2(δ̃1(x, k)) = pr2(∆κ(k)(x, k)) = k + κ(k).

Therefore, κ is constant and then q ≡ κ ∈ Z.
y

Remark 2.4.3. From the last proof we observe that the group ∆(Z) is precisely the group of
deck transformations; or equivalently, the identity id ∈ Homeo(S) has only lifts of the form ∆γ

with γ ∈ Z.

Let ΓL0 be the group of isotopy classes of homeomorphisms that preserves the base leaf; that
is,

ΓL0 = HomeoL0(S)/Homeo+(S).

In order to find ΓL0 we calculate first the group of automorphisms of S.

Definition 2.4.4. The group of automorphisms of S is defined as

Aut(S) = {g ∈ Homeo(S) : g ∈ Hom(S)}.

Observe that Aut(S) is a subgroup of HomeoL0(S); that is, h ∈ Aut(S) is continuous and
h(0) = 0 implies that h(L0) = L0.

Example 2.4.5. Define

R : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (−x,−k).

For every (x, k) ∈ R× Ẑ and γ ∈ Z:

R(∆γ(x, k)) = R(x− γ, k + γ) = (−x+ γ,−k − γ) = ∆−γ(−x,−k) = ∆−γ(R(x, k)).

Thus, R descends to a well defined map r : S −→ S, r(z) = −z. Moreover, r ∈ Aut(S).

In order to present more examples of automorphisms we study first an important class of
endomorphisms of Ẑ. Given a ∈ N, aẐ is a subgroup of Ẑ with index a. Define the Frobenius
endomorphism Fa : Ẑ −→ Ẑ by

Fa(k) = ak.

Lemma 2.4.6. Fa is an isomorphism onto its image.
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Proof. Take k = (kn) ∈ ker(Fa) and suppose that k 6= 0. Thus, there is an index m ∈ N such
that km is not congruent to zero module m but akm ≡ 0 mod m.

Given l ∈ N such that m|l, then akl ≡ 0 mod l. In particular, m|am and akam ≡ 0 mod am.
Hence, kam ≡ 0 mod m, but also using the compatibility relations, kam ≡ km mod m which
gives us a contradiction.

y

Since Ẑ/Fa(Ẑ) = Ẑ/aẐ is a cyclic group of order a, for every k ∈ Ẑ choose ka between 0 and

a− 1 satisfying that k − ka = ak′ ∈ Fa(Ẑ). Then, the Frobenius map F1/a : Ẑ −→ Ẑ it is defined
by

F1/a(k) = F−1
a (k − ka) = F−1

a (ak′) = k′.

Even though F1/a defines a left inverse for Fa, F1/a is not injective. Depending on the value

of k ∈ Ẑ we have the following: if ka < a − 1, then ka + 1 = (k + 1)a; or F1/a(k + 1) = F1/a(k).
On the other hand, if ka = a− 1, we have that k− ka = k− (a− 1) = ak′, and k+ 1 = a(k′+ 1);
thus, F1/a(k + 1) = F1/a(k) + 1.

Now, given a ∈ N we define the map

ga : S −→ S

z 7−→ az;

which is a continuous homomorphism and has a lift defined by

Ga : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (ax, Fa(k)).

It is straightforward to check that Ga descends to ga; since,

Ga ◦∆γ ≡ ∆aγ ◦Ga, (γ ∈ Z).

Proposition 2.4.7. For every a ∈ N, ga ∈ Homeo(S).

Proof. In the first place, ga is surjective since for every y ∈ R:

ga(P(y)) = a(πn(y)) = (aπn(y)) = (πn(ay)) = P(ay),

and P(aR) is dense over S.

It is enough now to define a left inverse for the lift Ga and to verify that it commutes with
the diagonal action. We define

G1/a : R× Ẑ −→ R× Ẑ

(x, k) 7−→
(
x+ ka

a
,F1/a(k)

)
.

Trivially, G1/a is continuous and G1/a ◦Ga ≡ Id. Take any (x, k) ∈ R× Ẑ, in order to prove that
G1/a commutes with the diagonal action we have two cases:
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• If ka < a− 1, then F1/a(k + 1) = F1/a(k); or, (k + 1)a = ka + 1. Hence,

G1/a(∆1(x, k)) = G1/a(x− 1, k + 1)

=

(
x− 1 + (k + 1)a

a
, F1/a(k + 1)

)
=

(
x+ ka

a
, F1/a(k)

)
= G1/a(x, k).

