
Centro de Investigación en Matemáticas A.C.
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Abstract

The advances in the field of autonomous cars in recent years have been pretty significant.
However much of the research and development work is being performed in developed coun-
tries, and thus is not directly applicable to the roads and streets of developing countries,
which offer additional challenges that are not often seen in the currently considered scenar-
ios.

For perceiving the environment, today’s autonomous cars use a combination of sen-
sors. Among them, stereo cameras offer a good balance between perception capabilities
and cost. Several datasets have been created to push forward the development and testing
of computer vision algorithms for environment perception and navigation of autonomous
vehicles. However, to the best of our knowledge, no dataset exists that offers scenes with
the particular characteristics of the streets and roads of developing countries. This makes
it difficult to test and adapt the algorithms to perform well in these environments.

In this work, we have created an in-vehicle data acquisition platform that we have used
to acquire a dataset featuring stereo images with the particular characteristics of the streets
and roads of our country, such as poor road conditions, abundant speed bumpers, insuffi-
cient signaling, among others, that add even more complexity to the task of autonomous
vehicle navigation. Also, the acquired stereo pairs feature challenges for stereo-matching
algorithms typically present in real-world scenarios like perspective distortion, shadowing,
occlusions, reflections, transparency, and lens flares.

We also have evaluated several stereo correspondence algorithms and pixel similarity
measures under our real-world imagery to determine their suitability to be used in au-
tonomous driving. We offer a qualitative analysis on the obtained disparity maps and
perform a runtime comparison on the performance of the selected stereo matchers.
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Chapter 1

Introduction

According to data from the World Health Organization, the number of deaths caused each year by
road traffic accidents around the globe is estimated at almost 1.2 million. Moreover, the number of
injured people as a consequence of the crashes could be up to 50 million [100].

The economic losses resulting from these road traffic crashes are enormous, in the order of billions
of dollars. Injuries caused by traffic accidents are the eighth cause of death worldwide, and the leading
cause of death for young people between 15 and 29 years old. If the current trend continues, by 2030
road traffic deaths will become the fifth leading cause of death globally [101].

In the United States of America, during the year 2012, about 5,615,000 motor vehicle traffic crashes
were reported to the police. Approximately 1,634,000 of those accidents caused injuries and 30,800
resulted in fatalities. The economic cost of the traffic crashes is estimated to be around 277 billion
dollars [71].

The situation in Mexico is also worrying. Mexico occupies the 13th place in the world in road
casualties [101], while being only at the 56th place in number of vehicles per capita [99]. The injuries,
disabilities and deaths caused by traffic accidents cost more than 120 thousand million pesos a year.
Traffic crashes are the first cause of death in the young population aged 5 – 34, and the second cause of
orphanhood. Because of traffic accidents, every year more than 24,000 persons die and approximately
750,000 persons get injured to the point of needing hospitalization. [24].

The accidents may be attributed to different causes: vehicle deficiency or failure, e.g. tire fail-
ure, roadway-related factors, e.g. a lane delineation problem, or driver-related factors, like fatigue,
speeding, panic, misjudgment, driving under the influence of alcohol, among others. According to
John Maddox, former Associate Administrator for Vehicle Safety of the U.S. National Highway Traffic
Safety Administration (NHTSA), human error is the critical reason in 93% of the accidents [66]. This
percentage is alarming.

But the cost of car transportation is paid in other ways too. In average, Americans spent 250
hours a year driving to and from work, and in big cities the commuting time can be much worse. That
lost time could be better invested, for example doing some work, reading, or simply relaxing. Parking
has also become a complicated issue in big cities. According to a report published by the MIT Media
Lab, about 40 percent of the gasoline in crowded urban areas is used by drivers looking for a parking
spot [60]. This, besides being a waste of time, money and energy, represents a significant source of
pollution. In some U.S. cities, parking lots cover more than a third of the land area, making them
the most prominent feature of the urban landscape [60]. As it can be seen, current trends cannot be
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2 CHAPTER 1. INTRODUCTION

sustained for much longer, and alternatives to solving these issues are arising. Autonomous cars are one
of the most promising ones. They are safer, as a computer system can react much more quickly to an
emergency situation than a human does. Also, autonomous cars do not get tired or drunk. They can
drive in a more energy-efficient manner. They allow time saving and better use of road infrastructure.
When they are ready, they will change the world.

1.1 Objectives

The advances in the field of autonomous cars in recent years have been pretty significant. However
much of the research and development (R&D) work is being performed in developed countries, and
thus is not directly applicable to the roads and streets of developing countries, which offer additional
challenges that are not seen very often in the currently considered scenarios. For perceiving the
environment, today’s autonomous cars use a combination of sensors. Among them, stereo cameras
offer a good combination between perception capabilities and cost. Several datasets have been created
to push forward the development and testing of algorithms for environment perception and navigation
of autonomous vehicles. However, to the best of our knowledge, no dataset exists that offers scenes
with the particular characteristics of the streets and roads of developing countries. This makes difficult
to test and adapt the algorithms to perform well in these environments.

The main objective of this work was to create such a dataset, featuring stereo images recorded in
Mexican streets, with the particular characteristics of the streets and roads of our country, and with
as many as possible additional sensor data to perform road scene understanding. As everyone who has
driven in our streets knows, lane marking and road signaling are sometimes either absent or insufficient.
Also, the pedestrian flow is less structured, as pedestrians can be commonly found sharing the road
with cars and crossing roads at points different than the street corners. Besides, the road quality is
often poor, and one can find many speed bumpers and potholes. All these challenges offered by our
roads increase even more the complexity of driving in urban scenarios. Also, we wanted to perform
a survey on the advances of the field of autonomous cars, specially about environment perception.
Finally, we wanted to evaluate the performance of several stereo matchers with the acquired pairs, to
find the best option for obtaining quality disparity maps, that could be used in future work with the
dataset.

1.2 Related work

In this section, we offer a brief description of the stereo vision datasets that exist in the literature for
their use in mobile robotics and autonomous vehicles research.

1.2.1 The Rawseeds project

The Rawseeds project [85, 35] generated a comprehensive high-quality Benchmarking Toolkit for
autonomous robotics. The toolkit is mainly focused in the problems of localization, mapping and
SLAM in robotics, but certainly can be used for other tasks. The toolkit contains:

� High-quality multi-sensor datasets, with associated ground truth;

� Benchmark Problems based on the datasets;
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Figure 1.1: The robotic platform used in the Rawseeds project. Image credit: The Rawseeds project

� Benchmark Solutions for the problems.

The datasets are made up of raw sensor data and are recorded in indoor and outdoor environments.
The Benchmark Problems offer quantitative performance metrics that can be applied to the solutions
obtained by the users. Therefore the algorithms can be evaluated quantitatively and be compared in
a standard way, allowing to determine the best performing algorithms, and the ones that need further
improving. This enables the progress of the robotics field.

The sensors used to acquire the datasets were a “representative sensor suite”, defined by the authors
as “one including all sensor types usually adopted in mobile robotics” [85]. For each sensor type, one
or more models were selected, according to their popularity in research and industrial applications.
Factors also considered in the sensor selection process were mass, dimensions, power consumption,
possible interactions between sensors, and cost.

The robotic platforms used to generate the datasets were equipped with a sonar belt for indoor data
acquisition, including 12 Maxbotix EZ-2 ultrasound transducers positioned all around the robot. The
sensors were activated in groups, to limit the possibility of crosstalk. Also an Inertial Measurement
Unit (IMU) was considered and the XSens MTi was chosen. It provides 3-axis measurements of angular
orientation, acceleration, rate-of-turn and Earth magnetic field data. The MTi used had a 1,7g full
scale acceleration and 150 deg/s full scale rate of turn. Computer vision featured an important role,
as several vision systems were included, among them stereo and trinocular setups with monochrome
cameras. Additionally, standard perspective cameras with color and monochrome sensors were used.
Omnidirectional vision was achieved with two cameras, one color and one monochrome, equipped with
a hyperbolic mirror. Two classes of Laser Range Finders (LRF) were included. A couple of Hokuyo
URG-04LX LRFs (4m range, less at low reflectivity) represented the cheap short-range class. Two
high-performance LRFs with medium and long-range were mounted as well: the Sick LMS200 and
LMS291, with respectively < 30m and < 100m range at 100% reflectivity.

The robotic platform used to record the data is shown in figure 1.1.
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1.2.2 EISATS

The University of Auckland in collaboration with institutions like Daimler A.G., Humboldt-Universität
zu Berlin among others, offers the .enpeda.. Image Sequence Analysis Test Site (EISATS [88]).
It provides sets of image sequences of medium and high-resolution for the purpose of comparative
performance evaluation of stereo vision, optical flow, motion analysis, or further techniques in computer
vision.

To this date, they have made available 11 sets, each with one or more sequences. Most of the sets
are targeted to perception and understanding of the environment for autonomous driving applications.
A set for the specific problem of optical flow detection, recorded using a high frame rate, and another
for the problem of driver monitoring under different lighting conditions are the only exceptions.

The sets aimed at autonomous driving comprise synthetic and real-world sequences captured in
diverse scenarios under various weather and lighting conditions. Some of them are very challenging.
The real-world scenes were recorded from moving vehicles using color and monochrome cameras in
either monocular, stereo or trinocular configurations. Some sequences are complemented with one or
more of the following: ego-motion data, laser scans from a LIDAR, ground truth disparity maps created
from back projected laser scanner points, and hand-made scene labeling for testing segmentation
algorithms. With the exception of set 3 and some of the monocular sequences, which have more than
1,000 frames, the sequences are short, with less than 400 frames. The pixel depth (i.e. the number of
bits used to encode the grey or color levels) ranges from 8 to 12 bits per pixel in monochrome images,
and is 24 bits per pixel in color images.

1.2.3 The HCI/Bosch Robust Vision Challenge

To extract depth and motion information from camera frames, computer vision algorithms make strong
assumptions, such as brightness constancy between the left and right images from a stereo pair, or
the supposition of single motion per pixel in the case of optical flow analysis. Thus, the algorithms
diminish their performance when phenomena that violate these assumptions are present, for example
reflective or transparent surfaces, lens flares, and dynamic illumination. The HCI/Bosch Robust Vision
Challenge [51] provides eleven hand-picked challenging scenes captured in uncontrolled traffic scenarios
that contain instances of these phenomena. The challenge was issued to the scientific community to
stimulate the development of algorithms that can deal robustly and reliably with these issues, so that
they can be applicable in industrial applications.

The ground truth for depth and motion of the objects visible in the scenes is not known, thus
only a qualitative evaluation is possible. The scenes were selected from several million frames acquired
with a carefully specified and characterized stereo pair. Each scene contains a different challenge,
highlighting problems that befall commonly. The selected scenes feature a wide variety of weather
conditions, motion and depth layers. They were recorded day and night in city and countryside
environments.

The original data was recorded with a resolution of 1,312 × 1,082 pixels with a pixel depth of 12
bits, using a frame rate of 100 Hz. The baseline of the stereo camera was around 30 cm. The final
images were both radiometrically and geometrically rectified (see chapter 3) and downscaled to the size
of 656 × 541 by averaging each four pixels to a single one. Every fourth frame is delivered, yielding a
sequence frame rate of 25 Hz. Example frames of one of the provided sequences is shown in figure 1.2.
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Figure 1.2: Reference frames (Left/Right) from the sequence ‘Wet Autobahn’ of the HCI/Bosch Vision
Challenge. This sequence shows multiple adverse effects of rainy conditions. The film of water covering
the street makes it reflective. Besides, the spray raised by passing cars is semitransparent, making the
motion estimation on both the spray and occluded objects more complicated.

1.2.4 The Daimler Ground Truth Stixel Dataset

The Daimler Ground Truth Stixel Dataset [25] provides twelve stereo highway sequences annotated
with ground truth for the obstacles in the environment, represented as Stixels. The Stixels are rectan-
gular elements that allow to model the traffic scene compactly without relevant information loss. The
image data is complemented with vehicle data, which includes velocity, yaw rate and timestamp. The
ground truth was obtained from manual annotations and taking advantage of the known ego-motion
in the case of non-moving structures. In the case of moving objects, a vehicle tracker based on an
Extended Kalman Filter was used with supervision. The position, orientation, velocity, acceleration,
and yaw rate of a perceived vehicle are estimated from a 3D point cloud tracked over time [7]. Some
of the scenes were recorded with heavy rain. The images are provided in PGM format, with a resolution
of 1,024 × 333, and with a pixel depth of 12 bits.

1.2.5 The annotated Leuven stereo data set

In [63] the authors present a method to jointly optimize the pixel labellings corresponding to both
disparity and object class segmentation. To evaluate their method, the authors have augmented a
subset of the Leuven stereo data set used in [64] with object class segmentation and dense disparity
annotations. All image pairs were rectified and cropped to a size of 316 × 256 prior to including
the new data. Then, 70 selected non-consecutive frames were manually annotated following a two-step
procedure. First, each pixel was labeled with one of 7 object classes: Building, Sky, Car, Road, Person,
Bike and Sidewalk. An 8th label, Void, was given to pixels that did not clearly belong to one of the
considered classes. Next, by manually matching the corresponding planar polygons, the ground-truth
disparity maps were obtained. The original stereo sequence was shot from a car driving around the
streets of Leuven, Belgium, using a stereo camera with a baseline of 150 cm.



6 CHAPTER 1. INTRODUCTION

Figure 1.3: The vehicle platform used for the KITTI dataset. Image from: [41]

1.2.6 The KITTI Dataset

The KITTI Dataset [41] features 6 hours of diverse traffic scenarios recorded using two high-resolution
color and grayscale stereo cameras with a baseline of approx. 54 cm. Accurate ground truth is provided
by a Velodyne 3D LIDAR and a high-precision OXTS RT3003 GPS/IMU inertial navigation and
localization system. Data provided by the LIDAR and the cameras was recorded at a frequency of 10
Hz.

The data was acquired while driving in the mid-size city of Karlsruhe, Germany and its surround-
ings. The different real-world traffic scenarios provided include situations in freeways, rural areas and
inside the city, with many static and dynamic objects. The supplied data is calibrated, synchronized
and timestamped, and the authors provide the rectified and raw image sequences. Also, for relevant
objects in the camera’s field of view, for example cars, cyclists or pedestrians, 3D bounding boxes are
provided. The dataset was recorded from an equipped VW Passat station wagon shown in figure 1.3.

Besides providing all their data in raw format, the authors have created challenging computer vision
benchmarks for evaluating state-of-the-art computer vision methods. The tasks of interest for which
benchmarks are provided are stereo, optical flow, visual odometry, 3D object detection and 3D object
tracking. For each of the benchmarks, an evaluation metric and an evaluation website is provided.

1.3 Thesis layout

In this chapter, the problems that autonomous driving technology aims to solve were introduced and
the objectives of the thesis were described. Also, existing related work in the literature was presented.

The remaining of this document is structured as follows. In chapter 2, we offer a brief history of
autonomous driving technology and a review of the sensing technologies used in autonomous vehicles.
Then, in chapter 3, we describe the fundamental concepts of stereo imaging required for environment
perception using this type of sensors. In chapter 4, we describe the equipment and the techniques
used to acquire the dataset. The structure of the data files containing the recorded sequences we
provide is described in chapter 5. Next, in chapter 6, we describe the work we have performed on
selected stereo pairs of the dataset, featuring a qualitative analysis of the performance of several stereo
matchers and data costs on the acquired pairs. Finally, in chapter 7 we summarize our contributions
and conclusions. In this chapter we also propose topics for future work using the acquired dataset.



Chapter 2

Developments on the field of
autonomous cars

The last two decades have seen tremendous advances in autonomous driving. However, steps towards
self-driving cars have been taken for many decades. We present a non-exhaustive review of the most
important events in the history of the technology in section 2.1. Then, in section 2.2, we talk about
the most important sensors used in autonomous cars, cameras, laser scanners and radars, and compare
their advantages and drawbacks. Also in this section, we talk about previous autonomous vehicles that
have given stereo vision a significant role.

2.1 A brief history of autonomous driving technology

The idea of having autonomous cars is not new at all. In the 1939 World’s Fair in New York, the
“Futurama: Highways & Horizons” exhibit, created by Norman Bel Geddes and sponsored by General
Motors, offered a vision of what the world of 1960 would be. The 35,738 square foot scale model featured
cities with skyscrapers, countryside, and industrial areas [93]. The places in this imagined world
were interconnected with superhighways where radio-guided cars obtain their power from circuitry
embedded in the road [11]. Skyscrapers and superhighways have been with us for some time, but fully
autonomous cars are yet to come.

The vision of autonomous cars in the 1950s can be seen in a newspaper ad from 1957, pictured in
figure 2.1. It was sponsored by some electric power companies and shows an autonomous automobile
piloting down the highway while the family members play a board game [94]. The car receives
navigation instructions from magnets embedded in the road that encode binary patterns corresponding
to the forthcoming state of the road, for example indicating to the car that it should slow down because
there is a sharp curve ahead. This smart road system was simple and reliable, but building it on a
large scale was never feasible.

The alternative to smart roads was then smart cars, more flexible but much more complex. Al-
though some developments towards autonomous driving were introduced by car manufacturers like
cruise control in the 1950s and the anti-lock braking system (ABS) in the 1970s, just to cite some
examples, it was until the 1980s with the pioneering work of Ernst Dickmanns that the field started
to flourish. In the beginning of that decade, Dickmanns and his group at Universität der Bundeswehr
München (UniBwM) equipped a Mercedes-Benz van with cameras and other sensors. By 1986, the van

7
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Figure 2.1: The vision of an autonomous car in the 1950s. Image from: [93]

“VaMoRs” managed to drive all by itself on streets without traffic [96].

In 1987, the largest R&D project ever in the field of autonomous cars started. The EUREKA
PROMETHEUS Project (PROgraMme for an European Traffic of Highest Efficiency and Unprece-
dented Safety, 1987-1995) was funded with e749 million from the member countries of EUREKA
[97]. The project defined the state of the art of autonomous vehicles. The project benefited from
the participation of Dickmanns and his team at UniBwM, in cooperation with Daimler-Benz A.G. In
1994 a decisive point was achieved when the twin vehicles VITA-2 and VaMP, from Daimler-Benz and
UniBwM respectively, drove more than 1,000 km on Autoroute A1, a multi-lane highway, in Paris. The
cars maneuvered along normal heavy traffic at speeds up to 130 km/h, drove in convoy determining
their distance to the preceding vehicle based on their current speed, changed lanes and performed
autonomous passing. The twin cars were based on the Mercedes-Benz S-Class W140, and sixty trans-
puters, a type of parallel computer, were used to handle the huge computational requirements. After
that, a second completion point was reached in 1995 with a 1,758 km trip from Munich, Germany
to Odense in Denmark and back to Munich. Most of the time, the throttle, brake and steering were
controlled autonomously. On the German Autobahn, VaMP achieved speeds above 175 km/h. It
was capable of driving up to 158 km without any human intervention despite not being designed for
reliability over long distances. On average, the safety driver took control back every 9 km [30, 28, 98].

Around the same time, in July 1995, Dean Pomerleau, a roboticist at Carnegie Mellon University
(CMU), and Todd Jochem, a robotics doctoral student, performed the “No hands across America”
tour. They traveled 3,000 miles from Pittsburgh, PA to San Diego, CA in a 1990 Pontiac Trans Sport
minivan, known as Navlab5. Running on the PANS (Portable Advanced Navigation Support) hardware
platform, the Ralph (Rapidly Adapting Lateral Position Handler) vision system was able to determine
the steering angle. Acceleration and braking were performed by the driver [74, 22].
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ARGO, an autonomous car based on a Lancia Thema was developed around 1998 by the University
of Parma. It was equipped with an automatic driving system with three modes of operation. In
manual driving mode, the system simply monitored the driver activity and performed data logging. In
Supervised Driving mode, the system alerted the driver when a potential unsafe situation was detected.
Finally, in Automatic Driving mode, the system had total control of the vehicle and was also capable of
platooning behind a leader car. To demonstrate ARGO’s capabilities, the Mille Miglia in Automatico
tour was performed. It lasted six days. The tour started from Parma on June 1, 1998, it passed
through several Italian cities before heading back to Parma a week later, after driving for more than
2000 km in automatic mode. The car drove up to 95.1% a day in automatic mode and drove up to
54.3 km without human intervention [18, 90].

With all these impressive achievements, it seemed that the age of autonomous driving was around
the corner, but it was not the case. All the mentioned tests drives were performed in highways and test
tracks, which are essentially controlled environments where just keeping the car in the lane and at a
safe distance of the preceding car may be enough. But, in more complicated scenarios like city streets,
the cars would not behave correctly. The technology was not ready yet. Roboticist Sebastian Thrun is
quoted as saying: “There was no way, before 2000, to make something interesting...The sensors weren’t
there, the computers weren’t there, and the mapping wasn’t there. Radar was a device on a hilltop
that cost two hundred million dollars. It wasn’t something you could buy at Radio Shack” [11].

