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Abstract

In this thesis we study a SIS epidemic model on complex networks that takes into
account non-random long-range interactions. In particular, we examine numerically and
theoretically the validity of the following conjecture: hub-vaccination is not necessarily
the optimal vaccination strategy. In the first part we conduct a series of numerical
experiments that support our claim. Later, we study theoretically our conjecture on a
star graph. Finally, we conclude that indeed, it is possible to have regimes where hubs
are not determinant to support the spread of an infection on a complex network.



Introduction

Epidemiology can be defined as “the study of the distribution and determinants of
health-related states or events in specified populations, and the application of this study
to control health problems”. When populations can be represented as a graph, different
models arise to study the behavior of viruses or diseases inside them [1, 6, 10, 12, 13].
In this text, a variant of the SIS model presented by Piet Van Mieghem [12, 13] will
be studied taking into account long-range interactions. In [10], Estrada introduces
a measure of this interaction. Here, the Mieghem and Estrada models are mixed to
propose a “new model”. Imagine a graph that represents people in a town and its links
of friendship, and a hypothetical case of an infected person within a closed place, such
as a bus, bank, etc. It is apparent that the possibility exists that this person infects
others who are in the same place, without being friends or relatives, i.e. they do not
need to be directly related in the graph. This situation is not considered in Mieghem’s
model, because there are only interactions with people directly related in the graph.

Here, vaccination strategies are presented, taking into account some centrality mea-
sures given in graph theory, which are compared in order to examine a non-intuitive
conjecture: hub-vaccination is not necessarily the optimal vaccination strategy. We offer
theoretical conditions where the conjecture holds. These conditions are given in par-
ticular graphs: Barabási-Albert graphs, Erdös-Renyi graphs, random geometric graphs
and star graphs.
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Chapter 1

Motivation

Epidemics dynamics on complex networks can be counterintuitive. There is strong
dependence on vertex distribution and centrality. Therefore, non-random long range
interactions may play an important role. Unpublished research by Capistran [4] shows
the following example: Consider a stochastic, discrete time, SIS epidemic model on a
Barabási-Albert complex network with 100 nodes. Figures 1.1 and 1.2 show the average
of 250 realizations the SIS model as a function of the graph conductivity, e.g. the
strength of the long-range interactions. In both figures, we can see that if conductivity
is near 0.14, the final size of infected nodes when they are vaccinated to the largest
degree nodes is larger than when they are vaccinated randomly. The purpose of the
present work is to study vaccination on a mean field approximation of the stochastic
SIS model defined over a random network. The mean field equation was introduced
by Piet Van Mieghem [12, 13]. This work, under the same assumptions given by Piet
Van Mieghem, we have modified the mean field equation in order to take account non-
random long-range interactions.

1



CHAPTER 1. MOTIVATION 2

Figure 1.1: In blue, the SIS model without vaccination. In red, the SIS model with
random vaccination. In black, the SIS model with largest degree vaccination. In the
graphic appears the final size of infected nodes against conductivity. δ = 0.8. 4% of
vaccinated nodes.
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Figure 1.2: In blue, the SIS model without vaccination. In red, the SIS model with
random vaccination. In black, the SIS model with largest degree vaccination. In the
graphic appears the final size of infected nodes against conductivity. δ = 0.8. 10% of
vaccinated nodes.



Chapter 2

Preliminaries

For the sake of making this work self-contained. In this chapter we include some
theoretical results. These are about probability [16, 18] and graph theory [2, 3, 7, 8, 9,
14, 15] principally.

2.1 Probability theory topics

Definition 2.1.1. Let Ω be a set, and 2Ω represent its power set. Then a subset A ⊂ 2Ω

is called σ−algebra if it satisfies the following properties.

1. Ω ∈ A.

2. A is closed under complementation: if A ∈ A, then Ac ∈ A.

3. A is closed under countable unions: if {An}n∈N ⊂ A, then ∪n∈NAn ∈ A.

Definition 2.1.2. A probability space is a tripe (Ω,A,P), where Ω is a set, A is a σ−
algebra and P : A → [0, 1] is a function such that:

1. P(Ω) = 1.

2. If {An}n∈N ⊂ A is a countable collection of pairwise disjoint sets, then P (∪· n∈NAn) =
∪· n∈NP(An), where ∪· represents the disjoint union.

Definition 2.1.3. Events {An}n∈N are independent if

P(An1 ∩ · · · ∩ Ank
) = P(An1) ∩ · · · ∩ P(Ank

),

for every finite set of distinct indices n1, . . . , nk.

Definition 2.1.4. Let (Ω,A,P) be a probability space. A random variable is a function
X : Ω→ R such that,

X−1 ((−∞, x]) ∈ A, ∀x ∈ R.

4
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Definition 2.1.5. Let X be a random variable. It is called Bernoulli random variable
if X can only take two values 0 or 1 according to,

P(X = j) =

{
p if j = 1,

q = 1− p if j = 0.

For example, if A is a event and 1A is the indicator function from A, then 1A is a
Bernoulli random variable with parameter p = E[1A] = P(A). As other example, if we
flip a fair coin. Let X = number of heads. Then X is a Bernoulli random variable with
p = 1

2
.

Definition 2.1.6. A stochastic process is a family of random variables denoted as
{X(t), t ∈ T}, where t is a parameter running over a suitable index set T.

Stochastic processes for which T = [0,∞) are particularly important for applica-
tions. There are two important types of processes, Poisson process and Markov process.

Definition 2.1.7. A Poisson process with parameter or rate λ > 0 is an integer-valued,
continuous time stochastic process {X(t), t ≥ 0} satisfying

1. X(0) = 0.

2. For all t0 = 0 < t1 < · · · < tn, the incrementsX(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−
X(tn−1) are independent random variables.

3. For t ≥ 0, s > 0 and non-negative integers k, the increments have to Poisson
distribution

P (X(t+ s)−X(s) = k) =
(λt)ke−λt

k!
.

Definition 2.1.8. A Markov process {X(t), t ∈ T}, is a stochastic process with the
property that, given the value of X(t), the values of X(s), s ∈ T and s > t are not
influenced by values of X(u) with u ∈ T and u < t.

If sample space is discrete, the Markov process is called Markov chain. For a
continuous-time Markov chain {X(t), t ≥ 0} with N states, the Markov chain’s def-
inition can be written as

P [X(t+ τ) = j|X(τ) = i,X(u) = x(u), 0 ≤ u < τ ] = P [X(t+ τ) = j|X(τ) = i],

This reflects the fact that the future state at time t + τ only depends on the current
state at time τ. The transition probability is

Pij(t) = P [X(t+ τ) = j|X(τ) = i] = P [X(t) = j|X(0) = i]. (2.1)

If we defined a state vector s(t) as s(t) = (s1(t), . . . , sN(t)), where sk(t) = P [X(t) =
k], s(t) obeys (page 158, [14]),

s(t+ τ) = s(τ)P (t), (2.2)
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where P (t) = [Pij]. Immediately, it follows from (2.2) that

s(t+ u+ τ) = s(τ)P (t+ u)

= s(τ + u)P (t) = s(τ)P (u)P (t)

= s(τ + t)P (u) = s(τ)P (t)P (u),

such that, for all t, u ≥ 0, the N ×N transition probability matrix P (t) satisfies

P (t+ u) = P (u)P (t) = P (t)P (u) (2.3)

This fundamental relation is called the Chapman-Kolmogorov equation. Also, for any
state i (page 159, [14]),

N∑

j=1

Pij(t) = 1, (2.4)

for continuous-time Markov chains, it is convenient to postulate the initial condition of
the transition probability matrix

P (0) = I, (2.5)

where P (0) = limt→0 P (t). Here, we have one result,

Lemma 2.1.1. The transition probability matrix P (t) is continuous for all t ≥ 0.