• If ka = a− 1, then F1/a(k + 1) = F1/a(k) + 1 and (k + 1)a = 0. Thus,

G1/a(∆1(x, k)) = G1/a(x− 1, k + 1)

=

(
x− 1

a
, F1/a(k + 1)

)
=

(
x+ a− 1

a
− 1, F1/a(k) + 1

)
=

(
x+ ka

a
− 1, F1/a(k) + 1

)
= ∆1(G1/a(x, k)).

As a consequence, G1/a descends to a continuous map g1/a : S −→ S. Finally, since ga is
surjective we can conclude that g1/a = g−1

a .
y

Given two coprime natural numbers a and b, we define

Ga/b : R× Ẑ −→ R× Ẑ

(x, k) 7−→
(a
b
(x+ kb),Fa(F1/b(k))

)
.

As in the previous proof it can be seen that Ga/b commutes with the diagonal action and then
descends to a continuous map ga/b : S −→ S. In fact, ga/b ≡ ga◦g−1

b and since ga and gb commute:
gb ◦ ga/b ≡ ga; that is,

ga/b ≡ g−1
b ◦ ga ≡ ga ◦ g−1

b .

Moreover, given any c, d ∈ N, define gc/d ≡ ga/b, with a, b coprimes or a/b the reduced fraction
of c/d. Consequently, given a, b, c, d ∈ N we have that

ga/b ◦ gc/d ≡ gac/bd, g−1
a/b ≡ gb/a.

Using that Char(S) ∼= Q and the evaluation homomorphism, it is easy to see that

Aut(S) ∼= Aut(Q) ∼= Q∗.

Therefore,
Aut(S) = {ga/b, r ◦ ga/b : a, b ∈ N}.
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Proposition 2.4.8. Given a, b, c, d ∈ N, ga/b ∼ gc/d if and only if a/b = c/d.

Proof. It is enough to prove that ga/b ∼ id implies a/b = 1.
Let δλ : S −→ S be an isotopy from ga/b to id. Take the unique lift

δ̃λ : R× Ẑ −→ R× Ẑ,

with δ̃0 ≡ Ga/b. Then δ̃1 ≡ ∆γ for some γ ∈ Z.

Considering the projection onto the first coordinate pr1 : R × Ẑ −→ R, since S is compact
the path λ 7−→ δλ has a bounded displacement. Therefore, for the path lifting property and for
every (x, k) ∈ R× Ẑ there is a constant C such that

|pr1(δ̃0(x, k))− pr1(δ̃1(x, k))| = |(a/b)(x+ kb)− (x− γ)|
= |(a/b− 1)x+ (a/b)kb + γ| < C.

Since x can take every real value we conclude that a/b = 1.
y

Corollary 2.4.9. ΓL0
∼= Aut(S).

Proof. Let h ∈ HomeoL0(S) satisfying h(0) = y ∈ L0. Thus, d−y ◦ h is a continuous function
preserving the zero element; or equivalently, d−y ◦ h ∈ C∗(S). Therefore, using the results
mentioned in the first section of the chapter, d−y ◦ h ∼ ga/b for some ga/b ∈ Aut(S).

However, d−y ∼ id implies that h ∼ ga/b.
y

Finally, using the decomposition Homeo(S) ∼= HomeoL0(S) ×Z Ẑ we can now conclude that
the group of isotopy classes of homeomorphisms of S is given by

Γ = Homeo(S)/Homeo+(S) ∼= Aut(S)× (Ẑ/Z).

2.5 Uniform perfectness of Homeo+(S)

Let us recall that the group of homeomorphisms isotopic to the identity Homeo+(S) is a simple
and uniformly perfect group (see [AP]). We present the most important details of these proofs.

Using the box decomposition structure on S and the same ideas as Fischer (see [Fis]),
Homeo+(S) satisfies the partition property. That is, for every box cover {Vj}n

j=1 of S and for
any f ∈ Homeo+(S), there exists a decomposition

f = g1 ◦ . . . ◦ gl,

with {gi}l
i=1 ⊂ Homeo+(S) and supp(gi) = {z ∈ S : gi(z) 6= z} ⊂ Vj(i), for every i = 1, . . . , l.

Now, we mention a series of lemmas that in combination give us the property of uniform
perfectness of Homeo+(S). For all of them we start letting f ∈ Homeo+(S).

