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This thesis focuses in the development of algorithms for mobile robotics. We investigate the

interaction between two antagonistic agents in an environment without obstacles. One of the

agents wants to track/capture the other despite any opposition. This kind of problems has

interesting applications, as for example: stopping a malicious intruder, maintaining connectivity

between a mobile user and a base station, or monitoring of children. In particular, we are focused

in finding theoretical guarantees for tracking/capturing an omnidirectional agent (evader) using

a differential drive robot (pursuer). We are also interested in finding the motion strategies used

by the players to accomplish their goals. First, we consider the surveillance problem of tracking

an omnidirectional evader at constant distance using a DDR in the plane without obstacles.

The players have maximum bounded speeds and the DDR is faster than the evader. We assume

that both players have full knowledge of their instantaneous positions and the instantaneous

velocity of the evader. We construct a partition of the configuration space that allows to know

at the beginning of the game whether or not the DDR is able to maintain tracking at constant

distance. We also find optimal motion strategies for both players, in the sense that they require

the minimum capabilities of the players for winning. Next, we propose a generalization of the

problem described above. We present the conditions that establish whether or not it is possible

for a DDR to track an Omnidirectional Agent (OA) at a bounded variable distance. We propose

motion strategies for the DDR; these motion strategies can also be used by a DDR to capture

an OA. Finally, we address the problem of capturing an omnidirectional evader with a DDR in

minimal time. In this case, the players have only knowledge of their instantaneous positions.

We obtain the motion primitives and time-optimal motion strategies for the players that are in

Nash Equilibrium. We propose a partition of the space where the strategies of the players are

well established. Using this partition, we found feedback motion policies for the DDR. We also

give the conditions defining the winner of the game.
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Chapter 1

Introduction

This thesis focuses in the development of algorithms for mobile robotics, and it is re-

lated to works proposing motion strategies based on visibility [2–6]. This work, is also

connected to the area of Sensor Based Motion Planning for mobile robots. Sensing infor-

mation is used for different purposes; in some cases, it is employed as a tool to perform a

task. For example, sensing is important in navigation problems [7, 8], where the goal is

to move a robot from an initial configuration to a final configuration avoiding obstacles.

We are interested in those tasks where a key goal is to sense the environment (perception

planning [9–11]). In general, the sensing stages are taken into account in the plan

generation as a constraint that must be fulfilled during the execution of the plan. There

are a lot of problems that fall in this category, some of them are exploration, coverage

and pursuit-evasion.

The exploration problem involves the generation of a motion strategy to efficiently move

a robot in order to sense and discover its surroundings and build a representation (map

or model) of the environment [11–14]. Usually the construction is done fusing different

views of the environment. The representation should be useful to accomplish other

robotic tasks.

In the coverage problem [8, 15], the objective is usually to sweep a known environment

with a robot or with the viewing region of a sensor (footprint). In this problem, it is

often desirable to minimize the sensing overlap to avoid that the same region is covered

more than once.

The problems we consider in this thesis are related to pursuit-evasion games. A pursuit-

evasion game can be defined in several ways. For example, a problem which has been

extensively studied, consists in maintaining visibility of a moving evader in an environ-

ment with obstacles [3, 16–19]. In this case, the pursuer must maintain visual contact

1
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with the evader (refer to Fig. 1.1) or a bounded distance between both players. The

evader may try to escape the pursuer’s field of view or reach a distance from the pursuer

outside the range.

Trajectory: known or unknown

Visibility Region

EvaderPursuer

Figure 1.1: Target tracking.

Alternatively, the pursuer(s) might have as a goal to actually “capture” the evader(s)

[20–22], that is, move to a contact configuration, or closer than a given distance (refer

to Fig. 1.2).

Pursuer

Evader

(a)

Pursuer

Evader

(b)

Pursuer

Evader

(c)

Figure 1.2: Target capturing.

In another problem, one or more pursuers could be given the task of finding an evader

[5, 6, 18, 23–27]. To solve this problem, the pursuer(s) must sweep the environment

so that the evader is not able to eventually sneak into an area that has already been

explored (refer to Fig. 1.3).

Some characteristics can be added to the problems described above in order to make

them more general, for example, kinematic constraints on the players’ motion [28], posi-

tion uncertainty [29–31], limited sensors [11, 14], etc. The motion strategies considering
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Target finding.

multiple robots [32–35] are generally hard to construct but usually yield better perfor-

mance (compared to a single robot). In these kind of problems, it is often challenging

but very interesting to develop complete algorithms1 that find optimal solutions.

This thesis addresses problems where the pursuer must maintain surveillance or capture

of a moving evader in an environment without obstacles. The evader aims to avoid these

conditions. We are interested in developing motion strategies for the players so that they

can achieve their goals. We are also interested in obtaining the conditions determining

the winner of the games.

1.1 Problems Addressed in this Work

In this work, we study three pursuit-evasion problems involving a Differential Drive

Robot (DDR) and an Omnidirectional Agent. The robot has two wheels that are ac-

tuated independently, if they rotate in the same direction and with the same speed

the robot moves forward or backward following a straight line. If the wheels rotate in

opposite directions with the same speed the robot rotates in place either clockwise or

counterclockwise. In our case, the players have bounded speeds, and the pursuer is faster

than the evader. We consider purely kinematic problems and any dynamic constraints

are neglected (e.g. acceleration bounds). All the problems take place on an environment

without obstacles.

1Such an algorithm is guaranteed to return a correct solution when one exists, or to report failure in
finite time when a solution does not exist
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First, we consider the surveillance problem of tracking an omnidirectional evader at

constant distance using a DDR.

Second, we address the pursuit-evasion problem in which a DDR (the pursuer) tracks

an Omnidirectional Agent (OA) at bounded variable distance, maintaining surveillance

of the agent at all times.

Finally, we consider the problem of capturing in minimum time an omnidirectional

evader using a DDR. At the beginning of this game the evader is at a distance L > l

(the capture distance) from the pursuer. The goal of the evader is to keep the pursuer

farther than this capture distance as long as possible. The pursuer wants to capture the

evader as fast as possible.

1.2 Thesis Outline and Contributions

In Chapter 2, we present a brief summary of the work that has been done in the area of

pursuit-evasion games, particularly, in the robotics community.

In Chapter 3, we consider the surveillance problem of tracking an omnidirectional evader

at constant distance using a DDR. The players have maximum bounded speeds and the

DDR is faster than the evader. We assume that both players have full knowledge of their

instantaneous positions and the instantaneous velocity of the evader. In this chapter, we

construct a partition of the configuration space that allows to know at the beginning of

the game whether or not the DDR will be able to maintain tracking at constant distance.

We also find optimal motion strategies for both players, in the sense that they require

the minimum capabilities of the players for winning. This work has appeared in [36].

In Chapter 4, we propose a generalization of the problem in Chapter 3. We present the

conditions that establish whether or not it is possible for a DDR to track an Omnidi-

rectional Agent at a bounded variable distance. In this chapter, we also propose motion

strategies for the DDR; these motion strategies can also be used by a DDR to capture

an OA.

In Chapter 5, we present a brief introduction to optimal control theory and differential

games. The objective of the chapter is describe to the reader some basic concepts and

techniques that are used in the solution of the problem addressed in Chapter 6.

In Chapter 6, we address the problem of capturing an omnidirectional evader with a DDR

in minimum time. As in Chapters 2 and 3, we assume that both players have maximum

bounded speeds and that the DDR is faster than the evader. In this case, however,

the players have only knowledge of their instantaneous positions. In this chapter, we
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obtain the motion primitives and time-optimal motion strategies for the players that

are in Nash Equilibrium. We propose a partition of the space where the strategies of

the players are well established. We also give the conditions defining the winner of the

game. This work has appeared in [37] and it is under review in [38].

Finally, in Chapter 7 we present some general conclusions and future work.

For the problems in Chapters 3, 4 and 6, we present simulation results of the strategies

followed by the players.



Chapter 2

Related Work

A lot of work has been done in the area of pursuit-evasion games [20, 39, 40], where the

three problems described in last chapter have received a lot of attention. In this chapter,

we describe the most representative works in the literature. Usually the tools that are

used to deal with them are similar (graph theory, probabilistic tools, optimal control

theory, differential games, combinatorics, etc.), below we describe some prior work.

2.1 Target Finding

In the target finding problem [6, 27], the objective is to establish some sort of visibility

between the pursuer and the evader. In this case, the pursuer must sweep the environ-

ment so that the evader is not able to eventually sneak into an area that has already

been explored. Deterministic [25, 41–44] and probabilistic algorithms [26, 45, 46] have

been proposed to solve this problem.

Some interesting results have been obtained for the problem of target finding in a graph,

in this problem, the pursuers and the evader can move from vertex to vertex until

eventually the pursuer guarantees to touch the evader [41, 47]. The search number of

a graph refers to the minimum number of pursuers needed to solve a target finding

problem, and it is closely related to other graph properties such as cut-width [48, 49]. It

has also been shown that a suitable strategy is to search the graph monotonically (i.e.

without revisiting places multiple times) in [50, 51].

The problem of target finding in a graph was introduced by Suzuki and Yamashita

[25]. They were interested in the existence and complexity of an algorithm which,

6
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given a simple polygon P with n edges, decides whether P is 1-searchable1 and if so,

outputs a search schedule. Although the problem has been open for a while, no complete

characterizations or efficient algorithms have been developed. Some variations have been

considered. Icking and Klein [52] defined the two-guard walkability problem, a search

problem for two guards whose starting and goal positions are given, and who move on

the boundary of a polygon so that they are always mutually visible. Icking and Klein

proposed an O(n log n) solution, which was improved by Heffernan [53] to the Θ(n)

optimal. Tseng et al. [53] extended the two-guard walkability problem relaxing the

constraint that the initial and final position are given. They presented an O(n log n)

algorithm that decides if a polygon can be searched by two guards, and a O(n) algorithm

that gives as its output all the possible starting and goal positions that allow searchability

by those two guards. Lee et al. [54] defined the problem of 1-searchability for a room

(i.e. a polygon with one door – a point that must be visible for the observer all time).

They proposed an O(n log n) decision algorithm and a method to compute a solution in

O(n2) time.

Originally, the problem of 1-searchability for a polygon was introduced in [25] together

with a more general problem in which the pursuer (a.k.a k-searcher) has k flashlights;

when k is not bounded this corresponds to 360◦ vision. For results involving 360◦ refer

to [5, 25, 54, 55] for search in polygons and to [24] for curved planar environments.

Recently, probabilistic [26] and randomized algorithms [6, 22] have been proposed to

address the target finding problem. Other works have focused on minimizing the required

information to accomplish the task, see for instance [56].

2.2 Target Tracking

In the tracking problem, the goal is to maintain visibility of the evader at all times,

usually in an environment with obstacles [3, 16–19]. This problem has been traditionally

addressed with a combination of vision and control techniques [57–59]. Game theory

[40] has been extensively used to approach target tracking [20, 39].

A great deal of previous research exists for this problem, particularly in the area of

dynamics and control in the free space (without obstacles) [20, 39, 40]. Purely control

approaches, usually, do not take into account the complexity of the environment. For

the target tracking problem, the basic question that has to be answered is where should

the robot observer move in order to maintain visibility of a target moving in a cluttered

environment. Both visibility and motion obstructions have to be considered. Therefore,

1A graph is k-searchable if k is the smallest number of searchers for which a search strategy exists to
clean an initially contaminated graph avoiding recontamination.
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a pure visual servoing technique can fail because it ignores the global geometry of the

workspace.

Previous works have studied the problem of maintaining visibility of a moving evader in

an environment with obstacles. In [16], game theory [40] was proposed as a framework

to formulate the tracking problem. The case for predictable targets is also presented in

[16], which describes an algorithm that computes numerical and optimal solutions for

problems of low dimensional configuration spaces. However, the assumption that the

motion of the target is known in advance is a very limiting constraint.

In [60] an algorithm was presented that operates by maximizing the probability of future

visibility of the evader. This algorithm is also studied more formally in [16].

This technique was tested in a Nomad 200 mobile robot with good results. However,

the probabilistic model assumed by the planner was often too simplistic, and accurate

models are difficult to obtain in practice.

The work in [61] presents an approach that takes into account the positioning uncer-

tainty of the robot pursuer. Game theory is also proposed as a framework to formulate

the tracking problem. One contribution of this work is a technique that periodically

commands the observer to move into a region that has no localization uncertainty (a

landmark region) in order to re-localize itself and better track the target afterwards.

In [17], a technique is proposed to track an evader without the need for a global map.

Instead, a range sensor is used to construct a local map of the environment, and a com-

binatorial algorithm is then used to compute a motion for the pursuer at each iteration.

In [19], a greedy approach was used for the problem of evading surveillance. To drive

the greedy motion planning algorithm [19], a local minimum risk function is applied,

called the vantage time.

The approach presented in [62, 63] computes a motion strategy by maximizing the

shortest distance to escape, i.e., the shortest distance the evader needs to move in order

to escape the pursuer’s visibility region. In that work the evaders were assumed to move

unpredictably, and the distribution of obstacles in the workspace was assumed to be

known in advance. This planner has been integrated and tested in a robot system which

includes perceptual and control capabilities. The approach has also been extended to

maintain visibility of two evaders using two pursuers.

In [64], a method has been proposed for dealing with the problem of computing the

motions of a robot observer in order to maintain a moving target within the sensing range

of an observer reacting with delay. The target moves unpredictably, and the distribution

of obstacles in the workspace is known in advance. The algorithm computes a motion
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strategy based on partitioning the configuration space and the workspace in non-critical

regions separated by critical curves. In this work it is determined the existence of a

solution for a given polygon and delay.

[65] proposes a method for dealing specifically with the situation in which the observer

has bounded velocity and has as his objective to maintain a constant distance from

the evader. Necessary conditions for the existence of a surveillance strategy have been

provided as well as an algorithm that generates them. This motion strategy consists of

three types of motions: reactive, compliant and rotational.

In [66], the work proposed in [65] has been extended for dealing with the surveillance

problem of maintaining visibility at a fixed distance of an unconstrained mobile evader

(the target) by a nonholonomic mobile robot equipped with sensors. Only sufficient

conditions for the evader’s escape are given.

In [67], an approach has been proposed for addressing the pursuit-evasion problem of

maintaining surveillance by a pursuer, of an evader in a world populated by polygonal

obstacles. This requires the pursuer to plan collision-free motions that honor distance

constraints imposed by sensor capabilities, while avoiding occlusion of the evader by any

obstacle. The three-dimensional cellular decomposition of Schwartz and Sharir has been

extended to represent the four-dimensional configuration space of the pursuer-evader

system. Necessary conditions for surveillance (equivalently, sufficient conditions for es-

cape) in terms of this new representation have been provided. That work also gave a

game theoretic formulation of the problem, and used this formulation to characterize

optimal escape trajectories for the evader. A shooting algorithm that finds these trajec-

tories, using the Pontryagin’s Maximum Principle (PMP), has been proposed. Finally,

noting the similarities between this surveillance problem and the problem of coopera-

tive manipulation by two robots, several cooperation strategies that maximize system

performance for cooperative motions have been proposed.

[3] addresses the problem of maintaining visibility of the evader in an environment con-

taining obstacles. The pursuer and the evader are omnidirectional (holonomic) systems.

That work proves the existence of strategies that are in Nash equilibrium: the pursuer

wants to maintain visibility of the evader for the maximum possible amount of time,

and, the evader wants to escape the pursuer’s sight as soon as possible. This work

presents necessary and sufficient conditions for the visibility-based target tracking game

in conjunction with the equilibrium strategies for the players.

An extended version of the target tracking problem, where multiple evaders and pursuers

are involved, has attracted increasing attention. In [34] a method that accomplishes

this task but restricted to uncluttered environments is proposed. The method works
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by minimizing the total time in which targets escape surveillance from a robot team

member. In [18] an approach that maintains visibility of several evaders using mobile

and static sensors is proposed. It applies a metric for measuring the degree of occlusion,

based on the average mean free path of a random line segment.

In [68], a method shows how to efficiently (low-polynomial time) compute an optimal

reply path for the pursuer that counteracts a given evader movement. However, that

work does not deal with the problem of deciding whether or not there is an evader path

that escapes surveillance, not even for the special case where the evader follows a fixed

policy.

Almost all existing work focuses on the 2-D version of the problem of maintaining visi-

bility of an evader, but there are few works that deal with the 3-D version of it, mainly

because of the complexity of the visibility relationships in 3-D. One work that deals

with the 3-D version of this problem was presented in [69]. Here the authors present

an online algorithm for 3-D target tracking among obstacles, using only local geometric

information available to a robot’s visual sensors. To prevent the target’s escape from

the robot’s visibility region both in short and long terms, a risk function is efficiently

computed. The robot motions are calculated minimizing the risk function locally also

in a greedy fashion.

In [70], a robot has to track an unpredictable target with bounded speed. The robot’s

sensors are manipulated to record general information about the target’s movements and

avoid that detailed information about the target’s position be available if the robot’s

sensors are accessed by other agent that can damage the target.

Pursuit-evasion has been found to be useful in a variety of interesting applications. For

example, in [71], the authors noticed the similarity between pursuit-evasion games and

mobile-routing for networking. Applying this similarity, they proposed motion planning

algorithms for robotic routers to maintain connectivity between a mobile user and a base

station.

With some similarities with the problem introduced in [71], in [72] a non-cooperative

game is presented where the author proposes a control strategy for a team of robots so

that they can localize and track a non-cooperative agent while maintaining a continu-

ously optimized line-of-sight communication chain to a fixed base station. Focusing on

these two aspects of the problem (localization of the agent and tracking while maintain-

ing the line-of-sight chain), the author presents feedback control laws that can realize

this plan and ensure proper navigation and collision avoidance.
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2.3 Target Capturing

In the capturing problem, the pursuer tries to get closer than a given distance l from

the evader. The goal of the evader is to keep the pursuer at all times farther from him

than this capture distance. This kind of problems are usually solved using techniques

from Optimal Control [91] and Differential Game Theory [20, 40].

A classical problem in that direction, is the homicidal chauffeur problem [20, 21]. In

that game a faster pursuer (w.r.t. the evader) has as its objective to get closer than a

given distance (the capture condition) from a slower but more agile evader, in order to

run him over. The pursuer is a vehicle with a minimal turning radius. The game takes

place in the Euclidean plane without obstacles, and the evader aims to avoid the capture

condition. Several versions of this problem have been studied [73–78], for example, in

[74], the evader minimizes time of escaping from inside a detection set which is a two-

dimensional semi infinite cone, a multi-agent cooperative variant is addressed in [78] and

in [75] it is assumed that the motion of players is subject to random disturbances. A

slightly different version where the evader is also a vehicle with a minimal turning radius

has been studied in [79–83].

A similar problem to the homicidal chauffeur is called the lady in the lake [40]. A lady is

swimming in a circular lake with maximum speed vl. A man who wishes to intercept the

lady, and who has not mastered swimming, is on the side of the lake and can run along

the shore with maximum speed vm. The lady does not want to stay in the lake forever

and wants eventually scape. If, at the moment she reaches the shore, the man cannot

intercept her, she “wins” the game since on land she can run faster than the man.

For this problem, it is assumed that both players can change their motion directions

instantaneously and that vl < vm.

Another closely related problem is known as the lion and the man [84–88]. A lion and

a man with the same motion capabilities are confined to move on a circular arena. The

lion tries to capture the man and the man wants to avoid to be captured. A revisit of the

problem and a solution using the method of Isaacs [20] is presented in [86]. A discrete

version of the problem is studied in [6, 87]. In [88], the authors studied a new version

of the game which takes place in an Euclidean environment with a circular obstacle.



Chapter 3

Tracking an Omnidirectional

Evader with a Differential Drive

Robot

In this chapter we consider the surveillance problem of tracking a moving evader by a

nonholonomic mobile pursuer. We deal specifically with the situation in which the only

constraint on the evader’s velocity is a bound on speed (i.e., the evader is able to move

omnidirectionally), and the pursuer is a nonholonomic, differential drive system having

bounded speed.

We assume that both the pursuer and evader have full knowledge of the other’s state, and

that the speeds of the pursuer and evader are bounded (though they do not necessarily

have the same bound). We consider here a purely kinematic problem, and neglect any

effects due to dynamic constraints (e.g., acceleration bounds).

We formulate our problem as a game. Given the evader’s maximum speed, we determine

a lower bound for the required pursuer speed to track the evader. This bound allows us

to determine at the beginning of the game whether or not the pursuer can follow the

evader based on the initial system configuration. We then develop the system model,

and obtain optimal motion strategies for both players, which allow us to establish the

long term solution for the game. We present an implementation of the system model,

and motion strategies, and also present simulation results of the pursuit-evasion game.

Our tracking problem consists of determining a pursuer motion strategy to always main-

tain surveillance of the evader by the pursuer (assuming surveillance in the initial state).

The evader is under pursuer surveillance whenever the evader is at a constant distance

L from the pursuer (L can be considered as the upper limit of the physical sensor used

12
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by the pursuer). It is pertinent to analyse this specific case for the following reasons:

First, commercially available sensors (laser and cameras) have upper range limits. In

particular, even in the absence of obstacles, if the evader is farther from the pursuer than

the sensor range then its location is unknown, and the surveillance is broken. Second,

our results are applicable to a variety of non-surveillance problems. For example, shared

manipulation by a human and a nonholonomic robot imposes similar constraints on the

two agents (maintaining a fixed relative distance between the agents).

In this chapter, we begin in Section 3.1 by developing the system equations for the

pursuer-evader system. Using these equations together with the bound on evader speed,

in Section 3.1.1, we deduce a lower bound for the pursuer speed that is required to

maintain a constant distance from the evader in an environment without obstacles. In

Section 3.2, we present the main contribution of this work, namely, (a) the determination

of the conditions that permit each of the players to win, and (b) the corresponding motion

strategies. These strategies are demonstrated in various scenarios in Section 3.3.

