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z Introduction.

The present thesis has as objective to be a brief exposition of the topic “weak convergence in measure”. It has been

a while since the very �rst articles, those in which weak convergence in measure �rst appeared, were published.

Recently Barlow, Burzdy and Timar have proved some type of Central Limit theorems in which the convergence is

of this type, “weakly in measure”.

To understand the relevance of this research, it is necessary to give a brief historical note about this type of

convergence. First of all, in 1986, Kipnis and Varadham published the article [5]. There, they proved a Central Limit

type theorem for additive functionals of stationary reversible ergodic Markov chains. Their proof let them conclude

that some random measures actually converge in measure (with respect to the measure of the space on where they

were de�ned). So, they did not give a name to this type of convergence and they simply mentioned it as a remark (see

Remark 1.10 of [5]). Even when they informally gave the de�nition of weak convergence in measure, they did not

explicitly mention it and never investigated its properties. A few years later, in 1989, De Masi et al., in [1] explicitly

gave the de�nition of weak convergence in measure. As a matter of fact, they stated the following as their de�nition

“In applications, the state ξ of our reversible Markov process will represent the environment seen

from a ‘tagged’ particle. Since we wish to investigate asymptotic behavior for a �xed initial environ-

ment, as well as the behavior arising from averaging (with respect to µ) over the initial envirionment, we

employ the following notion of convergence. Let Xε = (Xε
t )t≥0, ε > 0, be a family of Rd-valued pro-

cesses on (Ω, Pµ). Then we say thatXε
converges weakly in µ-measure (or probability) to theRd-valued

process Y, and we write Xε → Y, if for all bounded, continuous functions F on D ≡ D([0,∞),Rd)
(equipped with the Skorohod topology)

Eµ[F (Xε)|ξ0 = ξ)→ E(F (Y ))

as ε→ 0 inµ-probability. Note thatXε → Y inµ-probability implies thatXε
tends to Y in distribution.”

Again, they proved a Central Limit type theorem with this convergence but, like Kipnis and Varadham, they did

not investigate properties of this convergence. Finally, in a paper of Barlow, Burzdy and Timar, to appear [3], there

is de�ned “weak convergence in measure” in a more general context (moreover, this de�nition is the same as the

one given here (2.1.2)), and also prove a Central Limit type theorem but do not research what properties hold in this

case.

After this historical development, it seemed necessary to investigate which of the theorems that hold for the

already well known topic of weak convergence hold equally well for weak convergence in measure, that is, which

theorems could be generalized in a natural way? In fact, as Prohorov’s theorem seems to be one of the most important

theorem for weak convergence, the question that arose was: does Prohorov’s theorem hold or have a natural analogue

in the context of weak convergence in measure? The whole point of this thesis is to answer this question.

In Chapter 1, the de�nition of “classical” weak convergence will be given and the details will be developed. It

has to be mentioned here that, the familiar reader with the topic can skip this chapter without losing the thread

of the second chapter. Now, the de�nition of weak convergence will be given so that it will coincide with the

same as the standard de�nition of the “vague topology” (same as “weak topology”) used in functional analysis. It

seems convenient to start from an analytical point of view: in one hand, Billingsley have already developed the topic
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Introduction

starting from a probability point of view (see [4]) but at the cost of not giving the connection between the two topics;

secondly, this view will include the topic as it is, in other words, there is a metric space in which is to further study

of the convergence and, of course, study its “nice” subsets, namely, those which are relatively compact. This chapter

is thus written from this point of view. It is assumed that the reader is familiar with general analisys and general

topology (the books of the bibliography are recommended for references, see [6] and [8]) but not with advanced

probability (the reference for probabily topics will be [2]).

In Chapter 2, the development of the theory of weak convergence in measure is given. All de�nitions are being

proposed and in this point it is necessary that the reader be familiar with Lebesgue’s integration. Firstly, some

questions about mesurability are answered. Then, one proceeds to propose the de�nition of weak convergence in

measure and will always be stated that with arbitrarily large probability, the is a uniformity that happens with high
chance; this will be clearer once starting the reading (see the remarks of this chapter). After that, the steps are to

prove Prohorov’s theorem in measure and in order to do that, de�nition of tightness in measure (2.1.2) is given

and a analogous of portmanteau theorem is proved (see (1.5.3) and (2.3.1)). Finally, one half (the “direct half”) of

Prohorov’s theorem for this context is stated and proved and a construction (with a construction of multiple explicit

counterexamples) is given to prove falssity of the su�ciency of this theorem.
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z Some notation employed in the thesis.

During the thesis all notations will be consistent inside this writing. Also, I will explicitly used the italic letters to

emphasize an important point in a sentence and I will reserve the quotation marks (the symbols “ and ”) when I write

a de�nition, given by a word or by a sentence. Something else must be mention also before I start giving the notation;

I have followed several advices given in the book How to write Mathematics by Steenrod et al. To understand the

cross referencing inside this text the following convention was taken. Every property (De�nition, Lemma, Remark,

Theorem) stated here will have asociated an unique number of the form (k.n.m); here, k denotes the number of the

chapter, n the number of the section and m will denote the number of the property in that section. To make a

reference to such a property, only its unique number will be given.

Each of the following sets are subsets of RS , the vector space of functions S → R, and the speci�c property is

expressed (it turns out that all of these spaces are subspaces of RS):

1. CR (S) the continuous elements;

2. C∞R (S) the bounded continuous elements;

3. C 0
R (S) the continuous elements that vanish at∞ (this is, for every ε > 0 there is a compact set K ⊂ S such

that ‖f(x)‖ ≤ ε for every point x in the complement of K);

4. KR (S;K) the continuous elements with compact support contained in K elements;

5. BR (S) the bounded elements;

6. MR (S) the measurable elements;

7. M∞
R (S) the bounded measurable elements;

8. L p
R (S, µ) the p-integrable elements (with respect to µ).

Remark. In this thesis the space of k times di�erentiable functions with continuity (also called as continuously

di�erentiable functions) will never be used or mentioned. It is then clear that it will cause no confusion the previous

notations.

Also, the following general notation is used:

9. BS (x; r) is the ball in S with centre x and radius r > 0; when S is clear from the context, it will be written

simply as B (x; r) .

10. ∂A denotes the frontier of the set A;

11. A denotes the closure of the set A;

12. P (S) denotes the power set of S, this is, the set of all subsets of S;

13. BS denotes the Borel sets of S;
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14. CS denotes the closed sets of S;

15. OS denotes the topology of S;

16. If x belongs to a normed vector space, ‖x‖ denotes the norm (the same symbol for all norms that will be

considered).

17. For a given set A ⊂ S, the function 1A : S → {0, 1} given by 1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A is

the “indicator function” of the set A (or as is called in analysis, the “characteristic function” of the set A; this

term will not be used in this thesis).

It is convenient to bear in mind the following conventions:

18. MR (S) is the set of all real-valued signed measures de�ned on BS ;

19. PS is the set of all probability measures de�ned on BS .

Also, accordingly with the previous notations, the following alphabet is reserved for sets of subsets of a given

set S (in other word, subsets of P (S) but with no special structure):

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y,Z.

In the same way, the following alphabet is often used for sets whose elements are functions S → R (in other words,

subsets of RS):

A , B, C , D , E , F , G , H , I , J , K , L , M , N , O, P, Q, R, S , T , U , V , W , X , Y ,Z .

It has to be said, however, that Ω will denote a “generic sample space” with its “generic σ-algebra” F ; µ and ν
“generic measures”, P a “generic probability measure”. Finally, the next alphabet will mostly be used to designate

subset of “signed measures”, “special laws” or subsets of BS (such as in the case of OS and CS):

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y,Z.

In chapter 2, a probability space will be given (Ω,F ,P) and two metric spaces will be on consideration, namely

(S, d) and (PS , ρ). The subsets of S will be denoted with no special emphasis, in other hand, the letter to speci�c

subsets of PS are already stated (since these subset are sets of probability measures). Hence, to avoid possible

misunderstandings with the alphabets, this last will be used to denote event (sets in F ) of Ω :

A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y,Z.
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Chapter 1

zWeak convergence of probability measures.

As a brief introduction, consider the following situation. Suppose that a family (Sλ, τλ)λ∈L of topological spaces is

given (that is, Sλ is assumed to be a nonempty set and τλ a topological structure over Sλ). De�ne S =
∏
λ∈L

Sλ the

Cartesian product of the sets Sλ and τ to be the product topology on S, that is, τ is the �nest topology on S which

makes all projections prµ : (sλ)λ∈L 7→ sµ continuous from S to Sµ. If it happens that all of the Sλ coincide with

a topological vector space V, then S is a vector space, which is denoted by V L, and the projection are continuous,
linear and open functions. In this case, in order for a sequence (fn), de�ned on the space V L, to converge to a point

f ∈ V L, it is necessary and su�cient that the sequence (prµ(fn) = fn(µ)), de�ned on V, converges, in V, to the

point f(µ).As this is true, it is usual to call such a product topology the topology of simple convergence or the topology
of pointwise convergence. A special case is when V is the �eld of real numbers R or the complex numbers C and L
is also a linear space. Here, it is obtained RL or CL. In the subspace of linear forms on RL or CL, the topology of

simple convergence is called the weak topology; it is readily seen that this topology is de�ned by the seminorms

x 7→ |f(x)|, x ∈ L.

As was mentioned earlier, in this topology, a sequence of linear forms (fn) will converge to a linear form f if fn(x)
converges to f(x) in R or C. Finally, consider a metric space (E, d) and the linear space C∞R (E) , of functions

de�ned on E with values in R which are continuous and bounded; a linear form µ ∈ RC∞R (E)
for which each

restriction µ
∣∣∣
KR(E;K)

is continuous, where K ⊂ E a compact set, is a measure on E (this is known as a version

of “Daniell’s theorem”); let MR (E) to be the subspace of RC∞R (E)
whose elements are measures. In this space the

weak topology is called vague topology (in french and spanish literature, while in english literature the term “weak

topology” is usually �xed); saying that a sequence of measures (µn) converges to the measure µ is equivalent to

saying that for each f ∈ C∞R (E) , the sequence of real numbers µn(f) will converge to the real number µ(f); this

last notion is what is called µn converges vaguely to the measure µ (again, in the english literature, this is not used

and they use the teminology µn converges weakly to the measure µ). In this chapter we consider the special case in

which we take all the measures µn to be unitary, or equivalently probability measures, and the interest lies in further

studying the subset (which is not a subspace) of MR (E) of probability measures; it will be shown that this set is

metrizable (whereas, in general, MR (E) is not).

§1.1. The Prohorov distance.
During this chapter, the next convention will be taken. Always S will denote a metric space (sometimes it will

happen that the theorem to be proved here will still be valid when S is assumed to be only a topological space); d
the distance over S; BS will denote the smallest σ-algebra that contains the topology of S (the “Borel σ-algebra”)
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Chapter 1. Weak convergence of probability measures.

and its elements will be called “Borel sets” of S; note that inside BS is the set CS of the closed subsets of S and OS
of the open ones; PS will denote the set of all probability measures

1
de�ned on the σ-algebra BS . For a given set F

of S, and a positive number ε > 0, the symbol F ε will denote de set of points x in S whose distance from F will be

smaller
2

than ε, where the distance from F is de�ned to be the non-negative (and necessarily �nite) number

d(x, F ) = inf
y∈F

d(x, y).

Theorem ( 1.1.1 ) The real function ρS = ρ defined on the set PS × PS given by the formula

ρS(P,Q) = inf

ß
ε > 0

∣∣∣∣∀F ∈ CS , P (F ) ≤ Q (F ε) + ε

™
is a metric on PS ; the “Prohorov distance” and the space (PS , ρ) will be refered as the “Prohorov space” of S.

Proof: it is evident that ρ is non-negative; the other properties must be proven. To prove that ρ(P,Q) = ρ(Q,P );
it will be �rst proven that, for α and β two positive numbers, the relation

∀F ∈ CS , P (F ) ≤ Q (Fα) + β

implies the relation

∀F ∈ CS , Q(F ) ≤ P (Fα) + β;

for if this is proved, it will follows immediately that ρ(P,Q) = ρ(Q,P ). Now, assume the �rst relation holds and

take F1 ∈ CS ; let F2 be the set {SFα1 , where {SA is the set “complement of A with respect to S” de�ned by S −A.
As Fα1 is open

3
, F2 is closed, thus, it belongs to CS . As the relation A ⊂ B is equivalent to the relation {SB ⊂ {SA,

it follows that F1 ⊂ {SFα2 . Then,

P (Fα1 ) = 1− P (F2) ≥ 1−Q (Fα2 )− β ≥ Q(F1)− β,

and the second relation is proved.

Assume now that ρ(P,Q) = 0. Then, if F ∈ CS is arbitrary, P (F ) ≤ Q (F ε) + ε for all ε > 0; hence, taking the

in�mum over the set of ε > 0, it is possible to conclude that
4

∀F ∈ CS , P (F ) ≤ Q(F ).

As d is symmetric, it can be concluded that P (F ) = Q(F ) for all the closed sets in S and, taking complements, for

all of the open sets in S. By hypothesis, P and Q are de�ned on BS and therefore, they must be equal since they

concide on the generators of BS .
Now, let P,Q,R ∈ PS and suppose ρ(P,Q) < δ and ρ(Q,R) < ε. Then,

P (F ) ≤ Q
(
F δ
)

+ δ ≤ R
ÄÄ
F δ
äεä

+ +ε+ δ ≤ R
(
F δ+ε

)
+ δ + ε

1
Throughout this text, “measure” will always mean a “positive measure”; however, a “charge” or “signed measure” will mean the general

concept of measure.

2
The terms “smaller” and “bigger” will always mean < and >, respectively; for the symbols ≤ and ≥, it shall be used the phrases “at most”

and “at least”. Similarly, “positive” will mean > 0 and “negative” will mean < 0; the term “non-negative” is reserved to mean ≥ 0.

3
In fact, if F is an arbitrary set of S, then Fα (called as “augmentation” by α > 0 of F ) is open: indeed, for if x ∈ Fα, then there is some

y ∈ F such that d(x, y) < α; the ball B (x;α− d(x, y)) is contained in Fα as follows directly from use once the triangle inequality. In what

follows, it will be used that such sets Fα are open without further notice.