The first one solves the problem of perfectness for homeomorphisms in Homeo+(S) with
support on a box.
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Lemma 2.5.1. If supp(f) is contained on a box V of S, then there exists a homeomorphism
g ∈ Homeo+(S) with supp(g) ⊂ V and gfg−1 = f 2.

Thus, f = [g, f ].

Lemma 2.5.2. Suppose that V1 ' (α1, β1)× Ẑ and V2 ' (α2, β2)× Ẑ are two boxes such that

f(V1) ∪ V1 ⊂ V2.

Then there is a g ∈ Homeo+(S) with supp(g) ⊂ V2 and satisfying f |V1 ≡ g|V1.

Using this lemma we can derive the next one.

Lemma 2.5.3. Given f ∈ Homeo+(S), there exist two boxes V1 and V2, V1 ⊂ V2 and f1, f2 ∈
Homeo+(S) with the properties:

• supp(f2) ⊂ V2,

• f1|V1 ≡ id|V1,

• f ≡ f1 ◦ f2.

We consider a topological lemma. Consider a box (α, β) × Ẑ and z ∈ {β} × Ẑ; the return

time of z to {α} × Ẑ is

t{α}×bZ(z) = inf{t > 0 : z + t ∈ {α} × Ẑ}.

Due to the density of the base leaf L0 on S, this value is constant for any z ∈ {β} × Ẑ; i.e. the

map t{α}×bZ : {β} × Ẑ −→ R is locally constant and hence continuous.

Lemma 2.5.4. Let V ' (α, β)× Ẑ be a box of S and

Z =
{

(z, t) : z ∈ {β} × Ẑ, 0 ≤ t ≤ t{α}×bZ(z)
}
.

The following map is a homeomorphism:

Z −→S \ V
(z, t) 7−→ z + t.

Theorem 2.5.5. The group Homeo+(S) is uniformly perfect.
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Proof. Consider f ∈ Homeo+(S). By lemma 2.5.3 there exist f1, f2 ∈ Homeo+(S) and boxes
V1 ⊂ V2 satisfying supp(f2) ⊂ V2, f |V1 ≡ id|V1 and f ≡ f1 ◦ f2.

Using lemma 2.5.4 for the box V1
∼= (α, β) × Ẑ and since the return time t{α}×bZ is locally

constant, there is a clopen partition {K1, . . . , Kl} of Ẑ with t{a}×bZ|Ki
= ti constant for any

i = 1, . . . , l and the collection of closed boxes {[0, ti] ×Z Ki}l
i=1 is a covering of S \ V1 with

pairwise disjoint interiors.
Thus, f1 preserves every box [0, ti] ×Z Ki and can be written as f1 ≡ g1 ◦ . . . ◦ gl; where

gi ∈ Homeo+(S) and supp(gi) ⊂ [0, ti] ×Z Ki for every i = 1, . . . , l. Hence, using lemma
2.5.1, f2 is a commutator and any gi is a commutator [ai, bi], where ai, bi ∈ Homeo+(S) sat-
isfy supp(ai), supp(bi) ⊂ [0, ti] ×Z Ki. Moreover, since two homeomorphisms having disjoint
supports commute, we have

f1 ≡ g1 ◦ . . . ◦ gl ≡ [a1, b1] ◦ . . . ◦ [al, bl] ≡ [a1 ◦ . . . ◦ al, b1 ◦ . . . ◦ bl] .

Therefore, f ≡ f1 ◦ f2 ≡ [a1 ◦ . . . ◦ al, b1 ◦ . . . ◦ bl] ◦ f2.
y



3. THE CONNECTED COMPONENT OF
THE IDENTITY

In this chapter we present a complete study of the group Homeo+(S) of homeomorphisms of
the solenoid which are isotopic to the identity. Firstly, we want to know the homotopy type of
Homeo+(S) and for that we study lifts of elements in Homeo+(S) to R× Ẑ via the covering map

Π : R× Ẑ −→ S.
Then, working with liftings on the covering and with the construction of a universal central

extension, we will calculate the second cohomology group with coefficients in Z. After that, we
will also calculate the second bounded and related cohomology groups. The important idea is
to emulate the theory previously presented for the circle, in order to find an analogue of the
Thurston–Mather result (see ??) for the particular case of the solenoid and to find an invariant
of the dynamics as the rotation number for the case of S1.