In what follows, we will refer to the line segment that connects the pursuer and evader as

the rod due to an analogy with the motion planning problem studied in [89]. The evader

controls the position of the rod’s origin (x, y) and the control of the rod’s orientation φ

is shared by both players. We consider an antagonistic evader that moves continuously,

and that full state feedback is available for both players.

3.1 System Model

Figure 3.1 shows the geometric description of the system. The variables xe, ye, xp, yp

denote the evader and pursuer positions with respect to the global reference frame. The

variable θ is the angle of the pursuer’s wheels with respect to the global x axis, and φ

represents the angle between the rod and the global x axis. One can also interpret φ as

the angular coordinate of the pursuer position relative to the evader in polar coordinates

and therefore it may be considered to correspond to the sensor angle. Likewise, we can

express the orientation of the evader relative to the pursuer as φp = φ + π. Note that

φ̇p = φ̇. The angle of the evader velocity vector with respect to the global x axis is

denoted by ψ. Although all these quantities are time dependent, in what follows the

explicit time dependence will be omitted, in order to simplify the notation.

For the evader state, the equations are simple, since the evader velocity is taken as an

independent input to the system, under full control of the evader. Hence, we have

ẋe = Ve cosψ (3.1)
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Figure 3.1: The geometric model of the pursuer-evader system

ẏe = Ve sinψ (3.2)

in which Ve is the linear velocity of the evader, and we use

u1 = Ve

u2 = ψ
(3.3)

under the constraint |Ve| ≤ Ve
max. The control u2 appears as the argument to cos and

sin functions in the state equations, and thus the state equations cannot be factored

nicely into the form A(q)u(q).

For the pursuer velocity, we have the usual parametrization using unicycle kinematics

ẋp = Vp cos θ (3.4)

ẏp = Vp sin θ (3.5)

with the constraint that |Vp| ≤ V max
p . Since the pursuer is a differential drive robot, we

use the usual assignment of control inputs [90]. For a robot with wheels of unit radius,

the control inputs are therefore given by

u3 = Vp =
wr(t) + wl(t)

2
(3.6)

u4 = θ̇ =
wr(t)− wl(t)

2b
(3.7)

in which b is the distance between the center of the robot and the wheel location. When

u3 = 0 and u4 6= 0, the robot rotates without translation, and when u3 6= 0 and u4 = 0

the robot translates without rotation.
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The bounds on the pursuer’s speed derive from bounds on the rate at which the wheels

can spin, and are thus naturally expressed as bounds on u3 and u4. In this chapter, we

will assume symmetric and equal bounds for the two wheels, −wmax ≤ wr, wl ≤ wmax.

We denote these bounds by (considering the radius of the wheels equal to 1):

V max
p = umax

3 = maxu3 =
1

2
max{wr(t) + wl(t)} = wmax

umax
4 = maxu4 =

1

2b
max{wr(t)− wl(t)} =

1

b
wmax

(3.8)

so that umax
3 is the maximum forward linear speed of the pursuer and umax

4 is the maxi-

mum counterclockwise rate of rotation of the pursuer.

When the surveillance constraints are satisfied, the relationship between evader and

pursuer positions is given by:(
xp

yp

)
=

(
xe

ye

)
+ L

(
cosφ

sinφ

)
(3.9)

All pursuer velocities that maintain a constant distance L between the evader and the

pursuer must therefore satisfy:(
ẋp

ẏp

)
=

(
ẋe

ẏe

)
+ Lφ̇

(
− sinφ

cosφ

)
(3.10)

From equations 3.4, 3.5 and 3.10 we obtain the following expression for the evader

velocity: (
ẋe

ẏe

)
= Vp

(
cos θ

sin θ

)
+ Lφ̇

(
sinφ

− cosφ

)
(3.11)

which can be re-written as(
ẋe

ẏe

)
=

(
cos θ L sinφ

sin θ − L cosφ

)(
u3

φ̇

)
(3.12)

If we define the matrix A as

A =

(
cos θ L sinφ

sin θ − L cosφ

)
(3.13)

we find

detA = −L cos(θ − φ) (3.14)

which implies that the pursuer can follow the evader only when (θ− φ) 6= ±π
2 . In other

words, the rod cannot have a relative angle to the pursuer wheels equal to ±π
2 because

this would require unbounded pursuer speed to maintain surveillance.
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Using equations 3.12 and 3.13, the relationship between the speed of the evader and the

linear velocity of the pursuer can be expressed as

ẋe
2 + ẏe

2 = (u3 φ̇)ATA

(
u3

φ̇

)
(3.15)

= u3
2 − 2u3φ̇L sin(θ − φ) + L2φ̇2 (3.16)

The pursuer must be able to track the evader for any evader velocity that satisfies√
ẋe

2 + ẏe
2 ≤ Vemax, and in particular, when the evader moves at maximum speed, the

pursuer velocity must satisfy

f(u3, φ̇) = u3
2 − 2u3φ̇L sin(θ − φ) + L2φ̇2 ≤ (Ve

max)2 (3.17)

which defines the interior of an ellipse in the u3-φ̇ plane (see Figure 3.2).

y

x u

φ

e

e

3

−α α

β

−β

Figure 3.2: Velocity bounds in ẋe-ẏe plane and in the u3 − φ̇ plane

3.1.1 Bounds for u3 and φ̇ to maintain surveillance

To track the evader, the robot must be able to attain all the values inside the projection

of the ellipse onto the u3 axis. Let α denote the maximal value for this projection of the

ellipse (see figure 3.2). Then we have that α ≤ max |u3| = V max
p .

To determine α we first solve for the value of φ̇ that corresponds to the value of f in

equation 3.16 for the extremal of u3

∂f

∂φ̇
= 0→ φ̇ =

u3 sin(θ − φ)

L
(3.18)

We now substitute this value into f(u3, φ̇) = (Ve
max)2, and solve for u3 = α as follows

(Ve
max)2 = u3

2 − 2u2
3 sin2(θ − φ) + u3

2 sin2(θ − φ) (3.19)

= u2
3(1− sin2(θ − φ)) (3.20)
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which implies that

α =
Ve

max

| cos(θ − φ)|
= u3 ≤ V max

p (3.21)

Using a similar analysis, we derive β as a bound on φ̇. In particular, we project the

ellipse f(u3, φ̇) = (Ve
max)2 onto the φ̇ axis (see Figure 3.2), and after manipulations

similar to those above we obtain

β =
Ve

max

|L cos(θ − φ)|
≤ max |φ̇| (3.22)

This implies that the pursuer must be able to choose its angular velocity to satisfy this

constraint in order to track the evader.

From this analysis it follows that when the inequalities given in 3.21 and 3.22 hold,

there is a control such that the pursuer can follow the evader moving at maximal velocity,

whatever direction the evader chooses. In the next sections we present a detailed analysis

that will allow us to determine, for each initial configuration of the system, which player

may win the game, along with the corresponding winning strategies.

3.1.2 Determining u3 and φ̇ to track the evader

If the evader’s controls u1, u2 and the values of θ and φ are given, then the linear speed

u∗3 of the pursuer required to maintain a constant distance L from the evader is in fact

fixed. In Appendix A.1 we derive an expression for this value of u∗3, which is given by:

u∗3(φ, θ, u1, u2) =
u1 cos(u2 − φ)

cos(θ − φ)
(3.23)

Notice that this expression takes its maximum value, which corresponds to the bound

presented in 3.21, when u1 = Ve
max and u2 = ψ = φ or u2 = ψ = φ+ π

In Appendix A.2 we show that when the pursuer successfully tracks the evader (i.e.,

when u3 = u∗3), φ̇ is given by:

φ̇(φ, θ, u1, u2) =
u1 sin(θ − u2)

L cos(θ − φ)
(3.24)

Note that the bound presented in 3.22 is reached when u1 = Ve
max and u2 = ψ = θ± π

2 .

In Section 3.2, we describe a relation between φ̇ and u4.

If we parametrize the configuration of the pursuer-evader system by the evader position,

xe, ye, the angle of the rod with respect to the world coordinate frame, φ, and the
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orientation of the pursuer’s wheels (heading) with respect to the world coordinate frame,

θ, an alternative system model in state-space form is given by


ẋe

ẏe

φ̇

θ̇

 =



u1 cosu2

u1 sinu2

u1 sin(θ − u2)

L cos(θ − φ)

u4


(3.25)

It is important to stress the fact that to maintain a constant distance between the

evader and the pursuer, equations 3.23 and 3.24 in terms of the evader controls must be

satisfied.

3.1.3 Bounds on u4 when tracking the evader

u

u

__

b

4

3
Vp

Vp
Max

Max

Figure 3.3: Control space (u3, u4)

For a given choice of u3, there is a finite range of values that can be taken by u4, since the

differential drive robot wheel speeds are bounded (as described in Section 3.1). As the

linear speed of the pursuer |u3| attains its maximum, the rate of rotation of the pursuer

|u4| attains its minimum. For example, when |u3| = V max
p , we necessarily have θ̇ = 0.

Using equations 3.6 and 3.7, the bounds on u4 are most easily deduced by considering

individually the case u3 < 0 and 0 ≤ u3. For 0 ≤ u3 we have

− 1

b
(V max
p − u3) ≤ u4 ≤

1

b
(V max
p − u3) (3.26)

and for u3 < 0 we have

− 1

b
(V max
p + u3) ≤ u4 ≤

1

b
(V max
p + u3) (3.27)
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These four constraints are illustrated in Figure 3.3. They can be combined into the

single expression

|θ̇| = |u4(u3)| ≤ 1

b

(
V max
p − |u3|

)
(3.28)

This expression gives the maximum rate of rotation for the pursuer, given a specified

linear speed u3.

3.2 Evader and Pursuer Strategies

From the analysis presented in Section 3.1.1 we can establish that if at any time in-

equality 3.21 does not hold then the evader wins. But this analysis does not directly

address the issue of determining which player wins the game for a given configuration of

the system, nor does it determine winning strategies for the pursuer and evader. In this

section, we consider these issues. We begin with an intuitive motivation for the pursuer

and evader strategies, and then give a more formal treatment.

The result of the pursuit-evasion game depends critically on the rotation speeds for the

rod (φ̇) and for the pursuers heading (θ̇). This may be seen in equation 3.23, which gives

the linear velocity u∗3 for the pursuer, so that a constant value for L is maintained. As

| cos(θ−φ)| increases, the required value for u3 decreases, and reaches its minimum when

| cos(θ − φ)| = 1. On the other hand, when | cos(θ − φ)| = 0 there is no pursuer with

bounded maximum speed that can maintain surveillance, since u∗3 →∞. For this reason,

a good strategy for the pursuer is to move θ (using u4 = θ̇), so that |(θ − φ)| decreases,

while for the evader, a good strategy is to increase this value using φ̇, which depends

only on its controls u1, u2 (equation 3.24). In particular, if max |θ̇| = 1
b (V

max
p − |u3|)

is equal to |φ̇|, the pursuer will be able to compensate exactly the rotation that the

evader tries to impose on the rod, keeping |(θ − φ)| constant. In this case, the strategy

for the pursuer is uniquely determined, and consists in setting u3 = u∗3, and u4 = u∗4,

with |u∗4| = max |θ̇| = 1
b (V

max
p − |u∗3|). The sign for u∗4 must be chosen in such a way

that the angle between the rod and the pursuer’s wheels (θ − φ) moves away from ±π
2 .

Specifically:

u∗4(θ, φ) = s(θ, φ) max |θ̇|

= s(θ, φ)
1

b
(V max
p − |u∗3(θ, φ)|) (3.29)

in which

s(θ, φ) =

−1 : (θ − φ) ∈ (0, π2 )
⋃

(π, 3π
2 )

+1 : (θ − φ) ∈ (π2 , π)
⋃

(3π
2 , 2π)

(3.30)
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and the value −1 corresponds to clockwise rotation while the value +1 corresponds to

counterclockwise rotation.

In the case of the evader, the situation is more complex, since it can control φ̇ directly

(equation 3.24), but also max |θ̇| indirectly, since it can maximize the required linear

speed of the pursuer u∗3 (see equation (3.28)). In particular, one can establish the

following lemma.

Lemma 3.1. Let g(φ, θ, u2) = (| cos(φ− u2)|+ γ| sin(θ − u2)|) with γ = b/L. Then the

following two converse conditions hold.

(i) max |θ̇| < |φ̇| if and only if V max
p (| cos(θ − φ)|) < |u1|g(φ, θ, u2)

(ii) max |θ̇| ≥ |φ̇| if and only if V max
p (| cos(θ − φ)|) ≥ |u1|g(φ, θ, u2)

Note that since b is the radius of the robot pursuer then L ≥ b otherwise the evader is

in collision with the pursuer, hence γ ∈ (0, 1].

Proof. The inequality max |θ̇| < |φ̇| can be expanded as follows

max |θ̇| < |φ̇| (3.31)

1

b

(
V max
p − |u∗3|

)
<

∣∣∣∣∣∣u1 sin(θ − u2)

L cos(θ − φ)

∣∣∣∣∣∣ (3.32)

1

b

(
V max
p −

∣∣∣∣u1 cos(u2 − φ)

cos(θ − φ)

∣∣∣∣) <
|u1 sin(θ − u2)|
|L cos(θ − φ)|

(3.33)

V max
p (| cos(θ − φ)|) < |u1| (| cos(φ− u2)|+ γ| sin(θ − u2)|) (3.34)

in which inequality 3.32 follows from equation 3.28 (assuming the maximum value of

|θ̇|) and from equation 3.24; inequality 3.33 follows from equation 3.23; and inequality

3.34 follows from straightforward manipulation.

The second part of the proof corresponding to max |θ̇| ≥ |φ̇| is analogous to the one

presented above, yielding

V max
p (| cos(θ − φ)|) ≥ |u1| (| cos(φ− u2)|+ γ| sin(θ − u2)|) (3.35)
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From this result, we can infer that a good strategy for the evader is to choose (u1, u2) =

(u∗1, u
∗
2) at every time instant, such that

(u∗1, u
∗
2) = arg max

u1,u2
|u1|g(φ, θ, u2) (3.36)

If V max
p (| cos(θ − φ)|) = u∗1g(φ, θ, u∗2)− ε at any time, for an arbitrarily small ε > 0, then

this choice will be the only one that will allow the evader to move cos(θ − φ) towards

0. As we will now show, these choices, i.e., (u∗1, u
∗
2) and (u∗3, u

∗
4), actually represent

winning strategies for the evader and pursuer respectively, and in some sense they may

be considered as equilibrium strategies for the game [20].

We now proceed with a formal development of the conditions that determine the winner

of the game and the players’ strategies. The following lemma gives conditions on the

value of u2 that maximizes g(φ, θ, u2).

Lemma 3.2. Consider the following functions:

ψ1 = arctan

(
sinφ− γ cos θ

cosφ+ γ sin θ

)
(3.37)

ψ2 = arctan

(
sinφ+ γ cos θ

cosφ− γ sin θ

)
(3.38)

ψ3 = arctan

(
− sinφ− γ cos θ

− cosφ+ γ sin θ

)
(3.39)

ψ4 = arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

)
(3.40)

The evader control u2 that maximizes g(φ, θ, u2) for given values of φ and θ is given by

u2 =

{
ψ1 orψ4 = ψ1 + π : (θ − φ) ∈ [0, π]

ψ2 or ψ3 = ψ2 + π : (θ − φ) ∈ [π, 2π]
(3.41)

The proof of this lemma is given in Appendix A.3.

Next, we give some monotonicity properties of some functions that will be used later to

establish our main result:

Lemma 3.3. Define the following functions:

K(θ, φ) =

ψ4(θ, φ), If (θ − φ) ∈ [0, π]

ψ3(θ, φ), If (θ − φ) ∈ [π, 2π]
(3.42)

u∗∗3 (θ, φ) = u∗3(θ, φ, V max
e ,K(θ, φ)) (3.43)

u∗∗4 (θ, φ) = s(θ, φ) max |θ̇| = s(θ, φ)
1

b
(V max
p − |u∗∗3 (θ, φ)|) (3.44)
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with s(θ, φ) given by equation 3.30.

If (θ−φ) ∈ (0, π2 )
⋃

(π, 3π
2 ) then g(φ, θ,K) and |φ̇(V max

p ,K, θ, φ)| increase monotonically

(w.r.t (θ − φ)), and |u∗∗4 (θ, φ)| = max |θ̇| decreases monotonically (w.r.t (θ − φ)).

Symmetrically, if (θ − φ) ∈ (π2 , π)
⋃

(3π
2 , 2π)then g(φ, θ,K) and |φ̇(V max

p ,K, θ, φ)| de-

crease monotonically (w.r.t (θ − φ)), and |u∗∗4 (θ, φ)| = max |θ̇| increases monotonically

(w.r.t (θ − φ)).

We note here the two main properties of the proof of this lemma.

• The possible admissible values of the ratio γ ∈ (0, 1] do not affect the monotonicity

of g(φ, θ,K).

• All the possible values of (θ−φ) are considered, i.e., all four quadrants are covered.

The proof of Lemma 3.3 appears in Appendix A.4.

As it was mentioned above, the selected evader control must produce a rod rotation that

brings the rod perpendicular to the pursuer wheels (pursuer heading) without bringing

the rod and the pursuer heading (pursuer wheels) closer to parallelism. Let’s call this

direction of rotation Desirable Evader Direction of Rotation (DEDR). Conversely, the

selected pursuer control must produce a pursuer heading rotation that brings the pursuer

wheels (pursuer heading) closer to parallelism with the rod, without bringing the pursuer

heading (pursuer wheels) and the rod closer to perpendicularity. Let’s call this direction

of rotation Desirable Pursuer Direction of Rotation (DPDR). Refer to figure 3.4, which

shows (DPDR) w.r.t the rod’s orientation.

φ

III

III IV

θ

θθ III

III θ IV

CWCCW

CW CCW

Figure 3.4: Direction of rotation

Thus, it is necessary to analyse the direction of rotation (clockwise or counterclockwise)

of both the pursuer heading (directly controlled by the pursuer with u4) and the rod

(controlled by the evader by virtue of u2). The desirable direction of rotation of both

u∗∗4 and φ̇(V max
p ,K, θ, φ) is provided in the following corollary.
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Corollary 3.4 (Lemma 3.3). If (θ − φ) ∈ (0, π2 ) ∪ (π, 3π
2 ) then the DPDR is clockwise

(cw), i.e. sgn(u∗∗4 ) = s(θ, φ) = −1 (as given by Eq. 3.30), and the DEDR is also

clockwise (cw), i.e. sgn(φ̇(ψi)) = −1. Conversely, if (θ−φ) ∈ (π2 , π)∪ (3π
2 , 2π) then the

DPDR is counterclockwise (ccw) sgn(u∗∗4 ) = s(θ, φ) = +1 (as given by Eq. 3.30), and

the DEDR is also counterclockwise (ccw) sgn(φ̇(ψi)) = +1. Thus, the following controls

must be applied by the players according to the value of (θ − φ), to obtain the required

direction of rotation of both u∗∗4 and φ̇(V max
p ,K, θ, φ).

The evader control u∗2, is given in table 3.1.

(θ − φ) sgn(φ̇(V max
p ,K, θ, φ)) u∗2 = ψi

(θ − φ) ∈ [0, π2 ] sgn(φ̇(V max
p ,K, θ, φ)) = −1 u∗2 = ψ4

(θ − φ) ∈ [π2 , π] sgn(φ̇(V max
p ,K, θ, φ)) = +1 u∗2 = ψ4

(θ − φ) ∈ [π, 3π
2 ] sgn(φ̇(V max

p ,K, θ, φ)) = −1 u∗2 = ψ3

(θ − φ) ∈ [3π
2 , 2π] sgn(φ̇(V max

p ,K, θ, φ)) = +1 u∗2 = ψ3

Table 3.1: Evader control u2 and rod’s direction of rotation

The sign (direction of rotation) of u∗∗4 = max |θ̇| = 1
b (V

max
p −|u∗∗3 |) is defined by equation

3.30.

The proof of this Corollary appears in Appendix A.5.

Remark 3.5. Note that with this definition for u∗2 = ψi one gets precisely u∗2 = K(θ, φ).

Remark 3.6. The DPDR for u∗∗4 also holds for u∗4.

Remark 3.7. The control u1 that maximizes |u1| ∗ g is u∗1 = V max
e .

The next theorem represents our main result.

Theorem 3.8. Let

u∗1 = V max
e (3.45)

u∗2 = K(θ, φ) (3.46)

and let u∗3 be as given by equation 3.23, and u∗4 as given by equation 3.29. Now define

M(V max
e , V max

p , θ, φ) = |φ̇(u∗1, u
∗
2)| − 1

b
(V max
p − |u∗∗3 |) (3.47)

The manifold M(V max
e , V max

p , θ, φ) = 0 partitions the space spanned by V max
e , V max

p , θ, φ

into 2 regions, one in which the pursuer can maintain surveillance indefinitely, and

another in which the evader can eventually escape.

If M(V max
e , V max

p , θ, φ) > 0 at the beginning of the game, then the evader eventually

wins at some time t > t0 if the strategy (u1, u2) = (u∗1, u
∗
2) is applied at all times,
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regardless of the strategy applied by the pursuer. Otherwise, if at the beginning of the

game M(V max
e , V max

p , θ, φ) ≤ 0, the pursuer wins, if the strategy (u3, u4) = (u∗3, u
∗
4) is

applied at all times, regardless of the strategy applied by the evader.

Proof. The theorem can be proved based on the maximization of g and the monotonicity

of max{g}, |φ̇|, max |θ̇| and | cos(θ − φ)|. Because | cos(θ − φ)| behaves differently de-

pending on which quadrant contains θ−φ, we consider individually the four quadrants.