In the beginnings of the 21st century, American military efforts on autonomous vehicles were not
living up to expectations. The American Congress wanted a third of all ground combat vehicles to
be autonomous by 2015, but military contractors, funded by the Defense Advanced Research Projects
Agency (DARPA), weren’t up to the challenge. It wasn’t clear whether the lack of success was due to
the technology still not being capable, or the inability of people to extract the most from it. To clarify
the issue, people in DARPA thought it would be a good idea to have more people involved, so they
convened a race.

The first DARPA Grand Challenge took place in the Mojave Desert on March 13, 2004. It offered
a million-dolar prize for the robotic car that would complete the race course faster and with total
autonomy. The road was rough, 142 miles from Barstow, California, to Primm, Nevada. None of the
fifteen finalists drove more than eight miles. Sandstorm, a modified Humvee from CMU’s Red Team
was the participant which traveled the most, completing 7.4 miles of the course before getting stuck
on an embankment after doing a sharp turn. No winner was declared, and consequently the cash prize
was not awarded. [95].

Despite the failures in the first Grand Challenge, DARPA announced a second Grand Challenge,
to be held on October, 2005. The robots that participated in the second challenge were much more
successful than their counterparts in the first one. 22 of the 23 finalists traveled more than the 7.4
miles driven by the most successful robot in the first challenge. Outstandingly, 5 vehicles successfully
completed the course. The winner of the two million-dollar prize was a modified Volkswagen Touareg
nicknamed Stanley, from the Stanford Racing Team, led by Thrun. Stanley, pictured in figure 2.2,
completed the requested 132 mile route on 6 hours, 53 minutes. H1ghlander and Sandstorm, both
from CMU, finished within minutes of Stanley. [20, 86, 95].

The 2005 DARPA Grand Challenge proved that it was possible for an autonomous mobile robot
to travel long distances in off-road terrain by itself. However, it did not prove that it was possible to
do it in a urban environment with traffic, where moving robotic vehicles share the roads with vehicles
driven by humans. This is why the DARPA Urban Challenge was born. The participating vehicles
had to drive in a mock city environment installed in a former air force base in California. The cars
had to perform simulated military supply missions. While executing the assigned duties, they had to
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Figure 2.2: Stanley, the winning car in the second DARPA Grand Challenge.

follow all traffic rules, avoid other competitors and human-driven vehicles, and also deal with parking
lots and closed roads. Pedestrians, cyclists or traffic lights were not considered. The 96 km course
had to be completed in less than 6 hours. From 89 applications, 11 teams were selected to participate
in the final event which took place in 2007. The Urban Challenge was won by a modified Chevrolet
Tahoe named “Boss” developed by Tartan Racing, a team led by CMU. The course was completed
successfully by 6 teams [21, 92, 95].

The Grand and Urban challenges started a wave of development in the field of autonomous cars,
and after them several companies and universities continued the advancement of the technology. Also,
many car manufacturers and Tier-1 automotive suppliers, like Continental and Bosch have established
teams to develop the technology. A non-exhaustive review of some teams currently working on the
field is presented below.

The RobotCar UK group [73], from the Department of Engineering Science of Oxford University,
has modified a Nissan Leaf to make it an autonomous car. Their approach is not to rely on GPS
for localization. Instead, the car learns previous routes driven manually, which are stored on the
computer’s memory and when the car recognizes a known route, it can take over the driving duties.
Their approach is useful for common-driven routes like daily commuting but would be less suitable for
driving long trips.

AutoNOMOS Labs [37] is part of the Artificial Intelligence Group of the Freie Universität Berlin.
To date, they have developed two autonomous cars, Spirit of Berlin, a modified Dodge Caravan, and
MadeInGermany, a modified Volkswagen Passat Wagon. MadeInGermany was the first car to get
certified for autonomous driving in the state of Berlin in Germany. This made it possible to perform
a fully autonomous drive in the traffic of Berlin. The car covered 4 times the 20 km route between
the International Congress Center, the Bradenburg Gate and back to the Congress Center, in fully
autonomous manner without any incident. According to their website, the team is now instrumenting
an electric car. Prof. Raúl Rojas is the leader of the project.

The Artificial Vision and Intelligent Systems Laboratory (VisLab) [91] of Parma University (Italy)
has worked continuously in the field of autonomous transportation starting from the ARGO project.
Led by professor Alberto Broggi, the laboratory performs basic and advanced research in many dis-
ciplines such as machine vision, pattern recognition, robotics, real-time systems, among others, and
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applies it to intelligent transportation systems and intelligent vehicles. In 2010, the laboratory orga-
nized a 13,000 km intercontinental trip from Parma, Italy to Shangai, China, with driverless electric
vehicles, using a vehicle-follower approach [10]. The trip offered a wide variety of driving conditions.
In some places, they were so challenging for the vehicles that it was impossible to drive in autonomous
mode. On July 12, 2013, the laboratory performed the Public ROad Urban Driverless-Car Test 2013
(PROUD-Car Test 2013) with the autonomous car BRAiVE [89]. A remarkable point about the
PROUD-Car test is the fact that, for the first time in history, an autonomous car traveled safely on
open public roads of different types (rural, urban and freeways) with no person on the driver seat.

Google established their self-driving car project after the DARPA Grand Challenges, recruiting
personnel from the most successful teams. Led initially by Sebastian Thrun, they first focused on
driving on highways and country roads. By August 2012, they had already completed more than
300,000 miles of testing [45, 46]. After their success in highway driving, they shifted their focus to city
driving, performing test drives in Mountain View, California — Google’s hometown [44]. Now under
the leadership of Chris Urmson, technical leader of the CMU team that won the 2007 Urban Challenge,
their goal is to create a system that is capable of dealing with the complexity of driving in a busy
urban environment. To do so, they have built software models to infer what might happen next given
the current state of the surroundings and the previously acquired knowledge. Then they can determine
the bests actions to take. They previously had been using modified conventional cars, namely Toyota
Prius and Lexus RX450h, but in May 2014, they presented their own prototype for a self-driving car,
in a major change of philosophy. Their prototype has no steering wheel, accelerator or brake pedals
[43]. Thus, they are targeting to Full Self-Driving Autonomy, or Level 4 Autonomy, according to the
automation levels specified by the NHTSA [70]. In this level, the driver is not expected to be available
for vehicle control at any time during the trip. This includes both occupied and unoccupied vehicles.
The first rolling prototypes to be tested in public roads will still have manual controls for safety and
legal reasons, and are expected to be ready by Fall 2014.

Daimler A.G. has been working in Advanced Driving Assistance Systems (ADAS) and autonomous
cars for a long time. They were very involved in the PROMETHEUS project (see above), and since
then they have kept developing the technology. They have created several safety systems that are in-
corporated to many of their production vehicles, like Night View Assist Plus, which uses infrared lights
and cameras to provide the driver a better perception at night of the road ahead, and DISTRONIC
PLUS, which uses short, mid and long range radars to regulate automatically the vehicle’s speed and
distance to the preceding vehicle. In August 1888, the first long-distance journey in automotive his-
tory was performed by Bertha Benz and her two sons in the Benz Patentmotorwagen Number 3. To
celebrate the 125th anniversary of this achievement, the latest prototype of autonomous vehicle from
Daimler, the Mercedes Benz S-Class S 500 INTELLIGENT DRIVE, revisited the same route from
Mannheim to Pforzheim, Germany using similar sensors to those mounted in production vehicles and
driving almost all the route autonomously [109]. Notably, it was the first autonomous drive on public
urban roads with real-world traffic that was performed without the use of laser scanners as sensors.
We discuss more about the sensors used in autonomous cars in section 2.2.

Despite the fact that the previously presented achievements are very impressive, the problem of
driving in urban environments with total reliability remains unsolved, mainly because urban environ-
ments in busy cities are very complex and unpredictable, and because they lack the structure that can
be found in highway scenarios. For this reason, the field remains very active. Some companies like
Nissan and Google feel optimistic and have ventured to say that they expect to have fully working
autonomous cars before the end of this decade. Others remain more cautious, and while a steady
increase in the integration of ADAS in production vehicles is expected, they think full autonomy will
come only after several decades of development.
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However, the challenges faced by autonomous cars are not only technical. Even if today someone
would create a perfectly reliable and safe autonomous car capable of driving in all conditions, it
wouldn’t be possible to use it in public roads because the legal framework is not ready. One of the
main concerns is determining the liability in case an autonomous car is involved in an accident. Who
would be responsible? The car owner? The car manufacturer? The company that develops the
software? Also, the laws in many countries do not consider autonomous cars at all, so it is not even
clear if it is legal or not to use one. Until these and many other legal issues are solved, the use of the
technology will be limited.

Some steps have already been taken in clarifying the legal status of self-driving cars and to get
everything ready for their eventual introduction to the market. As of the second quarter of 2014, four
U.S. states, (Nevada, Florida, California, and Michigan), along with the District of Columbia, have
successfully promulgated laws addressing autonomous vehicles [94]. Also, in April 2014 an amendment
to the United Nations Convention on Road Traffic was agreed that would let drivers take their hands off
the wheel of autonomous cars [75]. If the new amendment is finally approved after all the bureaucratic
procedures, it would allow a car to drive itself, as long as the system “can be overridden or switched off
by the driver” [75]. A driver must be present and able to take the wheel at any time. The convention
covers European countries, Mexico, Chile, Brazil and Russia, but not the United States, Japan or
China, which are major automotive markets. The United Kingdom also has recently given green light
to autonomous car testing in public roads. The tests will begin in January 2015 [84].

Before autonomous vehicles reach the roads and streets of the cities around the world, they will
find applications in private land, for example, in airports or for material transportation in factories.
In fact, autonomous vehicles are already in use in mines in Australia [5], where they have improved
productivity and have increased the safety of the mining operations. Sooner than later we will see the
benefits of the technology also in our daily lives.

2.2 Perception in autonomous cars

To be able to provide safe and reliable autonomous driving in real-world traffic, precise and compre-
hensive perception of the environment is fundamental. In autonomous vehicles, several types of sensors
are often used together to provide a rich view of the surroundings and compensate for each other’s
weaknesses. The most used and studied sensors in autonomous driving applications for primary sensing
are LIDARs, also known as laser scanners, and computer vision cameras [16]. Radar is also part of
the equation as a good complement. Next we offer a brief description of these sensors, and describe
their strengths and weaknesses.

2.2.1 A review on sensors for autonomous driving

LIDAR is a technology that allows to measure distance by emitting short pulses of laser light towards
the objects of interest and measuring the time it takes to detect the reflection. Using this principle,
LIDARs can estimate with great accuracy the distance to the target and its brightness as well. To
provide 360 coverage, usually LIDARs are mounted in spinning platforms. A high-end LIDAR is
pictured in figure 2.3. The advantages that LIDAR technology offers are the following:

� The result of a LIDAR scan is a 3-D map of the world around it, with no extra processing
required.
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Figure 2.3: The Velodyne HDL-64E LIDAR. Image credit: Velodyne.

� They offer a very good accuracy. In high-end units it is less than 2 cm.

� LIDARs emit light, thus they are not dependent of ambient light. They offer about the same
performance day or night, and are not affected by shadows or reflections.

� They are robust against interference, and have a much higher accuracy than radar, which works
using a similar principle.

However, LIDAR has also disadvantages:

� LIDARs are very expensive. Today, the production of high-resolution LIDARs is limited. A
high-end unit costs around 75,000 US dollars, which is more expensive that many premium cars.

� The resolution they offer is very moderate. High-end units provide a scan with only 64 elements
in the vertical direction.

� The range in which LIDARs can work well is limited. Typical LIDARs can detect pavement from
up to 50 meters. Objects with more reflectivity, like cars and foliage can be perceived from a
distance of up 120 meters. More expensive 1.5 micron LIDARs have a higher working range.

� LIDARs update rates, which are typically between 5–15 Hz, are slower than those than can be
attained with cameras and parallel processing hardware.

� Most LIDARs have moving parts. Moving parts are always a concern in terms of reliability.

� The majority of LIDARs scan a scene, thus the scene is distorted by the movement of the car in
which the LIDAR is mounted and the movement of the objects being scanned. Flash LIDARs do
not have moving parts and scan the scene in one instant but are currently even more expensive.

� LIDARs lower their performance in unfavorable weather conditions like heavy rain, snow and
fog. Sometimes they can detect irrelevant things like car exhaust gas.

� LIDARs require much more power than cameras to work.
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� It is preferred to install LIDARs on the outside of the vehicle, because they need to perceive the
reflected light and installing them behind a tinted windshield may diminish their efficiency. This
may have some aesthetic and integration implications.

On the other hand, computer vision cameras, like the human eye, can perceive a scene in an
instant and provide lots of information. They provide information with low cost in acquisition, space
and energy. With a calibrated camera and known motion, or with a multi camera setup, you can
extract 3D information from the acquired 2D images. The advantages of using cameras are:

� Cameras are small and very cheap. Many of them can be placed in the car to provide 360°
coverage of the surroundings.

� Conventional cameras that perceive visible light work with reflected radiation. In principle, with
daylight they can see up to an arbitrary distance if equipped with the right optics.

� They can provide color and texture information. This makes them very useful for scene under-
standing.

� Cameras are available with very high resolutions.

� They consume little power.

The downsides of using cameras are the following:

� They need a strong light source to be able to work at night. In an autonomous car application,
the light coming from the headlamps may not be enough.

� Cameras generate plenty of information, and for that reason a lot of bandwidth is needed.

� To obtain useful information from the images, very heavy processing is required.

� If using stereo for depth estimation, you can get very good resolution at short distances, but as
the distance increases, the resolution decreases.

� The quality of the images obtained can be affected by changes of illumination, and shadowing.

A qualitative and quantitative comparison of the performance of computer vision systems and
LIDARs in the context of intelligent vehicles is provided in [19].

The data obtained from LIDARs and/or cameras is often complemented with radar readings. Radar
technology has important advantages [76]. It works in situations where other sensor alternatives strug-
gle, like in adverse weather conditions such as snow and fog and even when the sensor has been covered
with dirt. Also, radar readings return not only the distance to the detected object, but its relative
velocity as well, because of the frequency shift caused by the Doppler effect. Radars are classified as
short, mid and long-range depending on their detection range, speed detection range, angular reso-
lution and angular width of view. Short-range radars provide a wide view of the surroundings, and
have good range accuracy but their detection range is narrow and can detect relative speeds only up to
moderate. They are suitable for implementing blind-spot detection, pre-collision alerts and systems for
vehicle control in stop-and-go traffic. On the other hand, long-range radars work best in ranges larger
than 30 m and can detect objects hundreds of meters away. The field of view they provide is narrow,
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but they can operate even in high-speed situations (around 200 km/h). Their typical applications are
active cruise control and the detection of crossing cars at intersections. Angular resolution is almost
the same for both short and long-range radars. In general radar offers lower resolution than LIDARs
or cameras and its performance can be affected by moisture and humidity because RF waves can be
absorbed by the water in the environment.

Between the available options, we believe that the perception capabilities offered by stereo vision
systems, combined with their relative low price, makes them a very good alternative. Most of the
drawbacks associated with them can be overcome with algorithm improvements and with the increase
of processing capabilities. The later is guaranteed by the advances in the semiconductor industry and
the improvements on parallel computing platforms, while the former can only by attained by the work
of the scientific community and the availability of relevant data to work with. This is the motivation
of our work.

2.2.2 Previous works on computer vision applied to autonomous cars

Early efforts in the field of autonomous cars used only computer vision cameras to perceive the envi-
ronment. The team around Dickmanns used 2 cameras with different focal lengths placed in a moving
platform mounted behind the windshield. Thanks to the mobility of the cameras, it was possible to
point them to the most important details of the viewed scene [29, 78]. Pomerleau and Jochen in the
“No hands across America” tour used only a single color camera to perceive the road ahead [74]. The
ARGO vehicle used a very modest sensor setup, incorporating just a stereo pair and a Hall effect-based
speedometer. The stereo camera was made from two low-cost gray scale cameras that were synchro-
nized to acquire the images simultaneously. The cameras were installed inside the vehicle, placed in
the top corners of the windshield to maximize the distance between them [18].

The majority of successful teams in the DARPA Challenges used high-end LIDARs complemented
with radars to sense their environment, and relegated computer vision to a secondary role, e.g. [86].
However, some teams used stereo vision to increase their perception capabilities, and we cite a couple
of examples. Princeton University’s entry in the 2005 DARPA Grand Challenge was Prospect Eleven
[4]. It was the only finalist vehicle that depended only on stereo vision to detect obstacles and measure
the distance to them. TerraMax [23], a modified Medium Tactical Vehicle Replacement Navy Tractor
was Team Oshkosh’s entry in the DARPA Urban Challenge. It used extensively vision systems for
environment perception. It featured four vision systems: trinocular, stereo, monocular rearview, and
monocular lateral. The forward-looking trinocular system offered 3 different baselines. One of them
was selected depending on the current vehicle speed; at low speeds the shorter baseline was chosen,
while at higher speeds the large baseline was more suitable for detection of distant obstacles. The
trinocular system has a working range of 7-40 m. The two stereo systems, one forward-looking and one
backward-looking enabled the perception of the environment closer to the vehicle. The use of fish-eye
lenses, with an angle of view of about 160, allowed to sense an area of approximate dimensions of 10 ×
10 meters. The lateral system, which consisted of two monocular cameras pointing towards each side
of the vehicle, was used to detect approaching traffic at intersections. Finally, the rearview system,
similar in architecture to the lateral system, was aimed at detecting overtaking vehicles to prevent
collisions in passing maneuvers.

Among the current prototype autonomous cars, the latest vehicles form Vislab and Daimler are
the ones that have put stereo vision, and computer vision in general, in the main role for perceiving
the environment. Other teams such as Google’s restrict the use of cameras to tasks like reading road
signals and traffic lights.
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Vislab’s BRAiVE sensor suite is composed of 10 cameras and 5 laser scanners. Sensors are installed
all around the car and provide 360° coverage. The sensor suite is designed to be comprehensive and
redundant to allow the development and testing of algorithms for relevant tasks such as pedestrian
recognition, traffic sign recognition, automated parking, among many others. Two stereo systems
are mounted in the car, a monochromatic with a long baseline, and a color stereo pair with a short
baseline. They look forward and are installed behind the front windshield. Lateral vision is provided
by 2 cameras located in the front fenders. For blind-spot detection, a camera is installed inside each
of the outside rearview mirrors. Two cameras installed in the top part of the trunk lid provide rear
vision. Laser scanners mounted in the front corners on the vehicle, and in the front and rear bumpers,
help detect obstacles and surrounding vehicles [47].

The sensors mounted in the Mercedes-Benz S 500 INTELLIGENT DRIVE constitute a superset of
the standard sensor setup already available in production S-Class vehicles, which comprises a forward-
facing stereo camera, and mid and long-range radars in the front and back of the car. It was extended
with four 150° short-range radars placed in the corners of the car to improve the detection of obstacles in
intersections. Also two long-range radars mounted on the front fenders of the vehicle allow to monitor
oncoming fast cross-traffic at intersections on rural roads. The baseline of the existing stereo camera
system was widened to 35 cm to improve precision and working range (the stereo reconstruction
resolution is proportional to the baseline, see chapter 3). To allow recognition of traffic lights and
pedestrians in turning maneuvers, an extra monocular camera with a wide-angle lens was mounted on
the dashboard. Another wide-angle camera pointing backwards was added to assist in map-relative
self-localization [109]. The complete sensor setup and the vehicle are shown in figure 2.4.

For localizing themselves in the world, most of the mentioned cars use a high-precision GPS unit
to obtain an estimate of their location in the world. The accuracy of this estimate is not enough to
perform fundamental tasks, for example, lane keeping, so several strategies exploiting sensor readings
are used to refine the obtained estimate. The most advanced cars like the S-Class INTELLIGENT
DRIVE make use of a very high precision 3D map and localize themselves relative to that map for
increased accuracy. The Google self-driving car also needs a highly detailed map to be able to navigate
safely in urban environments, though it is not clear in the reviewed public information if they use it
also for localization, although it is likely they do.
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Figure 2.4: The Mercedes-Benz S 500 Intelligent Drive and its sensor setup. Image from: [109].
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Chapter 3

Basics on stereo vision

In this chapter we briefly describe the fundamental concepts behind stereo imaging that allow to obtain
a depth map from the acquired image pairs. We start by providing a description of the image formation
process in cameras using the pinhole camera model in section 3.1. In section 3.2, we present important
concepts associated with digital cameras. Then in section 3.3, we describe camera calibration, a process
that allows to obtain the intrinsic parameters of a camera. Next in section 3.4, we discuss the geometry
of a canonical stereo system, and how it allows to recover depth information from corresponding points
in the acquired images using triangulation. In this same section, we discuss the geometry of a general
stereo pair. After, in section 3.5, we describe how, using stereo rectification, one can obtain row-
aligned images from an almost arbitrary stereo pair, making it easier to find correspondences. Finally,
we talk about finding such correspondences in rectified image pairs in section 3.6.

