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esta área de la matemáticas.
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Chapter 1

Introduction

The first results on rigidity theory were a series of works by Selberg, Calabi,
Vesentini and Weil in the middle of the last century.

In 1960, A. Selberg discovered that, up to conjugation, the fundamental
groups of certain compact locally symmetric spaces are always defined over the
algebraic numbers. E. Vesentini, E. Calabi and A. Weil found the following local
rigidity theorem in the early sixties.

Theorem 1.1. Let G be a semisimple Lie group and assume that G is not locally
isomorphic to SL(2,R) nor SL(2,C). Let Γ ⊂ G be an irreducible cocompact
lattice, then the defining embedding of Γ in G is locally rigid, i.e. any embedding
ρ close to the defining embedding is conjugate to the defining embedding by a
small element of G.

In particular, Selberg gives a proof for cocompact lattices in SL(n,R) for
n ≥ 3 in [Sel]. Calabi and Vesentini give a proof when the associated symmetric
space G/K is Kähler in [CV] and Calabi gives a proof for G = SO(1, n) when
n ≥ 3 in [Cal]. Weil gives a complete proof of Theorem 1.1 in [We]-[We2].

The proofs of Calabi, Calabi-Vesentini and Weil involve the study of varia-
tions of geometric structures on the associated locally symmetric space.

Selberg’s proof combines algebraic facts with a study of the dynamic of
iteration of matrices. In 1968, G. D. Mostow, motivated by Selberg’s work and
a “more geometric understanding” of Theorem 1.1 and using tools and ideas
from topology, differential geometry, group theory and harmonic analysis, gets
a global theorem (Strong Rigidity Theorem, [M]).

Theorem 1.2 (Mostow’s Strong Rigidity Theorem). Let G and G′ be as in
theorem 1.1. If Γ and Γ′ are two irreducible cocompact lattices in G and G′,
respectively then any isomorphism from Γ to Γ′ extends to an isomorphism from
G to G′.

Mostow’s work in turn provided inspiration for Margulis and Zimmer to
study rigidity properties of higher rank groups.

1



2 CHAPTER 1. INTRODUCTION

In 1973, G. A. Margulis classified all finite dimensional linear representations
of irreducible lattices in groups of real rank at least 2 ([Mar]).

Theorem 1.3 (Margulis’s Superrigidity Theorem). Let Γ be an irreducible lat-
tice in a connected semisimple Lie group G of real rank at least 2, trivial center,
and without compact factors. Suppose K is a local field. Then any homomor-
phism π of Γ into a non-compact K-simple group over K with Zariski dense
image either has precompact image or π extends to a homomorphism of the
ambient group G.

In the context of Lie group actions, Zimmer ([Z3]) extended Margulis’s Su-
perrigidity to a cocycle superrigidity which has shown to be very useful in the
study of actions of semisimple Lie groups without compact factors.

Margulis’ theorem, classifying all linear representations, leads to believe that
it is possible to classify all homomorphisms to other interesting classes of topo-
logical groups.

In the 1986 International Congress of Mathematicians, Robert J. Zimmer
presented a program to understand the actions of the groups and its lattices
onto other natural classes of groups, such as the group of smooth transfor-
mations of compact manifolds. A frequent observation about this theory and
homomorphisms is the existence of strong manifestations of the rigidity
theory.

A big part of current research about dynamics of groups is focused on show-
ing that rigid actions can be classified, up to a smooth “global coordinates
change”. Zimmer’s Program is focus in this direction.

If we assume that G is a connected Lie group, then the structure theory tells
us there are two main cases to consider:

• solvable.

• semisimple.

Since there is a classification that provides a list of the semisimple Lie groups,
then a case-by-case analysis is possible. Thus, we make emphasis in the case
where G is semisimple.

Let G be a connected, non-compact simple Lie group acting isometrically
on a connected, analytic manifold M with a finite volume pseudo-Riemannian
metric. It has been proved that these actions are rigid and strongly determine
the possibilities and properties of the manifold M . The general thesis is that
such actions along with some extras conditions, imply that M is an algebraic
double coset of the form K\H/Γ where H is a semisimple Lie group containing
the group G.

Some results have already been obtained by Ólafsson-Quiroga ([OQ]) and
Quiroga ([Q2]).

Theorem 1.4 (Quiroga-Barranco, [Q2]). Let G be a connected non-compact
simple Lie group with finite center and rankR(G) ≥ 2. If G acts faithfully
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and topologically transitively on a compact manifold M preserving a pseudo-
Riemannian metric such that the action is transversely Riemannian, then the
G-action on M is ergodic and engaging, and

M̂ ∼= K\L/Γ

where M̂ →M is a finite covering and L a semisimple Lie group that contains
G as a factor.

In the case G = S̃O0(p, q), we have the next result proved by G. Ólafsson
and R. Quiroga-Barranco in [OQ].

Theorem 1.5 (Ólafsson-Quiroga, [OQ]). Let M be a connected analytic pseudo-
Riemannian manifold. Suppose that M is completely weakly irreducible, has fi-
nite volume and admits an analytic and isometric S̃O0(p, q)-action with a dense

orbit, for some integers p, q ≥ 1 and n = p + q ≥ 5. If dim(M) = n(n+1)
2 then

there exists
H/Γ→M

an analytic finite covering map for H either S̃O0(p+ 1, q) or S̃O0(p, q+ 1), and
Γ ⊂ H a lattice.

For other similar related works we refer to [B], [Q].
Given the result in Theorem 1.5, it is natural to consider the following ques-

tions:

(I) Can we extend this result to other simple Lie groups and manifolds?,

(II) For which integers n, can we obtain a similar result to Theorem 1.5 with
the simple Lie group G = SL(n,R)?.

1.1 Main Theorems

In this work, our main goal is to give a partial answer to questions (I) and (II),
that we have raised previously.

Recall that if G is a connected non-compact simple Lie group acting iso-
metrically on a connected analytic manifold M with a finite volume pseudo-
Riemannian metric then, following Zimmer’s program, it has been shown that
such action is rigid in the sense of having distinguished properties that restrict
the possibilities for M (e.g. Theorems 1.4, 1.5).

In the present work, we obtain results concerning the properties of some a-
nalytic connected manifold M when the simple Lie group S̃L(3,R) acts isomet-
rically on the manifold preserving a finite volume pseudo-Riemannian metric.

If we denote by G2(2) (in this work) to the simply connected, non-compact
simple Lie group such that

Lie(G2(2)) = g2(2).

Our main result is the following theorem:
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Theorem 1.6. Let M be a connected analytic pseudo-Riemannian manifold.
Suppose that M is complete, has finite volume and admits an analytic and iso-
metric S̃L(3,R)-action with a dense orbit. If 8 < dim(M) ≤ 14 then one, and
only one, of the following diffeomorphisms is satisfied:

1) M̃ ∼= S̃L(3,R)× Ñ , where Ñ is a pseudo-Riemannian manifold.

2) M̃ ∼= G2(2).

3) M̃ ∼= R\S̃L(4,R).

The proof of this result is inspired by the work of G. Ólafsson and R. Quiroga-
Barranco in [OQ] which is based on the study of the theory of Killing vector fields
that centralize the G-action. The main element, with respect to the centralizer
of Killing fields is Proposition 3.7, as already found in [Q], [OQ], [Z2] with
different assumptions on the manifold M and the Lie group G.

Proposition 3.7 ensures the existence of a Lie algebra g(x), isomorphic to g

(the Lie algebra of G), of Killing vector fields which vanish at a point x on M̃ ,
the universal covering of M , with additional properties. The Lie algebra g(x)
provides TxM with a g-module structure which allows us to use representation
theory in the tangent space and normal tangent space (Chapter 2) of the orbits
to control its behavior (Section 3.2). This g-module structure allows us to obtain
some control of the Lie algebra H of Killing vector fields which centralize the
G-action (Section 3.3). The Lie algebra H gives rise to an action of a Lie group
on the manifold M , which lets us find properties about this manifold (Chapter
4).

With the same hypotheses that Proposition 3.7, Szaro (in [Sza]) shows that
the G-action must be locally free and, hence, the orbits define a foliation that
we will denote with O. Then, as implication of Proposition 3.7(4) and the
analyticity of the elements which take part in this Proposition, we have the
following options:

(a) TxO⊥ is a trivial g-module for almost every x ∈ S.

(b) There exists a subset A ⊂ S of positive measure such that if x ∈ A then
TxO⊥ is a non-trivial g-module.

If case (a) is satisfied this implies that the normal bundle to the orbits,
TO⊥, is integrable and then case (1) in Theorem 1.6 occurs. Furthermore, we
can show a specific structure of the manifold M ([Q]).

Theorem 1.7. With the same hypotheses as in Theorem 1.6, if the bundle TO⊥
is integrable then there exist:

i) an isometric finite covering map M̂ → M to which the S̃L(3,R)-action
lifts,

ii) a simply connected complete pseudo-Riemannian manifold Ñ , and
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iii) a discrete subgroup Γ ⊂ (S̃L(3,R)× Iso(Ñ)),

such that M̂ is SL(3,R)-equivariantly isometric to (S̃L(3,R)× Ñ)/Γ.

The previous result is a special case of the results presented in [Q], where
the case TO⊥ integrable is carefully analyzed. When the normal bundle is
non-integrable we obtain the second and third case of Theorem 1.6 (subsection
7.2.2).

Theorem 1.8. With the hypotheses as in Theorem 1.6, if the second case is
satisfied then there exist:

i) a lattice Γ ⊂ G2(2), and

ii) an analytic finite covering map ϕ : G2(2)/Γ→M ,

such that ϕ is S̃L(3,R)-equivariant. Furthermore, we can rescale the metric on

M along the S̃L(3,R)-orbits and their normal bundle to assume that ϕ is a local
isometry for the bi-invariant pseudo-Riemannian metric on G2(2) given by the
Killing form of its Lie algebra.

Theorem 1.9. With the same hypotheses as in Theorem 1.6, if the third case
is satisfied then there exists an S̃L(3,R)-equivariant map

ϕ : R\S̃L(4,R)→ M̃.

Furthermore, we can rescale the metric on M along the S̃L(3,R)-orbits and
their normal bundle to assume that the composition of the (natural) quotient
map

π : S̃L(4,R)→ R\S̃L(4,R)

with ϕ, is a pseudo-Riemannian submersion for the pseudo-Riemannian metric
on S̃L(4,R) given by the Killing form of its Lie algebra.

In Theorem 1.7 we have assumed that case (a) is satisfied which implies the
integrability of TO⊥. However, the integrability of TO⊥ does not imply that
case (a) holds. Hence, the following result explores the structure of the manifold
M when TO⊥ is integrable and case (b) is satisfied.

Theorem 1.10. With the same hypotheses as in Theorem 1.7, if we assume
the existence of a subset A of positive measure such that TxO⊥ is a non-trivial
sl(3,R)-module for all x ∈ A, then the manifold Ñ is diffeomorphic to one of
the following spaces:

• R3 × R3∗ as abelian Lie group.

• R3 × R3∗ as 2-step nilpotent Lie group.

• SL(3,R)\G2(2).

• (SL(3,R)× R)\S̃L(4,R).
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• SL(4,R)\S̃O0(3, 4).

On the other hand, if we assume that M is a weakly irreducible manifold
in the hypothesis of Theorem 1.6 (similar to Theorem 1.5) then we have the
following result.

Theorem 1.11. Let M be a manifold with the same hypotheses as in Theorem
1.6. Also, assume that M is a weakly irreducible manifold then we have that the
only possible conclusions are parts 2) and 3) of Theorem 1.6.

Note, that the weakly irreducibility removes the possibility that TO⊥ is
integrable. Hence this work complements the analysis made by R. Quiroga-
Barranco in [Q] and contributes to the case-by-case analysis of actions of simple
Lie groups.



Chapter 2

Representations, Modules
and Subalgebras

2.1 Representations of sl(3,R) that preserve a
nondegenerate symmetric bilinear form

We are interested in the study of the linear representations of sl(3,R) that
preserve a non-degenerate symmetric bilinear form. Particularly to describe the
representation with minimal dimension that satisfies this property.

2.1.1 Representations of sl(3,R) and sl(3,C)

We start by studying the complex representations of sl(3,C) to obtain some
results and try the same results to real representations of sl(3,R). This is
because the complex representations of sl(3,C) have some characteristics that
we can take advantage of.

It is clear that a real representation of g0 gives rise to a complex represen-
tation of g = g0 ⊗R C, but, will it be the same in the other direction? That is,
given a complex representation of g, can we obtain a real representation of g0?
When g0 = sl(3,R) we give partial results that answering those questions.

In this section we will make some observations about the relationship be-
tween the irreducible real representations of sl(3,R) and the irreducible complex
representations of sl(3,C). Such results can be found in [On].

Let g0 be a real semisimple Lie algebra and V0 a real vector space, we denote
its complexifications by g = g0 ⊗R C and V = V0 ⊗R C, respectively.

If V0 is a real representation of g0, i.e., there exists a homomorphism of Lie
algebras ρ : g0 → gl(V0), we have two complexification operations related to the
real representation ρ : g0 → gl(V0). First we can extend any ρ(x), for x ∈ g0, to
a complex linear operator in V , obtaining a complex representation

ρC : g0 → gl(V ).

7
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And we can extend the homomorphism ρC : g0 → gl(V ) to a homomorphism of
complex Lie algebras

ρ(C) : g→ gl(V ),

i.e., to a complex representation of g.
Now, if we begin with a complex representation ρ : g0 → gl(V ) of a real Lie

algebra g0, we may regard ρ as a representation of g0 in the real vector space
VR, and thus we get a real representation

ρR : g0 → gl(VR).

This is the realification operation. Also, if ρ : g→ gl(V ) is a complex represen-
tation of a complex Lie algebra g, it gives rise to a real representation

ρR : gR → gl(VR).

Recall that a real (complex) representation is called irreducible if the repre-
sentation space does not contain any non-zero proper real (complex) invariant
vector spaces. And the equivalence of two real (complex) representations is
defined, using real (complex) isomorphisms of representations spaces.

A complex structure J in a real vector space V0 is said to be invariant under
a real representation ρ of g0 in V0 if ρ(x)J = Jρ(x) for all x ∈ g0. In this case,
we may regard ρ as a complex representation of g0 in (V0, J) and the original
real representation ρ will be its realification.

Similarly, a real (or quaternion) structure S in a complex vector space V is
said to be invariant under a complex representation ρ : g0 → gl(V ) if ρ(x)S =
Sρ(x), x ∈ g0. If a real structure S in V is invariant under ρ, then the real form
V0 = V S of V is invariant, and the real subrepresentation ρ0 : g0 → gl(V0) of ρ
satisfies ρC0 = ρ.

We have then, the first result of Section 8 in [On]

Theorem 2.1 (Th. 1, Section 8, [On]). Any irreducible real representation
ρ : g0 → gl(V0) of a real Lie algebra g0 satisfies precisely one of the following
two conditions:

(I) ρC is an irreducible complex representation;

(II) ρ = ρ′R, where ρ′ is an irreducible complex representation admitting no
invariant real structures.

Conversely, any real representation ρ satisfying (I) or (II) is irreducible.

Hence, all irreducible real representations of a given real Lie algebra g0 be-
longs to two disjoint classes, (I) and (II), characterized by the previous theorem
and we get the corollary:

Corollary 2.2. The Class (I) consists of all irreducible real representations ρ
which admit no invariant complex structure. In this case, ρC is an irreducible
complex representation, admitting an invariant real structure.
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The Class (II) consists of all irreducible real representations ρ which admit
an invariant complex structure, i.e., have the form ρ = ρ′R, where ρ′ is an
irreducible complex representation. In this case, ρ′ admits no invariant real
structures.

On the other hand, let ρ : g0 → gl(V ) be a complex representation of a real
Lie algebra g0. Then denote by ρ̄ : g0 → gl(V̄ ) the complex conjugate to the
representation ρ. Note that this representation is not necessarily equivalent to
ρ but, (ρ̄)R = ρR.

For this new representation we immediately have the next result

Proposition 2.3 (Proposition 1, Section 8, [On]). For any complex represen-
tation ρ : g0 → gl(V ), we have

(ρR)C ∼ ρ+ ρ̄

Also, a complex representation of g0 is called self-conjugate whenever ρ ∼ ρ̄.
The definition of self-conjugate is used to show a result that gives origin to the
Cartan Index.

Let ρ : g0 → gl(V ) be a self-conjugate irreducible complex representation.
We define the Cartan Index of ρ as ε(ρ) = sgn(c) = ±1, where c is defined by:
S2 = ce, where S is an anti-automorphism of V commuting with ρ. This sign
is uniquely determined, as shown in [On]. If ε(ρ) = 1, then S0 = 1√

|c|
S is a

real structure in V invariant under ρ. If ε(ρ) = −1, then S0 is a quaternion
structure in VR invariant under ρ, and V admits a structure of a vector space
over H, invariant under ρ.

Because any complex representation admitting an invariant real structure is
self-conjugate then an irreducible complex representation ρ : g0 → gl(V ) admits
an invariant real structure if and only if ρ is self-conjugate and its Cartan index
is equal to 1.

Now, it is possible to classify the irreducible real representations described
in the Theorem 2.1, up to equivalence.

Theorem 2.4. (i) Two irreducible real representations ρ1 and ρ2 of the class
I are equivalent if and only if ρC1 and ρC2 are equivalent.

(ii) Two irreducible real representations ρ1 = (ρ′1)R and ρ2 = (ρ′2)R of the class
II are equivalent if and only if ρ′1 ∼ ρ′2 or ρ′1 ∼ ρ′2.

(iii) A representation of the class I cannot be equivalent to one of the class II.

Now, assume that g0 is a real semisimple Lie algebra and regard g0 as a real
form of the complex semisimple Lie algebra g = g0 ⊗R C. In this case [On, Th.
8.3] shows under which conditions a complex representation of a real semisimple
Lie algebra g0 is self-conjugate,

Theorem 2.5 (Theorem 3, Section 8 of [On]). Let ρ0 : g0 → sl(V ) be an
irreducible complex representation of a real semisimple Lie algebra g0, and let
Λ, Λ̄ denote the highest weights of the representations ρ0, ρ̄0, respectively. Then
ρ0 is self-conjugate if and only if Λ = Λ̄.
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Now, let g0 be a real form of a complex semisimple Lie algebra g, if ρ is an
irreducible representation of g in a complex vector space V and denote ρ0 = ρ|g0 .
Then ρ0 determines an irreducible real representation of g0. With the previous
results we distinguish three different cases:

1. The real case. If

Λ = Λ̄, ε(g0, ρ0) = 1 (Cartan index) (2.1)

then ρ0 leaves a real form V0 of V invariant and induces an irreducible
representation ρ0|V0 of g0.

2. The quaternion case. If

Λ = Λ̄, ε(g0, ρ0) = −1,

then the realification (ρ0)R of ρ0 acting in VR is irreducible, and VR admits
a structure of quaternion vector space invariant under (ρ0)R.

3. The complex case. if
Λ 6= Λ̄,

then the realification (ρ0)R of ρ0 acting in VR is irreducible, and ρ0 admits
neither real nor quaternion invariant structures.

Then all irreducible real representations of real semisimple Lie algebras can
be obtained in one of these ways. In the real case, we get a bijection between the
dominant weights Λ satisfying (2.1) and the irreducible representations ρ0|V0

of
g0 regarded up to equivalence.

Remark 2.6. Table 5 (Indices of irreducible representations of simple complex
Lie algebras) of [On] shows all the simple real Lie algebras and which case (real,
quaternion or complex) is allowed in each of them. Here we note that for the
real simple Lie algebra sl(n,R) (n > 1) it is always satisfied that Λ = Λ̄ and the
Cartan index is always 1, this is, we always have the real case. In particular,
that is true for g0 = sl(3,R).

2.1.2 Irreducible representations of sl(3,C)

Because sl(3,R) is a semisimple Lie algebra then all of its finite-dimensional li-
near representations have a decomposition in irreducible representations. Hence,
we shall start by studying the irreducible representations of sl(3,R).

Since in the previous subsection we have seen that we can study the i-
rreducible sl(3,R)-modules through the study of irreducible sl(3,C)-modules.
Thus, first we study these irreducible representations.

Recall that

sl(3,C) = {A ∈M3×3(C) | trace(A) = 0}, (2.2)

which is a simple Lie algebra of dimension 8.
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In [F, p. 224] it is shown that the irreducible representation Γa1,...,an−1 of
sl(n,C) with highest weight (a1, . . . , an−1), has dimension

dim(Γa1,...,an−1
) =

∏
1≤i<j≤n

ai + · · ·+ aj−1 + j − i
j − i

. (2.3)

Particularly, when n = 3 the irreducible representation Γa1,a2 of sl(3,C) with
highest weight (a1, a2), satisfies

dim(Γa1,a2) =
(a1 + 1)(a2 + 1)(a1 + a2 + 2)

2
. (2.4)

On other hand, Theorem 13.1 of [F] shows that for each pair of natural
numbers, (a1, a2), there is a unique (up to isomorphisms) irreducible finite di-
mensional representation Γa1,a2 with highest weight a1L1 + a2(L1 +L2), where
{Li}3i=1 is the dual basis of {ei}3i=1. Here, {e1, e2, e3} is the standard basis of
C3, for the standard representation of sl(3,C) on this vector space.

Therefore, the lower dimensions of the irreducible representations of sl(3,C)
are:

dim(Γ0,0) = 1

dim(Γ1,0) = dim(Γ0,1) = 3

dim(Γ2,0) = dim(Γ0,2) = 6

dim(Γ1,1) = 8

Here, if a1 ≥ b1 and a2 ≥ b2, then by (2.4) we have

dim(Γa1,a2) ≥ dim(Γb1,b2)

and so, when |(a1, a2)| = a1 + a2 ≥ 3 then

dim(Γa1,a2) > 8.

Furthermore, the next result is obtained

Lemma 2.7. The only (up to isomorphisms) non-trivial representations of
sl(n,C) with dimension less than or equal to n are Cn and Cn∗.

Proof. From equation (2.3), if ωk denotes the irreducible sl(3,C)-module with
its highest weight having 1 in the k-th entry and 0 in the other ones, then

dim(ωk) =
n(n− 1) · · · (n− k + 1)

k!
=
(n
k

)
. (2.5)

From this result we have that

dim(ω1) = dim(ωn−1) = n, (2.6)

is the smallest dimension of an irreducible non-trivial sl(3,C)-module.
Because ω1

∼= Cn and ωn−1
∼= Cn∗ as sl(3,C)-modules, the result follows.
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2.1.3 Non-degenerate symmetric bilinear forms

As mentioned at the beginning of this section we are interested in the finite-
dimensional linear representations of sl(3,R) that preserve a non-degenerate
symmetric bilinear form. By the previous section, we will focus on studying the
non-trivial representations of sl(3,C) that preserve a form with these characte-
ristics.

Let ρ be a non-trivial representation of sl(3,C) on the vector space V and
suppose that this representation preserves a non-degenerated symmetric bilinear
form 〈·, ·〉, that is,

〈ρ(A)x, y〉+ 〈x, ρ(A)y〉 = 0 ∀A ∈ sl(3,C);x, y ∈ V. (2.7)

Therefore,

Jρ(A) + ρ(A)tJ = 0, ∀A ∈ sl(3,C), (2.8)

where J is an invertible matrix defined by 〈·, ·〉. Then,

ρ(A) = J−1(−ρ(A)t)J, ∀A ∈ sl(3,C). (2.9)

This last identity shows that a representation of sl(3,C) preserving a non-
degenerate symmetric bilinear form must be autodual.

The autodual property does not hold for all non-trivial representations of
sl(3,C). This result is stated in the next Lemma

Lemma 2.8. The minimum dimension of a non-trivial autodual representation
of sl(3,C) is 6. Moreover, this representation is isomorphic to C3 ⊕ C3∗ and
preserves a non-degenerated symmetric bilinear form.

Proof. By Lemma 2.7, we will focus in representations of sl(3,C) on vector
spaces with dimension equal or bigger than 3.

DIMENSION 3.
Let ρ3 : sl(3,C) → gl(V ) be a representation with dim(V ) = 3. If ρ3 is

irreducible, then Lemma 2.7 shows that V ∼= C3 or V ∼= C3∗ as sl(3,C)-module.
And from section 13 of [F], these representations are not autodual, then the
map ρ3 does not preserve a non-degenerated symmetric bilinear form.

On the other hand, if the representation ρ3 : sl(3,C)→ gl(V ) is reducible, by
the same Lemma 2.7, we have that V ∼= C⊕C⊕C as sl(3,C)-module therefore
ρ3 is a trivial representation.

DIMENSION 4.
Let V be a complex vector space of dimension 4 and suppose there is a

representation ρ4 of sl(3,C) on V , due to the non-existence of an irreducible
representation with the same dimension (Lemma 2.7), V is a direct sum of
irreducible submodules, i.e.

V ∼= C⊕ C⊕ C⊕ C or V ∼= C3 ⊕ C or V ∼= C3∗ ⊕ C (2.10)

If V ∼= C⊕ C⊕ C⊕ C then the representation ρ4 is trivial.
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Suppose V ∼= C3 ⊕ C, in this case, the representation is non-trivial but, by
the properties of representation of sl(3,C) on C3, it is non-autodual.

The same argument can be used to prove that if V ∼= C3∗⊕C the non-trivial
representation ρ4 is non-autodual.

DIMENSION 5.

The same proof in the case of dimension 4, with the obvious changes, can
be used to prove that any non-trivial representation of the complex simple Lie
algebra sl(3,C) on a vector space of dimension 5 is non-autodual.

DIMENSION 6

Now, focus on representations of sl(3,C) on 6-dimensional vector spaces. In
this case, from (2.4), we have only (up to automorphisms) two 6-dimensional
irreducible representations: Sym2(C3) and Sym2(C3∗), corresponding to the
highest weight (2, 0) and (0, 2), respectively. In both cases, from section 13 of
[F], these representations are non-autodual.

Let then ρ6 : sl(3,C) → V be a reducible representation of sl(3,C) with
dim(V ) = 6. V is isomorphic to a direct sum of irreducible sl(3,C)-submodules,
that is, V is isomorphic (as sl(3,C)-module) to one of the next vector spaces

C⊕ C⊕ C⊕ C⊕ C⊕ C
C3 ⊕ C⊕ C⊕ C
C3∗ ⊕ C⊕ C⊕ C
C3 ⊕ C3

C3∗ ⊕ C3∗

C3 ⊕ C3∗

When V ∼= C⊕ C⊕ C⊕ C⊕ C⊕ C, the representation ρ6 is trivial.

If V is isomorphic to C3⊕C⊕C⊕C (or to C3∗⊕C⊕C⊕C), with a similar
argument to the case of dimension 4, we can prove that this representation is
not autodual.

Now, suppose V ∼= C3 ⊕ C3. Recall that the direct sum of the representa-
tions is given component-wise and that the representation of sl(3,C) on C3 is
the standard representation. Therefore, it is clear that V is not an autodual
representation. The same argument shows that if V ∼= C3∗⊕C3∗ then V is also
not an autodual representation.

For the last part of the proof, we will show the existence of a non-degenerate
symmetric bilinear form on the vector space C3 ⊕ C3∗ that is preserved by the
representation (non-trivial) of sl(3,C).

Define the bilinear form 〈·, ·〉 on C3 ⊕ C3∗ as follows: Let v, v′ ∈ C3 ⊕ C3∗

be given. Then there exist unique elements p, p′ ∈ C3 and q, q′ ∈ C3∗ such that
v = (p, q) and v′ = (p′, q′). Then 〈v, v′〉 is defined as

〈v, v′〉 = 〈(p, q), (p′, q′)〉 := q(p′) + q′(p) (2.11)

where q(p) is the evaluation of the element q in the vector p.



14 CHAPTER 2. REPRESENTATIONS, MODULES AND SUBALGEBRAS

This defines a bilinear form that is non-degenerated and symmetric. Now,
let A ∈ sl(3,C) and v, v′ ∈ C3 ⊕ C3∗ be given. Then

〈A · v, v′〉+ 〈v,A · v′〉 = 〈A · (p, q), (p′, q′)〉+ 〈(p, q), A · (p′, q′)〉
= 〈(A · p,A · q), (p′, q′)〉+ 〈(p, q), (A · p′, A · q′)〉
= (A · q)(p′) + q′(A · p) + q(A · p′) + (A · q′)(p)
= −q(A · p′) + q′(A · p) + q(A · p′)− q′(A · p)
= 0

therefore, we have shown that the bilinear form 〈·, ·〉 is preserved by the action
of sl(3,C). Then, the lemma is proved.

Now, we use the results from the two previous subsections to show similar
results for the real simple Lie algebra sl(n,R). Our main interest is the case
n = 3.

2.1.4 Irreducible representations of sl(3,R)

Recall that

sl(n,R) =
{
A ∈Mn×n(R)

∣∣trace(A) = 0
}

and a real representation of sl(n,R) gives rise to a complex representation ρ(C)
of sl(n,C).

We immediately have a first result about the irreducible representations of
sl(n,R).

Lemma 2.9. The only non-trivial representations of sl(n,R) with dimension
less than or equal to n are Rn and Rn∗.

Proof. Let ρ : sl(n,R) → gl(V0) be a non-trivial finite dimensional irreducible
real representation of sl(n,R), then by Theorem 2.1 and Remark 2.6 we have
that ρC is a (non-trivial) irreducible complex representation because ρ is an
invariant real structure.

Since ρC is a non-trivial irreducible representation then, by Table 5 of [On],
ρ(C) : sl(n,C) → gl(V ) is a non-trivial irreducible complex representation,
where V = V0 ⊗ C. And thus, by Lemma 2.7, dimR(V0) = dimC(V ) ≥ n.