The group Homeo+(S) is a topological group with the compact–open topology or the k–

topology of Arens ([Are]) and Homeo+(S) ∩ Ẑ = Z; i.e. every integer translation over the fiber
is isotopic to the identity, or

sγ ≡ dγ (γ ∈ Z);

with dγ the translation by γ on the leaves and dγ ∼ id.

Recall that Π : R× Ẑ −→ S is the covering map induced by the diagonal action and the group
of deck transformations ∆(Z) is defined as

∆(Z) =
{

(x, k)
∆γ7−→ (x− γ, k + γ) : γ ∈ Z

}
;

equivalently, the maps ∆γ ∈ ∆(Z) are the only lifts that make the following diagram commuta-
tive:

R× Ẑ
∆γ //

Π

��

R× Ẑ
Π

��
S

id // S.

3.1 Lifts of elements in Homeo+(S)

Definition 3.1.1. The group of lifts of elements in Homeo+(S) is defined as

˜Homeo+(S) =
{
F : R× Ẑ −→ R× Ẑ : Π ◦ F ≡ f ◦ Π, f ∈ Homeo+(S)

}
.
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It is a group by composition and R × Ẑ is locally compact. However, R × Ẑ is not compact

and for that we need to put the g–topology defined by Arens on ˜Homeo+(S) in order to make it a

topological group (see [Are] or [Dij] for details). That is, the base of the topology for ˜Homeo+(S)

is defined by the following: consider K a closed subset and W an open subset of R × Ẑ; such
that, either K or R× Ẑ \W is compact. Let

(K,W ) =
{
F ∈ ˜Homeo+(S) : F (K) ⊂ W

}
,

hence the elements of the basis are given by finite intersection of such sets (K,W ).
Since S is compact, the g–topology associated to Homeo+(S) coincides with the compact–open

topology. Moreover, if we consider the covering Π : R× Ẑ −→ S, then the g–topology associated

to ˜Homeo+(S) is compatible with the compact–open topology on Homeo+(S). Therefore, the
following constructions stay valid in the topological language.

Using the ideas of J. Kwapisz ([Kwa]), given a lift F ∈ ˜Homeo+(S) of f ∈ Homeo+(S), F can
be written as:

F : R× Ẑ −→ R× Ẑ
(x, k) 7−→ (x+ Φ(x, k), k + α);

where Φ : R× Ẑ −→ R is a bounded continuous ∆(Z)–periodic function and α ∈ Z which we see

as an element of Ẑ. Equivalently, the integer translation in Ẑ, k 7−→ k + α is minimal and for
every fixed k ∈ Ẑ, the function with real values

x 7−→ x+ Φk(x) = x+ Φ(x, k),

has limit–periodic displacement. Moreover, this continuous map is strictly increasing and the
image x+ Φ(x, k) goes to ±∞ as x −→ ±∞. Thus, the set of functions of the form

(x, k) 7−→ (x+ Φ(x, k), k)

is a convex subset of ˜Homeo+(S).

Consider a bounded continuous ∆(Z)–periodic function Φ : R× Ẑ −→ R. Then there exists
a continuous function φ̃ : S −→ R which makes the diagram

R× Ẑ
Π

��

Φ // R

S.
φ̃

<<yyyyyyyyy

commutative. Conversely, for every φ̃ : S −→ R, there exists such a Φ : R × Ẑ −→ R given by
Φ ≡ φ̃ ◦ Π. In particular, φ̃ is the displacement function of f and there is a continuous function
φ : S −→ S, satisfying φ(S) ⊂ L0 and completing the above diagram:

R× Ẑ
Π

��

Φ // R
P

��
S

φ̃

<<yyyyyyyyyy

φ
// S.
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Therefore, we have a well defined map

p : ˜Homeo+(S) −→ Homeo+(S)

F 7−→ sα ◦ (id + φ).

It is plain that p is a continuous homomorphism whose kernel is identified with the deck transfor-
mation group ∆(Z) ' Z. For continuity it is enough to recall the descriptions on the basic sets

of the topologies of ˜Homeo+(S) and Homeo+(S) respectively; i.e. the compatibility with respect

to the covering Π : R× Ẑ → S.
Consequently, there is an exact sequence

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1.

In fact, this sequence represents a central extension and ∆(Z) coincides with the center of the

group ˜Homeo+(S); equivalently, for every γ ∈ Z and F ∈ ˜Homeo+(S):

∆γ(F (x, k)) = ∆γ(x+ Φ(x, k), k + α)

= (x+ Φ(x, k)− γ, k + α+ γ)

= (x− γ + Φ(x, k), k + γ + α)

= (x− γ + Φ(x− γ, k + γ), k + γ + α)

= F (x− γ, k + γ) = F (∆γ(x, k)), ((x, k) ∈ R× Ẑ).

