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Introduction

Every decision we make in daily life is risky business. Then selecting the best time to stop and act is crucial.
A decision maker observes a process evolving in time that involves some randomness. Based only on what
is known, we must make a decision on how to maximise reward or minimise cost.

More formally, the theory of optimal stopping is concerned with the problem of choosing a time to take
a given action based on sequentially observed random variables in order to maximise an expected pay-off or
to minimise an expected cost. Problems of this type have applications in particular in the following areas:

1. Statistics: The action may to be to test a hypothesis or to find a parameter as quickly and accurately
as possible.

2. Quickest detection problem: When a natural phenomenon threatens to destroy a town, one needs to
decide when to send out an alarm to avoid disaster based on observable data.

3. Operation research: Decide when it is optimal to replace a machine, hire a secretary, or reorder stock.

4. Finance: Establish the non-arbitrage price of an American option.

Lévy processes are the continuous time version of random walks and form a wide class of stochastic
processes. Their applications appear in many areas of classical and modern stochastic processes, including
storage models, renewal processes, insurance risk models, optimal stopping problems and mathematical fi-
nance. In particular, a special class of Lévy process called spectrally negative Lévy processes, which are
Lévy processes with only negative jumps, plays a central role in risk theory and degradation models.

Consider the classical risk process (also known as the Cramér–Lundberg process) which consists of a
deterministic, positive drift plus a compound Poisson process with only negative jumps (see Figure 1). This
process models the capital of an insurance company. The drift may be viewed as a premium rate which
is continuously collected and the compound Poisson process represents the claims made to the insurance
company. A quantity of interest is the moment of ruin, i.e. the first time that the company has negative
capital. Instead of going bankrupt when the risk process becomes negative, suppose that the company has
funds to support the negative capital for a while. Then another quantity of interest is the last time that the
process is below the level zero. This approach can be extended to a general spectrally negative Lévy process.
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Figure 1: Cramér–Lundberg process.
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viii INTRODUCTION

For several decades, degradation data have been used to understand ageing of a device, instead of only
failure data. Lévy processes turn out to be a useful tool for degradation models (see Figure 2). In particular
there are three models that are mainly used: Brownian motion with positive drift, gamma process and com-
pound Poisson process (see Park and Padgett (2005)). More generally we may consider a spectrally positive
Lévy process. The failure time of a component or system can traditionally be derived from a degradation
model by considering the first hitting time of a critical level. Recently a new approach is considered as a
failure time (see Barker and Newby (2009)), by considering the last passage of the degradation process any
critical level previously established.
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Figure 2: Degradation model.

The examples that we mentioned above show that last passage times play an important role in applications
of spectrally negative Lévy processes. To know the value of a last passage time it is necessary to be able to
observe the whole process.

Stopping times are random times such that the decision whether to stop or not depends only on the past
and present information. Due to this fact, the aim of this work is to predict the last zero by a stopping time.
This is, find a stopping time which is as close as possible to the last time that a spectrally negative Lévy
process is equal to zero.

In the first chapter we present the general theory of Lévy processes. First, we mention the relation
between infinitely divisible distributions and Lévy processes. Next, we explain briefly the Lévy–Itô decom-
position. Then, we give general properties of general Lévy process and some results in the spectrally negative
case. We define the scale functions for spectrally negative Lévy process and give important properties which
will be useful in Chapter 3.

In the second chapter we give some aspects of the theory of optimal stopping. We present the con-
cept of essential supremum. With this, we define the Snell envelope which is the fundamental tool for the
martingale approach for solving optimal stopping problems. We then move to the Markovian approach. In
this part we take advantage of the Markov property and the martingale approach to give more general results.

In the third chapter the optimal prediction problem, which is the main object of study of this work, is
formulated and solved. We prove that the problem can be reduced to a standard optimal stopping problem
which can be solved using a direct method with the help of the general theory of optimal stopping given in
Chapter 2. To the best of our knowledge, this optimal prediction problem has not been studied before for a
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spectrally negative Lévy process.

In the appendix we present some classical results concerning martingales, Markov processes and Poisson
point processes.





Chapter 1

Lévy Processes

Lévy processes can be thought of as random walks in continuous time, that is they are stochastic processes
with independent and stationary increments. The best known and most important examples are the Brownian
motion, Poisson process and compound Poisson process. Lévy processes concern many aspects of probability
theory and its applications; they are used as models in the study of queues, insurance risks, degradation and
mathematical finance. From the viewpoint of functional analysis, these appear in connection with potential
theory of convolution semigroups.

The content of this chapter is mainly based on the work of Kyprianou (2014) and we used Bertoin (1998)
and Sato (1999) as a secondary bibliography.

1.1 Lévy Processes and Infinite Divisibility

In this section we present the definition of Lévy processes and their connection with infinitely divisible
distributions, then the main examples of these processes are presented. In the sequel we work with (Ω,F ,F,P)
a filtered probability space, i.e. a probability space (Ω,F ,P) endowed with a filtration F = {Ft, t ≥ 0} which
is the natural enlargement1 of the sigma-algebra generated by {Xs, s ≤ t} (see Definition 1.3.38 of Bichteler
(2002)). According to Kyprianou (2014) we present the formal definition of a Lévy process.

Definition 1.1.1 (Lévy Process). A process X = {Xt : t ≥ 0}, defined on a probability space (Ω,F ,P) and
taking values in R, is said to be a Lévy process if it satisfies the following properties:

i) The paths of X are P-almost surely càdlàg2 (right-continuous with left limits).

ii) P(X0 = 1).

iii) For s, t ≥ 0, Xt+s −Xs is equal in distribution to Xt.

iv) For s, t ≥ 0, Xt+s −Xt is independent of {Xu, u ≤ t}.

If a process X satisfies the condition iii) we say that X has stationary increments and if condition iv)
holds then we say that X has independent increments. Now we give a sufficient condition to check that a
process has stationary and independent increments.

Remark 1.1.2. For proving that a process X = {Xt, t ≥ 0} has stationary an independent increments it
suffices to prove that for all n ∈ N and 0 ≤ s1 ≤ t1 ≤ · · · ≤ sn ≤ tn <∞ and θ1, . . . , θn ∈ R,

E

 n∏
j=1

eiθj(Xtj−Xsj )

 =

n∏
j=1

E(eiθjXtj−sj ).

1Many authors assume that the filtration F satisfies the usual conditions. This can cause some problems, for example, using
change of measures with Girsanov’s theorem (see Warning 1.3.39 of Bichteler (2002)).

2Abbreviating the French phrase continues à droite, limites à gauche
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2 CHAPTER 1. LÉVY PROCESSES

Now we introduce the notion of infinitely divisible distributions and then we will show that this concept
is intimately related with Lévy processes.

Definition 1.1.3. We say that a real-valued random variable, Θ, has an infinitely divisible distribution if,
for each n = 1, 2, . . . , there exists a sequence of i.i.d. random variables Θi,n i = 1, . . . , n such that

Θ
d
= Θ1,n + · · ·+ Θn,n,

where
d
= is equality in distribution.

Definition 1.1.4. Let Θ a real-valued random variable. We define the characteristic exponent of Θ as

Ψ(u) = − log
(
E(eiuΘ)

)
,

for all u ∈ R.

Remark 1.1.5. i) If Θ has a probability distribution µ we could say that µ (and hence Θ) is infinitely
divisible if for any positive integer n, there exists a probability measure µn such that µ = µ∗nn , where
µ∗nn denotes the n-fold convolution of µn. We can write the above condition as µ̂ = (µ̂n)n where µ̂ and
µ̂n are the characteristic function of µ and µn respectively, i.e. for all λ ∈ R,

µ̂n(λ) =

∫
R
eiλxµn(dx) and µ̂(λ) =

∫
R
eiλxµ(dx).

ii) In view of i) then we can establish when a random variable Θ has an infinitely divisible distribution
via its characteristic function. Then a quantity of interest is the characteristic exponent defined by
Ψ(u) = − log(E(eiuΘ)) for all u ∈ R. Hence Θ has an infinitely divisible distribution if, for all n ≥ 1,
there exists a characteristic exponent of a probability distribution, say Ψn, such that Ψ(u) = nΨn(u)
for all u ∈ R.

An important result which characterises the infinitely divisible laws in terms of its characteristic exponent
is the famous Lévy–Khintchine formula.

Theorem 1.1.6 (Lévy–Khintchine formula). A probability law, µ, of a real-valued random variable is in-
finitely divisible with characteristic exponent Ψ,∫

R
eiθxµ(dx) = e−Ψ(θ), for θ ∈ R,

if and only if there exists a triple (a, σ,Π), where a ∈ R, σ ∈ R and Π is a measure concentrated on R \ {0}
satisfying

∫
R(1 ∧ x2)Π(dx) <∞, such that

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθxI{|x|<1})Π(dx),

for every θ ∈ R. Moreover, the triple (a, σ2,Π) is unique.

Proof. See Sato (1999) (Theorem 8.1).

Definition 1.1.7. The measure Π is called the Lévy (characteristic) measure.

Remark 1.1.8. Note that the condition
∫
R(1 ∧ x2)Π(dx) <∞ implies that Π(A) <∞ for all Borel A such

that 0 is in the interior of Ac. Indeed, since x2 ∧ ε ≤ x2 ∧ 1 for all 0 < ε ≤ 1,

∞ >

∫
R
(1 ∧ x2)Π(dx) ≥

∫
R
(ε ∧ x2)Π(dx) = ε

∫
(−
√
ε,
√
ε)c

Π(dx) +

∫
(−
√
ε,
√
ε)

x2Π(dx).

Then Π((−ε, ε)c) <∞ for all ε > 0.
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Let us now state the relationship between infinitely divisible distribution and Lévy processes.

Proposition 1.1.9. Let X = {Xt, t ≥ 0} be a Lévy process. Then for any t > 0, Xt is a random variable
belonging to the class of infinitely divisible distributions. Moreover, the characteristic exponent of Xt defined
by Ψt(θ) = − log(E(eiθXt)) for all t ≥ 0 satisfies

Ψt(θ) = tΨ1(θ). (1.1)

Proof. Let t > 0 and n ≥ 1, note that we can write

Xt =

n∑
k=1

(Xkt/n −X(k−1)t/n) = Xt/n + (X2t/n −Xt/n) + · · ·+ (Xt −X(n−1)t/n). (1.2)

Together with the facts that X has stationary independent increments and that X0 = 0 we have that Xt

has an infinitely divisible distribution.
From the definition of Ψt and using (1.2), we have, for any positive integer m

Ψm(θ) = − log
(
E(eiθXm)

)
= − log

(
E(eiθX1)m

)
= mΨ1(θ)

and for any positive integer n

Ψm(θ) = − log
(
E(eiθXm)

)
= − log

(
E(eiθXm/n)n

)
= nΨm/n(θ).

Then for every m,n positive integers,

Ψm/n(θ) =
m

n
Ψ1(θ).

Hence, for any rational t > 0,

Ψt(θ) = tΨ(θ).

If t is an irrational number, then we can choose a decreasing sequence of rational {tn : n ≥ 1} such that
tn ↓ t as n tends to infinity. Note that |eiθXt | ≤ 1 so by the dominated convergence theorem and the almost
sure right-continuity of X we have

Ψt(θ) = − log
(
E(eiθXt)

)
= − log

(
E( lim
n→∞

eiθXtn )
)

= lim
n→∞

− log
(
E(eiθXtn )

)
= lim
n→∞

Ψtn(θ)

= lim
n→∞

tnΨ1(θ)

= tΨ1(θ).

Therefore Ψt(θ) = tΨ1(θ) holds for all t ≥ 0.

The above proposition tells us that any Lévy process has the property that, for all t ≥ 0,

E(eiθXt) = e−tΨ(θ), (1.3)

where Ψ(θ) := Ψ1(θ) is the characteristic exponent of X1.

Definition 1.1.10. In the sequel, we shall also refer to Ψ(θ) as the characteristic exponent of the Lévy
process.

An important result in the theory of Lévy processes is that any infinitely distribution µ can be viewed
as the distribution of a Lévy process evaluated at time 1.
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Theorem 1.1.11 (Lévy–Khintchine formula for Lévy processes). Suppose that a ∈ R, σ ∈ R and Π is a
measure concentrated on R \ {0} such that

∫
R(1 ∧ x2)Π(dx) <∞. From this triple, define for each θ ∈ R,

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθxI{|x|<1})Π(dx).

Then there exists a probability space, (Ω,F ,P), on which a Lévy process is defined having characteristic
exponent Ψ.

The proof of the Lévy–Khintichine formula for Lévy processes, which can be found in Bertoin (1998),
provides an explicit construction of this Lévy process and sheds a probabilistic light on the Lévy–Khintchine
formula. In section 1.2 we give an idea of this construction which is called the Lévy–Itô decomposition.

Some Examples of Lévy Processes

Poisson Processes

Definition 1.1.12. A process valued on the non-negative integers, N = {Nt, t ≥ 0} defined on a probability
space (Ω,F ,P), is said to be a Poisson process with intensity λ > 0 if the following hold:

1. The paths of N are P-almost surely right-continuous with left limits.

2. P(N0 = 0) = 1.

3. For s, t ≥ 0, Nt+s −Nt is equal in distribution to Nt.

4. For s, t ≥ 0, Nt+s −Nt is independent of {Nu : u ≤ t}.

5. For each t > 0, Nt is equal in distribution to a Poisson random variable with parameter λt

Clearly, the Poisson process is a Lévy process such that N1 has a Poisson distribution. Now we check
that N satisfies the Lévy–Khintchine formula.

For each λ > 0, consider the Poisson distribution, i.e. take a measure µλ which is concentrated on
k = 0, 1, 2, . . . such that µλ({k}) = e−λλk/k!. It is well known that the characteristic function µ̂λ(θ) is given
by

µ̂λ(θ) = e−λ(1−eiθ) = [e−
λ
n (1−eiθ)]n.

The right-hand side is the characteristic function of the sum of n independent Poisson variables, each of
which has parameter λ/n. In the Lévy–Khintchine formula, we see that a = σ = 0 and Π = λδ1, where δ1
is the Dirac measure supported on {1}. From the above calculations, we have

E(eiθNt) = e−λt(1−e
iθ)

and hence its characteristic exponent is given by Ψ(θ) = λ(1− eiθ), for θ ∈ R.

Compound Poisson Processes

Suppose now that N is a Poisson random variable with parameter λ > 0 and that {ξi, i ≥ 1} is a sequence
of i.i.d. random variables (independent of N) with common law F which has no atom at zero. By first
conditioning on N , we have for θ ∈ R,
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E(eiθ
∑N
i=1 ξi) =

∞∑
n=0

E(eiθ
∑n
i=1 ξi)e−λ

λn

n!

=

∞∑
n=0

(E(eiθξ1))ne−λ
λn

n!

=

∞∑
n=0

(∫
R
eiθxF (dx)

)n
e−λ

λn

n!

= e−λ
∞∑
n=0

(
λ
∫
R e

iθxF (dx)
)n

n!

= e−λeλ
∫
R e
iθxF (dx)

= e−λ
∫
R(1−eiθx)F (dx).

We see from the Lévy Khintchine formula (Theorem 1.1.6) that distributions of the form
∑N
i=1 ξi are infinitely

divisible with triple a = −λ
∫
{0<|x|<1} xF (dx), σ = 0 and Π(dx) = λF (dx), for x 6= 0.

Suppose now that {Nt, t ≥ 0} is a Poisson process with intensity λ > 0 and consider a compound Poisson
process {Xt, t ≥ 0} defined by

Xt =

Nt∑
i=1

ξi, t ≥ 0

Using the fact that N has stationary independent increments together with the mutual independence of the
random variables {ξi, i ≥ 1}, by writing

Xt+s = Xt +

Nt+s∑
Nt+1

ξi,

for s, t ≥ 0, it is clear that Xt+s is the sum of Xt and an independent copy of Xs. Right-continuity and left
limits of the process {Nt, t ≥ 0} also ensure right-continuity and left limits of X. In conclusion, compound
Poisson processes are Lévy processes. From the calculations in the previous paragraph we have that the
Lévy–Khintchine formula for a compound Poisson process takes the form Ψ(θ) = λ

∫
R(1− eiθx)F (dx).

Linear Brownian Motion

Definition 1.1.13. A real-valued process, B = {Bt, t ≥ 0}, defined on a probability space (Ω,F ,P) is said
to be a Brownian motion if the following hold:

1. The paths of B are P-almost surely continuous.

2. P(B0 = 0) = 1.

3. For s, t ≥ 0, Bt+s −Bt is equal in distribution to Bt.

4. For s, t ≥ 0, Bt+s −Bt is independent of {Bu : u ≤ t}.

5. For each t > 0, Bt is equal in distribution to a normal random variable with zero mean and variance t

Clearly a Brownian motion is a continuous Lévy process where B1 has a Gaussian distribution. Take the
probability law of a Gaussian distribution with mean γ ∈ R and variance s2 > 0,

µs,γ(dx) :=
1√

2πs2
e−(x−γ)2/2s2dx.
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It is well known that its characteristic function µ̂s,γ(θ) is given by

µ̂s,γ(θ) = e−s
2θ2/2+iθγ =

[
e−(s/

√
n)

2
θ2/2+iθγ/n

]n
,

showing, again, that it is an infinitely divisible distribution, this time with a = −γ, σ = s and Π = 0.

We immediately recognise the characteristic exponent Ψ(θ) = s2θ2/2− iθγ as that of a scaled Brownian
motion with linear drift (otherwise referred to as linear Brownian motion),

Xt := sBt + γt, t ≥ 0.

1.2 The Lévy–Itô Decomposition

The Lévy–Itô decomposition describes the structure of a general Lévy process in terms of three independent
auxiliary Lévy processes, each with a different type of path behaviour. For a better understanding of this
decomposition it is necessary to have a brief overview of the general theory of Poisson random measures (see
Appendix A.3).

Theorem 1.2.1 (Lévy–Itô decomposition). Let a ∈ R, σ ∈ R and a measure Π concentrated on R \ {0}
satisfying

∫
R

(1 ∧ x2)Π(dx) <∞.

Then there exists a probability space (Ω,F ,P) on which three independent Lévy processes exist, X(1), X(2) and
X(3), where X(1) is a linear Brownian motion given by (1.4), X(2) is a compound Poisson process given by
(1.5) and X(3) is a square-integrable martingale with an almost surely countable number of path discontinuities
(or jumps) on each finite interval, which are of magnitude less than unity, and with characteristic exponent
given by Ψ(3). Moreover, by taking X = X(1) +X(2) +X(3), the conclusion of Theorem 1.1.11 holds, namely
that there exists a probability space on which a Lévy process is defined with characteristic exponent

Ψ(θ) = aiθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθxI{|x|<1})Π(dx),

for θ ∈ R, and path, or Lévy–Itô decomposition

Xt = σBt − at+

∫ t

0

∫
{|x|≥1}

xN(ds, dx) +

∫ t

0

∫
{|x|<1}

x(N(ds, dx)− dsΠ(dx)),

where N is a Poisson random measure with intensity η(dt× dx) = dt×Π(dx)

Proof. See chapter 4 of Sato (1999) or chapter 2 of Kyprianou (2014).

The Lévy–Itô decomposition is a hard mathematical result to prove. We give a rough sketch of the proof
because it gives some ideas about the structure of the paths of a Lévy process. According to Theorem 1.1.11,
any characteristic exponent Ψ of a Lévy process can be written in the form

Ψ(θ) = Ψ(1)(θ) + Ψ(2)(θ) + Ψ(3)(θ),

where

Ψ(1)(θ) = iaθ +
1

2
σ2θ2,

Ψ(2)(θ) = Π(R \ (−1, 1))

∫
{|x|≥1}

(1− eiθx)
Π(dx)

Π(R \ (−1, 1))
,

Ψ(3)(θ) =

∫
{0<|x|<1}

(1− eiθx + iθx)Π(dx),
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for all θ ∈ R, where a ∈ R, σ ∈ R and Π is a measure on R \ {0} satisfying
∫
R(1 ∧ x2)Π(dx) < ∞. In

the case that Π(R \ (−1, 1)) = 0, one should think that Ψ(2) ≡ 0. The key of the proof of the Lévy–Itô
decomposition is to recognise Ψ(1), Ψ(2) and Ψ(3) as the characteristic exponent of three independent Lévy
processes, where each Lévy process has a particular path behaviour. As we have already seen in Section 1.1,

Ψ(1) and Ψ(2) correspond, respectively, to a linear Brownian motion, say, X(1) = {X(1)
t , t ≥ 0}, where

X
(1)
t = σBt − at, t ≥ 0, (1.4)

and an independent compound Poisson process, say X(2) = {X(2)
t , t ≥ 0}, where,

X
(2)
t =

Nt∑
i=1

ξi, t ≥ 0, (1.5)

{Nt, t ≥ 0} is a Poisson process with rate Π(R \ (−1, 1)) and {ξi, i ≥ 1} are independent and identically
distributed with common distribution Π(dx)/Π(R \ (−1, 1)) concentrated on {x : |x| ≥ 1} (unless Π(R \
(−1, 1)) = 0 in which case X(2) is the process which is identically zero). Using the notation of Poisson
random measure we can express the process X(2) as

X
(2)
t =

∫ t

0

∫
{|x|≥1}

xN(ds, dx), t ≥ 0,

where N is a Poisson random measure with intensity dt × Π(dx), defined as in Appendix A.3. As a direct
consequence of Lemma A.3.5 we have that X(2) is indeed a compound Poisson process.

The proof of existence of a Lévy process with characteristic exponent Ψ is reduced to showing the existence
of a Lévy process, X(3), whose characteristic exponent is given by Ψ(3). Note that the characteristic exponent
Ψ(3) appears to be the characteristic exponent of a compensated compound Poisson process. However, due
to the fact that Π is not necessarily finite in the set (−1, 1) \ {0}, this might not be case.

We give a brief outline of the construction of X(3). For ε > 0 define the compensated compound Poisson

process X(3,ε) = {X(3,ε)
t , t ≥ 0} where

X
(3,ε)
t =

∫
[0,t]

∫
{ε≤|x|<1}

xN(ds, dx)− t
∫
{ε≤|x|<1}

xΠ(dx), t ≥ 0.

The process X
(3)
t is a square-integrable martingale with characteristic exponent

Ψ(3,ε)(θ) =

∫
{ε≤|x|<1}

(1− eiθx + iθx)Π(dx).

Moreover, it can be shown that (see Kyprianou (2014)) there exists a Lévy process X(3) which is also a square-
integrable martingale to which X(3,ε) converges uniformly to X(3) on [0, T ] as ε ↓ 0 and its characteristic
exponent is

Ψ(3)(θ) =

∫
{|x|<1}

(1− eiθx + iθx)Π(dx).

Then, the process X = {Xt, t ≥ 0} where

Xt = X
(1)
t +X

(2)
t +X

(3)
t , t ≥ 0

has stationary independent increments, has paths that are right-continuous with left limits and has charac-
teristic exponent
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Ψ(θ) = Ψ(1)(θ) + Ψ(2)(θ) + Ψ(3)(θ)

= iaθ +
1

2
σ2θ2 +

∫
R
(1− eiθx + iθxI{|x|<1})Π(dx).

Remark 1.2.2. To summarise, a Lévy process can be seen as a linear Brownian motion with jumps that
are determined by a Poisson point process. The process X(2) model the “big jumps” while the process X(3)

handles the “small jumps”. Using the properties of the Poisson random measure, we can see that

E(N([0, 1], A)) = Π(A),

for every set A ∈ B(R \ {0}). This tells us that the Lévy measure describes the expected number of jumps of
a certain height in a time interval of length one. On the other hand we have that

E
(∫ 1

0

∫
A

xN(ds, dx)

)
=

∫
A

xΠ(dx),

then the integral of the right-hand side of the above expression is the expected sum of jumps of a certain
height in a time interval of length one.

Remark 1.2.3. The relation between Poisson random measures and Lévy measures allows us to draw the
following conclusion about the sample paths of Lévy processes based on their Lévy measure: the Lévy measure
has no mass at the origin, thus a Lévy process can have an infinite number of “small” jumps. Moreover, the
mass away from the origin is bounded, hence only a finite number of “big” jumps can occur.