Now, letting ρ : sl(n,R) → gl(V0) be a non-trivial finite dimensional irre-
ducible real representation with dimR(V0) = n, then ρ(C) : sl(n,C)→ gl(V ) is a
non-trivial irreducible complex representation where dimC(V ) = n. By Lemma
2.7 this implies that V ∼= Cn or V ∼= Cn∗ as sl(n,C)-module.

On the other hand, recall that Table 5 in [On] shows us that (2.1) is always
satisfied, then ρ(C)|sl(n,R) restricted to V0 is equal to ρ. In the first case, if
V ∼= Cn as sl(n,C)-module then from Table 2 in [On] we have that V0

∼= Rn
as sl(n,R)-module. In a similar way we can prove that if V ∼= Cn∗ as sl(n,C)-
module then V0

∼= Rn∗ as sl(n,R)-module.
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2.1.5 Non-degenerate symmetric bilinear real forms

In Lemma 2.8 we proved that the minimum dimension of a non-trivial represen-
tation of sl(3,C) being autodual is 6. Now, we wish to prove a similar result in
the real case, this is, to show which is the minimum dimension of a non-trivial
sl(3,R)-representation that preserves a non-degenerate symmetric bilinear form.

Let ρ be a non-trivial representation of sl(3,R) on the real vector space V0

and suppose this representation preserves a non-degenerated symmetric bilinear
real form 〈·, ·〉0 in V0, this is:

〈ρ(A)x, y〉0 + 〈x, ρ(A)y〉0 = 0 ∀A ∈ sl(3,R);x, y ∈ V0. (2.12)

We extend this bilinear (real) form to a non-generated symmetric bilinear
complex form 〈·, ·〉 on V = V0(C) such that it is preserved by the non-trivial
representation ρ(C), i.e.,

〈ρ(C)(A)x, y〉+ 〈x, ρ(C)(A)y〉 = 0 ∀A ∈ sl(3,C);x, y ∈ V,

then
ρ(C)(A) + ρ(C)(A)t = 0, ∀A ∈ sl(3,C).

This shows that the representation ρ(C) is autodual.

Lemma 2.10. The minimum dimension of a non-trivial real representation of
sl(3,R) preserving a non-degenerated symmetric bilinear form is 6. Further-
more, this representation is isomorphic to R3 ⊕R3∗. Also the bilinear form has
signature (3, 3).

Proof. Let ρ : sl(3,R) → gl(V0) be a non-trivial real representation preserving
a non-degenerated symmetric bilinear form 〈·, ·〉0. By Lemma 2.9, we have that
dim(V0) ≥ 3.

Now, suppose that 3 ≤ dimR(V0) ≤ 6.
If ρ is an irreducible representation then, by Theorem 2.1, ρC is an irreducible

complex representation. And from Table 2 in [On], ρ(C) is an irreducible com-
plex representation of sl(3,C). But, the proof of Lemma 2.8, shows that this is
not possible. Then ρ must be a reducible representation.

On the other hand, the non-trivial complex representation ρ(C) is autodual
with the symmetric bilinear form 〈·, ·〉 on V . Then by Lemma 2.8, dimR(V0) =
dimC(V ) ≥ 6.

The proof that the only non-trivial representation of sl(3,R) preserving a
non-degenerate symmetric bilinear form is isomorphic to R3 ⊕R3∗ is similar to
the complex case in Lemma 2.8: If v, v′ ∈ R3 ⊕ R3∗ then 〈v, v′〉0 is defined as

〈v, v′〉0 = 〈(p, q), (p′, q′)〉0 := q(p′) + q′(p) (2.13)

where p, p′ ∈ R3, q, q′ ∈ R3∗ and v = (p, q), v′ = (p′, q′).
Let {e1, e2, e3} be the canonical basis of R3, then we can find elements

Aij ∈ sl(3,R)
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such that

Aij(ei) = ei, Aij(ej) = ej for i 6= j ∈ {1, 2, 3}.

Then, the equation

〈Aij · ei, ek〉0 + 〈ei, Aij · ek〉0 = 0

implies that 〈ei, ek〉0 = 0 for k = i, j. From this, the signature of the bilinear
form 〈·, ·〉0 on R3 ⊕ R3∗ is (3, 3).

2.2 Subalgebras and sl(3,R)-modules of so(3, 3).

Since sl(3,R) preserves a nondegenerate symmetric bilinear form on R3 ⊕ R3∗,
which has signature (3, 3), there exists a Lie algebra homomorphism sl(3,R)→
so(3, 3). From the simplicity of sl(3,R) such homomorphism is injective. Thus,
we conclude that so(3, 3) has a structure of sl(3,R)-module which is non-trivial.

In this section we describe all Lie subalgebras of so(3, 3) that are sl(3,R)-
modules with the structure obtained from this injection of sl(3,R) to so(3, 3).

2.2.1 Injection up to isomorphism.

Since there is an isomorphism between the simple Lie algebras so(3, 3) and
sl(4,R) ( [H, p. 519]), we shall work with the decomposition of sl(4,R) as
sl(3,R)-modules.

First we know that sl(3,R) can be injected into sl(4,R). But, we do not
know if such injection is unique.

Let

ι : sl(3,R) ↪→ sl(4,R) (2.14)

be an injective homomorphism of Lie algebras.

Through the usual representation of sl(4,R) on R4, the homomorphism ι
brings a non-trivial representation of sl(3,R) on R4. Then, by the previous
section, R4 is isomorphic as sl(3,R)-module to either R3 ⊕ R or R3∗ ⊕ R. This
implies the existence of elements φ1, φ2 ∈ GL(4,R) such that

φ−1
1 · ι(A) · φ1 =

[
A 0
0 0

]
∀A ∈ sl(3,R),

in the former case, and

φ−1
2 · ι(A) · φ2 =

[
−At 0

0 0

]
∀A ∈ sl(3,R),

in the latter.
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2.2.2 Decomposition in submodules, Part I

Assume first that the inclusion map ι of sl(3,R) in sl(4,R) is given by:

A 7→
[
A 0
0 0

]
∀A ∈ sl(3,R).

The injection ι and the simplicity of sl(3,R) produces a decomposition of
sl(4,R) into a direct sum of irreducible sl(3,R)-modules.

Note that
sl(4,R) ∼= sl(3,R)⊕ V, (2.15)

where V is a vector subspace of sl(4,R) with dim(V ) = 7.
On the other hand, observe that if v, w ∈ R3 and c ∈ R then the matrices[

0 v
0 0

]
,

[
0 0
wt 0

]
and

[
cI 0
0 −3c

]
(2.16)

belong to sl(4,R).
Furthermore, the sets

V 3
1 =

{[0 v
0 0

]
∈ sl(4,R)

∣∣∣v ∈ R3
}
,

V 3
2 =

{[ 0 0
wt 0

]
∈ sl(4,R)

∣∣∣w ∈ R3
}

and

V 1 =
{[cI 0

0 −3c

]
∈ sl(4,R)

∣∣∣c ∈ R}
are vector subspaces of sl(4,R). Note that the intersection of these vector sub-
spaces with sl(3,R) and between them is zero.

Since the sum of the dimensions of V 3
1 , V

3
2 and V 1 is 7, then

sl(4,R) ∼= sl(3,R)⊕ V 3
1 ⊕ V 3

2 ⊕ V 1 (2.17)

as a vector space.
If X1, X2 ∈ sl(4,R) then there exist unique elements Ai ∈ sl(3,R), vi ∈ R3,

wti ∈ R3∗ and ci ∈ R such that

Xi =

[
Ai + ciI vi
wti −3ci

]
for i = 1, 2. Here the bracket product of X1 and X2 is given by

[X1, X2] =

[ [
A1 + c1I v1

wt1 −3c1

]
,

[
A2 + c2I v2

wt2 −3c2

]]
(2.18)

=

[
A1A2 −A2A1 + v1w

t
2 − v2w

t
1 A1v2 −A2v1 + 4(c1v2 − c2v1)

wt1A2 − wt2A1 + 4(c2w
t
1 − c1wt2) wt1v2 − wt2v1

]
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Lemma 2.11. sl(4,R) is isomorphic to sl(3,R) ⊕ R3 ⊕ R3∗ ⊕ R as sl(3,R)-
module.

Proof. Recall that with the inclusion map ι given by

A 7→
[
A 0
0 0

]
∀A ∈ sl(3,R),

we have the decomposition (2.17).
On the other hand, the following are particular cases from for computation

in (2.18)

[ [
A 0
0 0

]
,

[
A2 0
0 0

] ]
=

[
[A,A2] 0

0 0

]
(2.19)[ [

A 0
0 0

]
,

[
0 v
0 0

] ]
=

[
0 A · v
0 0

]
[ [
A 0
0 0

]
,

[
0
wt 0

]]
=

[
0 0

−(A · w)t 0

]
[ [
A 0
0 0

]
,

[
cI
0 −3c

]]
=

[
0 0
0 0

]
where A,A2 ∈ sl(3,R), v, w ∈ R3 and c ∈ R.

Hence, it is clear that the vector subspaces V 3
1 , V 3

2 and V 1 are sl(3,R)-
submodules, and

sl(4,R) ∼= sl(3,R)⊕ V 3
1 ⊕ V 3

2 ⊕ V 1

as sl(3,R)-modules.
From (2.19) we observe the following isomorphisms

V 3
1
∼= R3

V 3
2
∼= R3∗

V 1 ∼= R

as sl(3,R)-modules. The latter shows that

sl(4,R) ∼= sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R

as sl(3,R)-module.

Remark 2.12. From representation theory, we recall that the number of su-
mmands in a decomposition into a direct sum of irreducible submodules of a
simple Lie algebra (in particular sl(3,R)) is independent of its decomposition
and this decomposition is unique up to isomorphisms.
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Corollary 2.13. With the inclusion map ι given by

A 7→
[
A 0
0 0

]
∀A ∈ sl(3,R),

the decomposition of sl(4,R) in irreducible sl(3,R)-modules is

sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R

2.2.3 Decomposition in submodules, Part II

Now assume that the inclusion map ι of sl(3,R) in sl(4,R) is given by:

A 7→
[
−At 0

0 0

]
∀A ∈ sl(3,R).

As in the previous subsection, the injection ι and the semisimplicity of
sl(3,R) produces a decomposition of sl(4,R) into a direct sum of irreducible
sl(3,R)-modules.

Here
sl(4,R) ∼= sl(3,R)⊕ V ′, (2.20)

where V ′ is a vector subspace of sl(4,R) with dim(V ′) = 7.
On the other hand, if v, w ∈ R3 and c ∈ R then the matrices[

0 v
0 0

]
,

[
0 0
wt 0

]
and

[
cI 0
0 −3c

]
(2.21)

belong to sl(4,R).
Note that the sets

V ′1
3

=
{[0 v

0 0

]
∈ sl(4,R)

∣∣∣v ∈ R3
}
,

V ′2
3

=
{[ 0 0

wt 0

]
∈ sl(4,R)

∣∣∣w ∈ R3
}
,

V ′
1

=
{[cI 0

0 −3c

]
∈ sl(4,R)

∣∣∣c ∈ R}
are vector subspaces of sl(4,R), and the intersection of these vector subspaces
with sl(3,R) and between them is zero.

Since dim(V ′1
3
) + dim(V ′2

3
) + dim(V ′1) = 7, similar to the equation (2.17),

we have
sl(4,R) ∼= sl(3,R)⊕ V ′1

3 ⊕ V ′2
3 ⊕ V ′1 (2.22)

as a vector space.
If X1, X2 ∈ sl(4,R) then there exist unique elements Ai ∈ sl(3,R), vi ∈ R3,

wti ∈ R3∗ and ci ∈ R such that

Xi =

[
−Ati + ciI vi

wti −3ci

]
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for i = 1, 2. Here the bracket product of X1 and X2 is given by

[X1, X2] =

[ [
−At1 + c1I v1

wt1 −3c1

]
,

[
−At2 + c2I v2

wt2 −3c2

]]
(2.23)

=

 (
(−At1)(−At2)− (−At2)(−At1)+

(
−At1v2+

v1w
t
2 − v2w

t
1

)
At2v1 + 4(c1v2 − c2v1)

)
−(A2w1)t + (A1w2)t + 4(c2w

t
1 − c1wt2) wt1v2 − wt2v1


Lemma 2.14. sl(4,R) is isomorphic to sl(3,R) ⊕ R3 ⊕ R3∗ ⊕ R as sl(3,R)-
module.

Proof. With the inclusion map ι given by

A 7→
[
−At 0

0 0

]
∀A ∈ sl(3,R),

we have the decomposition (2.22).
On the other hand, as particular cases for the computation in (2.23), we

have

[ [
−At 0

0 0

]
,

[
−At2 0

0 0

] ]
=

[
[−At,−At2] 0

0 0

]
(2.24)[ [

−At 0
0 0

]
,

[
0 v
0 0

] ]
=

[
0 −At · v
0 0

]
[ [
−At 0

0 0

]
,

[
0
wt 0

] ]
=

[
0 0

(A · w)t 0

]
[ [
−At 0

0 0

]
,

[
cI
0 −3c

] ]
=

[
0 0
0 0

]
where A,A2 ∈ sl(3,R), v, w ∈ R3 and c ∈ R.

Hence, it is clear that the vector subspaces V ′1
3
, V ′2

3
and V ′

1
are sl(3,R)-

submodules, and

sl(4,R) ∼= sl(3,R)⊕ V ′1
3 ⊕ V ′2

3 ⊕ V ′1

as sl(3,R)-modules.
From (2.24) we observe the isomorphisms

V ′1
3 ∼= R3∗

V ′2
3 ∼= R3

V ′
1 ∼= R

of sl(3,R)-modules. The latter shows that

sl(4,R) ∼= sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R

as sl(3,R)-module.
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Corollary 2.15. With the inclusion map ι given by

A 7→
[
−At 0

0 0

]
∀A ∈ sl(3,R),

the decomposition of sl(4,R) in irreducible sl(3,R)-modules is

sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R

Finally, the previous subsections are summarized in the following theorem

Theorem 2.16. For any non-trivial homomorphism sl(3,R)→ so(3, 3) we have
that so(3, 3) ∼= sl(3,R)⊕R3⊕R3∗⊕R as sl(3,R)-module, which is its decompo-
sition in irreducible submodules.

2.2.4 Submodules which are Lie subalgebras

In the previous subsection we showed the decomposition of so(3, 3) (∼= sl(4,R))
in irreducible sl(3,R)-modules. And because we are interested in all sl(3,R)--
submodules of sl(4,R) which are also subalgebras, we will show now which of
these subspaces satisfy both properties.

Since the decomposition

sl(4,R) ∼= sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R,

in Theorem 2.16, in irreducible sl(3,R)-modules is unique, up to order, we focus
only on these sl(3,R)-submodules and their sums.

Lemma 2.17. The irreducible sl(3,R)-submodules of sl(4,R) that are Lie sub-
algebras are sl(3,R), R3, R3∗ and R.

Proof. From equations (2.18), (2.23) and Lemmas 2.11, 2.14, if A1, A2 ∈ sl(3,R),
v1, v2 ∈ R3, wt1, w

t
2 ∈ R3∗ and c1, c2 ∈ R then[ [

A1 0
0 0

]
,

[
A2 0
0 0

] ]
=

[
[A1, A2] 0

0 0

]
,[ [

0 v1

0 0

]
,

[
0 v2

0 0

] ]
=

[
0 0
0 0

]
,[ [

0 0
wt1 0

]
,

[
wt2 0
0 0

] ]
=

[
0 0
0 0

]
,[ [

c1I 0
0 −3c1

]
,

[
c2I 0
0 −3c2

] ]
=

[
0 0
0 0

]
.

Note that the submodules R3, R3∗ and R are abelian subalgebras of sl(4,R)
and [sl(3,R), sl(3,R)] = sl(3,R). Then every irreducible sl(3,R)-submodule of
sl(4,R) is a Lie subalgebra.
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Lemma 2.18. The Lie subalgebras of sl(4,R) that are a direct sum of two
irreducible submodules are sl(3,R)⊕R3, sl(3,R)⊕R3∗, sl(3,R)⊕R, R3⊕R and
R3∗ ⊕ R.

Proof. Here we work with the decomposition of sl(4,R) from Theorem 2.16.
By Lemma 2.17 we need only compute the bracket product between different
submodules.

Let A ∈ sl(3,R), v ∈ R3, wt ∈ R3∗ and c ∈ R, then by (2.18) we have[ [
A 0
0 0

]
,

[
0 v
0 0

] ]
=

[
0 A(v)
0 0

]
∈ sl(3,R)⊕ R3,[ [

A 0
0 0

]
,

[
0 0
wt 0

] ]
=

[
0 0

−(A(w))t 0

]
∈ sl(3,R)⊕ R3∗,[ [

A 0
0 0

]
,

[
cI 0
0 −3c

]]
=

[
0 0
0 0

]
∈ sl(3,R)⊕ R,[ [

0 v
0 0

]
,

[
0 0
wt 0

]]
=

[
v · wt 0

0 −wt · v

]
∈ sl(3,R)⊕ R,[ [

0 v
0 0

]
,

[
cI 0
0 −3c

]]
=

[
0 −4cv
0 0

]
∈ R3 ⊕ R,[ [

0 0
wt 0

]
,

[
cI 0
0 −3c

]]
=

[
0 0

4cwt 0

]
∈ R3∗ ⊕ R,

where A(v) is the product, or evaluation, of the 3 × 3 matrix A with column
vector v and wt ∈ R3∗ is the transpose of the column vector w ∈ R3.

We observe that only the product [R3,R3∗] is not contained in R3 ⊕ R3∗.
Finally, we have that the direct sum R3 ⊕ R3∗ is the only direct sum of

irreducible sl(3,R)-modules that is not a subalgebra.

Now, we show which modules are Lie subalgebras containing exactly 3 irre-
ducible submodules.

Lemma 2.19. The only Lie subalgebras of sl(4,R) that are direct sum of three
irreducible submodules are sl(3,R)⊕ R3 ⊕ R and sl(3,R)⊕ R3∗ ⊕ R.

Proof. As in Lemma 2.18, we work with the decomposition of sl(4,R) in Theo-
rem 2.16.

By the proof of Lemma 2.18, we have that if R3 and R3∗ belong to a subalge-
bra, then sl(3,R) and R must as well. Then there is not a subalgebra of sl(4,R)
with exactly 3 irreducible modules containing simultaneously R3 and R3∗.

Then the only subalgebras with exactly 3 irreducible sl(3,R)-modules are

sl(3,R)⊕ R3 ⊕ R
sl(3,R)⊕ R3∗ ⊕ R.
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Now we show, in the following Lemma, the subalgebra containing 4 irre-
ducible submodules of sl(4,R), whose proof is immediate.

Lemma 2.20. The only Lie subalgebra of sl(4,R) that is a direct sum of four
irreducible submodules is sl(4,R).

Finally, we exhibit all the subalgebras of sl(4,R) which are in turn sl(3,R)-
submodules.

Theorem 2.21. The subalgebras of sl(4,R) that are, at the same time, sl(3,R)-
submodules with the structure of module induced by the injection of sl(3,R) into
sl(4,R) are those given in Lemmas 2.17-2.20.

Proof. The previous Lemmas cover all possible cases of direct sums of sl(3,R)-
submodules that are Lie subalgebras.
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Chapter 3

Action on a
Pseudo-Riemannian
Manifold

3.1 Automorphisms and Rigid Transformations
Groups

In this section we recover some definitions and results from [CQ], [Z1] and [Z2].

3.1.1 On the extension of local Killing fields

In the present and following subsections we consider M to be a connected mani-
fold and ω a geometric structure on M . First, we present some definitions and
results about automorphisms of geometric structures.

For any geometric structure ω on M and elements x, y in M , we denote
as Autloc(ω, x, y) the group of germs of automorphisms which are defined in a
neighborhood of x and take x to y. We set Autloc(ω, x) = Autloc(ω, x, x) for all
x ∈M .

We have a similar definition of automorphisms for the prolongations of the
geometric structures

Let ω : L(k)(M) → Q be a geometric structure of order k and type Q on
M . For every x, y ∈ M the set Autk+r(ω, x, y) of infinitesimal automorphisms
of ω of order k + r taking x to y consists of k + r-jets of diffeomorphisms in M

(denoted as D
(k+r)
x,y (M)) which preserve ω up to order r.

We are interested in the rigid geometric structures that are present in many
of the manifolds that we are studying, for instance, the pseudo-Riemannian
manifolds.

Definition 3.1. Let r be a non-negative integer. A geometric structure ω of

25
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order k on M is said to be r-rigid if, for every x ∈M , the canonical projection
πk+r+1
k+r : Autk+r+1(ω, x)→ Autk+r(ω, x) is injective.

Assuming that ω is a rigid structure, we have the following Theorem from
[Z2], also proved by Gromov.

Theorem 3.2 (Gromov). .

(a) There is a positive integer k, and an open dense set U ⊂M such that for

x, y ∈ U , every element of Aut(k)(ω, x, y) extends uniquely to an element

of Autloc(ω, x, y). In particular, for m ∈ U , every element of Aut(k)(ω,m)
extends uniquely to an element of Autloc(ω,m).

(b) If in addition (M,ω) is compact and analytic, we may take U = M .

Recall that a Killing field for a geometric structure ω on M is a vector
field on M whose local flow acts on M by local automorphisms of ω. The
space of Killing fields of a geometric structure ω is denoted by Kill(M,ω) and
Killloc(M,ω,m), the space of local Killing fields, will denote the space of germs
at m of Killing fields in a neighborhood of m. With this notation we present
the next result (theorem 2.2, [Z2]).

Theorem 3.3. Suppose further that M is analytic and simply connected, and
that ω is analytic. Then for every m ∈M , every element of Killloc(ω,m) extends
uniquely to an element of Kill(M,ω).

Recall that a geometric structure on M is said to be of algebraic type if
Q is a real algebraic variety and the action of GL(k)(n) is algebraic. For such
structures we have the following theorem.

Theorem 3.4 (Gromov). If ω is a rigid analytic structure of algebraic type,
and M is simply connected and compact, then Aut(M,ω) has finitely many
components as does the stabilizer of each point in M .

The proof of the above theorem shows that there exists a closed submanifold
N ⊂M which is an orbit of the pseudogroup Autloc(M,ω) and, therefore, each
m ∈ M has an open neighborhood in N contained in an orbit of the local flow
generated by a local Killing field near m.

3.1.2 Transitivity of the centralizer

In this section we assume M to be a compact manifold, ω a rigid unimodular
geometric structure of algebraic type (for example, ω a pseudo-Riemannian
metric) and G a non-compact simple Lie group acting on M preserving ω.

Recall that a structure ω of type V is called unimodular if for each m ∈M ,
the GL(r)(n,R)-orbit in V determined by ω(m) has stabilizers whose image
in GL(n,R) under the natural projection of jets GL(r)(n,R) → GL(n,R) is
contained in the group of matrices whose determinant is equal to ±1.

Define M̃ to be the universal covering space of M .
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Let k be the Lie algebra of vector fields on M̃ that preserve ω̃ (the lifting of

ω̃ to M̃). By the rigidity of ω, dim k <∞. We have a natural embedding g→ k

defined by the G-action on M (and, the G̃-action on M̃). Letting h ⊂ n ⊂ k
be the subalgebras defined by n = normalizerk(g), and h = centralizerk(g), it is
clear that g ⊂ n and n = g⊕ h by the simplicity of g.

With this notation we enunciate the following Lemma, (Lemma 4.1, [Z1])
which was proved by Gromov and reproduced here

Lemma 3.5 (Gromov). n is transitive on an open dense conull set in M̃ . In
fact, the same is true for h.

Proof. Let ω′ be the structure consisting of the pair whose value at x ∈ M is
(ω(x), g(k)(x)), where g(k)(x) is the Lie algebra of k-jets of vector fields in g,
where k is sufficiently large. Then G preserves this rigid structure.

By rigidity of the G-action and the argument shown in the proof of the
Theorem 3.4 in [Z2], only a portion of this argument is reproduced in Theorem
3.4 (in this case N ⊂ M is an open conull set because of the G-action and the
ergodicity), the ‘infinitesimal automorphism’ of (ω, g(k)) is transitive on an open
conull set, and hence so are the local automorphisms. The corresponding vector
fields are simply elements of n.

We have n = g ⊕ h, and from Corollary 4.3 in [Z2], the h-orbit actually
contains the g-orbit a.e. Since n is transitive on an open conull set, h must
therefore be so as well.

3.2 Notations and Definitions

Let G be a connected non-compact simple Lie group with Lie algebra g and M a
connected finite volume pseudo-Riemannian manifold whereG acts isometrically
on M with a dense orbit.

Because every isometric G-action on a manifold M with a dense orbit is
locally free [Sza], the orbits define a foliation that we will denote with O. Then,
for every x ∈M there exist TxO⊥, a vector subspace of TxM , such that TxM =
TxO ⊕ TxO⊥.

We are interested in the case G = SL(3,R) and 8 < dim(M) ≤ 14. So,
1 < dim(TxO⊥) ≤ 6 for all x ∈M , in particular.

The geometric structure of pseudo-Riemannian metric on the manifold M
will be denoted by σ.

On the other hand, the bundle TO tangent to the foliation O is a trivial
vector bundle isomorphic to M × g, under the isomorphism M × g→ TO given
by (x,X) 7→ X∗x . This also defines an isomorphism fiber TxO with g. For the
rest of these letters for X in the Lie algebra of a group acting on a manifold,
we denote by X∗ the vector field on the manifold whose one-parameter group
of diffeomorphism is given by (exp(tX))t through the action on the manifold.

Recalling the definition of Killing fields, that will be used in this chapter,
Killloc

0 (M,σ, x) will denote the subspace of Killloc(M,σ, x) consisting in vector
fields that vanish on x. Unless otherwise indicated, in the rest of this work we
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will omit the symbol that denotes the structure of pseudo-Riemannian metric.
In particular, Kill(M) := Kill(M,σ).

3.3 Existence of the centralizer

An immediate consequence of the Jacobi identity is the next lemma, proved in
[OQ].

Lemma 3.6. Let N be a pseudo-Riemannian manifold and x ∈ N . Then, the
map λx : Kill0(N, x) → so(TxN) given by λx(Z)(v) = [Z, V ]x, where V is any
vector field such that Vx = v, is a well defined homomorphism of Lie algebras.

Where so(W ) denotes the Lie algebra of linear maps on W that are skew-
symmetric with respect to a non-degenerate symmetric bilinear form on the
vector space W .

Next, we bring to this work the following result that appears in [Q] and
[OQ].

Proposition 3.7. Let G be a connected non-compact simple Lie group acting
isometrically and with a dense orbit on a connected finite volume pseudo-Rie-
mannian manifold M . Consider the G̃-action on M̃ , lifted from the G-action
on M . Assume that M and the G-action on M are both analytic. Then, there
exists a conull subset S ⊂ M̃ such that for every x ∈ S the following properties
are satisfied:

1. there is a homomorphism ρx : g = sl(3,R)→ Kill(M̃) which is an isomor-
phism onto its image ρx(g) = g(x).

2. g(x) ⊂ Kill0(M̃, x), i.e. every element of g(x) vanishes at x.

3. For every X,Y ∈ g we have

[ρx(X), Y ∗] = [X,Y ]∗ = −[X∗, Y ∗].

In particular, the elements in g(x) and their corresponding local flows
preserve both O and TO⊥.

4. The homomorphism of Lie algebras λx ◦ ρx : g → so(TxM̃) induces a

g-module structure on TxM̃ for which subspaces TxO and TxO⊥ are g-
submodules.

Remark 3.8. The last incise of Proposition 3.7 shows that TxO⊥ is, through the
map λx ◦ ρx, a g-module for every x ∈ S. Hence, we have two possible options
for the subset S:

(a) TxO⊥ is a trivial g-module for almost every x ∈ S, or

(b) There exists a subset, A ⊆ S, of positive measure such that TxO⊥ is a
non-trivial g-module for all x ∈ A.
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Here, we can consider the g-valued 1-form ω on M̃ which is defined, at
every x ∈ M̃ , by the composition of the projection TxM̃ → TxO and the
isomorphism of the latter with g. We can also consider the g-valued 2-form
given by Ω = dω|∧2TO⊥ .

If part (a) of Remark 3.8 is satisfied then TO⊥ is integrable. This is a
consequence of the following result, whose proof can be found in [Q].

Lemma 3.9. Let G, M and S be as in Proposition 3.7. If we assume that the
G-orbits are non-degenerate, then:

(1) For every x ∈ S, the maps ωx : TxM̃ → g and Ωx : ∧2TxO⊥ → g are both
homomorphism of g-modules, for the g-module structures from Proposition
3.7.

(2) The normal bundle TO⊥ is integrable if and only if Ω = 0.

Proof. Let X ∈ g and x ∈ S be elements fixed but arbitrarily given.

For a Z vector field over M̃ , let Z>, Z⊥ be its TO and TO⊥ components,
respectively. Since ρx(X) is a Killing field preserving O and TO⊥ it follows
that:

[ρx(X), Z]> = [ρx(X), Z>],

[ρx(X), Z]⊥ = [ρx(X), Z⊥].

Denote with α : TxO → g the inverse map of X 7→ X∗x . Then we have:

ωx(X · Zx) = ωx([ρx(X), Z]x)

= α([ρx(X), Z>]x)

= α([ρx(X), ω(Z)∗]x)

= α([X,ω(Z)]∗x)

= [X,ωx(Z)]

= X · ωx(Zx),

thus showing that ωx is a homomorphism of g-modules. Here for the second
and third identities, the definition of ω is used, and in the fourth identity the
formula from Proposition 3.7(3); the rest follows from the definition of the g-
module structures involved.

Next, observe that for every pair of sections Z1, Z2 of TO⊥ we have:

Ω(Z1 ∧ Z2) = Z1(ω(Z2))− Z2(ω(Z1))− ω([Z1, Z2])

= −ω([Z1, Z2]),

which implies (2).