3.1.1 Limit–periodic displacements

Suppose that Φ : R × Ẑ −→ R is a bounded continuous and ∆(Z)–periodic function; i.e. it
satisfies the relation

Φ(x− γ, k + γ) = Φ(x, k), (γ ∈ Z).

Fix k ∈ Ẑ and consider the continuous real valued function Φk = Φ(·, k) : R −→ R. We
are interested in the particular case when Φk is a limit–periodic function, whose convex hull is
homeomorphic to S with respect to the compact–open topology in the Banach space of continuous
real functions ([AS]).

Following Bohr’s ideas (see [Boh] or [Bes], [Cor]), the mean value of Φk exists and is defined
by

M{Φk} := lim
X−→∞

1

X

∫ X/2

−X/2

Φk(x)dx.

Also, by the properties of the mean value we have that M{Φk◦Ty} = M{Φk}, where Ty : R −→ R
is the translation by y ∈ R, Ty(x) = x + y. Our interest lies in the particular case of integer
translations; that is,

M{Φk ◦ Tγ} = M{Φk}, (γ ∈ Z).

Since, Φ : R× Ẑ −→ R is ∆(Z)–periodic, Φk satisfies the equivariance condition

Φk(x+ γ) = Φk+γ(x), (γ ∈ Z).
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Consequently, for every k ∈ Ẑ,

M{Φk+γ} = M{Φk} (γ ∈ Z).

Lemma 3.1.2. For every k ∈ Ẑ, M{Φk} = M{Φ0}.

Proof. If γ ∈ Z, then M{Φ0} = M{Φγ}. Let k ∈ Ẑ be given and {γn}n∈Z ⊂ Ẑ be a sequence
of integers which converges uniformly to k. Hence, due to the continuity of the assignation
k 7−→ Φk, the sequence of functions {Φγn} converges uniformly to the function Φk and therefore

M{Φ0} = lim M{Φγn} = M{Φk};

where the last equality is true because of the basic properties of the mean value.
y

It is an immediate consequence of this result that the behaviour of the original function
Φ : R× Ẑ −→ R is completely determined by its mean value over the marked leaf R× {0}; that
is, Φ can be written in a unique way as

Φ(x, k) = M{Φ0}+ Ψ(x, k);

with Ψ : R× Ẑ −→ R a bounded continuous and ∆(Z)–periodic function, Ψ ≡ Φ−M{Φ0} and

for each k ∈ Ẑ, M{Ψk} = 0.

Recall that using the covering Π : R× Ẑ −→ S, the base leaf L0 of S is canonically identified
with Π(R× Z) = R×Z Z.

Theorem 3.1.3. The inclusion by translations on the base leaf

R×Z Z ↪→ Homeo+(S)

is a homotopy equivalence.

Proof. Take f ∈ Homeo+(S) and F ∈ ˜Homeo+(S) a lift of the form

F (x, k) = (x+ Φ(x, k), k + α), (α ∈ Z).

By the above remarks Φ can be written as Φ ≡ M{Φ0}+ Ψ, where Ψk : R −→ R has zero mean

value for each k ∈ Ẑ.
We can define an homotopy through the functions

Fs(x, k) = (x+ M{Φ0}+ (1− s)Ψ(x, k), k + α), 0 ≤ s ≤ 1.

That is, for every s ∈ [0, 1], we have that Fs ∈ ˜Homeo+(S). Indeed, as we saw previously for any
α ∈ Z, the subset of maps of the form

(x, k) 7−→ (x+ Φ(x, k), k + α)

is a convex subset of ˜Homeo+(S) and also the mean values (1− s)M{Ψk} = 0 for every s ∈ [0, 1]
by Bohr’s general theory.
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Observe also that F0 ≡ F , F1(x, k) = (x+M{Φ0}, k+α) and we obtain a continuous retraction

of ˜Homeo+(S) onto the subgroup of translations isomorphic to R×Z. Moreover, because for each
s ∈ [0, 1], Fs commutes with the elements of the group of deck transformations ∆(Z), we can
assert that this is a continuous deformation of the quotient

˜Homeo+(S)/∆(Z) ' Homeo+(S)

onto the subgroup of translations over the base leaf L0
∼= R×Z Z.

y

The last argument shows that

Homeo+(S) ' L0 × Hid(S);

where Hid(S) is a contractible convex set.