Here, we consider the case for which θ − φ ∈ [0, π2 ]. The proofs of the other cases are

analogous and are included in Appendix A.6.

The proof proceeds as follows. We first consider the case when the pursuer applies the

strategy (u3, u4) = (u∗∗3 , u
∗∗
4 ) and the evader applies the strategy (u1, u2) = (u∗1, u

∗
2). We

show that under these strategies the pursuer wins if max |θ̇(t0)| ≥ |φ̇(t0)| (i.e., if at the

beginning of the game M(V max
e , V max

p , θ, φ) ≤ 0), otherwise the evader wins. Second, we

show that if the pursuer applies the strategy (u3, u4) = (u∗3, u
∗
4) and |φ̇(t0)| ≤ max |θ̇(t0)|,

then the pursuer wins regardless of the strategy applied by the evader. Symmetrically,

if the evader applies the strategy (u1, u2) = (u∗1, u
∗
2) and |φ̇(t0)| > max |θ̇(t0)| then the

evader wins regardless of the pursuer strategy. We now develop the details.

Assume that M(V max
e , V max

p , θ, φ) ≤ 0 at the beginning of the game. We analyse this

inequality first considering M(V max
e , V max

p , θ, φ) < 0. For this case, we have that

max |θ̇(t0)| > |φ̇(t0)|, and from Lemma 3.1, V max
p | cos(θ − φ)| > |u∗1| · g(φ, θ, u∗2). By

Lemmas 3.2 and 3.3, g(φ, θ, u∗2) is maximal and varies monotonically by applying the

optimal u∗2 = ψ4. By Lemma 3.3, g(φ, θ, u∗2) monotonically decreases and | cos(θ − φ)|
monotonically increases as (θ − φ) varies from π

2 to 0.

If max |θ̇(t0)| > |φ̇(t0)| then for ε → 0 we have (θ(t0)− φ(t0)) > (θ(t0 + ε)− φ(t0 + ε)),

and by Lemma 3.3, max |θ̇| monotonically increases and |φ̇| monotonically decreases as

(θ − φ) varies from π
2 to 0. Hence ∀t > t0, max |θ̇(t)| > |φ̇(t)|, and therefore ∀t >

t0, (θ(t0) − φ(t0)) > (θ(t) − φ(t)), and (θ(t) − φ(t)) decreases monotonically until it

reaches 0 and the pursuer wins.

Now assume thatM(V max
e , V max

p , θ, φ) > 0 at the beginning of the game. Then max |θ̇(t0)| <
|φ̇(t0)| and V max

p | cos(θ − φ)| < |u∗1| · g(φ, θ, u∗2). Then by Lemma 3.3, g(φ, θ, u∗2) mono-

tonically increases and | cos(θ − φ)| monotonically decreases as (θ − φ) varies from 0 to
π
2 .

If max |θ̇(t0)| < |φ̇(t0)| then for ε→ 0 we have (θ(t0)−φ(t0)) < (θ(t0 +ε)−φ(t0 +ε)), and

by Lemma 3.3, max |θ̇|monotonically decreases and |φ̇|monotonically increases as (θ−φ)

varies from 0 to π
2 . Hence ∀t > t0, max |θ̇(t)| < |φ̇(t)|, and therefore (θ(t0) − φ(t0)) <
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(θ(t)− φ(t)) and (θ(t)− φ(t)) increases monotonically until it reaches π
2 and the evader

wins.

In the case of equality, i.e., max |θ̇(t0))| = |φ̇(t0)| (equivalently, V max
p | cos(θ − φ)| =

|u∗1| · g(φ, θ, u∗2)), for ε → 0 we will have (θ(t0) − φ(t0)) = (θ(t0 + ε) − φ(t0 + ε)).

By Lemma 3.3, max |θ̇| and |φ̇| remain constant for a given value of (θ − φ). Hence

∀t > t0, max |θ̇(t)| = |φ̇(t)| and (θ(t)− φ(t)) = (θ(t0)− φ(t0)). Therefore, the values of

both g(φ, θ, u2 = K) and | cos(θ − φ)| remain constant and the pursuer wins. Note that

this result is obtained regardless of the quadrant in which (θ − φ) lies.

We now show that, if max |θ̇(t0)| < |φ̇(t0)| then the evader wins regardless of the pursuer

strategy, whenever the evader applies (u1, u2) = (u∗1, u
∗
2).

If u3 6= u∗3, the pursuer immediately loses, it cannot maintain the constant distance.

If u3 = u∗3 but u4 6= u∗4 then for all time t we will have |u4| = |θ̇(t)| < |u∗4| = max |θ̇(t)| <
|φ̇(t)|. Hence, (θ(t)−φ(t)) under (u∗1, u

∗
2, u
∗
3, u4) is closer to ±π

2 than (θ(t)−φ(t)) under

(u∗1, u
∗
2, u
∗
3, u
∗
4). Therefore, if max |θ̇(t0)| < |φ̇(t0)|, the evader wins regardless the pursuer

strategy.

Symmetrically, if |φ̇(t0)| ≤ max |θ̇(t0)| then the pursuer wins regardless the evader strat-

egy. By Lemma 3.1, the condition |φ̇(t0)| ≤ max |θ̇(t0)| is equivalent to

g(φ(t0), θ(t0), u2(t0))|u1(t0))| ≤ V max
p | cos(θ(t0)− φ(t0))| (3.48)

Let us assume that the evader uses (u∗1, u
∗
2). These evader controls maximize

g(φ(t), θ(t), u2(t))|u1(t)|. The inequality

g(φ(t), θ(t), u∗2(t))|u∗1(t)| ≤ V max
p | cos(θ(t)− φ(t))| (3.49)

is also equivalent to (again by Lemma 3.1):

|u∗1 sin(θ − u∗2)|
|L cos(θ − φ)|︸ ︷︷ ︸ −

1

b

V max
p −

u∗∗3 (u∗1,u
∗
2)︷ ︸︸ ︷∣∣∣∣u∗1 cos(u∗2 − φ)

cos(θ − φ)

∣∣∣∣


︸ ︷︷ ︸
≤ 0

|φ̇(t)| − |u∗∗4 | = max |θ̇(t)| ≤ 0

(3.50)

Thus, the evader’s controls (u∗1, u
∗
2) maximize the difference |φ̇(u∗1(t), u∗2(t))| −max |u4(u∗1(t), u∗2(t))|.
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If the evader uses (u1, u2) 6= (u∗1, u
∗
2) then

∀t : g(φ(t), θ(t), u2(t))|u1(t)| < g(φ(t), θ(t), u∗2(t))|u∗1(t)| (3.51)

and

|φ̇(u1(t), u2(t))| −max |u∗4(u1(t), u2(t))| < |φ̇(u∗1(t), u∗2(t))| −max |u∗∗4 (u∗1(t), u∗2(t))| ≤ 0

(3.52)

If the evader uses at all times the controls that maximize the difference |φ̇(t)|−max |θ̇(t)|,
and this difference is still negative or equal to zero, then no evader control will make the

difference greater than zero. Therefore

∀t : g(φ(t), θ(t), u2(t))|u1(t)| < V max
p | cos(θ(t)− φ(t))| (3.53)

and

|φ̇(u1(t0), u2(t0))| < |u∗4(u∗3(t0))| = max |θ(t0)| (3.54)

The result follows.

Corollary 3.9 (Theorem 3.8). For |M(V max
e , V max

p , θ, φ)| < ε, i.e., in a neighborhood

of the manifold described above, for ε → 0, the strategies: (u3, u4) = (u∗3, u
∗
4) for the

pursuer and (u1, u2) = (u∗1, u
∗
2) for the evader are the only equilibrium strategies for

the game. The application of these strategies are necessary and sufficient conditions for

guaranteeing that the corresponding player wins.

Note that when both players follow these strategies we have (u∗3, u
∗
4) = (u∗∗3 , u

∗∗
4 ).

Proof. If each of V max
e , V max

p , and (θ−φ) are given, and max |θ̇(t0)| = |φ̇(t0)| then there

is no valid control, other than |u∗4| = max |θ̇|, which guarantees that the pursuer will win.

Any other value of u4 makes |θ̇| smaller, yielding |θ̇(t0)| < |φ̇(t0)|, which corresponds

to the evader winning. Hence, that the pursuer use strategy u∗4 = max |θ̇(t0)| is both a

necessary and sufficient condition for the pursuer to win.

Suppose now that max |θ̇(t0)| < |φ̇(t0)|. By Lemma 3.1, this is equivalent to:

V max
p | cos(θ(t0)− φ(t0))| < |u1(t0)| · g(φ(t0), θ(t0), u2(t0)) (3.55)

If V max
p , (θ − φ) are given, and u1 = u∗1, u2 = u∗2 are such that |u∗1| · g(φ, θ, u∗2) has

the minimum value for the inequality to hold, then there are not controls other than
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(u∗1, u
∗
2) that maintain the condition. Any other controls make |u1| · g(φ, θ, u2) smaller,

and consequently the inequality will change to:

V max
p | cos(θ(t0)− φ(t0))| ≥ |u1| · g(φ, θ, u2) (3.56)

and the pursuer will win. Hence, that the evader apply the strategy (u∗1, u
∗
2) that max-

imizes |u1| · g(φ, θ, u2) is both a necessary and sufficient condition for the evader to

win.

Remark 3.10. By Corollary 3.9, the players’ strategies may be considered Local Equi-

librium Strategies (LES). As the system moves away from the manifold, the winning

player’s choice of controls is constrained (so that the system remains in the correspond-

ing region), but is not unique. The constraints are: for the pursuer u3 = u∗3 and

|u4| ≥ |φ̇|, for the evader |u1|g(φ, θ, u2) > V max
p | cos(θ − φ)|. If the LES are followed,

however, there are some interesting properties that are obtained. If the pursuer wins, the

LES eventually leads to an alignment of its wheels with the rod (i.e., θ = φ or θ = φ+π

), which allows it to maintain surveillance with the minimal effort (i.e., minimal |Vp|).
Notice that at the moment the pursuer heading reaches parallelism with the rod, it is

possible for the pursuer to keep this parallelism by applying u4 = θ̇ = φ̇, thus avoiding

oscillations. If the evader wins, the LES progressively increases the required value of u3

up to ∞, so that it allows it to escape from any pursuer with bounded speed.

Remark 3.11. If V max
p and V max

e are given as inputs to the problem, the LES create a

partition over the value of (θ − φ) into two sets which define the winner of the game.

On the other hand, for a given initial (θ − φ) and if either V max
p or V max

e is given,

these motion strategies allow the calculation of the remaining minimum value of V max
e

or V max
p respectively, which correspond to the minimal capabilities for the players to

win.

Remark 3.12. It is interesting to note that, when the evader wins g converges to 2 (for

γ = 1) and | cos(θ − φ)| converges to 0, and when the pursuer wins g converges to
√

2

(for γ = 1) and | cos(θ − φ)| converges to 1.

3.3 Simulations

In this section, we present numerical simulations to illustrate the pursuer’s and the

evader’s motion strategies. Since the pursuer is a nonholonomic system, we use numerical

integration to compute the approximate paths for the pursuer.
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Figure 3.5: Evader wins, pursuer follows a straight line trajectory u4 = 0
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Figure 3.6: Pursuer wins by making θ = φ
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Figure 3.7: Evader moves tracing a sinusoidal path, pursuer wins by pointing its
heading parallel to the rod

In all figures, the evader is shown with a (red) circle and the pursuer with a (blue) square,

the rod is represented with a dotted line segment. The (blue) arrows emerging from the

pursuer show the heading of the pursuer (heading of the wheels of the differential drive
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robot pursuer), and the (red) arrows emerging from the evader show the direction of the

evader velocity vector.

In Figure 3.5, the initial system configuration is θ = 0 and φ = π. The evader chooses

its velocity vector at a constant orientation (u2 = ψ = π
4 ). The pursuer does not change

its heading (u4 = 0), but it uses the required u∗3 and φ̇ to follow the evader. The pursuer

is able to follow the evader for a short period of time until the rod orientation gets close

to being perpendicular to the pursuer heading.

In Figure 3.6, again the initial system configuration is θ = 0 and φ = π and the evader

chooses at all time its velocity vector at a constant orientation (u2 = ψ = π
4 ). But this

time the pursuer changes u4 to point its heading to be parallel to the rod, yielding a

pursuer win. Note that for the simulations in Figures 3.5 and 3.6 the evader has followed

a sub-optimal strategy.
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Figure 3.8: Pursuer wins by making θ = φ + π, evader uses optimal u2 = ψ but its
maximal velocity Ve

max is insufficient for winning

In Figure 3.7 the evader moves tracing a sinusoidal path, the pursuer wins by making

θ = φ. Again the evader has followed a sub-optimal strategy.

Figures 3.8 and 3.9 show optimal pursuer and evader motion strategies. In the two

simulations presented in these figures, at the beginning of the game γ = 1, θ = 40

degrees and φ = 180 degrees. In both of these simulations, the evader uses the optimal

u∗2 = ψi. The pursuer uses u∗∗4 = s(θ, φ) max |θ̇| trying to make it parallel to the rod

orientation.

In figure 3.8, the pursuer wins since max |θ̇(t0)| > |φ̇(t0)|, hence at the end the pursuer

is able to point its heading parallel to the rod orientation (θ − φ) = π.
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Figure 3.9: Evader wins using optimal u2 = φ yielding (θ − φ) = π
2

In figure 3.9, the evader wins since |φ̇(t0)| > max |θ̇(t0)|, hence at the end the evader is

able to get the rod orientation perpendicular to the pursuer heading (θ − φ) = π
2 .

From inequality 3.33, it is possible to compute a smallest critical value of the evader

velocity V max
e or even a ratio of the pursuer and evader velocities, which determines

either the evader or pursuer winning, the critical ratio is defined by ρ = Vemax

Vpmax
=

| cos(θ−φ)|
g .

For the simulations shown in figures 3.8 and 3.9, Vp
max = 1. Then the critical evader

velocity determining the winner of the game is V max
e = 0.4226. When the evader wins

V max
e = 0.43, and when the evader loses V max

e = 0.41.
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Figure 3.10: The initial conditions are identical to those for the example of figure
3.11. Here, the pursuer wins since ρ ≤ 0.5054 (see text).

Figures 3.10 and 3.11 show additional two simulations in which both players use optimal

motion strategies. In these simulations b = 0.25 and L = 0.5, thus γ = 0.5. At the
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Figure 3.11: The initial conditions are identical to those for the example of figure
3.10. Here, the evader wins since ρ > 0.5054 (see text).

beginning of the game θ = 80 degrees, and φ = 125 degrees. In figure 3.10 the pursuer

wins, in figure 3.11 the evader wins. For the initial system configuration corresponding

to this simulations, the critical value for the ratio ρ is given by ρ = Vemax

Vpmax
= | cos(θ−φ)|

g =

0.5054. If ρ > 0.5054 then evader wins, else when ρ ≤ 0.5054 the pursuer wins. Note

that this ratio can be computed based only on θ, φ and the optimal u∗2 = ψi.

Finally, figures 3.12 and 3.13 show a simulation in which the evader moves randomly,

the pursuer wins aligning its wheels parallel to the rod (
−→
VP ‖

−→
L ), figure 3.13 shows the

initial and final orientations of the pursuer wheels w.r.t the rod. Figures 3.12 and 3.13

exemplify that whenever Theorem I is satisfied for the pursuer, the pursuer can track

the evader even if the evader follows a random motion. If the pursuer is able to track

an evader following the optimal policy, it shall be able to track an evader following any

other policy. Hence, it is not needed to know the policy chosen by the evader at every

instant of time.

3.4 Conclusions and Future Work

In this chapter, we have considered the surveillance problem of tracking of a moving

evader by a differential drive pursuer (nonholonomic robot).

We have analysed the case in which the pursuer and the evader move in an environment

without obstacles. We have shown that in order to maintain a constant distance to the

evader, the linear speed of the pursuer is totally determined for every configuration of the

system, so that its only degree of freedom is its rotation angle. We have derived a lower

bound for the pursuer speed to follow the evader. We have obtained optimal motion
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Figure 3.12: Evader moves randomly, pursuer wins aligning its wheels parallel to the
rod

Figure 3.13: Initial and final pursuer heading, at the end the pursuer wheels are
aligned with the rod

strategies for both players, in the sense that they require the minimal capabilities of the

players for winning. We have also obtained the long term solution for the game, and we

have presented simulation results of the game of pursuit. The methodology proposed in

this chapter basically has two main components: 1) Find the optimal policies for each

player for a given criterion. 2) Show that these policies induce a monotonic evolution

under the condition defining the winner. This methodology might be used to solve other

related problems (e.g., tracking and omnidirectional evader with a car-like robot).



Chapter 4

Tracking an Omnidirectional

Evader with a Differential Drive

Robot at Bounded Variable

Distance

In this chapter, we address the pursuit-evasion problem for a differential drive robot

(DDR) and an omnidirectional agent (OA) in the plane without obstacles. Specifically,

we provide a criterion for partitioning the configuration space of the problem into 2

regions, so that in one of them the DDR is able to control the system, in the sense that,

by applying a specific strategy (also provided), the DDR can achieve any feasible inter-

agent distance, regardless of the actions taken by the other agent. Particular applications

of these results include the capture of the OA by the DDR. Simulations that illustrates

the trajectories of the system are also included.

In this study we assume that both agents have maximum bounded speeds. The differ-

ential drive robot is faster that the OA, but it can only change its motion direction up

to a rate that is inversely proportional to its translational speed. In this work, only a

purely kinematic problem is considered, and any effect due to dynamic constraints (e.g.,

acceleration bounds) is neglected.

In the previous chapter, we have presented a solution for the problem of tracking an

omnidirectional mobile evader at constant distance with a differential drive robot. In

that work we have obtained optimal motion strategies for both players and the long

term solution for the game. This current work represents a generalization of the work

presented in [36]. In this chapter, we present conditions that establish whether or not it

33
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is possible for a DDR to track an OA at a bounded variable distance. We also present

motion strategies for the DDR. Defining the capture condition as moving the pursuer

closer than a given distance from the evader, then the motion strategies proposed in this

work can be used by a DDR to capture an OA.

In this work, we define a manifold over the space of parameters for this game, such that

it induces a partition of this space into two disjoint regions. The DDR will be able

to control the system whenever the system is in one of these regions. By controlling,

we mean that the DDR can vary the inter-player distance freely. When the system is

exactly on the manifold, no player controls the system and it can be interpreted as a

tied game.

The motion strategies presented in this paper are applicable to several problems related

to surveillance or capture:

• They allow a DDR to maintain an omnidirectional evader within a limited sensing

range defined by a maximal Lmax and a minimal Lmin sensing distances.

• They allow a DDR to reduce the distance from the evader.

In the remaining of this chapter, we describe the conditions that make possible the tasks

listed above.

4.1 Pursuit-evasion at a bounded variable distance

In the last chapter, we established that M(V max
e , V max

p , L, θ, φ) = 0 defines a partition

of the space (V max
e , V max

p , θ, φ) into two regions, one in which the DDR can maintain

tracking at a constant distance indefinitely, and another in which the OA can eventually

escape. Therefore, as long as the evolution in time of the system configuration remains

in the same region, it will be possible for the DDR to maintain tracking at a constant

distance or for the OA to avoid it. In this section, we present the conditions and motion

strategies for both players that allow one to relax the constant distance constraint as

long as the configuration of the system remains in the initial region.

For simplicity, instead of working with the variables (V max
e , V max

p , L, θ, φ) we will use the

space (L, δ) with δ = θ − φ, where V max
e and V max

p are fixed. In this case,

M(V max
e , V max

p , L, θ, φ) = 0 may be written as M(L, δ) = 0. We have that

M(V max
e , V max

p , L, θ, φ) = |φ̇(u∗1, u
∗
2)| − 1

b
(V max
p − |u∗∗3 |) (4.1)
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the last equation can be rewritten in the form

M(V max
e , V max

p , L, θ, φ) = V max
e [| cos(φ−u∗2)|+ b

L
| sin(θ−u∗2)|]−V max

p | cos(θ−φ)| (4.2)

We previously defined

g(φ, θ, u2) = | cos(φ− u2)|+ b

L
| sin(θ − u2)| (4.3)

thus (4.2) can be rewritten as

M(V max
e , V max

p , L, θ, φ) = V max
e g(φ, θ, u∗2)− V max

p | cos(θ − φ)| (4.4)

For θ − φ ∈ [0, π2 ], we have from the previous chapter that (4.3) takes the form

g(φ, θ, u2) = − cos(φ− u2)− b

L
sin(θ − u2) (4.5)

Evaluating g(φ, θ, u2) with the optimal u∗2 as in the previous chapter, we get

g(φ, θ) =

√
1 +

2b

L
sin(θ − φ) +

(
b

L

)2

(4.6)

Recalling that δ = θ − φ, we have for fixed V max
e , V max

p ,

M(L, δ) = V max
e

√
1 +

2b

L
sin(δ) +

(
b

L

)2

− V max
p cos(δ) (4.7)

Figure 4.1 shows the regions in the (L, δ) space where M(L, δ) > 0 or M(L, δ) < 0, and

the curves (bold lines) where M(L, δ) = 0 for δ ∈ [−π, π].

M > 0

M < 0

M < 0

M < 0

L

δ

π

π/2

−π/2

−π

M > 0

Figure 4.1: Representation of M(L, δ) in (L, δ) space.
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In Figure 4.1, we can observe that the value of M(L, δ) has some symmetry properties

as the value of δ varies in [−π, π]. Using these properties, we have that the problem can

always be reduced to the interval [0, π2 ]. Figure B.1 (refer to Appendix B.1) shows the

curve representing M(L, δ) = 0 in this interval. In the upper region of the figure are the

configurations (L, δ) where the OA avoids constant distance tracking and M(L, δ) > 0.