4
This follows since F is closed: for in this case, F =

⋂
ε>0

F ε =
⋂
n∈N

F
1
n (this last property shows that every closed set in a metric space is

“Gδ” -the letter G is for the German word gebiet, which mean “area”; the δ is supposed to mean “intersection” from the German durchschnitt-
that is, every closed set is the intersection of a sequence of open sets) and the fundamental property of monotone limit for probability measures.

2



1.2. Some technical lemmas.

because if d
Ä
x, F δ

ä
< ε, then for some y ∈ F δ it is true that d(x, y) < ε, and for such y there exists a sequence

(yn) de�ned on F δ such that (yn) converges to y, therefore for su�ciently large n it will happen that d(x, yn) < ε
and, with this, the last inequality follows

5
. Finally, note that by de�nition of ρ,

ρ(P,R) ≤ δ + ε,

hence ρ(P,R)− δ is a lower bound for the set of ε > 0 such that if F ∈ CS then Q(F ) < R (F ε) + ε, and therefore

it cannot be bigger than the in�mum, namely ρ(Q,R); that is,

ρ(P,R) ≤ δ + ρ(Q,R);

the same argument shows that

ρ(P,R) ≤ ρ(P,Q) + ρ(Q,R),

which is the triangle inequality. �

§1.2. Some technical lemmas.
In this section, several technical lemmas will be proved with the aid of giving a proof for Skorohod’s representation

theorem and Prohorov’s theorem.

Lemma ( 1.2.1 ) Assume thatµ is a finite measure over the σ-algebraBS , that (pi)i=1,...,n is a family of non-negative
real numbers, and that (Ai)i=1,...,n is a finite family of Borels of S. If∑

i∈I
pi ≤ µ

(⋃
i∈I

Ai

)
whatever the subset I ⊂ {1, . . . , n} is, then there exist finite measures λ1, . . . , λn on BS such that λi(Ai) =

λi(S) = pi (i = 1, . . . , n) and
n∑
i=1

λi(A) ≤ µ(A) for every A ∈ BS .

Proof: if some pi = 0, let λi = 0; then, it may be supposed, without loss of generality, that each pi > 0. First note

that for each i, µ(Ai) ≥ pi, otherwise, the hypothesis would be violated when I = {i}, therefore µ(Ai) > 0. Now,

it will be proceed inductively. For the case n = 1, let λ1 : BS → R+ be de�ned by λ1(A) = p1
µ(A ∩A1)

µ(A1)
. It is

then clear that λ1 satis�es the conclusion and, hence, the case n = 1 is proved. Now, suppose that (1.2.1) has already

been proved for all cases 1, . . . , n − 1 and that µ, (pi)i=1,...,n and (Ai)i=1,...,n satis�es the hypothesis. De�ne the

measure η on BS by

η(A) =
µ(A ∩An)

µ(An)

and let ε0 be the largest real number ε ≥ 0 such that∑
i∈I

pi ≤ (µ− εη)

(⋃
i∈I

Ai

)
,

for all subsets I of {1, . . . , n−1} (note that ε0 may be 0). To continue, �rst suppose that ε0 ≥ pn. Let λn = pnη and

µ′ = µ− λn. As µ(An) ≥ pn, it follows that µ′ is never negative, thus, it is a measure on BS . By de�nition of ε0,∑
i∈I

pi ≤ µ′
(⋃
i∈I

Ai

)
, for every I ⊂ {1, . . . , n− 1}.

5
Note that

(
F δ
)ε ⊂ F δ+ε for if x belongs to the �rst set, take y in F δ such that d(x, y) < ε and take z ∈ F such that d(x, z) < δ, the

triangle inequality shows that d(x, z) < δ + ε and z ∈ F.

3



Chapter 1. Weak convergence of probability measures.

By induction, it is possible to conclude there exist measures λ1, . . . , λn−1 de�ned on BS such that λi(Ai) = λi(S) =

pi for i = 1, . . . , n − 1 and

n−1∑
i=1

λi(A) ≤ µ′(A) = µ(A) − λn(A), for every A ∈ BS . As λn(An) = pn, it follows

that λ1, . . . , λn satis�es the conclusion and, therefore, this case is concluded.

To �nish the cases, assume now that ε0 < pn. Let µ′ = µ− ε0η. Then µ′ is a measure on BS as for anyA ∈ BS ,

µ′(A) = µ(A)− ε0η(A) =
µ(An)µ(A)− ε0µ(A ∩An)

µ(An)
≥ pnµ(A)− ε0µ(A ∩An)

µ(An)
≥ 0,

where the last was concluded since pn ≥ ε0 and µ(A) ≥ µ(A ∩ An). The de�nition of ε0 allows to conclude that

there is a non-empty set I0 ⊂ {1, . . . , n− 1} such that

∑
i∈I

pi ≤ µ′
(⋃
i∈I

Ai

)
, for every I ⊂ I0

with equality when I = I0 (if there were no such I0, then the �rst inequality would be strict for all subsets I
and this would violate the de�nition of ε0). By induction, there are measures (λi)i∈I0 de�ned on BS such that

λi(Ai) = λi(S) = pi for i ∈ I0 and ∑
i∈I0

λi(A) ≤ µ′(A),

for every A ∈ BS . Let p′i = pi for i = 1, . . . , n− 1, p′n = pn − ε0, put

B0 =
⋃
i∈I0

Ai

and de�ne the measure µ′′ on BS by

µ′′(A) = µ′(A)− µ′(A ∩B0), A ∈ BS .

Let I1 = {1, . . . , n} − I0. Then, for I ⊂ I1,

∑
i∈I

p′i + µ′(B0) =
∑

i∈I∪I0

p′i ≤ µ′
( ⋃
i∈I∪I0

Ai

)

= µ′

(⋃
i∈I

Ai

)
+ µ′(B0)− µ′

(⋃
i∈I

Ai ∩B0

)

= µ′′

(⋃
i∈I

Ai

)
+ µ′(B0),

where the �rst equality is the de�nition of I0, the �rst inequality is a consequence of the de�nition of ε0 when n /∈ I;
when n ∈ I, by the hypothesis and de�nition of p′i and µ′,

∑
i∈I∪I0

p′i ≤
∑

i∈I∪I0
i 6=n

p′i + p′n =
∑

i∈I∪I0

pi − ε0 ≤ µ

( ⋃
i∈I∪I0

Ai

)
− ε0 = µ′

( ⋃
i∈I∪I0

Ai

)
.

Consequently, ∑
i∈I

p′i ≤ µ′′
(⋃
i∈I

Ai

)
, for every I ⊂ I1.

4



1.2. Some technical lemmas.

By induction, there exists λ′i (i ∈ I1) de�ned on BS such that λ′i(Ai) = λ′i(S) = pi and

∑
i∈I1

λ′i(A) ≤ µ′′(A) for

every A ∈ BS . To conclude, let λi = λ′i for i ∈ I1 − {n} and λn = λ′n + ε0η. Then, all λi are measures on BS and

λi(Ai) = λi(S) = pi, ∀i ∈ I1 − {n}

and

λn(An) = λ′n(An) + ε0η(An) = pn.

Finally, for A ∈ BS ,

n∑
i=1

λi(A) =
∑
i∈I0

λi(A) +
∑
i∈I1

λi(A) =
∑
i∈I0

λi(A ∩B0) +
∑
i∈I1

λ′i(A) + ε0η(A)

≤ µ′(A ∩B0) + µ′′(A) + ε0η(A) = µ′(A) + ε0η(A) = µ(A).

This concludes the proof of (1.2.1). �

Lemma ( 1.2.2 ) Suppose that µ is a finite measure defined on BS , that (pi)i=1,...,n is a finite family of non-negative
real numbers and (Ai)i=1,...,n is a finite family of Borels of S. If ε > 0 is such that

∑
i∈I

pi ≤ µ

(⋃
i∈I

Ai

)
+ ε

for all subsets I ⊂ {1, . . . , n}, then there exist finite measures λ1, . . . , λn defined on BS such that λi(Ai) =

λi(S) ≤ pi for i = 1, . . . , n,
n∑
i=1

λi(S) ≥
n∑
i=1

pi − ε and
n∑
i=1

λi(A) ≤ µ(A) for every A ∈ BS .

Proof: consider Alexandro�’s construction
6 S∗ = S ∪ {∞} and note that (1.2.1) will be valid for any topological

space (S, τ), where, of course, in this case BS is the σ-algebra generated by the open sets of S. If µ is a given

measure de�ned on BS , then it easy to see that if µ∗ is de�ned on BS∗ , and given by µ∗(A) = µ(A) if A ∈ BS and

µ∗({∞}) = ε, so that µ∗(A) = µ(A \ {∞}) + ε if∞ ∈ A, then µ∗ is a measure on BS∗ .
As it is true that, for A∗i = Ai ∪ {∞}, ∑

i∈I
pi ≤ µ

(⋃
i∈I

A∗i

)
for every subset I ⊂ {1, . . . , n}, (1.2.1) implies the existence of �nite measures λ∗1, . . . , λ

∗
n on BS∗ such that

λ∗i (A
∗
i ) = λ∗i (S

∗) = pi and

n∑
i=1

λ∗i (A) ≤ µ∗(A) for every A ∈ BS∗ . For each i, λi be the restriction of λ∗i to

BS . Then λi(Ai) = λ∗(Ai) ≤ λ∗i (A∗i ) = pi and λi(S −Ai) = λ∗i (S
∗ −A∗i ) = 0, for each i. Also,

n∑
i=1

λi(S) =
n∑
i=1

(pi − λ∗i ({∞})) ≥
n∑
i=1

pi − µ∗({∞}) =
n∑
i=1

pi − ε

and
n∑
i=1

λi(A) =
n∑
i=1

λ∗i (A) ≤ µ(A),

for every A ∈ BS . �

6
In this construction, S ⊂ S∗ is an open subset of the enlarged space. Therefore, BS ⊂ BS∗ .
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Chapter 1. Weak convergence of probability measures.

Lemma ( 1.2.3 ) Assume that (S, d) is a separable metric space and that P is a element of PS . For every ε > 0 and
δ > 0 there exists a finite “measurable partition” B0, . . . , BN of S (that is, there is a finite partition7 of Borels of S)
such that the diameter8 of each of B1, . . . , BN is at most ε and P (B0) ≤ δ.

Proof: by metrizability and separability, there exists a sequence (xn)n∈N that is dense in S; for each of the terms

in the sequence, consider the ball Vn = B
(
xn;

ε

2

)
, so, by the triangle inequality, it is true that δ(Vn) ≤ ε no matter

what the n ∈ N is. It is then clear thatS =
∞⋃
n=1

Vn, so there exists an indexN such thatP

( ∞⋃
n=N+1

Vn

)
≤ δ; the sets

B1 = V1 and Bk = Vk −
k−1⋃
j=1

Bj , for k = 2, . . . , N must have a diameter at most ε (as they are contained in sets of

diameter at most ε), and de�ne thenB0 = S−
N⋃
k=1

Bk; it is important to note that by construction,

N⋃
k=1

Vk =
N⋃
k=1

Bk,

soB0 ⊂
∞⋃

n=N+1

Vn and hence, by monotonicity, P (B0) ≤ δ. Finally, the �nite family (B0, . . . , BN ) has the required

properties. �

Lemma ( 1.2.4 ) Assume the hypotheses of (1.2.3). Let ε, δ be two positive real numbers and Q ∈ PS such that
ρ(P,Q) < ε. Let (B0, . . . , BN ) be a measurable partition for which P (B0) ≤ δ and the sets B1, . . . , BN have
diameter at most ε (which exists by (1.2.3)). Then, there exist real numbers c1, . . . , cN in [0, 1] and independent
random objects9 X,Y0, . . . , YN , U all of them defined over a probability space (Ω,F , ν) such that X,Y0, . . . , YN
take their values in the metric space S and U takes its values in [0, 1], the distribution of X is P, the distribution of
U is uniform on [0, 1] and the random object Y, given by

(1.2.4.1) Y =

 Yi on the set {X ∈ Bi, U ≥ ci} for i = 1, . . . , N,

Y0 on the set {X ∈ B0} ∪
N⋃
i=1
{X ∈ Bi, U < ci}

has distribution Q, the inclusion

(1.2.4.2) {d(X,Y ) ≥ δ + ε} ⊂ {X ∈ B0} ∪
ß
U < max

i:P (Bi)>0

ε

P (Bi)

™
holds and, finally,

(1.2.4.3) ν(d(X,Y ) ≥ δ + ε) ≤ δ + ε.

Proof: let pi = P (Bi) and Ai = Bεi for i = 1, . . . , N. Then, since ρ(P,Q) < ε,

∑
i∈I

pi ≤
∑
i∈I

P

(⋃
i∈I

Bi

)
≤ Q

(⋃
i∈I

Ai

)
+ ε,

7
A “partition” of a set is a family of pairwise disjoint sets whose union is the whole set.

8
For any set A in the metric space (S, d), the “diameter” of A is de�ned as the non-negative number, possibly +∞, δ(A) = sup

x,y∈A
d(x, y).

9
A “random object” is a map between two measurable spaces that is measurable with respect to the given σ-algebras. If such a map takes

values in R it is called “random variable”, if the values are taken in Rd it is called a “random vector” and the adjective “complex” is used when

R (resp. Rd) is replaced by C (resp. Cp). A family of random objects is “independent” if the corresponding family of generated σ-algebras is

independent (a family (Fα)α∈I of σ-algebras is “independent with respect to the probability measure P” if for every �nite number of distinct
indices α1, . . . , αk and sets N1, . . . , Nk such that Ni ∈ Fαi -for i = 1, . . . , N - one has P (N1 ∩ . . . ∩Nk) = P (N1) · · ·P (Nk)).
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1.2. Some technical lemmas.

since (⋃
i∈I

Bi

)ε
⊂
⋃
i∈I

Ai.

By (1.2.2), there exist measures λ1, . . . , λN de�ned on BS such that λi(Ai) = λi(S) ≤ pi for i = 1, . . . , N,

N∑
i=1

λi(S) ≤
N∑
i=1

pi − ε

and

N∑
i=1

λi(A) ≤ Q(A) for all the Borels A of S. De�ne c1, . . . , cN ∈ [0, 1] by

ci =
pi − λi(S)

pi

if pi 6= 0 and ci = 0 if pi = 0. By the de�nitions,

(1− ci)P (Bi) = λi(S), i = 1, . . . , N

and

P (B0) +
N∑
i=1

ciP (Bi) = 1−
N∑
i=1

λi(S).