The proof can be found in [14], page 180. If P (t) is a differential function, then the
matrix,

lim
h→0

P (h)− I
h

= P ′(0) = Q, (2.6)

is called the infinitesimal generator of the continuous-time Markov process. From (2.4),

N∑

j=1,j 6=i

Pij(h) = 1− Pii(h), (2.7)

and, dividing both sides by h and letting h approach zero, we find for each i with the
definition of Q that

N∑

j=1,j 6=i

qij = −qij ≥ 0. (2.8)

Lemma 2.1.2. Given the infinitesimal generator Q, the transition probability matrix
P (t) is differentiable for all t ≥ 0,

P ′(t) = P (t)Q

= QP (t)
(2.9)
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The equations in (2.9) are called the forward and backward equations respectively.
(Proof in [14], page 182.) Suppose we are interested in the probabilities sk = P [X(t) =
k] of finding the system in state k at time t. Each component of the state vector s(t)
is determined by (2.2) as

sk(t+ h) =
N∑

j=1

sj(t)Pjk(h),

from which
sk(t+ h)− sk(t)

h
= sk

Pkk(h)− 1

h
+

N∑

j=1,j 6=k

sj(t)
Pjk(h)

h
.

In the limit h → 0, we find with qjk = limh→0
Pjk(h)

h
and qk = limh→0

1−Pkk(h)
h

, the
differential equation for sk(t),

s′k(t) = −qksk(t) +
N∑

j=1,j 6=k

qjksj(t), (2.10)

which, together with the initial condition sk(0), completely determines the probability
sk(t) that the Markov process is in state k at time t.

2.2 Graph theory topics

Definition 2.2.1. A simple graph (network) is the pair G = (V,E), where V is a finite
set of points and E is a symmetric and antireflexive relation on V . In a directed graph
(network) the relationE is non-symmetric. The elements of V are the vertices (or nodes,
or points) of G. The elements of E are its links (edges or lines).

From now on, to assume that all graphs are simple.

Figure 2.1: The graph on V = {1, 2, 3, 4, 5} with edge set E =
{{1, 3}, {2, 3}, {3, 4}, {4, 5}}. Thus, G = (V,E).
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Definition 2.2.2. Let G = (V,E) be a (non-empty) graph. The set of neighbors of a
vertex v ∈ V in G is denoted by BG(v), or briefly N(v). The degree dG(v) = d(v) of a
vertex v is the number |E(v)|.

For G in the figure 2.1, d(1) = d(2) = d(5) = 1, d(4) = 2 and d(3) = 3.

Definition 2.2.3. A walk of leng l is any sequence of (not necessarily different) nodes
v1, v2, . . . , vl, vl+1 such that for each i = 1, 2, . . . , l there is a link from vi to vi+1. A path
of length l is a walk of length l in which all nodes (an all the links) are distinct. A cycle
is a closed walk in which all the links and all the nodes (except the first and last) are
distinct.

Definition 2.2.4. A non-empty graph G is called connected if any two of its vertices
are linked by a path in G.

From now on, to assume that all graphs are connected.

Definition 2.2.5. A graph H = (V ′, E ′) is subgraph of a network G = (V,E) if and
only if V ′ ⊆ V and E ′ ⊆ E.

Definition 2.2.6. Let G = (V,E) be a (non-empty) graph. A subgraph H(C,E)
induced by the set C ⊆ V is a k-core or a core of order k if and only if the degree
of every node v ∈ C induced in H is greater or equal than k, and H is the maximum
connected subgraph with this property. The k−core with highest index is called main
core.

Figure 2.2: Example of k−core.

2.2.1 Some kinds of graphs

Definition 2.2.7. A graph with N nodes is a Complete Graph, denoted KN , if every
pair of nodes is connected by a link. That is, there are n(n−1)

2
links.
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Figure 2.3: A complete graph. K8.

Definition 2.2.8. A Tree of N nodes is a graph for which the following statements are
equivalent:

• It is connected and has no cycles.

• It has n− 1 links and no cycle.

• It is connected and has n− 1 links.

• It is connected and become disconnected by removing any link.

• Any pair of nodes is connected by exactly one path.

• It has no cycles, but the addition of any new link creates a cycle.

Figure 2.4: A tree.

Definition 2.2.9. Let r ≥ 2 be a integer. A graph G = (V,E) is called r-partite if V
admits a partition into r classes such that every edge has its ends in different classes:
vertices in the same partition class must no be linked. Instead of “2-partite” one usually
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says bipartite. An r-partite graph in which every two vertices from different partition
classes are linked is called complete multipartite graphs. The complete r-partite graph
Kn1 ∗ · · · ∗Knr is denoted by Kn1,··· ,nr ; if n1 = · · · = nr = s, it is possible abbreviate
this to N r

s . Thus, Kr
s is complete r-partite graph in which every partition class contains

exactly s vertices. Graphs of the form Kn
1 are called stars.

Figure 2.5: Two 3-partite graphs. The right graph is a complete 3-partite graph. Figure
taken from [7].

Figure 2.6: A star graph. K8
1 .

Definition 2.2.10. The adjacency matrix A = (aij)n×n of a graph G is defined by

{
wij if the node i is linked with the node, j
0 otherwise,

where wij is the weight of the link {i, j} ∈ E. If this values is no specified, then wij = 1.

For the graph in the figure 2.1, the adjacency matrix is
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A =




0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0




2.2.2 Some centrality measures

Definition 2.2.11. Closeness centrality of a node i (C(i)) is the reciprocal of the sum
of the shortest path distances from i to all N−1 other nodes. Since the sum of distance
depends on the number of nodes in the graph, closeness is normalized by the sum of
minimum possible distances N − 1. In other words, Closeness centrality is the inverse
of the average distance to all other nodes.

C(i) =
N − 1∑N

j=1,j 6=i d(i, j)
,

where d(i, j) is the shortest-path distance between i and j and N is the number of
nodes in the graph.

Definition 2.2.12. Betweenness centrality of a node i (cB(i)) is the sum of the fraction
of all-pairs shortest paths that pass through i :

cB(i) =
∑

s,t∈V

σ(s, t|i)
σ(s, t)

,

where V is the set of nodes, σ(s, t) is the number of shortest (s, t)-paths and σ(s, t|i)
is the number of those paths passing through some node i other than s, t. If s = t,
σ(s, t) = 1 and if i ∈ {s, t} then σ(s, t|i) = 0.

2.3 SIS model

In this model, individuals are either susceptible (S) or infected (I). We assume that
people meet and make contacts sufficient to result in the spread of the disease entirely
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at random with a per-individual rate β, meaning that each individual has, on average, β
contacts with randomly chosen others per unit time. Also, infected individuals recover
at some constant average rate δ. The disease is transmitted only when an infected
person has contact with susceptible one. Likewise, infected individuals move back to
into the susceptible state upon recovery. If the total population consists of N people,
then the average probability of a person you meet at random being susceptible is S

N
,

and hence an infected person has contact with an average of β S
N

susceptible per unit
time. Thus, the differential equations for this model are

dS

dt
= δI − β

N
SI,

dI

dt
=

β

N
SI − δI.