1.3 General Properties of Lévy Processes

The Lévy–Itô decomposition gives us tools to analyse the behaviour of a general Lévy process as a sum
of three independent Lévy processes. It turns out that the Lévy measure is responsible for the richness of
the class of Lévy processes. The behaviour of the sample paths of a Lévy process, as well as many other
properties, e.g. existence of moments, smoothness of densities, etc, can be completely characterised based
on the Lévy measure and the presence or absence of a Brownian component.

In this section we will study some properties of Lévy processes. We will study further a particular subclass
of Lévy processes called spectrally negative Lévy process which will be key in Chapter 3. This section is
based in Kyprianou (2014), but for a more complete summary of properties we refer to Sato (1999).

Path Properties

Now we study some properties of the paths of Lévy process, in particular, when they have finite or finite
variation.

Path variation

First, we analyse the variation of the paths of a Lévy process. We start recalling the definition of variation
of a real function and then we give some elementary properties. Then we define this concept for a general
stochastic process according to Klebaner et al. (2005).

For a function f : R 7→ R, its variation over the interval [a, b] is defined as

Vf ([a, b]) = sup
π

n∑
i=1

|f(ti)− f(ti−1)|, (1.6)

where π = {a = t0 < t1 < · · · < tn = b} is a partition of the interval [a, b]. If Vf ([a, b]) is finite then f is
said to be a function of finite variation on [a, b]. Otherwise, f is of infinite variation on [a, b]. The variation
function of f as a function of t is defined by

Vf (t) = Vf ([0, t]).
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We say that f is of finite variation if Vf (t) <∞ for all t ≥ 0 and f is of bounded variation if supt≥0 Vf (t) <∞,
in other words, if for all t ≥ 0, Vf (t) < C, where C is a constant independent of t. For example, it follows
from the definition that

1. If f(t) is a increasing function then

Vf (t) = f(t)− f(0).

2. If f(t) is decreasing then

Vf (t) = f(0)− f(t).

3. If f is a càdlàg function and is a pure jump function (changes only by jumps), i.e. it is of the form
f(t) =

∑
0≤s≤t ∆f(s) =

∑
0≤s≤t[f(s+)− f(s−)] then we have

Vf (t) =
∑

0≤s≤t

∆|f(s)| =
∑

0≤s≤t

|f(s+)− f(s−)|.

Now, we give a theorem which links the variation and the discontinuities of a function.

Theorem 1.3.1. A finite variation function can have no more than countably many discontinuities. More-
over, all discontinuities are jumps.

Proof. See Klebaner et al. (2005) (Theorem 1.7).

The following lemma gives a lower bound of the variation of a function in terms of the sum of the sizes
of its jumps. This lemma will be useful later to analyse the variation of a Lévy process.

Lemma 1.3.2. If f : R 7→ R is càdlàg and has finite variation on [a, b] then

Vf ([a, b]) ≥
∑
t∈[a,b]

|∆f(t)|.

Proof. See Applebaum (2009) (Theorem 2.314).

Now we define the variation of a stochastic process.

Definition 1.3.3. A stochastic process X = {Xt, t ≥ 0} has finite variation if the paths {Xt(ω), t ≥ 0} have
finite variation for almost all ω ∈ Ω. Otherwise, the process has infinite variation.

It is well known that the Brownian motion has paths of infinite variation (see Klebaner et al. (2005) or
Revuz and Yor (1999)). On the other hand since the compound Poisson process is a pure jump process and
in the interval [0, t] we have only a finite number of jumps, we have that its variation is given by the finite
sum of the size of all jumps which is also finite. Therefore we have that the compound Poisson process has
paths of finite variation.

Now we give necessary and sufficient conditions for a Lévy process to have paths of finite variation in
terms of its Lévy triple (a, σ,Π).

Lemma 1.3.4. A Lévy process with Lévy–Khintchine exponent corresponding to the triple (a, σ,Π) has paths
of finite variation if and only if

σ = 0 and

∫
R
(1 ∧ |x|)Π(dx) <∞. (1.7)
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Proof. We know that the Brownian motion has paths of infinite variation. From the Lévy–Itô decomposition
the presence of Brownian motion (σ > 0) implies that the paths of the Lévy process have infinite variation.
On the other hand the process X(2) from the Lévy Itô decomposition, which is a compound Poisson pro-
cess, has paths of finite variation. Hence we just need to analyse whether the process X(3) has finite variation.

First suppose that
∫
R(1∧|x|)Π(dx) <∞. Then Theorem A.3.4 i) ensures that

∫ t
0

∫
|x|≤1

|x|N(ds, dx) <∞
a.s. Let π = {0 = t0 < t1 < · · · < tn = t} a partition of the interval [0, t], then

n∑
i=1

|X(3)
ti −X

(3)
ti−1
| =

n∑
i=1

∣∣∣∣∣
∫ ti

ti−1

∫
{|x|≤1}

x(N(ds, dx)−Π(dx)ds)

∣∣∣∣∣
≤

n∑
i=1

∫ ti

ti−1

∫
{|x|≤1}

|x|(N(ds, dx)−Π(dx)ds)

=

∫ t

0

∫
{|x|≤1}

|x|(N(ds, dx)−Π(dx)ds).

Since the last double integral does not depend on π and from the finiteness of the integral with respect the
Poisson random measure we have

sup
π

n∑
i=1

|X(3)
ti −X

(3)
ti−1
| ≤

∫ t

0

∫
{|x|≤1}

|x|N(ds, dx)− t
∫
{|x|≤1}

|x|Π(dx) <∞ P-a.s.

thus X(3) has finite variation.
Conversely, suppose that X(3) has finite variation. Then by Lemma 1.3.2 we have that

∞ > sup
π

n∑
i=1

|X(3)
ti −X

(3)
ti−1
| ≥

∑
t∈[0,t]

|∆X(3)
t | =

∫ t

0

∫
{|x|≤1}

|x|N(ds, dx).

Then Theorem A.3.4 implies that
∫
{|x|≤1} xΠ(dx) <∞ and hence∫

R
(1 ∧ |x|)Π(dx) <∞.

In conclusion we have that X(3) is a process of finite variation if only if
∫
R(1∧ |x|)Π(dx) <∞ and the result

follows.

Remark 1.3.5. Note that if a Lévy process {Xt, t ≥ 0} is of finite variation then (1.7) holds, and we have
that its Lévy Khintchine exponent can be rewritten as

Ψ(θ) = aiθ +

∫
R

(1− eiθx + iθxI{|x|<1})Π(dx)

=

(
a+

∫
{|x|<1}

xΠ(dx)

)
iθ +

∫
R

(1− eiθx)Π(dx)

= −idθ +

∫
R

(1− eiθx)Π(dx),

where d = −
(
a+

∫
{|x|<1} xΠ(dx)

)
. Therefore the process Xt has the form

Xt = dt+

∫
[0,t]

∫
R
xN(ds, dx), t ≥ 0 (1.8)

Note that the above expression corresponds to a compound Poisson process with drift d when Π(R) <∞.
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Subordinators

Now we introduce an important class of Lévy processes called subordinators. These processes play an
important role in the theory and applications of Lévy processes in various fields, as they constitute a stochastic
model for the evolution of time.

Definition 1.3.6. A process X is called subordinator if it is a Lévy process with a.s. non-decreasing paths.

As the jumps of a Lévy process are handled by the Lévy measure Π we have that Π(−∞, 0) = 0 if and
only X has only positive jumps, noting that in presence of a Brownian motion we cannot have monotone
paths, using Lemma 1.3.4 and Remark 1.3.5, we have the following result.

Lemma 1.3.7. A Lévy process X is a subordinator if and only if Π(−∞, 0) = 0,
∫

(0,∞)
(1 ∧ x)Π(dx) <∞,

σ = 0 and d = −(a+
∫

(0,1)
xΠ(dx)) ≥ 0.

The subordinators are very important as they are useful to construct new processes via time change. It
can be shown that a Lévy process time changed by an independent subordinator is again a Lévy process.

One-Sided Jumps

Another class of Lévy processes are the spectrally positive Lévy processes and spectrally negative Lévy
processes which are processes that only have one-sided jumps. The spectrally negative Lévy processes are of
vital importance in this work and they will be studied deeper in the last section of this chapter.

Definition 1.3.8. Let X be a Lévy process. If Π(−∞, 0) = 0 and X does not have monotone paths, then X
is referred to as a spectrally positive Lévy process. A Lévy process, X, will then be referred to as a spectrally
negative Lévy process if −X is spectrally positive. Together, these two classes of processes are called spectrally
one-sided.

Remark 1.3.9. i) It is important to emphasise that subordinators are excluded from the definition of
spectrally positive Lévy process. This tells us that compound Poisson processes are not spectrally positive
nor spectrally negative Lévy processes.

ii) Spectrally one-sided Lévy processes may be of finite or infinite variation and, in the latter case, may
or may not possess a Gaussian component. If a spectrally negative Lévy process has finite variation,
then it must take the form

Xt = dt− St, t ≥ 0, (1.9)

where {St, t ≥ 0} is a pure jump subordinator and d > 0 is called the drift of the process. Note the
above decomposition implies that if E(X1) ≥ 0, then E(S1) < ∞, and if E(X1) < 0 it is possible that
E(S1) =∞.

A special feature of spectrally negative Lévy processes is that, if τ+
x = inf{t > 0 : Xt > x} where x > 0,

then P(τ+
x <∞) > 0. Hence, as there are no upwards jumps,

P(Xτ+
x

= x|τ+
x <∞) = 1.

The Strong Markov Property

The Markov property (see Appendix A.2 for a more detailed review of Markov processes) is satisfied for
all Lévy process. Moreover, Lévy processes satisfy the stronger condition that the law of Xt+s − Xt is
independent of Ft, for all s, t ≥ 0. Some of the proofs of the results corresponding to this subsection are
quite technical so we omit them, these can be found in Kyprianou (2014).

Theorem 1.3.10. Suppose that τ is a stopping time. Define on {τ <∞} the process X̃ = {Xt, t ≥ 0} where

X̃t = Xτ+t −Xτ , t ≥ 0.

Then, on the event {τ < ∞}, the process X̃ is independent of Fτ , has the same law as X and hence in
particular is a Lévy process.
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In the following chapter we use stochastic processes which are left-continuous over increasing sequences
of stopping times. Lévy processes are not the exception as we state in the following lemma, Lévy processes
are left-continuous over stopping times.

Lemma 1.3.11 (Quasi-Left-Continuity). If T is a stopping time and (Tn, n ≥ 1) is an increasing sequence
of stopping times such that limn→∞ Tn = T a.s., then limn→∞XTn = XT on {T < ∞}. Hence, if Tn < T
a.s. for each n ≥ 1, then X is left-continuous at T on {T <∞}.

Examples of stopping times which are useful in the present work are those of the first-entrance time and
first-hitting time of a given or closed set B ⊂ R. They are defined as

TB = inf{t ≥ 0 : Xt ∈ B} and τB = inf{t > 0 : Xt ∈ B},

where we take the usual convention that inf ∅ =∞. In the following result we state that the above random
times are indeed stopping times no matter if the set B is open or closed.

Theorem 1.3.12. Suppose that B is open or closed. Then,

1. TB is a stopping time and XTB ∈ B̄ on {TB <∞} and

2. τB is a stopping time and XτB ∈ B̄ on {τB <∞}.

Moments and Martingales

In this subsection we put our attention to the moments of a Lévy process. In particular, we analyse the
expectation of a special class of transformations of a Lévy processes called submultiplicative. It is well known
that the Brownian motion has finite moments of all orders. Note that if X = {Xt, t ≥ 0} is a compound
Poisson, i.e. is of the form

Xt =

Nt∑
i=1

ξi, t ≥ 0,

where N = {Nt, t ≥ 0} is a Poisson process and {ξi, i ≥ 1} are independent and identically distributed. We
know that

E(Xt) = λtE(ξ1).

If ξ1 has infinite first moment it follows that E(X1) =∞. As a consequence of the Lévy–Itô decomposition
and the above observations me may suspect that the moments of a Lévy process and the Lévy measure are
closely related. Indeed, in what follows we will give some conditions under which the expectation of a large
class of functions of Lévy processes has finite expectation. These functions are called submultiplicative.

Definition 1.3.13. A measurable function, g : R 7→ [0,∞), is called submultiplicative if there exists a
constant a > 0 such that g(x+ y) ≤ ag(x)g(y) for all x, y ∈ R.

We state a useful result that links the submultiplicative functions with the exponential function.

Lemma 1.3.14. If g is a submultiplicative function which is bounded on compacts, then there exist constants
bg > 0 and cg > 0 such that

g(x) ≤ bg exp(cg|x|).

Proof. Since g is submultiplicative then there exists a constant a > 0 such that g(x+ y) ≤ ag(x)g(y) for all
x, y ∈ R. As g is locally bounded we may choose bg in a such way that sup|x|≤1 g(x) ≤ bg and abg > 1. If
n− 1 < |x| ≤ n, then using the submultiplicative property of g we have

g(x) = g

(
n∑
i=1

1

n
x

)
≤ an−1g(

1

n
x)n ≤ an−1bng = bg(abg)

n−1 ≤ bg(abg)|x| = bg exp(log(abg)|x|).

Letting c := log(abg) the result is then proved.
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The following result tells us when g-moments of a Lévy process exist. In Kyprianou (2014) only the case
of the exponential function is considered. Thus the proof is mainly based in the ideas of Sato (1999).

Theorem 1.3.15. Suppose that g is submultiplicative and bounded on compacts. Then E(g(Xt)) < ∞ for
all t > 0 if and only if

∫
{|x|≥1} g(x)Π(dx) <∞.

Proof. Recall X(1), X(2) and X(3) given in the Lévy–Itô decomposition. Note, in particular, that X(2)

is a compound Poisson process with arrival rate λ = Π(R \ (−1, 1)) and jump distribution F (dx) :=
I{|x|≥1}Π(dx)/Π(R \ (−1, 1)) and X(1) + X(3) is a Lévy process with Lévy measure I{|x|<1}Π(dx). First
suppose that E(g(Xt)) <∞ for all t > 0. Since

∞ > E(g(Xt)) =

∫
R

∫
R
g(x+ y)P(X

(2)
t ∈ dx)P(X

(1)
t +X

(3)
t ∈ dy),

we have that E(g(X
(2)
t + y)) =

∫
R g(x+ y)P(X

(2)
t ∈ dx) <∞ for some y ∈ R. Hence, as X(2) is a compound

Poisson process,

E(g(X
(2)
t + y)) = e−λt

∑
k≥0

(λt)k

k!

∫
R
g(x+ y)F ∗k(dx)

= e−Π(R\(−1,1))t
∑
k≥0

tk

k!

∫
R
g(x+ y)(Π|R\(−1,1))

∗k(dx) <∞,

where F ∗n and (Π|R\(−1,1))
∗n are the n-fold convolution of F and Π|R\(−1,1), the restriction of Π to R\(−1, 1),

respectively. Since g is a multiplicative function and by Lemma 1.3.14, there exist constants bg and cg such
that,

g(x) ≤ ag(−y)g(x+ y) ≤ abg exp(cg|y|)g(x+ y).

Then we get

∑
k≥0

tk

k!

∫
R
g(x)(Π|R\(−1,1))

∗k(dx) <∞.

It follows that for all k ≥ 0,
∫
R g(x)(Π|R\(−1,1))

∗k(dx) <∞. In particular if we take k = 1 we obtain that

∫
{|x|≥1}

g(x)Π(dx) <∞.

For the opposite implication, suppose that
∫
{|x|≥1} g(x)Π(dx) < ∞. By the submultiplicativity property of

g,

∫
R
g(x)(Π|R\(−1,1))

∗n(dx) =

∫
R
· · ·
∫
R
g(x1 + · · ·+ xn)Π|R\(−1,1)(dx1) · · ·Π|R\(−1,1)(dxn)

≤ an−1

(∫
|x|≥1

g(x)Π(dx)

)n
<∞.

Then
∑
k≥0 t

k/k!
∫
R g(x)(Π|R\(−1,1))

∗k(dx) <∞ and hence g(X
(2)
t ) has finite moment for every t ≥ 0. Since

g is submultiplicative and from Lemma 1.3.14,
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E(g(Xt)) = E(g(X
(2)
t +X

(1)
t +X

(3)
t )) ≤ aE(g(X

(1)
t ) +X

(3)
t )E(g(X

(2)
t )) ≤ abgE(ecg|X

(1)
t +X

(3)
t |)E(g(X

(2)
t )).
(1.10)

Then it remains to prove that E(ecg|X
(1)
t +X

(3)
t |) <∞.

However, since X(1) +X(3) is a Lévy process whose Lévy measure has bounded support, it follows that
its characteristic exponent

Ψ(θ) = iaθ +
1

2
σ2θ2 +

∫
(−1,1)

(1− eiθx + iθx)Π(dx), θ ∈ R

can be extended to an analytic function on C. To see why note that using the Taylor expansion of eiθx we
obtain

∫
(−1,1)

(1− eiθx + iθx)Π(dx) = −
∫

(−1,1)

∑
k≥0

(iθx)k+2

(k + 2)!
Π(dx).

The sum and the integral on the above expression may be exchanged using Fubini’s theorem and the estimate

∑
k≥0

∫
(−1,1)

|θx|k+2

(k + 2)!
Π(dx) ≤

∑
k≥0

|θ|k+2

(k + 2)!

∫
(−1,1)

x2Π(dx) <∞.

Therefore, Ψ can be extended to an analytic function to the whole complex plane C. Define µt(dx) =

P(X
(1)
t +X

(3)
t ∈ dx). The above guarantees that

µ̂t(θ) = e−Ψ(θ)t =

∫
R
eiθxµt(dx)

is also an analytic function. In consequence, all moments of µt exists and we can write

µ̂t(θ) =
∑
n≥0

1

n!
inmn(t)θn, θ ∈ C,

where mn(t) =
∫
R x

nµt(dx) for every n ∈ N. Since µ̂t is analytic then the above sum is absolutely convergent
for all θ ∈ C.

Now define an(t) =
∫
R |x|

nµt(dx) for every n ∈ N. Notice that a2k = m2k(t) and a2k+1(t) ≤ 1
2 (m2k(t) +

m2k+2(t)) where the latter follows on account of the fact

|x|2k+1 ≤ 1

2
(x2k + x2k+2), x ∈ R.

We thus have that

E(ecg|X
(1)
1 +X

(3)
t |) =

∫
R
ecg|x|µt(dx) =

∑
n≥0

1

n!
an(t)cng <∞,

where the final equality is justified by writing eβ|x| as a power series and then using Fubini’s theorem, the

estimates for an(t) and the absolute convergence of µ̂t. In conclusion E(ecg|X
(1)
1 +X

(3)
t |) < ∞ and then by

(1.10) we have that E(g(Xt)) <∞ for all t ≥ 0.
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We list some properties of submultiplicative functions.

Proposition 1.3.16. Let f, g be submultiplicative functions then:

i) The product fg is also submultiplicative.

ii) For all α > 0, c ∈ R and γ ∈ R the function g(cx+ γ)α is submultiplicative.

Here are some applications to g-moments of Lévy processes.

Corollary 1.3.17. Let X be a Lévy process with triple (a, σ,Π) then:

i) For every β ∈ R, E(eβXt) <∞ for all t ≥ 0 if and only if
∫
{|x|≥1} e

βxΠ(dx) <∞.

ii) For every p ≥ 0, E(|Xt|p) <∞ for all t ≥ 0 if and only if
∫
{|x|≥1} |x|

pΠ(dx) <∞.

Proof. The functions f(x) = exp(βx) and g(x) = |x|p ∨ 1 are submultiplicative functions.

Remark 1.3.18. As we have seen already, a Lévy process has finite first moment if and only if
∫
{|x|≥1} |x|Π(dx) <

∞. Therefore, we can also compensate the big jumps to form a martingale, hence the Lévy–Ito decomposition
of X takes the form

Xt = σBt − a′t+

∫ t

0

∫
R
x(N(ds, dx)−Π(dx)ds). (1.11)

And the characteristic exponent takes the form

Ψ(θ) = a′iθ +
1

2
σ2θ +

∫
R

(1− eiθx + iθx)Π(dx),

where a′ = a−
∫
{|x|≥1} xΠ(dx).

Definition 1.3.19. Let β ∈ R define the Laplace exponent as

ψ(β) =
1

t
log
(
E(eβXt)

)
= −Ψ(−iβ), (1.12)

whenever it exists.

We know that the Laplace exponent is finite if and only if
∫
{|x|≥1} e

βxΠ(dx) <∞.

Proposition 1.3.20. Let X be a spectrally negative Lévy process. Then E(eβXt) < ∞ for any t ≥ 0 and
β ∈ R+. The function ψ : [0,∞) 7→ R is zero at zero and tends to infinity at infinity. Further, it is infinitely
differentiable and strictly convex on (0,∞). In particular, ψ′(0+) = E(X1) ∈ [−∞,∞).

Proof. Suppose that X has Lévy triple (a, σ,Π). Since X has no positive jumps, Π((0,∞)) = 0 and thus for
any β ∈ R+

∫
{|x|≥1}

eβxΠ(dx) =

∫
{x≤−1}

eβxΠ(dx) ≤ Π((−∞,−1]) <∞.

From Corollary 1.3.17 i) follows that E(eβXt) < ∞ for all t ≥ 0 and β ∈ R+. This implies that the
characteristic exponent Ψ of X can be extended to complex β with negative imaginary part, and hence the
Laplace exponent can be written as

ψ(β) = −Ψ(−iβ) = −aβ +
1

2
σ2β2 +

∫
{x≤−1}

(eβx − 1)Π(dx) +

∫
{0>x>−1}

(eβx − 1− βx)Π(dx), β > 0.
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Note that for x < −1, |eβx − 1| ≤ 1 and 0 > x > −1 we have that,

|eβx − 1− βx| =

∣∣∣∣∣∣
∑
k≥2

βk

k!
xk

∣∣∣∣∣∣ ≤
∑
k≥2

βk

k!
|x|k ≤ eβx2.

Hence using dominated convergence theorem we obtain

ψ′(β) = −a+ σ2β +

∫
{x≤−1}

xeβxΠ(dx) +

∫
{0>x>−1}

(xeβx − x)Π(dx). (1.13)

Using similar arguments one may use dominated convergence and the integrability condition on Π to
deduce that for n ≥ 2,

∂n

∂βn
ψ(β) = σ2I{n=2} +

∫
(−∞,0)

xneβxΠ(dx). (1.14)

Then ψ is infinitely differentiable in (0,∞). In particular we can see that ψ′′(β) > 0 implying that ψ is
strictly convex on (0,∞).

From the definition of ψ we have that

ψ(0) =
1

t
log
(
E(e(0)Xt)

)
= 0.

To show that ψ is infinity at infinity note that

eψ(β) = E(eβX1) ≥ E(eβX1I{X1>0})

and using the monotone convergence Theorem we obtain that E(eβX1I{X1>0})→∞ as β →∞ since in the
spectrally negative case P(X1 > 0) > 0. Finally, we know that

E(X1) =
d

dβ
E(eβX1)

∣∣∣∣
β=0

=
d

dβ
eψ(β)

∣∣∣∣
β=0

= ψ′(0+).

Using dominated convergence theorem in (1.13) we obtain

ψ′(0+) = −a+

∫
{x≤−1}

xΠ(dx).

Note that
∫
{x≤−1} xΠ(dx) ∈ [−∞, 0] and therefore ψ′(0+) ∈ [−∞,∞).

Now we introduce some martingales that are driven by Lévy processes.

Proposition 1.3.21. Let X be a Lévy process with Lévy triple (a, σ,Π), characteristic exponent Ψ and
Laplace exponent ψ.

i) If
∫
{|x|≥1} |x|Π(dx) <∞, then X is a martingale if and only if

a−
∫
{|x|≥1}

xΠ(dx) = 0.

ii) If
∫
{|x|≥1} |x|Π(dx) <∞, then {Xt − E(Xt), t ≥ 0} is a martingale.
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iii) If
∫
{|x|≥1} e

βxΠ(dx) <∞, for some β ∈ R, then M = {Mt, t ≥ 0} is a unit mean martingale, where

Mt = eβXt−tψ(β), t ≥ 0.

iv) The process N = {Nt, t ≥ 0} is a martingale, where

Nt = eiθXt+tΨ(θ), t ≥ 0.