De�ne probability measures Q0, . . . , QN on BS according to the following cases:

1. for i = 1, . . . , N,

a) if (1− ci)P (Bi) = 0, take Qi to be any probability measure
10

; and

b) if (1− ci)P (Bi) 6= 0, take Qi =
λi

(1− ci)P (Bi)
;

then, for this case,

Qi(B)(1− ci)P (Bi) = λi(B)

for every Borel B of S.

2. For i = 0,

a) if P (B0) +
N∑
i=1

ciP (Bi) = 0, proceed as before, take Q0 to be any probability measure; and

b) if P (B0) +
N∑
i=1

ciP (Bi) 6= 0, take Q0 =

Q−
N∑
i=1

λi

P (B0) +
N∑
i=1

ciP (Bi)

;

then, for every Borel B of S,

Q0(B)

(
P (B0) +

N∑
i=1

ciP (Bi)

)
= Q(B)−

N∑
i=1

λi(B).

10
For example, take x ∈ Ai and Qi to be the “Dirac’s measure concentrated at x” εx given by εx(A) = 1 if x ∈ A and εx(A) = 0 if x /∈ A;

with this, Qi is “concentrated” on Ai (that is, Qi(S −Ai) = 0).
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Chapter 1. Weak convergence of probability measures.

Now the space (Ω,F , ν) will be constructed. The procedure goes as follows: take Ω = SN+1× [0, 1] and F the

product σ-algebra BS ⊗ . . .⊗BS ⊗B[0,1] and take ν to be the product measure P ⊗Q0 ⊗ . . .⊗QN ⊗U, where U

denotes Lebesgue measure on [0, 1]. It follows immediately that the random object IΩ : ω → ω (the identity function

on Ω) has law
11 ν; henceforth, if it is written IΩ = (X,Y0, . . . , YN , U), then the random objects X,Y0, . . . , YN and

U satisfy the required conditions, as shall be shown. For i = 1, . . . , N, the probability measure Qi is concentrated

on Ai, hence Yi takes values in Ai with probability one, hence, it can be rede�ned so that Yi takes all its values in

Ai. Now, let Y to be the random object de�ned in (1.2.4.1). Then, for any Borel B of S,

ν(Y ∈ B) =
N∑
i=1

ν(Y ∈ B,X ∈ Bi, U ≥ ci) + ν

(
{Y ∈ B} ∩

[
{X ∈ B0} ∪

N⋃
i=1

{X ∈ Bi, U < ci}

])

=
N∑
i=1

Qi(B)P (Bi)(1− ci) +Q0(B)

(
P (B0) +

N∑
i=1

ciP (Bi)

)

=
N∑
i=1

λi(B) +Q(B)−
N∑
i=1

λi(B) = Q(B).

Now note that

{X ∈ Bi, U ≥ ci} ⊂ {X ∈ Bi, Y ∈ Ai}

since Yi takes its values in Ai. Since the Bi have diameters at most δ and Ai = Bεi ,

{X ∈ Bi, Y ∈ Ai} ⊂ {d(X,Y ) < δ + ε}.

Starting with this inclusion, which is valid for all i = 1, . . . , N, it is then true that

N⋃
i=1

{X ∈ Bi, U ≥ ci} ⊂ {d(X,Y ) < δ + ε}.

Take the complement of these sets to obtain that,

{d(X,Y ) ≥ δ + ε} ⊂
N⋂
i=1

(
{X /∈ Bi} ∪ {U < ci}

)
;

it is claimed that the right hand set is included in the set

{X ∈ B0} ∪
N⋃
i=1

{X ∈ Bi, U < ci};

for if ω ∈
N⋂
i=1

(
{X /∈ Bi} ∪ {U < ci}

)
but ω /∈ {X ∈ B0}, then since the family (B0, . . . , BN ) is a partition, there

exists an index j such that ω ∈ {X ∈ Bj} ∩
N⋂
i=1
i6=j

{X /∈ Bi}, but for each i it must happen that ω ∈ {X /∈ Bi} or

11
The term “law” is used for the probability measure asociated with a random object, while “distribution” is used, almost exclusively, for random

variables or random vectors (real or complex); explicitly, given a random object Z : (Ω,F )→ (Ω′,F ′) and a measure (typically, a probability

measure) µ, the “law ofZ with respect to µ” is the measure LZ , de�ned on F ′, by LZ(B′) = µ(Z ∈ B′); this is also called the “image measure

of µ by Z” and denoted by Z(µ).

8



1.2. Some technical lemmas.

ω ∈ {U < ci}, hence for the index j it is readily seen that ω ∈ {X ∈ Bj , U < cj} and the inclusion follows. By

now, it has been established that

{d(X,Y ) ≥ δ + ε} ⊂ {X ∈ B0} ∪
N⋃
i=1

{X ∈ Bi, U < ci};

the last set it is clearly a subset of {X ∈ B0} ∪
ß
U < max

i=1,...,N
ci

™
; noting that pi ≥ λi(S) and that ε ≥

N∑
i=1

(pi −

λi(S)), it follows that ε ≥ pi − λi(S), hence, for all i such that P (Bi) > 0, one has

ε

P (Bi)
≥ ci and, therefore,ß

U < max
i=1,...,N

ci

™
⊂
ß
U < max

i:P (Bi)>0

ε

P (Bi)

™
.

Putting all the inclusions together, yields the inclusion (1.2.4.2). Finally, from subadditivity,

ν(d(X,Y ) ≥ δ + ε) ≤ ν(X ∈ B0) +
N∑
i=1

ν(X ∈ Bi, U < ci) = P (B0) +
N∑
i=1

ciP (Bi),

by hypothesis P (B0) ≤ δ and P (Bi) = pi, so that

N∑
i=1

ciP (Bi) =
N∑
i=1

(pi − λi(S)) ≤ ε and the last inequality

(1.2.4.3) follows. �

Lemma ( 1.2.5 ) Assume that (S, d) is a separable metric space and that P,Q ∈ PS . Define M(P,Q) to be the set
of probabilities µ ∈ PS×S whose first marginal12 is P and second is Q. Then,

ρ(P,Q) = inf
µ∈M(P,Q)

inf
ε>0

(
µ({(x, y) ∈ S × S|d(x, y) > ε}) < ε

)
.

Proof: �rst, assume that ε > 0 and that µ ∈M(P,Q) satisfy that

µ({(x, y) ∈ S × S|d(x, y) < ε}) < ε.

Then,

P (A) = µ(A× S) ≤ µ((A× S) ∩ {(x, y)|d(x, y) < ε}) + ε

≤ µ (A×Aε) + ε ≤ µ (S ×Aε) + ε

= Q (Aε) + ε.

It follows that

ρ(P,Q) ≤ inf
µ∈M(P,Q)

inf
ε>0

(
µ({(x, y) ∈ S × S|d(x, y) > ε}) < ε

)
.

Now, the other inequality will be proven. Let δ > 0 and choose a measurable partition (B0, . . . , BN ) of S such

that the B1, . . . , BN have diameters at most δ′ < δ and P (B0) ≤ δ′ (which exist by (1.2.3)). By (1.2.4), there exists

a µ ∈M(P,Q) such that

µ({(x, y)|d(x, y) ≥ δ + ε}) ≤ ε+ δ.

Therefore,

inf
η∈M(P,Q)

inf
r>0

(
η({(x, y)|d(x, y) ≥ r}) ≤ r

)
≤ ε+ δ.

12
The “marginal measures” are de�ned for product measures; these are the measures on BS given by µ1(A) = µ(A × S) and µ2(B) =

µ(S ×B); they will be called “�rst marginal” and “second marginal”, respectively.
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Chapter 1. Weak convergence of probability measures.

Taking the in�mum over ε > 0, it is seen that

ρ(P,Q) + δ ≥ inf
µ∈M(P,Q)

inf
ε>0

(
µ({(x, y) ∈ S × S|d(x, y) > ε}) < ε

)
;

as this is true for every δ > 0, the conclusion follows. �

§1.3. Harvesting the consequences.
Now it is possible to obtain nice results in what follows. Speci�cally, Skorohod’s representation theorem which

allow, in several important cases, changing convergence of elements of PS to convergence of random objects. Also,

it will follow a theorem which allows concluding convergence of image measures of elements of PS (see (1.3.4)).

Theorem ( 1.3.1 ) Assume that (S, d) is a separable metric space. Let (Xn)n∈N be a sequence of random objects
defined on (Ω,F , ν) with values in S and let (Pn)n∈N be the family of their laws. Let X be another random object
on (Ω,F , ν) with values in S and law P. If the sequence of random variables (d(Xn, X))n∈N converges to 0 in
ν-probability13, then lim

n→∞
ρ(Pn, P ) = 0.

Proof: for every n ∈ N, let µn be the law of the random object (Xn, X). The hypothesis implies that, for a given

ε > 0,
lim
n→∞

µn({(x, y) ∈ S × S|d(x, y) > ε}) = 0.

The result then follows immediately from (1.2.5). �

Theorem ( 1.3.2 ) Let (S, d) be a separable metric space. Then, the metric space (PS , ρ) is separable. If (S, d) is
also complete, the space of probabilities has the same property.

Proof: this is a solution of problem 3 of chapter 3 of [9]. Let (xn)n∈N be a dense sequence in S. Consider the

set D of probability measures that assume the form

N∑
i=1

aiεxi
, where N runs over N, the a1, . . . , aN run over the

non-negative rationals, and εx denotes the Dirac measure concentrated at x. The set D is everwhere dense in PS ,
as will be shown below. Let P ∈ PS and ε > 0. Take the measurable partition (B0, . . . , BN ) constructed in (1.2.3)

such that the diameters of B1, . . . , BN are at most

ε

4
and P (B0) <

ε

2
(note that Bi ⊂ B

(
xi;

ε

4

)
, so that xi ∈ B

ε
4
i ).

Choose ai ∈ [0, P (Bi)] ∩Q for i = 1, . . . , N such that

P (Bi) ≤ ai +
ε

2N
.

Given A ∈ BS ,

P (A) =
N∑
i=1

P (A ∩Bi) + P (B0);

note that the relation Bi ∩A 6= ∅ implies the relation xi ∈ B
ε
4
i ⊂ Aε, hence, if P (A∩Bi) is not zero, it is bounded

above by aiεxi (Aε) +
ε

2N
, and therefore

P (A) ≤
N∑
i=1

aiεxi
(Aε) + ε,

13
A sequence of measurable functions (fn) de�ned over a measure space (Ω,F , µ) and with values in the metric space (S, d), converges “in

µ-measure” to the measurable function f : Ω→ S if, for every ε > 0, the following limit holds: lim
n→∞

µ(d(fn, f) > ε) = 0; this is equivalent

to saying that the sequence of random variables (d(fn, f)) converges in µ-measure to 0.
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1.3. Harvesting the consequences.

and this shows that ρ

(
P,

N∑
i=1

aiεxi

)
< ε, proving that D is dense.

To prove that PS is a complete metric space with respect to ρ, it su�ces to consider fundamental sequences
14

(Pn) for which ρ(Pn, Pn+1) < 2−n for n ≥ 2. For each such n, choose measurable partitions

Ä
B

(n)
j

ä
j=0,...,N(n)

such that B
(n)
1 , . . . , B

(n)
N(n) have diameters at most 2−n and P

Ä
B

(n)
0

ä
≤ 2−n. Using the Kolmogorov Extension

Theorem
15

, there exists a probability space (Ω,F , ν) supporting random objects

Ä
Y

(n)
j

ä
j=0,...,N(n)

, for n ≥ 2 and

with values in S, random variables U (n), for n ≥ 2 and with values in [0, 1], a random object X1 with values in S

and with law P1, all of them independent, and c
(n)
j ∈ [0, 1] for j = 0, . . . , N(n) and n ≥ 2 such that

Xn =


Y

(n)
i on the set

¶
Xn−1 ∈ B(n)

i , U (n) ≥ c(n)
i

©
for i = 1, . . . , N(n),

Y
(n)
0 on the set

¶
Xn−1 ∈ B(n)

0

©
∪
N(n)⋃
i=1

¶
Xn−1 ∈ B(n)

i , U (n) < c
(n)
i

©
has law Pn and that

ν(d(Xn−1, Xn) ≥ 2−n+1) ≤ 2−n+1, n ≥ 2.

By the Borel-Cantelli lemma

ν

( ∞∑
n=2

d(Xn−1, Xn) <∞

)
= 1

and, by completeness, lim
n→∞

Xn exists for almost every point with respect to ν. Let X be any random object de�ned

on all Ω and such that X(ω) is equal to be the previous limit when exists. Let P be the law of X. Then, by (1.3.1),

lim
n→∞

ρ(Pn, P ) = 0 and the theorem is proved. �

Theorem ( 1.3.3 ) Suppose that (S, d) is a separable metric space and the sequence (Pn)n∈N converges to P in
PS . Then there exists a probability space (Ω,F , ν) which supports random objectsX,Xn (n ∈ N) with values in S
and whose laws are, respectively, P and Pn (n ∈ N) and such that Xn converges to X for almost every point with
respect to ν; this is known as “Skorohod’s representation theorem”.

Proof: by virtue of (1.2.3), for each k ∈ N, it is possible to de�ne a measurable partition sets

B
(k)
0 , . . . , B

(k)
N(k)

for which the diameters of the sets B
(k)
1 , . . . , B

(k)
N(k) are at most 2−k and with P

Ä
B

(k)
0

ä
≤ 2−k. Without loss of

generality, it can be supposed that εk = min
1≤i≤N(k)

P
Ä
B

(k)
i

ä
> 0. De�ne

k(n) = max{1} ∪
{
k ∈ N

∣∣∣ρ(Pn, P ) <
εk
k

}
.

Apply (1.2.4) with Q = Pn, ε =
εk(n)

k(n)
if k(n) > 1 or ε = ρ(Pn, P ) +

1

n
if k(n) = 1, δ = 2−k(n), and the partition

being B
(k(n))
0 , . . . , B

(k(n))
N(k(n)). Kolmogorov’s Extension Theorem gives a probability space (Ω,F , ν) with random

objects Y
(n)
0 , . . . , Y

(n)
N(k(n)) (with values in S), a random variable U (uniformly distributed in [0, 1]), a random object

14
In any metric space (S, d), a sequence of point (xn)n∈N is “fundamental” if it satis�es the “fundamental condition”: for every ε > 0, there

exists an index n0 such that the relation n ≥ n0 implies the relation d(xn, xn0 ) < ε.
15

See, for example, Ash, Real Analysis and Probability [2].
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Chapter 1. Weak convergence of probability measures.