3.1 The pinhole camera model

Visual perception starts with the detection of light rays coming from objects in the world. The light
beams emitted by some source strike objects. Most of these beams get absorbed by the struck object,
but some of them are reflected. This reflected light is then detected by the light-sensitive elements in
cameras. A simple model that describes how this happens is the pinhole camera model. A pinhole is a
“very small” aperture. Under the pinhole model it is assumed that, in a camera, light passes from the
viewed scene through a pinhole and then to the imaging surface. Under this model, only a single ray
enters the camera from any particular point, resulting in images that are always focused. Moreover,
the size of an object in the scene and the size of its image in the camera are related only by a single
parameter of the camera, its focal length. The focal length is the distance from the pinhole to the
image plane. The axis perpendicular to the imaging surface, which passes through the pinhole is called
optical axis. The point in the intersection between the optical axis and the image plane is the principal
point (O) . The model is pictured in figure 3.1, left, where f is the focal length of the camera, Z is
the distance from the camera to the object, X is the height of the object and x is the height of the
object’s image in the imaging plane. The pinhole is indicated with C.

It is more convenient to rearrange the pinhole model to make the image of the object appear with
the same orientation as in the scene. To do so, the positions of the pinhole and the image plane are
exchanged. This rearrangement is shown in figure 3.1, right. Now, the pinhole is reinterpreted as the
center of projection (C). Under this model, the rays travel from the objects in the scene to the center
of projection.

19
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Figure 3.1: Left: The pinhole camera model. Right: The pinhole model is usually modified so that the
image plane is located between the center of projection and the scene. This allows the image to keep
the same orientation as the object.

To provide a mathematical description of the perspective projection performed by the camera, we
introduce some reference coordinate systems in which to express the 3D coordinates of a scene point
P and the coordinates of its projection p on the imaging surface. Let (x, y, z) be the camera reference
frame with origin in C and a z-axis that is coincident with the optical axis. For now, it is assumed
that the camera reference frame coincides with the world reference frame so that the coordinates of the
scene point P are already expressed in the camera frame. We also introduce a 2D image reference frame
(u, v) for the image plane Π with origin in O and the u and v axes aligned with x and y respectively
as shown in figure 3.1, right. Let P = [x, y, z]T and p = [u, v]T . By similarity of triangles we obtain:

u = f
x

z
(3.1)

and

v = f
y

z
. (3.2)

These are the perspective projection equations, which describe the mapping from 3D coordinates in
the world to 2D coordinates in the image plane. The equations are clearly nonlinear, but using homo-
geneous coordinates it is possible to express the projection as a linear equation. Let P̃ = [x, y, z, 1]T

and p̃ = [u, v, 1]T be the homogeneous coordinates of P and p respectively. The projection equation
can then be expressed as:  λu

λv
λ

 =

 fx
fy
z

 =

 f 0 0 0
0 f 0 0
0 0 1 0



x
y
z
1

 , (3.3)

where λ corresponds to the third coordinate of P , which is precisely the distance from the scene point
to the plane xy. From equation (3.3) it can be seen that every image point is the projection of all the
points along the ray passing through the viewed world point and the center of projection. Consequently,
using just a single pinhole camera it is not possible to estimate the distance to a viewed point.

3.1.1 Distortion

Real-world cameras do not use a pinhole to capture light. The amount of light that can pass through
a pinhole is very small, thus, to get an acceptable image, a very long time of exposure would be
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Figure 3.2: Radial distortion. Left: Pincushion distortion. Center: No distortion. Right: Barrel
distortion. Image credit: MathWorks Inc.

needed and this is not practical in most situations. For this reason, cameras use lenses to increase their
capability of gathering light. However, this comes with a cost, because the use of lenses introduces
distortion of different types to the images that should be corrected before processing.

Radial distortion causes straight lines in the world to be projected as curves in the image. De-
pending on the type of radial distortion, the straight lines get curved towards the image border (barrel
distortion, fig. 3.2, right) or towards the image center (pincushion distortion, fig. 3.2, left). The cur-
vature of the lines is proportional to their radial distance. To model radial distortion, often low-order
polynomials are used. More complete distortion models also consider tangential distortion (resulting
from the lens not being exactly parallel to the image plane) and decentering distortions. More details
on lens distortion can be found in [17], [80] and [82], for example.

3.2 Digital cameras

A digital camera has several components and properties that define the quality of the obtained image
and the suitability of the camera itself to a particular task. Some of the most important aspects are
described below.

3.2.1 Sensor

A digital camera uses a m×n matrix sensor of light-sensitive picture elements, or pixels, to record the
viewed scene (figure 3.3, left). This matrix sensor is made either in charge-coupled device (CCD) or
complementary metal-oxide semiconductor (CMOS) technology.

In a CCD, photons falling upon the sensor cause electrons to be released. During the exposure time,
the loose electrons are accumulated in each pixel’s “well”. This principle is illustrated in figure 3.3,
center. When the exposure has finished, the charges stored in the pixels are transferred in succession
to a corner in the CCD where the sense amplifier is located. It converts each of the accumulated
charges to a voltage. This voltage is afterwards converted to a digital value using an analog-to-digital
converter (ADC).
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Figure 3.3: Digital image sensors. Left: Schematic of a matrix sensor. Center: An illustration of the
working principle of a CCD. Right: A CMOS image sensor. Image credit: Left, Center: Cambridge in
colour. Right: Wikimedia Commons.

Like CCD chips, pixels in CMOS sensors accumulate charge during the exposition, but CMOS
sensors contain in each pixel a photodetector and an amplifier, thus no charge transfer is required.
Photons hitting the sensor have a direct effect on the conductivity of the photodetector, affecting
the charge flow. The output of the amplifier of each pixel is also digitized using the ADC of the
camera. CMOS sensors, pictured in figure 3.3, right, are cheaper, because they do not require special
manufacturing facilities as they can be manufactured in a traditional semiconductor factory. Also,
they require much less power than CCD chips.

Traditionally CCD sensors offered better image quality than CMOS sensors. Also, CMOS sensors
were affected by the effects of using a rolling shutter, in which the image is not acquired in an instant
but progressively. This is specially important when capturing quickly-changing scenes, because the
obtained image may appear distorted. Nowadays, good image quality can be obtained with either
kind of sensor, and CMOS sensors are starting to include global shutters, which allow to acquire the
acquisition of the entire scene in an instant.

Independently of the technology used to manufacture the image sensor, several factors related to it
affect the quality of the obtained image. The chip size combined with the spatial resolution determines
the pixel size. A larger pixel size is preferred, since each pixel can be more photo-sensitive, therefore
increasing the signal-to-noise ratio (SNR). In an image sensor, square pixels are desired. Sensor noise
is also an important factor to consider, and dark current noise is one of the main sources of it. Dark
current is a small current that flows in the photosensitive elements when no photons are entering.
Other aspects related to the camera sensor that affect image quality are dynamic range and color
accuracy.

When color perception is required, there are several types of solutions available. They differ in the
way they perform the separation of colors. Among the available options there is the Bayer filter, the
Foveon X3 sensor or the use of a dichroic prism together with 3 separate image sensors. In our case,
we will focus on monochromatic cameras.

3.2.2 ADC

In many cameras, before the analog-to-digital conversion takes place, the sensed signal is enlarged by
an amplifier. The gain in the amplifier can be automatically controlled or specified by the user. The
process of amplification can induce amplifier noise. The output of the amplifier is transferred to an
ADC. The resolution of the ADC, i.e. the number of bits it delivers, is important. For computer vision
applications, specially motion detection and stereo correspondence, it is often important to have an
ADC with a bit depth higher than 8 bits. In addition, the digitizing process can generate quantization
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noise.

3.2.3 Connectivity

For some applications it is important to synchronize the image acquisition to some other events, or to
synchronize the acquisition between two or more cameras (i.e., for stereo vision). Cameras that among
their connectivity options feature digital I/O lines allow this.

3.2.4 Data rate

The data rate of a digital camera is the amount of information that a camera is capable to acquire and
transfer and it is dependent of the camera bus. For example a Firewire-B camera has a nominal data
rate of 800 Mbps while a GigE camera has a nominal data rate of 1 Gb/s. Given a camera, spatial
times temporal resolution is typically a constant defined by the maximum available data rate. You
can select a region of interest (ROI) in the image sensor, allowing an increase in the framerate. For
example, a camera which captures images with a resolution of 4,608 × 3,288 (15.1 Megapixels) at 10
frames per second (fps), records 151 Megapixels (Mpx) per second. The same camera may also support
to record 2,304 × 1,644 (3.8 Mpx) at 40 fps, which is also 151 Mpx per second.

3.3 Camera Calibration

The perspective projection model introduced in section 3.1 does not consider the pixelization that
takes place in the image sensor, so it needs to be further extended. First, in computer imaging, it is
common practice to consider as the origin of the image coordinate system the upper left corner. In
this new image coordinate system, the coordinates of the principal point are [u0, v0]. Also, because
the coordinates of a point are measured in pixels, two scale factors are required, one for the horizontal
and one for the vertical direction, to consider the possibility of the pixels not being perfect squares.
We assume an image sensor in which the u and v axes are orthogonal, which is valid for good quality
image sensors. This yields the following modified projection equations:

u = kuf
x

z
+ u0 , (3.4)

v = kvf
y

z
+ v0 , (3.5)

where [u0, v0] are the coordinates of the principal point, and ku, kv are the scale factors in the horizontal
and vertical directions, respectively. ku is the inverse of the effective pixel size along the u direction.
It has units pixels ·m−1 . The same applies for kv along the v direction.

Using homogeneous coordinates, the updated projection equations turn into: λu
λv
λ

 =

 αu 0 u0 0
0 αv v0 0
0 0 1 0



x
y
z
1

 . (3.6)

In the previous equation, αu = fku and αv = fkv represent the focal lengths in pixels in the horizontal
and vertical directions, respectively.
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Figure 3.4: Camera and World coordinate systems

The model so far does not consider the fact that usually the camera coordinate system and the
world coordinate system do not coincide. Thus, the rigid transformation between the two reference
frames should be considered, as pictured in figure 3.4. This rigid transformation is composed of a
rotation matrix R and a translation vector t and is represented as: x

y
z

 = R

 xw
yw
zw

+ t . (3.7)

Taking into account this transformation, equation (3.6) can be updated to:

 λu
λv
λ

 =

 αu 0 u0
0 αv v0
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3



xw
yw
zw
1

 , (3.8)

which can be rewritten as:

λp̃ = K[R|t]P̃w , (3.9)

where

K =

 αu 0 u0
0 αv v0
0 0 1

 , (3.10)

is known as the camera intrinsics matrix. αu, αv, u0, v0 are called intrinsic parameters and the rotation
matrix R and translation vector t together are called extrinsic parameters.

Camera calibration is a process that attempts to obtain accurate estimations of the intrinsic and
extrinsic parameters of the camera model. Because these parameters define how a scene point is
projected onto an image point, if both the pixel coordinates of some image points p̃ and the 3D
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coordinates of the corresponding scene points P̃ are known, it is possible to obtain the unknown
parameters K,R and t by solving the perspective projection equation (3.9).

In 1987, Tsai [87] developed one of the first camera calibration techniques. It requires a few
images of a planar pattern taken in different positions. The precise knowledge of the plane motion is
needed. From the obtained images, one needs to obtain corresponding 3D point coordinates and 2D
pixel coordinates. Tsai’s technique has two stages. First, it computes the position and orientation of
the camera, and, second, it determines the internal parameters.

More recently, Zhang proposed an alternative calibration technique [108]. To utilize this technique,
a planar pattern featuring corners that are easy to detect in an image is required. Zhang’s method is
easy to use by both expert and novice users. To use the method, the user is required to take several
pictures of the pattern in different positions and orientations. The motion doesn’t need to be known.
Then, the feature points in the images should be detected. By knowing the 2D position of the corners
on the planar grid and their corresponding pixel coordinates on each image, the intrinsic and extrinsic
parameters can be calculated. Then, an estimation of model parameters for radial and tangential
distortion is obtained by solving a linear least-squares problem. Finally, the obtained estimates for all
parameters are refined by solving a non-linear minimization problem, for example using the Levenberg-
Marquardt algorithm.

3.4 Stereo Imaging

Stereo vision consists in recovering depth information from two images obtained from a pair of cameras
which have a different view of the same scene. If one knows the camera intrinsics matrix for each camera
and the geometry of the stereo pair – this is, the rotation matrix and translation vector between the
cameras – the depth of a scene point can be obtained by finding the coordinates of the projection
of this point in both images, i.e. finding image correspondences, and exploiting the knowledge of the
geometry of the system.

The depth recovery process is simplified when we use a stereo setup in standard stereo geometry.
This setup is also called canonical stereo or frontal parallel. In such arrangement, the two cameras are
assumed to be identical, with the same spatial resolution, the same focal length and using ideal lenses
that produce no distortion. Also, the optical axes of both cameras are assumed to be parallel. The
cameras are placed in such a way that the image planes are coplanar and row-aligned. The distance
between the centers of projection is a known quantity T , called baseline. Under these assumptions,
depth estimation is easy using triangulation.

3.4.1 Triangulation

A canonical stereo pair is pictured in figure 3.5. A scene point P is observed in both cameras. The
horizontal coordinates of the point’s projection in the left and right camera images are ul and ur
respectively. Note that in a canonical stereo setup, corresponding points are located in the same row.
This will be further explained in section 3.5.

Using similar triangles, we can derive the following expression:

z

T
=

z − f
T − (ul − ur)

, (3.11)
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Figure 3.5: Depth estimation with a canonical stereo pair. Using triangulation, it is possible to
determine the depth of a scene point P seen in both cameras in a canonical stereo pair.

from which we obtain:

z =
fT

d
, (3.12)

where d = ul−ur is defined as the disparity. From equation (3.12) it can be seen that depth is inversely
proportional to disparity. This results in the fact that stereo vision systems have high depth resolution
only for objects placed near the stereo camera. This effect is pictured in figure 3.6. It also results that
the depth resolution is higher with larger baselines.

3.4.2 Epipolar Geometry

Manufacturing differences in lenses and cameras, added with the difficulty to align perfectly the ca-
meras, make it almost impossible to obtain a canonical stereo pair in the real-world. Therefore, it
is important to understand the geometry of a generic stereo pair. This geometry is commonly called
epipolar geometry and is pictured in figure 3.7.

Both left and right cameras are modeled with the pinhole model. Each one has a center of pro-
jection, labeled Cl and Cr, and their projective planes are labeled Πl and Πr respectively. A point P
in the scene is projected onto each image plane, resulting in points pl and pr. In epipolar geometry,
an epipole is defined as the image of the center of projection of one camera into the other camera.
Epipole el is the projection of Cr onto Πl, for example. The lines that pass through the projections of
P in the projective planes and the corresponding epipoles are called epipolar lines, which in this case
are plel and prer. The epipolar plane is the plane formed by the scene point P and the two centers of
projection.

In figure 3.7 we can see that pl is the projection of P in the left camera, but it could also be the
projection of any of the points along the ray ClP located between P and pl. This exhibits the fact
that, with a single camera, we cannot determine the depth of the viewed point P . But it is interesting
to note that, no matter the 3D location of a viewed point along the aforementioned projective ray, the
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Figure 3.6: Relationship between depth and disparity. The relationship between depth and disparity is
non-linear. This results in the fact that relatively precise depth measurements are only possible when
the viewed objects are close to the stereo rig. Image from: [17].

corresponding pair in the other camera must lie in the corresponding epipolar line. This is known as the
epipolar constraint. This constraint is of great help in reducing the complexity of the correspondence
search problem. Instead of a 2D search problem, it becomes a simpler 1D search, because we no
longer need to look for a corresponding point in the whole image, we only need to search for it on
the associated epipolar line. However, the problem can be simplified even more, if we mathematically
transform a general stereo pair into standard stereo geometry. This is known as stereo rectification
and is briefly explained in next section.

Figure 3.7: Epipolar Geometry in a general stereo pair.
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Figure 3.8: The image rectification process. Image from: [17]

3.5 Stereo Rectification

Stereo rectification consists in reprojecting mathematically the image planes of the two cameras in the
stereo pair so that they become coplanar and row-aligned, that is, as if they had been acquired by a
stereo pair in standard stereo geometry. After this process, the epipoles are located at infinity, and
the corresponding epipolar lines become collinear and parallel. After rectification, the correspondence
problem becomes simpler and computationally less expensive because the search for corresponding
points is performed along the rows of the rectified images.

The process of stereo rectification is pictured in figure 3.8. After the images are acquired (a), it
is important to remove the lens distortion (b). Then the actual rectification process takes place (c).
Finally, the images can be cropped so that only the common areas of view and regions of interest are
preserved (d).

Rectification algorithms need to have knowledge of either the Fundamental Matrix F, a 3 × 3
matrix which relates corresponding points in image pixel coordinates between stereo images, or the
rotation matrix R and translation vector t that relate the coordinate systems of the cameras. R and
t can be obtained by stereo calibration. The stereo calibration process makes use of individual camera
calibration information and simultaneous views by both cameras of a known calibration pattern to
obtain the desired values. More information about stereo calibration can be found in [17], for example.

There exist many algorithms that allow to obtain a rectified stereo pair, among them the ones
proposed in [32], [38], [50] and [65]. Below we briefly describe Bouguet’s algorithm for stereo
rectification, which he uses on his Camera Calibration Toolbox for Matlab [56]. The goals that
Bouguet pursued when he developed his algorithm was to make the common viewing area maximum
and to minimize the amount of changes rectification introduces to the images. The steps performed
by the algorithm are the following:
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1. The rotation matrix R that makes the orientation of the right camera to be that of the left
camera, previously obtained by stereo calibration, is split in two, and each camera performs half
a rotation. After this step, both cameras have the same orientation w.r.t. the baseline vector,
but are not yet row-aligned.

2. To obtain row-alignment between the cameras, they are rotated so that the u-axis of each camera
is parallel to the baseline vector. This rotation is the same for both cameras.

More information about stereo rectification algorithms can be found in [17], [50], or [82], for
example.

3.6 Stereo Correspondence

The stereo correspondence, or stereo matching, problem can be defined as follows: Given an image
point in one of the images (the base image), find the corresponding image point in the other image
(the match image). Two image points are in correspondence if they are projections of the same point
in the viewed scene. Having the image coordinates of corresponding points allows us to obtain a depth
estimate of the point in the scene.

When looking for corresponding points, it is assumed that an object in the scene looks similar in
both images. Then, using a similarity measure, it is possible to pick one image point in the base image,
and find the most similar point along the corresponding epipolar line in the match image. This point
is signaled as the searched corresponding pair.

Although simple in concept, the search for correspondences is a challenging task that can be affected
by several factors. Since the cameras perceive the scene from different viewpoints, occlusions can occur
and parts of the scene could appear in one image, but not in the other. Because of this, a point in
the base image may have no corresponding point in the match image. Also, projective distortions can
make the search difficult, because a scene feature is projected in a different way in the two images.
Photometric distortion also adds up to the complexity of the matching problem. Because of non-
Lambertian surfaces, i.e. surfaces that do not reflect incident light uniformly in all directions, light
reflections may be perceived differently by the two cameras. As a consequence of all these factors, the
correspondence search based solely on the independent maximization of similarity measures may yield
a wrong corresponding point.

However, some constraints make the search for matching points simpler. If the image pair is
rectified, the epipolar lines are horizontal and a point lying in row y in the base image must have its
corresponding point in row y on the match image. This is due to the epipolar constraint. By the
uniqueness constraint, a point in the base image can have up to one corresponding point, or zero if an
occlusion occurs. The ordering constraint, although not always satisfied, may be also of help. It says
that if points P , Q and R appear in that order in the base image, their corresponding points in the
match image should appear in that exact same order.

The result of performing stereo matching in a stereo pair is a disparity map. A disparity map is a
grayscale image where the intensity of a pixel with a specific coordinate is proportional to the disparity
between the image point in that same coordinate in the base image and its corresponding pair in the
match image, see (3.12). Often, instead of gray levels, false color is used to present disparity maps so
that they are better appreciated. An example disparity map is shown in figure 3.9.
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Figure 3.9: Right: An example ground truth disparity map from the Tsukuba pair. The left and right
frames of the scene are pictured in the Left and Center images, respectively. Image credit: University
of Tsukuba.