Proof. By Theorem 1.3.15 and the integrability conditions of Π we have that E(|Xt|) <∞ and E(eβXt) <∞.
Since Xt is an infinitely divisible distribution and by an argument similar to the one used in Proposition 1.1.9
we can see that E(Xt) = tE(X1) and E(eβXt) = eψ(β)t for all t ≥ 0. Using Remark 1.3.18, more specifically
(1.11), we have that

E(X1) = a−
∫
{|x|≥1}

xΠ(dx).

i) Let s, t ≥ 0 then using the stationary and independent increments of X we have

E(Xt+s|Ft) = E(Xt+s −Xt) +Xt = E(Xs) +Xt

Then X is a martingale if and only if E(Xt) = 0 for all t ≥ 0 which happens if and only if a −∫
{|x|≥1} xΠ(dx) = 0.

ii) Notice that Xt−E(Xt) = Xt− tE(X1) is a Lévy process with mean 0. Then by i), {Xt−E(Xt), t ≥ 0}
is martingale.

iii) Let s, t ≥ 0 then using the stationary and independent increments of X we have

E(Mt+s|Ft) = E(eβXt+s |Ft)e−(t+s)ψ(β)

= E(eβ(Xt+s−Xt))eβXte−(t+s)ψ(β)

= E(eβXs)eβXte−(t+s)ψ(β)

= esψ(β)eβXte−(t+s)ψ(β)

= Mt.

Therefore M is a martingale.

iv) Note that E(|eiθXt |) ≤ 1 for all θ ∈ R and hence Nt is integrable for all t ≥ 0. Let s, t ≥ 0 then using
the stationary and independent increments of X we have

E(Nt+s|Ft) = E(eiθXt+s |Ft)e(t+s)Ψ(θ)

= E(eiθ(Xt+s−Xt))eiθXte(t+s)Ψ(θ)

= E(eiθXs)eiθXte(t+s)Ψ(θ)

= e−sΨ(β)eiθXte(t+s)Ψ(β)

= Nt.

Therefore N is a martingale.
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Roughly speaking, a change of measure transforms the initial probability P into another probability
measure P̃ (which is equivalent to P) in such a way that the process X is a simpler process under the

measure P̃. Theorem 1.3.21 iii) gives a criterion under which we can perform an exponential change of
measure.

Definition 1.3.22. Let β ∈ R and suppose that ψ(β) <∞. Define the process E(β) = {Et(β), t ≥ 0} where

Et(β) = eβXt−ψ(β)t, t ≥ 0.

Since E(β) is a unit mean martingale, it may be used to perform a change of measure via

dPβ

dP

∣∣∣∣
Ft

= Et(β), t ≥ 0. (1.15)

The process E(β) is known as the Esscher transform. An important result related to the Esscher transform
is that the process X is again a Lévy process under the new measure Pβ .

Theorem 1.3.23. Suppose that X is a Lévy process with characteristic triple (a, σ,Π), and that β ∈ R is
such that ∫

{|x|≥1}
eβxΠ(dx) <∞.

Under the change of measure Pβ, the process X is still a Lévy process with characteristic triple (a∗, σ∗,Π∗),
where

a∗ = a− βσ2 +

∫
{|x|<1}

(1− eβx)xΠ(dx), σ∗ = σ and Π∗(dx) = eβxΠ(dx).

Proof. It is easy to show that under Pβ , X is again a Lévy process (see Kyprianou (2014)). For purposes of
this work we only deduce the Lévy triplet of X under Pβ . Let t > 0, then

e−Ψβ(θ)t = Eβ(eiθ(Xt))

= E(e(iθ+β)(Xt)−ψ(β)t)

= exp(ψ(iθ + β)t− ψ(β)t)

= exp(−Ψ(θ − iβ)t+ Ψ(−iβ)t),

where Eβ is the expectation under the measure Pβ . Thus

Ψβ(θ) = Ψ(θ − iβ)−Ψ(−iβ).

By writing out the characteristic exponent Ψβ in terms of the triple (a, σ,Π) associated with X under P, we
see that for all θ ∈ R,

Ψβ(θ) = ai(θ − iβ) +
1

2
σ2(θ − iβ)2 +

∫
R

(1− ei(θ−iβ)x + i(θ − iβ)xI{|x|<1})Π(dx)

−
(
ai(−iβ) +

1

2
σ2(−iβ)2 +

∫
R

(1− ei(−iβ)x + i(−iβ)xI{|x|<1})Π(dx)

)
= iθ

(
a− βσ2 +

∫
{|x|<1}

(1− eβx)xΠ(dx)

)
+

1

2
θ2σ2 +

∫
R

(1− eiθx + iθxI{|x|<1})e
βxΠ(dx).

Therefore the triple (a∗, σ2,Π∗) is given as the statement of the theorem.
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As a consequence, we get for the spectrally negative case the following result.

Corollary 1.3.24. The Esscher transform may be applied for all β ≥ 0 when X is a spectrally negative Lévy
process. Further, under Pβ, X remains within the class of spectrally negative Lévy processes. The Laplace
exponent, ψβ, of X under Pβ satisfies

ψβ(θ) = ψ(θ + β)− ψ(β),

for all θ ≥ −β.

Proof. Note that the change measure using the Esscher transform does not change the support of the Lévy
measure, i.e. Π∗ = eβxΠ(dx) has support on (−∞, 0). Using the identity between Ψ and ψ we obtain that
for all θ ≥ −β,

ψβ(θ) = −Ψβ(−iθ) = −Ψ(−iθ − iβ) + Ψ(−iβ) = ψ(θ + β)− ψ(β).

Corollary 1.3.25. Suppose that X is a Lévy process with chracteristic triple (a, σ,Π) and β is such that

∫
{|x|≥1}

eβxΠ(dx) <∞.

If τ is a stopping time, then

dPβ

dP

∣∣∣∣
Fτ

= Eτ (β) on {τ <∞}.

Proof. Suppose that A ∈ Fτ then by definition of Fτ , given in the Appendix A.1, we have that A∩ {τ ≤ t}.
Hence conditioning with respect to Fτ

Pβ(A ∩ {τ ≤ t}) = E(Et(β)IA∩{τ≤t})
= E(E(Et(β)IA∩{τ≤t}|Fτ ))

= E(IA∩{τ≤t}E(Et(β)|Fτ ))

= E(IA∩{τ≤t}e−ψ(β)teβXτE(eβ(Xt−Xτ )|Fτ ))

= E(IA∩{τ≤t}e−ψ(β)teβXτE(eβ(Xt−τ ))

= E(IA∩{τ≤t}Eτ (β)E(Et−τ (β)))

= E(IA∩{τ≤t}Eτ (β))

where the fifth and the last equality follows by the strong Markov property as well as the martingale property
of E . Now taking limits, as t ↑ ∞ and using the monotone convergence Theorem,

Pβ(A) = E(Eτ (β)IA)

for all A ∈ Fτ and the theorem is now proved.

Now we give some applications of the Esscher transform E(β) when X is a spectrally negative Lévy
process. For this purpose define the right inverse of the function ψ as

Φ(q) = sup{λ ≥ 0 : ψ(λ) = q} (1.16)

for each q ≥ 0.
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Note that from Proposition 1.3.20 we know that, on [0,∞), ψ is infinitely differentiable, strictly convex
and that ψ(0) = 0 whilst ψ(∞) = ∞ and as consequence of these facts, E(X1) = ψ′(0+) ∈ [−∞,∞). In
the case that E(X1) ≥ 0, Φ(q) is the unique solution to ψ(θ) = q in [0,∞), in particular Φ(0) = 0. When
E(X1) < 0 the previous statement is true only when q > 0. If E(X1) < 0 and q = 0, then there are two roots
to the equation ψ(θ) = 0, one of them being θ = 0 and the other being Φ(0) > 0.

Let τ+
x the first-passage time above the level x ≥ 0, i.e.

τ+
x = inf{t > 0 : Xt > x}. (1.17)

Theorem 1.3.12 implies that τ+
x is a stopping time. In the following theorem we give an expression for the

Laplace transform of τ+
x .

Theorem 1.3.26. For any spectrally negative Lévy process,

E(e−qτ
+
x I{τ+

x <∞}) = e−Φ(q)x

where q ≥ 0, x ≥ 0 and Φ(q) is the largest root of the equation ψ(θ) = q.

Proof. Fix q > 0. From the fact that X is a spectrally negative Lévy process we deduce that the process
{Et(Φ(q)), t ≥ 0} is martingale. Using the Doob’s stopping time theorem (Theorem A.1.28) we have that
{Et∧τ+

x
(Φ(q)), t ≥ 0} is also a martingale, then

E(e
Φ(q)X

t∧τ+
x
−q(t∧τ+

x )
) = 1.

Note that if t < τ+
x then Xt ≤ x and since X is spectrally negative then it creeps upwards, i.e. when τ+

x <∞
we have that Xτ+

x
= x, then Xt∧τ+

x
≤ x under the set {τ+

x <∞} which implies that

e
Φ(q)X

t∧τ+
x
−q(t∧τ+

x ) ≤ eΦ(q)X
t∧τ+

x ≤ eΦ(q)x.

Hence, using the dominated convergence theorem we have

E(eΦ(q)x−qτ+
x I{τ+

x <∞}) = E(e
Φ(q)X

τ
+
x
−qτ+

x I{τ+
x <∞}) = lim

t→∞
E(e

Φ(q)X
t∧τ+

x
−q(t∧τ+

x )
) = 1.

It follows that

E(e−qτ
+
x I{τ+

x <∞}) = e−Φ(q)x.

For the case q = 0 we may take limits and use the monotone convergence theorem.

Corollary 1.3.27. From the previous theorem, we have that for x ≥ 0, P(τ+
x <∞) = e−Φ(0)x. In particular,

if x > 0 we have that P(τ+
x < ∞) = 1 if and only if Φ(0) = 0, if and only if ψ′(0+) ≥ 0, if and only if

E(X1) ≥ 0.

The following corollary gives a sufficient condition for τ+
x to have finite expectation. This result will be

useful in the development of the third chapter.

Corollary 1.3.28. Supose that ψ′(0+) > 0. Then E(τ+
x ) <∞ for all x ≥ 0.

Proof. We know from Theorem 1.3.26 and the previous corollary that

L(q) = E(e−qτ
+
x ) = e−Φ(q)x.

Calculating the first derivative of L we have that

L′(q) = −Φ′(q)xe−Φ(q)x.
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Using the well-known result which links the moments and derivatives of the Laplace transform (see Feller
(1971) (section XIII.2)), the expectation of τ+

x is given by

E(τ+
x ) = −L′(0) = Φ′(0)xe−Φ(0)x = Φ′(0)x.

Hence τ+
r has finite moment if Φ′(0) is finite, thus we calculate the term Φ′(0). Using the strict convexity of

ψ and the inverse function theorem we obtain that

Φ′(0) =
1

ψ′(Φ(0)+)
=

1

ψ′(0+)
<∞.

In conclusion τ+
x has finite moment for all x ≥ 0.

Wiener–Hopf Factorisation

A fundamental part within the theory of Lévy processes is the Wiener–Hopf factorisation, which was first
given in the theory of random walks. The Wiener–Hopf factorisation has many applications, and it serves
as a tool to extract some generic results concerning coarse and fine path properties of Lévy processes. For
a detailed study of this factorisation it is required to know some aspects of the theory of excursions, local
time and the maximum and ladder processes. As all these issues are beyond the scope of this work, we only
mention a small part of all the set of conclusions concerning to the Wiener–Hopf factorisation.

Before we state the Wiener–Hopf factorisation, we give some tools that will help us to give a more explicit
expression in the case of spectrally negative Lévy processes. In the following lemma we discuss what happens
when we take a process resulting of a time reversal of a Lévy process. It turns out that the new process is
equal in law to the negative of the original process.

Lemma 1.3.29 (Duality Lemma). For each fixed t > 0, define the reversed process

{X(t−s)− −Xt, 0 ≤ s ≤ t}

and the dual process,

{−Xs, 0 ≤ s ≤ t}.

Then the two processes have the same law under P.

Proof. See Kyprianou (2014) (Lemma 3.4).

One interesting consequence of the Duality Lemma is the relationship between the running supremum,
the running infimum, the process reflected in its supremum and the process reflected in its infimum.

Lemma 1.3.30. For each fixed t > 0, the pairs (Xt, Xt−Xt) and (Xt−Xt,−Xt) have the same distribution
under P. Here Xt = sup0≤s≤tXt and Xt = inf0≤s≤tXt are the running supremum and the running infimum,
respectively.

Proof. Define X̃ = {X̃s, 0 ≤ s ≤ t} where X̃s = Xt − X(t−s)− and write X̃t = inf0≤s≤t X̃s. Using right-
continuity and left limits of the paths, we have

−X̃t = − inf
0≤s≤t

(Xt −X(t−s)−) = sup
0≤s≤t

Xs −Xt = Xt −Xt.

Therefore

(Xt, Xt −Xt) = (X̃t − X̃t,−X̃t) P-a.s.

Now from Duality Lemma, we know that {X̃s, 0 ≤ s ≤ t} is equal in law to {Xs, 0 ≤ s ≤ t} under P and
the result follows.
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We need to introduce some additional notation before give the main statement of the Wiener–Hopf
factorisation. For p > 0 we shall understand ep to be an independent random variable which is exponentially
distributed with mean 1/p. Further, we define the last time that a process reaches its minimum and its
maximum before time t, respectively, as follows

Gt = sup{s < t : Xs = Xs} and Gt = sup{s < t : Xs = Xs}.

Theorem 1.3.31 (The Wiener–Hopf factorisation). Suppose that X is any Lévy process other than a com-
pound Poisson process. Denote by ep an independent and exponentially distributed random variable with
parameter p > 0.

i) The pairs

(Gep , Xep) and (ep −Gep , Xep −Xep)

are independent and infinitely divisible, yielding the factorisation

p

p− ϑ+ Ψ(θ)
= Ψ+

p (ϑ, θ) ·Ψ−p (ϑ, θ), (1.18)

where θ, ϑ ∈ R,

Ψ+
p (ϑ, θ) = E(eiϑGep+iθXep ) and Ψ−p (ϑ, θ) = E(e

iϑGep
+iθXep ).

Here, the pair Ψ+
p (ϑ, θ) and Ψ−p (ϑ, θ) are called the Wiener–Hopf factors.

Proof. See Kyprianou (2014) (Theorem 6.15).

In the case of spectrally negative Lévy processes we obtain a more explicit factorisation.

Corollary 1.3.32. Suppose that X be a spectrally negative Lévy process with characteristic exponent Ψ.
Let ep an independent and exponentially distributed random variable with parameter p > 0. Then Xep is
exponentially distributed with parameter Φ(p) and

E(e
iθXep ) =

p

Φ(p)

Φ(p)− iθ
p+ Ψ(θ)

. (1.19)

Proof. From the above theorem we have that the variables Xep−Xep and −Xep are independent. Moreover,

from Lemma 1.3.30 we have that Xt −Xt is equal in distribution to Xt. Then for all θ ∈ R,

E(eiθXep ) = E(e
iθ(Xep−Xep

)
e
iθXep )

= E(e
iθXep )E(e

iθ(Xep−Xep
)
)

= E(e
iθXep )

∫ ∞
0

pe−ptE(eiθ(Xt−Xt))dt

= E(e
iθXep )

∫ ∞
0

pe−ptE(eiθXt)dt

= E(e
iθXep )E(eiθXep ).

Then for all θ ∈ R,

E(eiθXep ) = E(e
iθXep )E(eiθXep ). (1.20)
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On the other hand, note that {Xt > a} = {τ+
a < t} for all t ≥ 0, where τ+

a = inf{t > 0 : Xt > a}. Then,
Theorem 1.3.26 and Fubini’s theorem implies,

P(Xep > a) = P(τ+
a < ep)

=

∫ ∞
0

pe−ptP(τ+
a < t)dt

=

∫ ∞
0

pe−pt
∫ t

0

P(τ+
a ∈ dy)dt

=

∫ ∞
0

P(τ+
a ∈ dy)

∫ ∞
y

pe−ptdt

=

∫ ∞
0

e−pyP(τ+
a ∈ dy)

= E(e−pτ
+
a I{τ+

a <∞})

= e−Φ(p)a.

Thus Xep is exponentially distributed with parameter Φ(p) and therefore for all θ ∈ R,

E(eiθXep ) =
Φ(p)

Φ(p)− iθ
.

It follows from (1.20) that,

E(e
iθXep ) =

E(eiθXep )

E(eiθXep )

=
Φ(p)− iθ

Φ(p)

∫ ∞
0

pe−ptE(eiθXt)dt

=
Φ(p)− iθ

Φ(p)

∫ ∞
0

pe−pte−Ψ(θ)tdt

=
Φ(p)− iθ

Φ(p)

p

p+ Ψ(θ)
.

Drifting and Oscillating

We are interested in the limit behaviour of Lévy processes. It can be shown that a Lévy process present only
three options at infinity (see Kyprianou (2014)):

Definition 1.3.33. i) We say that X drifts to infinity if

lim
t→∞

Xt =∞, P-a.s.

ii) We say that X drifts to minus infinity if

lim
t→∞

Xt = −∞, P-a.s.

iii) We say that X oscillates if

lim sup
t→∞

Xt = − lim inf
t→∞

Xt =∞, P-a.s.
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Due to the objectives stated in this work we only analyse the behaviour at infinity of spectrally negative
Lévy processes. For more results about general Lévy processes see Kyprianou (2014) or Bertoin (1998).

Proposition 1.3.34. Suppose that X is a spectrally negative Lévy process. Then we have the following:

i) X drifts to infinity if and only if ψ′(0+) > 0.

ii) X drifts to minus infinity if and only if ψ′(0+) < 0.

iii) X oscillates if and only if ψ′(0+) = 0.

Proof. Thanks to the finiteness and convexity of its Laplace exponent, ψ(λ) = log(E(eλX1)) on λ ≥ 0,
one always has that E(X1) ∈ [−∞,∞). Note that from the definition of limit, if X drifts to infinity we
have that E(Xt) > 0 for some t > 0. Thus from the infinite divisibility property of X we deduce that
ψ′(0+) = E(X1) > 0 . In the same way, if X drifts to minus infinity then ψ′(0+) = E(X1) < 0.

Recall from the strict convexity of ψ it follows that ψ′(0+) ≥ 0 if and only if Φ(0) = 0 and hence

lim
q↓0

q

Φ(q)
=

{
ψ′(0+) if ψ′(0+) ≥ 0

0 if ψ′(0+) < 0.

From Corollary 1.3.32 we know that if ep is and exponentially distributed random variable with parameter
p > 0 independent of X then

E(e
βXep ) =

p

Φ(p)

Φ(p)− β
p− ψ(θ)

and E(e−βXep ) =
Φ(p)

Φ(p) + β
.

By taking p ↓ 0 we obtain,

E(eβX∞) =

{
ψ′(0+)β/ψ(β) if ψ′(0+) ≥ 0

0 if ψ′(0+) < 0
and E(e−βXep ) =

{
0 if ψ′(0+) ≥ 0

Φ(0)/(Φ(0) + β) if ψ′(0+) < 0.

This tells us that when ψ′(0+) > 0 then X∞ > −∞ and X∞ =∞ P-a.s. Therefore

lim inf
t→∞

Xt = lim
t→∞

inf
s>t

Xs ≥ X∞ > −∞ P-a.s.

Thus by trichotomy we have that X drifts to infinity. When ψ′(0) < 0 we obtain that X∞ = ∞ and X∞
P-a.s. Thus

lim sup
t→∞

Xt = lim
t→∞

sup
s>t

Xs ≤ X∞ <∞ P-a.s.

Thus by trichotomy we have that X drifts to minus infinity. The statement iii) follows directly from i) and
ii).

1.4 Spectrally Negative Lévy Process and Scale Functions

In this section we study in more detail the case of spectrally negative Lévy processes. Recall that this process
only have negative jumps, i.e. Π((0,∞) = 0. This condition turns out that to offer a significant advantage
for many calculations. Specifically, we consider a special class of functions called scale functions. These
functions are intimately related to some fluctuation identities which are semi-explicit in terms of the scale
functions.
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Existence of Scale Functions

Let us now turn our attention to the definition of scale functions.

Definition 1.4.1. For a given spectrally negative Lévy process, X, with Laplace exponent ψ, we define a
family of functions indexed by q ≥ 0, W (q) : R 7→ [0,∞), as follows. For each given q ≥ 0, we have
W (q)(x) = 0 when x < 0 and otherwise on [0,∞), W (q) is the unique right continuous function whose
Laplace transform is given by ∫ ∞

0

e−βxW (q)(x)dx =
1

ψ(β)− q
, β > Φ(q).

For convenience we shall always write W in place of W (0). Typically we shall refer to the functions W (q) as
q-scale functions, but shall also refer to W as just the scale function.

We are now ready to show the existence of scale functions. That is to say, we will show that the function
(ψ(β)− q)−1 is indeed a Laplace transform in β.

Theorem 1.4.2. For a spectrally negative Lévy process, q-scale functions exist for q ≥ 0.

Proof. First assume that ψ′(0+) > 0, define the function

W (x) =
1

ψ′(0+)
Px(X∞ ≥ 0). (1.21)

From this definition we can see that W (x) = 0 for x < 0 and W is a non-decreasing and right-continuous
function. Via analytical extension from (1.19) we may deduce that for β ≥ 0,

E(e
βXep ) =

p

Φ(p)

Φ(p)− β
p− ψ(β)

.

Taking limits in the above expression as p ↓ 0 we obtain

E(eβX∞) = lim
p↓0

p

Φ(p)

Φ(p)− β
p− ψ(β)

= ψ′(0+)
β

ψ(β)
, β ≥ 0, (1.22)

where the last equality holds since Φ(0) = 0 (see discussion above of (1.16)) and from the fact that ψ(0) = 0
we obtain

ψ′(0+) = lim
θ↓0

ψ(θ)

θ
= lim

q↓0

ψ(Φ(q))

Φ(q)
= lim

q↓0

q

Φ(q)
.

Using Fubini’s theorem and (1.22), we also see that for β > 0 = Φ(0),∫ ∞
0

e−βxW (x)dx =
1

ψ′(0+)

∫ ∞
0

e−βxP(−X∞ ≤ x)dx

=
1

ψ′(0+)

∫ ∞
0

e−βx
∫

[0,x]

P(−X∞ ∈ dy)dx

=
1

ψ′(0+)

∫
[0,∞)

P(−X∞ ∈ dy)

∫ ∞
y

e−βxdx

=
1

ψ′(0+)β

∫
[0,∞)

e−βyP(−X∞ ∈ dy)

=
1

ψ′(0+)β
E(eβX∞)

=
1

ψ′(0+)β
ψ′(0+)

β

ψ(β)

=
1

ψ(β)
.
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Then the statement has been proved for q = 0 and ψ′(0+) > 0.

Now we deal with the case where q > 0 or q = 0 and ψ′(0+) < 0. Note that this assumption implies that
Φ(q) > 0. Using the change of measure PΦ(q) given in (1.15) and by Corollary 1.3.24 we have that under
PΦ(q), X is again a spectrally negative Lévy process which Laplace exponent ψΦ(q) satisfies,

ψΦ(q)(θ) = ψ(θ + Φ(q))− ψ(Φ(q)) = ψ(θ + Φ(q))− q. (1.23)

Thus ψ′Φ(q)(0+) = ψ′(Φ(q)) > 0 on account of the strict convexity of ψ. Define for all x ∈ R,

W (q)(x) = eφ(q)xWΦ(q)(x), (1.24)

where WΦ(q)(x) = 1
ψ′

Φ(q)
(0+)P

Φ(q)
x (X∞ ≥ 0). Clearly W (q)(x) = 0 for x < 0 and is a non-decreasing function.

Moreover, using the conclusion from the previous paragraph we have that for all β > Φ(q),

∫ ∞
0

e−βxW (q)(x)dx =

∫ ∞
0

e−(β−Φ(q))xWΦ(q)(x)dx

=
1

ψΦ(q)(β − Φ(q))

=
1

ψ(β)− q
.