In the bottom region are those where the DDR maintains tracking and M(L, δ) < 0.

As our analysis will be based on the two regions composing the space (L, δ), it is impor-

tant to prove some useful properties of the curve separating those regions.

Lemma 4.1. Let δ∗(L) be the curve separating the regions where M(L, δ) < 0 and

M(L, δ) > 0.

1. There is a critical value L = L∗o such that δ∗(Lo) = 0.

2. For L > L∗o, δ
∗(L) is a strictly increasing function.

3. If L→∞ then δ∗(L)→ cos−1
(
V max
e
V max
p

)
≤ π

2 .

4. For L <∞, δ∗(L) < cos−1
(
V max
e
V max
p

)
≤ π

2 .

This lemma implies that δ∗(L) is a bounded strictly increasing function with respect to

the inter-player distance L. These properties allow one to define the regions in which

each player controls the system. The proof of this lemma is given in Appendix B.1.

Remark 4.2. From Lemma 4.1, we have that there is a critical value L = L∗o bounding

δ∗(L) by the left. From the proof of that lemma, see Appendix B.1, we have that

L∗o = ρb√
1−ρ2

where ρ = V max
e
V max
p

. In some cases L∗o < b, the critical value corresponds

to a inter-player distance located inside of the robot radius. In those cases, we must

assume that the curve δ∗(L) is bounded by the critical value L∗o = b, corresponding to

configurations where the robot is in collision with the OA.

In what follows, we will show that from a given initial configuration LI , δI , the DDR

—depending on the sign of M(LI , δI) — will be able to move in such a way that any

desired inter-player distance LG (with certain restrictions) may be obtained in finite

time.

4.1.1 DDR strategy

First, consider the case where M(LI , δI) < 0. The following theorem establishes a

strategy with which, the DDR can reach a distance L ∈ [LG − ε, LG + ε] (assuming

LG − ε ≥ 0) in finite time for any ε > 0, independently of the strategy followed by the

OA.
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Theorem 4.3. Assume that for the initial configuration M(LI , δI) < 0. Given ε > 0,

define L∗B = L∗o+ε > 0. Let (LI , LG, L) > L∗B +ε, be the initial, the goal and the current

distance between the DDR and the OA. The DDR can reach a distance L ∈ [LG−ε, LG+ε]

in finite time, repeating the following strategy:

1. If δ(L) > 0, move at constant L, changing the DDR’s heading until it is parallel

to the orientation of the rod, i.e., make δ(L) = 0.

2. If δ(L) = 0, move during a time T̂ = min(T ∗, |L−LG|2V max
p

) directly towards or away

from the position of the OA at time t, depending on the sign of L − LG, with a

velocity V = sgn(L− LG) · V max
p where

T ∗ = min

(
ε

2V max
p

,
L∗B sin(δ∗(L∗B))

V max
e

)
(4.8)

This theorem is proved by cases finding upper bounds on the OA motions. The proof

is provided in Appendix B.2. Note that the theorem gives a constructive analysis which

yields feasible motions for the DDR to win. In the theorem, ε is a parameter, which

represents the tolerance of reaching the desired inter-player distance. It allows one to

determine a safety margin for not crossing the manifold defining the space partition

(recall that the regions of the partition define the winner of the game). Note that as ε

decreases, the time required to execute each DDR sub-motion also decreases (see Equa-

tion 4.8), and hence the number of sub-motions necessary to reach a given configuration

increases.

4.2 Simulations

In this section, we present some simulations of the players’ strategies described before.

The first simulation corresponds to the case when the DDR wants to reduce the inter-

player distance. The initial parameters of the system are V max
p = 1, V max

e = 0.5, b = 1,

xe = 1, ye = 0, L = 2, θ = 40◦, φ = 0◦, ε = 0.20, Lo = 1, and LG = 1.25.

Figure 4.2 shows the system trajectory in the space (L, δ). The trajectories followed

by the players in the Euclidean plane are shown in Figure 4.3. Note that in this case,

the DDR first aligns its heading with the rod’s orientation, and then it moves directly

towards the OA. The OA tries to move directly away from the DDR.
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Figure 4.2: Representation in (L, δ) of the case when the DDR decreases the inter-
player distance. The red bold curve corresponds to M(L, δ) = 0, and the bold dashed
line to the value of LB . The system is initially at the point (2, 40◦). The blue lines
show the trajectory followed by the system. At the end, the system is at the point
(1.1, 0◦).

Figure 4.3: Representation of the trajectories of the players corresponding to the
system of Fig 4.2. The DDR decreases the inter-player distance. The trajectories of
the players were sub-sampled to show the motion direction of the players.
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In Fig. 4.4, we can observe the variation of the inter-player distance L with respect

to time, when the DDR wants to get closer to the OA. Initially, the DDR is aligning

its heading with the rod orientation. During this time interval, the distance between

both players remains constant. Once the DDR has aligned its heading, it starts moving

toward the OA, while this player moves away from the DDR. Both players move in

the same direction, but as the DDR is faster than the OA, the inter-player distance

decreases.
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Figure 4.4: Variation of L as time elapses, corresponding to the system trajectory of
Fig 4.2. The DDR decreases the inter-player distance.

4.3 Discussion and Conclusions

This chapter proposes a generalization of the work presented in [36]. The motion strate-

gies presented in this chapter are applicable to several problems related to surveillance

or capture.

1. They allow a DDR to maintain an omnidirectional evader within a limited sensing

range defined by a maximal Lmax and a minimal Lmin sensing distances, provided

that the limited sensing range satisfies the restriction imposed by Lmin > L∗o + 2ε.

2. They allow a DDR to reduce the distance from the omnidirectional evader, again

provided that the desired inter-player distance satisfies the restriction LG > L∗o+2ε.

Indeed, the problem of capturing an evader can be established in terms of this inter-

player distance. That is, the capture condition is defined as moving the DDR closer

than a given distance from the omnidirectional evader.

To our knowledge this is the first time that a solution is proposed for the problems of

tracking and capturing an omnidirectional evader with a differential drive robot or vice

versa in free space.
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It is important to stress that if M(L, δ) < 0 then the DDR can obtain in finite time an

inter-player distance L ∈ [LG − ε, LG + ε], which satisfies M(L, δ) < 0, and such that

LG > L∗o+2ε. In order to obtain the desired inter-player distance LG (within a tolerance

ε), the DDR performs the motion strategy described in Theorem 4.3.

The main drawback of the motion strategies presented in this paper is that they are not

necessarily optimal in time. However, note that the analysis presented gives constructive

proofs which yield feasible motions for the players to obtain their goals in finite time.

As future work, we will analyze the simultaneous variation of δ and L to obtain smoother

trajectories in L − t space. We shall also consider acceleration bounds on the pursuer

and the evader.



Chapter 5

Optimal Control Theory and

Differential Games

In this chapter, we describe some basic concepts from optimal control theory and differ-

ential games that will be used in the solution of the problem in Chapter 6.

5.1 Definitions

A differential game consists of the following elements:

5.1.1 Space

The space in which the action takes place, X, a connected subset of an n-dimensional

Euclidean space. The state of the game is given by x = (x1, x2, . . . , xn), where x1, x2,

. . ., xn are called the state variables, it is a position in X.

5.1.2 Control Variables

u, v where u is controlled by the first player and v by the second player, are called the

control variables. The two players strive against one another to accomplish their desired

outcome through the choice of their control variables. The control variables may be

bounded, typically in the form a ≤ u ≤ b. Within those bounds the players must be

able to chose any value at each instant.

41
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5.1.3 Kinematics Equations

During the course of the game, the state x will change according to the decisions made

by each player, this change is specified by the kinematics equations which takes the form

ẋi = fi(x, u, v) (5.1)

We require that each fi be smooth with respect to the state variables, and continuous

with respect to the control variables.

5.1.4 Payoff

The numerical quantity which the players strive to maximize and minimize respectively

can assume a variety of forms. However, a common representation of the payoff is

J(x(ts), u, v) =

∫ tf

ts

L(x(t), u(t), v(t))dt+G(x(tf )) (5.2)

The time integral extends over the path traversed by x(t) during the game; its lower

limit (we could call it ts) refers to the starting point x(ts); its upper limit is the time

tf to reach the final point x(tf ). L(x(t), u(t), v(t)) is called the running cost function

and it is the cost incurred while the game is being played. The term G(x(tf )) is called

the terminal cost function and it is the cost incurred for reaching a particular terminal

state.

5.1.5 Value of the Game

For a given state of the system x(ts), V (x(ts)) represents the outcome if the players

implement their optimal strategies starting at the point x(ts), and it is called the value

of the game at x(ts)

V (x(ts)) = min
u(t)∈Û ,∀t

max
v(t)∈V̂ ,∀t

J(x(ts), u, v) (5.3)

where Û and V̂ are the set of valid values for the controls at all time t. V (x(t)) is defined

over the entire state space.
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5.1.6 Open and Closed-loop Strategies

A strategy γ is a rule that tells the player the control it has to apply at each time instant.

If the strategy only depends on time γ(t) is called an open-loop strategy [40], and if it

depends on the state of the system γ(x(t)) is called a closed-loop strategy [40].

5.1.7 Open and Closed-loop Equilibrium Strategies

Let γp(x(t)) and γe(x(t)) denote a pair of closed-loop strategies of the pursuer and the

evader, respectively, therefore u(t) = γp(x(t)) and v(t) = γe(x(t)). A strategy pair

(γ∗p(x(t)), γ∗e (x(t))) is in closed-loop (saddle-point) equilibrium if

J(γ∗p(x(t)), γe(x(t))) ≤ J(γ∗p(x(t)), γ∗e (x(t)))

≤ J(γp(x(t)), γ∗e (x(t))), ∀γp(x(t)), γe(x(t))
(5.4)

where J is the payoff of the game in terms of the strategies. An analogous relation exists

for open-loop strategies.

5.1.8 Terminal Surface

Let ζ be the subset of X on which the game terminates, i.e., a subset where the state

variables take a desired value or property. ζ defines a boundary of X, which consists

of piecewise smooth surfaces, i.e. n − 1 dimensional manifolds in the underlying n-

dimensional space.

5.1.9 Usable Part

The portion of the terminal surface where one player can guarantee termination regard-

less of the choice of controls of the other player is called the usable part (UP) [20]. From

[20], we have that the UP is given by

UP =

{
x(t) ∈ ζ : min

u(t)∈Û
max
v(t)∈V̂

n · f(x(t), u(t), v(t)) < 0

}
(5.5)

where Û and V̂ are the sets of valid values for the controls, and n is the normal vector

to ζ from point x(t) on ζ and extending into the playing space. n · f(x(t), u(t), v(t))

is a projection of the motion directions of both players along the best direction for

penetrating ζ and tells us if the strategies of both players will allow crossing the terminal

surface or not. Those points of ζ where the expression in (5.5) holds with the inequality
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reversed are called the non-usable part (NUP) and the game will never terminate on the

NUP. The set of points that separates these parts is called the boundary of the usable

part (BUP). The BUP can be computed replacing the inequality in (5.5) by an equality.

5.2 Necessary and Sufficient Conditions for Saddle-Point

Equilibrium Strategies

This section describes the necessary and sufficient conditions for existence of saddle-

point equilibrium strategies in pursuit-evasion games [40]. The sufficient condition is

provided by an extension of the Hamilton-Jacobi-Bellman (HJB) equation [40] to a non-

cooperative game with two players. This extension is called the Isaacs equation (Eq.

(5.6)) [20]. An analogous extension of the Pontryagin’s Maximum Principle (PMP)

[91] to a two-players non-cooperative game provides a necessary condition [40]. This

extension of the PMP may provide a constructive manner of computing saddle-point

strategies. The necessary conditions are valid for the open-loop representation of the

closed-loop strategies, and in order to obtain the closed-loop strategies these open-loop

solutions have to be synthesised. This means that a partition of the complete playing

space has to be constructed using the open-loop strategies. In each region of the partition

a precise combination of the players’ controls is used. This information can be employed

to derive the closed-loop strategies, i.e., a policy that maps regions of the state space

partition to the corresponding optimal controls for the players.

5.2.1 Isaacs Equation

Eq. (5.6) is known as the Isaacs equation [40]:

−∂V (t,x(t))

∂t
= min

u(t)∈Û
max
v(t)∈V̂

[
∂V (t,x(t))

∂x
· f(t,x(t), u(t), v(t)) + L(t,x(t), u(t), v(t))]

(5.6)

where Û and V̂ are the sets of valid values for the controls.

Usually, V (x(t)), f(x(t), u(t), v(t)) and L(x(t), u(t), v(t)) do not explicitly depend on

time, therefore Eq. (5.6) takes the form

min
u(t)∈Û

max
v(t)∈V̂

[
∂V (x(t))

∂x
· f(x(t), u(t), v(t)) + L(x(t), u(t), v(t))] = 0 (5.7)
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Eq. (5.7) is known as the main equation in [20]. Solving the HJB is a functional

optimization problem. This equation provides a sufficient condition for saddle-point

strategies, which is stated in the following theorem from [40]:

Theorem 5.1. If

1. a continuously differentiable function V (x(t)) exists that satisfies the Isaacs equa-

tion (5.7),

2. V (x(t)) = 0 on the boundary of the terminal surface ζ,

3. either u∗(t) = γ∗p(x(t)) or v∗(t) = γ∗e (x(t)), as derived from Eq. (5.7), generates

trajectories that terminate in finite time (whatever γe, respectively γp, is),

then V (x(t)) is the value of the game and (γ∗p(x(t)), γ∗e (x(t))) constitutes a saddle point.

The assumption of interchangeability of the min and max operations in the Isaacs equa-

tion is referred as the Isaacs condition. The Isaacs condition holds if both L(x(t), u(t), v(t))

and f(x(t), u(t), v(t)) are separable in u(t) and v(t), i.e., they can be written as

L(x(t), u(t), v(t)) = L1(x(t), u(t)) + L2(x(t), v(t))

f(x(t), u(t), v(t)) = f1(x(t), u(t)) + f2(x(t), v(t))
(5.8)

5.2.2 Pontryagin’s Principle

V (x(t)) is not known at the beginning of the game therefore Eq. (5.7) cannot directly

be used in the derivation of saddle-point strategies. A possibility is to use Theorem 5.2

from [40], given below, which provides a set of necessary conditions for an open-loop

representation of the closed-loop saddle-point solution. Regardless of the fact that it

does not deal with closed-loop solutions directly, Theorem 5.2 is very useful in their

computation.

Theorem 5.2 (PMP). Suppose that the pair {γ∗p , γ∗e} provides a saddle-point solution

in closed-loop strategies, with x∗(t) denoting the corresponding state trajectory. Fur-

thermore, let its open-loop representation {u∗(t) = γp(x
∗(t)), v∗(t) = γe(x

∗(t))} also

provide a saddle-point solution (in open-loop polices). Then there exists a costate func-

tion p(·) : [0, tf ]→ Rn such that the following relations are satisfied:

ẋ∗(t) = f(x∗(t), u∗(t), v∗(t)), x∗(0) = x(ts) (5.9)

H(p(t),x∗(t), u∗(t), v(t)) ≤ H(p(t),x∗(t), u∗(t), v∗(t)) ≤ H(p(t),x∗(t), u(t), v∗(t))

(5.10)
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ṗT (t) = − ∂

∂x
H(p(t),x∗(t), u∗(t), v∗(t)) (5.11)

pT (tf ) =
∂

∂x
G(x∗(tf )) along ζ(x∗(t)) = 0 (5.12)

where

H(p(t),x(t), u(t), v(t)) = pT (t) · f(x(t), u(t), v(t)) + L(x, u(t), v(t)) (5.13)

G(x∗(tf )) is the terminal cost function and T denotes the transpose operator.

Equation (5.11) is known as the adjoint equation, and Eq. (5.13) as the Hamiltonian

function. Using Eq. (5.13) with p(t) = ∇V (x(t)) for the case of vector-valued functions,

and assuming that the Hamiltonian is separable in u(t) and v(t) (refer to Lemma 6.2),

we can rewrite Eq. (5.7) as

min
u(t)∈Û

max
v(t)∈V̂

H(x(t),∇V (x(t)), u(t), v(t)) = 0

u∗(t) = arg min
u(t)∈Û

H(x(t),∇V (x(t)), u(t), v(t))

v∗(t) = arg max
v(t)∈V̂

H(x(t),∇V (x(t)), u(t), v(t))

(5.14)

where u∗(t) and v∗(t) are the optimal controls . The vector ∇V (x(t)) can be interpreted

as the Lagrange multipliers used in constrained optimization or optimal control theory.

The maximum principle, in particular Eqs. (5.10) and (5.11), can be considered as a

specialization of the HJB equation which corresponds to the application of the optimal

actions u∗(t) and v∗(t). This causes the min max to disappear, but along with it the

global properties of the HJB equation also vanish. The PMP expresses conditions along

the optimal trajectory, as opposed to the value of the game V (x(t)) over the whole

state space. Therefore, it can at best assure local optimality in the space of possible

trajectories [92].

In the PMP methodology, the optimal controls for the players are functions of p(t) =

∇V (x(t)), it is important to note that once u∗(t) and v∗(t) are chosen the relation

with the state x(t) is lost. That is the reason why we use the notation p(t) and not

p(x(t)). Later, the optimal motion trajectories of the players are constructed using

u∗(t) and v∗(t). Therefore, the resulting optimal trajectories are not directly related

with the state. This means that a partition of the complete playing space has to be

constructed using the open-loop strategies. In each region of the partition a precise

combination of the players’ controls is used. This information can be employed to derive

the closed-loop strategies, i.e., a policy that maps regions of the state space partition to

the corresponding optimal controls for the players.
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5.3 Decision problem

A game of kind is a game in which we are interested in what conditions lead to a

winning for each one of the players, rather than seeking the best procedures in terms of

optimizing some continuous payoff. For the game of capturing in pursuit-evasion games,

this corresponds to finding the conditions that make capture possible for the pursuer or

escape for the evader.

5.3.1 The barrier

There is a surface called the barrier [20], which separates the set of starting positions in

those that result in capture and those that result in escape for the evader. From starting

points on the barrier, optimal behaviour leads to a contact of the terminal surface

without crossing it. The outcome of following the barrier is called neutral, and it can

be understood as intermediate between capture and escape. The techniques we have

used in the calculation of the optimal strategies and their corresponding trajectories,

are also applied in the construction of the barrier, which can be interpreted as a neutral

trajectory of the system. The answer to the capture-escape question relies on whether

or not the barrier divides the playing space into two parts.

5.3.2 Construction of the barrier

Let x be a point initially on ζ, the terminal surface. As we previously mentioned, the

portion of the terminal surface where the pursuer can guarantee termination regardless

of the choice of controls of the evader is called the usable part (UP), and its boundary

(BUP) is characterized by

BUP =

{
x(t) ∈ ζ : min

u(t)∈Û
max
v(t)∈V̂

n · f(x(t), u(t), v(t)) = 0

}
(5.15)

where n is the normal vector to ζ from point x(t) on ζ and extending into the playing

space.

For such points, when each player applies its optimal strategies x moves tangentially to

ζ. As the BUP separates the points on ζ where immediate capture occurs from those

where it does not, it is used as initial condition for the barrier. The barrier is constructed

integrating the adjoint equation (6.19) and the equations of motion (6.27), starting at

the BUP. The resulting surface may or may not divide the playing space into two parts,
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one of them contiguous to the UP. Note that the construction of the barrier depends on

the ratio ρv of the players’ velocities.

Suppose the barrier separates the playing space into two parts. If x is in the outer side,

the one that is not contiguous to the UP, then the pursuer cannot force the capture

because the UP is not accessible. If the barrier fails to separate the playing space, then

capture can always be attained by the pursuer. However, from starting points in each

side of the barrier (in local sense) the pursuer must adopt different strategies.

5.4 Singular surfaces

A fundamental requirement of the Isaacs methodology is that V (x) is a continuously

differentiable function. To obtain the optimal controls generating trajectories for the

players in the entire state space it is sufficient to split this space into a set of mutually

disjoint regions where this condition is met. In each region, the value function V (x) is

continuously differentiable, and its behaviour and construction is well established.

The boundaries of these regions are called singular surfaces [20, 21, 40], and the value

function is not continuously differentiable across them. In some cases, we identify these

regions and their boundaries by a switch in the players’ controls or the intersection of

two distinct families of trajectories in the reduced space. Inside each region, a new

integration of the motion equations is done based on the controls obtained through the

adjoint equation of the PMP. The adjoint equation is solved backwards using as initial

conditions the values of ∇V (x) on the corresponding singular surface. Note that the

controls’ form in each region continues being based on the Hamiltonian of the system

and satisfying the Isaacs equation (5.6).

The singular surfaces and their construction will be described in the next paragraphs

giving a solution of the game for the complete playing space.

5.4.1 Definition of a singular surface

Following the definition given in [40], a singular surface is a manifold on which

1. The equilibrium strategies are not uniquely determined by the necessary conditions

of Theorem 5.2, or

2. The value function is not continuously differentiable, or

3. The value function is discontinuous.
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From [1], we get the following definition for a singular surface based on the regularity of

the Hamiltonian H(x,∇V (x)) and the value function V (x).

A regular point of a differential game is an internal point x∗ of the domain of defini-

tion of the game value V (x) such that the function V (x) is twice differentiable in the

neighbourhood D of x∗, V (x) ∈ C2(D), and the Hamiltonian H(x,∇V (x)) is also twice

differentiable in its arguments; i.e., H(x,∇V (x) ∈ C2(N) where N is a neighbourhood

of the point (x∗,∇V (x∗)). A singular point is any point in the phase space which is not

regular. Singular curve, surface or manifold consist of singular points.