3.6.1 Similarity Measures

Similarity measures can be either window or pixel-based. Typical pixel-based similarity measures
include the absolute difference of intensity (AD), the squared difference of intensity (SD) and the
absolute difference of gradient (GRAD). The matching cost between a pixel pB with coordinates (u, v)
in the base image IB and a pixel pM with coordinates (u+ d, v), where d is the disparity, in the match
image IM , is defined respectively for each of the similarity measures mentioned by:

EAD(u, v, d) = |IB(u, v)− IM (u+ d, v)| (3.13)

ESD(u, v, d) = (IB(u, v)− IM (u+ d, v))2 (3.14)

EGRAD(u, v, d) = |∇xIB(u, v)−∇xIM (u+ d, v)|+ |∇yIB(u, v)−∇yIM (u+ d, v)| . (3.15)

Another pixel-based matching cost we can mention is the hierarchical calculation of pixel-wise
Mutual Information proposed by Hirschmüller [53]. Finally, we describe the sampling-insensitive
similarity measure of Birchfield and Tomasi (BT) [12]. Instead of just comparing pixel values in
integer steps looking for the best match, they compare each pixel in one image with extreme points of
a linearly interpolated function obtained from the pixel intensities in the other image. This similarity
measure deals better with sub-pixel disparity shifts. Denoting with ÎB(w, v) the value at w of the
linearly interpolated function corresponding to the v scanline in the base image and defining ÎM (w, v)
equivalently for the match image, the BT similarity measure is formally defined as:

EBT (u, v, d) = min {dBM (u, v, d), dMB(u, v, d)} , (3.16)

where

dBM (u, v, d) = min
u+d− 1

2
≤w≤u+d+ 1

2

∣∣∣IB(u, v)− ÎM (w, v)
∣∣∣ , (3.17)
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and

dMB(u, v, d) = min
u− 1

2
≤w≤u+ 1

2

∣∣∣ÎB(w, v)− IM (u+ d, v)
∣∣∣ . (3.18)

On the other hand, window-based similarity measures try to identify corresponding points by
comparing neighborhoods around a given pixel. We define a pair of windows with size (2a+1)×(2b+1)
centered around pB and pM . The similarity is computed using the pixel intensities inside the two
patches. Common-used examples of these kind of similarity measures are extensions of pixel-based
measures such as the Sum of Squared Differences (SSD) and the Sum of Absolute Differences (SAD).
These matching costs are particularly affected by image noise and differences in intensity, even small,
between the base and match images. A more robust alternative to these measures are their respective
Zero-Mean versions, where the mean value of the window is subtracted from all the elements before
calculating the sum of differences. Denoting as IB the mean value of the defined window in the base
image and defining IM equivalently in the match image, the Zero-Mean SSD (ZSSD) and the Zero-Mean
SAD (ZSAD) data costs are defined respectively by:

EZSSD(u, v, d) =
a∑

i=−a

b∑
j=−b

[(
IB(u+ i, v + j)− IB

)
−
(
IM (u+ d+ i, v + j)− IM

)]2
(3.19)

EZSAD(u, v, d) =
a∑

i=−a

b∑
j=−b

∣∣(IB(u+ i, v + j)− IB
)
−
(
IM (u+ d+ i, v + j)− IM

)∣∣ . (3.20)

The more similar the windows around the pixels pB and pM , the smaller the matching cost. If the
image patches match perfectly, the obtained cost will be zero.

The Normalized Cross Correlation (NCC) is also usually considered and is defined by:

ENCC(u, v, d) = 1−
∑a

i=−a
∑b

j=−b[IB(u+ i, v + j)− IB][IM (u+ d+ i, v + j)− IM ]√
σ2IB(u,v) · σ

2
IM (u+d,v)

, (3.21)

where

σ2IB(u,v) =
a∑

i=−a

b∑
j=−b

[IB(u+ i, v + j)− IB]2 (3.22)

σ2IM (u+d,v) =
a∑

i=−a

b∑
j=−b

[IM (u+ i, v + j)− IM ]2 . (3.23)

NCC is invariant to affine intensity changes. The output range of NCC is [−1, 1], where 1 corresponds
to the maximum similarity between the two windows.

The Census transform [107], a non-parametric measure which generates a bit vector containing
values indicating whether a pixel in the window has a greater or smaller value than the central pixel,
is commonly used as well. The resulting data cost is the Hamming distance between the bit vectors
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generated from the windows in the base and match images. The Census transform is analytically
defined as:

ECEN (u, v, d) =
∑

(u′,v′)∈N (u,v)

ρ(u, v, u′, v′, d) , (3.24)

with

ρ(u, v, u′, v′, d) =

{
0 IB(u′, v′)⊗ IB(u, v) and IM (u′ + d, v′)⊗ IM (u+ d, v) ,
1 otherwise .

(3.25)

with ⊗ being either > or < in both cases, and N (u, v) representing the set of all coordinate pairs
associated to pixels in the neighborhood of the pixel pB located at (u, v). This neighborhood is usually
a window centered around pB, but not including it.

Comprehensive studies on the performance of different image similarity measures for stereo match-
ing can be found in [54] and [77]. The latter paper deals particularly with the issue of matching
images with radiometric differences. Among others, the census transform and the hierarchical mutual
information [53] have performed well in the tests performed by the authors. More details about the
image similarity measures mentioned in this section and others can be found in [57] and [82], for
example.

3.6.2 Disparity Space Image

Given a stereo pair with base and match images of size m×n and having selected a similarity measure,
we can now determine how likely are two pixels of being correspondent. We will denote as Edata(p, d)
the result of the similarity calculation between a pixel p with coordinates (u, v) in the base image and
a pixel q with coordinates (u+ d, v) in the match image. Because the disparity is discretized, usually
in pixel units but sub-pixel refinement is possible, the results of the calculations performed can be
saved in a disparity space image (DSI) C(p, d) for further processing. The DSI is a 3D matrix with
dimensions m× n× dmax, where dmax is the maximum possible disparity for the stereo pair.

The contents of the DSI comply with the following:

C(p, d) =

{
Edata(p, d) if 0 < d < min(dmax, n− u) ,
−1 otherwise .

(3.26)

In equation (3.26), the label −1 represents a non-calculated disparity or an invalid one.

3.6.3 Local Matching

Denoting with p a pixel with coordinates (u, v) in the base image, and considering that disparities are
assigned by a disparity-assigning function d = f(p), a local matcher attempts to find the function f
that minimizes the following energy function:

ED(f) =
∑
p

Edata (p, f(p)) . (3.27)

This energy function is minimized by calculating the DSI for a given similarity measure and selecting
for every pair (u, v) the disparity d associated with the minimum matching cost, that is, choosing the
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Figure 3.10: Discontinuity Preserving Smoothness Terms. Left: The Potts model. Middle: The linear
truncated cost function. Center: The quadratic truncated cost function.

most similar pixel. This strategy is known as the winner takes it all (WTA) as is defined formally by:

arg min
0≤d≤dmax

{C(p, d) ≥ 0} ∀p ∈ IB . (3.28)

The disparity selection is locally optimal for every pixel. However, since no smoothness terms are
involved and because of wrong matches caused by the factors described in section 3.6, the disparity
maps created may have depth artifacts (such as a lot of discontinuities). Implementations of local
matchers often use validity checks such as the left-right consistency check and confidence measures
calculated on the selected disparities to keep only consistent and high-confidence disparities in the
final disparity maps.

3.6.4 Global Matching

Global stereo matchers look for a disparity assignment that minimizes a global energy function that
is made up of data terms and smoothness terms. The smoothness terms ensure that every assigned
disparity has a global dependency from all the other calculated disparity values. The presence of
the smoothness terms allows for a more accurate solution without the depth artifacts present in the
solutions obtained from a local matcher. Examples of disparity maps obtained from local and semi-
global matchers can be seen in figure 3.11. The global energy function to minimize has the following
form:

∑
p

Edata(p, f(p)) +
∑

q∈N (p)

Esmooth(f(p), f(q))

 , (3.29)

where N (p) is a pixel neighborhood around p. The smoothness term Esmooth can be any monotonically
increasing function of the difference of disparity. However, the use of smoothness terms based on robust
functions [14, 83] that allow the preservation of discontinuities is desirable. Examples of such functions
are the Potts model, the linear truncated and the quadratic truncated cost functions, see figure 3.10.

The problem of minimizing the global energy function (3.29) using common smoothness terms that
allow for discontinuity preservation is NP-Hard [15]. Thus, several strategies have been proposed in
the literature to obtain an approximation of the solution limiting the area that influences the disparity
assignment of a given pixel, making the problem tractable. Dynamic Programming [13] and Scanline
Optimization [77] solutions perform the optimization along each of the epipolar lines individually
in polynomial time. However the disparity maps obtained with these techniques often suffer from
streaking effects, i.e. the lack of smoothness between disparities obtained in neighboring epipolar lines,
because strong constraints are considered in the horizontal direction, but none on the vertical direction.
In the following sections we describe some other approaches that attempt to obtain a minimum of the
energy function (3.29), offering in general better results.
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Figure 3.11: Top: A frame of a stereo sequence recorded in the University of Auckland. Middle: The
obtained disparity map using Konolige’s Block Matching algorithm [61] as implemented in OpenCV
[72]. Bottom: A disparity map obtained using iSGM [52], a semi-global matcher. Image from: [57].
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Semi-Global Matching

An approximation to the solution of the energy function (3.29) can be obtained by Semi-Global Match-
ing (SGM) [53]. SGM uses a slightly modified energy defined as follows:

E(f) =
∑
p

Edata(p, f(p)) +
∑

q∈N (p)

P1T (|f(p)− f(q)| = 1) +
∑

q∈N (p)

P2T (|f(p)− f(q)| > 1)

 ,

(3.30)

where T denotes the function that returns 1 when its argument is true, and returns 0 otherwise,
P1 is the penalty for disparity changes of 1, and P2 is the penalty for all larger disparity changes.
Also, P2 ≥ P1. Assigning a lower penalty to small changes in disparity allows the adjustment to
curved or slanted surfaces. Limiting the penalty for larger disparity changes allows the preservation of
discontinuities.

The approach proposed to approximately minimize this energy is the resolution of many linear
scanline optimization problems in the DSI. For several directions, the minimum cost path that ends in
a given pixel p at disparity d is calculated, see figure 3.13, left, where 16 directions are considered. The
cost Cr(p, d) along a path in direction r to the pixel p at disparity d is recursively defined as follows:

Cr(p, d) = Edata(p, d) + min


Cr(p− r, d)
Cr(p− r, d− 1) + P1

Cr(p− r, d+ 1) + P1

mini Cr(p− r, i) + P2 .

(3.31)

In (3.31), the lowest cost of the previous pixel p− r is added to the current data cost Edata, together
with the corresponding smoothness penalty. The pixel-based data cost Edata can be EBT or the mutual
information cost described in [53]. For a pixel p and disparity d, the smoothed aggregated cost S (p, d)
is obtained summing the costs of all paths, this is:

S (p, d) =
∑
r

Cr(p, d) . (3.32)

The calculation is performed for every possible disparity and the winning disparity for each pixel
is selected by WTA. Disparity maps obtained using SGM are usually good and implementations in
real-time exist [39, 40].

Belief Propagation

Belief Propagation (BP) [34, 81], described in this section, and Graph Cuts (GC) [15, 59], described in
section 3.6.4 are techniques that have been developed to solve approximately the stereo correspondence
problem using a Markov Random Field model. A Markov Random Field (MRF) is an undirected
graphical model that can encode spatial dependencies. An MRF consists of nodes and links, and,
in contrast to other graphical models, it can contain cycles. An MRF used to represent the stereo
matching problem is shown in figure 3.12. The links between nodes in an MRF denote a dependency.
Refering to figure 3.12, it can be seen that the value of a hidden node depends only on the values
on the neighboring nodes. This assumption is called the Markov assumption and it is what allows to
solve approximately for the values of the hidden nodes (disparities). Note that the MRF formulation
of the stereo matching problem corresponds precisely to the energy function (3.29), when N = N4.
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Figure 3.12: Markov Random Field for a 3 × 3 image. The blue nodes correspond to the observed
variables, in this case, the pixel intensities. The red nodes correspond to the hidden variables. For
stereo matching, they are the disparity values. A link between nodes denotes a dependency.

Belief Propagation was developed as an optimization method for graphical models with a tree
structure. In such cases, it produces the global minimum and is guaranteed to converge. It is possible
to apply BP to a graphical model with loops, such as an MRF, to obtain an approximation to the
optimal solution. When BP is used to solve loopy graphical models, it is called Loopy BP (LBP).
LBP is a message passing algorithm. The idea is that each node in the graphical model “tells” to
each of its neighbors its “opinion” about every possible value they may have. The degree of certainty
for each possible value is expressed in a quantity representing a likelihood. A node passes a message
to a neighboring node only when it has received all incoming messages. To avoid a deadlock, prior
to running the algorithm, all messages must be initialized to a suitable value. For the min-sum LBP
algorithm we will discuss below, all messages are initialized to zero.

The min-sum LBP algorithm is iterative. The messages generated from all the nodes are passed
in parallel. Each message is a vector of dimension given by the number of possible values a node may
have. In the stereo matching case, the dimension of the message vector is the number of disparities.
To make the notation simpler, we denote f(p) as fp. Also, let mt

p→q be the message sent from node
p to node q at iteration t. We have m0

p→q = 0. The message update at each iteration is calculated
with the following equation:

mt
p→q[fp] = min

fp

Edata (p, fp) + Esmooth (fp, fq) +
∑

s∈N (p)\q

mt−1
s→p[fp]

 , (3.33)

where N (p) \q denotes the neighbors of p in the MRF, excluding q. After k iterations, a belief vector
b is calculated for each node. For example, for node q:

bq [fq] = Edata (q, fq) +
∑

p∈N (q)

mk
p→q[fq] . (3.34)

To obtain the desired disparity map, the disparity f∗q that minimizes bq [fq] at each node is selected.
The area of influence considered to obtain the disparity value of a pixel in LBP is increased every
iteration, see figure 3.13,right.

Graph Cuts

In Graph Cut techniques, a directed flow graph is constructed to represent the energy function (3.29).
The energy minimization is performed on the obtained graph using techniques from combinatorial
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Figure 3.13: Areas of influence in semi-global matchers. Left: Area of influence for a pixel p made of
16 1D paths. Right: Area of influence created after 8 expansion iterations of adding the N4 adjacent
pixels. Image from: [57].

optimization. Here we describe the approach presented in [59], where the authors propose an algorithm
based on graph cuts to solve the stereo correspondence problem that handles specifically uniqueness
and occlusions. The uniqueness constraint enforces that a pixel in one image should correspond to at
most one pixel in the other image. A pixel which is found to have no corresponding pixel in the other
image is labeled as occluded. Let p denote a pixel with coordinates (px,py). Also let A be the set of
pairs of pixels that may potentially correspond. In the case of a rectified stereo pair, A is defined as:

A = {〈p,q〉|py = qy and 0 ≤ qx − px < dmax} , (3.35)

where p is a pixel in the left, base image and q is a pixel in the right, match image. An assignment
a = 〈p,q〉 is an element of A, i.e. a ∈ A. A configuration F assigns to each assignment a a value Fa,
which is 1 if the pixels involved in the assignment are considered as corresponding, and 0 otherwise.
The goal is to obtain an optimal configuration. An assignment with a value of 1 is called an active
assignment.

Also, let A(F) be the set of active assignments according to F . Let Np(F) be the set of active
assignments in F involving pixel p, this is, Np(F) = {〈p,q〉 ∈ A(F)}. A configuration F is called
unique only if:

∀p ∈ P |Np(F)| ≤ 1 , (3.36)

where P represents the set of pixels in both the left and right images. Occluded pixels are those for
which the expression |Np(F)| = 0 is satisfied.

The concept of an α − expansion, which is essential to the approach proposed by the authors, is
now defined. The disparity of an assignment a = 〈p,q〉 is defined as d(a) = (qx − px,qy − py), which
in the case of a stereo rectified pair can be simplified to d(a) = (qx − px). Let also Aα be the set of
assignments in A which have d = α. A configuration F ′ is said to be within a single α − expansion
move of F if A(F ′) is a subset of A(F) ∪ Aα. Thus, in an α − expansion, active assignments may
become inactive, and inactive assignments whose disparity is α may become active.

The energy of a configuration F is defined as:

E(F) = Edata(F) + Eocc(F) + Esmooth(F) , (3.37)
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where Edata is the penalty obtained from dissimilarities of corresponding pixels, Eocc imposes a penalty
for labeling a pixel occluded, and Esmooth tries to ensure that neighboring pixels have similar disparities.
An infinite energy is considered for a non-unique configuration in order to impose the uniqueness
constraint. The Edata term is defined as follows:

Edata(F) =
∑

a∈A(F)

D(a) , (3.38)

where D(a) is a pixel dissimilarity measure such as the ones described in section 3.6.1. The occlusion
term Esmooth applies a penalty Co for labeling a pixel as occluded and is defined as:

Eocc(F) =
∑
p∈P

Co T (|Np(F)| = 0) . (3.39)

The smoothness term Esmooth is defined as follows:

Esmooth(F) =
∑

{a1,a2}∈N

Va1,a2 T (F(a1) 6= F(a2)) , (3.40)

where N represents a neighborhood system where {a1, a2} have the same disparities. A penalty Va1,a2
is imposed when an assignment is active in one configuration, but a neighbor is not. This is, it applies a
penalty when two adjacent pixels have been assigned a different disparity. It represents a Potts model
applied to assignments.

A strong local minimum of the energy (3.37) is calculated using algorithm 1.

Algorithm 1 Stereo Correspondence by Kolmogorov and Zabih

Require: An initial unique configuration F , t = 0
Ensure: A strong local minimum of E(F) is obtained
1: while t < k || CONVERGENCE do
2: for all α (in a random permutation) do
3: Find a unique configuration F ′ within one α− expansion of F
4: if E(F) < E(F ′) then
5: F = F ′
6: end if
7: t = t+ 1
8: end for
9: end while

In each iteration, the configuration F ′ within one α− expansion of F is obtained using graph cuts
over a graph constructed to represent the energy function (3.37). Below we offer more details about
graph cuts and the constructed graph.

Let G = 〈V, E〉 be a weighted graph with two special vertexes s, t called source and sink respectively.
A cut C = Vs,Vt is a partition of the graph in two sets that satisfy s ∈ Vs, and t ∈ Vt. The cost of the
cut, denoted |C|, is equal to the sum of the cost of the edges that go from a vertex in Vs to a vertex
in Vt. A minimum cut is a cut with the smallest cost. The minimum cut in a graph can be solved
efficiently by computing the maximum flow between the terminals. This is usually accomplished with
Ford-Fulkerson style algorithms [36].

For constructing the graph, suppose there is an initial configuration F0. The active assignments
for a new configuration within one α − expansion of F0 will be a subset of Ã = A0 ∪ Aα, where
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A0 = {a ∈ A(F0)|d(a) 6= α} and Aα = {a ∈ A|d(a) = α}. The configuration F̃ is the configuration
that satisfies A(F̃) = Ã. In general, F̃ is not unique. The constructed graph G has vertices that
correspond to assignments. For every assignment in Ã there is a vertex. It also has the source s and
the sink t. The edges in G are defined as follows. For every vertex a ∈ Ã, there are edges (s, a) and
(a, t). Also, if {a1, a2} ∈ N , edges (a1, a2) and (a2, a1) are created. Finally if vertices a1 and a2 share
a common pixel p, i.e. a1 = 〈p,q〉 and a2 = 〈p, r〉, edges between every such pairs of vertices are
created. To define the weights of the edges first the costs Docc and Dsmooth are defined as follows:

Dsmooth(a1) =
∑

{a1,a2}∈N ,a2/∈Ã

Va1,a2 , (3.41)

Docc(〈p,q〉) = Docc(p) +Docc(q) , (3.42)

where Docc(p) = Co if Ã has only one edge entering p, and 0 otherwise. The weights for the edges are
defined as in table 3.1.

edge weight for

(s, a) Docc(a) a ∈ A0

(a, t) Docc(a) a ∈ Aα
(a, t) D(a) +Dsmooth(a) a ∈ Aα
(s, a) D(a) a ∈ Aα

(a1, a2), (a2, a1) Va1,a2 {a1, a2} ∈ N , a1, a2 ∈ Ã

(a1, a2) ∞ p ∈ P, a1 ∈ A0, a2 ∈ Aα
a1, a2 ∈ Np(F̃)

(a2, a1) Co
p ∈ P, a1 ∈ A0, a2 ∈ Aα

a1, a2 ∈ Np(F̃)

Table 3.1: Edge weights in the GC stereo matching approach proposed in [59].

Finally, consider a cut C = Vs,Vt on G. The configuration FC corresponding to C is defined by:

∀a ∈ A0 FCa =

{
1 if a ∈ Vs
0 if a ∈ Vt , (3.43)

∀a ∈ Aα FCa =

{
1 if a ∈ Vt
0 if a ∈ Vs , (3.44)

FC is within one α− expansion of F0. Also, it can be proven that if C is the minimum cut on G, then
FC is the configuration that minimizes the energy E(F) over unique configurations.