Thus completing the proof for the case q > 0 or q = 0 and ψ′(0+) < 0. Finally, the case that q = 0 and
ψ′(0+) = 0 can be dealt with as follows. Define for p > 0 the function WΦ(p)(x) as before. Since WΦ(p) is
an non-decreasing function, we may also treat it as a distribution function of a measure which we also, as
an abuse of notation, call WΦ(p). Using Fubini’s theorem we obtain for all β > 0,

∫
[0,∞)

e−βxWΦ(p)(dx) =

∫
[0,∞)

∫ ∞
x

βe−βydyWΦ(p)(dx)

=

∫ ∞
0

βe−βydy

∫
[0,y]

WΦ(p)(dx)

=

∫ ∞
0

βe−βyWΦ(p)(y)dy

=
β

ψΦ(p)(β)
.

Note that the assumption ψ′(0+) = 0, implies that Φ(0) = 0, and hence for θ ≥ 0, limp↓0 ψΦ(p)(θ) =
limp↓0[ψ(θ + Φ(p))− p] = ψ(θ). If follows that

lim
p↓0

∫
[0,∞)

e−βxWΦ(p)(dx) =
β

ψ(β)
.

Appealing to the Extended Continuity Theorem for Laplace transforms, (see Feller (1971), Theorem XIII.1.2a)
there exists a measure W ∗ such that

∫
[0,∞)

W ∗(dx) =
β

ψ(β)
.

Define W (x) := W ∗[0, x] then W satisfies
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∫ ∞
0

e−βxW (x)dx =
1

ψ(β)

for β > 0 as required.

Corollary 1.4.3. Let X be a spectrally negative Lévy process and eq an independent and exponentially
distributed random variable with parameter q > 0. For x ≥ 0,

P(−Xeq ∈ dx) =
q

Φ(q)
W (q)(dx)− qW (q)(x)dx. (1.25)

Proof. We know that for β ≥ 0,∫ ∞
0

e−βxP(−Xeq ∈ dx) = E(e
βXeq ) =

q

Φ(q)

Φ(q)− β
q − ψ(β)

.

On the other hand, for β > Φ(q) and using the same arguments of the above theorem we have,

∫ ∞
0

e−βx
(

q

Φ(q)
W (q)(dx)− qW (q)dx

)
=

q

Φ(q)

∫ ∞
0

e−βxW (q)(dx)− q
∫ ∞

0

e−βxW (q)(x)dx

=
q

Φ(q)

β

ψ(β)− q
− q

ψ(β)− q

=
q

Φ(q)

β − Φ(q)

ψ(β)− q
.

Then the result follows.

From the definition alone, we cannot account for the omnipresence of the scale functions in the theory
of Lévy processes. The following result gives us an important link between the two-sided exit problem and
scale functions. For this, let us define the first-passage time above and below a level x ∈ R, respectively as

τ+
x = inf{t > 0 : Xt > x} and τ−x = inf{t > 0 : Xt < x}.

Theorem 1.4.4. Let X be a spectrally negative Lévy process and W (q) for q ≥ 0 the family of scale functions
from Definition 1.4.1.

i) For any x ∈ R,

Px(τ−0 <∞) =

{
1− ψ′(0+)W (x) if ψ′(0+) > 0
1 if ψ′(0+) ≤ 0.

(1.26)

ii) For any x ≤ a and q ≥ 0,

Ex(e−qτ
+
a I{τ−0 >τ+

a }) =
W (q)(x)

W (q)(a)
, (1.27)

Proof of i). Denote by eq an independent and exponentially distributed random variable with mean 1/q.
Let x ≥ 0 and q > 0, noting that {τ−0 < eq} = {Xeq < 0} and using Fubini’s theorem we have
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Ex(e−qτ
−
0 I{τ−0 <∞}) =

∫ ∞
0

e−qyPx(τ−0 ∈ dy)

=

∫ ∞
0

∫ ∞
y

qe−qtPx(τ−0 ∈ dy)dt

=

∫ ∞
0

qe−qt
∫ t

0

Px(τ−0 ∈ dy)

=

∫ ∞
0

qe−qtPx(τ−0 < t)

= Px(τ−0 < eq)

= Px(Xeq < 0)

= P(−Xeq > x)

= 1− P(−Xeq ≤ x)

= 1−
∫

[0,x]

P(−Xeq ∈ du).

Using the density of Xeq given in (1.25) we get

Ex(e−qτ
−
0 I{τ−0 <∞}) = 1−

∫
[0,x]

Px(−Xeq ∈ du)

= 1 + q

∫ x

0

W (q)(u)du− q

Φ(q)

∫
[0,x]

W (q)(du).

Suppose that ψ′(0+) ≥ 0 then Φ(0) = 0 and limq↓0
q

Φ(q) = ψ′(0+) and thus

Px(τ−0 <∞) = lim
q↓0

Ex(e−qτ
−
0 I{τ−0 <∞}) = 1− ψ′(0+)W (x).

Otherwise, Φ(0) > 0 and therefore

Px(τ−0 <∞) = 1.

Proof of ii). First we prove (1.27) for the case ψ′(0+) > 0 and q = 0. Recall that we define

W (x) =
1

ψ′(0+)
Px(X∞ ≥ 0).

As we are supposing that ψ′(0+) > 0 we have that Φ(0) = 0 which implies that τ+
a <∞ P-a.s. Note that

{Xt ≥ 0} = {for all s ≤ t, Xs ≥ 0} = {τ−0 > t}.

From the above observation and from the strong Markov property we have that for all x ∈ [0, a],

Px(X∞ ≥ 0) = Ex(Px(X∞ ≥ 0|Fτ+
a

))

= Ex(Px(Xτ+
a
≥ 0, inf

t≥τ+
a

Xt ≥ 0|Fτ+
a

))

= Ex(I{X
τ
+
a
≥0}Px( inf

t≥τ+
a

Xt ≥ 0|Fτ+
a

))

= Ex(I{τ−0 >τ+
a }Px(inf

t≥0
Xt+τ+

a
≥ 0|Fτ+

a
))

= Ex(I{τ−0 >τ+
a }PXτ+

a

(X∞ ≥ 0))

= Ex(I{τ−0 >τ+
a }Pa(X∞ ≥ 0))

= Pa(X∞ ≥ 0)Px(τ+
a < τ−0 ).
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We now have for 0 ≤ x ≤ a,

Px(τ+
a < τ−0 ) =

Px(X∞ ≥ 0)

Pa(X∞ ≥ 0)
=
W (x)

W (a)
.

Clearly the same equality holds even when x < 0 as both left and right hand side are identically equal to
zero.

Next we deal with the case q > 0, using the change of measure PΦ(q) in a similar way as in the proof of
Theorem 1.4.2. As X drifts to infinity under PΦ(q) then

PΦ(q)
x (τ+

a < τ−0 ) =
WΦ(q)(x)

WΦ(q)(a)
,

where WΦ(q)(x) = 1
ψ′

Φ(q)
(0+)P

Φ(q)
x (X∞ ≥ 0). However, by definition of PΦ(q) and from Corollary 1.3.25,

PΦ(q)
x (τ+

a < τ−0 ) = Ex(e
Φ(q)(X

τ
+
a
−x)−qτ+

a I{τ+
a <τ

−
0 }

)

= eΦ(q)(a−x)Ex(e−qτ
+
a I{τ+

a <τ
−
0 }

).

Therefore, by definition of W (q) given in (1.24) we get

Ex(e−qτ
+
a I{τ+

a <τ
−
0 }

) = e−Φ(q)(a−x)WΦ(q)(x)

WΦ(q)(a)
=
W (q)(x)

W (q)(a)
.

Finally, to deal with the case that q = 0 and ψ′(0+) = 0, one needs only to take limits as q ↓ 0 in the
above identity, making use of monotone convergence on the left hand side and continuity in q on the right
hand side thanks to the Continuity Theorem for Laplace transforms.

The identity (1.27) is the justification for the name “scale functions”. Indeed, (1.27) has some math-
ematical similarities with an analogous identity which holds for a large class of one-dimensional diffusions
and which involves so-called scale functions for diffusions; see for example Proposition VII, 3.2 of Revuz and
Yor (1999). Moreover, note that if we choose q = 0 in (1.27) then we are calculating the probability that X
exits an interval [0, a] (where a > 0) into (a,∞) before exiting into (−∞, 0) when issued at x ∈ [0, a].

Analytical Properties of Scale Functions

Let us explore a little further some analytical properties of the functions W (q). For a more extensive review
of properties of scale functions the reader can check the work of Kuznetsov et al. (2011).

In the following two lemmas we state properties of continuity and differentiability of the scale functions.
The proofs of these results are omitted since these require some aspects of the theory of excursions of Lévy
processes. As an abuse of notation, let us write W (q) ∈ C1(0,∞) to mean the restriction of W (q) to (0,∞)
belongs to C1(0,∞).

Lemma 1.4.5. For any q ≥ 0, the scale function W (q) is continuous and strictly increasing on [0,∞).

Proof. See Kyprianou (2014) (Theorem 8.1).

In the Chapter 3 we will suppose without loss of generality that the function W ∈ C1(0,∞). Now we
give sufficient conditions which guarantees that W (q) ∈ C1(0,∞).

Lemma 1.4.6. For all q ≥ 0, the function W (q) has left and right derivatives on (0,∞). Moreover, W (q)

belongs to C1(0,∞) if and only if at least one of the following three criteria holds,
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i) σ 6= 0.

ii)
∫

(−1,0)
|x|Π(dx) =∞.

iii) Π(x) := Π(−∞,−x) is continuous.

Proof. See Kuznetsov et al. (2011) (Lemma 2.4).

As we need it in the third chapter, we check that the function W (q) can be extended analytically in the
parameter q.

Lemma 1.4.7. For each x ≥ 0, the function q 7→W (q)(x) may be analytically extended in q to C.

Proof. Fix q > 0 and choose β > Φ(q) such that 0 < q/ψ(β) < 1. Then from the definition of the scale
function,

∫ ∞
0

e−βxW (q)dx =
1

ψ(β)− q

=
1

ψ(β)

1

1− q/ψ(β)

=
1

ψ(β)

∑
k≥0

qk
1

ψ(β)k

=
∑
k≥0

qk
∫ ∞

0

e−βxW ∗(k+1)(x)dx,

where W ∗(k+1) is the (k + 1)-th convolution of W with itself. The last equality holds by the well-known
property that the Laplace transform of the k-th convolution of W is the Laplace transform of W raised to
the k-th power. Then using Fubini’s theorem we have

∫ ∞
0

e−βxW (q)(x)dx =

∫ ∞
0

e−βx
∑
k≥0

qkW ∗(k+1)(x)dx.

Thanks to continuity of W and W (q), we get that

W (q)(x) =
∑
k≥0

qkW ∗(k+1)(x). (1.28)

Now we claim that
∑
k≥0 q

kW ∗(k+1)(x) converges for each x ≥ 0 and q ≥ 0. For this, we will use the
following estimation for k ≥ 0 and x ≥ 0,

W ∗(k+1)(x) ≤ xk

k!
W (x)k+1. (1.29)

Indeed, we prove it by induction. Trivially (1.29) holds for k = 0, now suppose that (1.29) holds for k ≥ 0,
then since W is non-decreasing,

W ∗(k+1)(x) =

∫ x

0

W ∗k(y)W (x− y)dy

≤
∫ x

0

yk−1

(k − 1)!
W (y)kW (x− y)dy

≤ 1

(k − 1)!
W (x)k+1

∫ x

0

yk−1dy

=
xk

k!
W (x)k+1.
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Therefore

W (q)(x) =
∑
k≥0

qkW ∗(k+1)(x) ≤
∑
k≥0

qk
xk

k!
W (x)k+1.

Now noting that
∑
k≥0 q

k xk

k! W (x)k+1 converges for all x ≥ 0 and q ∈ C, we may extend the definition of

W (q) for each fixed x ≥ 0.

For each c ≥ 0, we call W
(q)
c the function fulfilling the definitions of scale function (see Definition 1.4.1)

but with respect to the measure Pc. We establish the relationship for W
(q)
c and W (q) (the scale function

under the original measure P).

Lemma 1.4.8. For any q ∈ C and c ∈ R such that ψ(c) <∞, we have

W (q)(x) = ecxW (q−ψ(c))
c (x) (1.30)

for all x ≥ 0.

Proof. Let c ∈ R, such that ψ(c) < ∞. From the definition of scale functions we have that (1.30) holds for
q − ψ(c) ≥ 0. By Lemma 1.4.7 both sides in (1.30) are analytic in q for each x ≥ 0. The Identity Theorem
for analytic functions thus implies that they are equal for all q ∈ C.

We are interested in the behaviour of scale functions at the origin and to infinity. In order to state the
results more precisely, we recall that from Remark 1.3.9 ii), when X is of finite variation, we can write
Xt = dt− St for t ≥ 0, where {St, t ≥ 0} is a pure jump subordinator and d > 0.

The following lemma shows that a discontinuity at zero may occur even when W (q) belongs to C1(0,∞).

Lemma 1.4.9. For all q ≥ 0, W (q)(0) = 0 if and only if X has infinite variation. Otherwise, when X has
finite variation, it is equal to 1/d, where d > 0 is the drift.

Proof. Denote as W (q)(dx) the measure induced by W (q). Using integration by parts one may deduce easily
that

∫ ∞
0

e−βxW (q)(dx) =
β

ψ(β)− q
.

Then for q > 0,

W (q)(0) = lim
β→∞

∫
[0,∞)

e−βxW (q)(dx)

= lim
β→∞

β

ψ(β)− q

= lim
β→∞

β − Φ(q)

ψ(β)− q
.

From Corollary 1.19 one may deduce that

E(e
βXeq ) =

q

Φ(q)

β − Φ(q)

ψ(β)− q
.

Then

W (q)(0) =
Φ(q)

q
lim
β→∞

E(e
βXeq ) =

Φ(q)

q
P(Xeq = 0).
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Now, it can be proven that P(Xeq = 0) > 0 if and only if X is of finite variation. From the same calculation
we can also obtain

W (q)(0) = lim
β→∞

β

ψ(β)− q
= lim
β→∞

β

ψ(β)
.

Recall that, in the case that X is of finite variation we can write

ψ(β) = dβ −
∫

(−∞,0)

(1− eβx)Π(dx).

Therefore

W (q)(0) = lim
β→∞

β

ψ(β)
= lim
β→∞

1

d−
∫

(−∞,0)
(1− eβx)Π(dx)/β

=
1

d
.

For the case q = 0 note that from (1.28) we have that for p > 0

W (p)(0) = W (0) +
∑
k≥1

pkW ∗(k+1)(0) = W (0),

where the last equality holds since for n ≥ 2, W ∗(n)(0) = 0 by definition of the convolution.

Next we look at the asymptotic behaviour of the scale function at infinity.

Lemma 1.4.10. For q ≥ 0 we have,

lim
x→∞

e−Φ(q)xW (q)(x) =
1

ψ′(Φ(q))
. (1.31)

In addition the following hold for q ≥ 0,

lim
a→∞

W (q)(a− x)

W (q)(a)
= e−Φ(q)x. (1.32)

Proof of (1.31). Assume that ψ′(0+) > 0 and q = 0, then Φ(0) = 0 and X drifts to infinity, recall that from
(1.21) the definition of W is given by

W (x) =
1

ψ′(0+)
Px(X∞ ≥ 0).

Then

lim
x→∞

W (x) =
1

ψ′(0+)
lim
x→∞

P(X∞ ≥ −x) =
1

ψ′(0+)
.

In the case that q > 0 or q = 0 and ψ′(0+) < 0, the definition of W (q) is given in (1.24) by

W (q)(x) = eΦ(q)x 1

ψ′Φ(q)(0+)
PΦ(q)
x (X∞ ≥ 0).
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Appealing to (1.23) we note that ψ′Φ(q)(0+) = ψ′(Φ(q)) > 0 and hence X drifts to infinity under the measure

PΦ(q), using the previous case we now have

lim
x→∞

e−Φ(q)xW (q)(x) =
1

ψ′(Φ(q))
lim
x→∞

PΦ(q)
x (X∞ ≥ 0) =

1

ψ′(Φ(q))
.

Now suppose that q = 0 and ψ′(0+) = 0 then Φ(0) = 0, then

lim
x→∞

W (x) = lim
β↓0

β

∫ ∞
0

e−βxW (x)dx

= lim
β↓0

β

ψ(β)

=
1

ψ′(0+)

Proof of (1.32). Using (1.31) we obtain

lim
a→∞

W (q)(a− x)

W (q)(a)
= e−Φ(q)x lim

a→∞

e−Φ(q)(a−x)W (q)(a− x)

e−Φ(q)aW (q)(a)
= e−Φ(q)x.

Potential Measures

Let us define two q-potential measures of X which will be useful later. First, denote as U (q((a, x, dy) as the
q-potential measure of X killed on exiting [0, a] for q ≥ 0 which is given by

U (q)(a, x, dy) :=

∫ ∞
0

e−qtPx(Xt ∈ dy, τ+
a > t, τ−0 > t).

On the other hand, define the q-potential measure of X killed on exiting (−∞, a) for q ≥ 0 as follows

R(q)(a, x, dy) :=

∫ ∞
0

e−qtPx(Xt ∈ dy, τ+
a > t).

In particular, the potential measure R(0) will be needed in the third chapter. In the following theorems we
give a semi-explicit expression of the q-potential measures defined above in terms of scale functions.

Theorem 1.4.11. The potential measure U (q) has a density u(q)(a, x, y) given by

u(q)(a, x, y) =
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y). (1.33)

Proof. See Kyprianou (2014).

Theorem 1.4.12. The potential measure R(q) has a density r(q)(a, x, y) given by

r(q)(a, x, y) = e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y). (1.34)

Proof. From Theorem 1.4.11 we know that U (q) has a density u(q)(a, x, y) given by

u(q)(a, x, y) =
W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y).
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The result is obtained moving the killing barrier below from an arbitrary large distance from the initial
point. Formally, with the help of spatial homogeneity,

lim
z→∞

U (q)(a+ z, x+ z, dy + z) = lim
z→∞

∫ ∞
0

e−qtPx+z(Xt ∈ dy + z, τ+
a+z > t, τ−0 > t)

= lim
z→∞

∫ ∞
0

e−qtPx(Xt ∈ dy, τ+
a > t, τ−−z > t)

=

∫ ∞
0

e−qtPx(Xt ∈ dy, τ+
a > t)

= R(q)(a, x, dy),

where the third equality holds since τ−−z
z→∞−−−→∞. On the other hand we have

lim
z→∞

u(q)(a+ z, x+ z, y + z) = lim
z→∞

[
W (q)(x+ z)W (q)(a+ z − y − z)

W (q)(a+ z)
−W (q)(x+ z − y − z)

]
= lim
z→∞

[
W (q)(x+ z)W (q)(a− y)

W (q)(a+ z)
−W (q)(x− y)

]
= W (q)(a− y) lim

z→∞

W (q)(x+ z)

W (q)(a+ z)
−W (q)(x− y)

= W (q)(a− y) lim
z→∞

W (q)(a+ z − (a− x))

W (q)(a+ z)
−W (q)(x− y).

Using Lemma 1.4.10, specifically (1.32), we conclude that

lim
z→∞

u(q)(a+ z, x+ z, y + z) = e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y).

Thus, using monotone convergence theorem we have that for all A ∈ B(R)

R(q)(a, x,A) = lim
z→∞

U (q)(a+ z, x+ z,A+ z)

= lim
z→∞

∫
A

u(q)(a+ z, x+ z, y + z)dy

=

∫
A

lim
z→∞

u(q)(a+ z, x+ z, y + z)dy

=

∫
A

[e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y)]dy.

Therefore R(q) has density given by

r(q)(a, x, y) = e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y).

Examples

In this subsection we present some known examples of scale functions. In the work of Hubalek and Kyprianou
(2010) is given a general methodology for generating new families of scale functions. We list a few here.

Brownian motion with drift

Let X = {Xt, t ≥ 0} a Brownian motion with drift, i.e.
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Xt = σBt + µt, t ≥ 0,

where σ > 0 and µ ∈ R. It is well known that its Laplace exponent is given by

ψ(θ) =
σ2

2
θ2 + µθ.

Then the scale function associated to this process is for q ≥ 0 and x ≥ 0,

W (q)(x) =
2√

2qσ2 + µ
e−µx/σ

2

sinh
( x
σ2

√
2qσ2 + µ

)
,

where in the case q = 0 = µ the above expression is taken in the limiting sense.

Spectrally negative stable process with stability parameter β ∈ (1, 2)

Suppose that X is a Lévy process with

ψ(θ) = θβ ,

where β ∈ (1, 2). We have for x ≥ 0 and q ≥ 0

W (q)(x) = βxβ−1E′β,1(qxβ),

where Eβ,1 is the Mittag–Leffler function given by

Eβ,1(z) =
∑
k≥0

zk

Γ(1 + βk)
.

There also exists an expression for the scale function of aforementioned β-stable process but now with a
strictly positive drift c > 0 (but only for the case q = 0). For x ≥ 0 its scale function is given by

W (x) =
1

c
(1− Eβ−1,1(−cxβ−1)).

Spectrally negative Lévy process of finite variation drifting to infinity

Suppose that X is of the form

Xt = ct− St,

where S = {St, t ≥ 0} is a subordinator with jump measure Π and no drift. The measure W (dx) induced
by the scale-function W (x) is given by

W (dx) =
1

c

∑
n≥0

ν∗n(dx),

where ν(dx) = c−1Π(x,∞)dx and ν∗n is the n-convolution of ν with itself.
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As a special case of the latter, consider the Cramér–Lundberg risk process with exponentially distributed
jumps. This process has the following expression

Xt = ct−
Nt∑
i=1

ξi,

where c > 0, N = {Nt, t ≥ 0} is a Poisson process with rate λ > 0 and {ξi, i ≥ 1} is an independent
sequence of exponentially distributed random variables with parameter µ > 0. Suppose that c − λ/µ > 0,
this condition guarantees that X drifts to infinity. Its Laplace exponent is given by

ψ(θ) = cθ − λ
(

1− µ

µ+ θ

)
.

Then the scale function is given by

W (x) =
1

c

(
1 +

λ

cµ− λ
(1− e−(µ−c−1λ)x)

)
.

Another example is the following, consider a spectrally negative compound Poisson process whose jumps
are exactly of size α ∈ (0,∞), with arrival rate λ > 0 and with positive drift c > 0 such that c− λα > 0. In
that case,

ψ(θ) = cθ − λ(1− e−αθ).

For x ≥ 0 we have,

W (x) =
1

c

bx/αc∑
n=1

e−λ(αn−x)/c 1

n!

(
λ

c

)n
(αn− x)n,

where bx/αc is the integer part of x/α.

A Spectrally Negative Lévy Process with no Gaussian Component

Consider a spectrally negative Lévy process X with σ = 0 and with Lévy measure

Π(dy) =
e(β−1)y

(ey − 1)β+1
dy, y < 0,

where β ∈ (1, 2) and whose Laplace transform takes the form

ψ(θ) =
Γ(θ − 1 + β)

Γ(θ − 1)Γ(β)
.

Note that ψ′(0+) < 0 and hence the process drifts to minus infinity. In that case it was found that for x ≥ 0,

W (x) = (1− e−x)β−1ex.

Another example is the scale function associated with the aforementioned Lévy process when conditioned
to drift to infinity. It follows that there is still no Gaussian component and the Lévy measure takes the form

Π(dy) =
eβy

(ey − 1)β+1
dy, y < 0.
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The associated Laplace exponent is given by

ψ(θ) =
Γ(θ + β)

Γ(θ)Γ(β)
,

and the scale function is then given for x ≥ 0 by

W (x) = (1− e−x)β−1.





Chapter 2

Optimal Stopping

The theory of optimal stopping is concerned with the problem of choosing a time to take a given action
based on sequentially observed random variables in order to maximise an expected payoff or to minimise an
expected cost. Problems of this type are found in the area of statistics, where the action taken may be to
test a hypothesis or to estimate a parameter, in the area of operations research, where the action may be to
replace a machine, hire a secretary, or reorder stock and in applications to finance, valuation of American
options.