The above definition meets the geometrical definitions of [20, 40, 93]. Fig. 5.1 shows

the qualitative behaviour of the regular and singular paths for different types of singular

surfaces. Some of the surfaces contain singular paths, while others, like dispersal or

switching surfaces, do not. Several surfaces are associated with a jump of ∇V (x), while

others, like the switching or universal ones, are not. The classification presented in

Figure 5.1 is not complete; it is a list of singularities met so far and more or less fully

investigated [1].

Below, we give a geometrical description of the singular surfaces that will appear in the

problem addressed in Chapter 6. For information about the remaining singular surfaces

in Fig. 5.1 or a identification based on the regularity of the H(x,∇(x)) and ∇(x), we

encourage the reader to consult [1, 20, 40, 93].

5.4.1.1 Transition surface (TS)

The place where a control variable abruptly changes in value, is known as a transition

surface (see Fig. 5.1). The procedure for locating a transition surface is fairly straight-

forward, since it follows from the adjoint and motion equations (see Subsection 6.3.8 and

Lemma 6.23 for its construction and description in the problem described in Chapter

6).

5.4.1.2 Universal surface (US)

A surface to which optimal trajectories enter from both sides –called the tributary

trajectories– and then stay on, is called a universal surface (see Fig. 5.1). In differential

games, one can think of such a surface as a union of especially advantageous paths.

Optimal play will demand that the state of the system x be brought to the universal

surface and thereafter remain on it (see Lemma 6.25 for its construction in the problem

described in Chapter 6).
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Figure 5.1: Singular surfaces (in bold), taken from [1]. po and p1 represents the values
of ∇V (x) at each side of the surface. The symbol * indicates the surfaces that appear
in the problem described in Chapter 6.

5.4.1.3 Dispersal surface (DS)

A dispersal surface is defined in [20, 40] as the locus of initial conditions along which

the optimal strategy of one player or the optimal strategies of both players are not

unique (see Fig. 5.1). They are often found as the retro-time intersection of two dis-

tinct families of optimal paths, for each of which the Isaacs equation is satisfied. At the

intersection, the optimal time-to-go is the same for either pair of strategies. In Chapter

6, they appear due to symmetries in the reduced space, see subsection 6.6.3 and Fig. 6.7.

The partition of the playing space using the singular surfaces tell us the regions in the

space where a particular combination of the players’ controls was used. Therefore, it is

possible to compute a closed-loop solution of the problem using this information. Ad-

ditionally, following the corresponding trajectories through the regions in the partition,
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will lead us to a continuous V (x) and a global trajectory ending at the UP in finite time

that satisfies the Isaacs equation (5.6).



Chapter 6

Time-Optimal Motion Strategies

for Capturing an Omnidirectional

Evader using a Differential Drive

Robot

In this chapter, we address the problem of capturing in minimum time an omnidirectional

evader using a Differential Drive Robot (DDR) in an environment without obstacles.

6.1 Problem formulation

A Differential Drive Robot (DDR), the pursuer, and a omnidirectional evader move on

a plane without obstacles. The DDR tries to capture the evader in minimum time. The

game is over when the distance between the DDR and the evader is smaller than a critical

value l. Both players have maximum bounded speeds V max
p and V max

e , respectively. The

DDR is faster than the evader, V max
p > V max

e , but it can only change its direction of

motion at a rate that is inversely proportional to its translational speed [90]. We consider

here a purely kinematic problem, and neglect any effects due to dynamic constraints (e.g.,

acceleration bounds). The DDR wants to minimize the capture time tf while the evader

wants to maximize it. The goal is to find optimal strategies that are in Nash Equilibrium

and may be used by both players to achieve their goals.

52
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6.2 Model

The system model is the same as the one presented in Chapter 2. Here, we summarize

it again to make this chapter self contained.

6.2.1 Realistic space

The kinematics of the game can be described in a global coordinate system (see Fig. 6.1)

usually called realistic space in the literature [20]. (xp(t), yp(t), θp(t)) represents the pose

of the DDR and (xe(t), ye(t)) is the position of the omnidirectional evader, both at time t.

The state of the system can be expressed as (xp(t), yp(t), θp(t), xe(t), ye(t)) ∈ R2×S1×R2.

ψ

y
P

E
E

y

θ
P

xP xE

E
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Figure 6.1: Realistic space

The evolution of the system is described by the following equations of motion

ẋp(t) =

(
u1(t) + u2(t)

2

)
cos θp(t)

ẏp(t) =

(
u1(t) + u2(t)

2

)
sin θp(t)

θ̇p(t) =

(
u2(t)− u1(t)

2b

)
ẋe(t) = v1(t) cosψe(t), ẏe(t) = v1(t) sinψe(t)

(6.1)

where u1, u2 ∈ [−V max
p /r, V max

p /r] are the controls of the DDR, and they correspond

to the angular velocities of its wheels. r is the radius of the wheels, in this problem

we assume r = 1. Let u1 be the angular velocity of the left wheel and u2 of the right

wheel. If both controls have the same magnitude and are either positive or negative,

respectively, the robot moves forward or backward in a straight line, and with a suitable

choice of units [90], the traslational speed is equal to Vp = 1
2(u1 + u2). If u1 and u2

have the same magnitude but opposite signs the robot rotates in place either clockwise

or counter-clockwise [90]. The evader controls its speed v1 ∈ [0, V max
e ] and its direction
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of motion ψe ∈ [0, 2π). We present two useful definitions for the rest of the chapter,

ρv = V max
e /V max

p is the ratio between the maximum translational speed of both players,

and ρd = b/l is the ratio of the distance between the center of the robot and the wheel

location b and the capture distance l. We must have that l ≥ b, otherwise the capture

distance would be located inside the robot.

6.2.2 Reduced space

Usually it is more convenient to analyse the problem and perform all the computations

in a space of reduced dimension. In our case, the problem can be stated in a coordinate

system that is fixed to the body of the DDR (see Fig. 6.2). The state of the system now

can be expressed as x(t) = (x, y) ∈ R2 where x and y are now the (relative) coordinates

of the evader in the intrinsic frame related to the pursuer. All the orientations in this

system are measured with respect to the positive y-axis, in particular, the direction of

motion of the evader v2. Using the coordinate transformation given by

x(t) = (xe(t)− xp(t)) sin θp(t)− (ye(t)− yp(t)) cos θp(t)

y(t) = (xe(t)− xp(t)) cos θp(t) + (ye(t)− yp(t)) sin θp(t)

v2(t) = θp(t)− ψe(t)

(6.2)

and computing the time-derivative of x and y in Eq. (6.2) we get

x
P

E

υ

y

Figure 6.2: Reduced space

ẋ(t) =(ẋe(t)− ẋp(t)) sin θp(t) + (xe(t)− xp(t))θ̇p(t) cos θp(t)

− (ẏe(t)− ẏp(t)) cos θp(t) + (ye(t)− yp(t))θ̇p(t) sin θp(t)

ẏ(t) =(ẋe(t)− ẋp(t)) cos θp(t)− (xe(t)− xp(t))θ̇p(t) sin θp(t)

+ (ẏe(t)− ẏp(t)) sin θp(t) + (ye(t)− yp(t))θ̇p(t) cos θp(t)

(6.3)
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Substituting into Eq. (6.3) the expressions for ẋp(t), ẏp(t), θ̇p(t), ẋe(t) and ẏe(t) in Eq.

(6.1), and the expressions for x(t) and y(t) in Eq. (6.2), the following model of the

kinematics in the DDR-fixed coordinate system is obtained

ẋ(t) =

(
u2(t)− u1(t)

2b

)
y(t) + v1(t) sin v2(t)

ẏ(t) = −
(
u2(t)− u1(t)

2b

)
x(t)−

(
u1(t) + u2(t)

2

)
+ v1(t) cos v2(t)

(6.4)

where u1(t), u2(t) ∈ [−V max
p , V max

p ] are again the controls of the DDR, v1(t) ∈ [0, V max
e ]

is the control associated to the speed of the evader and v2(t) ∈ [0, 2π) is the control

associated to the direction of motion of the evader in the new coordinate system. This

set of equations can be expressed in the form ẋ = f(t,x(t), u(t), v(t)), where u(t) =

(u1(t), u2(t)) ∈ Û = [−V max
p , V max

p ] × [−V max
p , V max

p ] and v(t) = (v1(t), v2(t)) ∈ V̂ =

[0, V max
e ]× [0, 2π).

6.3 Optimal Motion Primitives and Trajectories

In this section, we will derive the saddle-point equilibrium strategies for both players.

The goal of the DDR is to capture the evader as soon as possible, and the goal of the

evader is to delay the capture as long as possible. For this, we will refer to trajectories

in the reduced and realistic spaces. In the realistic space, we will describe trajectories

for both the pursuer and the evader over a global reference frame in a Cartesian plane.

We will show that time-optimal trajectories in the realistic space correspond to straight

lines and rotations in place for the DDR and straight lines for the evader. In the reduced

space, we will refer to trajectories of the system, i.e., relative motions of the evader with

respect to the pursuer in a local reference frame defined by the pursuer.

6.3.1 Overview of the methodology applied on our problem

We use the Isaacs’ methodology [20] to find the solution of our problem. The Isaacs’

methodology [20] is based on an extension of the Hamilton-Jacobi-Bellman (HJB) equa-

tion [40] to a non-cooperative game with two players (see Subsection 5.2.1). The HJB

equation is a partial differential equation having the value function V (x) as the unknown

function. This equation provides sufficient conditions for the existence of saddle point

equilibrium strategies [40]. Solving the HJB allows one to know the value function V (x)

over the entire space; however, obtaining a closed-form solution is a difficult task. An

alternative, is to use an extension of the Pontryagin’s Maximum Principle (PMP) [91]
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to a two-players non-cooperative game which provides a necessary condition for saddle-

point equilibrium strategies. This extension of the PMP provides a constructive manner

of computing saddle-point strategies (refer to Subsection 5.2.2).

The necessary conditions are valid for the open-loop representation of the closed-loop

strategies, and in order to obtain the closed-loop strategies these open-loop solutions

have to be synthesized. This means that a partition of the complete playing space has

to be constructed using the open-loop strategies. In each region of the partition, a precise

combination of the players’ controls is used. This information is employed to derive the

closed-loop strategies, i.e., a policy that maps regions of the state space partition to the

corresponding optimal controls for the players (refer to Section 6.6).

In summary, the methodology consists of the following steps:

1. Compute the usable part (Subsection 6.3.2). This allows one to find the initial

conditions needed to solve the differential equation, so-called adjoint equation.

2. Construct the Hamiltonian of the system (Subsection 6.3.3) and obtain the expres-

sions of the optimal controls satisfying it (Subsection 6.3.4).

3. Find ∇V (x) solving the adjoint equation backwards in time (retro-time, see Eq.

(6.17)) using the values of V (x) and ∇V (x) on the UP as initial conditions (Sub-

sections 6.3.5 and 6.3.6). V (x) is used to find the controls used by the players.

4. Find the switches in the controls of the players (Subsection 6.3.8)

5. Use the pair of controls found in the backward integration of the motion equations

to find the trajectory followed by the players at each stage (Subsections 6.3.7 and

6.3.9).

6. Find the region of the playing space where capture is possible for the DDR (Section

6.4).

7. Obtain the optimal controls and the trajectories for the players in the entire re-

duced space (Section 6.6). This is known as the partition of the space.

Steps 1 to 5 corresponds to use the Pontryagin’s principle. In step 6, we solve the

decision problem corresponding to determining the winner of the game. Finally in step

7, we find the trajectories of the players for the entire space, which is known as the

synthesis.
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6.3.2 Computing the usable part and its boundary

In this section, we compute the portion of the space where the pursuer guarantees

termination regardless of the choice of controls by the evader. For this problem, the

terminal surface ζ is characterized by the distance l between both players. In the reduced

space, ζ is a circle of radius l centred at the origin, hence we can parametrise it by

the angle s (see Fig. 6.3), which is the angle between the evader’s position and the

pursuer’s heading at the end of the game, i.e. when the capture occurs (recall that all

the orientations in the reduced space are measured with respect to the positive y-axis).

Surface

I

IIIII

IV

s

x

y

UP

UP

BUP

BUPBUP

BUP

Terminal

Figure 6.3: Representation of the terminal surface, usable part and its boundary in
the reduced space.

At the end of the game

x = l sin s, y = l cos s (6.5)

Lemma 6.1. In this game, the usable part has two regions:

1. The first region corresponds to capturing the evader when the DDR is moving

forward following a straight line in realistic space. This region contains all the

points on ζ such that cos s > ρv and its boundary is given by those points where

cos s = ρv.

2. The second region corresponds to capturing the evader when the DDR is moving

backward following a straight line in realistic space. This region contains all the

points on ζ such that cos s < −ρv and its boundary is given by those points where

cos s = −ρv.
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Proof. The outward normal n to ζ is defined by

n = [sin s cos s] (6.6)

The usable part after substituting Eq. (6.4) and Eq. (6.6) into inequality (5.5) is given

by

UP ={s : min
u1,u2

max
v1,v2
{sin s

[(
u2 − u1

2b

)
y + v1 sin v2

]
+ cos s

[
−
(
u2 − u1

2b

)
x−

(
u1 + u2

2

)
+ v1 cos v2

]
} < 0}

(6.7)

Substituting Eq. (6.5) into inequality (6.7) and after straightforward algebraic manipu-

lation, we find that

UP =

{
s : min

u1,u2
max
v1,v2

[
v1 cos(v2 − s)−

(
u1 + u2

2

)
cos s

]
< 0

}
(6.8)

As the evader is the maximizer player it wants the term v1 cos(v2 − s) be positive, and

with the largest value possible. Therefore, v1 = V max
e and v2 = s, i.e., the evader

is moving at maximum speed with an angle s with respect to the pursuer’s heading.

Substituting these values into Eq. (6.8) we have

UP =

{
s : min

u1,u2

[
V max
e −

(
u1 + u2

2

)
cos s

]
< 0

}
(6.9)

In inequality (6.9) we have two cases, (1) cos s > 0 or (2) cos s < 0. In order to make

inequality (6.9) minimal, u1 and u2 must be equal and saturated (that is equal to |V max
p |).

Hence the pursuer moves in straight line. If cos s > 0 then
(
u1+u2

2

)
= V max

p > 0, the

DDR is moving forward and if cos s < 0 then
(
u1+u2

2

)
= −V max

p < 0, the DDR is moving

backward. Note that this pair of controls corresponds to the best action that the DDR

can apply against the evader in the min max context of the game, and therefore they

give the set of configurations where the DDR captures the evader against any opposition

of this player. Note that the same controls u1 and u2 are used in both the reduced and

realistic spaces. From inequality (6.9) and considering the two cases described above,

it is straightforward to find that the region where the DDR is moving forward contains

all the points such that cos s > ρv and the region where the DDR is moving backward

contains all the points such that cos s < −ρv.
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6.3.3 Hamiltonian

In order to compute the optimal trajectories for both players, we need to construct

the Hamiltonian of the system. For problems of minimum time [40], as in this game,

L(x(t), u(t), v(t)) = 1 and G(tf ,x(tf )) = 0. ∇V = [Vx Vy]
T where Vx and Vy represent

the partial derivatives ∂V
∂x and ∂V

∂y . Substituting the last expressions and the equations

of motion in (6.4) into Eq. (5.13), we obtain

H(x,∇V, u1, u2, v1, v2) = Vx

(
u2 − u1

2b

)
y + Vxv1 sin v2

− Vy
(
u2 − u1

2b

)
x− Vy

(
u1 + u2

2

)
+ Vyv1 cos v2 + 1

(6.10)

Lemma 6.2. The Hamiltonian of our system is separable in the controls of the pursuer

and the evader, i.e., we can write it in the form f1(x,∇V, u) + f2(x,∇V, v).

Proof. In our case, Eq. (6.10) can be rewritten in the form

H(x,∇V, u1, u2, v1, v2) =
u1

2

(
−yVx
b

+
xVy
b
− Vy

)
+
u2

2

(
yVx
b
− xVy

b
− Vy

)
+ v1(Vx sin v2 + Vy cos v2) + 1

(6.11)

Thus the Hamiltonian of our game is separable in the controls u1, u2, v1 and v2.

6.3.4 Optimal controls

Lemma 6.3. The time-optimal controls for the DDR that satisfy the Isaacs’ equation

(5.6) in the reduced space are given by

u∗1 = −sgn

(
−yVx
b

+
xVy
b
− Vy

)
V max
p

u∗2 = −sgn

(
yVx
b
− xVy

b
− Vy

)
V max
p

(6.12)

We have that both controls are always saturated. If they have the same sign the DDR

will move in straight line at maximum translational speed in the realistic space and if

they have opposite signs the DDR will rotate in place at maximum rotational speed in

the realistic space. The controls of the evader in the reduced space are given by

v∗1 = V max
e , sin v∗2 =

Vx
ρ
, cos v∗2 =

Vy
ρ

(6.13)

where ρ =
√
V 2
x + V 2

y . The evader will also move at maximal speed.
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Proof. By Lemma 6.2 we know that the Hamiltonian of our game is separable in two

parts, one in terms of the pursuer’s controls and other in terms of the evader’s controls.

Consider the pursuer first. As the DDR is the minimizer player it wants the Hamiltonian

term

u1

2

(
−yVx
b

+
xVy
b
− Vy

)
+
u2

2

(
yVx
b
− xVy

b
− Vy

)
(6.14)

to be minimal. Let A = −yVx
b +

xVy
b − Vy and B = yVx

b −
xVy
b − Vy. There are four cases:

In all cases u1 and u2 must be saturated to minimize Eq. (6.14) and they correspond

(in absolute values) to the maximal rotational speed of the wheels V max
p (with a suitable

choice of units and assuming an unit radius r of the pursuer’s wheels [90], the rotational

speeds are equivalent to the translational speeds).

1. If A < 0 and B < 0 then to minimize Eq. (6.14), u1 = u2 = V max
p , and the pursuer

moves forward in a straight line.

2. If A > 0 and B > 0 then to minimize Eq. (6.14) u1 = u2 = −V max
p , and the

pursuer moves backward in a straight line.

3. If A > 0 and B < 0 then to minimize Eq. (6.14) u1 = −V max
p and u2 = V max

p , and

the pursuer rotates in place counterclockwise.

4. If A < 0 and B > 0 then to minimize Eq. (6.14) u1 = V max
p and u2 = −V max

p , and

the pursuer rotates in place clockwise.

The DDR switches controls when A or B change signs. When the DDR switches controls

A or B are instantaneously zero. One can show (refer to Section C.1 in Appendix C)

that if either A or B becomes zero, the corresponding time derivatives Ȧ or Ḃ will be

different from zero, so that A or B are zero only at the switching instant.

Analogously, since the evader is the maximizer player it wants the term

v1(Vx sin v2 + Vy cos v2) (6.15)

to be maximal. The quantity in round parenthesis is the dot product of the vectors

[Vx Vy] and [sin v2 cos v2], and it is maximal when [sin v2 cos v2] lies along [Vx Vy] (both

vectors are parallel and have the same direction). To maximize Eq. (6.15), v1 = V max
e

and [Vx Vy] ‖ [sin v2 cos v2], from which Eq. (6.13) follows.

In Lemmas 6.7 and 6.13, we will present the actual evader trajectories.
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6.3.5 Adjoint equation

The adjoint equation (5.11) is a differential equation for the gradient of the value function

V (x) along the optimal trajectories in terms of the optimal controls. It is given by

d

dt
∇V [x(t)] = − ∂

∂x
H(x,∇V, u∗1, u∗2, v∗1, v∗2) (6.16)

where the components of ∇V (x) are called adjoint variables. If tf is the termination

time of the game, we define the retro-time as

τ = tf − t (6.17)

The adjoint equation in retro-time form is

d

dτ
∇V [x(τ)] =

∂

∂x
H(x,∇V, u∗1, u∗2, v∗1, v∗2) (6.18)

Lemma 6.4. The expressions in retro-time of the adjoint equation of our system are

d

dτ
Vx = −

(
u∗2 − u∗1

2b

)
Vy,

d

dτ
Vy =

(
u∗2 − u∗1

2b

)
Vx (6.19)

Proof. Substituting Eq. (6.11) into Eq. (6.18) (u∗1, u∗2, v∗1 and v∗2 denote the optimal

controls of both players) it is straightforward to obtain the expressions above.

Remark 6.5. From Eq. (6.19), notice that the adjoint equation can take four different

expressions depending on the values of u∗1 and u∗2. Therefore, it is necessary to know when

and for how long a particular expression is valid during the game, which corresponds to

find the switches of the controls associated to the DDR.

In what follows we will show that the players’ optimal motion primitives in the realistic

space correspond, for the evader, to straight lines (see Lemmas 6.7 and 6.13), and for

the pursuer to rotations in place and straight lines, Lemma 6.11. We will also provide

the system trajectories in the reduced space (see Theorems 6.9 and 6.14).

6.3.6 Integrating the adjoint equation starting at the usable part

We need to establish the initial conditions of the system, in this case, the values of Vx

and Vy on the UP of ζ. From Eq. (6.5) we have that

dx

ds
= l cos s,

dy

ds
= −l sin s (6.20)
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Since V (x) = 0 on the UP of ζ it follows that

Vs =
dV

ds
=
∂V

∂x

dx

ds
+
∂V

∂y

dy

ds
= 0 (6.21)

Substituting Eq. (6.20) into Eq. (6.21)

Vx cos s = Vy sin s (6.22)

From Eq. (6.22) we have that on the UP

Vx = λ sin s, Vy = λ cos s (6.23)

where λ is a constant value.