3.6.5 Efficient Large-Scale Stereo Matching

In [42] the authors propose a novel approach to the stereo matching problem. Their solution is based
on the observation that, while some corresponding points in a stereo pair are very hard to find, for
example in texture-less regions, others can be matched easily and with confidence. Example of such
points are corners or any scene point that is highly distinctive. These reliable matched points, which
the authors call support points provide valuable and trust-worthy disparity information that is used
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to create a prior on the possible disparities around the support points, allowing to reconstruct a dense
disparity map with accuracy and without the need of performing global optimization. The estimation
of the disparity for points not robustly matched is performed using probabilistic inference. The prior is
obtained by generating a 2D mesh via Delaunay triangulation using the support points as vertices and
then generating a piecewise linear function which interpolates the obtained disparities of the support
points.

In section 6.2 we discuss the qualitative performance of some of the similarity measures described
in section 3.6.1, combined with several of the stereo matchers mentioned in the previous sections, when
used to obtain disparity maps from the stereo pairs we have recorded.



Chapter 4

Dataset generation

This chapter describes the hardware and software utilized for generating the dataset. To do so, we have
equipped a vehicle with a stereo pair of high-resolution grayscale cameras. We have complemented the
image data with acceleration and orientation data from an Xsens MTi IMU, GPS data obtained from
a smartphone, and vehicle speed and RPM readings from the car computer.

The hardware components we used and their interconnections are described in section 4.1. In
section 4.2, we describe the data acquisition software we developed. Finally, in section 4.3 we describe
some post-processing steps performed after the data acquisition.

4.1 Hardware selection and description

To acquire the dataset we have developed an in-vehicle data acquisition platform. To keep the imple-
menting cost low, it was desirable to use as many components already available in CIMAT as possible.
In the end, the only purchased components were the cameras, lenses and the car computer interface. In
this section we briefly describe the chosen components, and explain the reasons behind our selections.

4.1.1 Computer System

A suitable computer system for our purposes had to satisfy certain requirements and restrictions, which
are listed below:

� I/O Availability. The computer system had to provide the following ports to be able to interact
with the data acquisition devices:

– 2 Firewire ports, each of them with an available bandwidth of 400 Megabits per second
(Mbps), to acquire image data from the cameras. See section 4.1.4 for more details.

– Bluetooth capabilities to communicate with the selected car computer interface.

– 1 digital output, with voltage levels between 0–24 V, to provide triggering pulses to the
cameras.

– 1 USB port to communicate with the smartphone to retrieve GPS data.

– 1 USB or RS-232 port to read the output of the Xsens MTi.

41
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� Display. The capability to visualize the current status of the system was very important. This
would help in camera adjusting, software debugging and monitoring the performance of the
system.

� Low energy consumption. Modifying the electric system of the car to provide more electric power,
for example installing a second alternator and battery or adding a super capacitor, was not an
option, so we had to work with the stock electric system of the car. This limited the available
power to supply the data acquisition system to 300 W.

� Real-Time capabilities. We wanted to acquire the images with a very precise frame rate, thus, a
real-time system was necessary to provide the camera triggering pulses with the desired accuracy.

� Physical constraints. The dimensions of the selected system should fit the free interior space of
the car. Also, it should be possible to mount it safely with no modification to the car.

� Processing and storage capabilities. The selected computer system should be able to acquire and
save all the data streams with no loss of data, and provide a responsive user interface.

We had several options for choosing a computer system that would satisfy all the aforementioned
requirements. Among them was a desktop PC, a National Instruments (NI) EVS-1464RT embedded
vision system, a NI sbRIO-9632 embedded real-time controller and a Dell Precision M4600 mobile
workstation.

The desktop PC had lots of non-volatile memory and good processing power. Also it was the
most customizable of all the options; with several USB ports and expansion card slots available, it
would have been relatively easy to meet all the I/O requirements. However, it would need an external
monitor, and the electric supply of both devices would exceed the available power. This, combined with
the difficulties of mounting them in the car made them unsuitable. The EVS-1464RT is an embedded
controller targeted to computer vision applications that combines a floating-point processor and an
FPGA. It offers several digital I/O lines and two Firewire-B ports, with no expansion options, and
the real-time (RT) capability for generating the triggering pulses using the FPGA and an integrated
high-precision clock. However, it lacked Bluetooth capabilities, an integrated display and enough
non-volatile memory for storing the image streams. The sbRIO-9632 is similar in concept to the EVS-
1464RT, but it is not designed as an off-the-shelf vision system. It is more a general purpose embedded
system suitable for prototyping. It lacks a protective enclosure and has no Firewire ports. It also
shares the same weaknesses with the EVS-1464RT, so it could not handle all the requirements by its
own. Finally, the mobile workstation, as the PC, provided good processing and storage capabilities
and a good set of I/O expansion possibilities, plus an integrated display. However, it lacked real-time
capabilities and digital I/O.

So, no device could handle all the requirements by itself, but a combination of two of them would do.
We decided that the best option was to use a combination of the mobile workstation and the sbRIO-
9632 embedded real-time controller, and split the workload between both devices. A combination of
the mobile workstation with the EVS-1464RT would have been also possible, but the sbRIO-9632 is
smaller and requires less electric power. The mobile workstation was responsible for running the user
interface, acquiring and saving data streams from the cameras, GPS, and car ECU data while the
sbRIO-9632 triggered the cameras in a timely fashion and communicated with the XSens MTi IMU
through a RS-232 link.
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4.1.2 Stereo camera

Commercial stereo cameras feature small baselines, which do not allow to obtain a good depth estimate
for objects at long range. For that reason, we decided that the best option was to build our own stereo
camera from two separate cameras. For the camera selection, several requirements had to be satisfied
in order to acquire useful stereo images from a moving vehicle. The requirements were the following:

� A spatial resolution greater or equal than 1 Megapixel.

� A pixel depth of at least 10 bits.

� A frame rate of at least 20 fps.

� Perfect synchronization between both cameras.

At the time when the cameras were selected, 3 digital camera buses were available, Camera Link,
Firewire and Gigabit Ethernet (GigE). Camera Link is targeted to high-throughput applications, using
high-resolution cameras at even hundreds of frames per second, and the equipment is very expensive.
Since our requirements were more modest, Camera Link was discarded for this application. The
nominal bandwidths of Firewire (400 Mbps for FirewireA and 800 Mbps for FirewireB) and GigE (1
Gbps) were both acceptable. Since we had worked a bit previously with Firewire cameras, and had
already available a couple of Firewire framegrabbers we decided to choose Firewire over GigE.

A word should be given regarding the synchronization requirement. Since a very precise synchro-
nization was required, software synchronization was not acceptable, specially working with a general-
purpose operating system, where it is difficult to get a time resolution lower than 1 ms. Using a
real-time kernel may permit a better time resolution but it still may be difficult to obtain the desired
results. So, the best option was hardware-based triggering, using cameras with an external trigger line.
A single digital signal triggers both cameras, allowing excellent synchronization. This is the option we
have chosen.

Given the mentioned requirements, a market research was done to find Firewire cameras available
in Mexico. We looked for distributors from leading digital camera manufacturers such as Basler, Point
Grey Research, Unibrain and Allied Vision Technologies (AVT). We did not obtain a response from
Unibrain; Point Grey does not have a distributor in Mexico but they can ship to Mexico from Canada.
Since we wanted to avoid customs issues, we sticked with brands with local distributors. AVT and
Basler do have distributors in Mexico. Table 4.1 summarizes the features of cameras from AVT and
Basler that have a resolution close to the required one and that meet all the other requirements. The
technical data was obtained from the datasheets of the cameras and the prices come from quotes
obtained directly from the distributors.

Maker Series Model Resolution Sensor Pixel Depth FPS Price (MX$)

Basler Scout scA1300-32fm 1296 x 966 ICX445 12 bit 33 $12,735.00

Basler Scout scA1300-32fc 1296 x 966 ICX445 12 bit 33 $13,445.00

Basler Scout scA1000-30fm 1034 x 779 ICX204 12 bit 30 $16,420.00

Basler Scout scA1000-30fc 1034 x 779 ICX204 12 bit 30 $16,845.00

AVT Stingray F-125B 1292 x 964 ICX445 14 bit 30 $18,280.00

AVT Stingray F-125C 1292 x 964 ICX445 14 bit 30 $18,280.00

Table 4.1: Selected requirements-compliant cameras available in Mexico
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Figure 4.1: Stereo setup tests. Left: Cameras mounted using off-the-shelf camera supports. Center:
Cameras mounted in the interior of the vehicle. Right: Cameras mounted using custom-made camera
supports with a degree of freedom.

All cameras listed in Table 1 are Firewire, use a CCD with progressive scan and global shutter as
a sensor and have a sensor size of 1

3 inch. From the models listed, we chose the scA-1300-32fm model
from Basler [9]. This model is chosen over the scA1000-30fm because the camera is cheaper and also
because we were told by a technical representative of Graftek Inc., a Basler distributor in the U.S.,
that the ICX445 sensor it holds is newer and provides better image quality than the ICX204 sensor
from the scA1000-30fm. This is confirmed in [68], where the ICX445 shows better performance in
categories such as quantum efficiency and temporal dark noise. We selected the Basler camera over
the AVT Stingray F-125 because of the cost advantage (they share the same CCD) and because we
have used Basler cameras in the past and they have proven to be very reliable.

Before arriving to the final mechanical setup for the stereo camera, we tried several configurations.
First, we tried to mount the pair of cameras in a bar which originally pertained to a roof rack. We
attached the cameras to the bar using off-the-shelf camera supports, see figure 4.1, left, but the
supports were simply not good enough in keeping the cameras static. We also tried mounting the
cameras inside the car, using supports fitted with suction cups, as can be seen in figure 4.1, center,
but the alignment of the cameras was difficult and some of the support joints would change slightly
their angles while driving. Then we tried custom-made camera supports to attach the cameras to the
bar, see figure 4.1, right. In a first stage, the custom-made supports allowed to modify the cameras
angles with respect to the road surface, but the fixation was not stiff enough and the angle would
present tiny variations after driving in non-smooth surfaces, which would void the calibration of the
stereo pair. For this reason, the supports were modified and the angle was fixed, as pictured in figure
4.2, bottom. The orientation of the cameras was chosen so that the optical axis would be parallel to
the ground surface when the bar was placed on the floor. When mounted on the car, the cameras were
slightly tilted towards the road surface because of the mounting position of the bar on the car’s roof,
and the shape of the roof itself. To reduce the effects of vibration on the cameras, we have placed a
small neoprene sheet under them.

The baseline was selected to be as wide as possible to provide a better depth resolution, without
sacrificing too much the common-viewing area of the two cameras. Initially we attempted to use a
baseline of 60 cm. but the common-viewing area between the left and right camera was small, resulting
in a depth map with limited coverage. The reduction of the baseline to 50 cm. helped to obtain depth
maps with increased usability. The camera setup is pictured in figure 4.2.

4.1.3 Lenses

Once the cameras had been chosen, we searched for suitable and compatible lenses. The selected
cameras are designed to work with C-Mount lenses, and feature an image sensor with a size of 1

3 inch.
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Figure 4.2: Top: A sketch of the sensor setup. Bottom:. The sensor setup fixed to the vehicle. The
two cameras and the Xsens MTi IMU are mounted on an bar which is then rigidly attached to the car.
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Therefore, we needed C-Mount lenses with a format ideally of 1
3 inch or higher. A smaller format

would produce an image that would not fill the entire image sensor, and that is undesirable. Other
desired features for the lenses were low distortion and being appropriate for mega-pixel cameras.

Regarding the field of view (FOV), we did some research on the FOV used in similar applications.
We found typical values range between 45° and 100°, e.g. [10, 41, 47, 109]. A FOV within that range
would have been desirable. Given an image sensor, the focal length f and the field of view α are related
by the following expression:

α = 2 arctan
d

2f
, (4.1)

where d is the dimension of the image sensor in the direction of interest. With the knowledge of the
dimensions of the image sensor we can resolve for the focal length given a desired FOV angle. From
(4.1) we obtain:

f =
d

2 tan(α2 )
. (4.2)

The dimensions of an 1
3 inch image sensor like the one mounted on the selected cameras are 4.8× 3.6

mm in the horizontal and vertical directions, respectively. Thus, for a desired horizontal FOV of 45°,
the required focal length we obtain is 5.79 mm. The closest focal length that is commercially available
is 6 mm. The ideal lens would have been then a high-quality C-Mount lens, with a format of 1

3 inch
or higher and a focal length of 6 mm. Unfortunately, no distributor in Mexico had available high-
quality lenses with the required characteristics. The closest model we found was the M0814-MP2 from
Computar. It has a focal length of 8 mm, a 2

3 inch format and is C-Mount. It is designed to be a
low distortion lens for mega-pixel applications. The horizontal FOV we obtain with the lens is ∼ 34°,
which is smaller than the desired FOV, but it still yields useful images.

4.1.4 Framegrabbers

A framegrabber is a device that allows to capture the image data streams coming from computer
vision cameras. In the case of Firewire framegrabbers, there are two variants. Firewire-A allows data
transfers at a speed up to 50 MBps (MegaBytes per second, equivalent to 400 Mbps), while Firewire-B
offers a nominal data rate of 100 MBps (800 Mbps). To select the quantity and type of framegrabbers
needed, we calculated the required data rate for each camera using the following equation:

Required data rate = Number of pixels × Bytes per pixel × Frames per second .

For a camera with a resolution of 1 Mpx, using 12 bits per pixel (1.5 Bytes) and a framerate of 20 fps
the calculation yields a required data rate of 30 MBps, which grows to 40 MBps if the camera drivers
do not allow to split a Byte in two sections to store information corresponding to different pixels. In
either case, a Firewire-A adapter per camera or a single Firewire-B adapter for the two cameras would
be enough. We opted to use two Firewire-A adapters, since we already had available one Firewire-A
ExpressCard adapter. The second adapter was obtained from the integrated Firewire bus of the mobile
workstation.

4.1.5 Inertial Measurement Unit

For obtaining 3D orientation and acceleration data, we had available an XSens MTi [104] miniature
inertial measurement unit. It integrates 3D accelerometers and gyroscopes to perform the measurement
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estimates. It also features a 3D magnetometer to read Earth magnetic field data. The integrated low-
power signal processor allows to obtain the data in real-time. The use of only gyros to calculate
the orientation estimate results in the slow, but steady, accumulation of error. For this reason, the
MTi uses a sensor fusion algorithm based on a Kalman Filter to obtain a high-accuracy estimate of
the orientation, using both the gravity vector and the Earth magnetic north as reference vectors to
compensate for drift. This capability makes the MTi an Attitude and Heading Reference System
(AHRS). The most important specifications of the sensor are listed in table 4.2. To communicate with
the MTi we used a RS-232 link. The steps we followed to establish the communication are described
in section 4.2.2.

Angular Rate

Category Units: °/s

Range (Roll, Pitch and Yaw): ±300

Bias (Roll, Pitch and Yaw): ±0.5 (Roll, Pitch), ±1.0 (Yaw)

Resolution: 0.05°

Acceleration

Category Units: m/s2

Range (X,Y,Z): ±50

Bias (X,Y,Z): ±0.2

Resolution: 0.01

Communication and Performance

Update rate: Max. 256 Hz for full data

Communication interface: RS-232/422/485 & USB (with external converter)

Table 4.2: Xsens MTi specifications [104]

The MTi was mounted on the same bar where the cameras were placed. A custom-made base was
needed to attach it to the bar. The MTi is approximately placed in the middle point between the
cameras, as can be seen in figure 4.2.

4.1.6 Car Computer Interface

Modern cars are equipped with one or more networked computers that control several components of
the car, like the engine, brakes, transmission, among others. To interact with the computer network
in the car, first we had to determine both the communication protocol and the type of port used to
access the computer network. After performing research on the topic, we found out that it all depends
on the manufacturing year, the type of fuel used and the target market of the vehicle. The vehicle
we used was manufactured in Spain in 2007 under European specifications and uses gasoline as fuel.
The applicable regulations of the European Union regarding car data access (European On-Board
Diagnostics, EOBD) made mandatory for this kind of vehicle to provide a SAE-J1962 female port to
communicate with the computers of the car.

Regarding the communication protocol, according to EOBD, the manufacturer is allowed to choose
among 5 protocols: SAE-J1850-PWM, SAE-J1850-VPW, ISO-9141-2, ISO-14230 (KWP2000) and ISO-
15765 (CAN). We could not find reliable information about the communication protocol used in the
car, so we had to determine it by ourselves. Each protocol uses different pins on the connector, so, as a
first approach to detect the used protocol, we performed a visual inspection on the car connector to find
the existing pins. This analysis was non-conclusive because the present pins would fit more than one
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protocol. Then, we tried to establish communication with the car using a NI USB-8473 CAN interface
we had available, but the attempt was unsuccessful, so the CAN protocol was discarded. Finally, we
acquired a Bluetooth OBD-II (OBD-II, On-Board Diagnostics-II, the American equivalent of EOBD)
communication interface based on the ELM-327 chip [31]. This chip is a car communications interface
with support of all the OBD-II protocols. It also has the capability to auto-detect the protocol used in
the vehicle. Using the interface, we discovered that the protocol used was ISO-9141-2. Details on how
to establish communication with the car computer network using the ELM-327-based interface can be
found in section 4.2.3.

4.1.7 GPS

Although initially the acquisition of GPS data was not considered, we decided in the end to incorpo-
rate it to enrich the dataset. Our first attempt to obtain GPS data was using a high-quality GPS unit
intended for in-car use as a navigation assistant. Unfortunately, since the unit was not designed to
be a GPS data source, it did not offer any option to transmit the position data. We then attempted
successfully to obtain GPS data from an Android-based smartphone using an USB link. The measure-
ments it provides are not the most accurate, but they give a good estimate of the vehicle’s position.
The process we followed to obtain the data from the smartphone is detailed in section 4.2.4.

4.1.8 Power Supply

The electric system of the car we used makes available to the user about 300 W at 12 VDC. However,
several of the devices, mainly the mobile workstation, needed AC voltage to work. For this reason, we
used a 300 W power inverter to convert the 12 VDC supply of the car to the 110 VAC supply required
by the power adapters of the different devices.

4.1.9 Hardware System Architecture

The hardware interconnections and wiring of the created data acquisition system are shown in figure
4.3. The cameras are equipped with Firewire-B ports, so, in order to connect the cameras to the
framegrabbers, we used Firewire-B-to-A cables. Besides, the cameras are designed to be powered
through the Firewire cables, thus the framegrabbers must supply the electric power. Natively, none of
the selected adapters is powered, but the ExpressCard adapter offers the option to be supplied with 12
V coming from an AC adapter. To provide power to the camera connected to the integrated Firewire
bus, an intermediate power supply model PS-1FW from Kramer Electronics was necessary to inject
the required energy.

To communicate with the Xsens MTi, we manufactured a custom cable. The Xsens came from
factory with a USB communication cable, but it did not fit our needs because the acquisition of inertial
and orientation data needed to be performed by the real-time controller, which does not feature a USB
port, but does have an RS-232 port, so we built an appropriate cable. For assembling the cable, we also
took into account the fact that the Xsens requires a supply of 4.5 – 30 VDC through the communication
cable. The custom cable we made featured in one end the Xsens port and in the other end two ports:
a RS-232 port for data communication with the real-time controller and a USB port used to obtain
the required voltage from a USB port in the mobile workstation.

The real-time (RT) controller was also responsible for generating the triggering pulses to the ca-
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Figure 4.3: The figure shows the interconnections of all the hardware used for the dataset acquisition.

meras. One of the digital output lines was used to send the pulses to both cameras. The connection
between the RT controller and the triggering lines of the cameras was made using the recommended I/O
cables provided by the camera manufacturer. The communication between the RT controller and the
mobile workstation was performed using a standard Ethernet cable. The smartphone was connected
to the mobile workstation using the USB cable that came with the phone. Finally, the communication
between the ODB-II interface and the mobile workstation was performed using a wireless Bluetooth
link, emulating a serial port.

4.2 Data Acquisition Software

The data-acquisition platform we developed, illustrated in figure 4.3, is a distributed computing
system where the two processing nodes, the mobile workstation and the real-time controller, are each
responsible of certain tasks.

The mobile workstation is responsible of providing the user interface, acquiring and saving the
image streams from the cameras, communicating with the car computer and sending commands to
the sbRIO-9632 using NI’s Network Shared Variables API. All the software for the workstation was
developed in Visual C++ and runs on Windows. We had initially planned to develop the software on
a Linux platform, but were forced to switch to Windows because of the need to use Basler’s Firewire
Pylon API, only available for Windows, see section 4.2.1 for details. The software running on the
workstation is a multi-threaded application that performs in parallel the data acquisition from several
sources. We developed a hierarchy of specialized thread classes based on Vic Hargrave’s Thread class
[48], which provides a nice object oriented wrapper around the pthreads API.