The aim of the present chapter is to introduce basic results of general theory of optimal stopping. First
we study the martingale approach in continuous time and then the Markovian approach, both only in an
infinite horizon of time. This chapter is mainly based on Peskir and Shiryaev (2006).

2.1 Essential Supremum

Recall that if we take the supremum over an uncountable set of random variables then this does not necessarily
defines a measurable function. To overcome this difficulty the concept of essential supremum proves to be
useful. This section is entirely devoted to the following theorem which gives us the definition and functionality
of the concept of an essential supreumum of random variables.

Theorem 2.1.1. Let {Zα, α ∈ I} be a collection of real-valued random variables in a probability space
(Ω,F ,P), with I an arbitrary index set. Then there exists a countable subset J ⊆ I such that the random
variable Z∗ : Ω 7→ R ∪ {−∞,∞} defined by

Z∗ = sup
α∈J

Zα, (2.1)

satisfies

i) P(Zα ≤ Z∗) = 1 for all α ∈ I.

ii) If Y : Ω 7→ R ∪ {−∞,∞} is another random variable satisfying i) then,

P(Z∗ ≤ Y ) = 1.

We call Z∗ the essential supremum of {Zα, α ∈ I}, and write

Z∗ = ess sup
α∈I

Zα.

It is defined uniquely P-almost surely.

39
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Proof. Since the function f(x) = (2/π) arctan(x) is bijection between the sets [−∞,∞] and [−1, 1] we may
assume without loss of generality that |Zα| ≤ 1 for all α ∈ I. Let C be the set of countable subsets of I and
define

a := sup
C∈C

E
(

sup
α∈C

Zα

)
.

Then we have that |a| ≤ 1. Choose an increasing sequence {Cn, n ≥ 1} ⊆ C such that

a = sup
n≥1

E
(

sup
α∈Cn

Zα

)
.

Let J :=
⋃
n≥1 Cn, then J is a countable subset of I and define

Z∗ = sup
α∈J

Zα.

We claim that Z∗ satisfies the properties i) and ii). First, we verify the condition i), if we take α ∈ J then
by definition, P(Zα ≤ Z∗) = 1. Now take β ∈ I \ J and suppose P(Zβ > Z∗) > 0, this implies with the help
of the dominated convergence theorem that,

E(Zβ ∨ Z∗) > E(Z∗)

= E
(

lim
n→∞

sup
α∈Cn

Zα

)
= lim
n→∞

E
(

sup
α∈Cn

Zα

)
= a.

Hence, E(Zβ ∨ Z∗) > a and on the other hand,

E(Zβ ∨ Z∗) = E

(
sup

α∈J∪{β}
Zα

)
≤ sup
C∈C

E
(

sup
α∈C

Zα

)
= a,

where the inequality holds since the set J ∪ {β} is countable which is a contradiction and hence P(Zβ ≤
Z∗) = 1 and the property i) is then proved. For the property ii) suppose that Zα ≤ Y a.s. for all α ∈ I,
then in particular for all β ∈ J and hence by the countability of J ,

P(Z∗ > Y ) = P

(
sup
β∈J

Zβ > Y

)
= P

⋃
β∈J

{Zβ > Y }

 ≤∑
β∈J

P(Zβ > Y ) = 0.

Therefore Z∗ ≤ Y a.s.

Definition 2.1.2. A family of random variables {Zα, α ∈ I} has the lattice property if for any α, β in I
there exists γ ∈ I such that Zα ∨ Zβ ≤ Zγ P-a.s.

Corollary 2.1.3. If the family {Zα, α ∈ I} has the lattice property then the countable subset J = {α0, α1, α2, · · · }
may be chosen so that

ess sup
α∈I

Zα = lim
n↑∞

Zαn ,

where Zα0 ≤ Zα1 ≤ Zα2 ≤ · · · P-a.s.
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Proof. Suppose that the countable set in the proof of the previous theorem is J = {α0, α1, α2, . . .} then
it can be replaced by a new countable set J∗ = {α∗0, α∗1, α∗2, . . .} where α∗0 = α0 and α∗n+1 is such that
Zα∗n+1

≥ Zα∗n ∨ Zαn P-a.s., note that this can be done thanks to the lattice property.

By construction we have that Zα∗n+1
≥ Zαn P-a.s. and {Zα∗n} is an increasing sequence whose elements

are almost surely bounded by ess supα∈I Zα. For this reason,

ess sup
α∈I

Zα ≥ lim
n↑∞

Zα∗n = sup
α∈J∗

Zα ≥ sup
α∈J

Zα = ess sup
α∈I

Zα.

Therefore ess supα∈I Zα = limn→∞ Zα∗n as claimed.

2.2 Martingale Approach

Let G = {Gt, t ≥ 0} a stochastic process defined on a filtered probability space (Ω,F ,F,P) where F =
{Ft, t ≥ 0} is a filtration of F . Suppose that the filtration F satisfies the natural conditions (see Definition
1.3.38 of Bichteler (2002)), also assume that G is adapted to the filtration F . We interpret Gt as the gain if
the observation of G is stopped at time t.

From here on we will assume that the process G is right-continuous and left-continuous over stopping
times (if τn and τ are stopping times such that τn → τ as n → ∞ then Gτn → Gτ P-a.s. as n → ∞). We
will also assume that the following condition is satisfied,

E
(

sup
t≥0
|Gt|

)
<∞. (2.2)

Define for all t ≥ 0,

Tt = {τ ≥ t : τ is stopping time},

the set of all stopping times greater or equal to t. For simplicity we only write T instead of T0, i.e. we denote
by T the set of all stopping times.

Consider the optimal stopping problem

Vt = sup
τ∈Tt

E(Gτ ). (2.3)

To solve the problem (2.3), consider the process S = {St, t ≥ 0} defined as follows:

St = ess sup
τ∈Tt

E(Gτ |Ft), (2.4)

the process S is often called the Snell envelope of G. Note that by the definition of St we have that if we
take τ = t then St ≥ Gt P-a.s.

Consider the following stopping time for t ≥ 0

τt = inf{s ≥ t : Ss = Gs},

where we define inf ∅ = ∞. Now we state a useful result which will help us to prove that τt is an optimal
stopping time for (2.3).

Lemma 2.2.1. The process {St, t ≥ 0} defined in (2.4) is a supermartingale and admits a càdlàg modifica-
tion. Moreover, the following relation holds,

E(St) = Vt. (2.5)
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Proof. Note that St is Ft-measurable by definition, and

E (|St|) ≤ E
(

sup
t≥0
|Gt|

)
<∞

Fix t ≥ 0 we first show that the family

{E(Gτ |Ft), τ ∈ Tt}

has the lattice property. Indeed, if we take σ1, σ2 ≥ t stopping times and we set σ3 = σ1IA + σ2IAc where
A = {E(Gσ1 |Ft) ≥ E(Gσ2 |Ft)} then σ3 is a stopping time with σ3 ≥ t since A,Ac ∈ Ft and for all s ≥ 0

{σ1IA + σ2IAc ≤ s} =

{
∅ s < t
(A ∩ {σ1 ≤ s}) ∪ (Ac ∩ {σ2 ≤ s}) s ≥ t ∈ Fs.

Then, we have

E(Gσ3
|Ft) = E(Gσ1IA+σ2IAc |Ft)

= E(Gσ1
IA +Gσ2

IAc |Ft)
= IAE(Gσ1

|Ft) + IAcE(Gσ2
|Ft)

= E(Gσ1
|Ft) ∨ E(Gσ2

|Ft).

Therefore {E(Gτ |Ft), τ ∈ Tt} has the lattice property. Hence by Corollary 2.1.3 there exists a sequence of
stopping times {τk, k ≥ 1} such that τk ≥ t and

ess sup
τ∈Tt

E(Gτ |Ft) = lim
k→∞

E(Gτk |Ft),

where E(Gτ1 |Ft) ≤ E(Gτ2 |Ft) ≤ · · · P-a.s. Then using the monotone convergence theorem for conditional
expectation we have that for any s ≤ t,

E(St|Fs) = E(ess sup
τ∈Tt

E(Gτ |Ft)|Fs)

= E( lim
k→∞

E(Gτk |Ft)|Fs)

= lim
k→∞

E(E(Gτk |Ft)|Fs)

= lim
k→∞

E(Gτk |Fs)

≤ ess sup
τ≥s

E(Gτ |Fs)

= Ss.

This shows that {St,≥ 0} is a supermartingale. Note that by definition of St we have that St ≥ E(Gτ |Ft)
for all stopping times τ ∈ Tt, this implies that

E(St) ≥ sup
τ∈Tt

E(Gτ ) = Vt.

Also, using the monotone convergence theorem we have
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E(St) = E(ess sup
τ∈Tt

E(Gτ |Ft))

= E( lim
k→∞

E(Gτk |Ft))

= lim
k→∞

E(E(Gτk |Ft))

= lim
k→∞

E(Gτk)

= sup
k≥1

E(Gτk)

≤ sup
τ∈Tt

E(Gτ ),

where the last inequality holds since {τ1, τ2, . . .} ⊂ Tt. Therefore,

E(St) = sup
τ∈Tt

E(Gτ ) = Vt.

Now we check that the supermartingale {St, t ≥ 0} admits a càdlàg modification. Using Theorem A.1.24
we only have to check that t 7→ E(St) is right-continuous. To verify this note that by the supermartingale
property we have for all sequence {tn, n ≥ 1} such that tn ↓ t we have E(St) ≥ · · · ≥ E(Stn) ≥ · · · ≥ E(St1),
and hence Lt := limn→∞ E(Stn) exists and E(St) ≥ L. Now we prove the reverse inequality, from the fact
that E(St) = supτ∈Tt E(Gτ ), then for all ε > 0 we may choose a stopping time σε ≥ t such that

E(Gσε) ≥ E(St)− ε.

Fix δ > 0 and suppose that tn ∈ [t, t+ δ] for all n ≥ 1. Define the sequence of stopping times {σn, n ≥ 1}
where for n ≥ 1

σn =

{
σε σε > tn,
t+ δ σε ≤ tn.

Note that σn ≥ tn and for all s ≥ 0,

{σn ≤ s} =

{
∅ s < tn
{tn < σε ≤ s} ∪ [{t+ δ ≤ s} ∩ {σε ≤ tn}] s ≥ tn

∈ Fs.

Hence, σn is a stopping time such that σn ≥ tn for all n ≥ 0. Then using that E(Stn) = supτ∈Tn E(Sτ )
we have that,

E(GσεI{σε>tn}) + E(Gt+δI{σε≤tn}) = E(Gσn) ≤ E(Stn).

Letting n→∞ and using the dominated convergence theorem we have

E(GσεI{σε>t}) + E(Gt+δI{σε=t}) ≤ Lt
for all δ > 0. Letting δ ↓ 0 and from the fact that {Gt, t ≥ 0} is right-continuous we have

E(GσεI{σε>t}) + E(GtI{σε=t}) = E(Gσε) ≤ Lt.

Therefore

Lt ≥ E(Gσε) ≥ E(St)− ε

for all ε > 0. Letting ε ↓ 0 we obtain that E(St) ≤ Lt and thus E(St) = Lt proving that S admits a
right-continuous modification.
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Theorem 2.2.2. Consider the optimal stopping problem (2.3) upon assuming that condition (2.2) holds.
Assume moreover when required below that

P(τt <∞) = 1, (2.6)

where t ≥ 0. Then for all t ≥ 0 we have,

St ≥ E(Gτ |Ft) for each stopping time τ ∈ Tt (2.7)

St = E(Gτt |Ft). (2.8)

Moreover, if t ≥ 0 is given and fixed, we have:

i) The stopping time τt is optimal in (2.3).

ii) If τ∗ is an optimal stopping time in (2.3) then τt ≤ τ∗ P-a.s.

iii) The process {Ss, s ≥ t} is the smallest right-continuous supermartingale which dominates {Gs, s ≥ t} .

iv) The stopped process {Ss∧τt , s ≥ t} is a right-continuous martingale.

Proof of (2.7). By Doob’s optimal sampling theorem (Theorem A.1.28) we have that for all stopping time
τ the process {Ss∧τ , s ≥ t} is also a supermartingale. If we take any stopping time τ ∈ T we have

St = St∧τ ≥ E(Sτ |Ft).

Proof of iii). Let S̃ = {S̃s, s ≥ t} be another right continuous supermartingale which dominates G =
{Gs, s ≥ t}. Then by Doob’s optimal sampling theorem (Theorem A.1.28) we have that for all stopping time
τ the process {S̃s∧τ , s ≥ t} is also a supermartingale. If we take any stopping time σ ≥ s we have

S̃s ≥ E(S̃σ|Fs) ≥ E(Gσ|Fs),

where the last inequality holds since S̃ dominates G. Hence by the definition of Ss given by

Ss = ess sup
τ∈Ts

E(Gτ |Fs),

we have that S̃s ≥ Ss P-a.s. for all s ≥ t. By the right-continuity of S and S̃ this further implies that
P(Ss ≤ S̃s for all s ≥ t) = 1.

Proof of (2.8). The proof of this result is rather technical and then we omit it. For a detailed proof see
Peskir and Shiryaev (2006) page 31.

Proof of i) and ii). Taking expectations in (2.8) and using (2.5) we have that

Vt = sup
τ∈Tt

E(Gτ ) = E(St) = E(Gτt).

Therefore, the stopping time τt is an optimal stopping time for Vt. Now suppose that τ∗ is another optimal
stopping time. We will show that

Sτ∗ = Gτ∗ P-a.s.

Indeed, if we suppose that P(Sτ∗ > Gτ∗) > 0 and hence

E(Gτ∗) < E(Sτ∗) ≤ E(St) = Vt,

where the second inequality follow from Doob’s optional sampling theorem and the supermartingale property
of S. Note that the above inequality contradicts the fact that τ∗ is optimal and hence Sτ∗ = Gτ∗ . Then, by



2.3. MARKOVIAN APPROACH 45

definition of τt, we have that τt ≤ τ∗.

Proof of iv) and v). By the optional sampling theorem we have {Ss∧τ∗t , s ≥ t} is also a supermartingale,
then we have for all s ≥ t,

E(Ss∧τt) ≤ E(St).

On the other hand, from (2.8) and from the fact that s ∧ τt ≤ τt we have,

E(St) = E(Gτt) = E(Sτt) ≤ E(Ss∧τt).

Hence E(Ss∧τt) = E(St). Then we have a supermartingale for which the mapping s 7→ E(Ss∧τt) is constant,
therefore the process {Ss∧τ∗t , s ≥ t} is a martingale.

2.3 Markovian Approach

In this section we will consider a strong Markov process X = {Xt, t ≥ 0} defined on a filtered probability
space (Ω,F ,F,Px) and taking values in (E,B) = (R,B(R)). It is assumed that the process X starts at x un-
der the probability measure Px for x ∈ R and the sample paths of X are right-continuous and left-continuous
over stopping times. It is also assumed that the filtration F = {Ft, t ≥ 0} satisfies the natural conditions.
In addition, it is assumed that the mapping x 7→ Px(F ) is measurable for each F ∈ F . Finally, without loss
of generality we will assume that (Ω,F) is equal to the canonical space (E[0,∞)),B[0,∞)) so that the shift
operator θt : Ω 7→ Ω is well defined by θt(ω)(s) = ω(t+ s) for ω = {ω(s), s ≥ 0} ∈ Ω and s, t ≥ 0.

Suppose that G : E 7→ R is a measurable function which satisfies the condition

Ex
(

sup
t≥0
|G(Xt)|

)
<∞, (2.9)

where Ex is the expectation under the measure Px and x ∈ E. We consider the optimal stopping problem

V (x) = sup
τ∈T

Ex(G(Xτ )), (2.10)

where x ∈ E and T is the set of all stopping times of F. The function V is called the value function and G
is called the gain function. Solving the optimal stopping problem (2.10) means two things. Firstly, we need
to find an optimal stopping time, i.e. a stopping time τ∗ at which the supremum is attained. Secondly, we
need to compute the value V (x) for x ∈ E as explicitly as possible.

Note that if we take τ ≡ 0 we have that from definition of V given in (2.10),

V (x) ≥ Ex(G(X0)) = G(x) (2.11)

The Markovian structure of X means that the process always starts afresh. Then for a fixed sample path
we shall be able to decide whether to continue with the observation or to stop it. Thinking in this way we
split the set E into two disjoint subsets, the continuation set C and the stopping set D = E \ C. It follows
that as soon as the process enters into D, the observation should be stopped and an optimal stopping time
is obtained.

It turns out that the continuation set is given by

C = {x ∈ E : V (x) > G(x)} (2.12)
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and the stopping set

D = {x ∈ E : V (x) = G(x)}. (2.13)

Formally, we define the process {Gt, t ≥ 0} where

Gt = G(Xt), t ≥ 0.

Then the Snell envelope process of {Gt, t ≥ 0} under the measure Px for x ∈ E is given by {St, t ≥ 0} where

St = ess sup
τ∈Tt

Ex(Gτ |Ft)

= ess sup
τ∈Tt

Ex(G(Xτ )|Ft)

= ess sup
τ∈T

Ex(G(Xτ+t)|Ft)

= ess sup
τ∈T

EXt(G(Xτ ))

= V (Xt).

Hence an optimal stopping time is given by

τ∗0 = inf{t ≥ 0 : St = Gt}
= inf{t ≥ 0 : V (Xt) = G(Xt)}
= inf{t ≥ 0 : Xt ∈ D}.

Proving that we have to stop when the process enters for the first time into the set D and continue otherwise.

Definition 2.3.1. Let f : E 7→ R be a function and take c ∈ E. The function f is said to be upper
semi-continuous at a point c when

f(c) ≥ lim sup
x→c

f(x).

It is said to be upper semi-continuous (usc) on E if it is upper semi-continuous at every point of E. In a
similar way, f is said to be lower semi-continuous at a point c when

f(c) ≤ lim inf
x→c

f(x).

It is said to be lower semi-continuous (lsc) on E if it is lower semi-continuous at every point of E.

When E = R upper semi-continuity in c ∈ E can be written in the following way. For all ε > 0 there
exists δ > 0 such that for all x such that |x − c| < δ then f(x) ≤ f(c) + ε. Lower semi-continuity can be
written, for all ε > 0 exists δ > 0 such that for all x such that |x− c| < δ then f(x) ≥ f(c)− ε.

It can be shown that if V is lower semi-continuous and G upper semi-continuous then C is open and D
is closed. Introduce the first entry time τD of X into D by setting

τD = inf{t ≥ 0 : Xt ∈ D}. (2.14)

Definition 2.3.2. A measurable function F : E 7→ R is said to be superharmonic related to X if

Ex(F (Xσ)) ≤ F (x)

for all stopping times σ and all x ∈ E.
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The following theorem presents necessary conditions for the existence of an optimal stopping time.

Theorem 2.3.3. Let us assume that there exists an optimal stopping time τ∗ in (2.10), i.e.,

V (x) = Ex(G(Xτ∗))

for all x ∈ E. Then we have

i) The value function V is the smallest superharmonic function which dominates the gain function G on
E.

If we suppose that V is lsc and G is usc, then

ii) The process {V (Xt), t ≥ 0} is a right-continuous supermartingale.

iii) The stopping time τD satisfies τD ≤ τ∗ Px-a.s. for all x ∈ E and is optimal in (2.10).

iv) The stopped process {V (Xt∧τD ), t ≥ 0} is a right-continuous martingale under Px for every x ∈ E.

Proof of i). To show that V is superharmonic note that by the strong Markov property we have that for all
stopping times σ and all x ∈ E,

Ex(V (Xσ)) = Ex(EXσ (G(Xτ∗)))

= Ex(Ex(G(Xτ∗) ◦ θσ|Fσ))

= Ex(Ex(G(Xσ+τ∗◦θσ )|Fσ))

= Ex(G(Xσ+τ∗◦θσ ))

≤ sup
τ∈T

Ex(G(Xτ ))

= V (x).

This proves that V is superharmonic, now suppose that F is another superharmonic function which dominates
G on E, then for all τ stopping time and x ∈ E

Ex(G(Xτ )) ≤ Ex(F (Xτ )) ≤ F (x),

where the first inequality holds since F dominates G and the second since F is superharmonic. Taking the
supremum over all τ ∈ T we have

V (x) = sup
τ∈T

Ex(G(Xτ )) ≤ F (x).

Therefore V is the smallest superharmonic function which dominates G.

Proof of ii). Note that (2.9) guarantees that E (|V (Xt)|) <∞ and clearly V (Xt) is Ft-measurable for all
t ≥ 0. From the Markov property and the fact that V is superharmonic (taking σ = s) we have

Ex(V (Xt+s)|Ft) = EXt(V (Xs)) ≤ V (Xt)

for all s, t ≥ 0 and all x ∈ E. This show that the process {V (Xt), t ≥ 0} is a supermartingale under Px for
each x ∈ E. The right-continuity of {V (Xt), t ≥ 0} follows from the fact that V is lsc, since the proof is
rather technical we omit it, for details see Peskir and Shiryaev (2006) page 39.

Proof of iii). If we have that V (Xτ∗) = G(Xτ∗) Px-a.s. for all x ∈ E then by definition of τD given in
(2.14) we obtain that τD ≤ τ∗ Px-a.s. Then we only need to prove that V (Xτ∗) = G(Xτ∗).
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Recall from (2.11) that V (x) ≥ G(x) for all x ∈ E, then V (Xτ∗) ≥ G(Xτ∗). Suppose that Px(V (Xτ∗) >
G(Xτ∗)) > 0 for some x ∈ E, then

Ex(G(Xτ∗)) < Ex(V (Xτ∗)) ≤ V (x),

where the second inequality holds since V is superharmonic. Note that the above inequality contradicts the
fact that τ∗ is optimal in (2.10). Therefore τD ≤ τ∗.

By ii) we have that {V (Xt), t ≥ 0} is a right-continuous supermartingale, thus by the optional sampling
theorem, we see that for all stopping times σ and τ such that σ ≤ τ Px-a.s. with x ∈ E.

Ex(V (Xτ )) ≤ Ex(V (Xσ)).

In particular if we take τD ≤ τ∗ we get for x ∈ E,

V (x) = Ex(G(Xτ∗)) = Ex(V (Xτ∗)) ≤ Ex(V (XτD )) = Ex(GτD ) ≤ V (x),

where we used the fact that V (XτD ) = G(XτD ) as V is lsc and G is usc. This shows that τD is optimal and
concludes the proof.

Proof of iv). By the strong Markov property we have that for all s ≤ t and all x ∈ E,

Ex(V (Xt∧τD )|Fs∧τD ) = Ex(EXt∧τD (G(XτD ))|Fs∧τD )

= Ex(Ex(G(XτD ) ◦ θt∧τD |Ft∧τD )|Fs∧τD )

= Ex(Ex(G(Xt∧τD+τD◦θt∧τD )|Ft∧τD )|Fs∧τD )

= Ex(Ex(G(XτD )|Ft∧τD )|Fs∧τD )

= Ex(G(XτD )|Fs∧τD )

= Ex(G(Xs∧τD+τD◦θs∧τD )|Fs∧τD )

= EXs∧τD (GτD )

= V (Xs∧τD ),

where the fourth equality holds since t ∧ τD ≤ τD and

τD ◦ θt∧τD = inf{s ≥ 0 : Xs+t∧τD ∈ D}
= inf{s ≥ t ∧ τD : Xs ∈ D} − t ∧ τD
= τD − t ∧ τD.

Hence the martingale property is already proved for the filtration {Ft∧τD , t ≥ 0} and automatically is satisfied
for {Ft, t ≥ 0}. The right-continuity of {V (Xt∧τD ), t ≥ 0} follow from the right-continuity of {V (Xt), t ≥ 0}
and the proof is complete.

The following theorem provides sufficient conditions for the existence of an optimal stopping time.