X (with values in S) whose law is P, all of them independent and c
(n)
1 , . . . , c

(n)
N(k(n)) ∈ [0, 1] such that for every

n ∈ N,

Xn =


Y

(n)
i on the set

¶
X ∈ B(k(n))

i , U ≥ c(n)
i

©
for i = 1, . . . , N(k(n)),

Y
(n)
0 on the set

¶
X ∈ B(k(n))

0

©
∪
N(k(n))⋃
i=1

¶
X ∈ B(k(n))

i , U < c
(n)
i

©
is a random object with law Pn and the following inclusion holds for k(n) > 1ß

d(Xn, X) ≥ 2−k(n) +
εk(n)

k(n)

™
⊂
¶
X ∈ B(k(n))

0

©
∪
ß
U <

1

k(n)

™
.

If Kn = min
m≥n

k(m) > 1, then

ν

Ç ∞⋃
m=n

ß
d(Xm, X) ≥ 2−k(m) +

εk(m)

k(m)

™å
≤

∞∑
k=Kn

ν
Ä
X ∈ B(k)

0

ä
+ ν

Å
U <

1

Kn

ã
≤ 2−Kn+1 +

1

Kn
,

and, since ρ(Pn, P ) → 0, it follows lim
n→∞

Kn = ∞, and it turns out that the limit lim
n→∞

Xn exists for almost every

point with respect to ν. Now take X to be any random object whose values coincide with the previous limit when

that limit exists. Then the sequence Xn converges to X for almost every point with respect to ν and Skorohod’s

Theorem is proved. �
Now the Continuity Theorem for Borel functions is stated and proved.

Theorem ( 1.3.4 ) Let (S, d) and (S′, d′) be two separable metric spaces and suppose that h : S → S′ is a
Borel function16. Let (Pn) be a sequence in PS which converges to P and define Qn = h(Pn) and Q = h(P ) the
corresponding image measures of Pn and P by h. LetCh be the set of points where h is continuous17. If P (Ch) = 1,
then

lim
n→∞

ρ′(Qn, Q) = 0,

where ρ′ is the Prohorov distance on PS′ ; the “Continuity theorem” for Borel functions.

Proof: by (1.3.3), there exists a probability space (Ω,F , ν) and random objects X,Xn (n ∈ N) so that X has law

P and Xn has law Pn, all of them taking values in S, and such that Xn → X for almost every point with respect to

ν. As P (Ch) = ν(X ∈ Ch) = 1, it follows that h(Xn)→ h(X) for almost every point with respect to ν. By (1.3.1),

ρ′(h(Pn), h(P )) = ρ′(Qn, Q) converges to 0 and the thesis follows. �

§1.4. Prohorov’s Theorem.

By now, the metric space (PS , ρ) has been de�ned. It is clear that the most important sets in a metric space are those

which are compact and, in fact, the whole “Theory of Weak Topologies” appears motivated to �nd coarser topologies

with more compact sets. Now, the compact sets in this particular metric space will be characterized.

Definition ( 1.4.1 ) Let (Pλ)λ∈L be a family of elements of PS . Such family is called “tight” if, for every ε > 0,
there exists a compact set K ⊂ S such that

inf
λ∈L

Pλ(K) ≥ 1− ε.

16
A function is “Borel” if it is measurable with respect to the corresponding Borel σ-algebras.

17
It is known that Ch ∈ BS .
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1.4. Prohorov’s Theorem.

The definition of a “tight” set is analogous, explicitly, a set T of probability measures is “tight” if, for every ε > 0,
there exists a compact set K ⊂ S such that

inf{P (K)|P ∈ T} ≥ 1− ε.

When the phrase “assume P1, . . . , Pn is tight” is used, it will mean that the set {P1, . . . , Pn} is tight.

Lemma ( 1.4.2 ) If (S, d) is a separable and complete metric space, then each P ∈ PS is tight.

Proof: let (xn)n∈N be a dense sequence in S and, for each n ∈ N, choose integers Nn ∈ N (as in (1.2.3)) such that

P

(
Nn⋃
k=1

B

Å
xk;

1

n

ã)
≥ 1− ε

2n
.

Let K be the closure of the set

∞⋂
n=1

Nn⋃
k=1

B

Å
xk;

1

n

ã
, so that K is totally bounded

18
. Now, K is closed in the complete

space (S, d), hence (K, d) is complete and therefore (K, d) is compact
19

. Finally,

P (K) ≥ P

( ∞⋂
n=1

Nn⋃
k=1

B

Å
xk;

1

n

ã)
= 1− P

( ∞⋃
n=1

Nn⋂
k=1

{B
Å
xk;

1

n

ã)
≥ 1−

∞∑
n=1

P

(
Nn⋂
k=1

B

Å
xk;

1

n

ã)
≥ 1−

∞∑
n=1

ε

2n
= 1− ε,

which concludes the proof. �

Theorem ( 1.4.3 ) Let (S, d) be a complete and separable metric space and suppose that K ⊂ PS . The following
conditions are equivalent:

(I) K is tight;

(II) for every ε > 0, there exists a compact set K ⊂ S such that

inf
P∈K

P (Kε) ≥ 1− ε;

(III) K is relatively compact20;

this is “Prohorov’s Theorem”.

Proof: note that condition (I) implies condition (II) trivially. So, the proof consist in showing that (II) implies (III)
and (III) implies (I).

(II) implies (III) By Theorem (1.3.2), the metric space (PS , ρS) is a complete metric space, hence, K is also complete;

then, to conclude that (III) holds, it su�ces to show thatK is totally bounded. Let δ > 0 and 0 < ε <
δ

2
.Choose

a compact set K ⊂ S that satis�es hypothesis (II). As K is compact, there are �nite points x1, . . . , xN ∈ K
such that

Kε ⊂
N⋃
i=1

B (xi; 2ε) ,

18
In any metric space (S, d) a set A is “totally bounded” if for every ε > 0 there exists a �nite set F ⊂ S such that A ⊂ F ε. To see that K is

totally bounded, take ε > 0 and choose an n ∈ N so that

1

n
< ε, then take F to be the set {x1, . . . , xNn}.

19
See (3.16.1) of [6].

20
In any metric space (S, d), a set A is called “relatively compact” if A is compact.
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Chapter 1. Weak convergence of probability measures.

put Bi = B (xi; 2ε) . Let x0 ∈ S and m ≥ N

ε
be an integer number. De�ne N as the set of probability

measures that can be written in the form

P =
N∑
i=0

ki
m
εxi ,

where 0 ≤ ki ≤ m is an integer number and

N∑
i=0

ki = m. Given an element Q ∈ K, put ki to be the integer

part of mQ(Ei) for i = 1, . . . , N, where the sets Ei are de�ned via Ei = Bi −
i−1⋃
j=1

Bj and, for the ki to add

up to m, set k0 = m−
N∑
i=1

ki. Let P be the element generated by these constants, that is,

P =
N∑
i=0

ki
m
εxi
.

Then,

Q(F ) = Q

(
F ∩

N⋃
i=1

Ei

)
+Q

(
F ∩ {

[
N⋃
i=1

Ei

])
≤ Q

Ñ
N⋃

F∩Ei 6=∅
Ei

é
+Q

(
{Kε

)
,

the last inequality is due to Kε ⊂
N⋃
i=1

Ei. Observe that

Q(Ei) ≤
ki + 1

m
,

so

Q(F ) ≤
∑

F∩Ei 6=∅

ki
m

+
N

m
+ ε.

Now, m was selected in such a way that

N

m
≤ ε; using this inequality in the previous one,

Q(F ) ≤ P
(
F 2ε

)
+ 2ε.

This has shown that Q ∈ N2ε ⊂ Nδ
as 2ε ≤ δ. Therefore, condition (III) holds.

(III) implies (I) Let ε > 0. As the set K is relatively compact, it is totally bounded, so there exist �nite sets Nn ⊂ K

(n ∈ N) such that K is a subset of the augmentation by

ε

2n+1
of Nn. By (1.4.2), for each n, there can be found

a compact set
21 Kn ⊂ S such that P (Kn) ≥ 1− ε

2n+1
for every P ∈ Nn (n ∈ N). Let Q ∈ K. Then, for each

n ∈ N, there is a Pn ∈ Nn such that ρ(Qn, Pn) ≤ ε

2n+1
or, as the de�nition implies,

Q
Ä
K

ε

2n+1

ä
≥ Pn(Kn)− ε

2n+1
≥ 1− ε

2n
.

21
The lemma proved that one probability measure is tight, but an easy inductive argument can show that this actually holds for sets of �nite

probability measures.
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1.4. Prohorov’s Theorem.

De�ne K to be the closure of the set

∞⋂
n=1

K
ε

2n+1
n ; such a K is compact as it is closed and totally bounded.

Finally,

Q(K) ≥ 1−
∞∑
n=1

P
(
{K

ε

2n+1
n

)
≥ 1−

∞∑
n=1

ε

2n
= 1− ε,

and this demonstrates that, since Q was any element of K, the set K is tight. �

The following Scholium is here to show the powerfullness of the previous theorems. It can be skipped without

interfering with the rest of the thesis.

Scholium. The previous theorem can be greatly generalized since it will not assume separability of completeness of S. In fact, if (S, d) is

any metric space and K ⊂ PS is tight, then K is relatively compact. The proof goes as follows. For each m ∈ N, the tightness of K implies the

existence of a compact set Km ⊂ S such that

inf
P∈K

P (Km) ≥ 1−
1

m
,

and it can be supposed that Km ⊂ Km+1 (m ∈ N). Given P ∈ K and m ∈ N, de�ne P (m) ∈ PS by

P (m)(A) =
P (A ∩Km)

P (Km)
;

note that it is possible to restrict P (m)
to BKm and then assume that P (m) ∈ PKm .AsKm is complete and separable (since all compact metric

spaces are separable), the set

K(m) =
{
P (m)

∣∣P ∈ K
}

is relatively compact in PKm (m ∈ N). Also, for P ∈ K, A ∈ BS and m, p, q ∈ N, the following �rst inequality is obtained:

P (A) ≤ P (A ∩Km) +
1

m
≤ P (m)(A) +

1

m
,

and a second inequality also holds:

P (q)(A) =
P (A ∩Kq)
P (Kq)

≤
P (A ∩Kp) +

1

p

P (Kp)
≤ P (p)(A) +

1

p− 1
≤ P (p)(A) +

2

p
,

for q ≥ p ≥ 2. In the same way (and with the same notation), a third inequality is obtained:

P (A) ≥ P (Km)P (m)P (A) ≥
(

1−
1

m

)
P (m)(A)

and a fourth one also arises:

P (q)(A) ≥
P (Kp)P (p)(A)

P (Kq)
≥
(

1−
1

p

)
P (p)(A),

for q ≥ p. The �rst inequality above shows that

ρ
(
P, P (m)

)
≤

1

m
no matter what the P ∈ K and m ∈ N are. Now, let (An)n∈N be a sequence of disjoint Borels of S. The second and fourth inequalities

show that (for P ∈ K and q ≥ p ≥ 2)

∞∑
n=1

∣∣P (q)(An)− P (p)(An)
∣∣ ≤ ∞∑

n=1

{∣∣∣P (q)(An)−
(

1−
1

p

)
P (p)(An)

∣∣∣+
1

p
P (p)(An)

}
,

which follows from the triangle inequality; the term on the rigth is equal to

∞∑
n=1

[
P (q)(An)−

(
1−

1

p

)
P (p)(An) +

1

p
P (p)(An)

]
, which is

deduced immediately from the fourth inequality; some algebra reduces this to

∞∑
n=1

[
P (q)(An)− P (p)(An) +

2

p
P (p)(An)

]
; reordering terms

gives

∞∑
n=1

∣∣P (q)(An)− P (p)(An)
∣∣ =

ï
P (q)

Å
∞⋃
n=1

(An)

ã
− P (p)

Å
∞⋃
n=1

An

ãò
+

2

p
P (p)

Å
∞⋃
n=1

An

ã
. Note now that the term on the rigth

above is at most

4

p
, as the second inequality shows at once. Now let (Pn)n∈N be a sequence in K. By the relative compactness of K, there exists

a subsequence

(
Pϕ(n)

)
n∈N

of (Pn) and Q(m) ∈ PKm (m ∈ N) such that

lim
n→∞

ρ
Ä
P

(m)

ϕ(n)
, Q(m)

ä
= 0

15



Chapter 1. Weak convergence of probability measures.

for every m ∈ N; in fact, for every m ∈ N, the sequence

Ä
P

(m)
n

ä
n∈N

belongs to the compact metric space PKm (this follows at once

from Prohorov’s theorem (1.4.3)) and, consequently, as the product of the compact and metric spaces

∞∏
m=1

PKm is metric and compact
22

, hence

there exists a subsequence which converges. This means that there exists a

(
Pϕ(n)

)
such that, for every m ∈ N, the coordinate sequenceÄ

P
(m)

ϕ(n)

ä
n∈N

converges in PKm to some element Q(m), as stated earlier. It follows that

Q(m)(F ) = lim
ε↓0

Å
lim sup
n→∞

P
(m)

ϕ(n)
(F ε)

ã
, ∀F ∈ CS ;

for if F ∈ CS and ε > 0, there exists some n0 ∈ N such that the relation n ≥ n0 implies that ρ
Ä
P

(m)

ϕ(n)
, Q(m)

ä
≤ ε and, hence,

Q(m)(F ) ≤ P (m)

ϕ(n)
(F ε) + ε,

taking lim supn→∞ and then letting ε ↓ 0, there follows the inequality ≤; now, to prove the reverse inequality, the symmetry of ρ shall be

used, for then, there is an n1 ∈ N for which if n ≥ n1, then Pϕ(n) (F ε) ≤ Q(m)
(
F ε

ε)
+ ε ≤ Q(m)

(
F 2ε
)

+ ε, and taking lim sup
n→∞

it

is seen that lim sup
n→∞

P
(m)

ϕ(n)
(F ε) ≤ Q(m)

(
F 2ε
)

+ ε, if ε ↓ 0, the right hand side converges to Q(m)(F ) and this proves the inequality ≥ .