Now let u, v ∈ TxO⊥ be given and choose U , V sections of TO⊥ extending
them, respectively. Hence, using that ω is a homomorphism of g-modules, the
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Jacobi identity and the above expression relating Ω and ω, we obtain:

Ωx(X · (u ∧ v)) = Ω((X · u) ∧ v) + Ω(u ∧ (X · v))

= Ω([ρx(X), U ] ∧ V ) + Ωx(U ∧ [ρx(X), V ])

= −ωx([[ρx(X), U ], V ])− ωx([U, [ρx(X), V ]])

= −ωx([ρx(X), [U, V ]])

= −ωx(X · [U, V ]x)

= −[X,ωx([U, V ])]

= [X,Ωx(U ∧ V )]

= X · Ωx(u ∧ v),

thus showing that Ωx is a homomorphism of g-modules. Note that both

[ρx(X), U ] and [ρx(X), V ]

are sections of TO⊥.

Remark 3.10. Let G, M and S be as in Proposition 3.7, suppose also that the G-
orbits on M are non-degenerate. From the preceding result and the analyticity
of the elements we have two possible cases: 1) Ω ≡ 0, and then TO⊥ is integrable

or 2) Ωx 6= 0 for almost all x ∈ M̃ .

We will assume in the rest of this work that the G-orbits are non-degenerate
with respect to the pseudo-Riemannian metric. So, the G̃-orbits on M̃ are non-
degenerate as well and we have a direct sum decomposition TM̃ = TO⊕ TO⊥.
The non-degeneracy of the orbits is ensured for manifolds with low dimension
with respect to the dimension of the Lie group acting on this, (see [Q]).

Lemma 3.11. Let G be a connected non-compact simple Lie group acting
isometrically and with a dense orbit on a connected finite volume pseudo-Rie-
mannian manifold M . If dim(M) < 2 dim(G), then the bundles TO and TO⊥
have fibers that are non-degenerate with respect to the metric on M .

For the G-action as in Proposition 3.7, we consider M̃ endowed with the
G̃-action obtained by lifting the G-action on M . Let us denote by H the Lie
subalgebra of Kill(M̃) consisting of the fields that centralize the G̃-action on

M̃ . Now, we embed the Lie algebra g into H. This result allows us to apply
representation theory to the study of H. The next Lemma is proved in [OQ].

Lemma 3.12. Let S be as in the Proposition 3.7. Then, for every x ∈ S and
for ρx given as in the Proposition 3.7, the map ρ̂x : H → Kill(M̃) given by:

ρ̂x(X) = ρx(X) +X∗,

is an injective homomorphism of Lie algebras whose image G(x) lies in H. In
particular, ρ̂x induces on H a g-module structure such that G(x) is a submodule
isomorphic to g.
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Proof. First, observe that by the identity in Proposition 3.7(3) it is easy to see
that the image of ρ̂x lies in H.

To prove that ρ̂x is a homomorphism of Lie algebras we apply Proposition
3.7(3) as follows for X,Y ∈ g:

[ρ̂x(X), ρ̂x(Y )] = [ρx(X) +X∗, ρx(Y ) + Y ∗]

= [ρx(X), ρx(Y )] + [ρx(X), Y ∗] + [X∗, ρx(Y )] + [X∗, Y ∗]

= ρx([X,Y ]) + [X,Y ]∗ + [X,Y ]∗ + [X∗, Y ∗]

= ρx([X,Y ]) + [X,Y ]∗

= ρ̂x([X,Y ])

For the injectivity of ρ̂x we observe that ρ̂x(X) = 0 implies X∗x = (ρx(X) +
X∗)x = 0, which in turns yields X = 0 because the G-action is locally free. The
last claim is now clear.

Now we relate the structure of g-module of H to that of TxM̃ .

Lemma 3.13. Let S be as in Proposition 3.7. Consider TxM̃ and H endowed
with the g-module structures given by Proposition 3.7(4) and Lemma 3.12, re-
spectively. Then, for almost every x ∈ S, the evaluation map:

evx : H → TxM̃, Z 7→ Zx,

is a homomorphism of g-modules that satisfies evx(G(x)) = TxO. Furthermore,

for almost every x ∈ S we have evx(H) = TxM̃ .

Proof. For every x ∈ S, if we let Z ∈ H and X ∈ g be given, then:

evx(X · Z) = [ρ̂x(X), Z]x = [ρx(X) +X∗, Z]x

= [ρx(X), Z]x = X · Zx = X · evx(Z)

where we have used Lemma 3.6 and the definition of the g-module structures
involved, thus proving the first part. The second part is proved in Lemma 3.5
using the transitivity of h on an open dense conull set in M .

Now, we show some results which relate isometries with Killing fields for com-
plete manifolds. The next result follows from the rigidity of pseudo-Riemannian
metrics and appears as Lemma 1.9 from [OQ].

Lemma 3.14. Let N be an analytic pseudo-Riemannian manifold. Then, every
Killing vector field of N , either local or global, is analytic. In particular, the
isometry group Iso(N) acts analytically on N .

From [ONe], on a complete pseudo-Riemannian manifold every global Killing
vector field is complete, then we have the following result, that we can find as
Proposition 33 on Chapter 9.
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Lemma 3.15. Let N be a complete pseudo-Riemannian manifold and suppose
that the action of its isometry group Iso(N) is considered on the left. If Iso(N)
denotes the Lie algebra of Iso(N), then the map:

Iso(N)→ Kill(N), X → X∗,

is an anti-isomorphism of Lie algebras. In particular, [X,Y ]∗ = −[X∗, Y ∗] for
every X,Y ∈ Iso(N).

And [OQ] shows that on a complete manifold every Lie algebra of Killing
fields can be obtained from an isometric right action.

Lemma 3.16. Let N be a complete pseudo-Riemannian manifold and H a sim-
ply connected Lie group with Lie algebra h. If ψ : h → Kill(N) is a homomor-
phism of Lie algebras, then there exists an isometric right H-action N×H → N
such that ψ(X) = X∗, for every X ∈ h. Furthermore, if N is analytic, then the
H-action is analytic as well.

Proof. Consider the map α : Iso(N) → Kill(N) given by α(Y ) = −Y ∗ which
is an isomoprhism of Lie algebras by Lemma 3.15. Let Ψ : H → Iso(N) be
the homomorphism of Lie groups induced by the homomorphism α−1 ◦ψ : h→
Iso(N). This yields a smooth isometric right H-action given by:

N ×H → N, (n, h) 7→ nh = Ψ(h−1)(n).

For X ∈ h there is Y ∈ Iso(N) such that ψ(X) = −α(Y ) = Y ∗. Hence for the
right H-action one computes X∗at every p ∈ N as follows:

X∗p =
d

dt

∣∣∣
t=0

p exp(tX) =
d

dt

∣∣∣
t=0

Ψ(exp(−tX))(p)

=
d

dt

∣∣∣
t=0

exp(−t(α−1 ◦ ψ)(X))p =
d

dt

∣∣∣
t=0

exp(tY )p

= Y ∗ = ψ(X)p,

which proves the first part of the lemma. Note that the first and second to last
identities use the definition of Z∗ for the right H-action and the left Iso(N)-
action, respectively. Finally the last part of our statement follows from the last
claim of lemma 3.14.

3.4 Properties of the centralizer

From now on we assume G = S̃L(3,R) and 8 < dim(M) ≤ 14 with the same
hypotheses as in Proposition 3.7. We also assume that part (b) of Remark 3.8
is satisfied, this is, there exists A ⊆ S, of positive measure, such that TxO⊥ is
a non-trivial g-module for all x ∈ A.

With these hypotheses we have the following result, similar to Lemma 2.1
in [OQ].



3.4. PROPERTIES OF THE CENTRALIZER 33

Lemma 3.17. Let S be as in Proposition 3.7. Consider TxO⊥ endowed with
the sl(3,R)-module structure given by Proposition 3.7(4). Then, if x ∈ A the
sl(3,R)-module TxO⊥ is isomorphic to R3⊕R3∗ and dim(M)=14. In particular,
so(TxO⊥) is isomorphic to so(3, 3) as a Lie algebra and as a sl(3,R)-module.

Proof. Let us choose an arbitrary but fixed element x ∈ A.
In the first place, by Lemma 3.11, we have that TxO⊥ is a non-degenerate

fiber with respect to the metric on M̃ , preserved by the action of sl(3,R).
Then, from Proposition 3.7(4), TxO⊥ is a vector space with the next pro-

perties:

1. 1 < dim(TxO⊥) ≤ 6, and

2. is a sl(3,R)-module carrying an invariant inner product.

On the other hand, by our choice of the element x, TxO⊥ is a non-trivial
g-module.

Recall, from Lemma 2.10, that R3⊕R3∗ is the only non-trivial (up to isomor-
phism) sl(3,R)-module with dimension ≤ 6 that has a non-degenerate symme-
tric bilinear form invariant under the structure of sl(3,R)-module. Then

TxO⊥ ' R3 ⊕ R3∗.

Thus, we have that dim(M) = 14.
Finally, we observe that the representation of sl(3,R) on TxO⊥ defines a

non-trivial homomorphism so(TxO⊥) → so(3, 3). Since so(3, 3) is simple, the
latter is injective and so it is an isomorphism.

Corollary 3.18. If we assume TO⊥ is non-integrable in Lemma 3.17 then we
can chose the subset A (in Lemma 3.17) such that has total measure.

Proof. If TO⊥ is non-integrable then Lemma 3.9 implies that the 2-form Ω is
non-zero. This 2-form is analytic and thus it vanishes on a proper analytic
subset of M̃ , which is necessarily null. Hence, Ωx 6= 0 for almost every x ∈ S.

Here, we choose and fix x ∈ S such that Ωx 6= 0.
By our choice of x ∈ S, Lemma 3.9(1) implies that the map Ωx : ∧2TxO⊥ →

sl(3,R) is a homomorphism of sl(3,R)-modules that it is non-trivial. Hence,
TxO⊥ is a non-trivial sl(3,R)-module.

Thus, we choose A of the following manner:

A :=
{
x ∈ M̃

∣∣Ωx 6= 0
}
∩ S.

Hence, A ⊆ S, and since µ(M̃ \ {x ∈ M̃ |Ωx 6= 0}) = µ(M̃ \ S) = 0 then

µ(M̃ \A) = 0.

Corollary 3.19. There exists a subset of positive measure, S, in M̃ , such that
every element of S satisfies Proposition 3.7 and Lemmas 3.13 and 3.17.
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Proof. Let S̃ ⊂ M̃ be the conull subset as in Proposition 3.7.
On the other hand, we have the existence of a subset of positive measure A

in S̃ such that Lemma 3.17 is satisfied for every x ∈ A.
Let S′′ be the conull subset in M̃ of elements which satisfy Lemma 3.13.

Define S := A ∩ S′′. Then, since

A = ((M̃ \ S′′) ∪ S′′) ∩A

= ((M̃ \ S′′) ∩A) ∪ (A ∩ S′′)

and

µ(M̃ \ S′′) = 0,

we have that µ(S) = µ(A).
We note that all the elements in the set S satisfy the properties in Lemmas

3.13 and 3.17.

Remark 3.20. Since S ⊂ S̃ and µ(S) = µ(A), we replace from now on, the conull
subset of Proposition 3.7 by its subset S as in the previous corollary.

The previous results allow us to obtain a decomposition of the centralizer
H of the S̃L(3,R)-action into submodules related to the geometric structure on

M̃ , similar to Lemma 2.2 in [OQ].

Lemma 3.21. Let S be as in Corollary 3.19. Then, for every x ∈ S and for
the sl(3,R)-module structure on H from Lemma 3.12 there is a decomposition
into sl(3,R)-submodules H = G(x)⊕H0(x)⊕W(x), satisfying:

1. G(x) = ρ̂x(sl(3,R)) is a Lie subalgebra of H isomorphic to sl(3,R) and
evx(G(x)) = TxO.

2. H0(x) = ker(evx) is a Lie subalgebra and a sl(3,R)-submodule of H, iso-
morphic to a subset of so(TxO⊥).

3. evx(W(x)) = TxO⊥ and W(x) is isomorphic to R3 ⊕ R3∗ as sl(3,R)-
module.

In particular, the evaluation map evx defines an isomorphism of sl(3,R)-modules

G(x) ⊕W(x) → TxM̃ = TxO ⊕ TxO⊥ preserving the summands in that order.
The structure of so(TxO⊥) as sl(3,R)-module is obtained via the homomor-
phism, of Lie algebras, λ⊥x (Lemma 3.6). Here, λ⊥x is a homomorphism of
sl(3,R)-modules which is injective in H0(x).

Proof. From Corollary 3.19, every element x ∈ S satisfies Lemma 3.13 and
Lemma 3.17. Let us choose and fix one such point x ∈ S. By Lemma 3.12, we
conclude that G(x) = ρ̂x(sl(3,R)) is a Lie subalgebra isomorphic to sl(3,R).

Define H0(x) = ker(evx). By Lemma 3.13, it follows that H0(x) is an

sl(3,R)-submodule of H. And since H0(x) = H ∩Kill0(M̃, x), it follows that it
is a Lie subalgebra as well.
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On the other hand, the elements of G(x) are of the form ρx(x) + X∗, with
X ∈ sl(3,R), where ρx is the Lie algebra homomorphism from Proposition 3.7.
Hence, for any such element we have evx(ρx(X) + X∗) = X∗x ; particularly, the
condition evx(ρx(X)+X∗) = 0 implies X = 0. In other words, G(x)∩H0(x) = 0.
Hence, there exists an sl(3,R)-submoduleW ′(x) complementary to G(x)⊕H0(x)

in H. In particular, we have an isomorphism from G(x)⊕W ′(x) onto TxM̃ . So,
if we choose W(x) as the inverse image of TxO under this isomorphism, then
we have the desired decomposition into sl(3,R)-submodules.

Now, we see some properties of H0(x).

Let Kill0(M̃, x,O) be the Lie algebra of Killing vector fields on M̃ which pre-

serve the foliation O and vanish at x. Every Killing vector field in Kill0(M̃, x,O)
leaves the normal bundle TxO⊥ invariant, and the map λx from Lemma 3.6 in-
duces a homomorphism of Lie algebras:

λ⊥x : Kill0(M̃, x,O)→ so(TxO⊥), X 7→ λx(X) |TxO⊥

Observe that ρx(sl(3,R)) and H0(x) lie inside of Kill0(M̃, x,O).
Claim 1: λ⊥x is injective when restricted to sl(3,R)(x). By Proposition 3.7(4),

the vector space TxO⊥ has a structure of sl(3,R)-module induced from the map
λ⊥x ◦ ρx. From the choice of the element x ∈ S and Lemma 3.13 such module
structure is non-trivial. Hence, the map λ⊥x ◦ ρx : sl(3,R) → so(TxO⊥) is also
non-trivial. As sl(3,R) is a simple Lie algebra, the function λ⊥x restricted to
sl(3,R) is injective.

Claim 2: λ⊥x restricted to H0(x) is injective. Recall that a Killing vector
field is completely determined by its 1-jet at x; this follows from the fact that
pseudo-Riemannian metric structures are 1-rigid (see [CQ]). If Z ∈ H0(x) is
given, then Zx = 0 and so it is determined by the values of [Z, V ]x for V a vector
field on a neighborhood of x. As Z lies in the centralizer of the SL(3,R)-action
then [Z,X∗]x = 0 for all X ∈ sl(3,R), so [Z, V ]x = 0 when Vx ∈ TxO. Then,
if [Z, V ]x = 0 when Vx ∈ TxO⊥ implies Z = 0. This shows that λ⊥x is injective
when it is restricted to H0(x).

On the other hand, if X ∈ sl(3,R) and Y ∈ H0(x) with the structure of
sl(3,R)-modules of each one, we have that:

λ⊥x (X · Y ) = λ⊥x ([ρ̂x(X), Y ]) = λ⊥x ([ρx(X) +X∗, Y ])

= λ⊥x ([ρx(X), Y ]) = [λ⊥x (ρx(X)), λ⊥x (Y )]

= X · λ⊥x (Y ),

This shows that the map λ⊥x restricted to H0(x) is a homomorphism of sl(3,R)-
modules.

3.5 Structure with a non-degenerate inner pro-
duct

We now look at the structure of the inner product in TxO⊥, for every element
x ∈ S.
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Remark 3.22. Let x be an element of S, by Lemma 3.17, we have that

so(TxO⊥) ∼= so(3, 3),

as sl(3,R)-module. Then so(TxO⊥) has a decomposition as a direct sum of
irreducible sl(3,R)-modules. On the other hand, Lemma 3.21 shows that, this
decomposition can be given by an isomorphism of sl(3,R) onto a subalgebra
contained in so(TxO⊥).

Recall the following properties of representations of simple Lie algebras:

1. The number of summands in a decomposition of a direct sum of irreducible
submodules is independent of its decomposition.

2. Every decomposition into submodules, that are the sum of all the sub-
modules of the same class of isomorphism, is unique except for order.

Then, by the simplicity of sl(3,R) and its property of decomposition of
modules in direct sum of irreducible submodules, we have from Theorem 2.16
that

so(TxO⊥) ∼= sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R.

With this result and the properties of H0(x) in Lemma 3.21, Theorem
2.21 shows that H0(x) is isomorphic (as Lie algebra and sl(3,R)-module, such
property will henceforth denoted as ') to one of the next Lie subalgebras of
sl(4,R) ' so(3, 3):

0

R R3

R3∗ sl(3,R)

sl(3,R)⊕ R sl(3,R)⊕ R3

sl(3,R)⊕ R3∗ R3 ⊕ R
R3∗ ⊕ R sl(3,R)⊕ R3 ⊕ R

sl(3,R)⊕ R3∗ ⊕ R sl(3,R)⊕ R3 ⊕ R3∗ ⊕ R



Chapter 4

Possibilities of H0(x)

In the previous chapter we showed all the possible values that H0(x) can take.
In this chapter we analyze the implications of all these possible cases of H0(x).
Here, we use the notation of Lemma 3.21.

Remark 4.1. From Lemma 3.21, we have that for every x ∈ S the map evx
exhibits an isomorphism of W(x) onto TxO⊥ as sl(3,R)-modules. Then, from
Lemma 3.17, we can choose subspaces V(x),V∗(x) ⊂ W(x) such that

W(x) = V(x)⊕ V∗(x)

and λ⊥x (sl(3,R)(x)) acts on V(x) and V∗(x) as sl(3,R) acts on R3 and R3∗ as
sl(3,R)-modules, respectively.

By the structure of H as sl(3,R)-module and the properties of the map λ⊥x
in Lemma 3.21, we have some properties of the Lie algebra H.

[G(x),H0(x)] ⊆ H0(x), (4.1)

[G(x),W(x)] = W(x), (4.2)

[H0(x),W(x)] ⊆ H0(x)⊕W(x), (4.3)

[H0(x),H0(x)] ⊆ H0(x). (4.4)

In particular, when H0(x) is isomorphic to specific algebras, some equalities
of the previous equations are satisfied.

Lemma 4.2. Let S be as in Corollary 3.19. As in Lemma 3.21, if H0(x) is
isomorphic either to R, sl(3,R), sl(3,R)⊕ R or so(3, 3) for some x ∈ S then

[H0(x),W(x)] =W(x).

Proof. Let x be an element in S such that:
H0(x) ' R
First, by properties of the Lie bracket we have that

[H0(x),W(x)] ∼= R⊗ (R3 ⊕ R3∗)

37
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as sl(3,R)-module. On the other hand, since

R⊗ (R3 ⊕ R3∗) ∼= R3 ⊕ R3∗

as sl(3,R)-module, hence by equation (4.3) we have

[H0(x),W(x)] ∼=W(x).

H0(x) ' sl(3,R)
Here, by (4.1) and (4.4), G(x)⊕H0(x) is a semisimple Lie algebra isomorphic

to sl(3,R)× sl(3,R). Since

dim(H0(x)) = dim(sl(3,R)(x)) = 8, dim(so(TxO⊥)) = 15

and λ⊥x0
is injective when is restricted to sl(3,R)(x) and H0(x) then

λ⊥x (sl(3,R)(x)) = λ⊥x (H0(x)).

From this and the way that we obtain decomposition of H in a direct sum
of irreducible sl(3,R)-modules (via the homomorphism λ⊥x and the simple Lie
algebra G(x)) we have that

[H0(x),W(x)] =W(x).

H0(x) ' sl(3,R)⊕ R
With similar arguments of the two previous cases, we have that

[H0(x),W(x)] =W(x).

H0(x) ' so(3, 3)
Recall, the structure of sl(3,R)-module of H is given by the subalgebra G(x).

In a similar case, to how is obtained this structure, we can bring toH a structure
of so(3, 3)-module given by the subalgebra H0(x), which in this case is a simple
Lie algebra.

In Lemma 3.13 we have proved that the map evx is a homomorphism of
sl(3,R)-modules. Note that in its proof we only have required

ρx(g) ⊂ Kill0(M̃, x,O).

With similar arguments to this proof, the result is the same if we replace the
structure of sl(3,R)-module of H by its structure of so(3, 3)-module and the
algebra G(x) by the simple Lie algebra H0(x).

As consequence of these changes we have the next result

[H0(x),W(x)] =W(x).

To study all possible cases of H0(x) we have divided these, attending the
number of irreducible sl(3,R)-modules that contains.
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4.1 H0(x) vanishes

Lemma 4.3 (H0(x) = 0). Let S be as in Corollary 3.19. With the notation of
Lemma 3.21, if H0(x) = 0 for some x ∈ S, one of the following occurs:

(1) The radical of H is V(x)⊕ V∗(x).

(2) H = G(x)⊕ V(x)⊕ V∗(x) is a simple Lie algebra isomorphic to g2(2).

Proof. Let us choose an arbitrary but fixed element x ∈ S such that H0(x) = 0,
as in Lemma 3.21. In this case, H = G(x)⊕ V(x)⊕ V∗(x).

Since G(x) is a simple Lie algebra, isomorphic to sl(3,R), we can choose s a
Levi factor of H that contains G(x). As the structure of sl(3,R)-module of H is
obtained by the subalgebra G(x) and G(x) ⊆ s, then s is a sl(3,R)-module.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕W .
Since rad(H) is an ideal of H this induces the decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕W ⊕ rad(H)

that we can compare with the decomposition of irreducible sl(3,R)-modules
from Lemma 3.21

H = G(x)⊕ V(x)⊕ V∗(x).

From the properties of representations of Lie algebras and the decomposition
H = G(x)⊕ V(x)⊕ V∗(x), one of the following must occur:

(a) s = G(x)⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕ V∗(x) and rad(H) = V(x).

(c) s = G(x) and rad(H) = V(x)⊕ V∗(x).

(d) H = G(x)⊕ V(x)⊕ V∗(x) is semisimple.

Next, we analyze all of these possible cases.
Suppose the case (a) is satisfied:

s = G(x)⊕ V(x) and rad(H) = V∗(x).

As s = G(x)⊕ V(x) is a semisimple Lie algebra then s is a finite direct pro-
duct, h1 × h2 × · · · × hk, of simple ideals. Since, every ideal is invariant by G(x)
then these ideals are sl(3,R)-modules. By properties of representation of sl(3,R)
and the decomposition of s in a direct sum of irreducible sl(3,R)-modules we
have that k ≤ 2.

If k = 2, H = h1 × h2. From (4.2) we have that [G(x),V(x)] ⊆ V(x). On
the other hand, since V(x) is isomorphic to R3 as sl(3,R)-module, the bracket
operation in V(x) gives us an isomorphism into the sl(3,R)-module R3∗. This
shows that [V(x),V(x)] = 0. So, we have proved that V(x) is an ideal of s =
G(x) ⊕ V(x). Without loss of generality we assume h2 = V(x), but this is not
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possible because then the simple ideal h2 would be an abelian ideal. Therefore
k = 1.

If k = 1, s is a simple Lie algebra. So, s = G(x) ⊕ V(x) is a real simple
Lie algebra with dimension 11. Then, sC is a complex simple Lie algebra with
complex dimension 11, that by [H, p. 516] cannot be possible. We have proved
that case (a) cannot happen.

Assume case (b) is satisfied:

s = G(x)⊕ V∗(x) and rad(H) = V(x).

The argument is the same that in case (a), so this case is not possible.
Suppose case (c) is satisfied:

s = G(x) and rad(H) = V(x)⊕ V∗(x).

Since V(x) ' R3 and V∗(x) ' R3∗ as sl(3,R)-modules then the Lie bracket
operation on the Lie algebra rad(H) produces the next:

H ⊃ [V(x),V(x)] , isomorphic to a submodule of R3∗

H ⊃ [V(x),V∗(x)] , isomorphic to a submodule of sl(3,R)⊕ R
H ⊃ [V∗(x),V∗(x)] , isomorphic to a submodule of R3

So [V(x),V(x)] ⊆ V∗(x), [V(x),V∗(x)] = 0 and [V∗(x),V∗(x)] ⊆ V(x). Using
the solvability of rad(H) we have that [V(x),V(x)] = 0 or [V∗(x),V∗(x)] = 0.

If case (d) is satisfied:

H = G(x)⊕ V(x)⊕ V∗(x) is a simple Lie algebra.

Using the same argument as in case (a), H is direct product of a finite
number of simple ideals h1×h2×· · ·×hk where every ideal is a sl(3,R)-module
and k ≤ 3.

If k = 3, H = h1 × h2 × h3, we can assume, reindexing if necessary, that
h3 = V∗(x) and h1×h2 = G(x)⊕V(x). Then [V∗(x),V∗(x)] ⊆ h3, but as in case
(c) we have that [V∗(x),V∗(x)] = 0, so h3 is an abelian Lie algebra and this is
not possible. Therefore k ≤ 2.

If k = 2, H = h1 × h2, after decomposing h1 and h2 as the direct sum
of sl(3,R)-modules, and reindexing if necessary, we can assume that h1 is an
irreducible sl(3,R)-module and h2 = V1 ⊕ V2, where V1 and V2 are irreducible
sl(3,R)-modules. We can also assume that V∗(x) ⊂ h2 and V(x)⊕ V∗(x) = h2,
because as in the previous case, it cannot happen that h1 = V(x). Then G(x) ⊆
h1 and [G(x),W(x)] = [h1, h2] = 0 that contradicts the equation (4.2).

If k = 1, H = G(x)⊕V(x)⊕V∗(x) is a real simple Lie algebra of dimension
14. Then, H is the realification of a complex simple Lie algebra of dimension
7 or its complexification, HC, is a complex simple Lie algebra. But, by [H, p.
516], there is not a complex simple Lie algebra of dimension 7. So, HC is a
complex simple Lie algebra with dimC(HC) = 14. Then, HC ∼= g2. From here,
H is isomorphic to a real form of g2.
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On the other hand, we recall that H contains a Lie subalgebra isomorphic to
sl(3,R), that is simple and non-compact. Then, H is non-compact. Otherwise,
exercise 4(ii) in the page 152 of [H], would imply that sl(3,R) is compact, which
is a contradiction.

Since, by [H, p. 518], there is only a non-compact real form of g2, namely
g2(2). Then

H = G(x)⊕ V(x)⊕ V∗(x) ' g2(2).

4.2 Subalgebras with one submodule

4.2.1 H0(x) ' R
Lemma 4.4 (H0(x) ' R). Let S be as in Corollary 3.19. With the notation
of Lemma 3.21, if H0(x) is isomorphic to R as sl(3,R)-module for some x ∈ S,
one of the following occurs:

(1) The radical of H is H0(x) ⊕ V(x) ⊕ V∗(x) where V(x) ⊕ V∗(x) is a Lie
subalgebra.

(2) H = G(x) ⊕H0(x) ⊕ V(x) ⊕ V∗(x) is a simple Lie algebra isomorphic to
sl(4,R).

Proof. Let us choose an arbitrary but fixed element x ∈ S such that H0(x) ' R,
as in Lemma 3.21.

We recall that G(x) is a simple Lie algebra isomorphic to sl(3,R). We can
choose s a Levi factor of H that contains G(x). With the sl(3,R)-module struc-
ture of H, defined by the subalgebra G(x), and as G(x) ⊂ s then s is a sl(3,R)-
submodule of H.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕W .
Since rad(H) is an ideal, this induces the next decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕W ⊕ rad(H)

that we compare with the decomposition of irreducible sl(3,R)-modules

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x)

from Lemma 3.21.
By the properties of representations of Lie algebras and the decomposition

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x), one of the following must occur:

(a) s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕H0(x)⊕ V∗(x) and rad(H) = V(x).

(c) s = G(x)⊕ V(x)⊕ V∗(x) and rad(H) = H0(x).
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(d) s = G(x)⊕H0(x) and rad(H) = V(x)⊕ V∗(x).

(e) s = G(x)⊕ V(x) and rad(H) = H0(x)⊕ V∗(x).

(f) s = G(x)⊕ V∗(x) and rad(H) = H0(x)⊕ V(x).

(g) s = G(x) and rad(H) = H0(x)⊕ V(x)⊕ V∗(x).

(h) H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

Next, we analyze all possible cases.
Suppose that case (a) is satisfied:

s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

Because s = G(x)⊕H0(x)⊕V(x) is semisimple, then s is a direct product of
a finite number of simple ideals, h1×h2×· · ·×hk. Since, every ideal is invariant
by G(x), we have that these ideals are sl(3,R)-modules.

On the other hand, since V(x) ' R3 and [V(x),V(x)] ⊆ s. If

[V(x),V(x)] 6= 0

then

[V(x),V(x)] ' R3∗.

From here, the projection of [V(x),V(x)] in G(x), H0(x) and V(x) is 0. This
implies that [V(x),V(x)] = 0. Then, V(x) is an abelian ideal of s, which is a
contradiction. So, case (a) cannot be possible.