Letting S̄ = S
N

and Ī = I
N

, we get

dS̄

dt
= δĪ − βS̄Ī,

dI

dt
= βS̄Ī − δĪ,

due to S + I = N, then S̄ + Ī = 1. Using this,

dĪ

dt
= (β − δ − βĪ)Ī ,

which is a logistic equation. Ī(t) = 1− δ
β

is called endemic disease state. For simplicity

of writing, S̄ = S and Ī = I. Our interest is to know R0 because this value give us
information about the disease. It is known by survival function that R0 is the continuous
sum of the product between b(t) and F (t), where b(t) is the average number of newly
infected individuals an infectious individual produces per unit time when infected total
time t, and F (t) is the probability that a newly infected individual remains infectious for
at least time t. By β’s definition b(t) = βt. Now, for F (t), the probability of recovering
in any interval [t, t + dt] is δ dt, thus the probability of not doing so is 1 − δ dt. Then,
the probability that the individual is still infected after a total time t is given by

lim
dt→0

(1− δ dt) t
dt ,

and this limit is equal to e−δt. Hence, the probability that the individual remains infected
this long and then recovers in the interval [t, t+ dt] is F (t) = δe−δt dt. Therefore,

R0 =

∫ ∞

0

βδt e−δt dt,

thus

R0 =
β

δ
. (2.11)



Chapter 3

Theoretical Framework

In this chapter we describe van Mieghem and Estrada models. Then we discuss how
we combine them to obtain a mean field equation of a stochastic SIS model that takes
into account non-random long range interactions. The Estrada model will be used in
the rest of this work to study the outcome of several vaccination strategies in terms of
the measure centralities.

3.1 Piet Van Mieghem’s Model

The model considers the virus spread in an undirected graph G(N,L), characterized by
its adjacency matrix A [3, 9, 11]. The following hypotheses are assumed:

• The state of the node i is given by a Bernoulli random variable Xi ∈ {0, 1}, where
Xi = 0 for a healthy node and Xi = 1 for a infected node.

• A node i at time t can be in just one of the two states, infected with probability
vi(t) = Pr[Xi(t) = 1] or healthy with probability 1− vi(t).

•

• The curing process per node i is a Poisson process with rate δ, and the infection
rate per link is a Poisson process with rate β.

• All involved Poisson processes are independent.

• The effective infection rate is defined as R0 = β
δ
.

• The initial infection condition is known per node i. It is vi(0).

Applying Markov theory, the infinitesimal generator Qi(t) of this two states Markov
chain is,

Qi(t) =

[
−q1,i(t) q1,i(t)
q2,i(t) −q2,i(t)

]
,

13
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with q2,i(t) = δ is the curing rate and q1,i(t) = β
∑N

j=1 aij1Xj(t)=1, where ai,j is the
component (i, j) of the adjacency matrix and 1Xj(t)=1 is the indicator function. q1,i(t) is
equal to the sum over all infection rates of infected neighbors of node i. The coupling of
node i to the rest of the network is described by an infection rate q1,i that is a random
variable. The mean field approximation consists of replacing q1,i by its average E[q1,i],
this is a real number and allows immediate application of continuous-Markov theory.

E[q1,i] = E

[
β

N∑

j=1

aij1Xj(t)=1

]
,

using the linearity and that E [1X ] = Pr [X] ,

E[q1,i] = β

N∑

j=1

aijPr [Xj(t) = 1] = β
N∑

j=1

aijvi(t),

which results in an effective infinitesimal generator,

Qi(t) =

[
−E[q1,i] E[q1,i]
E[q2,i] −E[q2,i]

]
=

[
−E[q1,i] E[q1,i]

δ −δ

]
.

The Markov differential equation [14] for state Xi = 1 turns out,

dvi(t)

dt
= β

N∑

j=1

aijvj(t)− vi(t)
(

N∑

j=1

aijvj(t) + δ

)
,

i.e. the next differential equations system is obeyed,

dv1(t)

dt
= β

N∑

j=1

a1jvj(t)− v1(t)

(
N∑

j=1

a1jvj(t) + δ,

)
,

...

dvN(t)

dt
= β

N∑

j=1

aNjvj(t)− vN(t)

(
N∑

j=1

aNjvj(t) + δ,

)
(3.1)

Written (3.1) in matrix equation,

dV (t)

dt
= βAV (t)− diag(vi(t))(βAV (t) + δu), (3.2)

where V (t) = [v1(t) . . . vN(t)]T , u = [1, . . . 1]T and diag(vi(t)) is the diagonal matrix
with elements v1(t), . . . , vN(t). Now, rewriting (3.2) using V (t) = diag(vi(t))u, the
following is obtained

dV (t)

dt
= (βA− δI)V (t)− β diag (vi)AV (t).
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3.2 Modification of the Mieghem’s Model

In [10], a generalization of the adjacency matrix of a graph is introduced by Estrada,
taking into account long-range interactions among nodes non directly related. Following
Estrada’s idea, we consider a modification of Mieghem’s model, changing the adjacency
matrix for the matrix presented by Estrada. This new matrix is M = [mij], where

mij =





1 if i ∼ j,
dij r

dij−1 if i 6= j and i 6∼ j,
0 if i = j,

(3.3)

r ∈ [0, 1] is the conductivity and dij is the long of the shortest path between the node
i and the node j.

Figure 3.1: This graphic represents the behavior of the expression n rn−1 with n =
2 (blue), 3 (green), 4 (red), 5 (light blue), 6 (purple), 10 (gold).

Note that mij gets closer to 0 as dij gets larger.

3.2.1 Model

We consider the virus spread in an undirected complete weithed graph G(N,L).
Weights are assigned to the new links according to model (3.3). This new graph is

called G̃(N,L). (See figure 3.2.1). The adjacency matrix of G̃(N,L) is M . Notice that
if r = 0, then M is the adjacency matrix of G(N,L). Under the same assumptions of
the Mieghem’s model and a similar procedure, the next system is obtained,

dV (t)

dt
= (βM − δI)V (t)− β diag (vi)MV (t), (3.4)
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where V (t) = [v1(t) . . . vN(t)]T , M is like (3.3) and diag(vi(t)) is the diagonal matrix
with elements v1(t), . . . , vN(t).

Figure 3.2: A graph with N = 5 nodes and its completeness following (3.3).



Chapter 4

Numerical Results

In this chapter we study the numerical solution from (3.4). We consider three kinds
of networks: small world, scale free and random geometric. As small world and scale free
networks were taken Erdös-Renyi and Barabási-Albert networks, respectively. Next, we
examine some vaccination strategies taking into account some centrality measures in
graphs like closeness, betweenness and largest degree. The solution is presented on
graphs with 100 nodes and recovery rate δ = 1. In the vaccination part, 10% of the
nodes were vaccinated.

Figures 4.1, 4.2 and 4.3 show the average of the entries of the vector solution from
(3.4). This average is represented in a color graph. One can see that if r and β are
“large”, the average of the probabilities is close to 1, this mean that the probability of
that each node is infected is close to 1. If the infection rate β is sufficiently small, the
probability of that each node is infected is close to 0.

Figure 4.1: In the left, a Barabási-Albert network with 100 nodes. In the right, average
of final size of the the solution from (3.4) in the previous graph at t = 100, r ∈ [0, 0.5],
β ∈ [0, 2] and δ = 1.

17
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Figure 4.2: In the left, a Erdös-Renyi network with 100 nodes. In the right, average
of final size of the solution from (3.4) in the previous graph at t = 100, r ∈ [0, 0.5],
β ∈ [0, 2] and δ = 1.

Figure 4.3: In the left, a random geometric network with 100 nodes. In the right, average
of final size of the solution from (3.4) in the previous graph at t = 100, r ∈ [0, 0.5],
β ∈ [0, 2] and δ = 1.

4.1 Vaccination

When there is an infection in the environment, a natural question arises: how can
we fight with that? In many cases vaccination is the answer. But, if we can see the
population as a graph, how can we vaccinate it? Intuitively, the answer is to vaccinate
hubs. In 2012, Claudio Castellano and Romualdo Pastor-Satorras in [5] showed that
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hubs in some cases are not determinant in virus spread on networks, they said that
virus spread depends on the main k-core of the network [5, 17].

From now on, the vaccinate notion mean: if the node i is vaccinated, we will put
zeros in the ith row and column of the adjacency matrix of the associated graph.

We shall compare the solutions from (3.4), considering several vaccination strategies.
These strategies are given by some centrality measures, like largest degree, betweenness
and closeness. Also, random vaccination will be studied. All these in order to verify
our conjecture, hub-vaccination is not necessarily the optimal vaccination strategy.