Previously, it was proven that

P (q)(A) ≤ P (p)(A) +
2

p
and P (q)(A) ≥

(
1−

1

p

)
P (p)(A),

for any elements P ∈ K and integers q ≥ p ≥ 2. Using these inequalities and the previous formula for Q(m)(F ), it is then clear that

Q(q)(F ) ≤ Q(p)(F ) +
2

p
and Q(q)(F ) ≥

(
1−

1

p

)
Q(p)(F ),

for any F ∈ CS and integers q ≥ p ≥ 2. Now, since Q is a regular measure
23

and, hence, the two last inequalities are valid for all F ∈ BS . As

proved earlier for P (q)
and P (p), it follows that

∞∑
n=1

∣∣Q(q)(An)−Q(p)(An)
∣∣ ≤ 4

p

for integers q ≥ p ≥ 2. Hence, for A ∈ BS ,

Q(A) = lim
m→∞

Q(m)(A)

exists for every A ∈ BS . Up to now, there have been proved the existence of a subsequence Pϕ(n) for which P
(m)

ϕ(n)
converges to Q(m)

and

a function Q, de�ned on BS , such that Q(A) is the limit of Q(m)(A). It seem natural to use an argument of a “

ε

3
-triangle inequality” type to

conclude that Pϕ(n) converges to Q. But �rst, is must be shown that Q belongs to PS . It is clear that Q is a non-negative function such that

Q(S) = 1, so, the complete additivity, also known as σ-additivity, needs to be proved to conclude that Q ∈ PS . So, assume that (An)n∈N is a

sequence of pairwise disjoint Borel sets and let A be their union. Then,

Q(A)−
N∑
n=1

Q(An) = lim
m→∞

[
Q(m)(A)−

N∑
n=1

Q(m)(An)

]
= lim
m→∞

∞∑
n=N+1

Q(m)(An) ≥ 0.

Now, as ∣∣∣∣∣ ∞∑
n=N+1

[
Q(q)(An)−Q(p)(An)

]∣∣∣∣∣ ≤ ∞∑
n=N+1

∣∣Q(q)(An)−Q(p)(An)
∣∣ ≤ 4

p
,

22
For any countable family of metric spaces (Sn, dn)n∈N, the product space S =

∞∏
n=1

Sn is metrizable (via the metric d(x, y) =

∞∑
n=1

2−n min{dn(xn, yn), 1}) and if each of the factors is separable (resp. totally bounded; resp. complete; resp. a sequence in S is funda-

mental; resp. a sequence in S is convergent), the product space is separable (resp. totally bounded; resp. complete; resp. the coordinate sequences

in the corresponding Sn are fundamental; resp. the coordinate sequences in the corresponding Sn are convergent). Similarly, Tychono�’s

theorem (see theorem 1.4 (4), chap. XI, of [8] shows that the Cartesian product of any family of compact spaces is also compact.

23
A “regular measure” is a measure µ de�ned on a topological space such that µ(A) = sup{µ(K)|K ⊂ A is compact} = inf{µ(O)|A ⊂

O is open}. As probability measures are tight, they are also regular and, in fact, for a probability measure P it follows that P (A) =
sup{P (C)|C ⊂ A is closed} since compact sets are closed.
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1.5. Weak Convergence.

the following inequality holds

∞∑
n=N+1

Q(m)(An) ≤
4

p
+

∞∑
n=N+1

Q(p)(An),

for all m ≥ p. Thus,

0 ≤ Q(A)−
N∑
n=1

Q(An) ≤
4

p
+

∞∑
n=N+1

Q(p)(An).

Letting N → ∞, the second term on the rigth hand side disappears (since Q(p)
is a probability in S) and letting p → ∞, it follows that

Q(A) =

∞∑
n=1

Q(An), proving the complete additivity of Q. Finally,

ρ
(
Pϕ(n), Q

)
≤ ρ
Ä
Pϕ(n), P

(m)

ϕ(n)

ä
+ ρ
Ä
P

(m)

ϕ(n)
, Q(m)

ä
+ ρ
(
Q(m), Q

)
.

Letting n→∞, it follows that

0 ≤ lim inf
n→∞

ρ
(
Pϕ(n), Q

)
≤ lim sup

n→∞
ρ
(
Pϕ(n), Q

)
≤

2

m
.

Letting m→ 0, it can be seen that lim
n→∞

ρ
(
Pϕ(n), Q

)
= 0, therefore K is relatively compact. �

§1.5. Weak Convergence.
In the begining of this chapter some concepts for the study of weak convergence were mentioned. Now, those terms

will be explained in a more detailed way.

‡ Motivation for the de�nition of weak convergence.
First of all, assume that (Eλ, τλ)λ∈L is a family of topological spaces and let E be any non empty set. If for each

λ ∈ L, a function fλ : E → Eλ is given, a natural question arises: which topologies make the family (fλ)λ∈L
continuous? That is, what condition should a topology τ on E satisfy in order to make each of the functions fλ
continuous? Several important points will now be made.

1º Recall that a function f : (E, τ) → (E′, τ ′) is continuous is equivalent to saying that for every open set O′ in

E′, the set f−1(O′) (de�ned as the subset of points x ∈ E such that f(x) ∈ O′) is open in E.

2º Since f−1

(⋃
α∈I

O′α

)
=
⋃
α∈I

f−1(O′α) and f−1

(
n⋂
i=1

O′i

)
=

n⋃
i=1

f−1(O′i), the set f−1(τ ′) of subsets of E that

assume the form f−1(O′), where O′ run over τ ′, is a topology on E.

3º From the previous two points, in order for a function f : (E, τ)→ (E′, τ ′) to be continuous, it is necessary and

su�cient that the topology f−1(τ ′) be contained in the topology τ ; in other words, τ is “�ner” than f−1(τ).

4º This proves that there exists “coarsest” topology that makes f continuous, namely f−1(τ ′).

5º The more elements a topology has, the fewer the compact sets there are; and, as an extreme case, if the “discrete”

topology (that is, the topology where all subset are open) is given, only the �nite sets are compact. Since

compactness plays the same role in topology as �niteness plays in set theory, this is a bad thing for the topology
to do. Therefore, if a topology makes f continuous and has fewer open sets, it is a better topology.

6º Returning to the case of the (fλ)λ∈L above, the same argument shows that the best topology for which all the

functions fλ are continuous is the coarsest topology that contains all the topologies f−1
λ (τλ). If such a topology

exists, it will be called “weak topology induced by the family (fλ)”.

17



Chapter 1. Weak convergence of probability measures.

7º For a given set G ⊂ P (E) , there is always a coarsest topology τG that contains G and, in fact,

⋂
τ

τ is such

topology where τ runs over the set of all topologies of E that contain all the sets of G as elements (there is

always at least one such τ, namely, τ = P (E)). Hence, weak topologies induced by families of functions

always exist.

8º It can be shown easily that if S =
⋃
λ∈L

f−1
λ (τλ) (the letter S -which is an ‘S’- stands for “subbasic”), then the

set B of subsets of E that take the form

⋂
λ∈F

f−1
λ (O′λ), where F ⊂ L is �nite and, for each O′λ is open in Eλ,

(the letter B -which is a ‘B’- stands for “basic”) has the property each element of the weak topology induced

by the family (fλ)λ∈L is of the form

⋃
α∈I

Bα, where (Bα)α∈I is some family of elements of B.

Now, more speci�cations will be given. Take E to be the Cartesian product

∏
λ∈L

Eλ and fλ to be the “projection

function” prλ given by prλ(xα)α∈L = xλ. The weak topology on E de�ned by the family of projection is the

“product topology” and, by construction, all the projections are continuous. But more, all these projections are open
functions24

.

Note that with these de�nitions, a sequence

(
x(n) =

Ä
x

(n)
λ

ä
λ∈L

)
n∈N

will converge to the point x = (xλ)λ∈L

if and only if each coordinate sequence

Ä
x

(n)
λ

ä
n∈N

converges to xλ (for every λ ∈ L)
25

. For this reason, the product

topology is also called “topology of simple convergence” or “topology of pointwise convergence”.

Now, observe that if all the Eλ are vector spaces, then so is E (the vector space structure is de�ned coordinate-

wise) and the functions prλ must be linear by the de�nition of the vector space operations on E. Therefore, if the

spaces Eλ are linear, the projections are continuous, linear and open functions.

The indexing set L is also not arbitrary: it will be a topological linear space (and, in this case, a normed space)

and all the Eλ will be a vector space V. Hence, E = V L is the vector space of all functions L → V, so it contains

the subspace L (L;V ) of all continuous linear functions L → V. If both L and V have norms, L (L;V ) will alway

be considered with the “natural norm” induced by those of L and V ; explicitly, if µ ∈ L (L;V ) , then

‖µ‖ = sup
f∈L:‖f‖L≤1

‖µ(f)‖V , ∀µ ∈ L (L;V )

de�nes a norm (as can be veri�ed by direct computation). Taking into consideration that for f = 0, ‖µ(f)‖V = 0 =

‖µ‖ ‖f‖L , and if f 6= 0, then f̂ =
f

‖f‖L
satis�es

∥∥∥f̂∥∥∥
L
≤ 1, thus, ‖µ(f)‖V = ‖f‖L

∥∥∥µ Äf̂ä∥∥∥ ≤ ‖µ‖ ‖f‖L . So, for

every f ∈ L,
‖µ(f)‖ ≤ ‖µ‖ ‖f‖L .

It must be stated that the projections, for which in this case will always be called “evaluation maps”, are continuous:

for if f ∈ L and ef denotes the evaluation map at f, then

‖ef (µ+ ν)− ef (µ)‖V = ‖(µ+ ν)(f)− µ(f)‖V = ‖ν(f)‖V ≤ ‖ν‖ ‖f‖L ,
24

This means that they take open sets to open sets; indeed, for if a set O ⊂ S is open and xλ ∈ prλ(O), take y = (yα)α∈L a point in O,

where yλ = xλ; there is a basic B = pr−1
λ1

(
O′λ1

)
∩ . . . ∩ pr−1

λk

(
O′λk

)
(the λi are di�erent and O′λi

is open in Eλi
) such that y ∈ B ⊂ O,

and hence xλ ∈ prλ(B) ⊂ prλ(O); note that prλ(B) = S if λ is di�erent from all of the λi and prλ(B) = Oλi
for λ = λi, in any case, xλ

is an interior point of prλ(O), which means that O is open.

25
To prove this, observe �rst that if x(n) converges to x, then by continuity, prλ

(
x(n)
)

will converge to prλ(x); conversely, if all coordinate

sequences prλ
(
x(n)
)

converge to respective coordinate prλ(x) and O is an open neighbourhood of x, there is a basic neighbourhood B =

pr−1
λ1

(
O′λ1

)
∩ . . .∩ pr−1

λk

(
O′λk

)
(the λi are di�erent and O′λi

is open in Sλi
) of x contained in O; as the indices λ1, . . . , λk are �nite, there

is an index n0 ∈ N such that if n ≥ n0 then, for i = 1, . . . , k, s
(n)
λi
∈ O′λi

, which implies that x(n) belong toO for all n ≥ n0, and this proves

that x(n) converges to x.
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therefore, if ‖ν‖ → 0, then ef (µ + ν) → ef (µ), which proves the continuity of the projection with respect to

the topology generated by the norm in L (L;V ) . So, this norm generates a �ner topology than the weak topology

generated by the projection, and, as mentioned earlier, this is not the best behaviour possible.

The case of interest is when L is the normed vector space of bounded
26 continuous functions S → R (recall that

(S, d) is a metric space), which will be denoted by C∞R (S) . The norm on C∞R (S) is given by the “supremum norm”

(usually called “sup-norm”) de�ned to be

‖f‖ = sup
x∈S
|f(x)|, ∀f ∈ C∞R (S) .

The space V is taken to be the set of real numbersR. So, from now on, instead of takingE = RC∞R (S), the setE shall

be taken to be L (C∞R (S) ;R) . In general, for a given linear normed space L, the space L (L;R) is called the “dual

space” of L and will be denoted by L′; the elements in L′ are called “linear forms” or “linear functionals” (however,

the last term is prefered when L is a “function space”). In L′ the topology will not be the topology generated by the

natural norm, it will be the topology of simple convergence and this topology is called the weak topology.

According to Daniell’s theorem, if a linear form µ ∈ C∞R (S)
′

satis�es that:

1. for every f ∈ C∞R (S) which is non-negative (f(x) ≥ 0 for every x ∈ S), the linear form µ assumes a positive

value, that is µ(f) ≥ 0 (this is will be expressed as “the linear form µ is positive”);

2. for every sequence (fn) de�ned on C∞R (S) which converges monotonically to the constant function 0 ∈
C∞R (S) , the sequence of numbers (µ(fn)) converges to 0 ∈ R;

then, such linear form µ can be extended to a space L 1
R (S, µ) (the extension will also be denoted by µ) in a unique

way such that the space L 1
R (S, µ) contains the set of functions 1A, where A runs through the Borel sets of S, and

the functionA 7→ µ(1A) is a positive measure on BS (the value µ(1A) will, of course, be denoted by µ(A)). A linear

form µ ∈ C∞R (S)
′

that have these two hypothesis will be called a “positive integral” or a “measure” (here, the term

measure is restricted to “Borel positive measures” while µ(A) = µ(1A) might be de�ned for sets A /∈ BS). The

subset of linear combinations of elements of C∞R (S)
′

that are positive integrals is a subspace and will be denoted

by M+ (S) .
In this last case, the weak topology on M+ (S) is called the vague topology and this topology is induced by the

evalation maps: saying that “a sequence (µn)n∈N will converge vaguely to µ” is equivalent to saying that for each

f ∈ C∞R (S) , the sequence of real numbers µn(f) converges to µ(f). Finally, it is necessary to observe that the

space PS can be “naturally identi�ed” with the subset P̃S ⊂ M+ (S) of positive integrals µ such that µ(S) = 1 in

the following way:

1. given P ∈ PS , use Daniell’s theorem to obtain an extension P ∈PS ;

2. given P ∈ P̃S , take P to be the positive Borel measure A 7→ P (A).