Case (b) is not possible and the proof is similar to (a).
Now suppose case (c) is satisfied:

s = G(x)⊕ V(x)⊕ V∗(x) and rad(H) = H0(x).

From Lemma 3.21 we have that

0 6= [H0(x),V(x)⊕ V∗(x)].

Moreover, there is a non-zero element in V(x) ⊕ V∗(x) that belongs to this
product. On the other hand, since rad(H) is an ideal of H, this element is in
rad(H). So, this case cannot occur.

Suppose case (d) is satisfied:

s = G(x)⊕H0(x) and rad(H) = V(x)⊕ V∗(x).

From (4.1) and (4.4), we have that H0(x) is an abelian ideal of s. Which is
a contradiction. Then case (d) is not possible.

Suppose, the case (e) is satisfied:

s = G(x)⊕ V(x) and rad(H) = H0(x)⊕ V∗(x).
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As in the first argument in case (a), V(x) is an abelian ideal of s. Then, this
case is not possible.

Case (f),

s = G(x)⊕ V∗(x) and rad(H) = H0(x)⊕ V(x),

cannot happen and the proof is similar to that of (e).
Now, we suppose (g) is satisfied:

s = G(x) and rad(H) = H0(x)⊕ V(x)⊕ V∗(x).

From Lemma 4.2 we have that

[H0(x),V(x)⊕ V∗(x)] = V(x)⊕ V∗(x).

On the other hand, since

[V(x)⊕ V∗(x),V(x)⊕ V∗(x)] ⊆ rad(H),

and let π0 : rad(H) → H0(x) be the projection map on the first component of
rad(H) then

π0([V(x)⊕ V∗(x),V(x)⊕ V∗(x)]) = 0.

Otherwise rad(H) will not be solvable. In conclusion, V(x) ⊕ V∗(x) is a Lie
subalgebra of rad(H).

If case (h) is satisfied:

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

H is a finite direct product h1 × h2 × · · · × hk of simple ideals that are also
sl(3,R)-modules with k ≤ 4.

If k = 4, H = h1 × h2 × h3 × h4. Then H0(x) is a simple ideal of H. But,
since H0(x) ' R is abelian, this is a contradiction. Therefore k = 4 cannot be
possible and k ≤ 3.

If k = 3, H = h1 × h2 × h3. Suppose, reindexing if necessary, that h1 and
h2 are irreducible sl(3,R)-modules and h3 = V1 ⊕ V2, where V1 and V2 are also
irreducibles. We can assume H0(x) ⊂ h3. On the other hand, since H0(x) ' R
then

[H0(x),V(x)⊕ V∗(x)] = V(x)⊕ V∗(x).

So, V(x)⊕ V∗(x) ⊂ h3. But this implies that h1 or h2 is equal to 0. Therefore,
this case is not possible and k ≤ 2.

If k = 2, H = h1 × h2. As in case k = 3, we suppose

H0(x)⊕ V(x)⊕ V∗(x) ⊂ h2.

On the other hand, since

0 6= [G(x),V(x)⊕ V∗(x)]
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then G(x) ⊂ h2 and h1 = 0, that is a contradiction. So, this case cannot be
possible and k = 1.

If k = 1, H = G(x) ⊕ H0(x) ⊕ V(x) ⊕ V∗(x) is a real simple Lie alge-
bra of dimension 15. Therefore, (H)C is a complex simple Lie algebra with
dimC((H)C) = 15. Then, by [H, p. 516], (H)C ' sl(4,C). So, H is isomorphic
to a non-compact real form of (H)C.

From [H, Table V], the only non-compact real forms of sl(4,C) are su(1, 3),
su(2, 2), su∗(4) and sl(4,R).

Then, H is isomorphic to one of the previous Lie algebras. We recall that H
contains a simple Lie subalgebra isomorphic to sl(3,R). From here,

2 = rankR(sl(3,R)) ≤ rankR(H).

By [H, Table V], we have

rankR(su(1, 3)) = rankR(su∗(4)) = 1.

Then, H cannot be isomorphic to either su(1, 3) or su∗(4). On the other hand,
page 519 of [H] shows su(2, 2) ' so(4, 2). So, if H ' su(2, 2) then sl(3,R) is
isomorphic to a Lie subalgebra of so(4, 2). In this case sl(3,R) would have a
non-trivial representation on a 6-dimensional vector space that preserves a non-
degenerate symmetric bilinear form of signature (4, 2). By Lemma 2.10 this
cannot be possible. Thus, H ' su(2, 2) is not possible. Then

H ' sl(4,R).

4.2.2 H0(x) ' R3 or H0(x) ' R3∗

Lemma 4.5 (H0(x) ' R3 orH0(x) ' R3∗). Let S be as in Corollary 3.19. With
the notation of Lemma 3.21, if H0(x) is isomorphic to R3 (R3∗) as sl(3,R)-
module for some x ∈ S then the radical of H is H0(x) ⊕ V(x) ⊕ V∗(x) where
V(x)⊕ V∗(x) is a Lie subalgebra.

Proof. In the first place we will take H0(x) ' R3. The proof when H0(x) ' R3∗

is similar.
Let us choose an arbitrary but fixed point x ∈ S such that H0(x) ' R3, as

in Lemma 3.21.
We recall that G(x) is a simple Lie algebra isomorphic to sl(3,R). We can

choose s a Levi factor of H that contains G(x). As the structure of sl(3,R)-
module of H is obtained by the subalgebra G(x) and G(x) ⊆ s, then s is a
sl(3,R)-module.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕W .
Since rad(H) is an ideal, this induce the next decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕W ⊕ rad(H)
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that we can compare with the decomposition of irreducible sl(3,R)-modules
from Lemma 3.21

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x).

Then, by the properties of representation of Lie algebras, one of the following
must occur:

(a) s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕ V1 ⊕ V∗(x) and rad(H) = V2.

(c) s = G(x)⊕ V∗(x) and rad(H) = H0(x)⊕ V(x).

(d) s = G(x)⊕ V1 and rad(H) = V2 ⊕ V∗(x).

(e) s = G(x) and rad(H) = H0(x)⊕ V(x)⊕ V∗(x).

(f) H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

where V1 and V2 are vector spaces isomorphic to R3 as sl(3,R)-modules such
that

V1 ⊕ V2 = H0(x)⊕ V(x).

In the first place, from the equation (4.3) and since H0(x) ' R3 as sl(3,R)-
module, we have that

[H0(x),V(x)] = V∗(x) and [H0(x),V∗(x)] = 0. (4.5)

Next, we analyze all possible cases.
Suppose case (a) is satisfied:

s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

Since s = G(x)⊕H0(x)⊕V(x) is a semisimple Lie algebra then it is a direct
product of a finite number of simple ideals, h1×h2×· · ·×hk. Since every ideal is
invariant under the product by G(x) we have that the ideals possess a structure
of sl(3,R)-module. Then, by properties of decomposition of s as a direct sum
of irreducible sl(3,R)-modules we have k ≤ 3.

Since V(x) ' R3, we have that if [V(x),V(x)] 6= 0 then [V(x),V(x)] ' R3∗

as sl(3,R)-module. On the other hand, because G(x) ' sl(3,R) and H0(x) '
V(x) ' R3, this implies that [V(x),V(x)] = 0. So, V(x) is an abelian ideal of s.
Which is a contradiction. So, this case cannot be possible.

Now, we suppose case (b) holds:

s = G(x)⊕ V1 ⊕ V∗(x) and rad(H) = V2.

Let π2
V : V2 → V(x) be the projection map from the vector space V2 to V(x).

We note that this map is a homomorphism of sl(3,R)-modules. If π2
V = 0 then

V2 = H0(x). In this case by equation (4.5) we have that

V∗(x) = [H0(x),V(x)] = [rad(H),V(x)] ⊆ rad(H).
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That is a contradiction. Then π2
V 6= 0 this is, by the irreducibility of V(x),

π2
V(V2) = V(x).

In the same way, if π2
0 : V2 → H0(x) is the projection map from V2 to H0(x)

then π2
0 6= 0. Otherwise, V2 = V(x). Then, this result and the equation (4.5)

will imply

V∗(x) = [H0(x),V(x)] = [H0(x), rad(H)] ⊆ rad(H).

That is a contradiction. So, π2
0 6= 0, this is, π2

0(V2) = H0(x).
Since rad(H) is an ideal of H this implies that [V∗(x), rad(H)] ⊂ rad(H). In

our case, since rad(H) = V2 is isomorphic to R3 then [V∗(x), V2] = 0.
Let v ∈ V2 be a non-zero element then v = π2

0(v) + π2
V(v). From here, if

v∗ ∈ V∗(x) then

0 = [v∗, v] = [v∗, π2
0(v) + π2

V(v)] = [v∗, π2
0(v)] + [v∗, π2

V(v)].

But, from (4.5), [v∗, π2
0(v)] = 0 then

[v∗, π2
V(v)] = 0.

Since this is true for every v ∈ V2 and v∗ ∈ V∗(x) we have proved that

[V∗(x),V(x)] = 0,

because π2
V = V(x). Moreover, since V1 ⊂ H0(x)⊕ V(x) then we have that

[V∗(x), V1] = 0. (4.6)

On the other hand, since s = G(x)⊕ V1 ⊕ V∗(x) is a semisimple Lie algebra
then it is a direct product of a finite number of simple ideals, h1× h2× · · ·× hk.
Since every ideal is invariant under the product by G(x) we have that the ideals
possess a structure of sl(3,R)-module. Then, by properties of decomposition of
s as a direct sum of irreducible sl(3,R)-modules we have k ≤ 3.

If k = 3, s = h1 × h2 × h3, we can assume, reindexing if necessary, that
h3 = V∗(x) and h1×h2 = G(x)⊕V1. Then [V∗(x),V∗(x)] ⊆ h3, but V∗(x) ' R3∗

as sl(3,R)-module then [V∗(x),V∗(x)] = 0, so h3 is an abelian Lie algebra and
this is not possible. Therefore k ≤ 2.

If k = 2, s = h1 × h2, after decomposing h1 and h2 as the direct sum
of sl(3,R)-modules, and reindexing if necessary, we can assume that h1 is an
irreducible sl(3,R)-module and h2 = W1⊕W2, where W1 and W2 are irreducible
sl(3,R)-modules. We can also assume that V∗(x) ⊂ h2. Then, from (4.2) since
[G(x),W(x)] =W(x) we have G(x) ⊂ h2 and h2 = G(x)⊕ V∗(x). That, as case
(a) in Lemma 4.4, cannot happen. So, this is not possible. From here, k = 1 .

If k = 1, s = G(x)⊕ V1 ⊕V∗(x) is a real simple Lie algebra of dimension 14.
Since, V1 ' R3 and V∗(x) ' R3∗ as sl(3,R)-module then

[V1, V1] ⊆ V∗(x) and [V∗(x),V∗(x)] ⊆ V1.
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from this and (4.6) we have that

[V1 ⊕ V∗(x), V1 ⊕ V∗(x)] ⊆ V1 ⊕ V∗(x).

Then, using (4.1) and (4.2) we have that V1 ⊕ V∗(x) is an ideal of s. That is a
contradiction. So, this case cannot happen.

Suppose case (c) is satisfied:

s = G(x)⊕ V∗(x) and rad(H) = H0(x)⊕ V(x).

As in case (b), s is a finite direct product of simple ideals, h1×h2×· · ·×hk,
with k ≤ 2. Also, these ideals have a structure of sl(3,R)-modules, obtained by
the product with G(x).

From (4.1) and (4.4) we have, in this case, that V∗(x) is an ideal of s. On the
other hand, since V∗(x) ' R3∗ then V∗(x) is abelian, which is a contradiction.
So, this case cannot be possible.

Assume case (d) is satisfied:

s = G(x)⊕ V1 and rad(H) = V2 ⊕ V∗(x).

This case cannot happen. The proof of this is similar to case (c) since V1 ' R3

as sl(3,R)-module.
Suppose case (e) holds:

s = G(x) and rad(H) = H0(x)⊕ V(x)⊕ V∗(x).

From Lemma 3.21, equation (4.5) and the fact that H0(x) ' R3 as sl(3,R)-
module then:

[H0(x),H0(x)] = 0

[H0(x),V(x)] = V∗(x)

[H0(x),V∗(x)] = 0.

On the other hand, we recall that V(x) ∼= R3 and V∗(x) ∼= R3∗ as sl(3,R)-
modules. Then:

[V(x),V(x)] ⊆ V∗(x) (4.7)

[V(x),V∗(x)] = 0 (4.8)

[V∗(x),V∗(x)] ⊆ H0(x)⊕ V(x). (4.9)

Let π0, π1 be the projection maps from rad(H) on H0(x) and V(x), respec-
tively. We note that these maps are homomorphism of sl(3,R)-modules.

In the first place, suppose

π0([V∗(x),V∗(x)]) = H0(x). (4.10)

By the Jacobi identity, if v2, w2 ∈ V∗(x) and v1 ∈ V(x), we have

0 = [[v2, w2], v1] + [[w2, v1], v2] + [[v1, v2], w2]

= [[v2, w2], v1] + [0, v2] + [0, w2]

= [[v2, w2], v1].
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This shows that [[v2, w2], v1] = 0 for every v2, w2 ∈ V∗(x) and v1 ∈ V(x).
Since [H0(x),V(x)] = V∗(x), we can choose elements v2, w2 ∈ V∗(x) and

v1 ∈ V(x) such that [π0([v2, w2]), v1] 6= 0. Then

0 = [[v2, w2], v1]

= [π0([v2, w2]) + π1([v2, w2]), v1]

= [π0([v2, w2]), v1] + [π1([v2, w2]), v1].

Thus
[π1([v2, w2]), v1] = −[π0([v2, w2]), v1] 6= 0.

From here

π1([V∗(x),V∗(x)]) = V(x) and [V(x),V(x)] = V∗(x).

But this implies, by (4.9) and (4.10) that

[V∗(x),V∗(x)] = H0(x)⊕ V(x) and [V(x),V(x)] = V∗(x).

Then, rad(H) = H0(x)⊕V(x)⊕V∗(x) is non-solvable, which is a contradiction.
From here, (4.10) is not possible. This is, π0([V∗(x),V∗(x)]) = 0 and

[V(x)⊕ V∗(x),V(x)⊕ V∗(x)] ⊂ V(x)⊕ V∗(x).

In this case, V(x)⊕V∗(x) is a solvable Lie subalgebra of rad(H) = H0(x)⊕W(x).
Now, suppose case (f) is satisfied:

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

Using the same argument of case (a), we have thatH is a finite direct product
of simple ideals h1×h2×· · ·×hk with k ≤ 4 and every ideal is a sl(3,R)-module.

If k = 4, H = h1 × h2 × h3 × h4. By properties of representation of simple
Lie algebras we can assume, without loss of generality, h4 = V∗(x). Because
V∗(x) ' R3∗ as sl(3,R)-module we have then [V∗(x),V∗(x)] = 0. So h4 is an
abelian Lie algebra that cannot be possible, therefore k ≤ 3.

If k = 3, H = h1 × h2 × h3. Suppose, reindexing if necessary, that h1 and
h2 are irreducible sl(3,R)-modules and h3 = W1 ⊕W2 is the direct sum of two
irreducible sl(3,R)-submodules, W1 and W2. Then, we can assume W2 = V∗(x).
As 0 6= [G(x),V(x) ⊕ V∗(x)] then G(x) ⊆ h3 and h3 = G(x) ⊕ V∗(x) is a real
simple Lie algebra of dimension 11. This is a contradiction, because there is not
real simple Lie algebra of such dimension. So, k ≤ 2.

If k = 2, H = h1 × h2. We can suppose h2 is a direct sum of two or more
irreducible sl(3,R)-modules and V∗(x) ⊂ h2. Let

πi : H → hi,

be the projection map of H on the i-th element, i = 1, 2. We recall that
[H0(x),V(x)] = V∗(x) then

0 6= π2(H0(x)), π2(V(x)).
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If π2(H0(x)) = π2(V(x)) then π2(V(x)) ⊕ V∗(x) ⊆ h2. And if the equality is
satisfied, dim(h1) = 11 which is not possible. Therefore π2(V(x))⊕ V∗(x) ( h2

and
h2 = G(x)⊕ π2(V(x))⊕ V∗(x).

Then h1 = π1(H0(x)) ' R3, that cannot happen. So π2(V(x)) 6= π2(H0(x)) and
here

h2 = H0(x)⊕ V(x)⊕ V∗(x).

But, there is not a real simple Lie algebra of dimension 9 (see [H, p. 518]). So,
this case is not possible.

If k = 1, H = G(x) ⊕ H0(x) ⊕ V(x) ⊕ V∗(x) is a real simple Lie algebra of
dimension 17. Since there is not a real simple Lie algebra with such dimension
([H]), this finally proves that case (f) cannot be possible.

For the case H0(x) ' R3∗, we only need interchange the factors V(x) and
V∗(x) in the previous proof.

4.2.3 H0(x) ' sl(3,R)

Lemma 4.6 (H0(x) ' sl(3,R)). Let S be as in Corollary 3.19. With the
notation of Lemma 3.21, if H0(x) isomorphic to sl(3,R) as sl(3,R)-module for
some x ∈ S, then one of the following occurs:

(1) The radical of H is V(x) ⊕ V∗(x) and G(x) ⊕ H0(x) is the sum of two
simple ideals.

(2) H = G(x) ⊕H0(x) ⊕ V(x) ⊕ V∗(x) is the sum of two simple ideals, being
one of them H0(x)⊕ V(x)⊕ V∗(x).

Proof. Let us choose an arbitrary but fixed element x ∈ S such that H0(x) =
sl(3,R), as in Lemma 3.21.

From Lemma 3.21, (4.1) and (4.4), G(x) ⊕ H0(x) is a Lie subalgebra of H
with H0(x) ideal.

On the other hand, we have the next sequence

0→ H0(x)→ G(x)⊕H0(x)→ G(x)→ 0

that is exact.
Since G(x) ' H0(x) ' sl(3,R) as sl(3,R)-module, then G(x) ⊕ H0(x) is a

semisimple Lie algebra. The short exact sequence proves that the complemen-
tary ideal to H0(x) in G(x)⊕H0(x) is isomorphic to G(x). So G(x)⊕H0(x) is
a Lie algebra isomorphic to sl(3,R)⊕ sl(3,R).

We can choose s, as a Levi factor of H that contains the semisimple Lie
algebra G(x)⊕H0(x). Then, s is a sl(3,R)-submodule of H.

Let W be a sl(3,R)-module such that s = G(x)⊕H0(x)⊕W .
Since rad(H) is an ideal in H, this induce the next decomposition of H in a

direct sum of sl(3,R)-modules:

H = G(x)⊕H0(x)⊕W ⊕ rad(H)
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that we compare with its decomposition in Lemma 3.21

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x).

By properties of representation of Lie algebras and the decomposition of H,
one of the following must occur:

(a) s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕H0(x)⊕ V∗(x) and rad(H) = V(x).

(c) s = G(x)⊕H0(x) and rad(H) = V(x)⊕ V∗(x).

(d) H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

Next, we analyze these cases.
Suppose case (a) is satisfied:

s = G(x)⊕H0(x)⊕ V(x) and rad(H) = V∗(x).

Because s = G(x)⊕H0(x)⊕V(x) is a semisimple Lie algebra then is a direct
product of a finite number of simple ideals, h1× h2× · · · × hk. Since every ideal
is invariant under the product by G(x), the ideals possess a structure of sl(3,R)-
module. From decomposition of s in irreducible sl(3,R)-modules we have that
k ≤ 3.

Since V(x) ' R3, if [V(x),V(x)] 6= 0 then [V(x),V(x)] ' R3∗. Thus, in our
case, [V(x),V(x)] must have projection zero in G(x), H0(x) and V(x). This is,
[V(x),V(x)] = 0. So, by Lemma 4.2, V(x) is an abelian ideal in s, which is a
contradiction. Therefore, this case cannot be possible.

The proof that case (b) cannot be possible is similar to the case
(a).

Assume case (c) is satisfied:

s = G(x)⊕H0(x) and rad(H) = V(x)⊕ V∗(x).

We already have proved that G(x)⊕H0(x) is a direct sum of two simple ideals.
Suppose case (d) holds:

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

Then, H is a direct product of a finite number of simple ideals, h1 × h2 ×
· · · × hk. These ideals are sl(3,R)-modules with the product by G(x), therefore
k ≤ 4.

If k = 4, H = h1 × h2 × h3 × h4. We suppose, reindexing if necessary, that
h4 = V(x) (or V∗(x)). Then [V(x),V(x)] = V(x), which is not possible. So, this
case cannot be possible and k ≤ 3.

If k = 3, H = h1 × h2 × h3. We assume, reindexing if necessary, that h1

and h2 are irreducible sl(3,R)-modules and h3 = V1 ⊕ V2, direct sum of two
irreducibles sl(3,R)-modules, V1 and V2. Then, V(x),V∗(x) " h1 × h2. So

h3 = V(x)⊕ V∗(x) and h1 × h2 = G(x)⊕H0(x).
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Hence

[H0(x),V(x)⊕ V∗(x)] = 0,

that by Lemma 3.21 is a contradiction. Thus, this case cannot be possible.
Therefore, k ≤ 2.

If k = 2, H = h1×h2. We assume, reindexing if necessary, that h2 is a direct
sum of two or more irreducible sl(3,R)-modules and V∗(x) ⊂ h2. From here
V(x) ⊂ h2. Otherwise, V(x) ⊂ h1 and h2 would have dimension 11 or 19. That
is not possible, (see [H, p. 518]). Then

V(x)⊕ V∗(x) ⊆ h2.

Here, the equality is not satisfied because if V(x)⊕ V∗(x) = h2 then

G(x)⊕H0(x) = h1 and [H0(x),V(x)⊕ V∗(x)] = 0.

Which is a contradiction. Therefore, h2 is a direct sum of three irreducible
sl(3,R)-modules

h2 = V1 ⊕ V2 ⊕ V3.

We assume, V(x)⊕ V∗(x) = V1 ⊕ V2. Thus

G(x)⊕H0(x) = h1 ⊕ V3.

Since V3 ⊂ h2 and G(x)⊕H0(x) is a Lie subalgebra then

[V3, V3] ⊂ [h2, h2] ⊆ h2

[V3, V3] ⊂ [G(x)⊕H0(x),G(x)⊕H0(x)] ⊂ G(x)⊕H0(x) = h1 ⊕ V3.

From here, [V3, V3] ⊂ V3 and V3 itself is a Lie algebra. But

[h1, V3] ⊂ [h1, h2] = 0.

Then h1⊕V3 is the decomposition into simple ideals of G(x)⊕H0(x). Therefore
since, by (4.1) and (4.4), H0(x) is an ideal on G(x)⊕H0(x). Thus, H0(x) = h1

or H0(x) = V3. If H0(x) = h1, then

[H0(x),V(x)⊕ V∗(x)] ⊂ [h1, h2] = 0

which is not possible. Therefore, H0(x) = V3 and

h2 = H0(x)⊕ V(x)⊕ V∗(x)

is a simple Lie algebra that, by case (d) in Lemma 4.3, is isomorphic to g2(2).

Finally, the case k = 1 cannot be possible because, by [H, p. 518], there is
not a real simple Lie algebra of dimension 22.
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4.3 Subalgebras with two irreducible submodu-
les

4.3.1 H0(x) ' sl(3,R)⊕ R3 or H0(x) ' sl(3,R)⊕ R3∗

Lemma 4.7 (H0(x) ' sl(3,R)⊕ R3). Let S be as in Corollary 3.19. With the
notation of Lemma 3.21, if H0(x) is isomorphic to sl(3,R) ⊕ R3 as sl(3,R)-
module for some x ∈ S, then G(x) ⊕ sl(3,R)0 is a direct sum of two simple
ideals and rad(H) = V(x) ⊕ V∗(x) ⊕ R3

0, with V(x) ⊕ V∗(x) a Lie subalgebra.
Where sl(3,R)0 and R3

0 are sl(3,R)-submodules of H0(x) isomorphic to sl(3,R)
and R3, respectively.

With H0(x) ' sl(3,R) ⊕ R3∗ we have a similar result. We only replace R3

by R3∗.

Proof. Let us choose an arbitrary but fixed element x ∈ S such that

H0(x) ' sl(3,R)⊕ R3,

as in Lemma 3.21.
In the first place, we define sl(3,R)0 and R3

0 the Lie subalgebras ofH0(x) such
that sl(3,R)0 ' sl(3,R) and R3

0 ' R3 via the homomorphism of Lie algebras
λ⊥x , from Lemma 3.21.

Since homomorphism λ⊥x is injective when is restricted to sl(3,R)0 and to
the Lie algebra sl(3,R)(x), then

λ⊥x (sl(3,R)(x)) ∩ λ⊥x (sl(3,R)0) = 0 or λ⊥x (sl(3,R)(x)) = λ⊥x (sl(3,R)0).

This is so because the intersection is a submodule of both. But,

dim(so(TxO⊥)) = 15

then
λ⊥x (sl(3,R)(x)) = λ⊥x (sl(3,R)0).

Since sl(3,R)0 ⊂ H0(x) is a G(x)-module isomorphic to sl(3,R) we have
[G(x), sl(3,R)0] = sl(3,R)0. From here, we have the next exact sequence

0→ sl(3,R)0 → G(x)⊕ sl(3,R)0 → G(x)→ 0.

Since G(x) ⊕ sl(3,R)0 is a semisimple Lie algebra, the previous short exact
sequence shows that the complementary ideal to sl(3,R)0 in G(x)⊕ sl(3,R)0 is
isomorphic to G(x). So G(x)⊕ sl(3,R)0 is a Lie algebra isomorphic to

sl(3,R)× sl(3,R).

We choose s a Levi factor of H that contains G(x) ⊕ sl(3,R)0. With the
sl(3,R)-module structure of H, defined by the subalgebra G(x), and as G(x) ⊂ s,
then s is a sl(3,R)-submodule of H.
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Let W be a sl(3,R)-submodule of H such that s = G(x)⊕ sl(3,R)0 ⊕W .
Since rad(H) is an ideal, this induces the next decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕ sl(3,R)0 ⊕W ⊕ rad(H)

that we compare with the decomposition of irreducible sl(3,R)-modules

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x),

from Lemma 3.21.
By properties of representation of Lie algebras and the decomposition of H

in irreducible modules, one of the following must occur:

(a) s = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕ sl(3,R)0 ⊕ V1 ⊕ V∗(x) and rad(H) = V2.

(c) s = G(x)⊕ sl(3,R)0 ⊕ V∗(x) and rad(H) = R3
0 ⊕ V(x).

(d) s = G(x)⊕ sl(3,R)0 ⊕ V1 and rad(H) = V2 ⊕ V∗(x).

(e) s = G(x)⊕ sl(3,R)0 and rad(H) = R3
0 ⊕ V(x)⊕ V∗(x).

(f) H = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x) is semisimple.

Where V1 and V2 are vector spaces isomorphic to R3 as sl(3,R)-modules such
that

V1 ⊕ V2 = R3
0 ⊕ V(x).

Next, we analyze all these cases.
In the first place, similar to Lemma 4.5 we have, from the equation (4.3) and

since R3
0 ' R3 as sl(3,R)-module, that

[R3
0,V(x)] = V∗(x) and [R3

0,V∗(x)] ⊆ sl(3,R)0. (4.11)

Suppose case (a) is satisfied:

s = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x) and rad(H) = V∗(x).

Since rad(H) = V∗(x), from (4.11) we have

rad(H) = V∗(x) = [R3
0,V(x)] ⊂ [s, s] ⊂ s.

That is a contradiction. Therefore, this case cannot be possible.
Assume case (b) is satisfied:

s = G(x)⊕ sl(3,R)0 ⊕ V1 ⊕ V∗(x) and rad(H) = V2.

In the first place, since rad(H) = V2 is isomorphic to R3 as sl(3,R)-module,
we have that

[V2, V2] = [V(x), V2] = [R3
0, rad(H)] = 0. (4.12)
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On the other hand, by (4.4) and since H0(x) = sl(3,R)0 ⊕ R3
0 we have that

[R3
0,R3

0] = 0. (4.13)

Let π2
0 and π2

V be the projection map of V2 in R3
0 and V(x), respectively. In

a similar way to case (b) in Lemma 4.5, we can prove that π2
0(V2) = R3

0 and
π2
V(V2) = V(x). Otherwise, (4.12) would contradict the first part of (4.11).

On the other hand, by (4.11), let v ∈ R3
0 and w ∈ V(x) be such that

0 6= [v, w] ∈ V∗(x).

Choose v̄, w̄ ∈ V2 elements such that

π2
0(v̄) = v and π2

V(w̄) = w.

Then, by (4.12)

0 = [v̄, w̄]

= [π2
0(v̄) + π2

V(v̄), π2
0(w̄) + π2

V(w̄)]

= [π2
0(v̄), π2

0(w̄)] + [π2
0(v̄), π2

V(w̄)] + [π2
V(v̄), π2

0(w̄) + π2
V(w̄)]

= 0 + [v, w] + [π2
V(v̄), w̄]

= [v, w] + 0

= [v, w].

That is a contradiction. We have used (4.13) and (4.12) in the the fourth and
fifth line, respectively. Therefore, case (b) cannot happen.

Suppose case (c) holds:

s = G(x)⊕ sl(3,R)0 ⊕ V∗(x) and rad(H) = R3
0 ⊕ V(x).

Since V∗(x) ' R3∗ as sl(3,R)-module then [V∗(x),V∗(x)] is isomorphic to a
submodule of R3. From here [V∗(x),V∗(x)] has projection zero on G(x), sl(3,R)0

and V∗(x). So, V∗(x) is an abelian ideal on s. That is a contradiction because
s is a semisimple Lie algebra. From here, this case cannot happen.