Lemma 6.6. The solution of the adjoint equation (6.19) starting at the usable part is

Vx = λ sin s, Vy = λ cos s (6.24)

Proof. From Lemma 6.1, we know that at the end of game the pursuer follows a trans-

lation (straight line). Therefore Eq. (6.19) takes the form

d

dτ
Vx = 0,

d

dτ
Vy = 0 (6.25)

We can directly verify that Eq. (6.24) satisfies Eq. (6.25). This solution for the adjoint

equation will be valid at the UP and as long as the DDR controls do not change, which

corresponds to a DDR motion following a straight line in the realistic space. We need to

compute a new integration of the adjoint equations when one of the control’s expressions

in Eq. (6.12) changes sign i.e., the DDR starts rotating in place in the realistic space.

In Lemma 6.11, we compute the retro-time when the DDR switches controls.

Lemma 6.7. At the end of the game, if the pursuer follows its optimal strategy (i.e.

moves in a straight line in the realistic space) the corresponding optimal strategy for the

evader is also a straight line in the realistic space, and therefore, the system moves in a

straight line in the reduced space.

Proof. From Eq. (6.24), we know that Vx and Vy have constant values. Substituting

those values into the evader’s controls in Eq. (6.13), we find that ν = v∗2 = s, the

evader’s motion direction in the reduced space, is also constant, thus the system follows

a straight line in the reduced space at the end of the game.

From Lemma 6.1, we know that the DDR is moving in straight line in the realistic space

at the end of the game. Therefore its motion direction θp is constant. From the third
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equation in the coordinate transformation, Eq. (6.2), and as ν and θp are constant, it is

straightforward to see that ψe, the evader’s motion direction in the realistic space, will

be constant.

Remark 6.8. From Lemma 6.3, the controls of the players are independent, it would be

misleading to conclude that Lemma 6.7 implies that the evader’s controls depend on the

pursuer’s controls. But in order to show a graphical representation of the trajectories

in the realistic space it is necessary to know the controls of the DDR to compute the

transformation between the reduced and realistic spaces.

6.3.7 Integrating the motion equations starting at the usable part

Theorem 6.9. The retro-time trajectories of the system in the reduced space leading

directly to the end of the game are

x(τ) = −τV max
e sin s+ l sin s

y(τ) = τ(−V max
e cos s± V max

p ) + l cos s
(6.26)

the sign + is taken if the pursuer moves forward in the realistic space when it captures

the evader and the sign − if it moves backward.

Proof. From Eq. (6.4), the retro-time version of the equations of motion in the reduced

space is

d

dτ
x = −

(
u2 − u1

2b

)
y − v1 sin v2

d

dτ
y =

(
u2 − u1

2b

)
x+

(
u1 + u2

2

)
− v1 cos v2

(6.27)

Substituting Eq. (6.24) into the controls expressions in Eq. (6.12) and Eq. (6.13), and

the resulting expressions into Eq. (6.27) we obtain

d

dτ
x = −V max

e sin s,
d

dτ
y = −V max

e cos s+ V max
p (6.28)

when the pursuer is translating forward, and

d

dτ
x = −V max

e sin s,
d

dτ
y = −V max

e cos s− V max
p (6.29)

when the pursuer is translating backward. Integrating Eq. (6.28) and Eq. (6.29) with

the initial conditions x = l sin s and y = l cos s leads to the expressions in Eq. (6.26) for

the trajectories.
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Remark 6.10. The trajectories in Eq. (6.26) are referred as the primary solution [20].

6.3.8 Transition surface

The solutions in Eq. (6.24), and Eq. (6.26) are valid as long as the DDR does not switch

controls. The place where a control variable abruptly changes in value, is known as a

transition surface. In our problem, after a retro-time interval the DDR switches controls

and it starts rotating in place in the realistic space.

Lemma 6.11. The DDR switches controls and it starts a rotation in place in the realistic

space, at τs = | b cos s
V max
p sin s |. If s ∈ [0, π], u∗2 switches first, otherwise, u∗1 does.

Proof. We can compute the time τs when the DDR switches controls, substituting Eq.

(6.24) and Eq. (6.26) into Eq. (6.12), and verifying which one of the resulting expressions

is the first in changing signs. Doing that we find that for s ∈ [0, π2 ] , u∗2 switches first at

τs =
b cos s

V max
p sin s

=
b

V max
p

tan s (6.30)

The other cases can be proved using an analogous reasoning.

When the game reaches τs, we need to start a new integration of the retro-time version

of the adjoint equation (6.19) and the equations of motion (6.27). This integration takes

as initial conditions the values of Vx, Vy, x, and y at τs. We will denote those values

as Vxτs , Vyτs , xτs and yτs . The equations in Lemmas 6.12 and 6.13, and Theorem 6.14

were constructed after the DDR switches controls and it starts rotating in place in the

realistic space.

Lemma 6.12. The solution of the adjoint equation (6.19) starting at τs is

Vx = λ sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
Vy = λ cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.31)

for τ ≥ τs.

Proof. Computing the retro-time derivative of Eq. (6.19), we obtain two ordinary linear

differential equations of second order with constant coefficients

d2

dτ2
Vx = −

(
u∗2 − u∗1

2b

)2

Vx,
d2

dτ2
Vy = −

(
u∗2 − u∗1

2b

)2

Vy (6.32)
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The solutions of this kind of differential equations are

Vx = C cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+D sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
Vy = E cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ F sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.33)

Recall that the integration takes place from τs for that reason we have written (τ − τs).
We need to find the values of C, D, E and F . We have that at τ = τs

Vx = C = λ sin s (6.34)

Computing the retro-time derivative of the expression for Vx, we get

d

dτ
Vx =− C

(
u∗2 − u∗1

2b

)
sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+D

(
u∗2 − u∗1

2b

)
cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.35)

We have that at τ = τs
d

dτ
Vx = D

(
u∗2 − u∗1

2b

)
(6.36)

From Eq. (6.19), we have that D = −Vy then

D = −λ cos s (6.37)

Substituting Eq. (6.34) and Eq. (6.37) into Eq. (6.33), we have that

Vx =λ sin s cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
− λ cos s sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.38)

Rewriting the last expression, we obtain

Vx = λ sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
(6.39)

The expression for Vy can be computed using an analogous reasoning.

Lemma 6.13. For τ > τs, the optimal controls correspond to the evader following a

straight line in the realistic space and the DDR rotating in place.



Chapter 6. Time-Optimal Motion Strategies for Capturing an Omnidirectional Evader
using a Differential Drive Robot 66

Proof. Substituting Eq. (6.31) into Eq. (6.13) we have that,

sin v∗2 = sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
cos v∗2 = cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.40)

therefore

ν
′

= v∗2 = s−
(
u∗2 − u∗1

2b

)
(τ − τs) (6.41)

As the DDR is rotating in place, its motion direction is given by

θ
′
p = θsp −

(
u∗2 − u∗1

2b

)
(τ − τs) (6.42)

where θsp is the initial motion direction of the DDR in the realistic space. Substituting Eq.

(6.41) and Eq. (6.42) into the third expression in Eq. (6.2), we obtain that ψe = θsp− s,
the evader’s motion direction in realistic space. Note that it is a constant value, thus

the evader is following a straight line in realistic space.

Note again that from Lemma 6.3, the controls of the players are independent. But in

order to show a graphical representation of the trajectories in the realistic space it is

needed to know the controls of the DDR.

6.3.9 Integrating the motion equations starting at the TS

Theorem 6.14. The retro-time trajectories of the system starting at τs are

x(τ) =− yτs sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ xτs cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
− (τ − τs)V max

e sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
y(τ) =xτs sin

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
+ yτs cos

[(
u∗2 − u∗1

2b

)
(τ − τs)

]
− (τ − τs)V max

e cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
(6.43)
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Proof. Substituting Eq. (6.31) into Eq. (6.13), and the resulting expressions into Eq.

(6.27) we obtain

d

dτ
x = −

(
u∗2 − u∗1

2b

)
y − V max

e sin

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

]
d

dτ
y =

(
u∗2 − u∗1

2b

)
x− V max

e cos

[
s−

(
u∗2 − u∗1

2b

)
(τ − τs)

] (6.44)

Computing the retro-time derivative of Eq. (6.44) and solving the resulting expressions

with the initial conditions xτs and yτs using an analogous reasoning to the one applied

in the proof of Lemma 6.12, we obtain the solution in Eq. (6.43).

6.4 Decision problem

In this section, we find the conditions that make capture possible for the DDR or escape

for the evader. These conditions are based on the description of the decision problem,

the barrier and its construction in Section 5.3 of Chapter 5. Figure 6.3 shown a repre-

sentation of the terminal surface, the usable part (UP) and its boundary (BUP) in the

reduced space. The system exhibits some symmetries with respect to the x and y-axis

in this representation. An analysis for the trajectories in the first quadrant will be pro-

vided. This analysis can be extended to the remaining quadrants using an analogous

reasoning.

6.4.1 Solving the decision problem

We present two useful properties appearing in some trajectories reaching the UP.

Lemma 6.15. The retro-time trajectories starting at the UP in the first quadrant (see

Fig. 6.3) reach the y-axis before the system switches controls if l/V max
e ≤ τs.

Proof. When the retro-time trajectories reach the y-axis we have that x = 0. From Eq.

(6.26)

− τV max
e sin s+ l sin s = 0 (6.45)

By straightforward algebraic manipulation, we find that τ = l/V max
e . This is the retro-

time it takes to reach the y-axis if the system is following Eq. (6.26), and it will be

denoted as τc = l/V max
e . We know that the DDR switches controls at τ = τs. After

that, the system starts following Eq. (6.43). If τc ≤ τs the system will reach the y-axis

before switching controls.
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Lemma 6.16. The trajectories in Eq. (6.26) that reach the y-axis in the first quadrant,

reach it at y = l/ρv.

Proof. From Lemma 6.15, we have that τc = l/V max
e is the retro-time it takes to reach

the y-axis when the system is following Eq. (6.26). Substituting τc into Eq. (6.26) we

have that

y =
l

V max
e

(−V max
e cos s+ V max

p ) + l cos s (6.46)

After straightforward algebraic manipulation, we find that y = l/ρv. This value will be

denoted as yc.

Lemma 6.17. The barrier consists of a straight line segment, and it intersects the y-

axis in the first quadrant if ρv ≥ | tanS|/ρd where S = cos−1(ρv) is the angle at the BUP

(see Fig. 6.3).

Proof. In our game, the barrier is constructed by substituting the value S that satisfies

cosS = ρv into Eq. (6.26). The expression in Eq. (6.26) is valid as long as the DDR does

not switch controls. After a retro-time interval τs the DDR should switch controls and

start rotating in place in the realistic space. Then the system should follow the trajectory

described by Eq. (6.43) in the reduced space. Figure 6.4 shows both trajectories. The

trajectory given by Eq. (6.43) intersects the initial segment of the barrier and it comes

back to the UP in the reduced space. According to [20], the barrier is not crossed by

any trajectory followed by the system during optimal play, in particular, it cannot cross

itself. Therefore the portion of the trajectory given by Eq. (6.43), (the arc in Fig. 6.4)

must be discarded. The barrier reaches the terminal surface with S = cos−1(ρv), and it

consists only of a straight line in the reduced space given by Eq. (6.26) that ends when

τ = τs. From Lemma 6.15, it is straightforward to verify that the barrier will reach the

y-axis if τc ≤ τs. Substituting the values of τc and τs in the last inequality, we find that

it can be expressed as V max
e
V max
p
≥ l| tanS|

b , which can be rewritten as ρv ≥ | tanS|/ρd.

Remark 6.18. Note that if the system follows the trajectory composed by the arc from

point 1 to point 2 (see Fig. 6.4), and the straight line from point 2 to point 3, the DDR

loses the game. The distance between both players equals l over the target set, however,

the pursuer will not be able to get closer from the evader than this value and capture

cannot be attained (since in the reduced space, the system is pointing tangentially to

the terminal surface and it cannot be crossed). In contrast, if the system follows the

straight line motion from point 1 to point 4, the system reaches the usable part and it

can be crossed. The distance between the players can be reduced by the pursuer and it

wins. Hence, the arc given by Eq. (6.43) must be discarded. Indeed, it can be proved
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that traveling the arc from point 1 to point 2, and the straight line trajectory from point

2 to point 3 takes more time than traveling the straight line from point 1 to point 4.

UP

3

2

4

1

Barrier

Discarded arc

Figure 6.4: The system is following the barrier from point 1 to point 3. The two
elements of the barrier are, the dashed line which is given by Eq. (6.26), and the solid
arc given by Eq. (6.43). The solid straight line represents the optimal trajectory to
reach the UP at point 4 from point 1. From points over the solid arc the DDR can
attain capture and the system follows a straight line in the reduced space. Therefore
this arc must be discarded.

Theorem 6.19. If ρv < | tanS|/ρd the DDR can capture the evader from any initial

configuration in the playing space. Otherwise the barrier separates the playing space into

two regions:

1. One between the UP and the barrier.

2. Another above the barrier.

The DDR can only force the capture in the configurations between the UP and the barrier,

in which case, the DDR follows a straight line in the realistic space when it captures the

evader.

Proof. It follows from the definition of the barrier and Lemma 6.17. Note that the

segment of the barrier corresponding to a rotation in place of the DDR in the realistic

space has been discarded and all the trajectories between the barrier and the UP are

straight lines reaching the y-axis (refer to Lemma 6.16 and see Fig. 6.5).

Remark 6.20. For the rest of this work, we assume that the barrier does not intersect

the y-axis and therefore capture in all the playing space can be attained by the DDR.

In Section 6.8, we make an exception including simulations where the barrier separates

the playing space into two regions and showing the strategy followed by the evader to

avoid capture.
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6.5 Singular surfaces

The singular surfaces and their construction in the context of our game will be described

in the next paragraphs giving a solution of the game for the complete playing space.

6.5.1 Identification and construction of the singular surfaces

In this section, we devote our attention to the construction of the singular surfaces

appearing on our game.

Lemma 6.21. The retro-time trajectories reaching the y-axis in the first quadrant have

an orientation s ∈ [0, tan−1(ρvρd)] at the UP (see Fig. 6.3).

Proof. From Lemma 6.15, the retro-time trajectories that reach the y-axis are those

where τc ≤ τs. The last one that can reach it will have τc = τs. Substituting the

corresponding values
l

V max
e

=
b cos s

V max
p sin s

(6.47)

From the last expression we find that

tan s = ρvρd (6.48)

The trajectory given by s = 0 coincides with the y-axis. Therefore, the trajectories

reaching the y-axis will have an angle s ∈ [0, tan−1(ρvρd)] at the UP.

Lemma 6.22. The straight lines trajectories that have an orientation s ∈ (tan−1(ρvρd),

cos−1(ρv)] in the UP of the first quadrant terminate when the DDR switches controls.

Proof. From Lemma 6.21 we know that the last trajectory reaching the y-axis has an

orientation sc = tan−1(ρvρd). If s > sc the DDR switches controls before reaching the

y-axis and the system starts following the trajectories given by Eq. (6.43). The value

s = cos−1(ρv) corresponds to the barrier and it consists of a straight line in the reduced

space. Thus the straight line trajectories reaching the UP at s ∈ (tan−1(ρvρd), cos−1(ρv)]

terminate when a switch of the DDR controls occurs.

6.5.1.1 Transition surface (TS)

Lemma 6.23. The points x in the reduced space where τ = τs constitute a TS in the

first quadrant. At the TS in the first quadrant, the expression yVx − xVy − bVy = 0 is

satisfied. This surface is bounded by the barrier and the y-axis.
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Proof. From the Lemma 6.22, we know that the trajectories ending at s ∈ (tan−1(ρvρd),

cos−1(ρv)) have a switch when τ = τs. The points x where this happens constitute the

transition surface (TS). For the first quadrant, in those points u2 changes sign. Note

that s = tan−1(ρvρd) generates a straight line trajectory of the system in the reduced

space reaching the y-axis just before switching controls. If s = cos−1(ρv), the trajectory

corresponds to the barrier, which is a straight line in the reduced space ending also just

before switching controls. Thus the y-axis and the barrier bound the TS.

Remark 6.24. The TS indicates the points in the reduced space where the DDR switches

controls, and it is not a trajectory followed by the system.

6.5.1.2 Universal surface (US)

Lemma 6.25. The positive y-axis contains a US where the pursuer captures the evader

with its heading directly aligned to the evader.

Proof. In a universal surface (US), optimal play demands that the system be brought

to the surface and remains on it. Hence a necessary condition for a US, is that in this

surface there are no switches and the controls of the players remain constant. We find

that in our game, this occurs when the system is moving along the positive y-axis in the

reduced space.

The game ends with s = 0, i.e., the evader’s relative position aligned with the pursuer’s

heading. From Lemma 6.6, we know that at the end of the game,

Vx = λ sin s, Vy = λ cos s (6.49)

where λ is a constant value. As s = 0, in this case

Vx = 0, Vy = λ (6.50)

Substituting those values into the pursuer’s controls Eq. (6.12), we find that the expres-

sions inside the switching functions

− yVx
b

+ x
Vy
b
− Vy = −λ (6.51)

and

y
Vx
b
− xVy

b
− Vy = −λ (6.52)

are constant. Therefore, the DDR will never switch controls when the system is moving

in straight line over the positive y-axis in the reduced space and it will remain on it.
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Substituting Eq. (6.50) into the evader’s controls Eq. (6.13), we find that the motion

direction of the evader is given by

sin v∗2 = 0, cos v∗2 = 1 (6.53)

The evader is moving following a straight line in the realistic space while the system

is moving over the positive y-axis in the reduced space and it will remain on it. From

Lemma 6.21, we know that a portion of the y-axis is also a trajectory reaching the UP,

this trajectory ends at the intersection point yc. This point is considered as the starting

point of the US.

Remark 6.26. The tributary trajectories entering the US are generated by a different

combination of the player’s optimal controls to the ones used over the surface [20].

Lemma 6.27. The tributary trajectories over the US associated to the first quadrant

correspond to a rotation in place of the DDR and straight line for the evader in the

realistic space.

Proof. In our game, the tributary trajectories entering the US are generated by a dif-

ferent combination of the optimal controls for the DDR (see Lemmas 6.7 and 6.13).

Over the US associated to the first quadrant in the reduced space, we have that the

DDR always captures the evader moving forward, therefore the tributary trajectories

will correspond to a rotation in place of the DDR, in the realistic space. For the first

quadrant, we have that u∗1 = V max
p and u∗2 = −V max

p (the DDR rotates clockwise to

align its heading with the evader’s motion direction in the realistic space). Taking these

controls, the trajectories in the reduced space can be computed using an analogous

reasoning to the one applied in Theorem 6.14. In fact, they satisfy Eq. (6.43) taking

u∗1 = V max
p , u∗2 = −V max

p and τs = d/V max
e , where d ≥ yc is the distance to the UP along

the y-axis.

6.6 Partition of the space

In this section, we initially present a partition of the first quadrant into three regions,

and later, we describe a partition of the four quadrants. All the points in each region

can be reached by a particular combination of the motion strategies of the players. This

partition will contain some singular surfaces. The complete set of trajectories for each

region is sufficient to cover the space.
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6.6.1 Construction of the partition

We construct each one of the regions in quadrant I and we verify that the space is

covered by them. The complete construction is shown in Fig. 6.5.

Figure 6.5: Partition of the first quadrant in the reduced space. The barrier (in
magenta) is labelled as BS, the transition surface (in red) as TS, and the universal
surface (in navy blue) as US. The solid lines (in light blue) are trajectories in region I,
the dashed lines (in light yellow) are trajectories in region II and the bold dashed lines
(in green) are trajectories in Region III.

6.6.1.1 Region I

We denote as region I (shown in Fig. 6.5) the set of points that can reach the UP with

a single straight line trajectory in the reduced space, which corresponds to a straight

line motion of both the DDR and the evader, in the realistic space. From Lemmas 6.17,

6.21, 6.22 and 6.23, we have that the straight line trajectories ending at the UP in the

first quadrant are bounded by the y-axis, the barrier (labelled as BS) and the TS. The

trajectories in region I can be classified into two types: the ones attain the y-axis at yc

and the ones reaching the transition surface TS. Both types of trajectories in this region

are given by Eq. (6.26). Examples of trajectories in this region (solid lines) are shown

in Fig. 6.5.
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6.6.1.2 Region II

We denote as region II (shown in Fig. 6.5) the set of points that attain the TS by

following a trajectory given by Eq. (6.43) in the reduced space, which corresponds to a

rotation in place for DDR and straight line trajectory for the evader, both in the realistic

space. From Lemmas 6.22, 6.23, 6.25 and 6.27, the trajectories in Region II are bounded

by the BS, the TS, the x-axis and the trajectory reaching the starting point of the US

(in green in Fig. 6.5). Each point inside region II moves according to Eq. (6.43), it hits

the TS at some particular point and to attain the UP it must follow the trajectory in

region I reaching the same point in the TS. Some trajectories (dashed lines) in region II

are shown in Fig. 6.5.

6.6.1.3 Region III

We denote as region III (shown in Fig. 6.5) the set of points that attain the US following

one of its tributary trajectories given by Eq. (6.43) in the reduced space corresponding

to a rotation in place for the DDR and a straight line trajectory for the evader, both

in the realistic space. From Lemmas 6.23, 6.25 and 6.27, the trajectories in region III

are bounded by the US over the y-axis, the point over the TS touching the y-axis and

the trajectory given by Eq. (6.43) reaching that point. Some trajectories in Region III

(bold dashed lines) are shown in Fig. 6.5.