Theorem 2.3.4. Consider the optimal stopping problem (2.10) upon assuming that the condition (2.9) is

satisfied. Let us assume that there exists the smallest superharmonic function V̂ which dominates the gain
function G on E. Let us assume that V̂ is lsc and G is usc. Set D = {x ∈ E : V̂ (x) = G(x)} and let τD
defined by (2.14).
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Proof. We only consider the case when G is bounded, for the general case see Peskir and Shiryaev (2006)

(Theorem 2.7). Since V̂ is superharmonic and dominates G, we have

Ex(G(Xτ )) ≤ Ex(V̂ (Xτ )) ≤ V̂ (x)

for all stopping times τ and all x ∈ E. Taking supremum over all τ we find that for all x ∈ E,

V (x) ≤ V̂ (x). (2.15)

Now we will proof the reverse inequality, for this purpose let ε > 0 and consider the sets

Cε = {x ∈ E : V̂ (x) > G(x) + ε},

Dε = {x ∈ E : V̂ (x) ≤ G(x) + ε}

Since V̂ is lsc and G is usc then Cε is open and Dε is closed. Moreover, it holds that Cε ↑ C and Dε ↓ D
as ε ↓ 0 where C and D are defined by

C = {x ∈ E : V̂ (x) > G(x)},

D = {x ∈ E : V̂ (x) = G(x)}.

Define the stopping time

τDε = inf{t ≥ 0 : Xt ∈ Dε}.

Suppose that Px(τD <∞) = 1 for all x ∈ E, since D ⊆ Dε thus Px(τDε <∞) = 1 for all x ∈ E.
If we show that for all x ∈ E,

Ex(V̂ (XτDε
)) = V̂ (x) (2.16)

we then get,

V̂ (x) = Ex(V̂ (XτDε
)) ≤ Ex(G(XτDε

)) + ε ≤ V (x) + ε (2.17)

where the first and second inequalities holds by the definition of τDε and V respectively using that V̂ is lsc

and G is usc. Letting ε ↓ 0 we see that V̂ (x) ≤ V (x) for all x ∈ E and therefore V̂ = V . From (2.17) we
also have that

V (x) ≤ Ex(G(XτDε
)) + ε.

Letting ε ↓ 0 and using that Dε ↓ D it can be proved that τDε ↑ τD (see Peskir and Shiryaev (2006) page
43). Then applying Fatou’s lemma, we get

V (x) ≤ lim sup
ε↓0

Ex(G(XτDε
))

≤ Ex(lim sup
ε↓0

G(XτDε
))

≤ Ex(G(lim sup
ε↓0

XτDε
))

= Ex(G(XτD )).
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Thus V (x) ≤ Ex(G(XτD )), applying the definition of V we have the reverse inequality and hence V (x) =
Ex(G(XτD )) which implies that τD is optimal. It only remains to prove (2.16), for this we will first show
that for all x ∈ E

G(x) ≤ Ex(V̂ (XτDε
)).

For this define

c = sup
x∈E

(G(x)− Ex(V̂ (XτDε
))).

Note that

G(x) ≤ c+ Ex(V̂ (XτDε
))

for all x ∈ E. By the strong Markov property we find that for all stopping times σ and all x ∈ E

Ex(EXσ (V̂ (XτDε
))) = Ex(Ex(V̂ (XτDε

) ◦ θσ|Fσ))

= Ex(Ex(V̂ (Xσ+τDε◦θσ )|Fσ))

= Ex(V̂ (Xσ+τDε◦θσ ))

≤ Ex(V̂ (XτDε
)),

where the inequality holds using that {V̂ (Xt), t ≥ 0} is a supermartingale as V̂ is superharmonic and lsc
(see proof of Theorem 2.3.3 ii)), and σ + τDε ◦ θσ ≥ τDε since

τDε ◦ θσ = inf{t ≥ 0 : Xt ◦ θσ ∈ Dε}
= inf{t ≥ 0 : Xt+σ ∈ Dε}
= inf{t ≥ σ : Xt ∈ Dε} − σ
≥ τDε − σ.

The above shows that

x 7→ Ex(V̂ (XτDε
))

is a superharmonic function from E to R. The latter implies that c + Ex(V̂ (XτDε
)) is also superharmonic

and then by assumption of V̂ we can conclude that

V̂ (x) ≤ c+ Ex(V̂ (XτDε
)) (2.18)

for all x ∈ E. Given 0 < δ ≤ ε then by definition of c there exists xδ ∈ E such that

G(xδ)− Exδ V̂ (XτDε
) ≥ c− δ (2.19)

then by (2.18) and the above inequality

V̂ (xδ) ≤ c+ Exδ(V̂ (XτDε
)) ≤ G(xδ) + δ ≤ G(xδ) + ε.

This shows that xδ ∈ Dε and thus τDε = 0 under Pxδ . Then equation (2.19) becomes
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c− δ ≤ G(xδ)− V̂ (xδ) ≤ 0

Letting δ ↓ 0 we see that c ≤ 0 and hence

G(x) ≤ Ex(V̂ (XτDε
))

Using the definition of V̂ and the fact that x 7→ Ex(V̂ (XτDε
)) is a superharmonic function we see that

V̂ (x) ≤ Ex(V̂ (XτDε
))

for all x ∈ E. The definition of V and (2.15) implies that

Ex(V̂ (XτDε
)) ≤ V (x) ≤ V̂ (x).

Therefore V̂ (x) = Ex(V̂ (XτDε
)) for all x ∈ E. Then V̂ = V and τD is optimal.

In the case that Px(τD < ∞) < 1 for some x ∈ E. Suppose that exists an stopping time τ∗ in (2.10),

then from Theorem 2.3.3 we have that V = V̂ and from part iii), τD ≤ τ∗ so P(τ∗ <∞) < 1 and there is no
optimal stopping time with probability 1.

The following corollary is an elegant tool for tackling the optimal stopping problem in the case when one
can prove directly from the definition of V that V is lsc.

Corollary 2.3.5. Consider the optimal stopping problem (2.10) upon assuming that the condition (2.9) is
satisfied. Suppose that V is lsc and G is usc. If Px(τD <∞) = 1 for all x ∈ E, then τD is optimal in (2.10).

Proof. We will show that V is superharmonic. From the strong Markov property we have

V (Xσ) = sup
τ∈T

EXσ (G(Xτ ))

= sup
τ≥0

Ex(G(Xτ ) ◦ θσ|Fσ)

= sup
τ≥0

Ex(G(Xσ+τ◦θσ )|Fσ)

Note that V is measurable since it is lsc and thus so is V (Xσ) then

V (Xσ) = ess sup
τ≥0

Ex(G(Xσ+τ◦θσ )|Fσ)

for all x ∈ E. Next, we claim that the family

{Ex(Xσ+τ◦θσ ) : τ ∈ T }

has the lattice property. Indeed, suppose that τ1 and τ2 are stopping times given and fixed, set ρ1 = σ+τ1◦θσ
and ρ2 = σ + τ2 ◦ θσ, and define

B = {Ex(Xρ1 |Fσ) ≥ Ex(Xρ2|Fσ )}.

Then B ∈ Fσ and the random time
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ρ = ρ1IB + ρ2IBc

is a stopping time since

{ρ ≤ t} = ({ρ1 ≤ t} ∩B) ∪ ({ρ2 ≤ t} ∩Bc) ∈ Ft
due to the fact that B and Bc belong to Fσ and the claim is proved. Finally, we have

E(Xρ|Fσ) = E(Xρ1IB+ρ2IBc |Fσ)

= E(Xρ1 |Fσ)IB + E(Xρ2 |Fσ)IBc
= E(Xρ1 |Fσ) ∨ E(Xρ2 |Fσ),

proving that the family {Ex(Xσ+τ◦θσ ) : τ ∈ T } has the lattice property. From Corollary 2.1.3 we know that
there exists a sequence of stopping times {τn : n ≥ 1} such that

V (Xσ) = lim
n→∞

Ex(G(Xσ+τn◦θσ )|Fσ),

where the sequence {Ex(G(Xσ+τn◦θσ )|Fσ), n ≥ 1} is increasing Px-a.s. By the monotone convergence theo-
rem we can therefore conclude that for all stopping times σ and all x ∈ E,

Ex(V (Xσ)) = Ex
(

lim
n→∞

Ex(G(Xσ+τn◦θσ )|Fσ)
)

= lim
n→∞

Ex (Ex(G(Xσ+τn◦θσ )|Fσ))

= lim
n→∞

Ex(G(Xσ+τn◦θσ ))

= sup
n≥1

Ex(G(Xσ+τn◦θσ ))

≤ V (x).

Therefore V is a superharmonic function which dominates G. Suppose that F is another superharmonic
function which dominates G then for all stopping times τ

Ex(G(Xτ )) ≤ Ex(F (Xτ )) ≤ F (x).

Taking the supremum over all stopping times we have for all x ∈ E,

V (x) = sup
τ∈T

Ex(G(Xτ )) ≤ F (x).

Hence V is the smallest superharmonic function which dominates G. Therefore all the claims follow directly
from Theorem 2.3.4.

Remark 2.3.6. In this Chapter we only consider optimal stopping problems of the form

Vt = sup
τ∈Tt

E(Gτ ).

It is important to emphasise that we may also consider optimal stopping problems of the form

Vt = inf
τ∈Tt

E(Gτ ).

The theory studied in this chapter also applies for these problems. We only have to consider the process
G′ = {G′t, t ≥ 0} where G′t = −Gt for all t ≥ 0.



Chapter 3

Predicting the Last Zero of a
Spectrally Negative Lévy Process

3.1 Last Exit Times and Optimal Prediction Problems

In recent years last exit times have been studied in several areas of applied probability, e.g. in risk theory (see
Chiu et al. (2005)). Consider the Cramér–Lundberg process, which is a process consisting of a deterministic
drift plus a compound Poisson process which has only negative jumps (see Figure 3.1) which typically models
the capital of an insurance company. A quantity of interest is the moment of ruin τ0, i.e. the first moment
that the process becomes negative. Let us suppose the insurance company has funds to endure negative
capital for a while. Then another quantity of interest is the last time g that the process is below zero. In a
more general setting we may consider a spectrally negative Lévy process instead of the classical risk process.
Baurdoux (2009) and Chiu et al. (2005) found the Laplace transform of the last time before an exponential
time a spectrally negative Lévy process is below some level.
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Figure 3.1: Cramér–Lundberg process with τ0 the moment of ruin and g the last zero.

Last passage times have also played an incresing role in financial modeling, Madan et al. (2008a,b) showed
that the price of a European put and call option can be modelled by non-negative and continous martingales
that vanish at infinity, can be expressed in terms of the probability distributions of some last passage times.

Another application is in degradation models. Paroissin and Rabehasaina (2013) proposed a spectrally
positive Lévy process as a degradation model. They consider a subordinator perturbed by an independent
Brownian motion. One motivation of consider this model is that the presence of a Brownian motion can
model small repairs of the component or system and the jumps represents major deterioration. Classically,
the failure time of a component or system is defined as the first hitting time of a critical level b which repre-
sents a failure or a bad performance of the component or system. Another approach is to consider instead

53
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the last time that the process is under b. Indeed, for this process the paths are not necessarily monotone
and hence when the process is above the level b it can return back below.

The aim of this work is to predict the last time a spectrally negative Lévy process is below zero. We
refer to predict as to find a stopping time that is closest (in L1 sense) to the above random time. This is an
example of an optimal prediction problem. Recently, these problems have received considerable attention,
for example, Bernyk et al. (2011) predicted the time at which a stable spectrally negative Lévy process
attains its ultimate supremum in a finite horizon of time. A few years later Baurdoux and Van Schaik (2014)
did the same but now for a general Lévy process in infinite horizon of time. Glover et al. (2013) predicted
the time of its ultimate minimum for a transient diffusion processes. Du Toit et al. (2008) predicted the
last zero of a linear Brownian motion. It turns out that the problems just mentioned are equivalent to an
optimal stopping problem, in other words, optimal prediction problems and optimal stopping problems are
intimately related.

3.2 Prerequistes and Formulation of the Problem

Formally, let X be a spectrally negative Lévy process drifting to infinity (see Proposition 1.3.34) starting
from 0 defined on a filtered probability space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated
by X which is naturally enlarged (see Definition 1.3.38 in Bichteler (2002)). Suppose that X has Lévy
triple (c, σ,Π) where c ∈ R, σ ≥ 0 and Π is a measure (Lévy measure) concentrated on (−∞, 0) satisfying∫

(−∞,0)
(1 ∧ x2)Π(dx) < ∞. Let W the scale function defined in Section 1.4. Recall that W is such that

W (x) = 0 for x < 0, and is characterised on [0,∞) as a strictly increasing and continuous function whose
Laplace transform satisfies ∫ ∞

0

e−βxW (x)dx =
1

ψ(β)
for β > Φ(0),

where ψ and Φ are the Laplace exponent and its right inverse given in (1.12) and (1.16), respectively. We
know from Lemma 1.4.6 that the right and left derivatives of W exist. Nevertheless, for ease of notation we
shall assume that Π has no atoms when X is of finite variation, which guarantees that W ∈ C1(0,∞), since
all the proofs presented below remain valid using the left and right derivatives of W .

From Remark 1.3.5 we have that if X is of finite variation we may write

ψ(λ) = dλ−
∫

(−∞,0)

(1− eλy)Π(dy),

where necessarily

d = −b−
∫

(−1,0)

xΠ(dx) > 0.

With this notation, from the fact that 0 ≤ 1 − eλy ≤ 1 for y ≤ 0 and using the dominated convergence
theorem we have that

ψ′(0+) = d+

∫
(−∞,0)

xΠ(dx). (3.1)

Lemma 1.4.9 tells us that the value of W at zero depends on the path variation of X: in the case that X is
of infinite variation we have that W (0) = 0, otherwise

W (0) =
1

d
. (3.2)

Let gr be the last passage time below r ≥ 0, i.e.
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gr = sup{t ≥ 0 : Xt ≤ r}. (3.3)

When r = 0 we simply write g0 = g.

Remark 3.2.1. Note that from the fact that X drifts to infinity we have that gr <∞ P-a.s. Moreover, as we
are supposing that X is a spectrally negative Lévy process, and hence the case of a compound Poisson process
is excluded, the only way of exiting the set (−∞, r] is by creeping upwards. This tells us that Xgr− = r and
that gr = sup{t ≥ 0 : Xt < r} P-a.s.

Clearly, up to any time t ≥ 0 the value of g is unknown (unless X is trivial), and it is only with the
realisation of the whole process that we know that the last passage time below 0 has occurred. However,
this is often too late: typically one would like to know how close X is to g at any time t ≥ 0 and then take
some action based on this information. We search for a stopping time τ∗ of X that is as “close” as possible
to g. Consider the optimal prediction problem

V∗ = inf
τ∈T

E(|g − τ |), (3.4)

where T is the set of all stopping times.
Before giving an equivalence between the optimal prediction problem (3.4) and an optimal stopping

problem we prove that the random times gr for r ≥ 0 have finite mean. For this purpose, recall from Section
1.3 that for x ≥ 0 the first passage time above x is denoted by

τ+
x = inf{t > 0 : Xt > x}.

Lemma 3.2.2. Let X be a spectrally negative Lévy process drifting to infinity with Lévy measure Π such
that ∫

(−∞,−1)

x2Π(dx) <∞. (3.5)

Then Ex(gr) <∞ for every x, r ∈ R.

Proof. Note that by the spatial homogeneity of Lévy processes we have to prove that for all x, r ∈ R.

Ex(gr) = Ex−r(g) <∞.

Then it suffices to take r = 0. From Baurdoux (2009) (Theorem 1) or Chiu et al. (2005) (Theorem 3.1) we
know that for a spectrally negative Lévy process such that ψ′(0+) > 0 the Laplace transform of g for q ≥ 0
and x ∈ R is given by

Ex(e−qg) = eΦ(q)xΦ′(q)ψ′(0+) + ψ′(0+)(W (x)−W (q)(x)).

Then, from the well-known result which links the moments and derivatives of the Laplace transform (see
Feller (1971) (section XIII.2)), the expectation of g is given by

Ex(g) = − ∂

∂q
Ex(e−qg)

∣∣∣∣
q=0+

= ψ′(0+)
∂

∂q
W (q)(x)

∣∣∣∣
q=0+

− ψ′(0+)[Φ′′(q)eΦ(q)x + xΦ′(q)2eΦ(q)x]

∣∣∣∣
q=0+

= ψ′(0+)
∂

∂q
W (q)(x)

∣∣∣∣
q=0+

− ψ′(0+)[Φ′′(0) + xΦ′(0)2]

We know from Lemma 1.4.7 that for any x ∈ R the function q 7→ W (q) is analytic, therefore the first
term in the last expression is finite. Then g has finite second moment if Φ′(0) and Φ′′(0) are finite. Now we
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calculate the terms Φ′(0) and Φ′′(0). Recall from Proposition 1.3.20 that the function ψ : [0,∞) 7→ R is zero
at zero and tends to infinity at infinity. Further, it is infinitely differentiable and strictly convex on (0,∞).
As we are supposing that X drifts to infinity we have that ψ′(0+) > 0 thus ψ(λ) ≥ 0 for all λ > 0 and hence
using the definition of strict convexity we have that for all t ∈ (0, 1)

ψ(tx+ (1− t)y) < tψ(x) + (1− t)ψ(y).

Taking y = 0 we have that ψ(tx) < tψ(x) < ψ(x), now if we have λ1 < λ2 and we take t = λ1/λ2 < 1,
x = λ2 we have ψ(λ1) < ψ(λ2). In conclusion ψ is strictly increasing in [0,∞) and the right inverse Φ(q) is
the usual inverse for ψ. From the fact that ψ is strictly convex we have that ψ′′(x) > 0 for all x > 0.

Now we state a useful result of calculus. Let f be a continuous one to one function defined on an interval,
and suppose that f is differentiable at f−1(b), with derivative f ′(f−1(b)) 6= 0. Then f−1 is differentiable at
b, and

(f−1)′(b) =
1

f ′(f−1(b))
.

Using the above result we have that

Φ′(0) =
1

ψ′(Φ(0)+)
=

1

ψ′(0+)
<∞

and

Φ′′(0) = [Φ′(q)]′
∣∣∣∣
q=0

=

[
1

ψ′(Φ(q))

]′ ∣∣∣∣
q=0

= −ψ
′′(Φ(q)+)Φ′(q)

ψ′(Φ(q)+)2

∣∣∣∣
q=0

= − ψ
′′(0+)

ψ′(0+)3
.

Note that from (1.14) we have that

ψ′′(0+) = σ2 +

∫
(−∞,0)

x2Π(dx) = σ2 +

∫
(−∞,−1)

x2Π(dx) +

∫
(−1,0)

x2Π(dx) <∞,

where the last inequality holds by assumption (3.5) and from the fact that
∫

(−1,0)
x2Π(dx) <∞ since Π is a

Lévy measure. Then we have that Φ′′(0) > −∞ and hence Ex(g) <∞ for all x ∈ R. The conclusion of the
Lemma follows.

Now we are ready to state the equivalence between the optimal prediction problem and an optimal
stopping problem mentioned earlier. This equivalence is mainly based on the work of Urusov (2005).

Lemma 3.2.3. Suppose that {Xt, t ≥ 0} is a spectrally negative Lévy process which drifts to infinity with
Lévy measure Π satisfying (3.5). Let g be the last time that X is below the level zero, as defined in (3.3).
Let us consider the standard optimal stopping problem given by

V = inf
τ∈T

E
(∫ τ

0

G(Xs)ds

)
, (3.6)

where the function G is given by G(x) = 2ψ′(0+)W (x) − 1 for all x ∈ R. Then the stopping time which
minimises (3.4) is the same which minimises (3.6). In particular,

V∗ = V + E(g). (3.7)

Proof. Fix any stopping time of F. We then have
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|g − τ | = (τ − g)+ + (τ − g)−

= (τ − g)+ + g − (τ ∧ g)

=

∫ τ

0

I{g≤s}ds+ g −
∫ τ

0

I{g>s}ds

=

∫ τ

0

I{g≤s}ds+ g −
∫ τ

0

[1− I{g≤s}]ds

= g +

∫ τ

0

[2I{g≤s} − 1]ds.

From Fubini’s theorem we have

E
[∫ τ

0

I{g≤s}ds
]

= E
[∫ ∞

0

I{s<τ}I{g≤s}ds
]

=

∫ ∞
0

E[I{s<τ}I{g≤s}]ds

=

∫ ∞
0

E[E[I{s<τ}I{g≤s}|Fs]]ds

=

∫ ∞
0

E[I{s<τ}E[I{g≤s}|Fs]]ds

= E
[∫ ∞

0

I{s<τ}E[I{g≤s}|Fs]ds
]

= E
[∫ τ

0

P(g ≤ s|Fs)ds
]
.

Note that in consequence of Remark 3.2.1 the event {g ≤ s} is equal to {Xu ≥ 0 for all u ∈ [s,∞)} (up
to a P-null set). Hence, since Xs is Fs-measurable,

P(g ≤ s|Fs) = P(Xu > 0 for all u ∈ [s,∞)|Fs)

= P
(

inf
u≥s

Xu ≥ 0|Fs
)

= P
(

inf
u≥s

(Xu −Xs) ≥ −Xs|Fs
)

= P
(

inf
u≥0

X̃u ≥ −Xs|Fs
)
,

where X̃u = Xs+u − Xs for u ≥ 0. From the Markov property for Lévy process (see Theorem 1.3.10) we

have that X̃ = (X̃u, u ≥ 0) is Lévy process with the same law as X, independent of Fs. From the above and
the fact that Xs is Fs-measurable we have

P(g ≤ s|Fs) = h(Xs),

where h(b) = P(infu≥0Xu ≥ −b). Note that the event {infu≥0Xu ≥ 0} is equal to {τ−0 = ∞} where
τ−0 = inf{s > 0 : Xs < 0}. Hence, by the spatial homogeneity of Lévy processes

h(b) = P( inf
u≥0

Xu ≥ −b)

= Pb( inf
u≥0

Xu ≥ 0)

= Pb(τ−0 =∞)

= [1− Pb(τ−0 <∞)]

= ψ′(0+)W (b),
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where the last equality holds by Theorem 1.4.4 i) and the fact that ψ′(0+) > 0 (since X drifts to infinity).
Therefore,

V∗ = inf
τ∈T

E(|g − τ |)

= E(g) + inf
τ∈T

{
2E
(∫ τ

0

I{g≤s}ds
)
− E(τ)

}
= E(g) + inf

τ∈T

{
2E
(∫ τ

0

P(g ≤ s|Fs)ds
)
− E(τ)

}
= E(g) + inf

τ∈T

{
2E
(∫ τ

0

h(Xs)ds

)
− E(τ)

}
= E(g) + inf

τ∈T

{
E
(∫ τ

0

[2h(Xs)− 1]ds

)}
.

Hence,

V∗ = E(g) + inf
τ∈T

{
E
(∫ τ

0

[2ψ′(0+)W (Xs)− 1]ds

)}
= E(g) + inf

τ∈T

{
E
(∫ τ

0

G(Xs)ds

)}
.

We define the function V : R 7→ R as

V (x) = inf
τ∈T

Ex
(∫ τ

0

G(Xs)ds

)
. (3.8)

Thus,

V∗ = V (0) + E(g).

Now we give some intuition about the function G. For this define x0 as the lower value x such that
G(x) ≥ 0, i.e.

x0 = inf{x ∈ R : G(x) ≥ 0}. (3.9)

From Lemma 1.4.5 we know that W is continuous and strictly increasing on [0,∞) and vanishes on (−∞, 0).
Moreover, from Lemma 1.4.10 we have limx→∞W (x) = 1/ψ′(0+). As a consequence we have that G is a

strictly increasing and continuous function on [0,∞) such that G(x) = −1 for x < 0 and G(x)
x→∞−−−−→ 1. In

the same way as W , G may have a discontinuity at zero depending of the path variation of X (see Figure
3.2). From the fact that G(x) = −1 for x < 0 and the definition of x0 given in (3.9) we have that x0 ≥ 0.

The above observations tell us that, to solve the optimal stopping problem (3.8), we are interested in a
stopping time such that before stopping, the process X spent most of the time in those values of which G
is negative, taking into account that X can pass some time in the set {x ∈ R : G(x) > 0} and then return
back to the set {x ∈ R : G(x) ≤ 0}.

From the above observations concerning the function G it seems reasonable to thinking that a stopping
time which attains the infimum in (3.8) is of the form,

τ+
a = inf{t > 0 : Xt > a}

for some a ∈ R.
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Figure 3.2: Left side: Π(dx) = e2x(ex − 1)−3dx, x > 0 without Gaussian component. Right side: Cramér–
Lundberg model with c = 2, λ = 1 and ξ ∼ exp(1).