Suppose case (d) is satisfied:

s = G(x)⊕ sl(3,R)0 ⊕ V1 and rad(H) = V2 ⊕ V∗(x).

In a similar way to case (c), since V1 ' R3 as sl(3,R)-module, we can prove
that V1 is an abelian ideal on s. So, this case cannot be possible.

Suppose case (e) holds:

s = G(x)⊕ sl(3,R)0 and rad(H) = R3
0 ⊕ V(x)⊕ V∗(x).

At the beginning of this proof we have shown that G(x) ⊕ sl(3,R)0 is a
semisimple Lie algebra isomorphic to sl(3,R) × sl(3,R). On the other hand,
since rad(H) is an ideal in H. Similar to case (e) in Lemma 4.5, we can prove
that V(x)⊕ V∗(x) is a Lie subalgebra in rad(H).
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Assume case (f) holds:

H = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x) is semisimple.

Since H is a semisimple Lie algebra then it is isomorphic to a direct product
of a finite number of simple ideals, h1 × h2 × · · · × hk. Being that every ideal is
invariant under the Lie bracket by G(x), then every ideal has the structure of
sl(3,R)-module. So, k ≤ 5.

If k = 5, H = h1 × · · · × h5. We assume, reindexing if necessary, that
h5 = V∗(x). Since V∗(x) ∼= R3∗ as sl(3,R)-module, then

[h5, h5] = [V∗(x),V∗(x)]

is isomorphic to a submodule of R3. From here, [V∗(x),V∗(x)] = 0. This is, h5

is an abelian algebra, that is a contradiction, because we assumed that h5 is a
real simple Lie algebra. Therefore k ≤ 4.

If k = 4, H = h1 × h2 × h3 × h4. Since H is the sum of five irreducible
sl(3,R)-modules, we can assume, reindexing if necessary, that h1, h2 and h3 are
irreducible sl(3,R)-modules and h4 = W1 ⊕W2, with W1 and W2 irreducible
sl(3,R)-modules, and W2 = V∗(x). Let

πj : H → hj

be the projection homomorphism from H to the ideal hj , for j = 1, 2, 3, 4. Since
[sl(3,R)0,V∗(x)] 6= 0 then π4(sl(3,R)0) 6= 0. From here, h4 = π4(sl(3,R)0) ⊕
V∗(x) is a real simple Lie algebra with dim(h4) = 11. That cannot be possible.
So k ≤ 3.

If k = 3, H = h1 × h2 × h3. We assume h1 is an irreducible sl(3,R)-module
and h3 = U1⊕U2⊕· · ·⊕Ul is a direct sum of two or three irreducibles modules.
We can also assume that π3(sl(3,R)0)⊕ V∗(x) ( h3. On the other hand, being
that [R3

0,V(x)] = V∗(x) then π3(R3
0) 6= 0 and dim(h3) ≥ 14. Thus, h1 (or h2) is a

sl(3,R)-module of dimension 3. Then, by previous results, this ideal is abelian.
Which is a contradiction. So, this case is not possible and k ≤ 2.

If k = 2, H = h1 × h2. As in k = 3, we can assume π2(R3
0) 6= 0 and

π2(sl(3,R)0)⊕ V∗(x)⊕ π3(R3
0) ( h2.

Then the only options for the dimension of h1 are 11 or 8. By [H, p. 518],
there is not a real simple Lie algebra with dimension 11. Then dim(h2) = 8 and
dim(h1) = 17. That cannot be possible, because there is not a real simple Lie
algebra with dimension 17, so this case cannot happen. Therefore k = 1.

If k = 1, H = G(x) ⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x) ⊕ V∗(x) is a real simple Lie

algebra with dim(H) = 25. But, by [H], this case cannot be possible. So, case
(f) cannot happen.
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4.3.2 H0(x) ' sl(3,R)⊕ R
Lemma 4.8 (H0(x) ' sl(3,R) ⊕ R). Let S be as in Corollary 3.19. With the
notation of Lemma 3.21. If H0(x) is isomorphic to sl(3,R) ⊕ R as sl(3,R)-
module for some x ∈ S, then one of the following occurs:

(1) G(x)⊕ sl(3,R)0 is a direct sum of two simple ideals and the radical of H
is R0 ⊕ V(x)⊕ V∗(x), where V(x)⊕ V∗(x) is a Lie subalgebra.

(2) H = G(x) ⊕ H0(x) ⊕ V(x) ⊕ V∗(x) is a direct sum of two simple ideals,
being one of them H0(x)⊕ V(x)⊕ V∗(x) that is isomorphic to sl(4,R).

Where sl(3,R)0 and R0 are sl(3,R)-submodules of H0(x) isomorphic to sl(3,R)
and R, respectively.

Proof. Let us choose an arbitrary but fixed element x ∈ S such that

H0(x) ' sl(3,R)⊕ R,

as in Lemma 3.21.
As in previous case, G(x)⊕ sl(3,R)0 is a semisimple Lie algebra isomorphic

to the direct product sl(3,R)× sl(3,R).
We choose s a Levi factor of H that contains G(x) ⊕ sl(3,R)0. Since the

sl(3,R)-module structure of H is defined by the subalgebra G(x), and as G(x) ⊂
s, then s is a sl(3,R)-submodule of H.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕ sl(3,R)0 ⊕W .
Since rad(H) is an ideal, this induces the next decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕ sl(3,R)0 ⊕W ⊕ rad(H)

that we compare with the decomposition of irreducible sl(3,R)-modules

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x)

= G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x),

from Lemma 3.21.
Then one of the following holds:

(a) s = G(x)⊕ sl(3,R)0 ⊕ V(x)⊕ V∗(x) and rad(H) = R0.

(b) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V∗(x) and rad(H) = V(x).

(c) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V(x) and rad(H) = V∗(x).

(d) s = G(x)⊕ sl(3,R)0 ⊕ V∗(x) and rad(H) = R0 ⊕ V(x).

(e) s = G(x)⊕ sl(3,R)0 ⊕ V(x) and rad(H) = R0 ⊕ V∗(x).

(f) s = G(x)⊕ sl(3,R)0 ⊕ R0 and rad(H) = V(x)⊕ V∗(x).
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(g) s = G(x)⊕ sl(3,R)0 and rad(H) = R0 ⊕ V(x)⊕ V∗(x).

(h) H = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V(x)⊕ V∗(x) is semisimple.

Next, we analyze these cases.
In the first place, from Lemmas 3.21 and 4.2 we have that

[R0,V(x)] = V(x) and [R0,V∗(x)] = V∗(x). (4.14)

Suppose case (a) holds:

s = G(x)⊕ sl(3,R)0 ⊕ V(x)⊕ V∗(x) and rad(H) = R0.

Since rad(H) is and ideal on H then

V(x)⊕ V∗(x) = [V(x)⊕ V∗(x),R0]

= [V(x)⊕ V∗(x), rad(H)]

⊂ rad(H)

= R0

That is a contradiction. So, this case cannot be possible.
Assume case (b) is satisfied:

s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V∗(x) and rad(H) = V(x).

Since V∗(x) is isomorphic to R3∗ as sl(3,R)-module, then [V∗(x),V∗(x)] is iso-
morphic to a submodule of R3. From here, we have that [V∗(x),V∗(x)] has
projection zero in G(x), sl(3,R)0, R0 and V∗(x). This is V∗(x) is an abelian
ideal on s, that is a contradiction. Thus, this case cannot happen.

Suppose case (c) is satisfied:

s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V(x) and rad(H) = V∗(x).

This case is not possible. The proof is similar to (b), we only need replace V(x)
by V∗(x).

Assume case (d) holds:

s = G(x)⊕ sl(3,R)0 ⊕ V∗(x) and rad(H) = R0 ⊕ V(x).

Similar to case (b). Here, V∗(x) is an abelian ideal on s. That is a contradiction.
Then this case cannot be possible.

Suppose case (e) holds:

s = G(x)⊕ sl(3,R)0 ⊕ V(x) and rad(H) = R0 ⊕ V∗(x).

As in case (b), we can prove that V(x) is an abelian ideal on s. Thus, this is a
contradiction. And this case cannot happen.

Assume case (f) holds:

s = G(x)⊕ sl(3,R)0 ⊕ R0 and rad(H) = V(x)⊕ V∗(x).
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This case cannot be possible. Here, we have that R0 is an abelian ideal on s.
The proof of this is similar to case (b).

Suppose case (g) holds:

s = G(x)⊕ sl(3,R)0 and rad(H) = R0 ⊕ V(x)⊕ V∗(x).

At first of this proof we have proved that G(x)⊕sl(3,R)0 is isomorphic to a direct
sum of two simple Lie algebras. On the other hand, similar to Lemma 4.4, in this
case we have that V(x)⊕V∗(x) is a Lie subalgebra of rad(H) = R0⊕V(x)⊕V∗(x).

Assume case (h) is satisfied:

H = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V(x)⊕ V∗(x) is semisimple.

Then H is isomorphic to a direct product of a finite number of simple ideals,
h1 × h2 × · · · × hk, for some k ∈ N. Since every ideal is closed with respect to
the product of Lie brackets by G(x) we have a sl(3,R)-module structure in each
ideal. From the decomposition of H in irreducible sl(3,R)-modules we obtain
k ≤ 5.

If k = 5, H = h1×· · ·×h5. Without loss of generality, reindexing if necessary,
we suppose h5 = V∗(x). But, as in case (b), this cannot be possible. Then, this
case cannot happen and k ≤ 4.

If k = 4, H = h1 × · · · × h4. We can assume, reindexing if necessary, that
h1, h2, h3 are irreducible sl(3,R)-modules and h4 = W1 ⊕W2 is a direct sum of
two irreducible sl(3,R)-modules. We can also assume that V(x) ( h4. Since
[R0,V∗(x)] = V∗(x) then R0 ( h4. And

h4 = R0 ⊕ V∗(x).

In this case V∗(x) is an abelian ideal of h4, that cannot happen. So, k = 4 is
not possible.

If k = 3, H = h1 × h2 × h3. By previous subcases we can assume that h3

is direct sum of two or more irreducible sl(3,R)-modules and R0 ⊕ V∗(x) ( h3.
Then, by (4.14), V∗(x) ⊂ h3. Since h1 and h2 are nonzero,

h3 = R0 ⊕ V(x)⊕ V∗(x).

By [H], there is no 7-dimensional real simple Lie algebra. Therefore, k = 3
cannot be possible.

If k = 2, H = h1 × h2. By previous subcases, we can assume that h2 is a
direct sum of four irreducible sl(3,R)-modules, h2 = V1 ⊕ V2 ⊕ V3 ⊕ V4, and
R0 ⊕ V(x)⊕ V∗(x) ( h2. Without loss of generality, we suppose

R0 ⊕ V(x)⊕ V∗(x) = V1 ⊕ V2 ⊕ V3.

Then
G(x)⊕ sl(3,R)0 = h1 ⊕ V4.

Similar to case (d) in Lemma 4.6, we can prove that sl(3,R)0 = V4. Thus,

h2 = sl(3,R)0 ⊕ R0 ⊕ V(x)⊕ V∗(x).



4.3. SUBALGEBRAS WITH TWO IRREDUCIBLE SUBMODULES 59

And using the arguments of case (h) in Lemma 4.4, h2 is isomorphic to sl(4,R).
If k = 1, H = G(x) ⊕ sl(3,R)0 ⊕ R0 ⊕ V(x) ⊕ V∗(x) is a simple Lie algebra

with dim(H) = 23. By [H], there is not a real simple Lie algebra with such
dimension. So, this cannot be possible.

4.3.3 H0(x) ' R3 ⊕ R or H0(x) ' R3∗ ⊕ R
Lemma 4.9 (H0(x) ' R3 ⊕ R). Let S be as in Corollary 3.19. With the
notation of Lemma 3.21, if H0(x) is isomorphic to R3 ⊕ R as sl(3,R)-module
for some x ∈ S then the radical of H is H0(x)⊕V(x)⊕V∗(x). With V(x)⊕V∗(x)
subalgebra of rad(H).

Proof. Let us choose an arbitrary but fixed element x ∈ S such that

H0(x) ' R3 ⊕ R,

as in Lemma 3.21.
In the first place we define as R3

0 and R0 the Lie subalgebras of H0(x) such
that

H0(x) = R3
0 ⊕ R0

with R3
0 ' R3 and R0 ' R via the homomorphism of Lie algebras λ⊥x , from

Lemma 3.21.
Since G(x) ∼= sl(3,R), then G(x) is a simple Lie subalgebra.
Let s be a Levi factor of H that contains G(x). With the sl(3,R)-module

structure of H, defined by the subalgebra G(x), and as G(x) ⊂ s then s is a
sl(3,R)-submodule of H.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕W .
Since rad(H) is an ideal of H, this induces the next decomposition of H as

a direct sum of sl(3,R)-modules:

H = G(x)⊕W ⊕ rad(H)

that we compare with the decomposition of Lemma 3.21

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x)

= G(x)⊕ R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x).

By properties of representation of Lie algebras and the decomposition of H
in irreducible modules, one of the following must occur:

(a) s = G(x)⊕ R0 ⊕ R3
0 ⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕ R0 ⊕ V1 ⊕ V∗(x) and rad(H) = V2.

(c) s = G(x)⊕ R3
0 ⊕ V(x)⊕ V∗(x) and rad(H) = R0.

(d) s = G(x)⊕ R0 ⊕ V∗(x) and rad(H) = R3
0 ⊕ V(x).

(e) s = G(x)⊕ R0 ⊕ V1 and rad(H) = V2 ⊕ V∗(x).
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(f) s = G(x)⊕ R3
0 ⊕ V(x) and rad(H) = R0 ⊕ V∗(x).

(g) s = G(x)⊕ V1 ⊕ V∗(x) and rad(H) = R0 ⊕ V2.

(h) s = G(x)⊕ V∗(x) and rad(H) = R0 ⊕ R3
0 ⊕ V(x).

(i) s = G(x)⊕ V1 and rad(H) = R0 ⊕ V2 ⊕ V∗(x).

(j) s = G(x)⊕ R0 and rad(H) = R3
0 ⊕ V(x)⊕ V∗(x).

(k) s = G(x) and rad(H) = R0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x).

(l) H = G(x)⊕ R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x) is semisimple.

Where V1 and V2 are vector spaces isomorphic to R3, as sl(3,R)-modules, such
that

V1 ⊕ V2 = R3
0 ⊕ V(x).

Next, we analyze these cases.
In the first place, from Lemma 3.21, Lemma 4.2 and by the arguments of

Lemma 4.5 we have:

[R3
0,V(x)] = V∗(x) (4.15)

[R0,V∗(x)] = V∗(x) (4.16)

[R0,V(x)] = V(x) (4.17)

Assume case (a) is satisfied:

s = G(x)⊕ R0 ⊕ R3
0 ⊕ V(x) and rad(H) = V∗(x).

Since s is a subalgebra and by (4.15) we have

rad(H) = V∗(x) = [R3
0,V(x)] ⊂ s,

that is a contradiction. Then, this case cannot be possible.
Suppose case (b) is satisfied:

s = G(x)⊕ R0 ⊕ V1 ⊕ V∗(x) and rad(H) = V2.

Using similar arguments as in case (b) in Lemma 4.7 we can prove that this
case cannot happen.

Assume case (c) holds:

s = G(x)⊕ R3
0 ⊕ V(x)⊕ V∗(x) and rad(H) = R0.

Since rad(H) is an ideal on H and by equation (4.16) we have

V∗(x) = [V∗(x),R0]

= [V∗(x), rad(H)]

⊂ rad(H).
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That is a contradiction. Hence, this case cannot be possible.
Suppose case (d) holds:

s = G(x)⊕ R0 ⊕ V∗(x) and rad(H) = R3
0 ⊕ V(x).

Similar to the previous case and since R3
0,V(x) ⊂ rad(H), we have

V∗(x) = [R3
0,V(x)]

⊂ [rad(H), rad(H)]

= rad(H).

That is not possible. Then, this case cannot happen.
Assume case (e) is satisfied:

s = G(x)⊕ R0 ⊕ V1 and rad(H) = V2 ⊕ V∗(x).

We recall that V1 ' R3, R0 ' R and G(x) ' sl(3,R) as sl(3,R)-module. From
here,

[V1, V1]

has zero projection in V1, R0 and G(x). Then V1 is an abelian ideal on s, that
is a contradiction. Therefore, this case cannot be possible.

Suppose case (f) is satisfied:

s = G(x)⊕ R3
0 ⊕ V(x) and rad(H) = R0 ⊕ V∗(x).

Since R0 ⊂ rad(H) and by (4.17) we have

V(x) = [V(x),R0]

⊂ [V(x), rad(H)]

⊂ rad(H).

Which is not possible. Hence, this case cannot happen.
Assume case (g) holds:

s = G(x)⊕ V1 ⊕ V∗(x) and rad(H) = R0 ⊕ V2.

This case cannot be possible, and the proof is similar to the previous one. We
only note that R0 ⊂ rad(H) and V∗(x) ⊂ s, together with the equation (4.16).

Suppose case (h) holds:

s = G(x)⊕ V∗(x) and rad(H) = R0 ⊕ R3
0 ⊕ V(x).

As in case (e), we can prove that V∗(x) (isomorphic to R3∗) is an abelian ideal
on s. Then, this case cannot happen.

Assume case (i) is satisfied:

s = G(x)⊕ V1 and rad(H) = R0 ⊕ V2 ⊕ V∗(x).
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Similar to case (e), and since V1 ' R3 as sl(3,R)-module, we can prove that V1

is an abelian ideal on s = G(x)⊕ V1. Therefore, this case cannot be possible.
Suppose case (j) is satisfied:

s = G(x)⊕ R0 and rad(H) = R3
0 ⊕ V(x)⊕ V∗(x).

Being that R0 ' R as sl(3,R)-module, is clear (in this case) that R0 is an abelian
ideal on s. Hence, this case cannot happen.

Assume case (k) holds:

s = G(x) and rad(H) = R0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x).

Similar to case (g) in Lemma 4.4 and case (e) in Lemma 4.5, here, we have that

V(x)⊕ V∗(x)

is a Lie subalgebra of rad(H), otherwise rad(H) could not be solvable.
Suppose case (l) holds:

H = G(x)⊕ R0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x) is semisimple.

Since H is semisimple then it is isomorphic to a direct product of a finite number
of simple ideals, H = h1 × h2 × · · · × hk. Since every ideal is invariant under
the product by G(x) then every ideal possess a structure of sl(3,R)-module. By
properties of decomposition of H in irreducible sl(3,R)-modules we have that
k ≤ 5.

If k = 5, H = h1 × h2 × · · · × h5. Without loss of generality, reindexing
if necessary, we assume h5 = R0. This is a contradiction. So, this cannot be
possible and k ≤ 4.

If k = 4, H = h1 × h2 × h3 × h4. We assume, reindexing if necessary, that
h1, h2, h3 are irreducible sl(3,R)-modules and h4 = W1 ⊕W2 is a direct sum of
two irreducible sl(3,R)-modules with W2 = R0. Since

[R0,V(x)] = V(x)

then

V(x) ⊂ h4 and h4 = V(x)⊕ R0.

Being that V(x) ∼= R3 we have that V(x) is an ideal of h4. This is a contradiction.
Thus, this cannot be possible and k ≤ 3.

If k = 3, H = h1 × h2 × h3. We can assume, as in previous cases, that h3 is
direct sum of two or more irreducible sl(3,R)-modules and R0⊕V(x) ( h3. On
the other hand, since by equation 4.16, V∗(x) ⊂ h3. Then

h3 = R0 ⊕ V(x)⊕ V∗(x).

But, by [H, p. 518], there is not a real simple Lie algebra of dimension 7. Hence,
this cannot be possible and k ≤ 2.
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If k = 2, H = h1 × h2. By previous cases, we can assume that

R0 ⊕ V(x)⊕ V∗(x) ( h2

On the other hand, since
[G(x),W(X)] 6= 0

then G(x) ⊂ h2, which implies

h2 = G(x)⊕ R0 ⊕ V(x)⊕ V∗(x) and dim(h1) = 3.

But, being that h1 is a sl(3,R)-module, then [h1, h1] = 0. That is a contradic-
tion. Hence, this cannot happen.

If k = 1, H = G(x) ⊕ R3
0 ⊕ R0 ⊕ V(x) ⊕ V∗(x) is a real simple Lie algebra

with dim(H) = 18. By [H, p. 516], there is not a complex simple Lie algebra
with dimension equal to 9 or 18. Then, this cannot happen. Therefore, this
case cannot be possible.

With H0(x) ' R3∗ ⊕R we have a similar result, we only need to know that

[R3∗
0 ,V∗(x)] = V(x).

4.4 subalgebras with three submodules

4.4.1 H0(x) ' sl(3,R)⊕ R3 ⊕ R or H0(x) ' sl(3,R)⊕ R3∗ ⊕ R
Lemma 4.10 (H0(x) ' sl(3,R) ⊕ R3 ⊕ R). Let S be as in Corollary 3.19.
With the notation of Lemma 3.21, if H0(x) is isomorphic to sl(3,R) ⊕ R3 ⊕ R
as sl(3,R)-module for some x ∈ S then G(x) ⊕ sl(3,R)0 is a direct sum of two
simple ideals and rad(H) = V(x) ⊕ V∗(x) ⊕ R3

0 ⊕ R0, with V(x) ⊕ V∗(x) a Lie
subalgebra.

Here, sl(3,R)0, R3
0 and R0 are sl(3,R)-submodules of H0(x) isomorphic to

sl(3,R), R3 and R, respectively.

The same result is obtained with H0(x) ' sl(3,R)⊕R3∗ ⊕R. We only need
to replace the element R3 by R3∗.

Proof. Let us choose an arbitrary but fixed element x ∈ S such that

H0(x) ' sl(3,R)⊕ R3 ⊕ R,

as in Lemma 3.21.
In the first place we define sl(3,R)0, R3

0 and R0 as the Lie subalgebras of
H0(x) such that sl(3,R)0 ' sl(3,R), R3

0 ' R3 and R0 ' R, as sl(3,R)-modules,
via the homomorphism of Lie algebras λ⊥x from Lemma 3.21.

As in Lemma 4.7, we have that G(x)⊕ sl(3,R)0 is a semisimple Lie algebra
isomorphic to the direct sum

sl(3,R)⊕ sl(3,R).
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We choose s a Levi factor of H that contains G(x) ⊕ sl(3,R)0. Since the
sl(3,R)-module structure ofH is defined by the subalgebra G(x) and as G(x) ⊂ s
then s is a sl(3,R)-submodule of H.

Let W be a sl(3,R)-submodule of H such that s = G(x)⊕ sl(3,R)0 ⊕W .
Since rad(H) is an ideal, this induces the next decomposition of H as a direct

sum of sl(3,R)-modules:

H = G(x)⊕ sl(3,R)0 ⊕W ⊕ rad(H)

that we compare with the decomposition of irreducible sl(3,R)-modules

H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x)

= G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x),

from Lemma 3.21.
By properties of representation of Lie algebras and the decomposition of H

in irreducible modules, one of the following must occur:

(a) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ R3
0 ⊕ V(x) and rad(H) = V∗(x).

(b) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V1 ⊕ V∗(x) and rad(H) = V2.

(c) s = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x) and rad(H) = R0.

(d) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V∗(x) and rad(H) = R3
0 ⊕ V(x).

(e) s = G(x)⊕ sl(3,R)0 ⊕ R0 ⊕ V1 and rad(H) = V2 ⊕ V∗(x).

(f) s = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ V(x) and rad(H) = R0 ⊕ V∗(x).

(g) s = G(x)⊕ sl(3,R)0 ⊕ V1 ⊕ V∗(x) and rad(H) = R0 ⊕ V2.

(h) s = G(x)⊕ sl(3,R)0 ⊕ V∗(x) and rad(H) = R0 ⊕ R3
0 ⊕ V(x).

(i) s = G(x)⊕ sl(3,R)0 ⊕ V1 and rad(H) = R0 ⊕ V2 ⊕ V∗(x).

(j) s = G(x)⊕ sl(3,R)0 ⊕ R0 and rad(H) = R3
0 ⊕ V(x)⊕ V∗(x).

(k) s = G(x)⊕ sl(3,R)0 and rad(H) = R0 ⊕ R3
0 ⊕ V(x)⊕ V∗(x).

(l) H = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x) is semisimple.

Where V1 and V2 are vector spaces isomorphic to R3, as sl(3,R)-modules, such
that

V1 ⊕ V2 = R3
0 ⊕ V(x).

Next, we analyze these cases.
The proof that cases (a)-(j) cannot be possible is similar to their re-

spective cases in Lemma 4.9.
Now, assume case (k) is satisfied:

s = G(x)⊕ sl(3,R)0 and rad(H) = R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x).
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At the beginning of this proof we have shown that G(x)⊕sl(3,R)0 is isomorphic
to a direct product of simple Lie algebras, to know sl(3,R) × sl(3,R). Similar
to case (e) in Lemma 4.5 and case (g) in Lemma 4.4, we have that V(x)⊕V∗(x)
is a Lie subalgebra of rad(H) = R3

0 ⊕ R0 ⊕ V(x)⊕ V∗(x).
Suppose case (l) is satisfied:

H = G(x)⊕ sl(3,R)0 ⊕ R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x) is semisimple.

Since H is a semisimple Lie algebra then is isomorphic to a finite direct product
of simple ideals, h1× h2× · · ·× hj . Being that every ideal is invariant under the
Lie bracket by G(x) then every ideal has a structure of sl(3,R)-module. From
this result and the decomposition of H in irreducible sl(3,R)-modules we have
that j ≤ 6.

If j = 6, H = h1 × h2 × · · · × h6. We assume, reindexing if necessary, that
h6 = V∗(x). On the other hand, [V∗(x),V∗(x)] is isomorphic to a sl(3,R)-
submodule of R3. Then [h6, h6] = 0, that is a contradiction. Thus, k = 6 cannot
be possible. Therefore, j ≤ 5.

If j = 5, H = h1 × h2 × · · · × h5. As in j = 6, we assume (reindexing if
necessary) that h1, h2, . . . , h4 are irreducible modules and h5 = V1⊕V2 is a sum
of two irreducible sl(3,R)-submodules with V∗(x) ( h5. Since

[R0,V∗(x)] = V∗(x)

then R0 ⊂ h5 and h5 = R0 ⊕V∗(x). In this case V∗(x) is an abelian ideal of h5,
that is a contradiction. Thus, k = 5 cannot happen. Therefore, j ≤ 4.

If j = 4, H = h1 × h2 × h3 × h4. We assume that h4 is a direct sum of
two or more irreducible sl(3,R)-submodules, even more, we can suppose that
R0 ⊕ V∗(x) ( h4. Since

[R0,V(x)] = V(x)

then V(x) ⊂ h4. In this case, h4 = R0⊕V(x)⊕V∗(x). By [H] there is not a real
simple Lie algebra of dimension 7. Thus j = 4 cannot be possible. Therefore,
j ≤ 3.

If j = 3, H = h1 × h2 × h3. We can assume (as in j = 4) that

R0 ⊕ V(x)⊕ V∗(x) ( h3.

On the other hand, from Lemma 2.18,

[R0,R3
0] = R3

0

then h3 = R3
0 ⊕ R0 ⊕ V(x)⊕ V∗(x). But this implies that

G(x)⊕ sl(3,R)0 = h1 × h2,

that is a contradiction because 0 6= [W(x),G(x)] and

[W(x),G(x)] ⊂ [h3, h1 × h2] = 0.
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Thus, j = 3 cannot happen. Therefore, j ≤ 2.
If j = 2, H = h1 × h2. We assume, without loss of generality, (as in j = 3)

that
R3

0 ⊕ R0 ⊕ V(x)⊕ V∗(x) ⊂ h2.

On the other hand, by Lemma 4.2

0 6= [W(x), sl(3,R)0]

then sl(3,R)0 has projection different from zero in h2. By the simplicity of
sl(3,R)0 this projection is isomorphic to sl(3,R). Then, h2 is a real simple Lie
algebra of dimension 18. But this is a contradiction because, by [H, p. 518],
there is not a real simple Lie algebra of dimension 18. Thus, j = 2 cannot be
possible.

If j = 1, H = G(x) ⊕ sl(3,R)0 ⊕ R3
0 ⊕ R0 ⊕ V(x) ⊕ V∗(x) is a simple Lie

algebra with dim(H) = 26. But, using the results in [H, p. 518], there is not
a real simple Lie algebra of dimension 26. So, H as simple Lie algebra cannot
happen. Therefore, case (l) cannot be possible.

4.5 subalgebra with four submodules

Lemma 4.11 (H0(x) ' sl(4,R)). Let S be as in Corollary 3.19. With the no-
tation of Lemma 3.21, if H0(x) is isomorphic to so(3, 3) (' sl(4,R)) as sl(3,R)-
module for some x ∈ S, then one of the following occurs:

(1) The radical of H is equal to W(x) and G(x) ⊕ H0(x) is a direct sum of
two simple ideals.

(2) H = G(x)⊕H0(x)⊕W(x) is a direct sum of two simple ideals. Being one
of them H0(x)⊕W(x), that is isomorphic to so(3, 4).

Proof. Let us choose an arbitrary but fixed element x ∈ S such that

H0(x) ' sl(4,R),

as in Lemma 3.21.
Recall, from Lemma 3.21, that G(x)⊕H0(x) is a Lie subalgebra of H. Here,

by (4.1) and (4.4), we have

[G(x)⊕H0(x),H0(x)] ⊆ H0(x).

Thus, H0(x) is an ideal on G(x)⊕H0(x).
Therefore, we have the next exact sequence

0→ H0(x)→ G(x)⊕H0(x)→ G(x)→ 0.