From now on, when “size of the solution” appears, it must be understood as “average
of the entries of the vector solution”.

4.1.1 Vaccination on Barabási-Albert Network

In this part, we consider the solution of (3.4) in a fixed Barabási-Albert network
(see figure 4.1). This solution will be through three vaccination strategies. The results
are shown next,

Figure 4.4: This graphic represents the
size of the solution from (3.4) with largest
degree vaccination on the Barabási-Albert
network 4.1, at t = 100, r ∈ [0, 0.5], β ∈
[0, 2], δ = 1 and a size N = 100.

Figure 4.5: This graphic represents the size
of the solution from (3.4) with betweenness
vaccination on the Barabási-Albert network
4.1, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1
and a size N = 100.
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Figure 4.6: This graphic represents the size
of the solution from (3.4) with random vac-
cination on the Barabási-Albert network
4.1, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1
and a size N = 100.

Figure 4.7: This graphic represents the size
of the solution from (3.4) with closeness
vaccination on the Barabási-Albert network
4.1, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1
and a size N = 100.

We can see that the figures 4.4, 4.5, 4.6, 4.7 are similar, so we will study the
subtraction between them. This in order to identify regions wherever our hypothesis is
true in this kind of network.

Convention 4.1.1. From now on, when sign of “anything” appears in any graphic, we
will understand that the blue region the sign is positive, and the dark red region the
sign is negative.
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Figure 4.8: The first graphic represents the subtraction between the solution from (3.4),
with random and largest degree vaccination (in that order). The sign of the subtraction
appears in the second graphic.

Figure 4.9: The first graphic represents the subtraction between the solution from
(3.4), with closeness and largest degree vaccination (in that order). The sign of the
subtraction appears in the second graphic.
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Figure 4.10: This graphic represents the subtraction between the solution from (3.4),
with betweenness and largest degree vaccination (in that order). Here, the subtraction
is zero for all values of β and r.

Figures 4.8 and 4.9 show that there are regions wherever our conjecture is true:
hub-vaccination is not necessarily the optimal vaccination strategy. If r in [0, 0.33] and
a appropriate value of β in figure 4.8, it is a better idea to vaccinate randomly than to
the nodes of largest degree on the network 4.1. In figure 4.9 shows that almost always
it is better the strategy closeness vaccination over largest degree vaccination on the
network 4.1.

In the figure 4.10 we can see that the difference is zero, because in the network 4.1
betweenness centrality is equal to degree centrality. In this network, the nodes with
major betweenness and degree centrality are 5, 0, 7, 6, 2, 16, 9, 15, 14, 13.

Figures 4.8 and 4.9 are important because our non-intuitive conjecture is verified
on Barabási-Albert network 4.1.

4.1.2 Vaccination on Erdös-Renyi Network

In this part, we consider the solution of (3.4) in a fixed Erdös-Renyi network (see
figure 4.2). This solution will be through examined over three vaccination strategies.
The results are shown next,
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Figure 4.11: This graphic represents the
size of the solution from (3.4) with largest
degree vaccination on the Erdös-Renyi net-
work 4.2, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2],
δ = 1 and a size N = 100.

Figure 4.12: This graphic represents the size
of the solution from (3.4) with betweenness
vaccination on the Erdös-Renyi network 4.2,
at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1 and
a size N = 100.

Figure 4.13: This graphic represents the size
of the solution from (3.4) with random vac-
cination on the Erdös-Renyi network 4.2, at
t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1 and a
size N = 100.

Figure 4.14: This graphic represents the size
of the solution from (3.4) with closeness vac-
cination on the Erdös-Renyi network 4.2, at
t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1 and a
size N = 100.

As in the last strategy, the figures 4.11, 4.12, 4.13, 4.14 are similar, so we will study
the subtraction between them. This in order to identify regions wherever our hypothesis
is true in this kind of network.
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Figure 4.15: This graphic represents
the subtraction between the sizes of the
solution from (3.4), with random and
largest degree vaccination (in that or-
der). Here, the subtraction is positive
for all values of β and r.

Figure 4.16: This graphic represents
the subtraction between the sizes of the
solution from (3.4), with closeness and
largest degree vaccination (in that or-
der). Here, the subtraction is zero for
all values of β and r.

Figure 4.17: The first graphic represents the subtraction between the sizes of the solu-
tion from (3.4), with betweenness and largest degree vaccination (in that order). The
sign of the subtraction appears in the second graphic.

Figures 4.17 shows that there is a region wherever our conjecture is verified. For
values less to 0.4 of r and almost all β in [0, 2], it is a better strategy to vaccinate
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the nodes with major betweenness centrality than the nodes with largest degree on the
network 4.2.

In the figure 4.15, we can not verify our conjecture, because the subtraction is
always positive i.e. to vaccinate the nodes of largest degree is a better strategy than to
vaccinate randomly.

In the figure 4.16 we can see that the difference is zero, because in the network 4.2
closeness centrality is equal to degree centrality. In this network, the nodes with major
closeness and degree centrality are 44, 58, 1, 30, 89, 5, 57, 68, 82, 29.

Figure 4.17 is important because our non-intuitive conjecture is verified on Erdös-
Renyi network 4.2.

4.1.3 Vaccination on Random Geometric Network

In this part, we consider the solution of (3.4) in a fixed Random Geometric graph
(see figure 4.3). As before, the solution will be computed for three vaccination strategies.
The results are shown next,

Figure 4.18: This graphic represents the size
of the solution from (3.4) with largest de-
gree vaccination on the Random Geomet-
ric network 4.3, at t = 100, r ∈ [0, 0.5],
β ∈ [0, 0.08], δ = 0.1 and a size N = 100.

Figure 4.19: This graphic represents the size
of the solution from (3.4) with betweenness
vaccination on the Random Geometric net-
work 4.3, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2],
δ = 1 and a size N = 100.
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Figure 4.20: This graphic represents the size
of the solution from (3.4) with random vac-
cination on the Random Geometric network
4.3, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1
and a size N = 100.

Figure 4.21: This graphic represents the size
of the solution from (3.4) with closeness vac-
cination on the Random Geometric network
4.3, at t = 100, r ∈ [0, 0.5], β ∈ [0, 2], δ = 1
and a size N = 100.

As in the both last two strategies, the figures 4.18, 4.19, 4.20, 4.21 are similar, so
we will study the subtraction between them. This in order to identify regions wherever
our hypothesis is true in this kind of network.
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Figure 4.22: This graphic represents
the subtraction between the sizes of the
solution from (3.4), with random and
largest degree vaccination (in that or-
der).

Figure 4.23: This graphic represents
the subtraction between the sizes of the
solution from (3.4), with betweenness
and largest degree vaccination (in that
order).

Figure 4.24: The first graphic represents the subtraction between the sizes of the solu-
tion from (3.4), with closeness and largest degree vaccination (in that order). The sign
of the subtraction appears in the second graphic.

In the figures 4.22 and 4.23, the subtraction is always positive. Therefore, it is
not possible to verify our conjecture: hub-vaccination is not necessarily the optimal
vaccination strategy.

Figure 4.24 shows that our conjecture is true. For β “small” and r in [0.3, 0.5], it is
a better strategy to vaccinate the nodes with major closeness centrality than the nodes
with largest degree on network 4.3.
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It is remarkable that with closeness vaccination, both the Barabási-Albert network
4.1 and the Random Geometric network 4.3 verify our conjecutre close to r = 0.5. So,
can we say something if r ∈ [0.5, 1]? The answer is that for some values of r is true
too. Figures 4.25 and 4.26 offer further evidence.

Figure 4.25: The first graphic represents the subtraction between the sizes of the solu-
tion from (3.4) on 4.1, with closeness and largest vaccination (in that order), r ∈ [0.5, 1].
The sign of the subtraction appears in the second graphic.