Remark 3.1.4. Every homotopy group πn(Homeo+(S)), n ≥ 1 is trivial.

3.2 Cohomology groups of Homeo+(S)

In view of the last result, we are tempted to conclude that the groups Hn(Homeo+(S),Z), for
n ≥ 1 all vanish. However, since S is not a manifold we can not use the Thurston–Mather
theorem. In the first part of this section we are going to calculate the second cohomology group
of Homeo+(S) with integer coefficients. After that, using some results of bounded cohomology
we will be able to calculate cohomology groups of other related groups. And we construct an
invariant analogous to the Poincaré rotation number for the solenoid.

3.2.1 The second cohomology group and the Euler class

Consider the central extension

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1.

By theorem2.5.5, Homeo+(S) is uniformly perfect; in fact, every element of Homeo+(S) can be
written as the product of two commutators. Thus, from Theorem 1.2.1, there exists a universal
central extension. Moreover, for this extension the kernel can be mapped surjectively with Z.

For now, we focus our attention on lifts F of the form

(x, k) 7−→ (x+ Φ(x, k), k).

As we already noted, for every fixed k ∈ Ẑ, the map

Fk(x) := x+ Φk(x),
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has limit periodic displacement and is strictly increasing. Moreover, Fk is a real valued homeo-
morphism and using the equivariant condition of Φk, for every γ ∈ Z

Fk+γ(x) + γ = Fk(x+ γ).

Equivalently, Fk and Fk+γ are conjugated by a translation by γ in R.

If k ∈ Ẑ, consider the following subgroup of real valued homeomorphisms:

˜Homeo+(S)k =
{
Fk : R −→ R : F ∈ ˜Homeo+(S)

}
.

As we will see in the proof of the next lemma, ˜Homeo+(S)k is a subgroup of the compactly
supported homeomorphisms group HomeoC(R).

Lemma 3.2.1. ˜Homeo+(S)k is uniformly perfect.

Proof. From the proof of Theorem 2.5.5, we saw that every f ∈ Homeo+(S) can be written as a
product of two commutators, say f1 and f2 in Homeo+(S). Moreover, there is a finite collection

of boxes {[0, ti]×Z Ki}l
i=1; where {Ki} is a finite partition of the fiber Ẑ, this collection forms a

cover of the support of f2 and from the partition property

f1 = g1 ◦ . . . ◦ gl,

with supp(gi) ⊂ [0, ti]×Z Ki.
Hence, take F (x, k) = (x + Φ(x, k), k) a lift of f . Using the diagonal action, for every fixed

k ∈ Ẑ, there is at most a finite collection of compact sets

{[γi, ti + γi] : γi ∈ Z}l
i=1;

with

supp(Fk) ⊂
l⋃

i=1

[γi, ti + γi].

That is, taking the lifts of the boxes [0, ti]×Z Ki to R× Ẑ, we only consider the closed intervals
that intersect the leaf R× {k} as the ones that support the homeomorphism Fk : R −→ R.

Thus, for every k ∈ Ẑ, ˜Homeo+(S)k is contained on the group of homeomorphisms of R with
compact support. That is, as a consequence of the result in [Math]

H1

(
˜Homeo+(S)k,Z

)
= 0;

or equivalently, ˜Homeo+(S)k is perfect. Moreover, every Fk ∈ ˜Homeo+(S)k can be written as a
product of two commutators, say

Fk ≡ Fk,1 ◦ Fk,2;

with Fk,1, Fk,2 ∈ ˜Homeo+(S)k being represented by the lifts F1, F2 ∈ ˜Homeo+(S) of f1, f2.
y

In particular, for every k ∈ Ẑ, H1

(
˜Homeo+(S)k,Z

)
= 0. Moreover, because of every element

of ˜Homeo+(S)k being compactly supported, following Mather ([Math]) we have that the homology

groups Hn

(
˜Homeo+(S)k,Z

)
vanish for all n ≥ 1.
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Theorem 3.2.2. The exact sequence

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1,

is the universal central extension.

Proof. For every k ∈ Ẑ, let Φk be a bounded continuous limit periodic function of the real line.
Consider the map Ẑ −→ Clp

b (R) defined as k 7−→ Φk. Using the exponential map, we know that
this is a continuous correspondence.