Since G(x) ⊕ H0(x) is a semisimple Lie algebra, the previous short exact
sequence shows that the complementary ideal to H0(x) in G(x)⊕H0(x) is iso-
morphic to G(x). So G(x)⊕H0(x) is a Lie algebra isomorphic to

sl(3,R)× sl(4,R).
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This is, there is a simple ideal h in G(x) ⊕ H0(x), isomorphic to sl(3,R), such
that

G(x)⊕H0(x) = h⊕H0(x), (4.18)

as a direct sum of simple ideals.
Choose s a Levi factor of H that contains G(x)⊕H0(x). Since the (sl(3,R)×

sl(4,R))-module structure of H is defined by the subalgebra G(x)⊕H0(x), and
as G(x)⊕H0(x) ⊂ s, then s is a (sl(3,R)× sl(4,R))-submodule of H.

Let W be a (sl(3,R)× sl(4,R))-submodule of H such that

s = G(x)⊕H0(x)⊕W.

Since rad(H) is an ideal, this induces the next decomposition of H as a direct
sum of (sl(3,R)× sl(4,R))-modules:

H = G(x)⊕H0(x)⊕W ⊕ rad(H)

that we compare with its decomposition in irreducible (sl(3,R) × sl(4,R))-
modules

H = h⊕H0(x)⊕W(x),

from Lemma 3.21 and (4.18).
By properties of representation of Lie algebras and the decomposition of H

in irreducible modules, one of the following must occur:

(a) s = G(x)⊕H0(x) and rad(H) =W(x).

(b) H = G(x)⊕H0(x)⊕ V(x)⊕ V∗(x) is semisimple.

Next, we analyze these cases.
Assume case (a) holds:

s = G(x)⊕H0(x) and rad(H) =W(x).

We have proved, in the beginning of the proof, that G(x) ⊕ H0(x) is a direct
sum of two simple ideals.

Suppose case (b) holds:

H = G(x)⊕H0(x)⊕W(x) is a semisimple Lie algebra.

Since H is a semisimple Lie algebra then is isomorphic to a finite direct product
of simple ideals, h1 × h2 × · · · × hk. Here, every ideal is invariant under the
Lie bracket by G(x) ⊕ H0(x) then every ideal has a structure of (sl(3,R) ×
sl(4,R))-module. From these results and the decomposition of H in irreducible
(sl(3,R)× sl(4,R))-modules we have that k ≤ 3.

If k = 3, H = h1×h2×h3. Without loss of generality, reindexing if necessary,
we can suppose that h3 =W(x). Then G(x)⊕H0(x) = h1 × h2. From here,

[H0(x),W(x)] ⊆ [h1 × h2, h3] = 0.
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That cannot be possible because H0(x) 6= 0. Therefore, k ≤ 2.
If k = 2, H = h1×h2. Assume, without loss of generality and by the previous

case, that h1 is an irreducible (sl(3,R)× sl(4,R))-module and h2 = W1 ⊕W2 is
a sum of two irreducible (sl(3,R) × sl(4,R))-modules with W(x) = W1. Thus
G(x) ⊕ H0(x) = h1 ⊕W2. Since W2 ⊂ h2 then [W2,W2] ⊂ h2. On the other
hand

[W2,W2] ⊂ [G(x)⊕H0(x),G(x)⊕H0(x)] ⊂ G(x)⊕H0(x).

From here, [W2,W2] ⊂ W2. So, h1 ⊕W2 is a direct sum of two simple ideals of
G(x)⊕H0(x). Since H0(x) is an ideal on G(x)⊕H0(x) then

H0(x) = h1 or H0(x) = W2.

If H0(x) = h1 then
[W(x),H0(x)] ⊂ [h2, h1] = 0,

that cannot be possible. Thus, H0(x) = W2 and

F = H0(x)⊕W(x)

is a real simple Lie algebra of dimension 21. Then, FC is a complex simple Lie
algebra of dimC(FC) = 21. Thus, by [H, p. 516], we have that FC ∼= so(7,C) or
FC ∼= sp(3,C). So, F is isomorphic to one of the next non-compact real simple
Lie algebras: so(1, 6), so(2, 5), so(3, 4), sp(3,R) or sp(1, 2).

On the other hand, we recall that if g1 and g2 are semisimple Lie algebras
with g1 ⊆ g2 then

rankR(g1) ≤ rankR(g2).

From this result and since H0(x) ' sl(4,R), where rankR(sl(4,R)) = 3, we have
that

3 ≤ rankR(F ).

Then, by [H, p. 518], F can only be isomorphic to so(3, 4) or to sp(3,R).
We also recall that sp(3,R) preserve a non-degenerate, skew-symmetric bilinear
form on a 6-dimensional vector space and sl(4,R) ∼= so(3, 3). From here, we can
eliminate the possibility of F isomorphic to sp(3,R). Therefore, F ∼= so(3, 4).

If k = 1, H = G(x)⊕H0(x)⊕V(x)⊕V∗(x) is a real simple Lie algebra with
dim(H) = 29. That, by results of [H], cannot be possible. Thus, this subcase
cannot happen.



Chapter 5

The structure of V(x)⊕V∗(x)
as solvable Lie algebra.

In the previous chapter we have many opportunities to observe the vector space,
and sl(3,R)-module, V(x) ⊕ V∗(x) as a solvable Lie subalgebra. In this
chapter we describe all the possible structures of V(x)⊕V∗(x) as a solvable Lie
algebra.

These structures will be determined by the action of the sl(3,R)-submodules
of so(TxO⊥).

5.1 The action of G(x) on W(x)

Choose and fix an element x ∈ S, as in Corollary 3.19, that satisfies Lemma
3.21.

Recall that for x ∈ S, we have the next decomposition of H in sl(3,R)-
modules

H = G(x)⊕H0(x)⊕W(x).

where W(x) = V(x) ⊕ V∗(x) with V(x) ∼= R3 and V∗(x) ∼= R3∗ as sl(3,R)-
modules.

Let X be an element of the algebra sl(3,R) and Z ∈ W(x). From Lemma
3.12 we have that ρ̂x(X) = ρx(X) +X∗ ∈ G(x) and

[ρ̂x(X), Z] ∈ H

where

[ρ̂x(X), Z] = [ρx(X) +X∗, Z]

= [ρx(X), Z] + [X∗, Z]

= [ρx(X), Z] + 0

= [ρx(X), Z].

69
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Since ρx(X) ∈ sl(3,R)(x), by definition of the map λ⊥x in Lemma 3.21, then

λ⊥x (X)(Z) = [ρx(X), Z] = [ρ̂x(X), Z] ∈ W(x). (5.1)

Since λ⊥x is a non-zero and injective map when restricted to sl(3,R)(x) we
have that λ⊥x (sl(3,R)(x)) is homeomorphic to sl(3,R). Then, from Lemma 3.17,
we can choose V(x) and V∗(x) subspaces of W(x) such that:

[G(x),V(x)] ⊆ V(x) and [G(x),V∗(x)] ⊆ V∗(x).

Note that in this point it is not necessary for V(x)⊕V∗(x) to be an algebra.

5.2 The Lie algebra structure

First, suppose that W(x) = V(x)⊕ V∗(x) is a Lie algebra.
Thus, the Lie bracket restricted to V(x) gives rise to the following homo-

morphism of sl(3,R)-modules:

[·, ·]
∣∣
V(x)

: V(x)⊗ V(x) → V(x)⊕ V∗(x)

v1 ⊗ v2 7→ [v1, v2]

for every v1, v2 ∈ V(x). On the other hand, if [·, ·]
∣∣
V(x)

is nonzero then we have

an isomorphism

V(x)⊗ V(x)→ V(x) ∧ V(x)

v1 ⊗ v2 7→ v1 ∧ v2

with v1, v2 ∈ V(x). But V(x) ∧ V(x) ∼= R3∗ as sl(3,R)-module. From here, if
[·, ·]
∣∣
V(x)

6= 0 then its image Im([·, ·]
∣∣
V(x)

), has projection zero on V(x). Other-

wise, we would have an isomorphism between V(x) and R3∗ as sl(3,R)-modules,
which cannot be possible. So, [·, ·]

∣∣
V(x)

(V(x)⊗ V(x)) ⊆ V∗(x). From this,

[V(x),V(x)] ⊆ V∗(x).

In a similar way, we can prove that, if V(x)⊕ V∗(x) is a Lie algebra,

[V∗(x),V∗(x)] ⊆ V(x).

On the other hand, the Lie bracket defines the next homomorphism:

[·, ·]
∣∣
V(x)⊗V∗(x)

: V(x)⊗ V∗(x) → V(x)⊕ V∗(x)

v ⊗ w 7→ [v, w]

for every v ∈ V(x) and w ∈ V∗(x).
If the homomorphism [·, ·]

∣∣
V(x)⊗V∗(x)

is non-zero then we have an isomor-

phism between Im([·, ·]
∣∣
V(x)⊗V∗(x)

) and V(x) ∧ V∗(x). But, by [F, Ch. 13],

V(x) ∧ V∗(x) ∼= sl(3,R)⊕ R,
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as sl(3,R)-module. That cannot happen because Im([·, ·]
∣∣
V(x)⊗V∗(x)

) ⊆ V(x) ⊕
V∗(x). Then

[V(x),V∗(x)] = 0. (5.2)

In summary, if V(x)⊕ V∗(x) is a Lie algebra then

[V(x),V(x)] ⊆ V∗(x), [V∗(x),V∗(x)] ⊆ V(x) and [V(x),V∗(x)] = 0. (5.3)

If we assume that W(x) = V (x)⊕V∗(x) is a solvable Lie algebra, then the
condition of solvability of V(x)⊕ V∗(x) shows that it cannot be possible that

[V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = V(x) (5.4)

because this would contradict that V(x)⊕ V∗(x) is solvable, therefore

[V(x),V(x)] = 0 or [V∗(x),V∗(x)] = 0. (5.5)

5.2.1 abelian.

If [V(x),V(x)] = 0 and [V∗(x),V∗(x)] = 0 then the Lie algebra

W(x) = V(x)⊕ V∗(x)

is abelian.
Next, we analyze the structure of W(x) when

[V(x),V(x)] 6= 0 or [V∗(x),V∗(x)] 6= 0.

5.2.2 2-Step nilpotent Lie algebra.

First, assume [V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0.
In this case, we have [W(x),W(x)] = V∗(x) which implies

[W(x), [W(x),W(x)]] = 0, (5.6)

that is, W(x) = V(x)⊕ V∗(x) is a 2-Step Nilpotent Lie Algebra.
Next, choose a basis {v1, v2, v3} of V(x) and an element X ∈ sl(3,R) such

that, from Lemma 3.21,

[ρ̂x(X), vi] = [ρx(X), vi] = ai · vi

where a1 = 1, a2 = 2 and a3 = −3.

Remark 5.1. We can choose non-zero elements ai ∈ R, i = 1, 2, 3, such that
ai 6= aj if i 6= j, a1 + a2 + a3 = 0 and 2a1 + a2 6= 0 6= a1 + 2a2.

On the other hand, we can find a basis {w1, w2, w3} of V∗(x) satisfying

[ρ̂x(X), wi] = [ρx(X), wi] = −ai · wi

for i = 1, 2, 3.
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In this way, since [v1, v2] ∈ V∗(x), then there are elements a1
12, a

2
12, a

3
12 ∈ R

such that

[v1, v2] = a1
12w1 + a2

12w2 + a3
12w3.

Thus,

[ρ̂x(X), [v1, v2]] = [ρ̂x(X), a1
12w1 + a2

12w2 + a3
12w3]

= a1
12[ρ̂x(X), w1] + a2

12[ρ̂x(X), w2] + a3
12[ρ̂x(X), w3]

= −a1
12w1 − 2a2

12w2 + 3a3
12w3,

and

[[ρ̂x(X), v1], v2] + [v1, [ρ̂x(X), v2]] = [v1, v2] + [v1, 2v2]

= 3[v1, v2]

= 3(a1
12w1 + a2

12w2 + a3
12w3).

But, by the Jacobi identity

[ρ̂x(X), [v1, v2]] = [[ρ̂x(X), v1], v2] + [v1, [ρ̂x(X), v2]].

Therefore

−a1
12w1 − 2a2

12w2 + 3a3
12w3 = 3(a1

12w1 + a2
12w2 + a3

12w3),

that is,

0 = 4a1
12w1 + 5a2

12w2.

From here, a1
12 = a2

12 = 0 and [v1, v2] = a12w3, for some a12 ∈ R.

Similarly we can prove that

[v1, v3] = a13w2 and [v2, v3] = a23w1, with a13, a23 ∈ R.

Since [V(x),V(x)] = V∗(x), then a12, a13 and a23 are real numbers different
from zero.

On the other hand, we can choose an element Y1 ∈ sl(3,R) such that:

[ρ̂x(Y1), v1] = [ρx(Y1), v1] =v1

[ρ̂x(Y1), v2] = [ρx(Y1), v2] =v3

[ρ̂x(Y1), v3] = [ρx(Y1), v3] =− v3,

and

[ρ̂x(Y1), w1] = [ρx(Y1), w1] =− w1

[ρ̂x(Y1), w2] = [ρx(Y1), w2] =0

[ρ̂x(Y1), w3] = [ρx(Y1), w3] =− w2 + w3.
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Remark 5.2. λ⊥x (Y1) acts on {v1, v2, v3} as the matrix 1 0 0
0 0 0
0 1 −1


on the canonical basis of R3 .

Since [ρ̂x(Y1), [v1, v2]] = [[ρ̂x(Y1), v1], v2] + [v1, [ρ̂x(Y1), v2]] then

[ρ̂x(Y1), [v1, v2]] = [ρ̂x(Y1), a12w3]

= a12[ρ̂x(Y1), w3]

= a12(−w2 + w3)

= −a12w2 + a12w3

but,

[[ρ̂x(Y1), v1], v2] + [v1, [ρ̂x(Y1), v2]] = [v1, v2] + [v1, v3]

= a12w3 + a13w2.

From this, −a12w2 + a12w3 = a12w3 + a13w2. Thus a13 = −a12.
Similarly, with another Y2 ∈ sl(3,R) acting specifically, we can prove that

a23 = a12. Therefore, if [V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0 then

[v1, v2] =a · w3

[v1, v3] =− a · w2

[v2, v3] =a · w1

for some 0 6= a ∈ R.
If instead of the previous case we assume now that [V∗(x),V∗(x)] = V(x)

and [V(x),V(x)] = 0 thenW(x) = V(x)⊕V∗(x) has, also, a structure of 2-step
nilpotent Lie algebra. Here, with a similar proof as in the previous case,
we can find bases {w̃1, w̃2, w̃3} and {ṽ1, ṽ2, ṽ3} of V∗(x) and V(x), respectively,
such that

[w̃1, w̃2] =ã · ṽ3

[w̃1, w̃3] =− ã · ṽ2

[w̃2, w̃3] =ã · ṽ1

for some 0 6= ã ∈ R.

5.3 Structure with a non-degenerate inner pro-
duct (II)

Now, we will see how the structure of inner product of TxO⊥ and the structure
of Lie algebra of V(x)⊕ V∗(x) are related.
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5.3.1 V(x)⊕ V∗(x) is an abelian Lie algebra.

Suppose the Lie algebra V(x) ⊕ V∗(x) is abelian, i.e. [v, w] = 0 for all v, w ∈
W(x).

Also, by Lemma 2.10 and Remark 5.1, we can assume the existence of bases
{v1, v2, v3} and {w1, w2, w3} of V(x) and V∗(x), respectively, such that:

〈evx(vi), evx(vj)〉 = 0

〈evx(wi), evx(wj)〉 = 0

〈evx(vi), evx(wj)〉 = δij

for all i, j = 1, 2, 3.
Here, because of the abelian structure, we have that for u, v, w ∈ V(x)⊕V∗(x)

〈evx([u, v]), evx(w)〉+ 〈evx(v), evx([u,w])〉 = 〈evx(0), evx(w)〉
+ 〈evx(v), evx(0)〉

= 〈0, evx(w)〉+ 〈evx(v), 0〉
= 0 + 0

= 0.

Therefore, when V(x) ⊕ V∗(x) is an abelian Lie algebra, the inner product
in TxO⊥ is invariant under the adjoint map of this algebra.

5.3.2 V(x)⊕ V∗(x) as 2-step nilpotent Lie algebra.

Assume, first that [V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0. The other case
is similar.

By the previous section we can find bases {v1, v2, v3} and {w1, w2, w3} of
V(x) and V∗(x), respectively, such that:

[v1, v2] =a · w3

[v1, v3] =− a · w2

[v2, v3] =a · w1

for some 0 6= a ∈ R, and

〈evx(vi), evx(vj)〉 = 0

〈evx(wi), evx(wj)〉 = 0

〈evx(vi), evx(wj)〉 = δij

for all i, j = 1, 2, 3.
If w ∈ V∗(x), we have proved that [w, z] = 0 for all z ∈ V(x)⊕V∗(x). Then,

if z1, z2 ∈ V(x)⊕ V∗(x)

〈evx([w, z1]), evx(z2)〉+ 〈evx(z2), evx([w, z2])〉 = 〈evx(0), evx(z2)〉
+ 〈evx(z2), evx(0)〉

= 〈0, evx(z2)〉+ 〈evx(z2), 0〉
= 0.
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This is, the inner product in TxO⊥ is invariant under the adjoint map restricted
to V∗(x).

Let 0 6= v ∈ V(x), we can find an element z ∈ V(x) such that [v, z] 6= 0. In
this case, [v, z] ∈ V∗(x). Since 〈V∗(x),V∗(x)〉 = 0, then there is z2 ∈ V(x), with
〈evx([w, z]), evx(z2)〉 6= 0. So, if we want study the product in TxO⊥, we need
only check the result of 〈evx([z1, z2]), evx(z3)〉 for elements z1, z2, z3 ∈ V(x).

Note that:

〈evx([v1, v2]), evx(v3)〉 = 〈evx(a · w3), evx(v3)〉
= 〈a · evx(w3), evx(v3)〉
= a〈evx(w3), evx(v3)〉
= a · 1
= a.

The same is true for 〈evx([v3, v1]), evx(v2)〉 and 〈evx([v2, v3]), evx(v1)〉, i.e.,

〈evx([v3, v1]), evx(v2)〉 = 〈evx([v2, v3]), evx(v1)〉 = a.

We also have

〈evx([v1, v2]), evx(v3)〉+ 〈evx(v2), evx([v1, v3])〉
= 〈evx(a · w3), evx(v3)〉+ 〈evx(v2), evx(−a · w2)〉
= 〈a · evx(w3), evx(v3)〉+ 〈evx(v2), (−a) · evx(w2)〉
= a · 〈evx(w3), evx(v3)〉+ (−a) · 〈evx(v2), evx(w2)〉
= a · 1 + (−a) · 1
= 0,

〈evx([v2, v3]), evx(v1)〉+ 〈evx(v3), evx([v2, v1])〉
= 〈evx(a · w1), evx(v1)〉+ 〈evx(v3), evx(−a · w3)〉
= 〈a · evx(w1), evx(v1)〉+ 〈evx(v3), (−a) · evx(w3)〉
= a · 〈evx(w1), evx(v1)〉+ (−a) · 〈evx(v3), evx(w3)〉
= a · 1 + (−a) · 1
= 0

and

〈evx([v3, v1]), evx(v2)〉+ 〈evx(v1), evx([v3, v2])〉
= 〈evx(a · w2), evx(v2)〉+ 〈evx(v1), evx(−a · w1)〉
= 〈a · evx(w2), evx(v2)〉+ 〈evx(v1), (−a) · evx(w1)〉
= a · 〈evx(w2), evx(v2)〉+ (−a) · 〈evx(v1), evx(w1)〉
= a · 1 + (−a) · 1
= 0



76 CHAPTER 5. V(X)⊕ V∗(X) AS SOLVABLE LIE ALGEBRA

Hence, the inner product in TxO⊥ is invariant under the adjoint map in the
2-step nilpotent Lie algebra structure of V(x)⊕ V∗(x).

In [Ov], we can find a deeper study about 2-step nilpotent Lie algebras which
admit an ad-invariant metric. In particular, shows the existence and uniqueness
of a six-dimensional 2-step nilpotent Lie algebra of co-rank zero.

5.3.2.1 Uniqueness

Suppose there are two Lie algebra structures with respect to the assumption
[V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0.

By the previous section, there exist two non-zero real numbers a and b such
that

[v1, v2]a =a · w3

[v1, v3]a =− a · w2

[v2, v3]a =a · w1

and

[v1, v2]b =b · w3

[v1, v3]b =− b · w2

[v2, v3]b =b · w1

for some bases {v1, v2, v3} and {w1, w2, w3} of V(x) and V∗(x), respectively. In
the first case we denote the Lie algebra as Wa(x) and in the second case as
Wb(x).

Suppose also that theses basis satisfy

〈vi, vj〉 = 〈wi, wj〉 = 0 and 〈vi, wj〉 = δij

for i, j = 1, 2, 3, where 〈u1, u2〉 := 〈evx(u1), evx(u2)〉 for all u1, u2 ∈ W{a,b}(x).
Define the map T :Wa(x)→Wb(x) given by

T :Wa(x) → Wb(x)

vi 7→ 3

√
a

b
vi

wj 7→ 3

√
b

a
wj ∀i, j = 1, 2, 3.

It is clear that this map is an isomorphism of vector spaces. Let’s see if it is
an isomorphism of Lie algebras. First, note that

T ([v1, v2]a) = T (a · w3)

= a · T (w3)

= a
3

√
b

a
w3,
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and

[T (v1), T (v2)]b =
[

3

√
a

b
v1,

3

√
a

b
v2

]
b

=
(

3

√
a

b

)2

[v1, v2]b

=
(

3

√
a

b

)2

b · w3

= a
3

√
b

a
w3,

which proves T ([v1, v2]a) = [T (v1), T (v2)]b. With a similar argument we can
prove

T ([v1, v3]a) = [T (v1), T (v3)]b

T ([v2, v3]a) = [T (v2), T (v3)]b.

On the other hand, if w ∈ V∗(x) and u ∈ Wa(x) then

T ([w, u]a) = T (0)

= 0

= [T (w), T (u)]b.

From here, T :Wa(x)→Wb(x) is an isomorphism of Lie algebras.
Now, we look at the behavior of the isomorphism T with respect to the inner

product of TxO⊥. For this, we need only observe the behavior in the previous
bases, that is shown next:

〈T (vi), T (vj)〉 =
〈

3

√
a

b
vi,

3

√
a

b
vj

〉
=

(
3

√
a

b

)2

〈vi, vj〉

=
(

3

√
a

b

)2

· 0

= 0,

〈T (wi), T (wj)〉 =
〈

3

√
b

a
vi,

3

√
b

a
wj

〉
=

(
3

√
b

a

)2

〈wi, wj〉

=
(

3

√
b

a

)2

· 0

= 0
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and

〈T (vi), T (wj)〉 =
〈

3

√
a

b
vi,

3

√
b

a
wj

〉
=

(
3

√
a

b

)(
3

√
b

a

)
〈vi, wj〉

= 1 · δij
= δij .

for all i, j = 1, 2, 3.
This proves that the isomorphism T is isometric. Then, the two Lie algebras

structures are isomorphic and isometric. Therefore, we have uniqueness, of Lie
algebra structure, up to isometric isomorphism.



Chapter 6

Structure of the
Centralizer.

In this chapter we assume M is a connected analytic pseudo-Riemannian ma-
nifold with dim(M) = 14 and finite volume. We also assume that S̃L(3,R)
acts isometric and analytically on M with a dense orbit, satisfying part b) of
Remark 3.8. We study all the possible structures of the Lie algebra H through
the analysis of Lemmas from chapter 3, which are obtained by the different
possibilities of H0. As in the previous chapters, we use the notation in Lemma
3.21.

6.1 Properties of the SL(3,R)-action and its cen-
tralizer.

6.1.1 Properties of the centralizer.

From Chapter 5 in [OnV] we have the following definitions and results.
Let g be a real semisimple Lie algebra, g = k+ p a Cartan decomposition

of g and θ : g→ g a Cartan involution corresponding to this decomposition,
this is

θ : g → g

x+ y 7→ x− y

for all x ∈ k and y ∈ p.
Given the previous Cartan decomposition of the real semisimple Lie algebra

g, we call a subalgebra h ⊂ g canonically embedded in g with respect to the
decomposition g = k+p if θ(h) = h, where θ is the automorphism corresponding
to the Cartan decomposition, or, equivalently, if

h = (h ∩ k)⊕ (h ∩ p).

79
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Any semisimple Lie algebra g (over R or C) can be identified with the linear
Lie algebra ad(g) ⊂ gl(g), over the same field. Therefore we may introduce the
notion of an algebraic subalgebra of a semisimple Lie algebra. A subalgebra h
of a complex semisimple Lie algebra is called algebraic subalgebra if ad(h) is an
algebraic linear Lie algebra. A subalgebra h of a real semisimple Lie algebra
g is called reductive algebraic if h(C) is a reductive algebraic subalgebra of a
complex Lie algebra g(C).

Here, a complex Lie algebra g is called reductive if g = z ⊕ g1 where z is
diagonalizable (that is, z is commutative and all its elements are semisimple)
and g1 is a semisimple ideal of g. For instance, any semisimple subalgebra of a
semisimple Lie algebra (over C or R) is reductive algebraic.

Theorem 6.1 ([OnV], Th. 4, Section 4.1.1). Any reductive algebraic subalgebra
of a real semisimple Lie algebra g is canonically embedded in g with respect to
a Cartan decomposition.

With the definitions and results from [OnV] we have the next Lemma.

Lemma 6.2. Suppose that ρ : sl(3,R) → g2(2) is an injective Lie algebra ho-
momorphism. Then s = ρ(sl(3,R)) is a subalgebra of g2(2) with its centralizer,
zg(s), equal to zero.

Proof. First, recall that any two Cartan involutions are conjugate. From previ-
ous theorems and the semisimplicity of sl(3,R) and g2(2) we have that the Lie
subalgebra s is canonically embedded in g2(2). Then, every Cartan involution
on s can be extended to a Cartan involution on g2(2).

Let θ be a Cartan involution on g2(2) such that θ(s) = s. The bilinear form
bθ(X,Y ) = −K(X, θ(Y )) is positive definite on g2(2) and s. Let W be the bθ-
orthogonal complement of s. Then W is a s-module with dim(W ) = 6. Also,
bθ|W×W is non-degenerate and s-invariant. So g = s⊕W .

Let Y ∈ zg(s), then there exist Y0 ∈ s and Y1 ∈ W such that Y = Y0 + Y1.
Since

[X,Y ] = [X,Y0 + Y1] = 0 ∀X ∈ s

then

[X,Y0] = [X,Y1] = 0 ∀X ∈ s

that with the semisimplicity of sl(3,R) implies Y0 = 0. Thus zg(s) ⊆W .

Now, suppose that zg(s) is a subalgebra different from zero, then the above
equation shows that there exists, at least, a one-dimensional sl(3,R)-module
on W . In this case, by Lemma 2.10, we will have that W is isomorphic, as
sl(3,R)-module, to either

L3 ⊕ R3, L3 ⊕ R3∗ or L6

where L denotes the trivial representation of sl(3,R) on R.

We analyze all these possible cases.
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If W ∼= L3⊕R3 then the Lie bracket restricted to W provides us the following
homomorphisms of sl(3,R)-modules:

[·, ·]|∧2L3 : ∧2L3 → g2(2)

u ∧ v 7→ [u, v], ∀ u ∧ v ∈ ∧2L3

[·, ·]|L3⊗R3 : L3 ∧ R3 → g2(2)

u ∧ v 7→ [u, v], ∀ u ∈ L3, v ∈ R3

[·, ·]|∧2R3 : ∧2R3 → g2(2)

u ∧ v 7→ [u, v], ∀ u ∧ v ∈ ∧2R3

On the other hand, since

L3 ∧ L3 ∼= L3

L3 ∧ R3 ∼=
3⊕
i=1

R3

R3 ∧ R3 ∼= R3∗

as sl(3,R)-modules, then

[L3, L3] ⊂ L3 ⊂W
[L3,R3] ⊂ R3 ⊂W
[R3,R3] = 0

this is, [W,W ] ⊂ W , but this would imply that W is an ideal of g2(2), which is
a contradiction. Then, the case W ∼= L3 ⊕ R3 cannot be possible.

The same result is obtained if we assume that W ∼= L3⊕R3∗ or W isomorphic
to L6. So, it cannot be possible that zg(s) 6= 0.

Lemma 6.3. Suppose that G is a connected Lie group locally isomorphic to
G2(2) and consider ρ : S̃L(3,R)→ G a non trivial homomorphism of Lie groups.

Then, the centralizer ZG(ρ(S̃L(3,R))) of ρ(S̃L(3,R)) in G contains Z(G) (the
center of G) as a finite index subgroup.

Proof. Let S = ρ(S̃L(3,R)) and denote the Lie algebra of S as s. Since
Z(G) ⊆ ZG(S) and, by the previous Lemma, zg(s) = 0 then ZG(S) and Z(G)
are discrete. And the proof that ZG(S) is finite is a consequence of the next
Lemma (Lemma 1.1.3.7 of [W]).

The Lemma below implies that ZG(S) is contained in the maximal compact
subgroup of G with lie algebra k.
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Lemma 6.4 ([W], Lemma 1.1.3.7). Let g be a semisimple Lie algebra over
R, g = k + p a Cartan decomposition of g with Cartan involution θ; let G
be a connected Lie group with Lie algebra g, K the analytic subgroup of G
corresponding to k; let Ỹ = Ad(k exp(X))Y where Ỹ , Y ∈ g, k ∈ k and X ∈ p

then, if Y and Ỹ are eigenvectors of θ, we have [X,Y ] = 0.

We prove now the relationship between the Killing form on the simple Lie
group g2(2) and the sl(3,R)-invariant bilinear form, both obtained in sl(3,R)
and R3 ⊕ R3∗. But before we need the following result.