Figure 4.26: The first graphic represents the subtraction between the sizes of the solu-
tion from (3.4) on 4.3, with closeness and largest vaccination (in that order), r ∈ [0.5, 1].
The sign of the subtraction appears in the second graphic.

In this section, we have seen that for N = 100 and δ = 1, there are values for r
and β, which we verify our conjecture: hub-vaccination is not necessarily the optimal
vaccination strategy. It was presented with three kinds of networks. Next, a natural
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question appears, will it be true for every Barabási-Albert, Erdös-Renyi and random
geometric networks? Unfortunately the answer to this question is NO. For example,
in the case of a Barabási-Albert network.If we study the next graph, to vaccinate the
nodes of largest degree is the best strategy over any other strategy studied.

Figure 4.27: Barabási-Albert network with 100 nodes.

The respective figures of the subtractions between the strategies are,
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Figure 4.28: This graphic represents
the subtraction between the solution
from (3.4) on the network shown in the
figure 4.27, with random and largest de-
gree vaccination (in that order).

Figure 4.29: This graphic represents
the subtraction between the solution
from (3.4) on the network shown in the
figure 4.27, with closeness and largest
degree vaccination (in that order).

Figure 4.30: This graphic represents the
subtraction between the solution from (3.4)
on the network shown in the figure 4.27,
with betweenness and largest degree vacci-
nation (in that order).

The figures 4.28, 4.29 and 4.30 confirms the above statement, because the differences
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are always positive. Now, we know that the result is not general. But, is it frequent? to
have an idea, we generated a set of randomly 100 Barabási-Albert networks, and we look
in which of them our conjecture is true. The figures 4.31, 4.32 and 4.33 show in which
Barabási-Albert networks is better to vaccinate with a strategy different vaccination of
nodes with largest degree.

Figure 4.31: This graphic represents the minimum of the subtraction of 100 Barabási-
Albert networks, between the solution from (3.4), with random and largest degree
vaccination (in that order).

Figure 4.32: This graphic represents the minimum of the subtraction of 100 Barabási-
Albert networks, between the solution from (3.4), with closeness and largest degree
vaccination (in that order).



CHAPTER 4. NUMERICAL RESULTS 32

Figure 4.33: This graphic represents the minimum of the subtraction of 100 Barabási-
Albert networks, between the solution from (3.4), with betweenness and largest degree
vaccination (in that order).

For the others kinds of networks, see appendix A.



Chapter 5

Vaccination of a Star Graph with N
Nodes

In Chapter 4, we verified numerically the conjecture: hub-vaccination is not neces-
sarily the optimal vaccination strategy, for some conditions from some random graphs.
In this chapter, we will study theoretically this conjecture in a particular graph, a star
graph (see figure 2.6). But, why did we choose a star graph? Because hubs in star
graphs determine the communication of the whole graph.

The purpose of this chapter, it is to compare the steady states of a star graph with
N nodes, using two vaccination strategies; randomly and largest degree vaccination.
Cases N ∈ {1, 2} are too simple and we skip their discussion.

5.1 Star graph with N = 3 nodes

5.1.1 Random vaccination

The matrix (3.3) associated to a star
graph with 3 nodes is

M =




0 1 2r
1 0 1
2r 1 0


 (5.1)

Choosing randomly one node different to 2 (because this is the hub), for example,
the node 1 and this node is vaccinated, the matrix (5.1) would change to

M1 =




0 0 0
0 0 1
0 1 0




System 3.4 would be,

33
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v′1(t) = −δv1(t),

v′2(t) = β(1− v2(t))v3(t)− δv2(t),

v′3(t) = β(1− v3(t))v2(t)− δv3(t).

This system is uncoupled. The solution to the first equation is

v1(t) = Ce−δt,

where C is a constant that depends on the initial conditions. For the other two equa-
tions, doing v2 = v and v3 = w, we get the next equations,

v′ = β(1− v)w − δv,
w′ = β(1− w)v − δw.

Simplifying the above system doing τ = δt, we obtain

v′ = R0(1− v)w − v,
w′ = R0(1− w)v − w, (5.2)

where R0 = β
δ
. Observe that v = w, because v′−R0w+v = −vw = w′−R0v+w. Thus

v′ −R0w + v = w′ −R0v + w

and
v′ +R0v + v = w′ +R0w + w. (5.3)

As (5.3) is true for every v and w, then v = w. Thus, there is one single equation,

v′ = R0(1− v)v − v,

i.e.
v′ = (R0(1− v)− 1)v. (5.4)

Equation (5.4) is a logistic equation. If R0 = 1 then

v′ = −v2,

whose solution is given by

v(t) =
1

t+ C1

, (5.5)

where C1 is a constant that depends on the initial conditions. As v(0) = 1
C1

must be
positive, because v represents a probability, we have that C1 > 0. In the figure 5.1
shows the graph of the function (5.5).
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Figure 5.1: Sketch of the function (5.5) when R0 = 1.

If 0 < R0 < 1, the sketch of the solution from (5.4) is shown in the figure 5.2.
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Figure 5.2: Sketch of the solution from (5.4) when 0 < R0 < 1.

If 1 < R0, the sketch of the solution from (5.4) is shown in the figure 5.3.

Figure 5.3: Sketch of the solution from (5.4) when 1 < R0.

As summary of results,
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Conditions Equilibriums from (5.4) Estability

0 < R0 < 1 v = 0 Stable
v = R0−1

R0
Unstable

R0 = 1 One steady state, v = 0 Stable

R0 > 1 v = 0 Unstable
v = R0−1

R0
Stable

5.1.2 Largest degree vaccination

Now, if the hub is vaccinated i.e. the node 2. The matrix (5.1) would change to

M2 =




0 0 2r
0 0 0
2r 0 0




and the system to solve is,

v′1(t) = 2rβv3(t)(1− v1(t))− δv1(t),

v′2(t) = −δv2(t),

v′3(t) = 2rβv1(t)(1− v3(t))− δv3(t).

This system is uncoupled. The solution to the second equation is

v2(t) = C2e−δt,

where C2 is a constant that depends on the initial conditions. For the other two
equations, doing v1 = v, v3 = w and simplifying the system doing τ = δt, we obtain

v′ = 2rR0w(1− v)− v,
w′ = 2rR0v(1− w)− w. (5.6)

Under the same above argument. Just one equation is obtained,

v′ = (2rR0(1− v)− 1)v, (5.7)

Equation (5.7) is a logistic equation again. The equilibria are v = 0 and v = 2rR0−1
2rR0

,
as long as r 6= 0.
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Conditions Equilibriums from (5.7) Estability

r 6= 0 and 0 < R0 <
1
2r

v = 0 Stable
v = 2rR0−1

2rR0
Unstable

r 6= 0 and R0 >
1
2r

v = 0 Unstable
v = 2rR0−1

2rR0
Stable

r 6= 0 and R0 = 1
2r

One steady state, v = 0 Stable

r = 0 One steady state, v = 0 Stable

Now, comparing the stable steady states of both strategies, we can give a answer to
the next question. Is random vaccination better than vaccinating largest degree node?
The nonzero steady states from (5.4) and (5.7) are v̂ = R0−1

R0
for random vaccination,

and v = 2rR0−1
2rR0

for largest degree vaccination. v̂ and v are stable if R0 > 1 and if

R0 >
1
2r
, respectively. Thus, assuming that r < 0.5 and defining the next function,

f(R0, r) =
R0 − 1

R0

− 2rR0 − 1

2rR0

,

the difference between the nonzero steady states in both strategies. If f(R, r) is nega-
tive, this mean that to vaccinate randomly is better that to vaccinate the largest degree
node. f(R, r) < 0 implies that r > 0.5. But to compare the steady state is necessary
that r < 0.5. Thus, this hypothesis is not true for star graph with N = 3 nodes. Now,
will the difference be always positive for all star graph with N nodes?