Hence, the map Ẑ −→ Homeo(R), k 7−→ Fk is also continuous. Moreover, Fk has constant
mean value for the displacement Φk; that is

M{Φk} = M{Φ0},

with Φ0 the displacement of F0.

Thus, we have a continuous map Ẑ −→ ˜Homeo+(S)k such that

Hn

(
˜Homeo+(S)k,Z

)
= 0, (n ≥ 1),

as ˜Homeo+(S)k consists only of real–valued homeomorphisms with compact support. Conse-
quently, using also that Fk+γ and Fk are conjugated via a translation by γ ∈ Z, we can now

assert that Hn

(
˜Homeo+(S),Z

)
= 0 for every n ≥ 1.

In particular,

H1

(
˜Homeo+(S),Z

)
= H2

(
˜Homeo+(S),Z

)
= 0

and as a consequence of Corollary 1.2.3,

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1

is the universal central extension. That is, we know that every ˜Homeo+(S)k is perfect and that

every central exact sequence of ˜Homeo+(S) by Z must split.
y

Thus, we have the Schur multiplier

H2(Homeo+(S),Z) ' Z.

Moreover, using Theorem 1.2.4 we have the cohomology groups

H2(Homeo+(S),Z) ' Hom(H2(Homeo+(S),Z),Z) ' Z,

and H2(Homeo+(S),R) ' R. Let eu and euR be the respective Euler classes.
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3.2.2 Bounded cohomology groups

Consider the long exact sequence for the bounded cohomology groups of Homeo+(S) derived from
the exponential sequence:

· · · −→ H1
b(Homeo+(S),Z) −→ H1

b(Homeo+(S),R) −→ H1
b(Homeo+(S),S1) −→

−→ H2
b(Homeo+(S),Z) −→ H2

b(Homeo+(S),R) −→ · · ·
In particular, the map

H2
b(Homeo+(S),Z) −→ H2

b(Homeo+(S),R)

is injective because of its kernel is isomorphic to

H1(Homeo+(S),R)

H1(Homeo+(S),Z)
,

which turns out to vanish because of Homeo+(S) being perfect (see [Ghy] for details). Moreover,
using the same property of Homeo+(S) the comparison map

iR : H2
b(Homeo+(S),R) −→ H2(Homeo+(S),R) ' R

is also injective because of the absence of non–trivial quasimorphisms in Homeo+(S).
As we would expect H2

b(Homeo+(S),R) is isomorphic to R. Indeed, consider a lift F in
˜Homeo+(S) and without loss of generality we assume that F has the form

F (x, k) = (x+ Φ(x, k), k),
(
(x, k) ∈ R× Ẑ

)
.

We are considering that the lift does not move the fiber and this will be enough due to the
equivariance condition

Fk+γ(x) + γ = Fk(x+ γ) (γ ∈ Z).

From the work of A. Verjovsky and M. Cruz–López ([CV]), we know that there is a rotation
element

ρ : Homeo+(S) −→ S.

Given f ∈ Homeo+(S) take a lift of ρ(f) to the covering R×Ẑ. This give us an element τ ∈ R×Ẑ.
Moreover, using that the image of ρ belongs to the base leaf L0, we can fix a height on the covering
and describe a homogeneous quasimorphism

T : ˜Homeo+(S) −→ R

which is independent of the choice of(x, k) ∈ R× Ẑ.

Remark 3.2.3. There is a way of defining this homogeneous quasimorphism by means of the
displacement function

F (x, k)− (x, k) = (Φ(x, k), 0).

That is the content of [LR].
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Therefore, we have a quasi–corner C(T, p):

˜Homeo+(S)
T //

p

��

R

Homeo+(S).

Consider p∗ : H2
b(Homeo+(S),R) −→ H2

b

(
˜Homeo+(S),R

)
and let d1

b be the first bounded

coboundary operator. As we saw previously (see section 1.3), the set of classes of quasi–corners
QC(Homeo+(S)) is in a bijective correspondence with H2

b(Homeo+(S),R). We show that the class
[C(−T, p)] in QC(Homeo+(S)) defined by the cocycle (p∗)−1(d1

b(−T)), represents the bounded
cohomology class

euR
b ∈ H2

b(Homeo+(S),R)

and consequently
H2

b(Homeo+(S),R) ' R.

Specifically, iR(euR
b ) = euR ∈ H2(Homeo+(S),R).

Proposition 3.2.4. If p : ˜Homeo+(S) −→ Homeo+(S) is the canonical projection, then euR
b is

represented by the quasi–corner C(−T, p).