On the other hand, the real-time controller is responsible for performing acquisition and logging
of the incoming MTi data. The real-time controller has also the important task of triggering the
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Figure 4.4: A section of the real-time controller block diagram implementing a producer-consumer
architecture.

cameras. For the triggering to be very precise time-wise, it is performed using a digital output line
linked to the FPGA of the sbRIO-9632, which works with a high-accuracy clock of 40 MHz. The
software running in the real-time controller was programmed using LabVIEW, with the Real-Time
and FPGA modules. The software running on the floating-point processor of the real-time controller is
designed under a producer-consumer architecture. A screenshot showing a section of the block diagram
(source code) of the RT program is shown in figure 4.4. Communication from the software on the
floating-point processor to the FPGA is performed using the front-panel FPGA interface. It is used to
send configuration data, such as the frequency of the camera-triggering pulses. The notification from
the FPGA back to the floating point software that a pulse has been generated, is sent via one of the
interrupt lines.

The clocks of the two computing nodes are synchronized by using the Simple Network Time Pro-
tocol (SNTP). The workstation acts as a server and the real-time controller is the client. To enable
SNTP synchronization on the sbRIO-9632, the “TIME SYNC” section of the ni-rt.ini configuration file
(located in the root of the controller’s file system) should look similar to the following:



4.2. DATA ACQUISITION SOFTWARE 51

[TIME SYNC]

source.rtc.enable=true

source.sntp.enable=true

source priority=sntp;rtc;

source.sntp.address=10.0.0.100

source.sntp.interval=60

source.sntp.port=123

source.sntp.verbose=false

source.sntp.log=true

Also, the server must implement SNTP version 4. The time server was mounted on the mobile work-
station using Meinberg’s NTP Time Server version 4.2.6 [67]. A firewall exception had to be added
so that network traffic using the User Datagram Protocol (UDP) was allowed through port 123.

4.2.1 Image Acquisition

As explained in section 4.1.4, we thought the Firewire-A nominal data rate of 50 MBps would be
enough for our purposes. However, we discovered through testing that the real, effective data rate
was not 50 MBps, but only ∼ 31MBps. This restriction forced us to use very efficiently the available
bandwidth in order to achieve the desired framerate. Initially, we had planned to use a standard IIDC-
compliant (The IIDC is the 1394 Trade Association Instrumentation and Industrial Control Working
Group, Digital Camera Sub Working Group) library such as libdc1394, or the more friendly camwire,
a higher-level library built around libdc1394. However, these libraries only support the acquisition
of images using the video modes specified by the IIDC, and none of them considers the possibility of
one byte to carry information from more than one pixel. Thus, the storage of a pixel with 12 bits of
depth would take 2 bytes, wasting the 4 upper bits of the 16-bit word. This represents an unnecessary
use of valuable bandwidth that we could not afford. Therefore, the image acquisition is performed
using the C++ Pylon API [8] from the camera manufacturer, which allows an efficient use of the
available Firewire bandwidth. Just the 12 effective bits/pixel are transmitted, and 3 bytes can store
the information from two pixels. This type of pixel storage is called MONO12 PACKED. For Firewire
cameras, the Pylon API is only available for the Windows platform, thus we had to develop the data
acquisition software under Windows.

The used mobile workstation is equipped with a standard 5,400 RPM platter-based hard-disk drive.
Thus, the disk is not very fast, and using the highest possible frame rate, the data rate of the image
streams easily surpasses the saving capabilities of the disk. To deal with this issue, and avoid data
loss, we have implemented a multi-threaded image logger. For each camera, one image acquisition
thread retrieves the image data from the camera and quickly buffers it in RAM memory, on a thread-
safe queue based on the one proposed in [49]. A corresponding image logging thread handles the
more time-consuming tasks, allowing the image acquisition process to work on an timely fashion. This
strategy, represented in figure 4.5, takes advantage of the high-speed of volatile memory. The length
of the sequences was limited by the available RAM. The maximum possible sequence length with the
8 GB of total memory available was around 3,000 stereo pairs. The use of this strategy implied that
after recording an image sequence, we had to wait several minutes while the images in memory were
saved to disk, before we could start to record another sequence.

Prior to the image acquisition loop, the camera object representing the physical camera is opened
and configured. The triggering is set up so that the camera starts the exposition when a rising edge
is detected in the physical input line 1. The Pylon API provides an internal image buffer to save the
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Figure 4.5: Multi-thread image acquisition.

images from the camera and avoid data loss in case the image acquisition thread fails to retrieve the
image data on time. We have configured this buffer to hold up to 40 images. Because of the bandwidth
restrictions, we were unable to use the full CCD of the camera, so we defined a region of interest (ROI)
as big as possible to keep the maximum framerate at 20 fps. The selected ROI has dimensions of 1,096
× 822 and is centered in the CCD. We then configure the camera object to use the MONO12 PACKED

data format. Finally, the image is sent through the Firewire bus in packets, and we have set the
packet size to be 4,096 bytes. The packet size determines how much of the available bandwidth the
camera uses. The selection of 4,096, the maximum possible value, ensures that the camera uses all
available bandwidth. Since in our configuration each camera has its own framegrabber, this represents
no problem. However, if two cameras would share the same Firewire bus, the packet size should be
adjusted so that each of them has a portion of the available bandwidth.

When the user has started the logging process, we continuously retrieve the front element from
the image buffer using the RetrieveResult method from the camera object and place it in the image
queue. The obtained data is converted from the MONO12 PACKED format to a standard MONO16 format
used in most image processing libraries, which uses two bytes per pixel. The encoding of the image
data to PNG format was initially performed by the image acquisition thread, but it proved to be a
costly operation that would slow down the data acquisition, resulting in reduced framerates or data
loss. For this reason, we switched the encoding task to the image logging thread. This thread takes the
image data out of the queue, encodes it in PNG loss-less format and finally writes it down to disk. For
encoding the images we use the OpenCV’s imencode function and for saving them we use the standard
C++ streams API.

Before each recording day, we carefully focused each camera and ensured that the iris aperture of
both lenses was approximately the same. These adjustments are important to obtain an image pair well
suited for finding stereo correspondences. Although both lenses were of the same model, selecting an
aperture taking as reference only the scale printed on the lenses would yield a slightly different aperture
in the lenses diaphragm. We compensated for this difference manually. For recording sequences at
night, we had to open totally the iris aperture to maximize the amount of light entering the image
sensor, which at night is very limited. The big aperture caused a slight loss of focus, which is perceived
in the acquired images. Also, we increased the exposure time to gather as much light as possible. The
maximum exposure time we used was 20 ms. This value was determined experimentally as the highest
exposure value that would not cause significant motion blur while traveling at speeds up to 40 km/h.

4.2.2 IMU Data Acquisition

The communication with the MTi was performed using the Xsens LabVIEW instrument driver [103]
over an RS-232 link. The instrument driver provides a set of virtual instruments (VIs, program
functions in the LabVIEW context) that encapsulate the Xsens communication protocol and release
the user from having to program all the communication functions. In a first stage we acquired only
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Figure 4.6: MTi IMU initialization sequence.

acceleration and orientation data at 50 Hz using a connection speed of 57,600 bauds per second (bps).
After some improvements on the software and the wiring, we increased the connection speed to 115,200
bps, the acquisition rate was upgraded to 100 Hz and also started to acquire data from the 3D gyro
and the 3D magnetometer.

The Xsens MTi has two modes of operation: measurement and configuration. In measurement
mode, lectures from the integrated sensors can be retrieved but the sensor configuration cannot be
modified. The configuration mode exhibits the opposite behavior. We developed the software for
IMU data acquisition taking this into account. The acquisition process can be divided in three stages:
Initialization, data acquisition and closure. The steps performed in the initialization stage are enlisted
below:

1. Open the connection to the MTi using the Initialize VI.

2. Activate configuration mode, using the Change State VI. Instruct the MTi to transmit data on
request by calling the Configure Sampling Rate VI.

3. Indicate the MTi, with a call to the Configure Message VI, which of the available data fields it
should send. We select acceleration, gyro, magnetometer and orientation data. The orientation
data is transmitted using Euler angles.

4. Switch to measurement mode. Perform an align reset by calling the Reset Orientation VI.
An align reset changes the sensor coordinate system so that the Z axis is along the local gravity
vector, pointing upwards, and the X axis is parallel to the horizontal plane, along the direction
pointed by the factory sensor coordinate system, which is marked in the sensor enclosure. The
Y axis is determined so that a right-hand coordinate frame results.

5. Go back to Configuration mode. Save the coordinate system defined in the previous step.

6. Activate measurement mode. The MTi is ready to acquire data.

All the mentioned VIs in the initialization sequence are contained in the LabVIEW library in which
the instrument driver is provided. A LabVIEW library is conceptually equivalent to a Java package
or a C++ namespace. The code used to perform the MTi initialization is shown in figure 4.6. After
a successful initialization, the data acquisition begins. To retrieve the latest data from the sensor,
we send a data request using the Read Single Data VI. After the request, we read acceleration,
gyro, magnetic field and orientation data, in that precise order. The order is defined by the Xsens
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Figure 4.7: State machine of the communication with the car computer.

communication protocol. Finally, upon user request, the communication is closed. All the acquired
data is saved in the non-volatile memory available in the sbRIO-9632. After the data acquisition is
finished, we retrieve the data by using an FTP connection.

While developing the necessary routines for communicating with the MTi, we found a bug in one
of the VIs of the instrument driver. The VI that performs the align reset did not append the checksum
to the package sent to the sensor. As a result, the sensor coordinate frame would not change, and some
errors in the communication would occur. We corrected the bug and reported it to the driver supplier.

4.2.3 Car Computer Data Acquisition

To communicate with the OBD-II interface, we first set up a virtual COM port associated with the
interface. The communication is then performed by opening the port, sending commands and requests,
and reading the device response. In initial tests, we detected some erratic behavior in the communica-
tion, specially in the initialization steps preceding the talk to the car computer network. Unfortunately,
we found out that the most likely explanation to this was that we got an interface equipped with a
non-genuine ELM-327 chip, i.e. a clone. The device claims to be version 1.5, but the manufacturer of
the ELM-327 chip never produced such a version. The clones of the chip are known to present some
communication issues. This made it difficult to obtain a reliable initialization sequence, but after much
trial and error, we managed to create a procedure that would reliably establish the connection. The
whole communication process modeled as a state machine is represented in figure 4.7.

The connection to the virtual port is performed using the following settings: 2,400 bps, 8 data
bits, no parity, 1 stop bit and no flow control enabled. Once the port has been opened successfully,
several AT commands are sent to the OBD-II interface, and their response is read. The AT commands,
where AT is the abbreviation of ATTENTION, are text strings beginning with “AT” that modify the
configuration of the interface. The AT commands where originally designed to send instructions to
modems but their use has been extended to other devices. The initialization sequence is described in
the following code block:
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sendCommandReadResponse("ATWS");

sendCommandReadResponse("ATSS");

sendCommandReadResponse("ATSPA3");

sendCommandReadResponse("ATSI");

The command ATWS (Warm Start) requests the interface to perform a complete reset, except for the
power on LED test. Then, sending ATSS (Standard Search) commands the interface to perform the
protocol search in the order indicated by SAE J1978. Next, the command ATSP3 (Search Protocol)
starts the protocol discovery phase, using protocol 3 as the first protocol to test. Protocol 3 is precisely
ISO-9141-2, the protocol used in the data acquisition vehicle. Finally, the command ATSI (Slow
Initiation) instructs the interface to perform the initialization procedure to communicate with the car
computer network. Analyzing the response obtained from this last command we can detect if the
initialization sequence was successful or not. If successful, then we proceed to the data acquisition, or
“Acquire” state.

The request of data to the car computer network is performed by issuing OBD commands, which
are strings formed by hexadecimal characters. A typical OBD command has the form “010C”. The
first two characters represent the data mode. Mode 01 represents the “Show Current Data Mode”.
As its name implies, it allows to obtain the current value of the requested data field. The second pair
of characters, “0C”, are together called PID, from Parameter IDentification. The standard PIDs are
specified in norms such as SAE J1979 or ISO 15031-5. Car manufacturers also use their own PIDs for
data fields non contemplated by the standards, which are focused in data relevant to car maintenance
and emissions control. Despite our best efforts, we could not find documentation about non standard
PIDs for the utilized car, so we had to restrain the data gathering to standard PIDs. After examination
of the list of standard PIDs, we found two that were relevant to our application: “0C” and “0D” which
correspond respectively to the revolutions per minute (RPM) of the engine, and the current speed of
the vehicle. The data request sequence is shown in the code block below.

sendCommandReadResponse("010D1");

sendCommandReadResponse("010C1");

First, we request the speed and then the RPM. Notice we have appended an extra ‘1’ to the OBD
commands. This indicates to the OBD interface that we expect the response to have a length of only
1 line, so after it receives 1 line of data from the car, it forwards it to us immediately. If the ‘1’
is omitted, the interface waits 200 ms for more data. Thus, the inclusion of the extra ‘1’ allows to
increase the communication speed. On average, we are able to obtain 3 updates per second for each
of the two data fields. The responses to the speed and RPM requests have the format 410CXX and
410DXXXX respectively, where X represents a hexadecimal digit. The speed is returned as an integer
value encoded in the two hexadecimal digits. Similarly, the RPM data is encoded in the last four hex
digits of the response. To obtain the real RPM value, the hex value should be converted to decimal
and then divided by four.

The implementation of the low-level communication was done using the C++ serial communica-
tion library proposed in [27], as it offers a clearer interface than the standard Windows API. The
communication logic runs on its own specialized thread.
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Figure 4.8: A successful call to the abd program.

4.2.4 GPS Data Acquisition

To obtain GPS data from the Android-based smartphone, we relied on the ShareGPS application [79].
The application retrieves the GPS data from the phone and publishes it using the Transport Control
Protocol (TCP) on port 50,000 of the phone. Then, using the USB line, we forward the data from the
TCP port in the smartphone to a TCP port in the workstation. To perform the data forwarding, it
was necessary to enable USB Debugging on the Android phone. Also, a copy of the Android SDK was
obtained and installed in the mobile workstation, so that the program adb (Android Debug Bridge)
was available. After connecting the smartphone to the workstation for the first time, the smartphone
driver should be installed automatically in the workstation. If not, one has to manually look for the
driver and install it. After all these steps have been performed successfully, the data forwarding is
performed as follows:

1. Run the ShareGPS application in the phone. Make sure that the “Use USB” option is checked
on the ShareGPS application settings.

2. Run the abd program. In recent versions of the SDK, the executable is located in the following
path relative to the base directory of the SDK: Android/android-sdk/platform-tools. The
call to adb should be of the form:

adb forward tcp:50000 tcp:50000

This calls instructs adb to forward mobile TCP port 50,000 to PC TCP port 50,000. If desired,
a different TCP port can be chosen on the workstation side. After the call, a message should
appear in the command line indicating that the adb daemon process has started. See figure 4.8.

After the above steps have been performed, a TCP server should be listening to TCP port 50,000
on the workstation, ready to forward the GPS data to a client. The data is published in the form
of NMEA strings. The NMEA is the National Marine Electronics Association and it has created a
specification that describes how the communication interface between marine electronic devices should
be. The specification, among other things, defines the standard data format used by most of the
computer programs that work with real-time GPS position data. According to the specification, the
GPS data should be transmitted in self-contained and independent ASCII character sequences called
NMEA sentences. A NMEA sentence begins with a ‘$’ symbol and ends with a carriage return/line
feed sequence. It can have a length of up to 80 characters, not including the termination chars. After
the ‘$’ symbol, a NMEA sentence contains five identification characters. The first two indicate the
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type of device and the remaining three indicate the sentence type. The prefix corresponding to GPS
receivers is “GP”. Each type of NMEA sentence contains different data fields, and not all of them
contain position data. For more information on NMEA sentences, refer to [55], for example.

To receive the NMEA sentences in the data acquisition application, we developed a TCP client
using the Winsock2 API. This client connects to the TCP server established by the abd program. Our
client, which runs in its own thread, retrieves data from the buffer, splits the data into NMEA sentences
and parses them to obtain the values of the relevant data fields, which in this case are the latitude
and the longitude. The parsing of the sentences is performed using the function nmea parse from the
NMEA library [1]. Other functions of the library are also used in the processing of the sentences. The
latitude and longitude are updated about once a second. While recording the dataset, we noticed the
smartphone would overheat after about two hours of continuous GPS data acquisition. This would
result in a slower update rate for the GPS data. For this reason we tried to limit the length of the
acquisition sessions to less than 2 hours, or to provide pauses so that the phone could cool down.

4.2.5 Stereo Camera calibration

We used Zhang’s technique [108] as implemented in OpenCV [72] to calibrate the cameras. As described
in section 3.3, the procedure proposed by Zhang requires the use of a planar calibration pattern viewed
in different positions and orientations. In the case of stereo calibration, it is also needed that the
pattern is fully visible by the two cameras, so that the rotation matrix R and translation vector t
between the cameras can be estimated.

A chessboard-like calibration pattern is used traditionally, and we tried it as our first option. We
used a printed pattern of 9 columns × 7 rows glued to a flat piece of wood. The effective pattern
dimensions were approximately 630 × 490 mm. After several calibration sessions we concluded that
both the type of pattern and the material it was attached to were not the best options. The corners
in the pattern were sometimes detected with poor accuracy. For this reason, when using this type of
pattern, we had to carefully check the corner detection in each of the calibration images to remove
all images in which one or more corners were improperly detected. This process was painstaking and
time-consuming. Also, we found it difficult to work with wood because it requires much care to keep it
flat, and often it would bend slightly anyway. The use of a bent pattern is undesirable, so we switched
to another pattern, best suited for our purposes.

We generated a symmetric circle grid pattern using OpenCV’s pattern generator. The generator is
a Python script, located on the path doc/pattern tools/gen pattern.py relative to the installation
directory of OpenCV. It allows to generate an SVG vector file of the desired pattern. The fact that the
file is vector-based allows to obtain a high-quality printing when printed in different sizes, in contrast
to raster images that may introduce distortion. We created a bigger pattern, with the intention of
covering as much of the image as possible, in both cameras simultaneously. The generated pattern was
a regular circle grid of 9 × 6, with 120 mm of separation between circle centers. The printed pattern
was glued to a 6 mm-thick glass sheet using spray adhesive. The dimensions of the glass sheet were
approx. 1,200 × 900 mm. The results obtained using this pattern were much better. The detection of
the circles centers performed in general very well so no exhaustive verification of each calibration frame
was necessary. Also, because of its rigidity, the glass sheet would not bend, keeping the pattern flat.
However, it had also a few downsides. The glass required careful handling and was very heavy. Maybe
a better, but more expensive option would be the use of polycarbonate or some similar material, which
is lighter, but still rigid. Also we noticed that the glued printed pattern had a tendency to wrinkle in
cold weather, maybe because of a less-than-ideal glue work. For that reason, we tried to perform the
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Figure 4.9: Base orientations of the calibration pattern. Partial Image Credit: National Instruments

calibration procedure in sunny weather, after the pattern had received a good sun bath.

To obtain the intrinsic parameters of each camera and the rotation matrix R and translation vector
t between cameras, one can obtain first the intrinsics for each camera by calibrating them individually,
and use them afterwards complemented with stereo calibration pairs (in which the calibration pattern
appears complete simultaneously in both cameras) to estimate R and t. Or, one can estimate all the
unknown parameters from a single set of stereo calibration pairs. Also, in camera calibration it is good
practice to take pictures of the calibration pattern covering most of the image, so that the estimated
parameters are calculated from most of the image sensor. In contrast to stereo calibration, calibrating
the cameras individually allows this. We tried both strategies, calibrating cameras individually and
as a pair, and found that in practice, besides requiring more time, individual calibration yields no
benefits. We even obtained a slightly less accurate calibration (based on reprojection error) by using
individual calibration followed by the estimation of R and t than by performing the stereo calibration
in a single step. Thus, all the calibration parameters for the dataset were obtained using the latter
technique.

For acquiring the stereo calibration pairs we used a predefined set of orientations of the calibration
pattern, as shown in figure 4.9. We first took a picture of the pattern in each of the selected orientations,
placing the pattern as close as possible to the cameras so that it would cover most of the image, while
still appearing complete in both cameras. After, we would move the pattern away and take pictures of
it in several of the selected orientations, while also moving it around so that it would appear in different
parts of the image. We tried to cover most of the image area with the far shots. For improving the
vertical area coverage, we took pictures of the pattern flipped around, as shown in figure 4.10, Top
left, but the software would not recognize the pattern. It was interpreted instead as a 6× 9 pattern.
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Figure 4.10: Example calibration photos. Top Left: The software would not recognize the pattern
when oriented vertically. Rest: The calibration pattern shown in different positions and orientations.
In all cases, the left frame is shown.