Lemma 6.5. There is, up to a multiple by a real scalar, exactly one sl(3,R)-
invariant non-degenerate bilinear form on R3 ⊕ R3∗.

Proof. We have proved that there exists in R3 ⊕ R3∗ a sl(3,R)-invariant non-
degenerate bilinear form. This is a consequence of the existence of an isomor-
phism ρ : R3 ⊕ R3∗ → (R3 ⊕ R3∗)∗ of sl(3,R)-modules.

Then we have an isomorphism ρ(C) : C3 ⊕ C3∗ → C3 ⊕ C3∗ of sl(3,C)-
modules, that by Schur’s Lemma, is just the multiple of the identity by a com-
plex number when restricted to C3 and to another complex number when res-
tricted to C3∗. Furthermore, since ρ(C) is the complexification of ρ we have
that these numbers are real.

The result follows from the previous arguments and the fact that R3 and
R3∗ belong to the nullcone of the inner product.

Lemma 6.6. Let 〈·, ·〉1 and 〈·, ·〉2 be inner products on sl(3,R) and R3 ⊕ R3∗,
respectively. If we suppose that 〈·, ·〉1 and 〈·, ·〉2 are sl(3,R)-invariant. Then,
there exist a1, a2 ∈ R such that a1〈·, ·〉1 + a2〈·, ·〉2 is the Killing form of g2(2).

Proof. Recall that Schur’s Lemma implies that in g, a simple real Lie algebra
with a simple complexification, any g-invariant non-degenerate symmetric bi-
linear form on g is unique up to a multiple, that is, the multiple by a scalar of
the Killing form.

In particular, we have that 〈·, ·〉1 is a multiple of the Killing form of g2(2) (K)
when restricted to sl(3,R), this is 〈X,Y 〉1 = c1K|sl(3,R)(X,Y ) for all X,Y ∈
sl(3,R) and some non-zero c1 ∈ R.

On the other hand, from Lemma 6.5 we have the existence of a non-zero
scalar c2 ∈ R such that 〈·, ·〉2 = c2K|R3⊕R3∗(·, ·).

Now, the result is a consequence of the previous arguments and Lemma
6.5.

6.1.2 Integrability and Weak-irreducibility

In the proof of Lemma 3.17 we assumed that part b) of Remark 3.8 is satisfied.
This assumption can be obtained if we assume that the bundle TO⊥, in the
manifold M , is non-integrable.

The case when the normal bundle, TO⊥, is integrable is extensively studied
by Quiroga-Barranco in [Q]. The following result is a particular case of Theorem
1.1 in said article, which also appears in [OQ] as Proposition 15.
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Proposition 6.7. Let G be a connected non-compact simple Lie group acting
isometrically on a connected complete finite volume pseudo-Riemannian mani-
fold M . If the tangent bundle to the orbits TO has non-degenerate fibers and
the bundle TO⊥ is integrable, then there is an isometric covering map

G̃×N →M

where the domain has the product metric for a bi-invariant metric on G̃ and
with N a complete pseudo-Riemannian manifold.

This result enables us to find a lower bound for the dimension of the manifold
M when the bundle TO⊥ is non-integrable, which is Proposition 1.6 in [OQ].
Its proof is based in the existence of a conull subset S such that if x ∈ S then
the vector space TxO⊥ is a non-trivial g-module. The following result is based
in such Proposition (1.6 in [OQ]) but with the assumption that S has positive
measure.

Proposition 6.8. Let M be a connected analytic pseudo-Riemannian manifold
and G a connected non-compact simple Lie group. Suppose that M is com-
plete, satisfies part b) of Remark 3.8, has finite volume and admits an analytic
isometric non-transitive G-action with a dense orbit. Then:

dim(M) ≥ dim(G) +m(g)

where m(g) is the dimension of the smallest non-trivial representation of g (Lie
algebra of G) that admits an invariant non-degenerate symmetric bilinear form.

Proof. Suppose dim(M) < dim(G) + m(g). Since m(g) ≤ dim(G) (the Killing
form defines an inner product), by Lemma 3.11 the bundle TO⊥ has non-
degenerate fibers with dimension < m(g). Hence, the definition of m(g) implies
that TxO⊥ is a trivial g-module for the structure defined in Proposition 3.7(4).
Since this is true for almost every element in S, contradicts parts b) in Remark
3.8.

Recall that a connected pseudo-Riemannian manifold is weakly irreduci-
ble if the tangent space at some point has no proper non-degenerate subspaces
invariant under the restricted holonomy group at that point.

Remark 6.9. As a consequence of the previous definition and Proposition 6.7, we
have that if G is a connected non-compact simple Lie group acting isometrically
on a weakly irreducible connected complete finite volume pseudo-Riemannian
manifold M such that the tangent bundle to the orbits TO has non-degenerate
fibers then the bundle TO⊥ is non-integrable.

6.2 The radical of H is nonzero.

Combining conclusions from the Lemmas in Chapter 4 we have the following
result.
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Lemma 6.10. Let S be as in Corollary 3.19. With the notation from Lemma
3.21. If x ∈ S, then one of the following occurs:

1) rad(H) 6= 0 and W(x) = V(x)⊕ V∗(x) ⊆ rad(H) is a Lie subalgebra,

2) H = G(x)⊕H0(x)⊕W(x) is a semisimple Lie algebra.

In the first case (W(x) ⊆ rad(H)) the structure of algebra ofW(x) gives rise
to a series of consequences, that we have shown in Chapter 5, such as equations
(5.2) and (5.3) that we rewrite here

[V(x),V∗(x)] = 0, [V(x),V(x)] ⊆ V∗(x) and [V∗(x),V∗(x)] ⊆ V(x).

Remark 6.11. This result together with the solvability of rad(H) implies that
the only cases to consider in part 1) are:

(i) W(x) is abelian.

(ii) [V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0.

(iii) [V∗(x),V∗(x)] = V(x) and [V(x),V(x)] = 0.

Which appear as equations (5.4) and (5.5) in Chapter 5.

Note, that in the two latter cases we have, by (5.6), that W(x) satisfies

[W(x), [W(x),W(x)]] = 0.

Therefore, we have that W(x) is a 2-step nilpotent Lie algebra.
In this section, we analyze the subcases that appear in Remark 6.11. In this

case we take a suitable fixed element x0 ∈ M̃ which satisfies Lemma 3.21 and
such that rad(H) 6= 0.

From Lemma 6.10 and Remark 6.11, when W(x0) ⊆ rad(H) we have that
W(x0) is a 2-Step nilpotent or abelian Lie algebra.

6.2.1 W(x0) is abelian.

Suppose the Lie subalgebra W(x0) ⊆ rad(H) is abelian.
Here, G(x0)⊕W(x0) is a Lie subalgebra of H with the Lie bracket given as

[G(x0),W(x0)] =W(x0) and [W(x0),W(x0)] = 0.

In this case G(x0)⊕W(x0) is a Lie algebra isomorphic to sl(3,R)n V , where

V = R3 ⊕ R3∗

with a structure of abelian Lie algebra compatible with its structure as sl(3,R)-
module.

Let us choose
ψ : sl(3,R)n V → G(x0)⊕W(x0)
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an isomorphism of Lie algebras such that

ψ(sl(3,R)) = G(x0) and ψ(V ) =W(x0).

Let us denote, also, as S̃L(3,R)nV the Lie group structure on S̃L(3,R)×V
with the semidirect product given by:

(A, v) · (B,w) = (AB,B−1v + w),

where we use the representation of S̃L(3,R) on the vector space V induced by

the representation of sl(3,R). Note that the Lie algebra of S̃L(3,R) n V is
sl(3,R)n V . Then, by Lemma 3.16, there is an analytic isometric right action

of S̃L(3,R)n V on M̃ such that

ψ(X) = X∗

for every X ∈ sl(3,R)n V .

Since H centralizes the left S̃L(3,R)-action on M̃ then we have that the

right (S̃L(3,R)n V )-action centralizes the left S̃L(3,R)-action. And, for the
same reason, preserves TO and TO⊥.

On the other hand, using the right (S̃L(3,R)n V )-action on M̃ , for the

element x0 ∈ M̃ , previously chosen, we consider the next map:

f : S̃L(3,R)n V → M̃

h 7→ x0h

for all h ∈ S̃L(3,R)nV . It is clear, that this action is (S̃L(3,R)nV )-equivariant
by the right action on its domain.

If ē denotes the identity element in the simple Lie group S̃L(3,R), then

df(ē,0) : sl(3,R)n V → G(x)⊕W(x)→ Tx0
M̃

X 7→ X∗ 7→ X∗x0
.

Since ψ(X) = X∗ for all X ∈ sl(3,R)n V , then from Lemma 3.21, df(ē,0) maps

sl(3,R) onto Tx0O and V onto Tx0O⊥. Therefore, f is a local diffeomorphism
at (ē, 0).

For every v0 ∈ V , let Rv0 denote the map on S̃L(3,R)n V and on M̃ given
by the correspondence

x 7→ x(ē, v0).

Since the subgroup V is abelian, it is not hard to prove the next result

(dRv0)(ē,v) : T(ē,v)(S̃L(3,R)n V ) → T(ē,v+v0)(S̃L(3,R)n V )

(X,Yv) 7→ (X,Yv+v0),

for every v ∈ Tx0
P .

Since V is a subgroup of S̃L(3,R)n V then Rv0(V ) = V .
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Let P = f(ē × V ), which defines a submanifold of M̃ in a neighborhood of
x0 = f(ē, 0). Here, from the previous remarks, we have

Tx0P = df(ē,0)

(
T(ē,0)(ē× V )

)
= Tx0O⊥. (6.1)

From the equivariant property of the map f and (6.1), if (ē, v0) ∈ e×V then

Tf(ē,v0)P = df(ē,v0)

(
T(ē,v0)(ē× V )

)
= df(ē,v0)

(
(dRv0)(ē,0)(T(ē,0)(ē× V ))

)
= d(f ◦Rv0)(ē,0)

(
T(ē,0)(ē× V )

)
= d(Rv0 ◦ f)(ē,0)

(
T(ē,0)(ē× V )

)
= (dRv0)f(ē,0)

(
df(ē,0)T(ē,0)(ē× V )

)
= (dRv0)f(ē,0)Tx0P

= (dRv0)f(ē,0)Tx0
O⊥

= TRv0
f(ē,0)Tx0

O⊥

= Tf(ē,v0)Tx0
O⊥.

Hence, P is an integral submanifold of TO⊥ passing through x0 = f(ē, 0).

On the other hand, from the left S̃L(3,R)-action on M̃ we obtain, by res-
triction to P , a map

φ : S̃L(3,R)× P → M̃

(g, x) 7→ g · x,

whose differential at (e, x0) is given by

dφ(e,x0) : T(e,x0)

(
S̃L(3,R)× P

)
→ Tx0

M̃

X + w 7→ X∗x0
+ w,

with X ∈ sl(3,R) and w ∈ V . Note that this is an isomorphism. Hence the
map φ is a diffeomorphism from a neighborhood of (e, x0) onto a neighborhood
of x0.

Since the left S̃L(3,R)-action preserves the bundles TO and TO⊥ then there
is an integral manifold of TO⊥ passing through every point in a neighborhood
of x0 in M̃ . Therefore the tensor Ω in Lemma 3.9 vanishes in a neighborhood
of x0. Then, from Remark 3.10, Ω ≡ 0 and TO⊥ is integrable in M̃ .

On the other hand, the local diffeomorphism f induces a metric tensor in the
abelian Lie group V which is right-invariant and, by Subsection 5.3.1, ad(V )-
invariant. Since V is connected, the metric tensor in the abelian Lie group V is
Ad(V )-invariant. Then, by Proposition 9 of [ONe, p. 304], the geodesics of V
starting at 0 are the one-parameter subgroups of V . Therefore we have that V
is a complete manifold.

Thus, from the previous arguments we have the following result.
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Proposition 6.12. Let M and S̃L(3,R) satisfy the same hypotheses as in Theo-

rem 1.6. If for some x0 ∈ M̃ we have that, in the decomposition of H (Lemma
3.21), W(x0) ⊆ rad(H) is an abelian Lie algebra then TO⊥ is integrable and the

pseudo-Riemannian manifold Ñ , in Theorem 1.7, is diffeomorphic to R3×R3∗,
an abelian Lie group.

6.2.2 [V(x0),V(x0)] 6= 0.

In this subsection we assume, by Remark 6.11, that the Lie algebra W(x0)
satisfies [W(x0),W(x0)] 6= 0. Thus, W(x0) is a 2-step nilpotent Lie algebra.
Assume first [V(x),V(x)] 6= 0, this is,

[V(x),V(x)] = V∗(x) and [V∗(x),V∗(x)] = 0.

Here, G(x0)⊕W(x0) is a Lie subalgebra of H with Lie brackets given by

[G(x0),W(x0)] =W(x0) and [W(x0),W(x0)] = V∗(x0).

Then, G(x0)⊕W(x0) is a Lie algebra isomorphic to sl(3,R)n V1 where

V1 = R3 ⊕ R3∗

is a Lie algebra given by [R3,R3] = R3∗, as sl(3,R)-module.
Let us choose

ψ1 : sl(3,R)n V1 → G(x0)⊕W(x0)

an isomorphism of Lie algebras such that

ψ1(sl(3,R)) = G(x0) and ψ1(V1) =W(x0).

Let Ṽ1 be a simply connected group such that Lie(Ṽ1) = V1. We denote by

S̃L(3,R) n Ṽ1 the Lie group structure on S̃L(3,R) × Ṽ1 with the semidirect
product given by:

(A, v) · (B,w) = (AB,B−1v · w).

Here, we use the representation of S̃L(3,R) on Ṽ1 induced by the representation

of sl(3,R) and the product in Ṽ1. Thus, the Lie algebra of S̃L(3,R) n Ṽ1 is
sl(3,R)n V1.

By Lemma 3.16, there is an analytic isometric right action of S̃L(3,R)n Ṽ1

on M̃ such that
ψ(X) = X∗

for all X ∈ S̃L(3,R)n Ṽ1. Since H centralizes the left action of S̃L(3,R) on M̃

then the right (S̃L(3,R) n Ṽ1)-action centralizes the left S̃L(3,R)-action. And
preserves TO and TO⊥.

With the right (S̃L(3,R) n Ṽ1)-action on M̃ , for the element x0 ∈ M̃ , we
consider the next map:

f1 : S̃L(3,R)n Ṽ1 → M̃

h 7→ x0h
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for every h ∈ S̃L(3,R)n Ṽ1. Note that this action is (S̃L(3,R)n Ṽ1)-equivariant
on the right on its domain.

If ē denotes the element identity in S̃L(3,R), we have

df1(ē,0) : sl(3,R)n V1 → G(x0)⊕W(x0) → Tx0M̃

X 7→ X∗ 7→ X∗x0
.

Since ψ(X) = X∗ for all X ∈ sl(3,R)n V1 then, by Lemma 3.21, we have that
df1(ē,0) maps sl(3,R) onto Tx0

O and V1 onto Tx0
O⊥. From this, f1 is a local

diffeomorphism at (ē, 0).

Therefore, considering P = f1(ē × Ṽ1) and the equivariance of the map f1,

similarly to the abelian case, we can prove that TO⊥ is integrable in M̃ .
On the other hand, the local diffeomorphism f1 induces a metric tensor in

the 2-step nilpotent Lie group Ṽ1 which is right-invariant and, by Subsection
5.3.2, ad(V1)-invariant. Since Ṽ1 is connected, the metric tensor in Ṽ1 is Ad(Ṽ1)-

invariant. Then, by Proposition 9 of [ONe, p. 304], the geodesics of Ṽ1 starting

at 0 are the one-parameter subgroups of Ṽ1. Therefore, we have that Ṽ1 is a
complete Lie group.

From the previous results and the completeness of Ṽ1, we have the following
result.

Proposition 6.13. Let M and S̃L(3,R) satisfy the same hypotheses as in Theo-

rem 1.6. If for some x0 ∈ M̃ we have that, in the decomposition of H (Lemma
3.21), W(x0) ⊆ rad(H) is a 2-step nilpotent Lie algebra (Remark 6.11) then

TO⊥ is integrable and the pseudo-Riemannian manifold Ñ , in Theorem 1.7, is
diffeomorphic to the 2-step nilpotent Lie group R3 × R3∗.

When [V∗(x0),V∗(x0)] 6= 0, we have a similar result, where the only diffe-
rence lies in the structure of R3 × R3∗ as a 2-step nilpotent Lie group.

6.3 H is semisimple

In the previous section we analyzed the structure of the manifold M̃ when, in the
decomposition of H, we have that rad(H) 6= 0. To continue with our analysis,
we now consider the case when rad(H) = 0.

First, choose and fix a suitable element x0 ∈ M̃ such that Lemma 3.21 is
satisfied and, in the decomposition of H, rad(H) = 0. Then, H is a semisimple
Lie algebra.

From the Lemmas in Chapter 4 we have two possible cases for the structure
of H: either H is a simple Lie algebra or it is a direct sum of two simple ideals.

Let us take a look at the latter case.

6.3.1 H is a direct sum of two simple Lie algebras.

In this case, from the Lemmas in Chapter 4, H0(x0) ⊕W(x0) is a simple Lie
algebra and an ideal of H.
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Since G(x0) ∼= sl(3,R), let h2 be a simple Lie algebra such that

ψ : sl(3,R)× h2 → H (6.2)

is an isomorphism of Lie algebras with ψ(h2) = H0(x0)⊕W(x0).
We now consider the possibilities according to Chapter 4.

6.3.1.1 H0(x0) ' sl(3,R).

By Lemma 4.6, a possible structure for H is that H0(x0) ⊕W(x0) is a simple
ideal of dimension 14, furthermore

H0(x0)⊕W(x0) ∼= g2(2).

If the previous case is satisfied then the isomorphism ψ has as domain
sl(3,R)× g2(2) with

ψ(g2(2)) = H0(x0)⊕W(x0).

Let S̃L(3,R) and G2(2) be simply connected Lie groups with Lie algebras sl(3,R)
and g2(2), respectively. By Lemma 3.16, there exists an analytic isometric right

(S̃L(3,R)×G2(2))-action on M̃ such that ψ(X) = X∗ for all X ∈ sl(3,R)×g2(2).

This right action centralizes the left S̃L(3,R)-action on M̃ and preserves the
bundles TO and TO⊥.

Given the previous right action, we define the map:

f : S̃L(3,R)×G2(2) → M̃

(h1, h2) 7→ x0(h1, h2)

for all (h1, h2) ∈ (S̃L(3,R)×G2(2)). Observe that this map is (S̃L(3,R)×G2(2))-
equivariant for the right action on its domain. Also, note that

df(es,eg)(X) = X∗x0
= ψ(X)

for all X ∈ sl(3,R)×g2(2), where es and eg are the identity elements in S̃L(3,R)
and G2(2), respectively. Then, df(es,eg) is surjective and, by Lemma 3.21,

ker(df(es,eg)) = ψ−1(H0(x0)).

Here, by our choice of g2(2) and Lemma 3.21 we have that df(es,eg)(g2(2)) =

Tx0
O⊥ and we claim that df(es,eg)(sl(3,R)) = Tx0

O. Since G(x0) and ψ(sl(3,R))
are complementary to H0(x0)⊕W(x0) in H then G(x0) ∼= ψ(sl(3,R)) as sl(3,R)-
module. From the evaluation map, we have that Tx0O ⊆ evx0(ψ(sl(3,R))). On
the other hand, by properties of the map evx0

and since evx0
(G(x0)) = Tx0

O
then

Tx0
O ∼= G(x0) and G(x0) � Tx0

O⊥,

as sl(3,R)-modules. Therefore, we have that df(es,eg)(sl(3,R)) = Tx0
O.
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Let H be the connected subgroup of G2(2) such that

Lie(H) = ψ−1(H0(x0)). (6.3)

In this case, Lie(H) is isomorphic to sl(3,R). Since sl(3,R) is a simple Lie
algebra and G2(2) a simply connected Lie group, by exercise 4(ii) in [H, p. 152],
H is a closed subgroup of G2(2). Therefore, the map

f̂ : S̃L(3,R)×H\G2(2) → M̃ (6.4)

(h1, Hh2) 7→ x0(h1, h2) (6.5)

is well defined and an analytic (S̃L(3,R)×G2(2))-equivariant map between ma-

nifolds. From the properties of df(es,eg), f̂ is a local diffeomorphism at (es, Heg).

Considering P = f̂(es ×H\G2(2)) and using the equivariance of f̂ , we can

prove, with similar arguments to those when W(x0) is abelian, that TO⊥ is

integrable in M̃ .
Thus, from the previous arguments we have the following result.

Proposition 6.14. Let M and S̃L(3,R) satisfy the same hypotheses as in Theo-

rem 1.6. If for some x0 ∈ M̃ we have that H (Lemma 3.21) is a semisimple Lie
algebra isomorphic to sl(3,R)× g2(2) (Lemma 4.6) then TO⊥ is integrable and

the pseudo-Riemannian manifold Ñ , in Theorem 1.7, contains an open subset
diffeomorphic to the quotient space SL(3,R)\G2(2).

6.3.1.2 H0(x0) ' sl(3,R)⊕ R.

From Lemma 4.8 we have that a possible structure for H is to be isomorphic to
a direct sum of two simple ideals. Being one of them H0(x0)⊕W(x0) with

H0(x0)⊕W(x0) ∼= sl(4,R).

Thus, from (6.2), the isomorphism ψ has domain sl(3,R)× sl(4,R) with

ψ(sl(4,R)) = H0(x0)⊕W(x0).

Let S̃L(3,R) and S̃L(4,R) be simply connected Lie groups with Lie algebras
sl(3,R) and sl(4,R), respectively. By Lemma 3.16, there exists an analytic

isometric right (S̃L(3,R)× S̃L(4,R))-action on M̃ such that ψ(X) = X∗ for all

X ∈ sl(3,R)× sl(4,R). Note that this right action centralizes the left S̃L(3,R)-

action on M̃ and then preserves the bundles TO and TO⊥.
Given the previous right action we define the map

f : S̃L(3,R)× S̃L(4,R) → M̃

(h1, h2) 7→ x0(h1, h2)

for all (h1, h2) ∈ S̃L(3,R) × S̃L(4,R). Observe that this map is (S̃L(3,R) ×
S̃L(4,R))-equivariant for the right action on its domain. Also note that

df(es,el)(X) = X∗x0
= ψ(X)
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with X ∈ sl(3,R)×sl(4,R), where es and el are the identity elements in S̃L(3,R)

and S̃L(4,R), respectively. From here, we have that df(es,el) is surjective and
by Lemma 3.21,

ker(df(es,el)) = ψ−1(H0(x0)).

With the same hypotheses as in (6.2), it is satisfied that dfe(sl(4,R)) = Tx0O⊥
and we claim dfe(sl(3,R)) = Tx0

O.
Since G(x0) and ψ(sl(3,R)) are complementary to H0(x0)⊕W(x0) in H then

G(x0) ∼= ψ(sl(3,R)) as sl(3,R)-module. From the evaluation map we have that
Tx0
O ⊆ evx0

(ψ(sl(3,R))). On the other hand, from the properties of the map
evx0 and since evx0(G(x0)) = Tx0O then

Tx0
O ∼= G(x0) and G(x0) � Tx0

O⊥,

as sl(3,R)-modules. Therefore, we have that df(es,el)(sl(3,R)) = Tx0
O.

Let H be the connected subgroup of S̃L(4,R) such that

Lie(H) = ψ−1(H0(x0)).

Since H0(x0) ⊕W(x0) ∼= sl(4,R) then by exercise 4(vi) of [H, p. 152], H is a

closed subgroup of S̃L(4,R). Thus, the map

f̂ : S̃L(3,R)×H\S̃L(4,R) → M̃

(h1, Hh2) 7→ x0(h1, h2)

for all (h1, Hh2) ∈ S̃L(3,R) × H\S̃L(4,R), is a well defined and analytic

(S̃L(3,R) × S̃L(4,R))-equivariant map between manifolds. From the proper-

ties of df(es,el), f̂ is a local diffeomorphism at (es, Hel).

Considering P = f̂(es×H\S̃L(4,R)) and using the equivariance of f̂ , we can
prove, with similar arguments as in case W(x0) abelian, that TO⊥ is integrable

in M̃ .
Therefore, we have the following result.

Proposition 6.15. Let M and S̃L(3,R) satisfy the same hypotheses as in Theo-

rem 1.6. If for some x0 ∈ M̃ we have that H (Lemma 3.21) is a semisimple Lie
algebra isomorphic to sl(3,R)×sl(4,R) (Lemma 4.8) then TO⊥ is integrable and

the pseudo-Riemannian manifold Ñ , in Theorem 1.7, contains an open subset
diffeomorphic to the quotient space (SL(3,R)× R)\S̃L(4,R).

6.3.1.3 H0(x0) ' sl(4,R).

By Lemma 4.11, a possible structure of H is a direct sum of two simple ideals
with H0(x0) ⊕W(x0) being one of them. Moreover, by that same Lemma, we
have

H0(x0)⊕W(x0) ∼= so(3, 4).
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Thus, the isomorphism ψ of (6.2) has domain sl(3,R)× so(3, 4) with

ψ(so(3, 4)) = H0(x0)⊕W(x0).

Let S̃L(3,R) and S̃O0(3, 4) be simply connected Lie groups with Lie algebras
sl(3,R) and so(3, 4), respectively. By Lemma 3.16, there exists an analytic

isometric right (S̃L(3,R) × S̃O0(3, 4))-action on M̃ such that ψ(X) = X∗ for

all X ∈ sl(3,R)× so(3, 4). This right action centralizes the left S̃L(3,R)-action

on M̃ and, then, preserves the bundles TO and TO⊥.
Given the previous right action we define the map

f : S̃L(3,R)× S̃O0(3, 4) → M̃

(h1, h2) 7→ x0(h1, h2)

for all (h1, h2) ∈ S̃L(3,R)× S̃O0(3, 4).

Observe that this map is (S̃L(3,R) × S̃O0(3, 4))-equivariant for the right
action on its domain. Also note that

df(es,eo)(X) = X∗x0
= ψ(X)

withX ∈ sl(3,R)×so(3, 4), where es and eo are the identity elements in S̃L(3,R)

and S̃O0(3, 4), respectively. Then df(es,eo) is surjective and, by Lemma 3.21,

ker(df(es,eo)) = ψ−1(H0(x0)).

Again, from that same Lemma, we have that df(es,eo)(so(3, 4)) = Tx0
O⊥ and we

claim df(es,eo)(sl(3,R)) = Tx0
O.

Since G(x0) and ψ(sl(3,R)) are complementary to H0(x0)⊕W(x0) in H then
G(x0) ∼= ψ(sl(3,R)) as sl(3,R)-module. From the evaluation map we have that
Tx0
O ⊆ evx0

(ψ(sl(3,R))). On the other hand, by properties of the map evx0

and since evx0
(G(x0)) = Tx0

O then

Tx0O ∼= G(x0) and G(x0) � Tx0O⊥,

as sl(3,R)-modules. Therefore, we have that df(es,eo)(sl(3,R)) = Tx0
O.

Let H be the connected subgroup of S̃O0(3, 4) such that

Lie(H) = ψ−1(H0(x0)),

which is isomorphic to so(3, 3) as sl(3,R)-module. Since so(3, 3) is a simple Lie

algebra and S̃O0(3, 4) a simply connected Lie group, by exercise 4(ii) in [H, p.

152], H is a closed subgroup of S̃O0(3, 4). From this, the map

f̂ : S̃L(3,R)×H\S̃O0(3, 4) → M̃

(h1, Hh2) 7→ x0(h1, h2)
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is a well defined and analytic (S̃L(3,R) × S̃O0(3, 4))-equivariant map between

manifolds. From the properties of df(es,eo), f̂ is a local diffeomorphism at
(es, Heo).

Considering P = f̂(es ×H\S̃O0(3, 4)) and using the equivariance of f̂ , we
can prove, with similar arguments as in Subsection 6.1.1, that TO⊥ is integrable
in M̃ .

Thus, from the previous arguments, we have the following result.

Proposition 6.16. Let M and S̃L(3,R) satisfy the same hypotheses as in Theo-

rem 1.6. If for some x0 ∈ M̃ we have that H (Lemma 3.21) is a semisimple Lie
algebra isomorphic to sl(3,R) × so(3, 4) (Lemma 4.11) then TO⊥ is integrable

and the pseudo-Riemannian manifold Ñ , in Theorem 1.7, contains an open
subset diffeomorphic to the quotient space SL(4,R)\S̃O0(3, 4).

6.3.2 H is a simple Lie algebra.

From Lemma 4.3 and Lemma 4.4, we have that a possible structure of H, as a
Lie algebra, is a simple Lie algebra.

Let us review the options when this possibility occurs.

6.3.2.1 H0(x0) = 0.

If H0(x0) = 0, then a possibility for the structure of H is H = G(x0) ⊕W(x0)
a 14-dimensional simple real Lie algebra. Moreover, by Lemma 4.3, H ∼= g2(2).
Therefore, we have the next result

Lemma 6.17. There is an isomorphism

ψ : g2(2) = sl(3,R)⊕ R3 ⊕ R3∗ → H = G(x0)⊕ V(x0)⊕ V∗(x0) (6.6)

of Lie algebras that preserves the summands in that order. In particular we have
that ψ is an isomorphism of sl(3,R)-modules.

Proof. From the previous paragraph we have that H is isomorphic to g2(2), let

ψ : g2(2) → H

be an isomorphism of simple Lie algebras.
Then, ψ−1(G(x0)) ⊂ g2(2) is a Lie subalgebra isomorphic to sl(3,R). We

define
ŝl(3,R) = ψ−1(G(x0)).