Proof. Define the following operator

∆ : ˜Homeo+(S) −→ ∆(Z)

F 7−→ (γ,−γ);

where γ = bΦ(0, 0)c ∈ Z.
Observe that

(T(0,0)(F ), 0)−∆(F ) ∈ [0, 1)× Ẑ.

Thus, the difference is bounded. Equivalently, we can work with ∆(F ) instead of T(F ).
Our aim is to prove that

p∗(euσ) = −d1∆,

where the section σ is such that σ(f)(0, 0) ∈ [0, 1)× Ẑ.

Define F̄ ∈ ˜Homeo+(S) by
F̄ = F −∆(F ).

Thus, for every two F,G ∈ ˜Homeo+(S) we have that
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p∗(euσ)(F,G) = σ(p(F ) ◦ p(G))−1 ◦ σ(p(F )) ◦ σ(p(G))

=
(
(F ◦G)−1 ◦ F̄ ◦ Ḡ

)
(0, 0)

=
(
((F ◦G)−1 ◦ F̄ ) ◦ (G−∆(G))

)
(0, 0)

=
(
(F ◦G)−1 ◦ (F ◦G−∆(G)−∆(F ))

)
(0, 0)

= (0, 0)−∆(G)−∆(F )−∆((F ◦G)−1)

= ∆(F ◦G)−∆(G)−∆(F )

= −d1∆(F,G).

y

Consider the obstruction cocycle

c(f, g) = σ(f ◦ g)−1 ◦ σ(f) ◦ σ(g).

Note that the lifts σ(f ◦ g) and σ(f) ◦ σ(g) differ by a deck transformation ∆γ ∈ ∆(Z) for some
γ ∈ Z, because both are lifts of the same element f ◦ g ∈ Homeo+(S). That is,

σ(f ◦ g) ◦∆γ ≡ σ(f) ◦ σ(g).

Define eu : Homeo+(S)2 −→ Z as eu(f, g) = γ.

Consider the specific normalized section σ : Homeo+(S) −→ ˜Homeo+(S), such that for every
f ∈ Homeo+(S),

σ(f)(0, 0) ∈ [0, 1)× Ẑ.

In particular,
σ(f ◦ g)(γ,−γ) ∈ [γ, γ + 1)× Ẑ.

Thus, σ(g)(0, 0) ∈ [0, 1)× Ẑ and because in particular σ(f)(1,−1) ∈ [1, 2)× Ẑ, we conclude that

σ(f) ◦ σ(g)(0, 0) ∈ [0, 2)× Ẑ.

Therefore γ is equal to 0 or 1.
Consequently, the Euler class eu ∈ H2(Homeo+(S),Z) associated to c(f, g) is bounded and

H2
b(Homeo+(S),Z) ' Z.

Define this class as eub = [c(f, g)] ∈ H2
b(Homeo+(S),Z).

Consider f ∈ Homeo+(S) and F ∈ ˜Homeo+(S) a lift. Let % : Homeo+(S) −→ S1 be defined
by the canonical projection of T(F ) onto S1. We just proved the following.

Theorem 3.2.5. Let ϑ : Z −→ Homeo+(S) be a homomorphism. The class ϑ∗(eub) ∈ H2
b(Z,Z)

is the number %(ϑ(1)).

Moreover, the rotation element ρ : Homeo+(S) −→ S is founded in the group H2
b(Q,Z).
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Lemma 3.2.6. H2
b(Q,Z) ' S.

Proof. Let
0 −→ Z −→ R −→ S1 −→ 1

be the exponential exact sequence and construct the associated long exact sequence in bounded
cohomology

0 −→ Z −→ R −→ S1 −→ H1
b(Q,Z) −→ H1

b(Q,R) −→ H1
b(Q,S1) −→

−→ H2
b(Q,Z) −→ H2

b(Q,R) −→ H2
b(Q,S1) −→ · · · .

Using that Q is Abelian and therefore is an amenable group, Hn
b (Q,R) = 0 for every n ≥ 1.

Calculating these groups for n = 1 and n = 2 we obtain that

H2
b(Q,Z) ' H1

b(Q,S1) ' Hom(Q,S1) ' S.

y

Theorem 3.2.7. Let ϕ : Q −→ Homeo+(S) be a homomorphism. The class ϕ∗(eub) ∈ H2
b(Q,Z)

is the rotation element of ϕ(1).
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