5.2 Star Graph with N Nodes (N ≥ 4)

5.2.1 Random Vaccination

Following the same idea of case N = 3, vaccinating randomly, the general system of
differential equations for a star graph with N ≥ 4 nodes is,

v′ = β (N − 2) (1− v)w − δv,
w′ = β (1− w) (v + 2r (N − 3)w)− δw.

If we set
θ1 = β(N − 2), θ2 = −2rβ(N − 3),

the following system of differential equations is obtained

v′ = θ1w − θ1wv − δv, (5.8a)

w′ = θ2w
2 − (θ2 + δ)w − βvw + βv. (5.8b)
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System (5.8) can be further simplified if we rescale the time by τ = δt. Thus
obtaining

v′ = θ1w − θ1wv − v, (5.9a)

w′ = θ2w
2 − (θ2 + 1)w −R0vw +R0v, (5.9b)

or (
v′

w′

)
= f(w, v, δ, β, r,N), (5.10)

where f(w, v, δ, β, r,N) = (θ1w − θ1wv − v, θ2w
2 − (θ2 − 1)w −R0vw +R0v) and

R0 =
β

δ
, θ1 = R0(N − 2), θ2 = −2rR0(N − 3). (5.11)

Next, we shall study the stationary solutions of (5.9) and their stability. If we let

θ1w − θ1wv − v = 0, (5.12a)

θ2w
2 − (θ2 + 1)w −R0vw +R0v = 0, (5.12b)

from equation (5.12a), we obtain

v =
θ1w

θ1w + 1
=

R0(N − 2)w

R0(N − 2)w + 1
, (5.13)

now, using (5.13) in the second equation from (5.12),

θ2w
2 − (θ2 + 1)w −R0

(
θ1w

θ1w + 1

)
w +R0

(
θ1w

θ1w + 1

)
= 0.

This implies that,

w = 0, or 1 +
θ1w + 1

θ2(θ1w + 1)−R0θ1

= w. (5.14)

Thus, the steady states are w = 0 or fixed points of φ(w), where

φ(w) = 1 +
θ1w + 1

θ2(θ1w + 1)−R0θ1

.

The next points allow us to study the behavior of the function φ.

1. If r =
1−R2

0(N−2)

2R0(N−3)
, then w = 0 is a fixed point of φ(w). Moreover, we have that



CHAPTER 5. VACCINATION OF A STAR GRAPH WITH N NODES 40

φ(0)





> 0 if r >
1−R2

0(N−2)

2R0(N−3)
,

= 0 if r =
1−R2

0(N−2)

2R0(N−3)
,

< 0 if r <
1−R2

0(N−2)

2R0(N−3)
,

where φ(0) = 1 + 1
θ2−R0θ1

.

2. φ(w) is strictly decreasing. If we consider the first derivative

φ′(w) = − R0θ1

(θ2(θ1w + 1)−R0θ1)2
,

as R0θ1 > 0 and (θ2(θ1w + 1)−R0θ1)2 ≥ 0, we get that φ′(w) < 0, w ∈ R.

3. The second derivative

φ′′(w) =
2R0θ

2
1θ2

(θ2(θ1w + 1)−R0θ1)3
,

implies

φ′′(w)





> 0 if w > R0θ1−θ2
θ1θ2

,

< 0 if w < R0θ1−θ2
θ1θ2

.

Thus, φ is concave up if w ∈
(
R0θ1−θ2
θ1θ2

,∞
)
, and concave down if w ∈

(
−∞, R0θ1−θ2

θ1θ2

)

4. For φ∞ = limw→∞ φ(w),

φ∞ = 1 +
1

θ2

.

We have that

φ∞





> 0 if r > 1
2R0(N−3)

= 0 if r = 1
2R0(N−3)

< 0 if r < 1
2R0(N−3)

and φ(0) > φ∞.

i. Figure 5.4 shows the graph of function φ when φ(0) = 0 and φ∞ < 0. In this
case, there are two steady states of the system (5.9), (v∗, w∗) = (0, 0) and (v, w),
where v and v∗ are v(w) from the equation (5.13) evaluated at w = w and
w = w∗, respectively. Since w represents a probability, the case w < 0 will
not be considered.
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Figure 5.4: Sketch of the function φ when φ(0) = 0 and φ∞ < 0.

Thus, using (5.13), there is just one steady state for the system (5.9), (v, w) =
(0, 0). To meet the stability of this steady state, we need to understand the linear
system associated from (5.10),

[
v′

w′

]
= Jf (0, 0)

[
v
w

]
=

[
−1 θ1

R0 −(θ2 + 1)

] [
v
w

]
, (5.15)

where Jf (0, 0) is the Jacobian matrix of the function f from (5.10), evaluated at
v = w = 0. The eigenvalues of Jf (0, 0) are

λ1 =
−θ2 − 2 +

√
θ2

2 + 4R0θ1

2
and λ2 =

−θ2 − 2−
√
θ2

2 + 4R0θ1

2
,

or

λ1 = rR0(N − 3)− 1 +
√
r2R2

0(N − 3)2 +R2
0(N − 2),

λ2 = rR0(N − 3)− 1−
√
r2R2

0(N − 3)2 +R2
0(N − 2).

(5.16)

Taking into account that

rR0(N−3)−1 ≤ rR0(N−3) =
√
r2R2

0(N − 3)2 ≤
√
r2R2

0(N − 3)2 +R2
0(N − 2),

then,
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1. If r = 1
R0(N−3)

then λ1 > 0 and λ2 < 0, so that v = w = 0 is an unstable
state.

2. If r > 1
R0(N−3)

then λ1 > 0 and λ2 < 0, so that v = w = 0 is an unstable
state.

3. If r < 1
R0(N−3)

then λ1 > 0 and λ2 < 0, so that v = w = 0 is an unstable
state.

Hence, in any case (v, w) = (0, 0) is an unstable equilibrium.
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ii. Figure 5.5 shows the graph of function φ when φ(0), φ∞ > 0. In this case, there
are three steady states of the system (5.9), (v, w), (0, 0), and (v∗, w∗). Since w
represents a probability, the case w < 0 will not be considered. Here, 0 < φ∞ <
φ(w∗) < φ(0) i.e. 0 < φ∞ < w∗ < φ(0).

Figure 5.5: Sketch of the function φ when φ(0), φ∞ > 0.

From case (i), (0, 0) is unstable. Now, for (v∗, w∗) the Jacobian matrix is

Jf (v
∗, w∗) =

[
−θ1w

∗ − 1 θ1 − θ1v
∗

−R0w
∗ +R0 2θ2w

∗ − (θ2 + 1)−R0v
∗

]

The characteristic polynomial associated to the matrix Jf (v
∗, w∗) is

P (λ) = λ2 +Bλ+ C,

where B = −tr(Jf (v
∗, w∗)) and C = det(Jf (v

∗, w∗)). The eigenvalues of Jf (v
∗, w∗)

are,

λ+ =
−B +

√
B2 − 4C

2
and λ− =

−B −
√
B2 − 4C

2
, (5.17)

it follows that,
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



If C > 0 and B2 − 4C < 0, then





If B > 0, then Re(λ+), Re(λ−) < 0,
If B = 0, then Re(λ+) = Re(λ−) = 0,
If, B < 0, then Re(λ+), Re(λ−) > 0,

If C > 0 and B2 − 4C > 0, then





If B > 0, then λ+, λ− < 0,
If B = 0, then λ+ > 0, λ− < 0

If B < 0, then λ+, λ− > 0,

If C > 0 and B2 − 4C = 0, then





If B > 0, then λ+ = λ− < 0,
If B = 0, then λ+ = λ− = 0,
If B < 0, then λ+, λ− > 0,

If C = 0, then





If B < 0, then λ+ > 0, λ− = 0,
If B = 0, then λ+ = λ− = 0,

If B > 0, then λ+ = 0, λ− < 0,

If C < 0, then λ+ > 0 and λ− < 0.
(5.18)

As we want (v∗, w∗) is a stable state for (5.9); looking the last conditions for C
and B, we need that C > 0 and B > 0. Thus for C, we have that

C = R0(v∗ − θ1 + θ1w
∗ + θ1v

∗) + θ1w
∗ − θ1θ2w

∗ + 1 + θ2(1− 2w∗)

= R0Ψ1 + Ψ2,

where Ψ1 = v∗ − θ1 + θ1w
∗ + θ1v

∗ and Ψ2 = θ1w
∗ − θ1θ2w

∗ + 1 + θ2(1− 2w∗).