‡ De�nition and portmanteau theorem.
Definition ( 1.5.1 ) Let (S, d) be an arbitrary metric space and (Pn)n∈N be a sequence in PS . It shall be said that
the sequence (Pn) “converges weakly” to the probability measure P ∈ PS if

lim
n→∞

∫
S

fdPn =

∫
S

fdP, ∀f ∈ C∞R (S) .

If random objects X : (Ω,F )→ S, Xn : (Ωn,Fn)→ S (n ∈ N) are given, the expresion “the sequence (Xn)n∈N
converges in law to X” if LXn

converges weakly to LX ; the law of a random object Y will also be denoted by µY ,
where, of course, Y is defined on the measure space (Ω,F , µ). This is equivalent to saying that

lim
n→∞

E (f(Xn)) = E (f(X)) , ∀f ∈ C∞R (S) ,

26
A function f with values in a normed space in “bounded” if there is some M > 0 such that ‖f(x)‖ ≤M for every x ∈ S.
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Chapter 1. Weak convergence of probability measures.

where the expectation is taken in the corresponding space. Convergence in measure will be denoted Pn
w−→ P and

convergence in distribution will be denoted by LXn

w−→ L, µXn

w−→ µX or by Xn
D−→ X.

Remark ( 1.5.2 ) It must be observed that every weak limit is unique in the sense that if Pn
w−→ P and Pn

w−→ Q
then P (A) = Q(A) for every A ∈ BS .

Indeed, the weak limit implies at once

∫
fdP =

∫
fdQ for every bounded continuous function f : S → R.

But if A ∈ OS , then 1A is the simply and incresing limit of a sequence of functions 0 ≤ fn ≤ 1 and such that fn ∈
C∞R (S) (see Theorem (A6.6) of Ash: [2]). Therefore, the monotone convergence theorem shows that P (A) = Q(A)
for every A ∈ OS . As OS is a set of generators of BS , the two measures P and Q coincide on BS .

The following theorem will give several di�erent characterizations of weak convergence and, of course, some

terminology facilitates its reading.

1. The “frontier” of a set A ⊂ S is the closed (hence, Borel) set ∂A = A ∩ {SA; for a probability P ∈ PS , a set

A is a “continuity set with respect to P ” if P (∂A) = 0; for short, the phrase “P -continuity set” will often be

used.

2. As in the previous discussion, given any measure µ and any function f ∈ L 1
R (S, µ) , the number

∫
fdµ will

be denoted by µ(f) or even by µf.

Theorem ( 1.5.3 ) Let (S, d) be any metric space and assume that P is an element of PS and (Pn) is a sequence in
PS .Of the following conditions, the first implies all the other and the second to the sixth are equivalent; additionally,
if S is separable, all conditions are equivalent.

1. lim
n→∞

Pn = P with respect to ρ;

2. Pn
w−→ P ;

3. for every f ∈ C∞R (S) which is uniformly continuous, lim
n→∞

Pn(f) = P (f);

4. for every F ∈ CS , a closed set of S, lim sup
n→∞

Pn(F ) ≤ P (F );

5. for every G ∈ OS , an open set of S, lim inf
n→∞

Pn(G) ≥ P (G);

6. for every A ∈ BS , a P -continuity set, lim
n→∞

Pn(A) = P (A).

Proof: note that (2.⇒ 3.), (4.⇔ 5.) and (4. & 5.⇒ 6.) follows immediately from the de�nitions
27

. Therefore, it

su�ces to show that (1.⇒ 2.), (3.⇒ 4.), (6.⇒ 2.) and, with the extra hypothesis that S is separable, (5.⇒ 1.).
Each case will be done separately.

(1.⇒ 2.) Given n ∈ N, let εn = ρ(Pn, P ) +
1

n
; take f ∈ C∞R (S) non-negative and note that the function

t 7→ Pn(f ≥ t), t ∈ R
27

A sketch of the proof goes as follows: 2.⇒ 3. is true since all f from case 3. also belong to those of case 2.; the condition 4.⇔ 5. follows

since a set is closed if and only if its complement is open, then the formula P (F ) = 1− P (G), if F and G are complementary, is used; if both

4. and 5. hold, note that it is true P (A) = P
(
Å
)

= P
(
A
)

as A is a P -continuity set, and hence, the two cases 4. and 5. are used to conclude

that

P (A) = P
(
Å
)
≤ lim inf

n→∞
Pn
(
Å
)
≤ lim sup

n→∞
Pn
(
A
)
≤ P

(
A
)

= P (A).
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1.5. Weak Convergence.

is non-incresing and with support
28

in [0,∞); hence, such function is Borel. Now, use the Lebesgue-Fubini

theorem to note that∫
[0,∞)

Pn(f ≥ t)dt =

∫
[0,∞)

∫
{f≥t}

dPndt =

∫
{f≥0}

∫
[0,f(ω))

dtdPn(ω) =

∫
{f≥0}

f(ω)dPn(ω) = Pn(f)

since f ≥ 0 at every point of S. The �rst expresion for Pn(f) gives,

∫
[0,∞)

Pn(f ≥ t)dt =

‖f‖∫
0

Pn(f ≥ t)dt ≤
‖f‖∫
0

P ({f ≥ t}εn) dt+ εn ‖f‖ .

Let n→∞; use that P ({f ≥ t}εn)→ P (f ≥ t) (by the monotonicity of P ) and the closureness of {f ≥ t}
(recall that f is continuous) to obtain

lim sup
n→∞

∫
S

fdPn ≤
∫
S

fdP.

This last inequality is true for every f ∈ C∞R+
(S) ; so, given f ∈ C∞R (S) , the functions ‖f‖+f, ‖f‖−f ≥ 0

and, hence,

lim sup
n→∞

∫
S

(‖f‖+ f)dPn ≤
∫
S

(‖f‖+ f)dP

and

lim sup
n→∞

∫
S

(‖f‖ − f)dPn ≤
∫
S

(‖f‖ − f)dP.

Observe now that ∫
S

(c+ g)dPn = c+ Pn(g),

for every constant c ∈ R, and, in particular for c = ‖f‖ ; this observation gives

‖f‖+ lim sup
n→∞

∫
S

fdPn ≤ ‖f‖+

∫
S

dP

and

‖f‖ − lim inf
n→∞

∫
S

fdPn ≤ ‖f‖ −
∫
S

fdP.

Therefore, Pn
w−→ P as was to be shown.

(3.⇒ 4.) Given any closed set F ∈ CS and any ε > 0, the function

fε(x) = max

Å
1− d(x, F )

ε
, 0

ã
is uniformly continuous: indeed, if ϕ and ψ are uniformly continuous, the same is true for max(ϕ,ψ) and for

min(ϕ,ψ) and, hence, it su�ces to show that x 7→ 1−d(x, F )

ε
is uniformly continuous but this is obvious since

28
The “support” of a function is the complement of the biggest open set where the function is identically zero; that is, the support is the

complement of the set of x ∈ S such that there is a ball centred at x and for which f restricted to such ball is identically zero.
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Chapter 1. Weak convergence of probability measures.

the funtion x 7→ d(x, F ) is uniformly continuous
29

. The function fε is uniformly continuous and 0 ≤ fε ≤ 1,
so the hypothesis allows concluding that

lim
n→∞

∫
S

fεdPn =

∫
S

fεdP.

Note that if x ∈ F, then fε(x) = 1 so 1F ≤ fε and, hence

lim sup
n→∞

Pn(F ) ≤ lim
n→∞

∫
S

fεdPn =

∫
S

fεdP.

If ε ↓ 0, then fε(x) ↓ 1F as F is closed; Lebesgue’s convergence theorem then yields

lim sup
n→∞

Pn(F ) ≤ P (F ).

(6.⇒ 2.) Let f ∈ C∞R+
(S) (so, f is non-negative). Then ∂{f ≥ t} ⊂ {f = t}, and therefore the set {f ≥ t} is a

P -continuity for every t, with the exception, perhaps, of a countable set. Therefore,

lim
n→∞

∫
S

fdPn = lim
n→∞

‖f‖∫
0

Pn(f ≥ t)dt =

‖f‖∫
0

P (f ≥ t)dt =

∫
S

fdP.

Now, for f ∈ C∞R (S) , not necessarily non-negative, write f = f+ − f−, where f+ =
1

2
(f + |f |) and

f− =
1

2
(−f + |f |) belong to C∞R+

(S) . The previous case shows that

lim
n→∞

Pn(f) = lim
n→∞

(
Pn(f+)− Pn(f−)

)
= P (f+)− P (f−) = P (f),

which is 2.

(5.⇒ 1.) For this implication, we are to assume that S is separable. As in the proof of (1.2.3), for given ε > 0 there

exists a measurable partition (En) of Borels of S such that the diameter of each of them is <
ε

2
. Let N be the

minimum integer such that P

(
N⋃
i=1

Ei

)
> 1− ε

2
and let G be the �nite set of subsets of S of the form

(⋃
i∈I

Ei

) ε
2

, I ⊂ {1, . . . , N}.

Note that all the sets inG are open and, as there are only �nitely many of them, the assumption allows obtaining

an integer number n0 ∈ N such that

P (G) ≤ Pn(G) +
ε

2
for every G ∈ G and every n ≥ n0. Now, assume that F ∈ CS and let F0 be the union of the sets Ei such that

Ei ∩ F 6= ∅ for i = 1, . . . , N. It is then clear that F
ε
2 ∈ G and

P (F ) ≤ P (F0) +
ε

2
≤ Pn

Ä
F

ε
2

0

ä
+ ε ≤ Pn (F ε0 ) + ε,

no matter what n ≥ n0 is. This last statement is exactly that lim
n→∞

Pn = P with respect to ρ. �

29
To see this uniform continuity, it su�ces to show that |d(x, F ) − d(y, F )| ≤ d(x, y) for every pair x, y ∈ S; for any such pair, note that

d(x, F ) ≤ d(x, z) ≤ d(x, y)+d(y, z) for any z ∈ F.Now, in the last term take the in�mum over z ∈ F to obtain d(x, F )−d(y, F ) ≤ d(x, y);
similarly, d(y, F )− d(x, F ) ≤ d(y, x)(= d(x, y)) and the conclusion follows.

22



Chapter 2

zWeak convergence in measure.

For the rest of this thesis, let (S, d) be a metric space and let (PS , ρ) be the Prohorov space associated to it (see

(1.1.1)).

The objective of this thesis is to propose a de�nition of “weak convergence in measure” in the sense of (1.5.1) but

taking into account that now the measures Pn are random, so, some type of random convergence must be employed,

this will be done in this chapter. Of course, such a convergence will be the one described in the Introduction. The

author must clarify that the su�ciency of Prohorov’s theorem in measure does not hold.

§2.1. Basic de�nitions and properties.
Recall the notation mentioned at the begin of this thesis. The spaces:

KR (S;K) , BR (S) , CR (S) and L p
R (S, µ)

are normed and complete
1
; the following inclusions hold

KR (S;K) ⊂ C 0
R (S) ⊂ C∞R (S) ⊂ CR (S) ⊂ BR (S)

and

M∞
R (S) ⊂MR (S) , M∞

R (S) ⊂ L∞R (S,R) ;

if, aditionally, µ is �nite,

L q
R (S,R) ⊂ L p

R (S,R)

for any 1 ≤ p ≤ q ≤ ∞. In everywhere that preceded, the symbol R might be replaced by C if the functions takes

values in C or, more generally, by F, where F is any subset of an arbitrary normed vector space2
or a subset of the

extended real line R = [−∞,+∞].
This is a �rst result that seems to be very useful hereinafter since it will answer questions about the mesurability

of the functions to be considered.

Theorem ( 2.1.1 ) For every f ∈ C∞R (S) , define the “evaluation function” ef : PS → R “associated with” or
“based at” f to be the function ef given by

ef (P ) = Pf =

∫
S

fdP.

Then,
1
In fact, the space L p

R
(S, µ) is not a normed space, but it is always identi�ed with one via the equivalence relation: “f ∼ g if and only if

µ(|f − g| > 0) = 0”; the space obtained with this relation is a quotien space normed complete vector space, denoted by Lp
R

(S, µ)
2
A function f : S → V, where V is a normed vector space, is p-integrable with respect to µ if f is measurable and µ(‖f‖p) is �nite.
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Chapter 2. Weak convergence in measure.

1. every evaluation map based at some f ∈ C∞R (S) is continuous;

2. for every f ∈M∞
R (S) , the evaluation function associated with f is measurable;

3. if ω → Pω defines a function P : (Ω,F ) → (PS ,BPS
) , then, for every f ∈ M∞

R (S) , the function
Pf : Ω→ R, given by

(Pf)(ω) = Pωf =

∫
S

f(s)Pω(ds),

is a random variable.

Proof: the proof is divided into several steps.

(a) As PS is a metric space, it su�ces to show that if Pn converges to P, then ef (Pn) converges to ef (P ). But if

Pn converges to P, then Pn
w−→ P (see (1.5.3)) and then ef (Pn) = Pnf converges to Pf = ef (P ) by de�nition

of weak convergence. So, ef is continuous.

(b) Now, the following claim will be proved: if fn ∈ M∞
R (S), for n ∈ N, and the fn converge simply to f and

are uniformly bounded, then efn converges simply to ef . Indeed, let P ∈ PS and note that, by the uniform

boundedness of the fn, the bounded convergence theorem applies th efn(P ) = P (fn). The claim follows.

(c) The following result is Theorem (A6.6) of Real Analysis and Probability by Ash [2]: if G ⊂ S is open, then

1G is the limit of an increasing sequence of continuous functions (fn)n∈N bounded by 1. Hence, the previous

claim shows that every evaluation map associated with the indicator of a open set is measurable.

(d) Let H the set of functions in M∞
R (S) such that the evaluation maps associated are measurable. Clearly, H is

a vector space since the following is inmediate ef + aeg = ef+ag. By the previous steps, e1G
∈H for all the

open sets G and H is closed with respect to increasing limits of uniformly bounded sequences of functions.

Therefore, the Theorem of Dynkin classes
3

shows that 1G ∈H for all measurable sets G ⊂ S.

(e) If f ∈ M∞
R (S) is positive, then ef is measurable. Such a function is the pointwise limit of an increasing

sequence of simple functions. The previous steps prove the claim.

(f) All f ∈ M∞
R (S) are such that ef is measurable. For such an f, it can be written f = f+ − f− and f+, f−

are positive and measurable, the claim follows from the previous step.