The following theorem is the main result of this work. It gives us a stopping time which attains the
infimum in (3.8) and hence in (3.4). As well as expressing the value function in terms of scale functions.

Theorem 3.2.4. Suppose that X is a spectrally negative Lévy process drifting to infinity with Lévy measure
Π satisfying ∫

(−∞,−1)

x2Π(dx) <∞.

Then there exists a value a∗ ∈ [x0,∞) such that an optimal stopping time in (3.8) is given by

τ∗ = inf{t ≥ 0 : V (Xt) = 0} = inf{t ≥ 0 : Xt ≥ a∗}.

Furthermore V is a non-decreasing, continuous function satisfying the following:

i) If X is of infinite variation or finite variation with

ρ :=

∫
(−∞,0)

xΠ(dx)

d
<

1√
2
− 1, (3.10)

then a∗ > 0 is the unique value which satisfies the following equation

2ψ′(0+)

[
W (0)W (a) +

∫ a

0

W (y)W ′(a− y)dy

]
=

1

ψ′(0+)
. (3.11)

The value function is given by

V (x) =

(
2ψ′(0+)

∫ a∗

0

W (y)W (a∗ − y)dy − 2ψ′(0+)

∫ x

0

W (y)W (x− y)dy − a∗ − x
ψ′(0+)

)
I{x≤a∗}.

(3.12)

Moreover, there is smooth fit at a∗ i.e. V ′(a∗−) = 0 = V ′(a∗+).
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ii) If X is of finite variation with ρ ≥ 1√
2
− 1 then a∗ = 0 and

V (x) =
x

ψ′(0+)
I{x≤0}.

In particular, there is continous fit at a∗ = 0 i.e. V (0−) = 0 and there is no smooth fit at a∗ i.e.
V ′(a∗−) > 0.

Remark 3.2.5. i) Note that in the case that X is of finite variation the value ρ is always negative since∫
(−∞,0)

xΠ(dx) ≤ 0 so the condition given in ii): 0 ≥ ρ ≥ 1/
√

2 − 1 tells us that the drift d is much

larger than the average size of the jumps. This implies that the process drifts quickly to infinity and
then we have to stop the first time that the process X is above zero. In this case, concerning the optimal
prediction problem, the stopping time which is nearest (in the L1 sense) to the last time that the process
is below zero is the first time that the process is above the level zero.

ii) If X is of finite variation with ρ ≤ 1/
√

2 − 1 < 0 we have that the average of size of the jumps of X
are sufficiently large such that when the process crosses above the level zero the process is more likely
(than in case i)) that the process X jumps again below and spend more time in the region where G is
negative. The condition for ρ also tells us that the process X drifts a little slower to infinity that in the
case i). The stopping time which is nearest (in the L1 sense) to the last time that the process is below
zero is the first time that the process is above the level a∗.

As the proof of Theorem 3.2.4 is rather long, we break it into a number of lemmas which we prove in the
following section.

3.3 Proof of Main Result

In this section we use the general theory of optimal stopping discussed in Section 2.2 to get a direct proof of
Theorem 3.2.4. First, using the Snell envelope defined in (2.4), we will show that an optimal stopping time
for (3.8) is the first time that the process enters to a stopping set D, defined in terms of the value function
V . Recall the set

Tt = {τ ≥ t : τ is a stopping time}.

At it has been used before we simply write T = T0 as the set of all stopping times.

Lemma 3.3.1. Denoting by D = {x ∈ R : V (x) = 0} the stopping set, we have that for any x ∈ R the
stopping time

τD = inf{t ≥ 0 : Xt ∈ D}

attains the infimum in V (x), i.e. V (x) = Ex
(∫ τD

0
G(Xs)ds

)
.

Proof. From the general theory of optimal stopping given in Section 2.2, consider the Snell envelope defined
as

Sxt = ess inf
τ∈Tt

E
(∫ τ

0

G(Xs + x)ds

∣∣∣∣Ft)
and define the stopping time

τ∗x = inf

{
t ≥ 0 : Sxt =

∫ t

0

G(Xs + x)ds

}
.

Then from Theorem 2.2.2 the stopping time is τ∗x is optimal for
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inf
τ∈T

E
(∫ τ

0

G(Xs + x)ds

)
. (3.13)

On account of the Markov property we have

Sxt = ess inf
τ∈Tt

E
(∫ τ

0

G(Xs + x)ds

∣∣∣∣Ft)
=

∫ t

0

G(Xs + x)ds+ ess inf
τ∈Tt

E
(∫ τ

0

G(Xs + x)ds−
∫ t

0

G(Xs + x)ds

∣∣∣∣Ft)
=

∫ t

0

G(Xs + x)ds+ ess inf
τ∈Tt

E
(∫ τ

t

G(Xs + x)ds

∣∣∣∣Ft)
=

∫ t

0

G(Xs + x)ds+ ess inf
τ∈Tt

E
(∫ τ−t

0

G(Xs+t + x)ds

∣∣∣∣Ft)
=

∫ t

0

G(Xs + x)ds+ ess inf
τ∈T

EXt
(∫ τ

0

G(Xs + x)ds

)
=

∫ t

0

G(Xs + x)ds+ V (Xt + x),

where the last equality follows from the spatial homogeneity of Lévy processes and from definition of V .
Therefore τ∗x = inf{t ≥ 0 : V (Xt + x) = 0}. So we have

τ∗x = inf{t ≥ 0 : Xt + x ∈ D}

Thus

V (x) = inf
τ∈T

Ex
(∫ τ

0

G(Xt)dt

)
= inf
τ∈T

E
(∫ τ

0

G(Xt + x)dt

)
= E

(∫ τ∗x

0

G(Xt + x)dt

)

= Ex
(∫ τD

0

G(Xt)dt

)
,

where the third equality holds since τ∗x is optimal for (3.13) and the fourth follows from the spatial homo-
geneity of Lévy processes. Therefore the stopping time τD is the optimal stopping time for V (x) for all
x ∈ R.

Next, we will prove that V (x) is finite for all x ∈ R which implies that there exists a stopping time τ∗
such that the infimum in (3.8) is attained.

Lemma 3.3.2. The function V is non-decreasing with V (x) ∈ (−∞, 0] for all x ∈ R. In particular, V (x) < 0
for any x ∈ (−∞, x0).

Proof. From the spatial homogeneity of Lévy processes,

V (x) = inf
τ∈T

E
(∫ τ

0

G(Xs + x)ds

)
.

Then, if x1 ≤ x2 we have G(Xs + x1) ≤ G(Xs + x2) since G is a non-decreasing function (see discussion
before Theorem 3.2.4). This implies that V (x1) ≤ V (x2) and V is non-decreasing as claimed. If we take
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the stopping time τ ≡ 0, then for any x ∈ R we have V (x) ≤ 0. Let x < x0 and let y0 ∈ (x, x0) then
G(x) ≤ G(y0) < 0 then from the fact that for all s < τ+

y0
, Xs ≤ y0 we have

V (x) ≤ Ex

(∫ τ+
y0

0

G(Xs)ds

)
≤ Ex

(∫ τ+
y0

0

G(y0)ds

)
= G(y0)Ex(τ+

y0
) < 0,

where the last inequality holds due to Px(τ+
y0
> 0) > 0 and then Ex(τ+

y0
) > 0.

Now we will see that V (x) > −∞ for all x ∈ R. Note that G(x) ≥ −I{x≤x0} holds for all x ∈ R and thus

V (x) = inf
τ∈T

Ex
(∫ τ

0

G(Xs)ds

)
≥ inf
τ∈T

Ex
(∫ τ

0

−I{Xs≤x0}ds

)
= − sup

τ∈T
Ex
(∫ τ

0

I{Xs≤x0}ds

)
.

The indicator function inside the last integral is always greater than or equal to zero so for all stopping times
τ ,
∫∞

0
I{Xs≤x0}ds ≥

∫ τ
0
I{Xs≤x0}ds. Therefore

Ex
(∫ ∞

0

I{Xs≤x0}ds

)
≥ sup
τ∈T

Ex
(∫ τ

0

I{Xs≤x0}ds

)
.

Hence

V (x) ≥ −Ex
(∫ ∞

0

I{Xs≤x0}ds

)
≥ −Ex(gx0),

where the last inequality holds since if s > gx0 then I{Xs≤x0} = 0. So we can rewrite

∫ ∞
0

I{Xs≤x0}ds =

∫ gx0

0

I{Xs≤x0}ds ≤ gx0 .

From Lemma 3.2.2 we have that Ex(gx0) < ∞. Hence for all x < x0 we have V (x) ≥ −Ex(gx0) > −∞
and due to the monotonicity of V , V (x) > −∞ for all x ∈ R.

Now, we derive some properties of V which will be useful to find the form of the set D.

Lemma 3.3.3. The set D is non-empty. Moreover, there exists an x̃ (sufficiently large) such that

V (x) = 0 for all x ≥ x̃

Proof. Suppose that D = ∅ then by Lemma 3.3.1 the optimal stopping time for (3.8) is τD = ∞. This
implies that

V (x) = Ex
(∫ ∞

0

G(Xt)dt

)
.

Let m be the median of G, i.e.

m = inf{x ∈ R : G(x) = 1/2}
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and let gm the last time that the process is below the level m defined in (3.3). Then

Ex
(∫ ∞

0

G(Xt)dt

)
= Ex

(∫ gm

0

G(Xt)dt

)
+ Ex

(∫ ∞
gm

G(Xt)dt

)
. (3.14)

Note that from the fact that G is finite and gm has finite expectation (see Lemma 3.2.2)) the the first term
on the right-hand side of (3.14) is finite. Now we analyse the second term in the right-hand side of (3.14).
Let n ∈ N, since G(Xt) is non-negative for all t ≥ gm we have

Ex
(∫ ∞

gm

G(Xt)dt

)
= Ex

(
I{gm<n}

∫ ∞
gm

G(Xt)dt

)
+ Ex

(
I{gm≥n}

∫ ∞
gm

G(Xt)dt

)
≥ Ex

(
I{gm<n}

∫ n

gm

G(Xt)dt

)
≥ 1

2
Ex
(
I{gm<n}(n− gm)

)
.

Then letting n → ∞ and using the monotone convergence theorem we deduce that V (x) = ∞ which
leads to a contradiction. Then D must be a non-empty subset. From the fact that V is a non-decreasing
function and the set D 6= ∅ we have that there exists a x̃ sufficiently large such that V (x) = 0 for all x ≥ x̃.

Lemma 3.3.4. The function V is continuous.

Proof. From the above lemma we know that there exists an x̃ such that V (x) = 0 for all x ≥ x̃. As X is a
spectrally negative Lévy process drifting to infinity we have that Xτ+

x̃
= x̃ P-a.s. then we have

V (x) = inf
τ∈T

Ex
(∫ τ

0

G(Xt)dt

)
= inf
τ∈T

Ex

(
I{τ<τ+

x̃
}

∫ τ

0

G(Xt)dt+ I{τ≥τ+
x̃
}

∫ τ+
x̃

0

G(Xt)dt+ I{τ≥τ+
x̃
}

∫ τ

τ+
x̃

G(Xt)dt

)

= inf
τ∈T

Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt+ I{τ≥τ+
x̃
}

∫ τ−τ+
x̃

0

G(Xt+τ+
x̃

)dt

)

= inf
τ∈T

Ex

(
Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt+ I{τ≥τ+
x̃
}

∫ τ−τ+
x̃

0

G(Xt+τ+
x̃

)dt

∣∣∣∣Fτ+
x̃

))

Using the strong Markov property of X and the fact that V (x̃) = 0 we have

V (x) = inf
τ∈T

Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt+ I{τ≥τ+
x̃
}EXτ+

x̃

(∫ τ

0

G(Xt+τ+
x̃

)dt

))

= inf
τ∈T

Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt+ I{τ≥τ+
x̃
}V (x̃)

)

= inf
τ∈T

Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt

)
.

Note that the process
{∫ t

0
G(Xs)ds, t ≥ 0

}
is continuous. From the fact that E(τ+

x̃ ) < ∞ (see Corollary
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1.3.28) we have,

Ex

(
sup
t≥0

∣∣∣∣∣
∫ t∧τ+

x̃

0

G(Xs)ds

∣∣∣∣∣
)
≤ Ex

(
sup
t≥0

∫ t∧τ+
x̃

0

|G(Xs)|ds

)

≤ Ex
(

sup
t≥0

t ∧ τ+
x̃

)
= Ex(τ+

x̃ )

<∞.

Then from the general theory of optimal stopping time we have that the infimum in

V (x) = inf
τ∈T

Ex

(∫ τ∧τ+
x̃

0

G(Xt)dt

)
(3.15)

is attained, say τ∗x = inf{t ≥ 0 : Xt + x ∈ D}. Note that from the definition of τ∗x and τ+
x̃ we have that

τ∗x ≤ τ+
x̃ . Now we check the continuity of V . As W is continuous in [0,∞) we have that W is uniformly

continuous in the interval [0, x̃]. Now take ε > 0, then there exists δ > 0 such that for all x, y ∈ [0, x̃] it holds
|W (x)−W (y)| < ε when |x− y| < δ. Then we have

V (x+ δ)− V (x) ≤ E

(∫ τ∗x

0

G(Xt + x+ δ)dt

)
− E

(∫ τ∗x

0

G(Xt + x)dt

)

= 2ψ′(0)E

(∫ τ∗x

0

[W (Xt + x+ δ)−W (Xt + x)]dt

)

≤ 2ψ′(0)E

(∫ τ+
x̃

0

[W (Xt + x+ δ)−W (Xt + x)]dt

)
,

where the first inequality holds since τ∗x is not necessarily optimal for V (x+δ) and the last inequality follows
since W (Xt + x+ δ)−W (Xt + x) is always positive and from τ∗x ≤ τ+

x̃ .

Recall that we have a possible discontinuity for W in zero, and W (x) = 0 for x < 0, this implies that

V (x+ δ)− V (x) ≤ 2ψ′(0)E

(∫ τ+
x̃

0

[W (Xt + x+ δ)−W (Xt + x)]dt

)

= 2ψ′(0)E

(∫ τ+
x̃

0

I{Xt+x+δ<0}[W (Xt + x+ δ)−W (Xt + x)]dt

+

∫ τ+
x̃

0

I{Xt+x+δ≥0,Xt+x<0}[W (Xt + x+ δ)−W (Xt + x)]dt

+

∫ τ+
x̃

0

I{Xt+x≥0}[W (Xt + x+ δ)−W (Xt + x)]dt

)
. (3.16)

Note that the first term in (3.16) is zero. Now we analyse the second term. Using the monotonicity of W ,
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Fubini’s theorem and Theorem 1.4.12 we have

E

(∫ τ+
x̃

0

I{Xt+x+δ≥0,Xt+x<0}[W (Xt + x+ δ)−W (Xt + x)]dt

)

≤W (x̃+ x+ δ)E

(∫ τ+
x̃

0

I{Xt+x+δ≥0,Xt+x<0}dt

)

= W (x̃+ x+ δ)

∫ ∞
0

Px(−δ ≤ Xt < 0, τ+
x̃ > t)dt

= W (x̃+ x+ δ)

∫ 0

−δ
[W (x̃− y)−W (x− y)]dy

≤W (∞)2δ

<∞.

Finally we inspect the third term in (3.16). Using the finiteness of the moment of τ+
x̃ we obtain

E

(∫ τ+
x̃

0

I{Xt+x≥0}[W (Xt + x+ δ)−W (Xt + x)]dt

)
< εE

(∫ τ+
x̃

0

I{Xt+x≥0}dt

)
≤ εE(τ+

x̃ ) <∞.

Hence

V (x+ δ)− V (x) < W (∞)2δ + εE(τ+
x̃ )

and the continuity holds.

From Lemmas 3.3.3 and 3.3.4 we have that the set D = {x : V (x) = 0} = [a,∞) for some a ∈ R+. From
Lemma 3.3.1 we know that for some a ∈ R+

τD = inf{t > 0 : Xt ∈ [a,∞] = {t > 0 : Xt ≥ a}

attains the infimum in V (x). As X is a spectrally negative Lévy process we have that τD = τ+
a P-a.s. and

hence τ+
a is an optimal stopping time for (3.8) for some a ∈ R+. Then we just have to find the value of a

which minimises the right hand side of the above expression. So in what follows we will analyse the function

V(x, a) = Ex

(∫ τ+
a

0

G(Xt)dt

)
. (3.17)

and find some value a∗ which minimises the function a 7→ V(x, a) for a fixed x ∈ R. And then conclude that
V(x, a∗) = V (x) and τ+

a∗ is optimal.
Using Theorem 1.4.12 we find an a explicit form of (3.17) in terms of scale functions.

Lemma 3.3.5. For x ≥ a, V(x, a) = 0 and for x < a,

V(x, a) =

∫ a

−∞
[2ψ′(0+)W (y)− 1][W (a− y)−W (x− y)]dy (3.18)

= 2ψ′(0+)

∫ a

0

W (y)W (a− y)dy − 2ψ′(0+)

∫ x

0

W (y)W (x− y)dy − a− x
ψ′(0+)

. (3.19)

Proof. It is clear that V(x, a) = 0 for x ≥ a, since if the process begins above the level a, then the first
passage time above a is zero and the integral inside of the expectation in (3.17) is again zero. Now suppose
that x < a, then using Fubini’s theorem twice,
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V(x, a) = Ex

(∫ τ+
a

0

G(Xt)dt

)

= Ex
(∫ ∞

0

G(Xt)I{τ+
a >t}dt

)
=

∫ ∞
0

Ex(G(Xt)I{τ+
a >t})dt

=

∫ ∞
0

∫ a

−∞
G(y)Px(Xt ∈ dy, τ+

a > t)dt

=

∫ a

−∞
G(y)

∫ ∞
0

Px(Xt ∈ dy, τ+
a > t)dt

=

∫ a

−∞
G(y)r(0)(a, x, y)dy.

Using the fact that ψ′(0) > 0 implies that Φ(q) = 0 and from Theorem 1.4.12 we have,

V(x, a) =

∫ a

−∞
[2ψ′(0+)W (y)− 1][W (a− y)−W (x− y)]dy

which proves the equality (3.18). Now we derive the equation (3.19). Using Fubini’s theorem once again we
have,

V(x, a) =

∫ a

−∞
[2ψ′(0+)W (y)− 1][W (a− y)−W (x− y)]dy

= 2ψ′(0+)

∫ a

0

W (y)[W (a− y)−W (x− y)]dy −
∫ a

−∞
[W (a− y)−W (x− y)]dy

= 2ψ′(0+)

∫ a

0

W (y)[W (a− y)−W (x− y)]dy −
∫ a

−∞

∫
(x−y,a−y]

W (dz)dy

= 2ψ′(0+)

∫ a

0

W (y)[W (a− y)−W (x− y)]dy −
∫

(x−a,∞)

W (dz)

∫ a−z

x−z
dy

= 2ψ′(0+)

∫ a

0

W (y)[W (a− y)−W (x− y)]dy − (a− x)[W (∞)−W (x− a)]

= 2ψ′(0+)

∫ a

0

W (y)W (a− y)dy − 2ψ′(0+)

∫ x

0

W (y)W (x− y)dy − a− x
ψ′(0+)

,

where the last equality holds since W (∞) = 1/ψ′(0+) (see Lemma 1.4.10) and W (x− a) = 0 as x < a.

Now we characterise the value at which the function a 7→ V(x, a) achieves its minimum value. Recall
that x0 is the first time that the function G is positive, i.e.

x0 = inf{x ∈ R : G(x) ≥ 0}

Lemma 3.3.6. For all x ∈ R the function a 7→ V(x, a) achieves its minimum value in a∗ ≥ x0 which does
not depend on the value of x. The value a∗ is characterised as in Theorem 3.2.4.

Proof. Define the function H : R 7→ R by

H(x) = 2ψ′(0+)

∫ x

0

W (y)W (x− y)dy − x

ψ′(0+)
.
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Then, V(x, a) = (H(a)−H(x))I{x≤a}. Now, we calculate the derivative of H,

H ′(z) = 2ψ′(0+)[W (0)W (z) +

∫ z

0

W (y)W ′(z − y)dy]− 1

ψ′(0+)
. (3.20)

From the fact that W (z) is increasing we have that W ′(z) > 0 for all z ≥ 0 and W ′(z) = 0 for z < 0. If
we take z2 ≥ z1 we have∫ z2

0

W (y)W ′(z2 − y)dy =

∫ z2

0

W (z2 − y)W ′(y)dy

>

∫ z2

0

W (z1 − y)W ′(y)dy

=

∫ z1

0

W (z1 − y)W ′(y)dy +

∫ z2

z1

W (z1 − y)W ′(y)dy

>

∫ z1

0

W (z1 − y)W ′(y)dy

where the last inequality holds due to W (z1 − y) = 0 for all y ∈ (z1, z2]. This implies that H ′ is a
strictly increasing and continuous function in [0,∞). If we take z < 0 we have that W (z) = 0, then
H ′(z) = − 1

ψ′(0+) < 0.

Now we analyse the behaviour of H ′ at infinity, for this purpose recall that W is a strictly increasing
function. Hence using monotone convergence theorem and the fact that W (∞) = 1/ψ′(0+),

lim
a→∞

∫ a

0

W (y)W ′(a− y)dy = lim
a→∞

∫ a

0

W (a− y)W ′(y)dy

= lim
a→∞

∫ ∞
0

W (a− y)W ′(y)dy

=

∫ ∞
0

lim
a→∞

W (a− y)W ′(y)dy

= W (∞)[W (∞)−W (0)]

=
1

ψ′(0+)2
− W (0)

ψ′(0+)
.

Thus

lim
z→∞

H ′(z) = 2ψ′(0+)

[
W (0)

ψ′(0+)
+

1

ψ′(0+)2
− W (0)

ψ′(0+)

]
− 1

ψ′(0+)
=

1

ψ′(0+)
> 0.

Note that the function H ′ may have a discontinuity in zero. In the case that X is of infinite variation the
function W is continuous on R and hence H ′ is continuous on R with

H ′(0+) = − 1

ψ′(0+)
< 0,

when X is of finite variation we have that

H ′(0+) = 2ψ′(0+)W (0)2 − 1

ψ′(0+)
.

Now we check when H ′(0+) < 0. Using the expressions of ψ′(0+) and W (0) given in (3.1) and (3.2)
respectively we have
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H ′(0+) < 0

⇔ 2ψ′(0+)

d2
<

1

ψ′(0+)

⇔ 2ψ′(0+)2

d2
< 1

⇔
√

2ψ′(0+)

d
< 1

⇔ ψ′(0+)

d
<

1√
2

⇔

∫
(−∞,0)

xΠ(dx)

d
<

1√
2
− 1

⇔ ρ <
1√
2
− 1,

where ρ is defined in Theorem 3.2.4. The above implies that when X is of infinite variation or finite vari-
ation with ρ < 1√

2
− 1 then H ′(0−) < 0 and H ′(0+) < 0 and then by continuity and from the fact that

limz→∞H ′(z) > 0 there exists a unique value a∗ which satisfies the equation (3.11). When X is of finite
variation and ρ ≥ 1√

2
− 1 then H ′(0−) < 0 and H ′(0+) > 0 and in this case we let a∗ = 0.

Therefore we have the following: there exists a value a∗ ≥ 0 such that for x < a∗ we have H ′(x) < 0 and
for x > a∗ it holds that H ′(x) > 0. This implies that the behaviour of H is as follows: for x < a∗, H(x)
is a decreasing function, and for x > a∗, H(x) is increasing. Consequently H reaches its minimum value
uniquely at x = a∗.

Note that

∂

∂a
V(x, a) = H ′(a)I{x ≤ a}.

Then without loss of generality we can choose x < 0 and hence the same conclusions given for H are also
valid for a 7→ V(x, a). Therefore, a 7→ V(x, a) reaches its minimum value uniquely at a = a∗. Moreover,
since a∗ is the unique value at which H reaches its minimum, we have that for all x ≤ a∗, H(a∗) ≤ H(x)
and then

V(x, a∗) = (H(a∗)−H(x))I{x≤a∗} ≤ 0.