Ψ1





> 0 if w∗ ∈ (−∞,∆2) ∪ (∆1,∞),
= 0 if w∗ = ∆1 or w∗ = ∆2,
< 0 if w∗ ∈ (∆2, ∆1),

(5.19)

where

∆1 =
−1 +

√
1 + θ1

θ1

, ∆2 =
−1−

√
1 + θ1

θ1

,

and

Ψ2





> 0 if w ∈ (∆1,∞),
= 0 if w = ∆1,
< 0 if w ∈ (−∞, ∆1).

(5.20)

where

∆1 = − θ2 + 1

θ1 − θ1θ2 − 2θ2

. (5.21)
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The sign of ∆1 is

∆1





> 0 if r > 1
2R0(N−3)

,

= 0 if r = 1
2R0(N−3)

,

< 0 if r < 1
2R0(N−3)

.

One clear condition over Ψ1 and Ψ2 to get C > 0 is that Ψ1, Ψ2 > 0. As
φ(0), φ∞ > 0, 0 ≤ w ≤ 1, 0 ≤ r ≤ 1 and R0 ≥ 0 then, C is positive if





w∗ ∈ (∆1, 1] ∩
(
∆1, 1

]
∩ [0, 1],

r ∈
(

1
2R0(N−3)

,∞
)
∩ [0, 1].

(5.22)

Now for B, due to (5.18) it is necessary that B > 0. Then

B = θ1w
∗ +R0v

∗ − 2θ2w
∗ + θ2 + 2,

taking into account that φ(0), φ∞ > 0, 0 ≤ w ≤ 1, 0 ≤ r ≤ 1 and R0 ≥ 0, B is
positive if 




w∗ < 1
2

r ∈ [0, 1] ∩
[
0,− θ1w∗+R0v∗+2

2R0(N−3)(2w∗−1)

)
,

(5.23)

or

w∗ ≥ 1

2
. (5.24)

Therefore, (v∗, w∗) is a stable equilibrium for (5.9b) if





w∗ ∈
[
0, 1

2

)
∩ (∆1, 1] ∩

(
∆1, 1

]
,

r ∈ [0, 1] ∩
[
0,− θ1w∗+R0v∗+2

2R0(N−3)(2w∗−1)

)
∩
(

1
2R0(N−3)

,∞
)
,

or 



w∗ ∈
[

1
2
, 1
]
∩ (∆1, 1] ∩

(
∆1, 1

]
,

r ∈ [0, 1] ∩
(

1
2R0(N−3)

,∞
)
.

As − θ1w∗+R0v∗+2
2R0(N−3)(2w∗−1)

≥ 1
2R0(N−3)

while w∗ ∈
[
0, 1

2

)
, then (v∗, w∗) is a stable

equilibrium in (5.9b) if
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



w∗ ∈
[
0, 1

2

)
∩ (∆1, 1] ∩

(
∆1, 1

]
,

r ∈ [0, 1] ∩
(

1
2R0(N−3)

,− θ1w∗+R0v∗+2
2R0(N−3)(2w∗−1)

)
,

(5.25)

or 



w∗ ∈
[

1
2
, 1
]
∩ (∆1, 1] ∩

(
∆1, 1

]
,

r ∈ [0, 1] ∩
(

1
2R0(N−3)

,∞
)
.

(5.26)
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iii. Figure 5.6 shows the graph of function φ when φ∞ = 0.In this case, there are
three steady states of the system (5.9b), (v, w), (0, 0), (v∗, w∗). For the same above
mentioned reasons, (v, w) will not be considered. Here, 0 = φ∞ ≤ φ(w∗) ≤ φ0 i.e.
0 ≤ w∗ ≤ φ(0).

Figure 5.6: Sketch of the function φ when φ(0) > 0 and φ∞ = 0.

The analysis of stability of the points (0, 0) and (v∗, w∗) is analogue to case (ii).
(0, 0) is a unstable equilibrium by case (i). Taking into account that our condition
in this case is

r =
1

2R0(N − 3)
,

then C is positive if
w∗ ∈ [0, 1) ∩ (∆1, 1], (5.27)

because ∆1 = 0. Also,

B = θ1w
∗ +R0v

∗ − 2θ2w
∗ + θ2 + 2 = θ1w

∗ +R0v
∗ + 2w∗ + 1 > 0,

Hence, (v∗, w∗) is a stable equilibrium from (5.9b) if (5.27) is verified.

iv. Figure 5.7 shows the graph of function φ when φ(0) > 0 and φ∞ < 0. In this case,
there are three steady states of the system (5.9), (v, w), (0, 0), (v∗, w∗). For the
same above mentioned reasons, w < 0 will not be considered. Here, φ∞ < 0 ≤
φ(w∗) ≤ φ(0).
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Figure 5.7: Sketch of the function φ when φ(0) > 0 and φ∞ < 0.

The analysis of stability of the points (0, 0) and (v∗, w∗) is analogue to case (ii).
(0, 0) is unstable equilibrium by case (i). In case (ii), C is positive if expressions
(5.19), (5.20) are verified. Thus, taking into account that our condition in this
case is

r ∈
(

1−R2
0(N − 2)

2R0(N − 3)
,∞
)
∩
(
−∞, 1

2R0(N − 3)

)
.

As 0 ≤ r ≤ 1 and
1−R2

0(N−2)

2R0(N−3)
< 1

2R0(N−3)
, then

r ∈
(

1−R2
0(N − 2)

2R0(N − 3)
,

1

2R0(N − 3)

)
∩ [0, 1],

Then, ∆1 < 0. Hence, C is positive if





w∗ ∈ (∆1, 1],

r ∈
(

1−R2
0(N−2)

2R0(N−3)
, 1

2R0(N−3)

)
∩ [0, 1].

In case (ii), B is positive in the expressions (5.23) and (5.24). Hence, (v∗, w∗)
is a stable equilibrium in (5.9b) in this case if





w∗ ∈
[
0, 1

2

)
∩ (∆1, 1],

r ∈ [0, 1] ∩
[
0,− θ1w∗+R0v∗+2

2R0(N−3)(2w∗−1)

)
∩
(

1−R2
0(N−2)

2R0(N−3)
, 1

2R0(N−3)

)
,
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or 



w∗ ∈
[

1
2
, 1
]
∩ [(1, 1],

r ∈ [0, 1] ∩
(

1−R2
0(N−2)

2R0(N−3)
, 1

2R0(N−3)

)
.

As − θ1w∗+R0v∗+2
2R0(N−3)(2w∗−1)

≥ 1
2R0(N−3)

while w∗ ∈
[
0, 1

2

)
, then (v∗, w∗) is a stable equi-

librium in (5.9b) in this case if





w∗ ∈
[
0, 1

2

)
∩ (∆1, 1],

r ∈ [0, 1] ∩
(

1−R2
0(N−2)

2R0(N−3)
, 1

2R0(N−3)

)
,

(5.28)

or 



w∗ ∈
[

1
2
, 1
]
∩ (∆1, 1],

r ∈ [0, 1] ∩
(

1−R2
0(N−2)

2R0(N−3)
, 1

2R0(N−3)

)
.