Initially we thought that calibrating the stereo pair would be needed only once, since the cameras
were mounted rigidly to the bar, and the bar itself is attached rigidly to the car. However, we discovered
that the calibration would not stay valid after unmounting the bar from the car and mounting it again.
Rectifying images from the stereo pair using the parameters obtained in a previous calibration session
would result in pairs not rectified correctly as corresponding points may not appear in the same row in
both images. The row difference was small, one or two pixels, but significant enough to invalidate the
calibration. We believe this was caused by a slight torsion in the bar derived from minor differences in
the mounting torque applied to the supports of the bar. Because of this, we had to calibrate the stereo
pair before each recording session. Given that the number of sessions was moderate, this was feasible.
However, in a real-world application where the calibration may be affected constantly by many factors,
such as vibration, dilatation caused by high temperatures and more, a self-calibration technique such
as the one proposed in [26] should be used. Some examples of calibration images corresponding to the
left camera are shown in figure 4.10.

To obtain the calibration parameters we relied on the stereoCalibrate function of OpenCV. To
reduce the number of parameters to estimate, we assumed that the pixels are perfect squares, as
stated by the camera datasheet, and that tangential distortion can be neglected. Both assumptions
are supported by the fact that we used high-quality vision equipment.

4.3 Data Postprocessing

After the image sequences were acquired, some post-processing steps were required to make them better
suited for stereo correspondence. We rectified them geometrically and reduced the effect of noise on
the image sequences acquired at night. The details are described below.
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Figure 4.11: A rectified stereo calibration pair.

4.3.1 Image rectification

Because of slight mechanical misalignment caused by manufacturing differences of the mounting parts,
after the images sequences were acquired it was necessary to rectify them, to make each of the image
pairs row-aligned. To rectify the images, we have passed the calibration data obtained previously to
the function stereoRectify from OpenCV, that implements the rectification algorithm proposed by
Bouguet, see section 3.5. The function returns rectification maps that are used afterwards to warp the
images. The resulting rectified images are as if they would have been taken by a canonical stereo pair.
The coordinates of the principal point in both cameras are the same, and the focal length is the same
in both u and v directions because of the square pixels. Because of the aforementioned misalignment
and the effects of lens distortion, the rectified image pairs are slightly smaller than the original frames.
A rectified stereo calibration pair is pictured in figure 4.11.

Some of the image sequences were recorded at night. In low-light situations like this, where the pixel
intensities are low and in consequence the signal-to-noise ratio lowers, it is important to take measures
to reduce the amount of noise affecting the image. Therefore, right before we started to record the
night sequences, for each camera we acquired 100 images with the camera lens cap closed, and averaged
them to obtain what is usually called a dark frame, an average image in which the pixel intensities are
generated only by noise. Then, we subtracted from the acquired images the corresponding dark frame,
in order to reduce the effects of noise in the images. A histogram of intensities obtained from one of
the closed-cap images is shown in figure 4.12, top. The intensities correspond to a pixel depth of 12
bit, where the maximum value for a pixel would be 4,095. It can be seen that the observed intensities
are low, but still significant. Figure 4.12, bottom shows a plot of the pixel intensities of the dark frame
obtained for the left camera. Most of the intensities are low, but in some pixels, which are usually
called hot pixels, the intensity is clearly above the average value. One such pixel is particularly visible
in the figure. The observed intensity levels caused by noise are specially relevant when working with
images with the full pixel depth. When working with 8-bit images, only the intensities of the hot pixels
have a significant impact, because after the conversion to 8 bits, which implies a division by 16, most
of the other pixel intensities become 0.
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Figure 4.12: Dark Frames. Left: A histogram of intensities from a closed-cap image. Right: A plot of
pixel intensities corresponding to the left camera dark frame. A hot pixel can be observed
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Chapter 5

Dataset Description

In this chapter we describe the generated dataset. First, in section 5.1, we provide some general
information about the dataset and the layout of the provided files. Then, in sections 5.2, 5.3, 5.4 and
5.5 we describe respectively the image, IMU, GPS and car data files that we provide. In section 5.6
the camera calibration data we obtained and make available is described. After, in section 5.7, we
describe the calibration images we supply, so that the dataset users can perform their own camera
calibration, if they wish to do so. Then, in section 5.8, we describe the contents of additional files we
provide. Finally, in section 5.9, we summarize the created dataset and compare it with other similar
datasets existing in the literature.

5.1 Introduction

We have acquired more than 96,000 stereo pairs distributed in 42 sequences. The longest sequence
comprises 3,162 pairs whereas the shortest one is made of 1,201 pairs. Some of the sequences were
recorded in urban environments located in the metropolitan area of Mexico City. The main environment
challenges that can be found in these sequences are the poor quality of the road, as potholes and speed
bumpers are very common. Also, the road signaling is sometimes insufficient, specially in places were
road work is being performed. Besides, lane marking may not be clear and sometimes it is absent. To
further enrich our dataset, besides the urban scenarios just described, we have recorded some sequences
in the colonial city of Guanajuato. They offer different environment challenges such as very narrow
streets, steep roads, an unstructured and abundant flow of pedestrians and a subterranean tunnel
network.

The sequences we provide were recorded in three recording sessions. The first recording session
was performed in the metropolitan area of Mexico City whereas the remaining two were performed in
Guanajuato. For each recording session we performed the calibration of the stereo setup as described
in section 4.2.5. We have classified the recorded sequences in four categories: ‘Colonial Town Streets’,
‘Urban Streets’, ‘Avenues and Small Roads’, and ‘Tunnel Network ’. Some example frames of each
category are shown in figure 5.1. All sequences were recorded in daytime with varying lighting condi-
tions, except for the sequences corresponding to the ‘Tunnel network ’ category, which were recorded
at night. Upon examination of the images in the sequences, one can observe that they offer challenges
for stereo-matching algorithms typically present in real-world scenarios like shadowing, transparency,
and solar/lens flares.

63
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Figure 5.1: Dataset image samples. The figure shows four examples for each category (along each
column). The images shown correspond to the left camera.
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Figure 5.2: Structure of a recording file. The figure shows the structure and contents of a recording
Zip file. Here ’yyyymmdd hhmmss’ represents the date and time of the recording, and ’XXXXX’
represents the sequential frame number starting from zero.

For each recorded sequence, we provide a ZIP file with the folder structure described in figure 5.2.
The file contains, besides all the acquired data, a video in compressed AVI format of the full sequence
for quick visualization of its contents. All the provided timestamps correspond to the seconds elapsed
since the start of the recording day, with a resolution up to milliseconds.

The coordinate frame in which the IMU data is expressed is shown in figure 5.3. In this figure, the
right camera frame is also pictured. The frame of the left camera is not shown for clarity, but it has
the same orientation as the one for the right camera. In the following sections, we describe in detail
the data we provide.

5.2 Image data

We have acquired the stereo pairs at 20 fps, using a radiometric depth of 12 bits per pixel. The
image resolution is 1,096 × 822. The raw images are saved with 16 bits per pixel, thus the 4 most
significant bits are set to zero. The raw images corresponding to the left and right cameras can be
found in the subdirectories raw left 16 bit and raw right 16 bit, respectively. For convenience,
we also provide rectified images with 8-bit pixel depth in the folders rectified left 08 bit and
rectified right 08 bit. Because of the effect of lens distortion and mechanical misalignment, the
rectified images are slightly smaller than the raw ones. All images are saved in PNG files with loss-
less compression. The timestamps corresponding to the image pairs are provided in the text file
image timestamps.csv. Each line of the file contains one timestamp.

Prior to rectifying the images pertaining to the ‘Tunnel Network ’ category, we have subtracted the
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Figure 5.3: Sensor coordinate frames. The IMU coordinate frame is pictured in green, whereas the
right camera coordinate frame is shown in blue.

dark frames from the raw images. See section 4.3.1 for more details. The dark frames are provided in
the calibration data we offer, which is described in section 5.7.

5.3 IMU data

The IMU we used can provide data for acceleration (m/s2), orientation (degrees), rate of turn
(degrees/s) and Earth magnetic field (a.u., arbitrary units, normalized to Earth field strength). As
mentioned in section 4.1.5 the orientation data is filtered to compensate for gyro drift, allowing to ob-
tain a statistical optimal 3D orientation estimate of high accuracy. The rest of the fields are provided
unfiltered.

The IMU data we have acquired is provided in a comma-separated values (CSV) text file called
imu data.csv. The data is stored in a tabular format, where each row corresponds to an IMU reading
and the individual fields are separated by commas. Initially, we acquired data from the IMU at 50
Hz and acquired only acceleration and orientation data. Later improvements of the software and the
wiring have allowed us to increase the acquisition rate to 100 Hz, and to include also the rate of turn
and Earth magnetic field data.

The fields for each record are the following, and are delivered in the order specified: ‘Timestamp’,
‘Roll’, ‘Pitch’, ‘Yaw’, ‘MagX’, ‘MagY’, ‘MagZ’, ‘GyroX’, ‘GyroY’, ‘GyroZ’,‘AccX’, ‘AccY’, ‘AccZ’.
When only orientation and acceleration data is provided, the data fields come in the following order:
‘Timestamp’, ‘Roll’, ‘Pitch’, ‘Yaw’, ‘AccX’, ‘AccY’, ‘AccZ’.

As with all accelerometers, the ones included in the Xsens MTi measure all accelerations, including
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Figure 5.4: View of a recorded GPS data file obtained using the software Google Earth.

the acceleration due to gravity. Actually, the accelerometers do not measure gravity (which would be
negative in the IMU coordinate system) but the opposite force that keeps the IMU in place in the
bar where it is mounted. Thus, to estimate the acceleration due to vehicle motion, gravity must be
subtracted from the readings.

5.4 GPS data

The GPS data was recorded with an approximate frequency of 1 Hz and is provided in GPX format [2]
in the file gps data.txt. The use of the GPX format allows a quick review of the data in a compatible
mapping application. A single track called ‘Car Path’ is used to save all the recorded track points. A
view of one of the recorded GPS data files using the software Google Earth is shown in figure 5.4.

To keep data uniformity, the GPS data is also provided in a CSV file, called gps data.csv. To
convert the data form the GPX format to the CSV format we developed a small XML parser based on
the Xerces library. The provided fields in the CSV file are ‘Timestamp’, ‘Latitude’ and ‘Longitude’ and
come in that precise order.

5.5 Car data

The data acquired from the car computer is provided in the file car data.csv which shares the basic
format with the IMU and GPS data files. The car data was recorded with an approximate frequency
of 3 Hz. The provided fields are the following: ‘Timestamp’, ‘Speed’ and ‘RPM’. The speed units are
km/h.
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Figure 5.5: Rectified Coordinate Systems. The world coordinate system is placed in such a way that
it is aligned with the camera coordinate systems and centered in the left camera’s center of projection.

5.6 Camera calibration data

For each recording session, we acquired a set of calibration pairs. We used a selected subset of these
calibration pairs to perform the calibration and rectification procedures described in sections 4.2.5 and
4.3.1. The use of a subset of the calibration pairs allows a shorter processing time without sacrificing
the precision of the calibration. The calibration and rectification results are delivered in the text files
intrinsics selected.yml and extrinsics selected.yml. The suffix ‘selected’ highlights the fact
that the results were obtained from the selected subset of the calibration pairs, and not using all of
them. Both files are compliant with OpenCV’s FileStorage format, which is based on YAML. In the
file descriptions below, i ∈ {0, 1}, where 0 represents the left image and 1 represents the right image.
The provided calibration data is calculated considering that 3D points in the world are expressed in a
coordinate system Ow which is aligned with the rectified left camera coordinate system, but centered in
the left camera’s center of projection, see figure 5.5. The contents of the file intrinsics selected.yml

are the following:

• Ki ∈ R3×3 : Camera calibration matrix for the i-th camera.
• Di ∈ R8 : Distortion coefficients for the i-th camera.

It is worth mentioning that Ki and Di correspond to the unrectified images. When working with
the rectified pairs, one should only use the matrices provided in the file extrinsics selected.yml.
The contents of this file are described below:
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• R ∈ R3×3 : Rotation matrix that, before rectification, would align the right-camera coordinate
system with the left one.

• T ∈ R3 : Translation vector that, before rectification, would bring the origin of the right-
camera coordinate system into the left one. Thus, R and T are the rotation matrix
and translation vector relating the right and left camera coordinate systems before
rectification.

• Ri ∈ R3×3 : Rectifying rotation matrix for the i-th camera. These rotation matrices are the
result of Bouguet’s rectification algorithm, see section 3.5.

• Pi ∈ R3×4 : Projection matrix for the rectified i-th camera. It maps 3D points expressed in
Ow to 2D points expressed in the corresponding camera frame. See below for more
details.

• Q ∈ R3×4 : Reprojection matrix for points viewed in the rectified left camera. It maps an image
point, together with its disparity, to a 3D point expressed in Ow. See below for more
details.

The projection matrices Pi have the form:

Pi =

 α 0 u0 αTi
0 α v0 0
0 0 1 0

 , (5.1)

where α is the focal length in pixels and Ti is the baseline with respect to the left camera, expressed

in the i-th camera coordinate frame. They map 3D points X =
[
X Y Z 1

]T
in homogeneous

coordinates to 2D points x =
[
x y w

]T
in homogeneous coordinates as follows:

PiX = x . (5.2)

The reprojection matrix Q has the form:

Q =


1 0 0 −u0
0 1 0 −v0
0 0 0 α
0 0 1

T 0

 , (5.3)

and can be used to obtain the 3D coordinates expressed in Ow of an image point [u, v] in the rectified
left camera, given its associated disparity d. The depth z of the point can be estimated using equation
(3.12). The equations for obtaining the x and y coordinates can be derived from equations (3.4) and
(3.5). The derivation yields:

x = z
u− u0
α

, (5.4)

y = z
v − v0
α

. (5.5)

Substituting equation (3.12) in (5.4) and (5.5) we finally obtain:

x = T
u− u0
d

, (5.6)
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Figure 5.6: Structure of a session calibration data file.

y = T
v − v0
d

. (5.7)

Thus, given the coordinates [u, v] of an image point and its disparity d, an homogeneous point
[u, v, d, 1]T can be constructed. Then, it can be mapped to 3 dimensions using the following equa-
tion:

Q


u
v
d
1

 =


x
y
z
w

 . (5.8)

The 3D coordinates of the point are then [ xw ,
y
w ,

z
w ].

5.7 Calibration Images

We provide for each recording session all the acquired stereo calibration pairs in case the dataset
user wants to perform the stereo calibration by him/herself. They are stored in a ZIP file named
calib imgs session i.zip, i ∈ 1, 2, 3, whose contents follow the distribution shown in figure 5.6. Be-
sides the image pairs, we provide a couple of XML files called images all.xml and images selected.xml,
which respectively enlist all the available calibration images and the ones we used to perform the cali-
bration. The stereo calibration pairs are PNG files saved with a bit depth of 8 bits.

In the case of recording session 3, the session in which the night sequences were recorded, we also
provide the obtained dark frames in the subdirectory ‘dark frames’. They are PNG image files with 16
bits of pixel depth.

5.8 Additional Data

In the file sequence data.txt, we provide additional data about the sequence. In particular, we
provide the number of pairs the sequence is made of, the recording session in which it was recorded,
and the category we have assigned it to. An example file is shown below.
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Number of pairs: 1998

Recording Session: 3

Category: Colonial Town Streets

5.9 Dataset summary

We have acquired a novel stereo dataset, targeted to the task of environment perception in the context
of autonomous driving. It is unique among existing datasets because it includes scenes featuring
particular challenges that are mainly present in roads and streets of developing countries, and thus are
not considered in the currently available datasets, which are recorded in developed countries.

The dataset comprises more than 96,000 monochrome stereo pairs, distributed in 42 sequences,
ranging from 1,201 to 3,162 pairs in length. The sequences are classified in 4 categories: ‘Colonial
Town Streets’, ‘Urban Streets’, ‘Avenues and Small Roads’, and ‘Tunnel Network ’. A diversity of
challenges typically present in real-world, outdoor environments such as shadowing, reflections and
lens flares are present in the acquired images. The stereo pairs were acquired with a custom-made
stereo camera with a baseline of 50 cm. The pairs feature a wide range of disparities, 240 or greater for
a typical pair. The images were acquired at 20 frames per second, with a resolution of 1,096 × 822 and
a pixel depth of 12 bits. Rectified 8-bit images are also provided. The image data is complemented with
GPS data and with readings from an IMU. All data is timestamped. Monocular and stereo camera
calibration information is also provided.

A comparison of the main characteristics of our dataset, compared to those of the datasets men-
tioned in section 1.2 is shown in table 5.1. In the table, G.T. stands for Ground Truth and N/A
stands for Not Available. Some of the featured datasets include different types of data, but the values
shown in the table correspond exclusively to stereo data. The values of the Number of Disparities field
were obtained from a typical pair, and may vary depending on the captured scene.

Dataset Resolution Framerate Pixel Depth No. of disp. Color/Mono G.T.

Our dataset 1,096 × 822 20 fps 12 bits ∼ 240 Mono No

The Rawseeds project 640× 480 15 fps 8 bits N/A Mono No

EISATS Up to 1,024 × 1,024 25 fps Up to 12 bits ∼ 110 Color & Mono
Some

sequences

The HCI/Bosch Robust
Vision Challenge

656× 541 25 fps 12 bits ∼ 70 Mono No

The Daimler Ground
Truth Stixel Dataset

1,024 × 333 24 fps 12 bits ∼ 160 Mono Sparse

The annotated Leuven
stereo data set

316× 256 - 8 bits ∼ 125 Color Yes

The KITTI Dataset 1,392 × 512 10 fps 8 bits ∼ 128 Color & Mono Yes

Table 5.1: Characteristics of our dataset compared with those of other similar datasets.

The dataset will be published at the following web address: http://www.cimat.mx/~jbhayet/

http://www.cimat.mx/~jbhayet/
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Chapter 6

Performance evaluation of selected
stereo vision algorithms

Several of the stereo pairs that constitute the recorded dataset offer different challenges that are
not easily handled by current stereo matching algorithms. Lens flares, reflections, motion blur, and
projective distortion resulting from a wide baseline are some of the challenges that can be found in the
acquired images. We have evaluated the performance of several stereo matchers under our real-world
imagery and the results of the performed evaluation are presented in this chapter. First, in section
6.1, we present the selected stereo pairs for which we have obtained disparity maps. In this section,
we also enlist the stereo matching algorithms we have used, together with the associated data costs.
Then, in section 6.2, we present the obtained disparity maps and perform a qualitative analysis of
them. Finally, in section 6.3, we perform a runtime comparison between the selected stereo matchers
and evaluate their viability to be used in the context of autonomous driving.

6.1 Disparity Map Generation

To evaluate the performance of the selected stereo matching algorithms, we have chosen 12 pairs
from the dataset. Our goal in choosing the pairs was to put together a set of pairs featuring different
challenges that could potentially show the weaknesses of the stereo matching algorithms. The obtained
disparity maps are shown in section 6.2. The selected pairs, together with a brief description of their
content, are presented below.

� Stereo pair “Big avenue”. The pair features a big avenue with a relatively untextured road
surface. This lack of texture makes the matching process more complicated. The lane markers
are not clearly visible in some regions, and the roadwork ahead in the construction of a bus stop
is poorly signaled.
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Figure 6.1: The stereo pair “Big avenue”

� Stereo pair “Street with potholes 1 ”. A urban street with a very poor road surface is shown.
Potholes are abundant, and besides they are filled with water from a recent downpour. The
reflections in the accumulated water may cause errors in the matching process.

Figure 6.2: The stereo pair “Street with potholes 1 ”

� Stereo pair “Juárez street”. In the pair, a complex urban scene with many elements can be seen.
Reflections on bright surfaces and saturation are the main challenges in this pair.

Figure 6.3: The stereo pair “Juárez street”

� Stereo pair “Pocitos street 1 ”. A urban scene where the shadow from a tall building makes it
more difficult to distinguish corresponding pixels. The slope of the road magnifies the projective
distortion caused by the horizontal displacement of the cameras. Also, some pixels on the road
and sidewalk are saturated.
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Figure 6.4: The stereo pair “Pocitos street 1 ”

� Stereo pair “Lens flare 1 ”. The pair shows a scene which has been affected by a lens flare. The
angle of the sunlight entering the camera lens caused reflections and the visualization of the
iris aperture (seen as a set of concentric hexagons in the pictures). This results in a violation
of the assumption of constant intensity of corresponding pixels, and potentially complicates the
matching process.

Figure 6.5: The stereo pair “Lens flare 1 ”

� Stereo pair “Tunnel crossing”. A crossing in the subterranean tunnel network we recorded is
shown in this pair. The challenges of this scene are the low-light conditions and reflections caused
by water on the road surface.