This provides g2(2) with a structure of sl(3,R)-module, and consequently a de-

composition of g2(2) in irreducible sl(3,R)-submodules. In particular, ŝl(3,R) is
an irreducible sl(3,R)-module isomorphic to sl(3,R).

First of all, the proof of Lemma 6.2 shows that the decomposition of g2(2)

in irreducible sl(3,R)-modules, given by the Lie subalgebra ŝl(3,R), is

g2(2) = sl(3,R)⊕ R3 ⊕ R3∗
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and then

ψ(sl(3,R))⊕ ψ(R3)⊕ ψ(R3∗)

is a decomposition of H in irreducible sl(3,R)-modules.

On the other hand, we have a previous decomposition of H in irreducible
sl(3,R)-modules

H = G(x0)⊕ V(x0)⊕ V∗(x0).

Here, ψ(sl(3,R)) = G(x0). Let h ∈ R3 be an element different from zero,
then

ψ(h) = v0 + v1 + v2

with v1 ∈ G(x0), v2 ∈ V(x0) and v3 ∈ V∗(x0). If v1 6= 0 then (with the projection
map) we have a non-zero homomorphism of sl(3,R)-modules between R3 and
sl(3,R), which cannot be possible, hence v1 = 0. The same argument can be
used to show that v3 = 0. Then ψ(R3) = V(x0). A similar proof shows that
ψ(R3∗) = V∗(x0).

Now, fix an isomorphism of Lie algebras

ψ : g2(2) → H

as in Lemma 6.17. Let G2(2) denote a simply connected Lie group such that

Lie(G2(2)) = g2(2).

By Lemma 3.16, there exists an analytic isometric right G2(2)-action on M̃
such that

ψ(X) = X∗

for every X ∈ g2(2). Now, we consider the orbit map

f : G2(2) → M̃

g 7→ x0g,

that satisfies

dfI(X) = X∗x0
= ψ(X)

for every X ∈ g2(2). By our choice of ψ and Lemma 3.21 we have that dfI is an

isomorphism that maps sl(3,R) onto Tx0O and R3 ⊕ R3∗ onto Tx0O⊥. Since f
is G2(2)-equivariant for the right action on its domain, then we have an analytic
local diffeomorphism.

Lemma 6.18. Let g the metric on g2(2) defined as the pullback under dfI of

the metric gx0 on Tx0M̃ . Then, g is sl(3,R)-invariant.
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Proof. The proof is similar to Lemma 3.2 in [OQ] which is transcribed here.
By properties of dfI and the isomorphism ψ, such that ψ(sl(3,R)) = G(x0),

we need only prove that the metric on H defined as the pullback of gx0
to the

evaluation map

H → Tx0
M̃

X 7→ evx0
(X) = Xx0

is G(x0)-equivariant.
Let g̃ be the metric in H obtained of this way. Let X,Y, Z ∈ H be given

with X ∈ G(x0). Then, there exists X0 ∈ sl(3,R) such that X = ρx0
(X0) +X∗0 ,

where ρx0
is the homomorphism in Proposition 3.7 and X∗0 is the vector field

on M̃ induced by X0 through the left S̃L(3,R)-action. Then

g̃([X,Y ], Z) = gx0
([X,Y ]x0

, Zx0
)

= g([X,Y ], Z)|x0

= g([ρx0
(X0) +X∗0 , Y ], Z)|x0

= g([ρx0
(X0), Y ], Z)|x0

= ρx0
(X0)g(Y, Z)|x0

− g(Y, [ρx0
(X0), Z])|x0

= −g(Y, [ρx0
(X0), Z])|x0

= −g(Y, [ρx0
(X0) +X∗0 , Z])|x0

= −g(Y, [X,Z])|x0

= −g̃(Y, [X,Z]).

Where we have used that H centralizes X∗0 and ρ(X0) is a Killing vector field
for the metric g that vanishes in x0. Thus, we take ḡ as the pullback of g̃ by
the isomorphism ψ to obtain the desired result.

Now, from Lemma 6.18 and Lemma 6.6, we can rescale the metric along the
bundles TO and TO⊥ in M such that the new metric, which we denote by ĝ,
on M̃ satisfies

(dfI)
∗(ĝx0) = K,

the Killing form on g2(2).

Since the elements of H ⊂ Kill(M̃) preserve the decomposition of TM̃ as

TM̃ = TO ⊕ TO⊥, then H ⊂ Kill(M̃, ĝ), where ĝ is the new metric rescaled
from g as above. Note that ĝ is invariant under both the right G2(2)-action and

by the left S̃L(3,R)-action on M̃ , from our hypotheses. Also, observe that our
new metric ĝ can be obtained from the lift of a correspondingly rescaled metric
ĝ on M .

Now, consider the bi-invariant metric on G2(2) induced by the Killing form

K, which we denote by KG2(2) . The previous argument and discussion imply
that the local diffeomorphism

f : (G2(2),K
G2(2))→ (M̃, ĝ)
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is a local isometry. With this property of f , Corollary 20 in [ONe, p. 202], the

completeness of (G2(2),K
G2(2)) and the simply connectedness of (M̃, ĝ) imply

that f is an isometry.

Corollary 6.19 ([ONe], p. 202, Corollary 20). Let φ : M → N be a local
isometry, with N connected. Then M is complete if and only if N is complete
and φ is a semi-Riemannian covering.

Then, we have the next result, similar to Lemma 3.3 in [OQ]:

Proposition 6.20. Let M be a analytic connected finite volume pseudo-Rie-
mannian manifold of dimension 14. If M is complete, admits an analytic and
isometric SL(3,R)-action with a dense orbit such that H (Lemma 3.21) is a
simple Lie algebra isomorphic to g2(2) (Lemma 4.3). Then, there exists an
analytic diffeomorphism

f : G2(2) → M̃

and an analytic isometric right G2(2)-action on M̃ such that:

(i) On M̃ , the left S̃L(3,R)-action and the right G2(2)-action commute,

(ii) f is G2(2)-equivariant for the right G2(2)-action on its domain,

(iii) for a pseudo-Riemannian metric ĝ in M obtained by rescaling the original
metric on the summands of the decomposition TM = TO⊕TO⊥, the map

f : (G2(2),K
G2(2))→ (M̃, ĝ)

is an isometry where KG2(2) is the bi-invariant metric on G2(2) induced
from the Killing form of its Lie algebra.

With the previous Lemma, if we consider G2(2) with the bi-invariant pseudo-
Riemannian metric K induced by the Killing form of its Lie algebra then we can
consider, also, (G2(2),K) as the isometric universal covering space of (M̃, ĝ).

Next, we state Lemma 4.5 in [Q2] which will be used later on.

Proposition 6.21 ([Q2], Proposition 4.5). Let G be a connected non-compact
simple Lie group. Then, Iso(G), for a bi-invariant pseudo-Riemannian metric
in G, has finitely many components and

Iso(G)0 = L(G)R(G).

From Proposition 4.5 of [Q2] we have that the isometry group Iso(G2(2))
for the pseudo-Riemannian manifold (G2(2),K) has only a finite number of
connected components. Also, the proposition shows that

Iso0(G2(2)) = L(G2(2))R(G2(2)),

where L(G2(2)) and R(G2(2)) are the subgroups of left and right translations on
G2(2), respectively.
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Let ρ : S̃L(3,R) → Iso(G2(2)) be the homomorphism induced by the iso-

metric left S̃L(3,R)-action on G2(2). Then, from the previous observation the
covering

G2(2) ×G2(2) → L(G2(2))R(G2(2))

yields the existence of homomorphisms ρ1, ρ2 : S̃L(3,R)→ G2(2) such that

ρ(g) = Lρ1(g) ◦Rρ2(g)−1 ∀g ∈ S̃L(3,R).

On the other hand, by Proposition 6.20, we have

ρ(g) ◦Rh = Rh ◦ ρ(g)

for all g ∈ S̃L(3,R) and h ∈ G2(2). This implies that ρ2(S̃L(3,R)) is contained

in the center of G2(2), from here Rρ2(g)−1 = Lρ2(g)−1 for all g ∈ S̃L(3,R). This

is, the S̃L(3,R)-action on G2(2) is induced by the homomorphism

ρ1 : S̃L(3,R)→ G2(2)

and the left action of G2(2) onto itself. Note that by hypotheses, the homomor-
phism ρ1 is non-trivial.

From Proposition 6.20 we have that

π1(M) ⊂ Iso(G2(2))

and from previous observations

Γ1 = π1(M) ∩ Iso0(G2(2))

is a finite index subgroup of π1(M). So, for every γ ∈ Γ1 there exist h1, h2 ∈
G2(2) such that

γ = Lh1
◦Rh2

.

Also, since the left S̃L(3,R)-action on G2(2) is the lift of an action on M then

this left S̃L(3,R)-action commutes with the Γ1-action. Applying this property
to

Lh1
◦Rh2

= γ ∈ Γ1

we obtain that
Lh1
◦ Lρ1(g) = Lρ1(g) ◦ Lh1

for all g ∈ S̃L(3,R), thus

Γ1 ∈ L(Z(S̃L(3,R)))R(G2(2))

where Z(S̃L(3,R)) is the centralizer of ρ1(S̃L(3,R)) in G2(2). By Lemma 6.3 we

have that the center of G2(2) has finite index in Z(S̃L(3,R)) and a consequence

of this is that R(G2(2)) has finite index in L(S̃L(3,R))R(G2(2)). In particular

Γ = Γ1 ∩R(G2(2))
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is a finite index subgroup of Γ1 and also of π1(M).
The natural identification of R(G2(2)) with G2(2) realizes Γ as a discrete

subgroup of G2(2) such that G2(2)/Γ is a finite covering space of M .
Now, if

ϕ : G2(2)/Γ→M

is the corresponding covering map and, for the left S̃L(3,R)-action on G2(2)/Γ
given by the homomorphism

ρ1 : S̃L(3,R)→ G2(2),

the constructions in the previous paragraphs show that the map ϕ is S̃L(3,R)-
equivariant. Finally, we note that ϕ is a local isometry for the metric ĝ, on M
considered in Proposition 6.20.

Now, we show that Γ is a lattice in G2(2). For the proof of this result it
is enough to prove that M has finite volume in the metric ĝ. Recall, we are
assuming that M has finite volume in its original metric. The following proof
is similar to Lemma 3.4 in [OQ].

Lemma 6.22. If vol and volĝ denote the volume elements on M for the original
metric and the rescaled metric, respectively. Then, there is some constant C > 0
such that volĝ = Cvol.

Proof. We consider (x1, x2, . . . , x14) some coordinate of M in a neighborhood
U of a given point such that (x1, . . . , x8) defines a set of coordinates of the
leaves of the foliation O in such neighborhood. For the original metric g on M ,
consider the orthogonal bundle TO⊥ and a set of 1-forms θ1, . . . , θ6 that define
a basis for its dual (TO⊥)∗ at every point in U . Thus, in U the metric g has an
expression of the form:

g =

8∑
i,j=1

lijdx
i ⊗ dxj +

6∑
i,j=1

hijθ
i ⊗ θj .

From this and the definition of the volume element as an 14-form, we have:

vol =
√
|det(lij) det(hij)|dx1 ∧ . . . ∧ dx8 ∧ θ1 ∧ · · · ∧ θ6.

On the other hand, since the metric ĝ is obtained by rescaling g along the
bundles TO and TO⊥, then has an expression of the form:

ĝ =

8∑
i,j=1

C1lijdx
i ⊗ dxj +

6∑
i,j=1

C2hijθ
i ⊗ θj .

for some constants C1, C2 6= 0. Therefore, the volume element of ĝ satisfies:

volĝ =
√
|det(C1lij) det(C2hij)|dx1 ∧ . . . ∧ dx8 ∧ θ1 ∧ · · · ∧ θ6.

=
√
|C8

1C
6
2 |vol.
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6.3.2.2 H0(x0) ' R.

If H0(x0) = R, then a possibility for the structure of H is H = G(x0)⊕H0(x0)⊕
W(x0) a 15-dimensional simple real Lie algebra. Moreover, by Lemma 4.4,
H ∼= sl(4,R) ∼= so(3, 3). Therefore, we have the following result

Lemma 6.23. There is an isomorphism

ψ : sl(4,R) = sl(3,R)⊕R⊕R3 ⊕R3∗ → G(x0)⊕H0(x0)⊕V(x0)⊕V∗(x0) = H

of Lie algebras that preserves the summands in that order. In particular, ψ is
an isomorphism of sl(3,R)-modules.

Let us fix an isomorphism of Lie algebras

ϕ : sl(4,R)→ H

as in Lemma 6.23. Let S̃L(4,R) be a simply connected Lie group such that

Lie(S̃L(4,R)) = sl(4,R).

By Lemma 3.16, there exists an analytic isometric right S̃L(4,R)-action on

M̃ such that
ϕ(X) = X∗,

for every X ∈ sl(4,R). This right action centralizes the left S̃L(3,R)-action on

M̃ and preserves the bundles TO and TO⊥.
Given the previous right action, we define the map

f : S̃L(4,R) → M̃ (6.7)

g 7→ x0 · g,

for all g ∈ S̃L(4,R). Observe that this map is S̃L(4,R)-equivariant for the right
action on its domain and satisfies

dfe(X) = X∗x0
= ϕ(X) (6.8)

for every X ∈ sl(4,R), where e is the identity element in the group S̃L(4,R).
Observe that dfe is surjective with

ker(dfe) = ϕ−1(H0(x0)).

Let H be a connected subgroup of S̃L(4,R) such that

Lie(H) = ϕ−1(H0(x0)). (6.9)

Recall that H0(x0) ' R as sl(3,R)-module.
Note that H is not a compact subgroup and

ϕ−1(H0(x0)) '
{(
aI 0
0 −3a

)
∈M4×4(R)

∣∣∣a ∈ R}. (6.10)
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Thus, by [H, ex. (vi), pag. 152], H is a closed subgroup.

Since H is a closed subgroup of S̃L(4,R), we can define the following map

f̄ : H\S̃L(4,R) → M̃ (6.11)

Hg 7→ x0 · g,

for all Hg = [g] ∈ H\S̃L(4,R). Note that

T[e](H\S̃L(4,R)) = sl(3,R)⊕ R3 ⊕ R3∗.

By our choice of ϕ we have that df̄He is an isomorphism which maps sl(3,R)

onto Tx0
O and R3 ⊕ R3∗ onto Tx0

O⊥. Since f̄ is S̃L(4,R)-equivariant for the
right action on its domain, then f̄ is an analytic local diffeomorphism at He.

By Lemma 6.23 and the construction of the map f̄ , it satisfies that

df̄[e] = evx0
◦ ϕ (6.12)

restricted to sl(3,R)⊕ R3 ⊕ R3∗.

Now, we obtain information about the metric of the space H\S̃L(4,R).

Lemma 6.24. Let ḡ be the metric on T[e]H\S̃L(4,R) defined as the pullback

under df̄[e] of the metric gx0
on Tx0

M̃ . Then ḡ is sl(3,R)-invariant.

Proof. By the properties of evx0
and ϕ, the map

df̄[e] = evx0 ◦ ϕ

is a homomorphism of sl(3,R)-modules. Where the sl(3,R)-module structure in

sl(3,R) ⊕ R3 ⊕ R3∗ is given by the subalgebra sl(3,R) and in Tx0
M̃ = Tx0

O ⊕
Tx0
O⊥ by the subalgebra ρx0

(sl(3,R)(x0)).

Since the metric g in Tx0
M̃ = Tx0

O ⊕ Tx0
O⊥ is invariant under the action

of ρx0
(sl(3,R)(x0)) then, by properties of the maps evx0

and ϕ, the metric ḡ in

T[e](H\S̃L(4,R)) = sl(3,R)⊕ R3 ⊕ R3∗.

is sl(3,R)-invariant.

Let v, w ∈ THe(H\S̃L(4,R)) and X ∈ sl(3,R). Since ρ̂x0
(X) ∈ g(x), take
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X̄ = ϕ−1(ρ̂x0(X)), then

ḡ([X, v], w) := ḡ([X̄, v], w)

= gx0(df̄[e]([X̄, v]), df̄[e](w))

= gx0
(evx0

◦ ϕ[X̄, v], evx0
◦ ϕ(w))

= gx0
(ϕ[X̄, v]x0

, ϕ(w)x0
)

= g(ϕ[X̄, v], ϕ(w))|x0

= g([ϕ(X̄), ϕ(v)], ϕ(w))|x0

= g([ρ̂x0
(X), V ],W )|x0

= g([ρx0
(X) +X∗, V ],W )|x0

= g([ρx0
(X), V ],W )|x0

= ρx0
(X)(g(V,W ))|x0

− g(V, [ρx0
(X),W ])|x0

= −g(V, [ρx0
(X),W ])|x0

= −g(V, [ρx0
(X) +X∗,W ])|x0

= −g(V, [ρ̂x0
(X),W ])|x0

= −g(ϕ(v), [ϕ(X̄), ϕ(w)])|x0

= −g(ϕ(v), ϕ[X̄, w])|x0

= −gx0(df̄[e](v), df̄[e]([X̄, w]))

= −ḡ(v, [X̄, w])

= −ḡ(v, [X,w])

Where V = ϕ(v),W = ϕ(w) ∈ H. Recall that H centralizes X∗ and ρx0
(X) is

a Killing field for the metric g in M̃ .

Next, we analyze the structure of pseudo-Riemannian metric of the analytic
manifold H\S̃L(4,R).

We want to show the existence of a (semi) pseudo-Riemannian metric on

H\S̃L(4,R) such that the quotient map

π : S̃L(4,R)→ H\S̃L(4,R)

is a pseudo-Riemannian submersion with the pseudo-Riemannian metric on the
simple Lie group S̃L(4,R) given by the Killing form on its Lie algebra, sl(4,R).

Recall the definition of pseudo-Riemannian submersion from [ONe, p. 212].

Definition 6.25. A pseudo-Riemannian submersion π : M → B is a submer-
sion of Pseudo-Riemannian manifolds such that:

(S1) The fibers π−1(b), b ∈ B are pseudo-Riemannian submanifolds of M .

(S2) dπ preserves scalar products of vector normal fibers.

Let Kn be the Killing form on sl(n,R), n ≥ 2. Recall that

Kn(X,Y ) = 2(n)tr(XY ) (6.13)
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for all X,Y ∈ sl(n,R).
By the decomposition of sl(4,R) as a direct sum of irreducible sl(3,R)-

modules we have that sl(3,R)⊕R3⊕R3∗ is contained in sl(4,R) in the following
manner: {[

A u
vt 0

]
∈M4×4(R)

∣∣∣A ∈ sl(3,R), u, v ∈ R3

}
(6.14)

Then, by (6.13) and (6.14) we have that sl(3,R) and R3 ⊕ R3∗ are non-
degenerate subspaces with respect to K4.

Denote by K1, K2 and K the Killing form K4 restricted to sl(3,R), R3⊕R3∗

and sl(3,R)⊕ R3 ⊕ R3∗, respectively.
Since K4 is invariant by the adjoint action of sl(4,R) then it is clear that

K4 is also invariant under the adjoint action of sl(3,R), via its inclusion in
sl(4,R) in (6.14). Note, by this equation, that K1, K2 and K are invariant by
the adjoint action of sl(3,R).

Remark 6.26. Since sl(3,R) is a simple Lie algebra and by the above discussion
we have that K1 = K4|sl(3,R) is a multiple of its Killing form K3. This is

K1 = c1K
3.

Note, by (6.14), that c1 6= 0. Following these observations we have, by Lemma
6.6, that K2 = K4|R3⊕R3∗ is a multiple of a unique (up to multiples) sl(3,R)-
invariant symmetric bilinear form on R3 ⊕R3∗. And, by (6.14), this multiple is
non-zero.

Looking to prove that π is a pseudo-Riemannian submersion, assume

dπ0 = dπ|sl(3,R)⊕R3⊕R3∗ : sl(3,R)⊕ R3 ⊕ R3∗ → T[e](H\S̃L(4,R)) (6.15)

is a linear isometry.
From [ONe, p. 310] we have the next definition

Definition 6.27. Let G be a Lie group and L a closed subgroup of G. A coset
manifold N = G/H is reductive if there is an Ad(H)-invariant subspace n of
g = Lie(G) that is complementary to h = Lie(H) in g. We call n a Lie subspace
for G/H.

By construction we have that H\S̃L(4,R) is reductive. By properties of
K4 (Killing form on sl(4,R)) we have that the metric K is Ad(H)-invariant.

This property and the isometry in (6.15) implies the S̃L(4,R)-invariance on

H\S̃L(4,R) of the pseudo-Riemannian metric induced by dπ0. This result ap-
pears as Proposition 22 in [ONe, p. 311].

Now, recall the definition of a naturally reductive homogeneous space.

Definition 6.28. A naturally reductive homogeneous space is a reductive coset
manifold N = G/H furnished with a G-invariant metric such that, for the
corresponding scalar product on the Lie subspace n,

〈[X,Y ]n, Z〉 = 〈X, [Y,Z]n〉 for X,Y, Z ∈ n.
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Then, by Lemma 6.23 and the properties of the Killing form, H\S̃L(4,R) to-
gether with the assumption in (6.15), is a naturally reductive homogeneous
space.

Then, Lemma 24 in [ONe, p. 312] proves that

π : S̃L(4,R)→ H\S̃L(4,R)

is a pseudo-Riemannian submersion.
The next result in this book, Proposition 25, proves that naturally reductive

homogeneous spaces are complete. From here, our manifold

H\S̃L(4,R)

is complete.
In the next lines, we show that we can rescale the metric g on M̃ such that(

df̄[e]

)∗
(gx0

)

implies that (6.15) is a linear isometry.

Lemma 6.29. Let 〈·, ·〉1 and 〈·, ·〉2 be the inner products on sl(3,R) and R3 ⊕
R3∗, respectively. Assume that 〈·, ·〉1 and 〈·, ·〉2 are sl(3,R)-invariant. Then
there exist c1, c2 ∈ R such that

c1〈·, ·〉1 + c2〈·, ·〉2,

is K, the Killing form of sl(4,R) restricted to sl(3,R)⊕ R3 ⊕ R3∗.

Proof. Recall, Schur’s Lemma implies that in g, a simple real Lie algebra with
a simple complexification, any g-invariant non-degenerate symmetric bilinear
form on g is a multiple by a real scalar of the Killing form.

On the other hand, we have proved in Lemma 6.6 that there is, up to a
multiple by a real scalar, a unique sl(3,R)-invariant non-degenerate bilinear
form on R3 ⊕ R3∗.

The result follows from previous results.

Remark 6.30. From Lemma 6.24 and Lemma 6.29 we can rescale the metric
along bundles TO and TO⊥ in M so that the new metric ĝ on M̃ satisfies(

df̄[e]

)∗
(ĝx0

) = K,

the Killing form on sl(4,R) restricted to sl(3,R)⊕ R3 ⊕ R3∗.

Remark 6.31. Since the elements of H preserve the decomposition TM = TO⊕
TO⊥, then H ⊂ Kill(M̃, ĝ). Hence, the elements of H are Killing vector fields
for the metric ĝ rescaled as in Remark 6.30. Thus, ĝ is invariant under the
right S̃L(4,R)-action. In the same way, the left S̃L(3,R)-action on M̃ , from

the hypotheses, preserves the rescaled metric ĝ. Note, ĝ in M̃ is the lift of a
correspondingly rescaled metric g in M .



104 CHAPTER 6. STRUCTURE OF THE CENTRALIZER.

Consider the metric K on H\S̃L(4,R) induced by the Killing form K4 on
sl(4,R). From Remark 6.30 and Remark 6.31 we have that the local diffeomor-
phism (6.11)

f̄ : (H\S̃L(4,R),K)→ (M̃, ĝ)

is a local isometry. Then, by [ONe, p. 202], the completeness of (H\S̃L(4,R),K)

and the simple completeness of M̃ imply that f̄ is an isometry.
Therefore, we have the following result

Proposition 6.32. Let M be a connected analytic pseudo-Riemannian mani-
fold. Suppose that M is complete, has finite volume and admits an analytic and
isometric SL(3,R)-action with a dense orbit such that H (Lemma 3.21) is a
simple Lie algebra isomorphic to sl(4,R) (Lemma 4.4). If dim(M) = 14, then

there exists an analytic diffeomorphism f̄ : H\S̃L(4,R) → M̃ and an analytic

isometric right S̃L(4,R)-action on M̃ such that:

(1) on M̃ the left S̃L(3,R)-action and the right S̃L(4,R)-action commute with
each other,

(2) f̄ is S̃L(4,R)-equivariant for the right S̃L(4,R)-action on its domain,

(3) for a pseudo-Riemannian metric ĝ in M obtained by rescaling the original
metric on the summands of TM = TO ⊕ TO⊥, the map

f̄ : (H\S̃L(4,R),K)→ (M̃, ĝ)

is an isometry where K is the metric on H\S̃L(4,R) which makes of the
quotient map π a pseudo-Riemannian submersion.

6.4 Proof of the Main Theorems.

In this section we will assume the hypotheses of Theorem 1.6.
As a consequence of Proposition 3.7 together with the analyticity of the

elements, we have Remark 3.8 with only two possible actions for the bundle
TO⊥:

(A) TO⊥ is an integrable bundle, or

(B) TO⊥ is a non-integrable bundle.

When case (A) occurs, then we have Theorem 1.7, which is a special case
from the main results in [Q], where the integrable normal bundle (from the
action) is analyzed.

When TO⊥ is a non-integrable bundle (case (B)), Propositions 6.12-6.16
imply that the centralizer of the action, H, is a simple Lie algebra. From the
analysis done in Chapter 4, the possible options for H are:

H ' g2(2) or H ' sl(4,R).
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If H ' g2(2), then the results in Proposition 6.20 and Lemma 6.22 prove
Theorem 1.8.

If H ' sl(4,R) is satisfied, then Theorem 1.9 is a direct consequence of the
conclusions in Proposition 6.32.

On the other hand, if we assume that the bundle TO⊥ is integrable, Propo-
sition 3.7(4) does not necessarily imply that for almost every element x in the
manifold the vector space TxO⊥ is a non-trivial sl(3,R)-module. However, by
Remark 3.8, we have two options to explore:

(a) TxO⊥ is a trivial g-module for almost every x ∈ S, or

(b) There exists a subset, A ⊆ S, of positive measure such that TxO⊥ is a
non-trivial g-module for all x ∈ A.

When case (a) occurs then we have no “control” over the “behavior” of the
bundle TO⊥. We believe it is necessary to develop new “tools” for a complete
study of this case.

When case (b) is satisfied we obtain more properties about the structure of

the complete pseudo-Riemannian manifold Ñ in Theorem 1.7. For example, if
W(x0), in the decomposition of H, is an abelian (2-step nilpotent) Lie algebra

then Ñ is isometric to the abelian (2-step nilpotent) Lie group R3×R3∗, this is
the conclusion of Proposition 6.12 (Proposition 6.13).

On the other hand, when H is isomorphic to a direct sum of two simple
Lie algebras, then our manifold Ñ contains an open subset diffeomorphic to a
quotient space of a simple Lie group, this is the result of Propositions 6.14, 6.15
and 6.16.

If we show that these quotient spaces are complete, then we prove that these
spaces are isometric to Ñ . This is proved in the following Lemma

Lemma 6.33. The quotient spaces in Propositions 6.14, 6.15 and 6.16 are
complete.

Proof. First, assume that the hypotheses of Proposition 6.14 are satisfied.
In this case, our manifold Ñ contains an open subset diffeomorphic to

SL(3,R)\G2(2).

Then, from Lemma 4.6, there exists an Ad(SL(3,R))-invariant subspace, m,
in g2(2) that is complementary to sl(3,R) in g2(2), that is

g2(2) = sl(3,R)⊕m. (6.16)

Hence, by Definition 6.27, the space SL(3,R)\G2(2) is a reductive coset ma-
nifold.

For X ∈ g2(2), denote by Xsl(3,R) and Xm the components of X in sl(3,R)
and m, respectively.

Now, we induce, through the pullback of the map f̂ in (6.4), a scalar product
on m. Following this, we have that m and Tx0

O⊥ are linearly isometric.
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On the other hand, by the properties of the isometric right (SL(3,R)×G2(2))-

action on M̃ and the map f̂ , we have that the scalar metric on m is ad(sl(3,R))-
invariant. This previous result is a particular case of Proposition 22 in [ONe, p.
311].

It is not difficult to show that the ad(sl(3,R))-invariance on the scalar pro-
duct in m induces that

〈[X,Y ]m, Z〉 = 〈X, [Y, Z]m〉 (6.17)

for all X,Y, Z ∈ m.
Therefore, we have that the quotient space SL(3,R)\G2(2) is a naturally

reductive homogeneous space (Definition 6.28). Recall that these spaces are
characterized because they are complete, [ONe, p. 313].

Now, we assume the hypotheses of Proposition 6.15.
Then, our manifold Ñ contains an open subset diffeomorphic to

(SL(3,R)× R)\S̃L(4,R).

From Chapter 1 of [CP], we have that (SL(3,R) × R)\S̃L(4,R) is a pseudo-
Riemannian symmetric space. A characteristic of these spaces is that they are
complete.

Similarly we can prove that the quotient space

SL(4,R)\S̃O0(3, 4),

in Proposition 6.16, is complete.

The results of Propositions 6.14-6.16 and Lemma 6.33 end up completing
the proof of Theorem 1.10.

Note, at this point, that from Theorems 1.7, 1.8 and 1.9 we can conclude
Theorem 1.6.

If the property of weak irreducibility is assumed for the manifold M , then
Proposition 6.7 and Remark 6.9 imply that TO⊥ is a non-integrable bundle.
Then, Propositions 6.12-6.16 evidence that case 1) in Theorem 1.6 is not possi-
ble. This is precisely the conclusion of Theorem 1.11.
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