It only remains to prove that a∗ ≥ x0. From the definition of a∗ we have that

0 ≤ 2ψ′(0+)

[
W (0)W (a∗) +

∫ a∗

0

W (y)W ′(a∗ − y)dy

]
− 1

ψ′(0+)

= 2ψ′(0+)

[
W (0)W (a∗) +

∫ a∗

0

W (a∗ − y)W ′(y)dy

]
− 1

ψ′(0+)

≤ 2ψ′(0+)

[
W (0)W (a∗) +W (a∗)

∫ a∗

0

W ′(y)dy

]
− 1

ψ′(0+)

≤ 2ψ′(0+)(W (a∗))2 − 1

ψ′(0+)
.

This implies that G(a∗) = 2ψ′(0+)W (a∗)− 1 ≥
√

2− 1 > 0 and hence a∗ ≥ x0.
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In conclusion we have that for all x ∈ R,

V (x) = Ex

(∫ τ+
a∗

0

G(Xt)dt

)
,

where a∗ is characterised in Theorem 3.2.4. To conclude we check when there is smooth fit at a∗.

Lemma 3.3.7. We have the following:

i) If X is of infinite variation or finite variation with (3.10) then there is smooth fit at a∗ i.e. V ′(a∗−) = 0.

ii) If X is of finite variation and (3.10) does not hold then there is continous fit at a∗ = 0 i.e. V (0−) = 0.
There is no smooth fit at a∗ i.e. V ′(a∗−) > 0.

Proof. From Lemma 3.3.5 we know that V (x) = 0 for x ≥ a∗ and for x ≤ a∗

V (x) = 2ψ′(0+)

∫ a∗

0

W (y)W (a∗ − y)dy − 2ψ′(0+)

∫ x

0

W (y)W (x− y)dy − a∗ − x
ψ′(0+)

.

Note that when X is of finite variation with

∫
(−∞,0)

xΠ(dx)

d
≥ 1√

2
− 1

we have a∗ = 0 and hence

V (x) =
x

ψ′(0+)
I{x≤0}

and hence V (0−) = 0 = V (0+). Its left and right derivatives at 0 are given by

V ′(0−) =
1

ψ′(0+)
and V ′(0+) = 0.

Therefore in this case only the continuous fit at 0 is satisfied. If X is of infinite variation or finite variation
with ∫

(−∞,0)
xΠ(dx)

d
<

1√
2
− 1

we have from Lemma 3.3.5 that a∗ > 0. Calculating its derivative we have

V ′(x) =

(
2ψ′(0+)

[
W (0)W (x) +

∫ x

0

W (y)W ′(x− y)dy

]
− 1

ψ′(0+)

)
I{x≤a∗}.

Since a∗ satisfies the equation (3.11) we have that

V ′(a∗−) = 0 = V ′(a∗+)

Thus we have smooth fit at a∗.
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Example 3.3.8. We calculate numerically using the statistical software R Core Team (2015) the value
function x 7→ V(x, a) for some values of a ∈ R. The models used were the Cramér–Lundber risk process with
c = 2, λ = 1 and ξ ∼ exp(1) and a spectrally negative Lévy process with no Gaussian component and Lévy
measure given by Π(dx) = e2x(ex − 1)−3dx, x > 0 (see examples of Section 1.4).

Note that the value a∗ is the unique value for which the function x 7→ V(x, a) exhibits smooth fit (or
continuous fit) at a∗ see Figure 3.3. When we choose a2 > a∗, the function x 7→ V(x, a2) it is not differentiable
at a2. Moreover, there exists some x such that V(x, a2) > 0. Similarly, If a1 < a∗ the function x 7→ V(x, a2)
is also not differentiable at a1.
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Figure 3.3: Left side: Π(dx) = e2x(ex − 1)−3dx, x > 0 without Gaussian component. Right side: Cramér–
Lundberg model with c = 2, λ = 1 and ξ ∼ exp(1).



Appendix A

Stochastic Processes: General Facts

We review here some known facts about stochastic processes that are used in the main body. In the first
section, we give basic definitions and classic results about martingale theory which can be found in Revuz
and Yor (1999). Then we give a brief overview of the theory of Markov processes which can also be found
in Revuz and Yor (1999). Finally, we give a short review of Poisson random measures (see Chapter 2 of
Kyprianou (2014)).

A.1 Martingale Theory

Definition A.1.1. If X = {Xt, t ≥ 0} is a family of random variables defined on (Ω,F) taking values in
some measurable space (E, E) (i.e. such that E-valued variables Xt = Xt(ω) are F/E-measurable for each
t ≥ 0) then one says that X is a stochastic process with values in E.

Definition A.1.2. Let (Ω,F ,P) a probability space. A filtration is a family F = {Ft, t ≥ 0} of sub-σ-algebras
of F such that Fs ⊆ Ft for all s ≤ t. The system (Ω,F ,F,P) is called a filtered probability space.

We interpret the σ-algebra Ft as the “information” (a family of events) obtained during the time interval
[0, t].

Let X = {Xt, t ≥ 0} a stochastic process defined in (Ω,F ,P). The natural filtration associated to the
process X is Ft = σ({Xs, s ≤ t}). Let us denote for all t ≥ 0

Ft− = σ

(⋃
s<t

Fs

)
,

Ft+ =
⋂
s≥t

Fs.

It is clear that Ft− ⊆ Ft ⊆ Ft+.

Definition A.1.3. Let (Ω,F ,F,P) a filtered probability space and X = {Xt, t ≥ 0} a stochastic process
defined in (Ω,F ,P). We say that the process process X is adapted to the filtration F = {Ft, t ≥ 0} if for all
t ≥ 0 the random variable Xt = Xt(ω) is Ft-measurable.

Definition A.1.4. Let (Ω,F ,F,P) a filtered probability space and let X = {Xt, t ≥ 0} a stochastic process
taking values in (E, C) is progressively measurable with respect to the filtration F = {Ft, t ≥ 0} if for all
t ≥ 0 the map,

[0, t]× Ω→ E,

(s, ω) 7→ Xs(ω)

is B([0, t]) ⊗ Ft-measurable. A subset Γ of F+ × Ω is progressive if the process X = IΓ is progressively
measureable.

The family of progressive sets is a σ-algebra on R+ × Ω called the progressive σ-algebra.

71
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Proposition A.1.5. Let X = {Xt, t ≥ 0} a stochastic process taking values in (E,B(E)), where E is a
metric space, adapted to F and right or left continuous. Then X is progressively measurable.

Definition A.1.6. A filtration F = {Ft, t ≥ 0} is called right-continuous if Ft = Ft+ for all t ≥ 0.
Furthermore, is called P-complete if F0 contains all the P-null sets.

Definition A.1.7. We say that the filtration F = {Ft, t ≥ 0} satisfies the usual conditions if it is right-
continuous and complete.

In this work we suppose that the filtration F = {Ft, t ≥ 0} satisfies the natural conditions (see Definition
1.3.38 of Bichteler (2002)). Many authors assume that the filtration satisfies the usual conditions. This can
cause some problems, for example, using change of measures with Girsanov’s theorem (see Warning 1.3.39
of Bichteler (2002)).

Stopping Times

Definition A.1.8. Let (Ω,F ,F,P) a filtered probability space. A random variable τ : Ω 7→ [0,∞] is called
stopping time with respect to F if

i) τ is F∞ = σ(Ft, t ∈ [0,∞))-measurable.

ii) The set {τ ≤ t} if Ft-measurable for all t ≥ 0.

The property ii) has clear meaning: for each t ≥ 0 a decision “to stop or not to stop” depends only on
the “past and present information” Ft obtained on the interval [0, t] and not depending on the “future”.

Proposition A.1.9. If the filtration F = {Ft, t ≥ 0} is right-continuous then τ is a stopping time if and
only if {τ < t} is Ft-measurable for all t ≥ 0.

Definition A.1.10. Let us define the first first-entrance time and first-hitting time of a given open or closed
set B ⊆ R as

TB = inf{t ≥ 0 : Xt ∈ B} and τB = inf{t > 0 : Xt ∈ B},

where inf ∅ =∞.

Proposition A.1.11. Let X = {Xt, t ≥ 0} be a stochastic process adapted to the filtration F = {Ft, t ≥ 0}
taking values in (E,B(E)), where E is a metric space and let A ∈ B(E),

i) If X and F are right-continuous and A is open, then TA is a F-stopping time.

ii) If X is continuous and A is closed then TA is an F-stopping time.

Definition A.1.12. Let X = {Xt, t ≥ 0} be a stochastic process. If τ is an F-stopping time and {τn, n ≥ 1}
is an increasing sequence of F-stopping times such that τn < τ for all n ≥ 0 and limn→∞ τn = τ a.s. We
say that X is left-continuous at τ on {τ <∞} if limn→∞Xτn = Xτ on {τ <∞}.

Definition A.1.13. Let F = {Ft, t ≥ 0} a filtration and τ a F-stopping time. The σ-algebra of events before
τ is given by

Fτ = {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft, for all t ≥ 0}.

Lemma A.1.14. Let θ and τ F-stopping times, then θ ∧ τ and θ ∨ τ are F-stopping times.

Lemma A.1.15. Let F = {Ft, t ≥ 0} a filtration and {τn, n ≥ 0} a sequence of F-stopping times. Then
supn≥0 τn is F-stopping time. Moreover, if F is right-continuous then

inf
n≥1

τn, lim inf
n→∞

τn and lim sup
n→∞

τn

are all F-stopping times.
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Lemma A.1.16. Let θ and τ F-stopping times and let A ∈ Fθ then A ∩ {θ ≤ τ} ∈ Fτ ∩ Fθ. In particular,
if θ ≤ τ then Fθ ⊂ Fτ .

Lemma A.1.17. Let τ a F-stopping time and θ a function Fτ -measurable such that θ ≥ τ , then θ is a
F-stopping time.

Lemma A.1.18. Let θ and τ F-stopping times then θ + τ is a F-stopping time.

Definition A.1.19. Let X = {Xt, t ≥ 0} a stochastic process and τ a F-stopping time let us define the
function Xτ under {τ <∞} by

Xτ (ω) = Xτ(ω)(ω).

Theorem A.1.20. Let X = {Xt, t ≥ 0} a progressively measurable stochastic process with respect to F =
{Ft, t ≥ 0} and let τ a F-stopping time. Then

i) The random variable Xτ defined on the set {τ <∞} is Fτ -measurable.

ii) The “stopped process” Xτ = {Xt∧τ , t ≥ 0} is progressively measurable with respect to F.

iii) The stopped proces Xτ is adapted to the filtration {Ft∧τ , t ≥ 0}.

Continuous Time Martingales

Definition A.1.21. Let X = {Xt, t ≥ 0} a stochastic process adapted to the filtration F = {Ft, t ≥ 0}

i) We say that X is a submartingale if

a) E(X+
t ) <∞ for all t ≥ 0.

b) For all 0 ≤ s < t <∞, E[Xt|Fs] ≥ Xs.

ii) The process X is supermartingale if the process −X = {−Xt, t ≥ 0} is submartingale.

iii) Finally, we say that X is martingale if it is both submartingale and supermartingale.

Proposition A.1.22. Let X = {Xt, t ≥ 0} a stochastic process adapted to the filtration F = {Ft, t ≥ 0}.

i) If X is a martingale and f is a convex function such that E(f(Xt)) < ∞ for all t ≥ 0. Then
{f(Xt), t ≥ 0} is a submartingale.

ii) If X is a submartingale and f is an increasing convex function such that E(f(Xt)) <∞ for all t ≥ 0.
Then {f(Xt), t ≥ 0} is a submartingale.

Theorem A.1.23 (Doob’s Lp-inequality). If X = {Xt, 0 ≤ t ≤ T} is right-continuous martingale or positive
submartingale. Then, for λ > 0 and for p ≥ 1,

λpP[ sup
0≤t≤T

|Xt| ≥ λ] ≤ sup
0≤t≤T

E[|Xt|p].

For p > 1,

E(( sup
0≤t≤T

|Xt|)p) ≤
(

p

p− 1

)p
sup

0≤t≤T
E(|Xt|p).

Theorem A.1.24. Let {Xt, t ≥ 0} a submartingale (martingale) with respect to F = {Ft, t ≥ 0} which
satisfies the usual conditions. If the function t 7→ E(Xt) is right-continuous then the procces {Xt, t ≥ 0} has
a modification which is càdlàg.
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Theorem A.1.25 (Doob’s convergence theorem). Let X = {Xt, t ≥ 0} a right-continuous submartingale
such that supt≥0 E[X+

t ] <∞. Then there exists an integrable random variable X∞ such that Xt 7→ X∞ a.s.
as t→∞.

Definition A.1.26. A family {Xt, t ∈ T} of L1 random variables indexed by T is uniformly integrable if

sup
t∈T

E
(
|Xt|I|Xt|>a

)
= sup

t∈T

∫
{|Xt|>a}

|X|dP→ 0

as a→∞. That is,

∫
{|Xt|>a}

|Xt|dP→ 0

as a→∞, uniformly in t ∈ T .

Theorem A.1.27. Let X = {Xt, t ≥ 0} a martingale. The following three conditions are equivalent,

i) limt→∞Xt exists in the L1 sense.

ii) There exists a random variable X∞ in L1 such that Xt = E(X∞|Ft).

iii) The family {Xt, t ≥ 0} is uniformly integrable.

If these conditions hold, then X∞ = limt→∞Xt a.s. Moreover, if for some p > 1, supt≥0 E(|Xt|p) <∞,
then the equivalent conditions above are satisfied and the convergence holds in the Lp-sense.

Theorem A.1.28 (Doob’s stopping time theorem). Suppose that X = {Xt, t ≥ 0} is a submartingale
(martingale) with respect to the filtration F = {Ft, t ≥ 0} and τ is a stopping time. Then the stopped process
Xτ = {Xt∧τ , t ≥ 0} is also a submartingale (martingale) with respect to F.

Theorem A.1.29 (Hunt’s stopping time theorem). Let {Xt, t ≥ 0} a submartingale with respect to F =
{Ft, t ≥ 0}. Assume that σ y τ are bounded stopping times and σ ≤ τ . Then

Xσ ≤ E(Xτ |Fσ) P a.s.

The statements of these theorems remain valid also for unbounded stopping times under the additional
assumption that the family of random variables {Xt, t ≥ 0} is uniformly integrable.

Theorem A.1.30. If X = {Xt, t ≥ 0} is a positive right-continuous supermartingale and if we set X∞ = 0,
for any pair S, T of stopping times with S ≤ T , then

XS ≥ E(XT |FS).

Proposition A.1.31. A càdlàg process X = {Xt, t ≥ 0} is a martingale if and only if for every bounded
stopping time T , the random variable XT is in L1 and

E(XT ) = E(X0)

A.2 Markov Processes

Intuitively speaking, a process X with state space (E, E) is a Markov process if, to make prediction at any
time s on what is going to happen in the future, it is not necessary to know anything more about the whole
past up to time s than the present state Xs.
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Definition A.2.1. Let (E, E) be a measurable space. A transition probability P on E is a map from E ×E
into R+ ∪ {+∞} such that

i) P (x,E) = 1 for every x ∈ E.

ii) For every x ∈ E, the map A 7→ P (x,A) is a positive measure on E.

iii) For every A ∈ E, the map x 7→ P (x,A) is E-measurable.

If f is measurable bounded or positive function and if P is a transition probability, we define a function
P f on E by

P f(x) =

∫
E

P (x, dy)f(y).

Definition A.2.2. A transition function on (E, E) is a family Ps,t, 0 ≤ s < t of transition probabilities on
(E, E) such that for every three real numbers s < t < v, we have

∫
E

Ps,t(x, dy)Pt,v(y,A) = Ps,v(x,A)

for every x ∈ E and A ∈ E. This relation is known as the Chapman–Kolmogorov equation. The transition
function is said to be homogeneous if Ps,t depends on s and t only through the difference t− s. In that case,
we write Pt instead of P0,t and the Chapman-Kolmogorov equation reads

Pt+s(x,A) =

∫
E

Ps(x, dy)Pt(y,A)

for every s, t ≥ 0.

Definition A.2.3. Let (Ω,F ,F,P) be a filtered probability space. An adapted process is a Markov process
with respect to F = {Ft, t ≥ 0}, with transition function Ps,t if for any f bounded or positive and any pair
s < t,

E(f(Xt)|Fs) = Ps,t f(Xs) P− a.s.

The probability measure P(X0 ∈ ·) is called the initial distribution of X. The process is said to be homoge-
neous if the transition function is homogeneous in which case the above equality reads

E(f(Xt)|Fs) = Pt−s f(Xs).

From now on, we now work in the canonical space Ω. We set Ω = ER+ , F = ER+ and Ft = σ(Xu, u ≤ t)
where X is the coordinate process, i.e. if ω ∈ Ω then we write ω = {xs, s ≥ 0} and Xs(ω) = xs.

Theorem A.2.4. Given a transition function Ps,t on (E, E), for any probability measure ν on (E, E) there
is a unique probability measure Pν on (Ω,F) such that X is Markov with respect to F = {Ft, t ≥ 0} with
transition function Ps,t and initial measure ν.

From now on, we will consider only homogeneous transition functions and processes. For each x ∈ E, we
have a probability measure Pδx which we will denote simply by Px and satisfies

Px(X0 = x) = 1.

If Z is an F-measurable function, its mathematical expectation with respect to Px (resp. Pν) will be
denoted by Ex(Z) (resp. Eν(Z)). If in particular Z = IXt∈A for some A ∈ E , we get
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Px(Xt ∈ A) = Pt(x,A).

This reads: the probability that the process started at x is in A at time t is given by the value Pt(x,A) of
the transition function. It proves that in particular that x 7→ Px(Xt ∈ A) is measurable. More generally we
have

Theorem A.2.5. If Z is F measurable and positive or bounded, the map x 7→ Ex(Z) is E-measurable and

Eν(Z) =

∫
E

ν(dx)Ex(Z).

Now we define a family of transformations {θt, t ≥ 0} where θt acts on ω = {xs, s ≥ 0} in the following
way, θt(ω) = ω′ where ω′ = {xt+s, s ≥ 0}. The operator θt is known as the shift operator.

The notions introduced above imply that the composition Xs ◦ θt(ω) = Xs(θt(ω)) = Xs+t(ω) and thus
the Markov property takes the form

Theorem A.2.6 (Markov property). If Z is F-measurable function positive or bounded, for every t > 0
and starting measure ν,

Eν(Z ◦ θt|Ft) = EXt(Z) Pν − a.s.

If in particular we take Z = I{Xs∈A}, the above formula reads

Pν(Xt+s ∈ A|Ft) = PXt(Xs ∈ A) = Ps(Xt, A).

In the general theory of Markov processes an important role is played by those processes which, in addition
to the Markov property, have the following strong Markov property

Definition A.2.7. The process X = {Xt, t ≥ 0} possesses the strong Markov property with respect to
F = {Ft, t ≥ 0} if for each stopping time τ

Px(Xτ+s ∈ B|Fτ ) = Ps(Xτ , B), Px-a.s.

Using the shift operator θt the strong Markov property takes the form: for any stopping time τ

Px(Xs ◦ θτ ∈ B|Fτ ) = PXτ (Xs ∈ B), Px-a.s.

for every x ∈ E and B ∈ E where θτ (ω) by definition equals θτ(ω)(ω) if τ(ω) <∞. In other words if τ = τ(ω)
is a stopping time such that τ <∞ then the operator θτ (ω) = θt(ω) for all ω such that τ(ω) = t.

If Z is a F-measurable function we denote by Z ◦ θτ the function

(Z ◦ θτ )(ω) = Z(θτ (ω))

for all t ≥ 0.
The following useful property can be deduced from the strong Markov property

Theorem A.2.8. If Z is a F-measurable function positive or bounded, for everty t > 0 and starting measure
ν we have,

Eν(Z ◦ θτ |Fτ ) = EXτ (Z), Pν-a.s.
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Now we derive some properties about the shift operator θt. Let σ, τ finite stopping times, then

Xτ ◦ θσ = Xτ◦θσ+σ.

Suppose that B ∈ E and

TB = inf{t ≥ 0 : Xt ∈ B} and τB = inf{t > 0 : Xt ∈ B}

are finite stopping times. Let γ another stopping time, then

γ + TB ◦ θγ = inf{t ≥ γ : Xt ∈ B},
γ + τB ◦ θγ = inf{t > γ : Xt ∈ B}

are stopping times. In particular if γ ≤ TB then we get the following formula

γ + TB ◦ θγ = TB .

A.3 Poisson Random Measures

Definition A.3.1 (Poisson random measure). Let (S,S, η) be a σ-finite measure space and (Ω,F ,P) a
probability space. Let N : Ω×S 7→ {1, 2, . . .} ∪ {∞} so that the mapping ω 7→ N(ω,A) is a random variable
for all A ∈ S. N is called a Poisson random measure on S with intensity η if

i) For mutually disjoint A1, . . . , An in S, the random variables N(A1), . . . , N(An) are independent.

ii) For each A ∈ S, N(A) is Poisson distributed with parameter η(A)

iii) The mapping A 7→ N(A) is a measure P-a.s.

Theorem A.3.2. Suppose that N is a Poisson random measure on (S,S, η). Then for each A ∈ S, the
mapping B 7→ N(B ∩A) is a Poisson random measure on (S ∩A,S ∩A, η(· ∩A)). Further, if A,B ∈ S and
A ∩B = ∅, then N(· ∩A) and N(· ∩B) are independent.

Theorem A.3.3. Suppose that N is a Poisson random measure on (S,S, η), then the support of N is P-a.s.
countable. If, in addition, η is a finite measure, then the support is P-a.s. finite.

If N is a Poisson random measure then for a fixed ω, we have that N(·) is P-a.s. a measure on the space
(S,S,P) and hence we can define

∫
S

f(x)N(dx)

for any measurable function f : S 7→ [0,∞]. It is easy to prove that the above integral is a random
variable.

Theorem A.3.4. Suppose that N is a Poisson random measure on (S,S, η). Let f : S 7→ R a measurable
function.

i) Then

X =

∫
S

f(x)N(dx)

is almost surely convergent if and only if

∫
S

(1 ∧ |f(x)|)η(dx) <∞. (A.1)
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ii) When condition (A.1) holds, then

E(eiβX) = exp

{
−
∫
S

(1− eiβf(x))η(dx)

}
for any β ∈ R.

iii) Further,

E(X) =

∫
S

f(x)η(dx) when

∫
S

|f(x)|η(dx) <∞

and

E(X2) =

∫
S

f(x)2η(dx) +

(∫
S

f(x)η(dx)

)2

when ∫
S

f(x)2η(dx) <∞ and

∫
S

|f(x)|η(dx) <∞.

In the theory of Lévy process is of vital importance a Poisson random measure which is related directly
to the jumps of a Lévy process. Specifically we will work on the measure space (R+×R,B(R+)×B(R), dt×
Π(dx)), where Π is a measure concentrated on R \ {0}. We are interested in integrals of the form

∫
[0,t]

∫
B

xN(ds, dx)

Lemma A.3.5. Suppose that N is a Poisson random measure on (R+ × R,B(R+) × B(R), dt × Π(dx))
where Π is a measure concentrated on R \ {0}. Let B ∈ B(R) such that 0 < Π(B) < ∞, then the process
X = {Xt, t ≥ 0} where

Xt :=

∫
[0,t]

∫
B

xN(du, dx), t ≥ 0,

is a compound Poisson process with arrival rate Π(B) and jump distribution Π(dx ∩B)/Π(B).

Suppose that F = {Ft, t ≥ 0} is the filtration generated by X satisfying the usual conditions.

Lemma A.3.6. Suppose that N is a Poisson random measure on (R+×R,B(R+)×B(R), dt×Π(dx)) where
Π is a measure concentrated on R \ {0}. Let B ∈ B(R) such that

∫
B
|x|Π(dx) <∞.

i) The compound Poisson process with drift

Mt :=

∫
[0,t]

∫
B

xN(ds, dx)− t
∫
B

xΠ(dx), t ≥ 0

is a P-martingale with respect to the filtration F.

ii) If further,
∫
B
x2Π(dx) <∞ then it is a square-integrable martingale.
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