Figure 6.6: The stereo pair “Tunnel crossing”

� Stereo pair “Tunnel speed bumper”. The pair shows a transition point between the exit of a



76 CHAPTER 6. PERFORMANCE EVAL. OF SELECTED STEREO VISION ALGORITHMS

tunnel and the entrance of another. Low-light conditions, together with shadows, and projective
distortions constitute the main challenges offered by the pair.

Figure 6.7: The stereo pair “Tunnel speed bumper”

� Stereo pair “Street with potholes 2 ”. Another urban street with deplorable road surface is shown.
The road, excluding the potholes, looks relatively untextured. Also, there is a speed bumper in
the lower part of the image which in some places is difficult to distinguish from the main road
surface.

Figure 6.8: The stereo pair “Street with potholes 2 ”

� Stereo pair “Lens flare 2 ”. This pair shows another example of a lens flare affecting the scene.
In this case, besides the presence of a reflection of the iris aperture, it can be seen that the left
frame has more artifacts caused by the lens flare than the right frame, representing a significant
violation of the intensity constancy assumption. Because of the curve on the road, the number
of occluded pixels is significant.

Figure 6.9: The stereo pair “Lens flare 2 ”
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� Stereo pair “Top of a hill”. Acquired while driving on a road that goes up and down on a hill,
the frame features shadows and several depth levels. Also, because of the white color of the
visible houses and the sun position, many pixels are saturated, making it very difficult to find
corresponding pixels. The sky in the horizon is also saturated.

Figure 6.10: The stereo pair “Top of a hill”

� Stereo pair “Columns in tunnel”. The pair, also recorded in the tunnel network, is affected by
low-light conditions, and also by motion-blur, which is caused by the increased exposure time
needed to gather enough light to perceive the scene with reasonable quality.

Figure 6.11: The stereo pair “Columns in tunnel”

� Stereo pair “Pocitos street 2 ”. A typical colonial street is shown in the pair. The shadow of
the building affects the left portion of the images, reducing the available texture information to
determine corresponding pixels. Some pixels are saturated.
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Figure 6.12: The stereo pair “Pocitos street 2 ”

6.1.1 Selected stereo matching algorithms

We have selected five stereo matching algorithms for evaluation. We have considered block matching,
which is a local matcher (see section 3.6.3). Also, semi-global matching, an approximation to global
matching (see section 3.6.4) is considered. We have included also two global matchers, belief propaga-
tion matching and graph cut matching (see sections 3.6.4 and 3.6.4 respectively). Finally, the ELAS
stereo matching approach described in section 3.6.5 is included.

In the case of block-matching (BM), we have used the implementation of the algorithm included in
OpenCV [72]. The algorithm is similar to the approach presented in [61]. In the implementation, prior
to the cost calculation, a pre-filtering stage is performed to normalize image brightness and improve
image texture. Then the DSI (see section 3.6.2) is calculated over the filtered image, using as data
cost ESAD. The winning disparities are calculated by WTA using equation (3.28). A post-filtering
stage is performed on the obtained disparity map where a left-right consistency check is performed,
and non-confident disparities are removed. Also, a “speckle” filter is optionally run over the disparity
map to remove small patches of disparity values inconsistent with its surroundings. The values we
used for all the required parameters are shown in table 6.1.

For semi-global matching, we have also used the implementation included in OpenCV. The algorithm
is based on the original proposal described in [53], however, there are several differences, enlisted below:

� The used data cost is EBT (see section 3.6.1) instead of the original mutual information metric
proposed by Hirschmüller.

� The data cost is aggregated in a window, in contrast to the pixel-wise data cost calculation in
the original paper. Because of this, the algorithm is called Semi-Global Block Matching (SGBM).
However, if the parameter SADWindowSize is set to 1, the data cost is pixel-based.

� The number of directions used is normally 5, but can be increased to 8 if the fullDP flag is set.
The original paper uses 16 directions.

� The pre and post-filtering steps used in OpenCV’s implementation of block matching are also
included in the implementation of SGBM.

The corresponding parameter values used to generate our disparity maps are shown in table 6.1.
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Parameter Block Matching Semi-Global Block Matching

SADWindowSize 11 3

minDisparity 0 0

numberOfDisparities 240 240

preFilterSize 11 N/A

preFilterCap 31 30

textureThreshold 10 N/A

uniquenessRatio 10 10

P1 N/A 50

P2 N/A 1000

speckleWindowSize 60 0

speckleRange 10 0

disp12MaxDiff 1 1

fullDP N/A true

Table 6.1: Parameter values considered for the used BM and SGBM implementations.

In the case of ELAS, we have used the implementation made available by the authors at [3]. We
have used the parameter set ROBOTICS as specified by the authors. We have modified the original code
to enable it to read PNG files, and to generate disparity maps with no scaling, in both gray scale and
with a color code applied for better visualization.

For Belief Propagation (BP) matching, we have used the implementation of the approach presented
in [34], which is available at [33]. The authors present several improvements over the usual implemen-
tations of belief propagation algorithms to improve runtime efficiency, including a hierarchical approach
to perform BP in several levels, in a coarse-to-fine manner. In this approach, BP is run at a low level
of resolution for some iterations. The resulting messages are then used to initialize the messages at
the next finer level, accelerating convergence and enabling a quicker propagation of information. The
authors originally use a scaled and truncated modified version of the EAD data cost (see section 3.6.1),
this is:

Edata(u, v, d) = λmin(|EAD(u, v, d)|, τ) , (6.1)

where λ is the scaling factor and τ is the truncation limit. In practice, this data cost proved to be too
simple, and obtaining good quality disparity maps was not possible. For this reason, we have modified
the provided code to use different data costs that replace EAD in equation (6.1). We integrated the
ESAD, EZSAD and ECEN data costs into the existing code, but only obtained good results when using
EZSAD and ECEN . The smoothness term is a linear truncated cost of the form:

Esmooth(f(p), f(q)) = min(|f(p)− f(q)|, γ) . (6.2)

The actual values used for λ, τ and γ, together with the window sizes are presented in table 6.2

Data Cost λ τ γ Window Size

EZSAD 0.1 50 100 3× 3

ECEN 0.2 10 100 3× 3

Table 6.2: Parameter values used in the BP implementation.

For both used data costs, we have used 7 iterations of belief propagation and 7 scale levels. As
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with the ELAS implementation, we have also added support to PNG files, and the generation of colored
disparity maps.

In the case of graph cut matching, we have used the implementation of the approach described
in section 3.6.4, which is available at [58]. The data cost integrated by the authors is EBT , but
extended to include also the vertical direction. In our tests, this data cost did not perform well, even
when aggregated on a window, so we adapted the ESAD, EZSAD and ECEN data costs to the original
implementation. In practice, we could obtain only good results with the ECEN data cost. If a1 = 〈p,q〉
and a2 = 〈r, s〉, the penalty Va1,a2 in equation (3.40) is defined as follows:

Va1,a2 =

{
3λ if max(|I(p)− I(r)|, |I(q)− I(s)|) < 5
λ otherwise ,

(6.3)

where I(p) represents the intensity at pixel p. The penalty for not having the same disparity is small
(λ) if the difference of intensity between adjacent assignments is significant, otherwise the penalty is
big (3λ). We have defined the occlusion penalty Co in equation (3.39) as Co = 10λ, so that all the
penalties are expressed in terms of a single parameter, λ.

Our best results were obtained using λ = 3, a window with dimensions 7×7, and setting the number
of iterations to t = 6 in algorithm 1. No significant improvement on the quality of the disparity maps
was noticeable using more iterations. In the used implementation, the pixels that end up labeled as
occluded, are filled with the disparity from the left-closest non-occluded pixel along the same epipolar
line. Similarly to the implementations of the other algorithms, we have included the capabilities of
working with PNG files and generating disparity maps with a color code applied.

For all the stereo matchers but ELAS, the maximum disparity dmax was defined as 240, which is
suitable for all the considered pairs. ELAS automatically detects the disparity range.

6.2 Qualitative evaluation

Unfortunately, we have no disparity ground-truth for the selected stereo pairs, so we cannot offer a
quantitative analysis on the performance of the algorithms. Nevertheless, we can offer an analysis over
the perceived quality of the disparity maps. Attributes such as density, presence of noise, coherence
with scene information, smoothness, object border definition are the main qualities we have considered
in our evaluation. The disparity maps we obtained are shown in figures 6.14, 6.15 and 6.16.

We have applied a color code to the obtained disparity maps so that they are better appreciated.
The used color code is shown in figure 6.13. Red is applied to the closest objects and violet is for
objects far away. The disparity maps obtained with BM, SGBM and ELAS show some pixels in black.
They correspond to pixels for which a disparity has not been assigned, because either the left-right
consistency check failed or the confidence on the assigned disparity was not high enough.

The block matching algorithm produced in general more sparse disparity maps than the rest of
their counterparts. This is due to the fact that it failed to find disparity values for image zones with
low texture, where image information alone is not enough to find a reliable disparity, see for example
the BM disparity maps for the pairs “Big avenue” and “Tunnel speed bumper” in figures 6.14 and 6.15
respectively. It is in this situation that the lack of smoothness constraints penalizes the performance
of the algorithm.

The results obtained by semi-global block matching are a clear improvement over the observed
performance of block matching. This is clear while comparing the disparity maps for the pairs “Big
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Figure 6.13: Color code applied to the obtained disparity maps. The upper scale shows the depth in
meters. The lower scale shows the disparity.

avenue” and “Tunnel speed bumper” obtained with BM and SGBM, for example. Although SGBM
also fails to determine disparities with high confidence on some low texture regions, the disparity maps
it delivers are denser and provide more information that would allow a better scene understanding. As
we show in section 6.3, the performance of SGBM is by far the fastest among global and semi-global
matchers.

The disparity maps obtained by ELAS have a density that is slightly higher than the one obtained
with SGBM. Also, they look “edgy”, this is, the borders have in some cases a polygonal appearance,
caused by the triangulation of the support points. In some pairs it failed to determine the disparities
in the regions of the image that correspond to close objects, see for example the disparity maps for
the pairs “Big avenue” and “Pocitos street 1 ” in figure 6.14. The performance of the algorithm was
hampered, as in the case of the previous two, by the lack of texture. In some cases, such as in the
far road section of the pair “Columns in tunnel”, it manages to estimate the disparity, when BM and
SGBM fail to do so.

BP allowed to obtain the disparity maps with the highest quality, specially using the ECEN data
cost. Even in low-texture situations, it found reasonable disparity estimates, generating dense and
coherent disparity maps. No post-filtering step, like speckle filtering, was considered for the disparity
maps obtained in this method, but, even if it was included, it seems that the obtained disparity maps
would be the most dense and accurate of all. The definition of the borders of objects looks a bit over-
smoothed in some pairs. In some cases, it “creates” non-existent structures, as in the the background
of the pair “Top of a hill”, in figure 6.16. Comparing the performance of the EZSAD and ECEN
data costs, it can be seen that, in general the disparity maps obtained using the ECEN data cost are
of better quality than the ones obtained using EZSAD. For example, for the pair “Big avenue”, an
artifact in the road surface can be seen in the BP disparity map obtained with EZSAD that is not
present in the one obtained using ECEN .

GC in general allowed to obtain disparity maps with reasonable quality. Similarly to BP, it was
capable of determining disparities in low-texture situations. However, in contrast to the disparity maps
obtained with BP, the smooth changes in depth, such as the ones corresponding to the road surface,
sometimes do not show as smooth changes in disparity, see for example the disparity obtained by GC
for the pair “Tunnel crossing” in figure 6.15. Also, the disparity maps obtained with GC are affected
by noise, and several small patches of miscalculated disparities can be seen. The GC approach failed
to assign correct disparities to the close region of the road in the pair “Big avenue” and also struggled
with the background of the pair “Top of a hill”.

Among the challenges present in the selected pairs, the reflections of water present on the road
surface were the ones causing more trouble to the stereo correspondence algorithms. All of them were
affected by this situation to a greater or lesser extent. BP with ECEN data cost was the best dealing
with this situation, see the disparity maps corresponding to the pairs “Street with potholes 1 ” and
“Tunnel crossing” in figures 6.14 and 6.15 respectively. Rather surprisingly, GC and specially BP
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were able to deal with the artifacts introduced by lens flares, as it can be seen in the disparity maps
obtained for the pairs “Lens flare 1 ” and “Lens flare 2 ”. ELAS also delivered reasonably good results,
although some effects caused by the lens flares can be observed in the obtained disparity maps. BM
and SGBM struggled more with this condition. Regarding the dark conditions present in pairs “Tunnel
crossing”, “Tunnel speed bumper” and “Columns in tunnel”, BP was also the best matcher dealing
with them, followed by GC, although the maps obtained with the latter technique are more affected
with noise. The performance of ELAS was slightly better than the one offered by SGBM, both offering
disparity maps with an acceptable density, but ELAS dealt in general better with the low-texture
regions, which are common in this situation.

We conclude that BP offers the best overall performance for the selected stereo pairs. It was able
to deal with most of the challenges presented in the pairs and delivers the disparity maps with the
highest quality among the selected matchers. GC comes second in terms of the quality of the obtained
disparity maps. However, they are affected by some noise and the lack of desirable smoothness in
certain situations. ELAS and SGBM offer similar performances. The disparity maps they deliver are
far from perfect, but seem useful enough to allow the basic understanding of the viewed scene. Their
performance is low in regions where the image texture is scarce and cannot handle with ease the existing
challenges in the pairs. Finally, the disparity yielded by BM are the ones with the lowest quality. This
was expected because of the simplicity of the algorithm and its implicit lack of smoothness terms.
However, in most cases the obtained disparity maps are still capable of offering valuable information
which would allow to infer the scene structure.

6.3 Runtime comparison

To perform a comparison of the runtimes of the selected stereo matchers, we have calculated the
disparity maps over 30 pairs, including the ones discussed in the previous section. We have used the
frames at full resolution. The calculations were done on a mobile workstation running Linux Mint 64
Bit, equipped with a Intel Core i7 processor with 8 cores, each running at 2.20 Ghz, and 8 GB of RAM.

It is worth mentioning that OpenCV’s implementation of block matching and semi-global block
matching takes advantage of the SSE2 (Streaming SIMD Extensions 2) instruction set when supported
by the computer, enhancing the performance. Similarly, the implementation of ELAS exploits the
SSE3 (Streaming SIMD Extensions 3) instruction set when the hardware supports it, reducing the
calculation time. The used implementations of BP and GC are very efficient from the algorithmic
point of view, but do not exploit any performance-enhancing library. The used computer supports
both SSE2 and SSE3.

The running times for all the pairs are shown in figures 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22 for
BM, SGBM, ELAS, BP with ZSAD data cost, BP with CEN data cost and GC respectively. From the
charts it can be seen that, in general, the content of a given stereo pair does not affect significantly the
running time of the algorithms, as they remain relatively unchanged from pair to pair. The running
times are expressed in milliseconds.

For an application like autonomous driving, it is very important to update as often as possible the
representation of the environment ahead, to navigate safely. An update rate of several times a second
is the minimum update rate required. For example, while traveling at 100 km/h, a car travels more
than 27 meters each second. Also, at this speed, an average modern car equipped with ABS requires
about 40 meters to stop completely in emergency braking. Because of this, it is of utmost importance
to use a very fast algorithm.
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Figure 6.14: Disparity maps for the pairs “Big avenue”,“Street with potholes 1”,“Juarez street” and
“Pocitos street 1 ” are shown respectively in the columns from left to right. In the first row, the left
frame of the stereo pair is pictured for reference. From the second row and on, the disparity maps
obtained using BM, SGBM, ELAS, BP with CEN data cost, BP with ZSAD data cost and GC are
shown.
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Figure 6.15: Disparity maps for the pairs “Lens flare 1 ”,“Tunnel crossing”,“Tunnel speed bumper”
and “Street with potholes 2 ” are shown respectively in the columns from left to right. In the first row,
the left frame of the stereo pair is pictured for reference. From the second row and on, the disparity
maps obtained using BM, SGBM, ELAS, BP with CEN data cost, BP with ZSAD data cost and GC
are shown.
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Figure 6.16: Disparity maps for the pairs “Lens flare 2 ”,“Top of a hill”,“Columns in tunnel” and
“Pocitos street 2 ” are shown respectively in the columns from left to right. In the first row, the left
frame of the stereo pair is pictured for reference. From the second row and on, the disparity maps
obtained using BM, SGBM, ELAS, BP with CEN data cost, BP with ZSAD data cost and GC are
shown.
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Figure 6.17: Disparity calculation run-times for block-matching.

Figure 6.18: Disparity calculation times for semi-global block-matching.
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Figure 6.19: Disparity calculation times for ELAS matching.

Figure 6.20: Disparity calculation times for BP matching with ZSAD data cost.
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Figure 6.21: Disparity calculation times for BP matching with CEN data cost.

Figure 6.22: Disparity calculation times for GC matching.
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Figure 6.23: Runtime comparison of the selected stereo matchers. The y−scale is logarithmic to allow
a better visualization of the data.

A side by side comparison of the average running time of each algorithm is presented in figure
6.23. In the bar plot shown, it can be seen that, from the used implementations, only the one corre-
sponding to block matching allows a reasonable update time, with an average running time close to
100 ms. Furthermore, the block-matching algorithm is highly parallelizable and can be implemented
very efficiently in parallel hardware. The runtimes of ELAS and SGBM are within the same order of
magnitude, with average running times around 500 and 1,000 ms respectively, and, could potentially
be used in autonomous driving after some algorithmic improvement or after their adaptation to run on
specialized hardware, such as FPGAs or GPUs. Actually, for semi-global matching, several real-time
implementations have already been developed ( [6], [39], [40]). The execution times for BP, and spe-
cially GC, for which the runtime for some pairs was more than half an hour, are orders of magnitude
above the desired runtime, so it will require more work from the scientific community before they can
be used in real-time applications. In the case of BP, there are some works in the literature, for example
[102] and [105], where the use of a GPU has made it possible to reach close to real-time performance
on low-resolution imagery. It is worth mentioning that while generating the disparity maps for our
images, we observed a memory usage of more than 4 GB in the used implementation of BP, which
is a lot, specially considering that in autonomous driving the hardware platforms should be ideally
low-power embedded systems, where memory is a constrained resource.
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Chapter 7

Conclusions and Future Work

In this thesis we approached the problem of environment perception for autonomous driving using
stereo vision. We focused particularly in the difficulties that exist in the roads and streets of developing
countries, such as poor road conditions, abundant speed bumpers, insufficient signaling, among others,
that add even more complexity to the task of autonomous vehicle navigation. To enable the testing,
and subsequent improvement, of the existing environment perception algorithms in these conditions,
we instrumented a vehicle to acquire stereo sequences featuring the mentioned challenges. Using the
acquired pairs, we performed an evaluation on the performance of a few selected stereo correspondence
algorithms, to determine their suitability for this task. We hope that this work is found useful and
helps in further development of autonomous driving technology.

7.1 Main Contributions

� We have performed a review on the history and state of the art of autonomous driving technology,
focusing particularly in environment perception. We discuss the main types of sensors used to
perceive the environment surrounding the vehicles and expose their advantages and drawbacks.

� An in-vehicle data acquisition platform was developed from scratch to acquire our dataset. The
devised platform is a distributed computing system that allows to acquire and save information
obtained from multiple sensors, including a custom-made stereo camera and an inertial measure-
ment unit.

� We provide a novel stereo dataset acquired in Mexican streets and roads. The recorded dataset
features scenes where the road conditions are less than ideal, with many challenges for the task
of autonomous driving that are not present in existing datasets, which have been recorded in
developed countries. The dataset shows a variety of scenarios and environment conditions, that
have proven to be challenging for traditional stereo matching algorithms.

� We have performed a qualitative evaluation of the performance of selected stereo matchers on
selected pairs of the dataset. We have found suitable parameters and data cost functions that
allow to obtain disparity maps with good quality in general. This evaluation may serve as a good
starting point for future work in the dataset.
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7.2 Future Work

Below we enlist a list of possible topics that may be developed as a follow-up of the work presented in
this thesis.

� Extend the implementations of the selected stereo matching algorithms to allow the use of images
with their full pixel depth of 12-bit. In preliminary tests we have seen that the increase in the
bit depth allows to obtain better disparity maps.

� A few of the sequences we recorded lack rectifying calibration pairs, because of mechanical varia-
tions that result from unmounting and mounting again the sensor setup. Since the variations
are minor, it may be possible to obtain the calibration information for these pairs with the
self-calibration technique described in [26]. This would allow to extend the dataset.

� Test the road obstacle detection algorithms proposed in [62] and [106], which work in the
disparity space. It would be important to see if they are capable of detecting road irregularities
such as potholes and speed bumpers.

� Use the acquired sequences to test the performance of techniques for disparity calculation that
take into account temporal consistency and/or motion information, such as the one presented in
[69].

� Test existing object recognition algorithms on the acquired sequences for relevant object cate-
gories such as cars, motorcycles and pedestrians.
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