(g) Finally, if P is a random object as in the hypothesis, then the function Pf is the composition of the two

measurable maps ef and P and, therefore, is a random variable (in fact, if P is continuous, so is Pf ).

This concludes the proof. �

Definition ( 2.1.2 ) Let (Ω,F ,P) be a probability space and (S, d) be a metric space and, as in the previous
chapter, let (PS , ρ) the space of probability measures on BS . Any measurable function P : (Ω,F ) → (PS ,BPS

)
will receive the name “random probability measure”; hence, random probability measures are random objects with
values in the space of probability measures. Assume that (Pn)n∈N is a sequence of random probability measures
(Ω,F )→ (PS ,BPS

) and let P be another such random measure. It will be said that “the sequence (Pn) converges
weakly in measure” to P if for all f ∈ C∞R (S) , the sequence of random variables (Pnf)n∈N converges in P-

probability to Pf. The notation to be employed is Pn
wim−−→ P. Instead of writing ω 7→ Pn(ω), here it will be wri�en

ω 7→ Pωn and similarly without the subscript n. Therefore, Pn(f) is the random variable

ω 7→
∫
f(t)dPω(t)

3
See Theorem 4.1.2 of Ash [2]
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2.1. Basic de�nitions and properties.

The sequence (Pn)n∈N will be called “tight in measure” if for every pair of positive numbers ε and δ, there exists a
compact subset K of S such that if n ∈ N, then there exists an event Fn ∈ F that satisfies P (Fn) ≥ 1 − ε and
ω ∈ Fn ⇒ Pωn (K) ≥ 1− δ.

As a consequence of (2.1.1), the following remark can be made.

Remark ( 2.1.3 ) The definition of tightness in measure is equivalent to the following: for all δ, ε > 0 there exists
a compact K ⊂ S such that n ∈ N ⇒ P (Pn1K > 1− δ) > 1 − ε. That is, with arbitrarily large probability, there
is a uniform compact K which has a high chance of happening for all the Pn.

The equivalence is since {Pn1K > 1− δ} ∈ F as Pn1K is a random variable, so one may take this set to be Fn.
The following result gives hope for Prohorov’s theorem in measure (see (1.4.3)) in this context to be true. It says

that all random probability measures on a complete and separable metric space are tight in measure.

Theorem ( 2.1.4 ) If P is a random probability measure (Ω,F ) → (PS ,BPS
) and S is complete and separable

then P is tight in measure.

Proof: the idea of Theorem 1.3 in Billingsley’s book will be followed (see [4]). As S is a separable metric space,

there exists a sequence (xn)n∈N whose range is dense in S. For k ∈ N, the family

(
B
(
xn; 1

k

))
n∈N is an open cover

of S. By the monotone convergence theorem,

lim
N→∞

Pω

(
N⋃
j=1

B

Å
xj ;

1

k

ã)
= Pω(S) = 1 for all ω ∈ Ω.

Note also that the sets

EN =

{
ω ∈ Ω

∣∣∣∣∣Pω
(

N⋃
j=1

B

Å
xj ;

1

k

ã)
> 1− δ

2k

}
are increasing in N. Hence, by monotonicity of P, if δ, ε > 0 are given and k ∈ N, it possible to choose (take the

minimum) an integer Nk in such a way that

n ≥ Nk ⇒ P (En) > 1− ε

2k
.

Let K ⊂ S be the closure of the set

∞⋂
k=1

Nk⋃
j=1

B

Å
xj ;

1

k

ã
. Obviously, by completeness of S, K is a complete met-

ric space. But K is also totally bounded since if η > 0, then it is possible to choose an integer k such that

1

k
< η and K is contained in Nk balls of radii less than η. So, K is a compact set. It is also clear that Pω(K) ≥

Pω

( ∞⋂
k=1

Nk⋃
j=1

B

Å
xj ;

1

k

ã)
for all ω ∈ Ω, so, if A =

{
ω ∈ Ω

∣∣∣∣∣Pω
( ∞⋂
k=1

Nk⋃
j=1

B

Å
xj ;

1

k

ã
> 1− δ

)}
and

P (A) > 1− ε

then

P (P1K > 1− δ) > 1− ε,
which is the wanted tightness in measure.

Let Dk =

{
ω ∈ Ω

∣∣∣∣∣Pω
( ∞⋂
m=1

Nm⋃
j=1

B

Å
xj ;

1

m

ã
> 1− δ

2k

)}
. Then, P (Dk) > 1− ε

2k
and, hence,

P

( ∞⋂
k=1

Dk

)
> 1− ε.
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Chapter 2. Weak convergence in measure.

So, it su�ces to show that

ω ∈
∞⋂
k=1

Dk ⇒ Pω

( ∞⋂
m=1

Nm⋃
j=1

B

Å
xj ;

1

m

ã)
> 1− δ,

which is immediate from the de�nition of the Dk. �

§2.2. Some results obtained for weak convergence in measure.
The following seems to be the correct de�nition of a “continuity set in measure” in the case of random probability

measures.

Definition ( 2.2.1 ) It will be said that a set A ∈ BS is a “continuity set in measure” for the random probability
measure P : (Ω,F ,P) → (PS ,BPS

) (in short form, a “P -continuity set in measure”), for ever pair δ > 0 and
ε > 0,

P
(
P1Å ≥ P1A − δ, P1A ≤ P1A + δ

)
≥ 1− ε.

Remark ( 2.2.2 ) Compare this definition with the one given just a�er (1.5.1); observe that in the non-random case,
a continuity set for P is a Borel A such that P (∂A) = 0 so, in this case with arbitrarily large probability, the frontier
of A has small chance to happen. Returning to the random case; assume A is a P -continuity set in measure and let
δ and ε be as in (2.2.1). One notes that, with probability at least 1− ε,

P1A − P1Å = P1∂A∩A ≤ δ

and that
P1A − P1A = P1∂A∩{A ≤ δ,

so, both inequalities give P1∂A ≤ 2δ with probability at least 1 − ε. Similarly, assume A ∈ BS is such that for
every pair ε, δ > 0, one has P (P1∂A ≤ δ) ≥ 1− ε. Then

P (1∂A) = P1∂A∩{A + P1∂A∩{A ≤ δ,

and, hence, as they are non-negative valued functions,

P1A − P1Å = P1∂A∩A ≤ δ and P1A − P1A = P1∂A∩{A ≤ δ.

Therefore, what was proven here is that the definition of continuity set in measure is equivalent to: for every pair
δ > 0 and ε > 0,

P (P1∂A ≤ δ) ≥ 1− ε;
and as with the previous definitions “in measure”: a set A is a P -continuity set in measure if it is approximately a

continuity set uniformly for all the Pω with high probability.

The following result was derived in the search for a proof of Prohorov’s theorem in the case of weak convergence

in measure. The author can say that this result is re�ned, as it generalizes a classic result of measure theory: for

every �nite measure and any bounded continuous function, the image measure can only have countably many points

of positive mass. This result generalizes as the previous de�nitions: for a given random probability measure and a

continuous and bounded function, the random image measure have an uniform and countable set of points that have

positive mass. The formal idea follows.

Theorem ( 2.2.3 ) Let P be a random probability measure (Ω,F ) → (PS ,BPS
) and g ∈ C∞R (S) . Then, there

exist a countable set D ⊂ R such that

t /∈ D ⇒ P
(
P1{g=t} = 0

)
= 1.

In other (more meaningful) terms, if gP denotes the random probability measure (ω,A) 7→ Pω1{g∈A}, then, for
almost every point ω with respect to P, the (non-random) measure gPω has no atoms inside D (so, D contains all
the atoms of all the gPω, which is surprising since ω might run over an immense set Ω).
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Proof: let ε > 0 and let Dε be the set of t ∈ R such that

P
(
P1{g=t} > ε

)
> ε

It is claimed that Dε is �nite. Otherwise, there would be a sequence (tn)n∈N of distinct elements of Dε. Consider

the set D = {P1{g=tn} > ε, i.o.} ∈ F , which has probability at least
4 ε. As D is not empty, there is an ω ∈ D and

for this ω there is the probability measure gPω, which is the image of Pω by g, such that it has an in�nite number

of distinct points that have mass of at least ε, which is absurd. Therefore, Dε is �nite.

De�ne D =
∞⋃
n=1

D 1
n

. Note that D is countable and that if t /∈ D, then

P

Å
P1{g=t} >

1

n

ã
≤ 1

n
for every n ∈ N.

Let n→∞ to obtain
5 t /∈ D ⇒ P

(
P1{g=t} > 0

)
= 0. �

Remark ( 2.2.4 ) Recall the basic result of Lebesgue: for any function f ∈MR+
(S) , there is a sequence of simple

measurable and bounded functions (fn) such that fn converges increasing and simply to f. In fact, the proof will be

relevant shortly and as it is rather short it is sketched immediately. Define hn =
1

2n

n2n∑
k=1

1{f>k2−n}; the 2−n is so

as to ensure that the next partition is contained in the previous one and, hence, the sequence will be increasing.

Note that
k − 1

2n
≤ hn ≤

k

2n
if
k

2n
≤ f ≤ k + 1

2n
, so the hn increase to f.

Now, assume a probability measure µ is given and note that the extremities of the intervals
ï
k − 1

2n
,
k

2n

ã
might

be modified just a li�le to make them points of continuity for µ; hence, Lebesgue’s result can be improved to: for any
function f ∈MR+

(S) , there is a sequence of simple measurable and bounded functions (fn) such that fn converges

increasing and simply to f and if fn =
m∑
k=1

ck1Ak
, then Ak is a continuity set for µ.

The next result states that the previous example can also be constructed for continuity set in measures.

Theorem ( 2.2.5 ) Let P be a random probability measure (Ω,F ) → (PS ,BPS
) and g ∈ C∞R+

(S) (note that g is
assumed non-negative valued). Then, there exist a sequence (gm)m∈N of simple functions such that the following
properties are verified:

1. for all x ∈ S, lim
m→∞

gm(x) =
g(x)

‖g‖
;

4
By de�nition {An, i.o.} =

∞⋂
n=1

∞⋃
k=n

Ak, so its probability is at least lim sup
n→∞

P (An). In the context of the theorem, eachAn has probability

at least ε.

5
There is some trickery in this step: take ε > 0 and let n0 be so big as for to let

1

n0
< ε; then for n ≥ n0 it can be deduced that

P

(
P1{g=t} >

1

n

)
≤ ε;

now, the sets

{
P1{g=t} >

1

n

}
are increasing in n, so the monotonicity of P gives that

P
(
P1{g=t} > 0

)
= lim
n→∞

P

(
P1{g=t} >

1

n

)
≤ ε;

letting ε ↓ 0 gives the desired claim.
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2. for all m ∈ N, one has 0 ≤ gm ≤
g

‖g‖
≤ gm +

3

2m
;

3. if gm =
n∑
k=1

ck1Ak
, then each Ak is a P -continuity set in measure.

Proof: let Bk,m =

ß
k − 1

2m
≤ g

‖g‖
<

k

2m

™
∈ BS for k = 1, . . . , 2m + 1. Then,

∂Bk,m ⊂
ß

g

‖g‖
=
k − 1

2m

™
∪
ß

g

‖g‖
=

k

2m

™
for k = 1, . . . , 2m + 1. By (2.2.3), it is possible to choose points sk,m for k = 0, . . . , 2m + 1, such that:

1. s0,m < 0 < sk,m < sk+1,m for k ≥ 1 and s2m+1,m > 1;

2.

ß
g

‖g‖
= sk,m

™
is a P -continuity set in measure for all k;

3. s0,m ↑ 0 and s2m+1,m ↓ 1; and

4.

∣∣∣∣ k2m − sk,m
∣∣∣∣ < 1

2m
for all k.

De�ne ck,m = sk,m for all k ≥ 1 and m, c0,m = 0 and let

Ak,m =

ß
sk−1,m ≤

g

‖g‖
< sk,m

™
∈ BS .

Let gm =
2m+1∑
k=1

ck−1,m1Ak,m
. Obviously, for all m ∈ N, it is true that 0 ≤ gm ≤

g

‖g‖
≤ gm +

3

2m
and that each of

the sets Ak,m is a continuity set in measure for P . If x ∈ S, then there exists a sequence (k(x,m))m∈N such that

k(x,m)− 1

2m
↑ g(x)

‖g‖
and

k(x,m)

2m
↓ g(x)

‖g‖
.

Then,

k(x,m)− 3

2m
< sk(x,m)−1,m <

k(x,m)− 1

2m

< sk(x,m),m <
k(x,m) + 1

2m

< sk(x,m)+1,m <
k(x,m) + 3

2m
,

and all these numbers converge (as m → ∞) to

g(x)

‖g‖
. This proves that gm(x) converges to

g(x)

‖g‖
. As x ∈ S was

arbitrary, the convergence is on all of S. �

§2.3. Portmanteau theorem in measure.
Now it is possible to state and give a proof of the portmanteau theorem in weak convergence in measure context.
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2.3. Portmanteau theorem in measure.

Theorem ( 2.3.1 ) Let Pn : (Ω,F ,P)→ (PS ,BPS
) be a sequence of random probability measures and P another

such. The following five conditions are equivalent.

(1) Pn
wim−−→ P ;

(2) Pnf
P−→ Pf for every f ∈ C∞R (S) that are uniformly continuous;

(3) for every closed F ⊂ S and ε, δ > 0 there exists an N ∈ N such that

n ≥ N ⇒ P (Pn1F > P1F + δ) < ε;

(4) for every open G ⊂ S and every pair ε, δ > 0 there exists an N ∈ N such that

n ≥ N ⇒ P (Pn1G < P1G − δ) < ε;

(5) for every continuity set in measure A ∈ BS of P and every pair ε, δ > 0 there exists an N ∈ N such that

n ≥ N ⇒ P (|Pn1A − P1A| > δ) < ε,

that is, for every continuity set in measure A of P,

Pn1A
P−→ P1A.

Proof: obviously (1)⇒ (2).

It will be proved that (2)⇒ (3). Let F ⊂ S be closed and η > 0. Set fη ∈ C∞R (S) by

fη(x) = max

Å
1− d(x, F )

η
, 0

ã
.