(5.29)

v. Figure 5.8 shows the graph of function φ when φ(0), φ∞ < 0. In this case, there are
three steady states of the system (5.9), (v, w), (0, 0), (v∗, w∗). Since w represents
a probability, and w, w∗ < 0, then these will not be considered. With respect to
(0, 0), by case (i) it is known that this is a unstable equilibrium.

Figure 5.8: Sketch of the function φ when φ(0), φ∞ < 0.
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So far, we know conditions in which equilibria of the system (5.9b) are stable or
unstable. Now, we can begin to give a expression about them, specially to the stable
equilibria. Using the right expression from (5.14), the steady states are,

w =
− (θ1θ2 + θ1(1 +R0)− θ2)±

√
(θ1θ2 + θ1(1 +R0)− θ2)2 − 4(−θ1θ2) (θ2 −R0θ1 + 1)

−2θ1θ2

.

(5.30)
Changing the notation, if we suppose that

ξ1 = −θ1θ2,

ξ2 = − (θ1θ2 + θ1(1 +R0)− θ2) ,

ξ3 = θ2 −R0θ1 + 1,

(5.31)

then, expression (5.30) can be expressed as

w1 =
ξ2 +

√
ξ2

2 − 4ξ1ξ3

2ξ1

and w2 =
ξ2 −

√
ξ2

2 − 4ξ1ξ3

2ξ1

. (5.32)

Here





If ξ1ξ3 < 0 then w1 > 0 and w2 < 0,

If ξ1ξ3 > 0 ∧ ξ2
2 − 4ξ1ξ3 ≥ 0 then

{
if ξ2 > 0 then w1, w2 > 0,
if ξ2 < 0 then w1, w2 < 0.

The next table will be helpful as summary of this part
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5.2.2 Largest Degree Node Vaccination

Following the same idea of case N = 3, vaccinating the largest degree node, the
general differential equation for a star graph with N ≥ 4 nodes is

w′ = 2rβ (N − 2) (1− w)w − δw.
If we set, θ1 = β(N − 2), the following differential equation is obtained

w′ = w(−2rθ1w + (2rθ1 − δ)),
this equation can be simplified doing τ = δt, rescaling the time. Thus we obtain
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w′ = w(−2rθ1w + (2rθ1 − 1)), (5.33)

where, θ1 = R0(N − 2). The steady states from (5.33) are

w∗1 = 0, w∗2 =
2rθ1 − 1

2rθ1

.

The analytic solution from (5.33) is

w(t) =
(2rθ1 − 1)e2rθ1t+c1

2rθ1e2rθ1t+c1 − e2rθ1c1+t
, (5.34)

where c1 is a constant that depends on the initial conditions.

5.3 Comparison of the Steady States

Our goal is to give conditions over the parameters R0, r and N, for which vaccinating
the node of largest degree in a star graph is not better than vaccinate randomly.

To establish such conditions, it is necessary compare the steady states w∗1 from (5.32)
with w∗2 from (5.2.2). To do that, we are going to study the sign of the difference w∗1−w∗2.
If equation (5.35) is negative, we will find the conditions wherever our conjecture is true
in a star graph, i.e. to vaccinate the node of largest degree is not the optimal strategy,
due to that the stationary state vaccinating the node of largest degree is larger than
the stationary state vaccinating randomly. Now, let us see where the next subtraction
is negative

w∗1 − w∗2 =
ξ2 +

√
ξ2

2 − 4ξ1ξ3

2ξ1

− 2rθ1 − 1

2rθ1

=
ξ2 +K +

√
ξ2

2 − 4ξ1ξ3

2ξ1

,

(5.35)

where
K = 2θ1θ2 + 2θ1 − 2R0.

Equation (5.35) is negative if

√
ξ2

2 − 4ξ1ξ3 < −ξ2 −K,
i.e.

−4ξ1ξ3 < 2ξ2K +K2,

developing the above expression, then

0 < 4R2
0θ1 + 4R0 − 4R0θ

2
1 − 4R0θ1θ2 − 4R0θ1 − 4R0θ2,
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thus,

r ≥ θ2
1 + θ1(1−R0)− 1

2R0(N − 3)(θ1 + 1)

=
θ2

1 + θ1(1−R0)− 1

2(θ2
1 + θ1(1−R0)−R0)

=
1

2
+

R0 − 1

2(θ2
1 + θ1(1−R0)−R0)

,

(5.36)

here, there are two relevant cases,

1. If R0 = 1, then r ≥ 1
2
.

2. If 0 < R0 < 1, then

(a) Given that 1 + R0−1
θ21+θ1(1−R0)−R0

< 1, then, if r ≥ 1
2

then, condition (5.36) is

verified.

(b) As Σ = θ2
1 + θ1(1−R0)−R0 = (θ1−R0)(θ1− 1), then Σ→ 0 when R0 → 0.

Thus, condition (5.36) is verified for all r positive while R0 is enough small,
because

1

2
+

R0 − 1

2(θ2
1 + θ1(1−R0)−R0)

→ −∞, while R0 → 0.



Conclusions

We verify the conjecture in the three kinds of studied networks, hub-vaccination is
not necessarily the optimal vaccination strategy, with a important hypothesis in the
behavior of a virus on networks, long-range interactions. We compare two to two
strategies and this is that we got:

• For the Barabási-Albert network studied 4.1, the strategies random and closeness
vaccination are a better strategy than largest degree vaccination, for some region
of β Vs r and δ = 1. In this network, betweenness vaccination is equal to largest
degree vaccination.

• For Erdös-Renyi network studied 4.2, the strategy betweenness vaccination is a
better strategy than largest degree vaccination, for some region of β Vs r and
δ = 1. Closeness vaccination is equal to largest degree vaccination.

• For the Random Geometric network studied 4.3, the strategy closeness vaccination
is a better strategy than largest degree vaccination, for some region of β Vs r and
δ = 1.

Also, we could see that the conjecture was not general i.e. there are a networks such
that largest degree vaccination is the optimal vaccination strategy.

In search of a theoretical proof of the numerical results found in the chapter 4,
the conjecture was studied in a particular graph, a star graph. We found that if next
inequality for the conductivity is verified,

2r ≥ θ2
1 + θ1(1−R0)− 1

θ2
1 + θ1(1−R0)−R0

,

where θ1 = R0, R0 = β
δ
, then the conjecture is true i.e. largest degree vaccination is

not the optimal vaccination strategy on a star graph. My advice if this inequality is
verified is random vaccination over largest degree vaccination on a star graph.

As future work could be study the conjecture on other kinds of graphs, and to
analyze if there is some relation with spectral properties of the networks.

54



Appendix A

In the end of chapter 4 was shown what frequent in Barabási-Albert networks, we
can find that our conjecture is true. In this appendix is shown what frequent is true
our conjecture in Erdös-Renyi and Random Geometric networks. For Erdös-Renyi
networks, we have

Figure A.1: This graphic represents the minimum of the subtraction of 100 Erdös-Renyi
networks, between the solution from (3.4), with random and largest degree vaccination
(in that order).
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Figure A.2: This graphic represents the minimum of the subtraction of 100 Erdös-Renyi
networks, between the solution from (3.4), with closeness and largest degree vaccination
(in that order).

Figure A.3: This graphic represents the minimum of the subtraction of 100 Erdös-
Renyi networks, between the solution from (3.4), with betweenness and largest degree
vaccination (in that order).

For Random Geometric networks,
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Figure A.4: This graphic represents the minimum of the subtraction of 100 Random
Geometric networks, between the solution from (3.4), with random and largest degree
vaccination (in that order).

Figure A.5: This graphic represents the minimum of the subtraction of 100 Random
Geometric networks, between the solution from (3.4), with closeness and largest degree
vaccination (in that order).



APPENDIX A. 58

Figure A.6: This graphic represents the minimum of the subtraction of 100 Random
Geometric networks, between the solution from (3.4), with betweenness and largest
degree vaccination (in that order).
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