Region III in the reduced space corresponds to configurations in the realistic space where

the DDR rotates in place until it aligns its heading with the segment joining the DDR’s

position and the evader’s position. Then the DDR moves following a straight line towards

the evader until the capture condition is achieved. In this case, the evader has the option

to change its motion direction at the point over the y-axis in the reduced space where

the time-optimal trajectories in region I intersect and it can follow one of them. At this

point, the time-optimal trajectories in region I are equivalent and they require the same

amount of time to capture the evader. Region II in the reduced space corresponds to

configurations in the realistic space where the DDR initially also rotates in place but

it is not necessary to align completely the DDR’s heading with the segment joining the

positions of both players in order to capture the evader. In this case, the time-optimal

trajectories for both players are unique. We have a bijection between trajectories in

region II and region I.
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6.6.2 Graph representation

Figure 6.6(a) shows a graph representation of the partition in the first quadrant. The

nodes of the graph represent the regions described above, and the edges indicate the

transitions between them. For all points in one region of the partition, a particular

selection of the controls for both players is used, i.e., the regions are equivalence classes

under a relation given by the controls. Note that the transition between regions is

uniquely defined, i.e., from the current node in the graph, the system can only reach

one node and therefore only a particular selection of the controls for both players can be

made. Figure 6.6(a) shows that from any node in the graph, the system will be able to

reach the terminal surface following the transitions given by the edges. Also, this figure

shows that the sequence followed by the system and the value function are uniquely

determined.

US

IIIζ

III

(a) Graph representation of the par-
tition in the first quadrant.

1

1

2

3

4

1

1
2

(b) An example where the tran-
sitions to reach the goal are not
uniquely determined.

Figure 6.6: Graph representations

It is well-known in optimal control theory that if the system has two possible locally

optimal controls in a particular state, one cannot locally make a selection that guarantees

global optimality of the solution. For example, Figure 6.6(b), shows a case, where the

transitions between states are not uniquely determined and they have different costs.

In this example, from state 1 the system can move to state 2 or 3 with the same cost.

From these two states, however, the system moves to state 4 with different costs. It

is important to note that from state 1, it is not possible to locally choose the set of

transitions that will lead to the minimum cost to reach the state 4, and therefore the

PMP, which is a local condition, in general cannot be used by itself to find the globally

optimal solution.

Note that this is not the case in the graph representation obtained in this work (see Fig.

6.6(a)). In our case, the transition between regions is uniquely determine to reach the

goal, so that the PMP and the Isaacs equation provide necessary and sufficient conditions

for optimality.
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6.6.3 Playing space partition

In Fig. 6.7, we present the partition and the corresponding trajectories for the reduced

space. All the regions are defined in an analogous way to the ones in the first quadrant.

The bold arrows show the directions in which the different trajectories are travelled in

order to reach the terminal surface. In this figure, the x-axis contains a dispersal surface

(DS), represented as a bold line, where the rotation-in-place trajectories in retro-time

coming from the upper and bottom parts of the UP intersect. Over the DS both players

have two choices for their controls. It is important to note that at the DS, the choice

of the control of one player must correspond to the choice of the control of the other

player. If one of the players selects the wrong control, the other player will benefit from

that decision. In this problem, the DS corresponds to configurations where the pursuer’s

heading (orientation of the wheels) is perpendicular to the pursuer’s location, and the

DDR has the option to rotate either clockwise or counterclowise to catch the evader.

If the DDR fails to initially choose the correct sense of rotation against the evader’s

decision then feedback will be necessary to correct the decision and capture the evader

in suboptimal time. To avoid the selection problem, the instantaneous velocity vector of

both players should be known, but in general (and in particular for this problem) it is

assumed that this information is not available. Therefore, a solution will be to employ

an instantaneous mixed strategy (IMS) [20], which means the randomizing of a player’s

decision in accordance with some probabilistic law until the system is no longer on the

DS. The trajectories generated by the correct pair of controls will lead to the same

optimal time-to-go. In this problem, the difference will be that at the end the capture

will be attained moving forward or backward in straight line in the realistic space.

In the partition, a particular behavior occurs at point yc (see figure 6.15), where the

US meets region I, and the straight line system trajectories reaching the UP with an

orientation s ∈ [0, tan−1(ρvρd)] reaching the y-axis. At this unique point, the system has

the option to follow any of the straight line trajectories reaching the y-axis, which will

lead to the same optimal capture time but the system will have a different position at

the UP. In the realistic space, at the point yc the evader has the option to select among

different motion directions, but all of them correspond to the same optimal capture time.

In Figure 6.8, a graph representation of the playing space is shown. The nodes of the

graph represent the regions in the four quadrants of the playing space, and the edges

indicate how the state moves from one region to another in order to reach the terminal

surface. This representation shows that the capture condition can be attained from any

region in the playing space when the barriers do not intersect.
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Figure 6.7: Partition of the entire reduced space and the corresponding trajectories.

6.7 Computing a feedback-based motion strategies for the

DDR

For a given state (x, y) of the system, we describe a method to identify the region of

the reduced space partition where it belongs. Using this information we obtain the

corresponding time-optimal motion primitive used by the DDR. The main idea behind

the approach is to obtain a polar representation of the singular surfaces and the regions

defined by them.

6.7.1 Overview of the method

In Fig. 6.9, we have a graphical representation of the regions integrating the partition

of the first quadrant. The idea behind the algorithm is comparing the distance from the

origin of the reduced space to a given state (x, y) with the distance from origin to the

singular surfaces defining the regions in the reduced space. As we can see in Fig. 6.9, all

states farther to the origin than the tributary trajectory (green dashed line) belong to
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Figure 6.8: The nodes of the graph represent the regions in the playing space and
the edges show how the state moves from one region to another in order to reach the
terminal surface.

Region III. The states in Region II are closer to the origin than the tributary trajectory

but farther to the origin that the transition surface (red curve) and the barrier (magenta

straight line). Finally, all the states closer to the origin than the transition surface and

the barrier but farther to origin that the terminal surface (black arc) correspond to

Region I.

To find the region containing a particular state, we compare the distance to the bound-

aries of these regions, in our case, the distance to the singular surfaces. We propose

a top-down approach in the sense that first we verify if the state belongs to Region

III (farthest region), if this is not the case, we check if the state belongs to Region II

(intermediate region). In other case, we verify if the state belongs to Region I (closest

region).

In Fig. 6.9, we observe that Region III is bounded by the first tributary trajectory

reaching the universal surface. To identify if a state (x, y) belongs to Region III, we

compute its distance from the origin and orientation (r, φ), recalling that the orientations

are measured with respect to the positive y-axis.
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Figure 6.9: Partition of the first quadrant and its singular surfaces

r =
√
x2 + y2

φ = tan−1 x

y

(6.54)

Next, we compute the distance from the origin to the state over the tributary trajectory

having the same orientation φ. If the distance from the origin to the state over the

tributary trajectory is smaller than the distance from the origin to the state (x, y), then

(x, y) belongs to Region III. In Section 6.7.2, we find a representation in polar coordinates

of the tributary trajectory bounding Region III. Using that representation, we can easily

compute the distance from the origin to the state over the tributary trajectory having

a given orientation φ.

To find if a configuration belongs to Region II, we have to compare the distance from

the origin to the state (x, y) with the distance from the origin to the transition surface,

the barrier or the terminal surface. In Fig. 6.9, we observe that for some values of φ

the comparison is done with the transition surface, for others with the barrier and in

some cases with the terminal surface. In Section 6.7.3, we find the orientations defining

each one of these three cases. In Section 6.7.3, we also find representations in polar

coordinates of the transition surface and the barrier that allow to know if the distance

from the origin to the state (x, y) is smaller or not than the distance from the origin to

those surfaces.
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Finally, if the state does not belong to Region III and II, and the distance from the

origin to the state (x, y) is larger than the capture distance l, we have that the state

(x, y) belongs to Region I.

6.7.2 Region III

In this section, we find a representation in polar coordinates of the tributary trajectory

bounding Region III. For a given state (x, y) with orientation φ ∈ [0, π/2], we can

compute the distance from the origin to the state over the tributary trajectory having

the same orientation φ.

From Eq. (6.43), and recalling that x0 = 0 and s = 0 for the states starting at y-axis,

we have that the tributary paths from the universal surface are given by the following

expressions

x = −y0 sin

[(
u∗2 − u∗1

2b

)
τ

]
− τVe sin

[
−
(
u∗2 − u∗1

2b

)]
(6.55)

y = y0 cos

[(
u∗2 − u∗1

2b

)
τ

]
− τVe cos

[
−
(
u∗2 − u∗1

2b

)]
(6.56)

From Lemma 6.25, we know that for tributary trajectories in first quadrant u∗1 = V max
p

and u∗2 = −V max
p . Recalling that sin(−x) = − sin(x) and cos(−x) = cos(x), Eqs. (6.55)

and (6.56) can be rewritten as

x = −(y0 − τVe) sin

[(−V max
p

b

)
τ

]
(6.57)

y = (y0 − τVe) cos

[(−V max
p

b

)
τ

]
(6.58)

From Eqs. (6.57) and (6.58) we have that

τ =
1

Ve

 x

sin
[(
−V max

p

b

)
τ
] + y0

 (6.59)

τ =
1

Ve

 −y

cos
[(
−V max

p

b

)
τ
] + y0

 (6.60)

Equating Eqs. (6.59) and (6.60)

− x

y
=

sin
[(
−V max

p

b

)
τ
]

cos
[(
−V max

p

b

)
τ
] (6.61)
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The equation above can be rewritten as

− x

y
= tan

[(−V max
p

b

)
τ

]
(6.62)

Therefore

τ = −
arctan

(
x
y

)
(
−V max

p

b

) (6.63)

In polar coordinates, the position of the evader with respect to the DDR is given by

(r, φ) where

r =
√
x2 + y2 = y0 − τVe (6.64)

tanφ =
x

y
(6.65)

Eq. (6.64) is obtained by straightforward manipulation of Eqs. (6.57) and (6.58). Note

that in Eq. (6.65), φ is measured with respect to the y-axis. Substituting Eq. (6.65)

into Eq. (6.63) we obtain that

τ =
−φ(
−V max

p

b

) (6.66)

Substituting Eq. (6.66) into we obtain

rIII = y0 +
Veφ(
−V max

p

b

) (6.67)

The equation above allows to know the distance from the origin of the reduced space to

the tributary trajectory starting at y0 in the y-axis. We know from Lemma 6.25 that

the universal surface and its tributaries in the first quadrant start at y0 = yc = l/ρv

where ρv = Ve
Vp

. All the trajectories starting at y0 ≥ yc belong to Region III. Therefore

using Eq. (6.67) it is possible to determine if a state (x, y) is in Region III by comparing

its distance from the origin.

6.7.3 Region II

In Fig. 6.9, we can observe that Region II is bounded by the transition surface, the

barrier and the terminal surface. As in Section 6.7.2, we identify if a state belongs

to Region II using its distance from the origin and orientation (r, φ). From Fig. 6.9, if

φ ∈ [0, π/2] we have three possible choices. For the first case, we need to compare against

the transition surface, in the second one, we need to compare against the barrier, and

in the third case, we compare against the terminal surface. In the following paragraphs,

we compute the set of orientations defining the three cases described above.
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In Figure 6.9, we can observe that the transition surface starts at the end of the barrier.

Once we find the point where the barrier ends it is straightforward to find the orientation

of this point. This will be the upper bound orientation that has to be compared with the

transition surface. In an analogous way, using the start point of the barrier, we can find

the upper bound orientation that has to be compared with the barrier. The remaining

states have to be compared with the terminal surface.

From Lemma 6.17, we know that the barrier ends at τ = (b cosS)/(Vp sinS), where

S = cos−1(Ve/Vp). The trajectory of the barrier in the first quadrant is given by

x = −τVe sinS + l sinS

y = −τVe cosS + Vpτ + l cosS
(6.68)

We have that the final state of the barrier is given by

x = −bVe cosS

Vp
+ l sinS

y = −bVe cos2 S

Vp sinS
+
b cosS

sinS
+ l cosS

(6.69)

The orientation φTS of this state is given by φTS = tan−1 x
y . Computing the orienta-

tion of the state where the barrier starts is straightforward. In that case, φB = φ =

cos−1(Ve/Vp).

Therefore, if φ ∈ [0, φTS), we have to compare the distance from the origin to the state

(x, y) with the distance from the origin to the state over the transition surface having

the same orientation φ. If φ ∈ [φTS , cos−1(Ve/Vp)], we have to compare the distance

from the origin to the state (x, y) with the distance from the origin to the state over

barrier having an orientation φ. If φ ∈ (cos−1(Ve/Vp), π/2], we need to verify against

the terminal surface.

In the next paragraphs, we find a polar representation of the transition surface. From

Lemma 6.11, we know that for the first quadrant, u2 switches first, therefore along the

transition surface

yVx − xVy − bVy = 0 (6.70)

In Lemma 6.6, we find that Vx = λ sin s and Vy = λ cos s. Therefore Eq. (6.70) takes

the form

yλ sin s− xλ cos s− bλ cos s = 0 (6.71)

Doing some algebraic manipulation of Eq. (6.71), we find that

tan s =
x+ b

y
(6.72)
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From Lemma 6.22, we know that retro-time straight line trajectories that have an initial

orientation s ∈ (tan−1(ρvρd), cos
−1(ρv)] in the UP, reach the TS. Thus, the x-coordinates

along the TS are given by

x =
−bVe cos s

Vp
+ l sin s (6.73)

Recalling that sin(arctan(x)) = x√
1+x2

and cos(arctan(x)) = 1√
1+x2

, and substituting

Eq. (6.72) into Eq. (6.73), we have that

x =
−bVeVp + l

(
x+b
y

)
√

1 +
(
x+b
y

)2
(6.74)

Doing some algebraic manipulation of the expression above, and recalling that x = r sinφ

and y = r cosφ, we find that

r4 sin2 φ cos2 φ+ r4 sin4 φ+ 2br3 sin3 φ+ b2r2 sin2 φ− V 2
e

V 2
p

b2r2 cos2 φ

+ 2
Ve
Vp
blr2 sinφ cosφ+ 2

Ve
Vp
b2lr cosφ− l2r2 sin2 φ− 2bl2r sinφ− l2b2 = 0

(6.75)

To identify if a state (r, φ) belongs to Region II, we evaluate the expression above. If

the left term is greater than zero then the state is above the transition surface and it

belongs to Region II. If this is not the case, the state belongs to Region I.

It is possible to find a polar representation of the barrier. Using this representation, we

can compare the distance from the origin to a given state (x, y) and the distance from

the origin to the barrier, as we did for Region III, in order to identify if the state belongs

to Region II.

We know that the barrier in the first quadrant is given by

x = −τVe sinS + l sinS (6.76)

y = −τVe cosS + τVp + l cosS (6.77)

where S = cos−1(Ve/Vp) From Eq. (6.76), we have that

τ =
l sinS − x
Ve sinS

(6.78)

and from Eq. (6.77), we have that

τ =
l sinS − y
Ve sinS − Vp

(6.79)
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Equating Eq. (6.78) and Eq. (6.79), we obtain

− Vpl sinS + xVp = −Vey sinS + Vex cosS (6.80)

Substituting x = r sinφ and y = r cosφ in the equation above, and applying some

trigonometric identities, we have that

rB =
Vpl sinS

Vp sinφ− Ve sin(φ− S)
(6.81)

6.7.4 Algorithm description

In Algorithm 1, we describe a procedure to determine the region of the state space

partition, in the first quadrant, where the evader’s relative position is located. This

algorithm is based on the equations developed above. This method can be used in an

analogous way in the remaining quadrants of the reduced space.

Data: relative position of the evader (xe, ye)
Data: capture distance l
Data: distance rIII to the critical curve bounding region III
Data: orientation φIII bounding the transition surface
Data: distance rB to the barrier
Result: region of the partition
Compute polar coordinate representation (re, φe) of the relative position of the
evader;
if re > rIII then

return evader is in region III;
end
if φ ∈ [0, φTS) and left expression in Eq. 6.75 > 0 then

return evader is in region II;
end

if φ ∈ [φTS , cos
−1(VeVp )] and re > rB then

return evader is in region II;
end

if φ ∈ (cos−1(VeVp ), π2 ] and re > l then
return evader is in region II;

end
if re > l then

return evader is in region I;
end

Algorithm 1: Find the region of the state space partition in the first quadrant where
the evader’s relative position is located.
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6.8 Simulations

In this section, we present some simulation results of our pursuit-evasion game. We use

m/sec as units for velocities, meters for distance and seconds for time. First we show

the case described in Lemma 6.17, when the barriers intersect and define regions in the

reduced space where the evader can indefinitely escape or is captured in finite time (refer

to Fig. 6.11). The capture condition is only possible for the configurations inside the

closed region defined by the barriers (shown in magenta) and the usable part (bold arc

in black). Those configurations are the only ones that can reach the terminal surface;

the barriers prevent the remaining configurations from reaching this surface. The circle

in Fig. 6.10 represents the terminal surface and the bold arcs correspond to the usable

part. The system trajectories inside the closed region end in the y-axis and consist of

straight lines in the reduced space (refer to Fig. 6.5), which corresponds to a straight

line motion of the DDR and the evader in the realistic space. The parameters of this

simulation were V max
p = 1, V max

e = 0.787, b = 1 and l = 1. Figure 6.10 shows the barrier

in the reduced space.

−1 −0.5 0 0.5 1
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−0.5
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Figure 6.10: The barriers intersect creating two regions type I. In the remaining space
the DDR cannot attain capture of the evader.

In Fig. 6.11, we also present a trajectory followed by the system in the reduced space

when the evader avoids capture. In this case, we assumed that the evader’s position is

directly aligned with the pursuer’s heading, i.e., the evader is in front of the pursuer.

The system first moves over the y-axis following the trajectory (T1). When the system

hits the barrier it starts following this trajectory (T2) reaching tangentially the termi-

nal surface. Note that the distance between both players equals l over the target set,

however, the pursuer will not be able to get closer from the evader than this value and
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capture cannot be attained (since in the reduced space, the system is pointing tangen-

tially to the terminal surface). Over the target set, the system will start moving toward

the y-axis following the arc trajectory (T3) where the pursuer is aligning is heading with

the evader’s position. Note that the complete trajectory of the system is cyclic and the

process can be repeated again implying that the evader can always avoid capture.

Figure 6.11: A trajectory followed by the system in the reduced space when the
evader avoids capture.

Figure 6.12 shows the trajectories followed by both players in the realistic space for the

case described above. The pursuer’s initial position is denoted by PI and the evader’s

initial position by EI . The arrows show the motion direction of the players. The pursuer

starts moving directly towards the evader which moves away following a straight line.

After a time interval, which corresponds to reaching the barrier in the reduced space,

the evader at ES switches its motion direction but the pursuer at PS continues moving

in the same direction. The circle represents the time instant when the distance between

both players, at PF and EF , equals l. Note that at this point no matter what the

pursuer does (e.g., continue moving in straight line, rotating in place, etc.) the distance

between both players increases. If the pursuer starts rotating in place at PF , which is

the optimal strategy, the whole process is repeated, implying that the evader can always

avoid capture.

For the rest of the simulations, the parameters were V max
p = 1, V max

e = 0.5, b = 1

and l = 1. In Fig. 6.13, we show the case when two system trajectories start at the

same point over the x-axis (DS), at this point the evader has a relative orientation of
π
2 with respect to the pursuer’s heading. The DDR has two possible optimal controls

to capture the evader: rotate clockwise or counterclockwise, both leading to the same
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Figure 6.12: The trajectories followed by both players in the realistic space when
the evader avoids capture. We show the corresponding trajectories in the realistic
space when the system is following the trajectories T1, T2 and T3 in the reduced space
representation. The arrows show the motion direction of the players. The blue triangles
(pursuer) and red plus signs (evader) correspond to T1. The blue diamonds (pursuer)
and red crosses (evader) correspond to T2. Finally, the blue squares (pursuer) and red
asterisks (evader) correspond to T3.

optimal time-to-go. If the DDR rotates clockwise the trajectory ends in the upper UP

and if it rotates counterclockwise the trajectory ends in the bottom UP. Note that these

trajectories pass over regions II and I in order to reach the UP.

Figure 6.14 shows in the realistic space the trajectories of the evader and the pursuer.

These trajectories correspond in the reduced space to the trajectory ending at the upper

UP (shown in Fig. 6.13). In Fig. 6.14, PI and EI are the initial positions of the pursuer

and the evader, and PF and EF the positions where capture is attained.

In Fig. 6.15, we present another system trajectory starting over the x-axis in the reduced

space. The system follows a tributary path in region III until reaches the US. Then it

moves over the US towards the point yc. Once at yc, it follows a trajectory in region I.

In Fig. 6.16, we show the representation in the realistic space. The pursuer aligns its

heading to the motion direction of the evader and then it moves directly towards the

evader.

In Fig. 6.17, we present trajectories in the realistic space, when the evader is not

following its optimal strategy. PI and EI are the initial positions of the pursuer and

the evader in the realistic space. In this case, both players initially follow their optimal
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Figure 6.13: System trajectories in the reduced space. One ending in the upper UP
and the other in the bottom UP. This trajectories pass over regions II and I in order
to reach the UP.

Figure 6.14: The DDR captures the evader with a rotation in-place and a forward
motion in the realistic space.



Chapter 6. Time-Optimal Motion Strategies for Capturing an Omnidirectional Evader
using a Differential Drive Robot 89

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y
UP

UP

BSBS

BSBS

US

y
c

Trajectory in Region I

Tributary path

Figure 6.15: Trajectory in the reduced space following the US. The trajectory pass
over region III, the US and region I in order to reach the UP.

Figure 6.16: The DDR captures the evader with a forward motion in the realistic
space.
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strategies, a rotation in place for the DDR and a straight line for the evader, which

corresponds to the arc starting at the x-axis in the reduced space. After a time interval,

the DDR switches controls and it starts moving following a straight line in the realistic

space. The evader at ES , stops moving in the optimal direction and it starts moving

perpendicular to the motion direction of the pursuer. The capture occurs when the

DDR is at PF and the evader is at EF . The time-optimal trajectories for the same

configuration and assuming the same maximal velocities of the players correspond to

the ones in Fig. 6.13 (the one ending in the upper UP) for the reduced space and Fig.