Then, fη is uniformly continuous (see the proof of (1.5.3)) and, note that for every x ∈ S, fη(x), which is non-

negative and bounded by 1, will decrease to 1F (x). The hypothesis (2) yields, Pnfη
P−−−−→

n→∞
Pfη. It is also true

that

Pn1F ≤ Pnfη and lim
η↓0

Pfη = P1F simply on all Ω,

where the convergence is obtained by the bounded convergence theorem applied to each of the Pω for ω ∈ Ω. Let

ε > 0 and δ > 0. By the convergence in probability above, there exists an N ∈ N such that

n ≥ N ⇒ P (|Pnfη − Pfη| > δ) < ε

and, since the sets {Pfη − P1F > δ} = {|Pfη − P1F | > δ} are decreasing with η, there is an η0 > 0 such that

0 < η ≤ η0 ⇒ P (|Pfη − P1F | > δ) < ε.

For ω in a set of probability at least 1− 2ε,

|Pωn fη − Pωfη| ≤ δ and |Pωfη − Pω1F | ≤ δ,

so, for such ω,

Pωn 1F − Pω1F ≤ Pωn fη − Pωfη + δ ≤ 2δ,

which gives

P (Pn1F > P1F + 2δ) < 2ε.
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Chapter 2. Weak convergence in measure.

This proves (3).
Now it will be shown that (3) ⇔ (4). Let F be a closed set of S and G = S − F , which is open. Then, for any

δ > 0,

P (Pn1G < P1G − δ) = P (Pn1F > P1F + δ) ,

which proves the equivalence.

Together, (3) and (4) imply (5). Let A ∈ BS be a continuity set in measure for P . Then, there exists an N ∈ N

such that, setting Rn =

ß
ω ∈ Ω

∣∣∣∣Pωn (A) > Pω
(
A
)

+
δ

2

™
,

n ≥ N ⇒ P (Rn) ≤ ε

4

and setting Sn =

ß
ω ∈ Ω

∣∣∣∣Pωn ÄÅä < Pω
Ä
Å
ä
− δ

2

™
n ≥ N ⇒ P (Sn) ≤ ε

4
.

Therefore

n ≥ N ⇒ P
(
{Rn ∩ {Sn

)
≥ 1− ε

2
.

Thus, using (2.2.1) it is readily seen that, setting {TN =

ß
ω ∈ Ω

∣∣∣∣Pω ÄÅä ≥ P (A)− δ

2
, Pω

(
A
)
≤ Pω(A) +

δ

2

™
,

one has P
(
{Tn

)
≥ 1 − ε

2
. Thus, P

(
{Rn ∩ {Sn ∩ {Tn

)
≥ 1 − ε; that is, for n ≥ N and ω ∈ {Rn ∩ {Sn ∩ {Tn,

which is a set of probability at least 1− ε,

Pωn (A) ≥ Pωn
Ä
Å
ä
≥ Pω

Ä
Å
ä
− δ

2
≥ Pω(A)− δ

and

Pωn (A) ≤ Pωn
(
A
)
≤ Pω

(
A
)

+
δ

2
≤ Pω(A) + δ.

Therefore, for such n ≥ N and ω ∈ {Rn ∩ {Sn ∩ {Tn, |Pωn (A)− Pω(A)| ≤ δ, that is

n ≥ N ⇒ P (|Pn1A − P1A| > δ) ≤ ε,

which is the wanted result.

Finally, the last step is to prove (5)⇒ (1). It su�ces to show that for every g ∈ C∞R+
(S) , then Png

P−→ Pg. Let

g ∈ C∞R+
(S). By (2.2.5), there exists a sequence of simple functions (gm)m∈N such that 0 ≤ gm ≤ g ≤ gm +

3 ‖g‖
2m

.

If gm =
n∑
k=1

ck1Ak
, then each Ak is a continuity set in measure of P and gm → g on all S. By hypothesis, we may

conclude that

Pngm
P−−−−→

n→∞
Pgm.

Note that 0 ≤ g− gm ≤
3 ‖g‖
2m

, so, if Q is a random probability measure, then Q(g− gm) ≤ 3 ‖g‖
2m

. By the bounded

convergence theorem, Pgm −−−−→
m→∞

Pg on all Ω. Then, for given δ > 0 and any pair m,n ∈ N,

P (|Pg − Png| > δ) ≤ P
Å
|Pg − Pgm| >

δ

3

ã
+ P

Å
|Pgm − Pngm| >

δ

3

ã
+ P

Å
|Pngm − Png| >

δ

3

ã
.
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2.4. The necessity of a Prohorov’s theorem in measure.

Proceed as follows. Given ε > 0, take m0 to be the minimum of the k ∈ N such that ‖g‖ < δ2k

9
. Then, for

m ≥ m0, the set

ß
|Pngm − Png| >

δ

3

™
is empty. Now, given m ≥ m0, by convergence in probability of the

sequence (Pngm)n∈N to the random variable Pgm, it follows

lim
n→∞

P

Å
|Pgm − Pngm| >

δ

3

ã
= 0.

Henceforth, for such m ≥ m0,

lim sup
n→∞

P (|Pg − Png| > δ) ≤ P
Å
|Pg − Pgm| >

δ

3

ã
.

Let m→∞ to obtain that

lim
n→∞

P (|Pg − Png| > δ) = 0.

This implies the relation Png
P−−−−→

n→∞
Pg, which proves (1) and concludes the theorem. �

§2.4. The necessity of a Prohorov’s theorem in measure.
With this theorem, the direct half of what it is presumed to be Prohorov’s theorem in measure claims can be stated

and proved. First, the terminology to be employed is needed.

Definition ( 2.4.1 ) Suppose that (Pn) is a sequence of random probability measures (Ω,F ) → (PS ,BPS
)

and that P is a probability measure on Ω. The phrase “the sequence (Pn) is relatively compact in measure” will
be used to mean that there is a subsequence

(
Pϕ(n)

)
and, for this subsequence, a random probability measure

P : (Ω,F )→ (PS ,BPS
) such that Pϕ(n)

wim−−→ P.

Theorem ( 2.4.2 ) If (Pn) is relatively compact in measure then it is also tight in measure.

Proof: the following claim will be proved �rst. If (Gm)m∈N is a sequence of open sets in S such thatGm ↑ S then,

for every pair δ and ε of positive numbers, there exist a positive integer number M such that

m ≥M ⇒ inf
n∈N

P (Pn1Gm
> 1− δ) ≥ 1− ε.

Assume it is false. Then, it is possible to choose a pair δ and ε of positive numbers such that for all m ∈ N there

is a Pσ(m) such that P
(
Pσ(m)1Gm

> 1− δ
)
< 1 − ε. De�ne K =

{
ω ∈ Ω

∣∣∣Pωσ(m)(Gm) ≤ 1− δ, i.o.
}

, so that

P (K) ≥ ε. By relatively compactness in measure, and passing through another subsequence if necessary, there is a

P such that Pσ(m)
wim−−→ P. By (2.3.1), part (4), for all m ∈ N there exists an Nm ∈ N such that, if

Kn,m =

ß
ω ∈ Ω

∣∣∣∣Pωσ(n)(Gm) < Pω(Gm)− δ

2

™
,

then

n ≥ Nm ⇒ P (Kn,m) <
ε

2m+1
.

Let Hm =

ß
ω ∈ Ω

∣∣∣∣ lim inf
n→∞

Pωσ(n)(Gm) < Pω(Gm)− δ

2

™
. Then, Hm ⊂ lim inf

n→∞
Kn,m for the last set is

lim inf
n→∞

Kn,m =
∞⋃
k=1

∞⋂
n=k

Kn,m,
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and if ω ∈ Hm, the lim inf allows concluding the existence of a number k ∈ N such that the relation n ≥ k implies

the relation Pωσ(n)(Gm) < Pω(Gm)− δ

2
, which says that ω ∈

∞⋂
n=k

Kn,m, showing the desired inclusion. Therefore,

P (Hm) ≤ lim inf
n→∞

P (Kn,m) <
ε

2m+1
.

De�ne H =
∞⋃
m=1

Hm. Then P (H) ≤ ε

2
. Look now at K ∩ {H and note that

P
(
K ∩ {H

)
= P (K) + P

(
{H
)
− P

(
K ∪ {H

)
≥ ε+ 1− ε

2
− P

(
K ∪ {H

)
≥ ε

2
.

Therefore, the set K ∩ {H is not empty. Let ω ∈ K ∩ {H. Then, as ω ∈ K, there exists an increasing function

ψ : N→ N such that Pωψσ(m)

(
Gψσ(m)

)
≤ 1− δ, no matter which m ∈ N. Also, as ω ∈ {H, it can be observed that

for every m ∈ N,

lim inf
n→∞

Pωσ(n)(Gm) ≥ Pω(Gm)− δ

2
.

Therefore,

Pω(Gm) ≤ lim inf
n→∞

Pωσ(n)(Gm) +
δ

2

≤ lim inf
n→∞

Pωψσ(n)(Gm) +
δ

2
, since ψ is increasing

≤ lim inf
n→∞

Pωψσ(n)(Gψσ(n)) +
δ

2
, since Gm ⊂ Gψσ(n) for every n large enough

≤ 1− δ

2
.

But, if m ↑ ∞ then Gm ↑ S, so the left hand side will go to 1, but is bounded by something strictly less than one.

This contradiction proves the claim.

The rest of the proof goes exactly as in the proof of (2.1.4). Indeed, let δ and ε two positive numbers. Using the

same notation for the balls and dense sequence, the previous claim shows that, for every k ∈ N, one can choose an

Nk ∈ N such that for

Jn,m =

{
ω ∈ Ω

∣∣∣∣∣Pωn
(

m⋃
j=1

B

Å
xj ;

1

k

ã)
> 1− δ

2k

}

m ≥ Nk ⇒ inf
n∈N

P (Jn,m) > 1− ε

2k

De�ne K as the closure of the set

∞⋂
k=1

Nk⋃
j=1

B

Å
xj ;

1

k

ã
. Then, for every Pn, the proof of (2.1.4) shows that

P (Pn1K > 1− δ) > 1− ε.

As K does not depend on Pn, the proof has been completed. �

§2.5. Falsity of the su�ciency of Prohorov’s theorem in measure.
Before giving the counterexample it is necessary to recall some concepts of probability theory.
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Giving a sequence of random variables (Xn)n∈N on the probability space (Ω,F ,P); the set Σ(Xn|n ∈ N) is

de�ned to be the minimum σ-algebra on Ω such that it makes all the random variables (Xn) continuous; such set

always exists since it is the intersection of all σ-algebras that makes all the Xn continuous (one such σ-algebra

is P (Ω)). Now, assume a sequence of random variables is given and set Fn = Σ(Xk|k ≥ n). Then F∞ =
∞⋂
n=1

Fn is a σ-algebra, the “tail σ-algebra”. The events inside F∞ are called “tail events” and, as a matter of fact, the

Kolmogorov zero-one law states that if the sequence is independent then every tail event has probability zero or one

(such sets are called “trivial events”). A function f : (Ω,F∞) → (R,BR) is called a “tail function” and, with the

hypothesis of independence, all tail functions are constants for almost every point with respect to P. All this results

are stated and proved in Real Analysis and Probability by Ash: [2] (see 7.2.6 and 7.2.7). Also, 7.2.6 proves that the

event C = {Xn converges} is a tail event and, therefore, for sequences of independent random variables, such C has

probability zero or one. Assume it is one and let X to be any random variable whose value at ω is this limit when

it exists and zero everywhere else. Both 7.2.6 and 7.2.7 proves that X is almost surely a constant c and, therefore,

the sequence Yn = Xn − c is also a sequence of independent random variables but now this sequence converges

to zero. Impose the additional hypothesis that the Xn are independent and identically distributed, then so are the

Yn. If P (|Yn| > ε) > 0 for some ε > 0, then, as they are identically distributed,

∞∑
n=1

P (|Yn| > ε) = ∞ and the

second Borel-Cantelli lemma (see 7.1.5 of Ash: [2]) implies P (|Yn| > ε, i.o) = 1; this last relation implies that for

almost every ω with respect to P, the sequence Yn(ω) assumes for in�nitely many n a value such that |Yn(ω)| > ε
and, therefore, it cannot converge to zero, which is of course a contradiction. Therefore, P (|Yn| = 0) = 1 and this

implies that P (Xn = c) = 1. If Mn = {Xn = c} then P (Mn) = 1 and P

( ∞⋂
n=1

Mn

)
≥ 1 −

∞∑
n=1

P
(
{Mn

)
= 1.

Hence for every ω ∈ Ω, with the exception of a set of probability zero, all the Xn(ω) = c. What it was proved here

is that if Xn de�nes a sequence of independent and identically distributed random variables which converges with

the exception of a set of probability zero, then the sequence is a constant; the converse is obvious.

Now, weak convergence in measure ask about convergence in probability and not for almost every point, so

the previous argument must be modi�ed a little. Assume then that (Xn) is a sequence of independent, identically

distributed random variables which converges in probability to some random variable X. There is a subsequence

(Xn′) of the sequence which converges for almost every point; by the previous paragraph, there exists a constant c
such that the subsequence is equal to it almost surely. Observe then that (Xn′) converges in probability to both X
and c, and therefore X = c for almost every point with respect to P. To clarify, we have proved that if a sequence

of independent, identically distributed random variables converges in probability to some random variable, then the

whole sequence is equal to a constant (and, hence, the limit also).

With the preliminarities of the previous paragraphs, let S = R and assume that (Pn) is a sequence of random

probability measures that are identically distributed, independent and that is not a constant sequence (take, for

instance, a sequence of random variables (Xn) with these properties and let Pn to be the random Dirac measure:

εXn
). For every f ∈ C∞R (R) , note that ef (Pn) de�nes a sequence of independent, identically distributed random

variables; unless, the sequence is a constant, it cannot converge in probability. So, Pn cannot converge weakly in

measure. As the Pn are identically distributed and one alone is tight (see (2.1.4)), for every ε > 0 and δ > 0, there is

a K ⊂ S which is compact and

P (P11K ≥ 1− δ) ≥ 1− ε,

but then, for every n ∈ N,
P (Pn1K ≥ 1− δ) ≥ 1− ε,

and so for the in�mum. Therefore, the sequence (Pn) is tight in measure and does not have a subsequence which

converges weakly in measure. Finally, this is exactly what the negation of what was assumed to be Prohorov’s

theorem in measure.
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