6.14 for the realistic space. The DDR requires a t = 3.71sec. for capturing the evader

when both players are following its time-optimal strategies while it requires t = 2.91sec.

when the evader is following the strategy described above. The evader is captured in

less time when it is not following its optimal strategy.

Figure 6.17: The DDR captures the evader which is not following its optimal strategy.
After a time interval, the evader changes its motion direction and it starts moving
perpendicular to the DDR.

6.9 Comparison between our problem’s solution and the

Homicidal Chauffeur problem solution

This section has as its goal to present three main differences between our contributions

and the solution presented in [20] and [21] for the Homicidal Chauffeur problem.

(1) In contrast to the solution proposed for the Homicidal Chauffeur problem, for our

problem, we propose a graph representation of the reduced state space partition which

exhibits properties that guarantee global optimality (refer to Subsection 6.6.2).
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(2) We present a concrete example of a trajectory followed by the evader when it wins,

i.e., it avoids capture indefinitely (refer to Section 6.8).

(3) We show that the model for a simple car cannot be used to represent a DDR. In

particular, we show that when the distance between the front and rear axles of the car

tends to zero and the car steering angle tends to π
2 , both implying that the turning

radius tends to zero, then the car-like model approaches to an omnidirectional system

and not a DDR.

Consider the kinematic model for a simple car in [92] shown in Fig. 6.18.

φ

L

(x, y)

θ

ρ

Figure 6.18: Model for a car-like.

(x, y, θ) is the configuration of the system, with the origin at the center of rear axle, and

the x-axis pointing along the main axis of the car. Let v denote the translation velocity

of the car, and φ denote the steering angle. Recall, that the distance between the front

and rear axles is represented as L. If the steering angle is fixed at φ, the car travels in

a circular motion, in which the radius of the circle is ρ = L/ tanφ. Suppose that the

translational velocity v and the steering angle φ are directly specified. The transition

equation for a simple car is

ẋ = v cos θ

ẏ = v sin θ

θ̇ =
v

L
tanφ

(6.82)

where v ∈ [−vmax, vmax] and φ ∈ [−π/2, π/2]. The last expression can be rewritten

as θ̇ = (v/ρ)un, where un ∈ [−1, 1]. This small variation of the transition equation,

considering also that v ∈ [0, vmax], was used in [20], [21] to model the motion of the

car in the Homicidal Chauffeur Problem. Assuming θ̇ = ω, in Fig. 6.19 we can observe

the set of admissible controls in the v − ω space. From θ̇ = (v/ρ)un, we have that as

ρ → 0 then θ̇ → ∞. Therefore, we have that as the turning radius ρ approaches zero,
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ν

ω

Figure 6.19: Control space for a car-like.

the simple car approaches an omnidirectional vehicle, which can instantaneously change

its motion direction.

In contrast, the kinematic model for a DDR [90] is given by (see Fig. 6.20):

2

θ

ν

b

b

ω

(x, y)

ω
1

ω

Figure 6.20: Model for a DDR.

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(6.83)

where v is the robot’s translational velocity and ω its angular velocity . With a suitable

choice of units, we have that

v =
ω1 + ω2

2
, ω =

ω2 − ω1

2b
(6.84)

where ω1 and ω2 are the wheel angular velocities. b is the distance between the wheels.

For a DDR, assuming vmax > 0, we have that

|θ̇| = |ω| ≤ 1

b
(vmax − |v|) (6.85)

The angular velocity is inversely proportional to the translation velocity.
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ω

ν

Figure 6.21: Control space for a DDR.

Comparing the spaces of admissible controls for both models (see Figs. 6.19 and 6.21)

we can see that there are values for v and w that can be valid for one model but not

for the other. This leads to different time-optimal motion primitives in nature. It is

also important to note a fundamental assumption in the model for a simple car; its four

wheels share the same rotational direction and speed, which is not the case for a DDR.

Note that for the car-like robot it is possible to set simultaneously v and w at their

maximal values (saturated values) while for the DDR is not possible to set at the same

time v and w at their maximal values. Taking into consideration the arguments given

above, we have that it is not possible to model a DDR using the model for a simple car,

and therefore, it is also not possible to obtain the solution for a DDR pursuer from the

solution for the Homicidal Chauffeur Problem.

6.10 Conclusions and Future Work

In this chapter, we considered the problem of capturing an omnidirectional evader using

a nonholonomic robot in an obstacle free environment or, more precisely, the problem

of getting closer from the evader than the capture distance l.

Differently to the classical Homicidal Chauffeur problem [20, 21], in which the pursuer

is a car-like vehicle, in this work, the pursuer is a Differential Drive Robot (DDR), i.e.

the pursuer can rotate in place. The change in the mechanical model of the pursuer has

as a distinctive consequence that both the pursuer motion primitives and the motion

strategies of the players also change w.r.t. the Homicidal Chauffeur solution. In this

chapter, we made the following contributions:

• We presented closed-form representations of the motion primitives and time-optimal

strategies for each player.
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• In the realistic space, the motion primitives for the pursuer are straight lines and

rotations in place and for the evader are straight lines.

• The strategies for the players that we have found are in Nash Equilibrium meaning

that any unilateral deviation of each player from these strategies does not provide

to such player benefit towards the goal of winning the game.

• We proposed a partition of the playing space into mutually disjoint regions where

the strategies of the players are well established. The boundaries of these regions

are called singular surfaces [20, 21, 40], and they indicate a change in one the

player’s strategies. The partition is represented as a graph which exhibits proper-

ties that guarantee global optimality.

• We also analysed the decision problem of the game and presented the conditions

defining the winner of the game.

To the best of our knowledge, this is the first time that the problem of finding time-

optimal trajectories for both players, in the game of capturing an omnidirectional evader

with a DDR, has been solved. As future work we will include acceleration bounds in the

solution of this problem.



Chapter 7

Conclusions and Future Work

In this thesis, we considered the surveillance problem of tracking an omnidirectional

evader at constant distance using a DDR in the plane without obstacles. The players

have maximum bounded speeds and the DDR is faster than the evader. We assumed that

both players have full knowledge of their instantaneous positions and the instantaneous

velocity of the evader. We constructed a partition of the configuration space that allows

to know at the beginning of the game whether or not the DDR is able to maintain

tracking at constant distance. We also found optimal motion strategies for both players,

in the sense that they require the minimum capabilities of the players for winning. Some

simulation results of this pursuit-evasion game were presented.

We proposed a generalization of the problem described above. We provided a criterion for

partitioning the configuration space of the problem into 2 regions, so that in one of them

the DDR is able to control the system, in the sense that, by applying a specific strategy

(also provided), the DDR can achieve any feasible inter-agent distance, regardless of

the actions taken by the other agent. Particular applications of these results include

the capture of the OA by the DDR. Simulations that illustrates the trajectories of the

system are also included.

Finally, we addressed the problem of capturing an omnidirectional evader with a DDR

in minimal time. In this case, the players have only knowledge of their instantaneous

positions. We obtained the motion primitives and time-optimal motion strategies for the

players that are in Nash Equilibrium. We proposed a partition of the space where the

strategies of the players are well established. Using this partition, we found feedback

motion policies for the DDR. We also gave the conditions defining the winner of the

game.

95
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As future work, we want to extend our results for capturing an omnidirectional evader

when one differential drive robot is not able to do it. In this case, we are interested in

finding the minimal number of differential drive robots required to guarantee capture

and their motion strategies.

Another interesting problem consist of using visual-servo techniques in the implementa-

tion of the time-optimal motion strategies found in this thesis. In this case, we assume

that a camera is mounted on the robot. Instead of directly using the relative position

of the evader, the camera is used to guide the robot. In this case, it is necessary to

determine the region of the partition where the evader is located from the images taken

by the camera. We want to find a mapping between the singular surfaces appearing in

the game and critical events in the images. This information will be used to notify the

robot the control it has to apply in order to capture the evader.

Finally, we also want to include acceleration bounds for both players in order to get a

more general solution of the problem.



Appendix A

Tracking an Omnidirectional

Evader with a Differential Drive

Robot

A.1 Determination of u3

From equation 3.10 we obtain the following two expressions for φ̇(t)

φ̇ =
ẋe − ẋp
L sinφ

(A.1)

φ̇ =
ẏp − ẏe
L cosφ

(A.2)

Substituting equations 3.4 in A.1 and 3.5 in A.2 we obtain

φ̇ =
ẋe − Vp cos θ

L sinφ
(A.3)

φ̇ =
Vp sin θ − ẏe
L cosφ

(A.4)

Equating equations A.3 and A.4 and solving for u3 = Vp we obtain:

u3 = Vp =
ẋe cosφ+ ẏe sinφ

cos(θ − φ)
(A.5)

Finally, substituting equations 3.1, 3.2 in A.5, we obtain

u3 =
Ve cos(ψ − φ)

cos(θ − φ)
(A.6)

97
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A.2 Determination of φ̇

If the coordinates of the pursuer are xp, yp, the following coordinate transformations

relate the pursuer’s Cartesian coordinates to its polar coordinates relative to the evader:

xp − xe = L cosφ (A.7)

yp − ye = L sinφ (A.8)

Using equations A.7 and A.8 we obtain an expression for tanφ, and we differentiate this

to obtain an expression for φ̇.

d

dt
tanφ =

d

dt

yp − ye
xp − xe

φ̇ sec2 φ =
1

xp − xe
ẏp −

1

xp − xe
ẏe −

(yp − ye)
(xp − xe)2

ẋp +
(yp − ye)

(xp − xe)2
ẋe

(A.9)

Making the substitution given by equation A.7 we obtain

φ̇ sec2 φ =
1

L cosφ

(
ẏp − ẏe −

yp − ye
xp − xe

ẋp +
yp − ye
xp − xe

ẋe

)
φ̇ sec2 φ =

1

L cosφ
(ẏp − ẏe − (ẋp − ẋe) tanφ)

φ̇ =
1

L
(ẏp − ẏe) cosφ− 1

L
(ẋp − ẋe) sinφ

(A.10)

If we now define the pursuer velocity as ẋp = Vp cos θ and ẏp = Vp sin θ we obtain the

first form for φ̇

φ̇ =
1

L
Vp sin(θ − φ)− 1

L
(ẏe cosφ− ẋe sinφ) (A.11)

If we parametrize the evader velocity by magnitude and angle, ẋe = Ve cosψ and ẏe =

Ve sinψ, we obtain

φ̇ =
1

L
Vp sin(θ − φ)− 1

L
Ve sin(ψ − φ) (A.12)

Since u1 = Ve, u2 = ψ and u3 = Vp equation A.12 can also be expressed as follows:

φ̇ =
1

L
[u3 sin(θ − φ)− u1 sin(u2 − φ)] (A.13)

Equation A.13 indicates for every instant of time the rate of rotation of the rod to

maintain a constant distance from the evader, and shows that the state variable φ̇

depends on both the evader and pursuer controls.

Now, we can express the state transition model of our system in its first form:
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ẋe

ẏe

φ̇

θ̇

 =


u1 cosu2

u1 sinu2

1
L [u3 sin(θ − φ)− u1 sin(u2 − φ)]

u4

 (A.14)

Substituting equation A.6 in equation A.12 we can obtain a simplified form for φ̇:

φ̇ =
Ve cos(ψ − φ)

L cos(θ − φ)
sin(θ − φ)− 1

L
Ve sin(ψ − φ) (A.15)

Setting v = θ − φ and u = ψ − φ we obtain

φ̇ =
Ve
L

[
sin(v) cos(u)− cos(v) sin(u)

cos(θ − φ)

]
(A.16)

and using the trigonometric identity: sin(u − v) = sin(u) cos(v) − cos(u) sin(v) and

replacing the values of u and v, we obtain

φ̇ =
Ve sin(θ − ψ)

L cos(θ − φ)
(A.17)

A.3 Proof of Lemma 3.2

Lemma 3.2. Consider the following functions:

ψ1 = arctan

(
sinφ− γ cos θ

cosφ+ γ sin θ

)
(A.18)

ψ2 = arctan

(
sinφ+ γ cos θ

cosφ− γ sin θ

)
(A.19)

ψ3 = arctan

(
− sinφ− γ cos θ

− cosφ+ γ sin θ

)
(A.20)

ψ4 = arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

)
(A.21)

The evader control u2 that maximizes g(φ, θ, u2) for given values of φ and θ is given by

u2 =

{
ψ1 or ψ4 = ψ1 + π : (θ − φ) ∈ [0, π]

ψ2 or ψ3 = ψ2 + π : (θ − φ) ∈ [π, 2π]
(A.22)

Proof. Recall that

g(φ, θ, ψ) = | cos(φ− ψ)|+ γ| sin(θ − ψ)| (A.23)
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Ai Bi

i = 1 sinφ− γ cos θ cosφ+ γ sin θ

i = 2 sinφ+ γ cos θ cosφ− γ sin θ

i = 3 − sinφ− γ cos θ − cosφ+ γ sin θ

i = 4 − sinφ+ γ cos θ − cosφ− γ sin θ

Table A.1: Coefficients Ai and Bi for gi(φ, θ, ψ)

in which 0 < γ ≤ 1. Since max{|a|+ |b|} = max{a+ b, a− b,−a+ b,−a− b} we have

max
ψ

g(φ, θ, ψ) = max
ψ
{g1(φ, θ, ψ), g2(φ, θ, ψ), g3(φ, θ, ψ), g4(φ, θ, ψ)} (A.24)

in which

g1(φ, θ, ψ) = cos(φ− ψ) + γ sin(θ − ψ) (A.25)

g2(φ, θ, ψ) = cos(φ− ψ)− γ sin(θ − ψ) (A.26)

g3(φ, θ, ψ) = − cos(φ− ψ) + γ sin(θ − ψ) (A.27)

g4(φ, θ, ψ) = − cos(φ− ψ)− γ sin(θ − ψ) (A.28)

Thus, we proceed by finding the maximizers for each of the gi. For the case of g1, using

basic trigonometric identities we obtain the following

g1 = cos(φ− ψ) + γ sin(θ − ψ) (A.29)

= cosφ cosψ + sinφ sinψ + γ(sin θ cosψ − cos θ sinψ) (A.30)

= cosψ(cosφ+ γ sin θ) + sinψ(sinφ− γ cos θ) (A.31)

= A1 sinψ +B1 cosψ (A.32)

in which A1 and B1 do not depend on ψ and are given by

A1 = sinφ− γ cos θ, B1 = cosφ+ γ sin θ (A.33)

Repeating this process for each of g2, g3 and g4, we obtain the general form

gi = Ai sinψ +Bi cosψ (A.34)

with Ai and Bi given in Table A.1.
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This expression for gi can be rewritten as a sinusoid (see, e.g., [94])

gi(φ, θ, ψ) = Ai sinψ +Bi cosψ =

√
Ai

2 +Bi
2 sin

(
ψ + tan−1

(
Bi
Ai

))
(A.35)

Since neither Ai nor Bi depend on ψ, the maximizer satisfies

ψ + tan−1

(
Bi
Ai

)
=
π

2
(A.36)

and using the identity tan−1(Bi/Ai) = π/2− tan−1(Ai/Bi) we obtain

ψ = tan−1 Ai
Bi

(A.37)

This immediately yields the four values of ψi given in the Lemma. To ensure that these

values yield a maximum, we examine the second partial derivative of gi with respect to

ψ, which is given by
∂2gi

∂ψi
2 = −Ai sinψiψ̇

2
i −Bi cosψiψ̇

2
i (A.38)

∂2gi

∂ψi
2 = (−Ai sinψi −Bi cosψi)ψ̇

2
i (A.39)

∂2gi

∂ψi
2 = −(Ai sinψi +Bi cosψi)ψ̇

2
i (A.40)

∂2gi

∂ψi
2 = −giψ̇2

i (A.41)

Since a maximum of gi satisfies ∂2gi
∂ψi

2 > 0, equation A.41 implies that gi > 0 must hold.

We will show this below.

We note here that a simple relationship holds between ψ1 and ψ4, and between ψ2 and

ψ3. In particular, since

ψ1 = arctan

(
A1

B1

)
(A.42)

and

ψ4 = arctan

(
−A1

−B1

)
(A.43)

we have ψ4 = ψ1 + π. Likewise, ψ3 = ψ2 + π.

Now, we proceed to evaluate each ψi in the corresponding gi. We will show that if

(θ − φ) ∈ [0, π] then g is maximized by ψ1 and ψ4, and if (θ − φ) ∈ [π, 2π] then g is

maximized by ψ2 and ψ3. We begin with the case of g4.

g4 =

√
A4

2 +B4
2 sin

(
ψ + arctan

(
B4

A4

))
(A.44)
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Plugging ψ4 in g4, that is g4(ψ4), we obtain

g4(ψ4) =

√
A4

2 +B4
2 sin

(
arctan

(
A4

B4

)
+ arctan

(
B4

A4

))
(A.45)

Note that ψ4 maximizes g4 at all times, so that the argument of the sine

arctan

(
A4

B4

)
+ arctan

(
B4

A4

)
=
π

2
. (A.46)

since this maximizes the sine, that is:

sin

(
arctan(

A4

B4
) + arctan(

B4

A4
)

)
= 1 (A.47)

Thus

g4(ψ4) =

√
A4

2 +B4
2 (A.48)

Evaluating A4 and B4 inside the square root:

g4(ψ4) =

√
(− sinφ+ γ cos θ)2 + (− cosφ− γ sin θ)2

=
√

1 + γ2 + 2γ sin(θ − φ) (A.49)

For g3 starting from

g3 =

√
A3

2 +B3
2 sin

(
ψ + arctan

(
B3

A3

))
(A.50)

and following a similar procedure that with g4, we get:

g3(ψ3) =
√

1 + γ2 − 2γ sin(θ − φ) (A.51)

Likewise for g2 and g1

g2(ψ2) =
√

1 + γ2 − 2γ sin(θ − φ) (A.52)

g1(ψ1) =
√

1 + γ2 + 2γ sin(θ − φ) (A.53)

To summarizes the forms of gi evaluated over the respective ψi are given by:

g1(ψ1) =
√

1 + γ2 + 2γ sin(θ − φ) (A.54)

g2(ψ2) =
√

1 + γ2 − 2γ sin(θ − φ) (A.55)

g3(ψ3) =
√

1 + γ2 − 2γ sin(θ − φ) (A.56)

g4(ψ4) =
√

1 + γ2 + 2γ sin(θ − φ) (A.57)
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If (θ − φ) ∈ [0, π] then ψ1 and ψ4 maximize g since the sin(θ − φ) ≥ 0. Likewise, if

(θ − φ) ∈ [π, 2π] then ψ2 and ψ3 maximize g since the sin(θ − φ) ≤ 0.

In the domain (θ − φ) ∈ [0, π], g4 and g1 are positive (different of zero), since the

argument on the square root of equation A.49, that is 1 + γ2 + 2γ sin(θ − φ) > 0.

In the domain (θ − φ) ∈ [π, 2π], g3 and g2 are positive (different of zero), since the

argument on the square root of equation A.51, that is 1 + γ2 − 2γ sin(θ − φ) > 0.

A.4 Proof of Lemma 3.3

Lemma 3.3. Define the following functions:

K(θ, φ) =

ψ4(θ, φ), If (θ − φ) ∈ [0, π]

ψ3(θ, φ), If (θ − φ) ∈ [π, 2π]
(A.58)

u∗∗3 (θ, φ) = u∗3(V max
p ,K(θ, φ), θ, φ) (A.59)

u∗∗4 (θ, φ) = s(θ, φ) max |θ̇| = s(θ, φ)
1

b
(V max
p − |u∗∗3 (θ, φ)|) (A.60)

with s(θ, φ) given by equation 3.30.

If (θ−φ) ∈ (0, π2 )
⋃

(π, 3π
2 ) then g(φ, θ,K) and |φ̇(V max

p ,K, θ, φ)| increase monotonically

(w.r.t (θ − φ)), and |u∗∗4 (θ, φ)| = max |θ̇| decreases monotonically (w.r.t (θ − φ)).

Symmetrically, if (θ − φ) ∈ (π2 , π)
⋃

(3π
2 , 2π)then g(φ, θ,K) and |φ̇(V max

p ,K, θ, φ)| de-

crease monotonically (w.r.t (θ − φ)), and |u∗∗4 (θ, φ)| = max |θ̇| increases monotonically

(w.r.t (θ − φ)).

Proof. This lemma is proved by cases. Since the cases are analogous, we only present

in detail the case of ψ4, and we provide a sketch of the proofs for the other cases.

Table 3.1 summarizes the direction of rotation (counterclockwise +1 or clockwise -1) for

φ̇(V max
p ,K, θ, φ)

In all cases, as a first step, we show that |u∗∗4 (u∗∗3 )| monotonically increases and that

|φ̇(V max
e ,K, θ, φ)| monotonically decreases, if (θ−φ) ∈ (π2 , π)

⋃
(3π

2 , 2π). Symmetrically,

|u∗∗4 (u∗∗3 )| monotonically decreases and |φ̇(V max
p ,K, θ, φ)| monotonically increases, if (θ−

φ) ∈ (0, π2 )
⋃

(π, 3π
2 ). In a second step, we show that if (θ − φ) ∈ (0, π2 )

⋃
(π, 3π

2 ) then

g(φ, θ,K) monotonically increases.
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Analysis for ψ4:

For ψ4 there are two cases, which we refer to here as Case A and Case B for convenience.

We now proceed individually with each of these.

Case A: (θ − φ) ∈ I quadrant

Analyzing φ̇(V max
e , ψ4, θ, φ)

First, we obtain the variations of (θ − ψ4).

ψ4 = arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

)
(A.61)

Subtracting ψ4 from θ in both sides of the equation.

θ − ψ4 = θ − arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

)
(A.62)

Expressing θ as arctan
(

sin θ
cos θ

)
θ − ψ4 = arctan

(
sin θ

cos θ

)
− arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

)
(A.63)

Computing the tangent in both sides of the equation.

tan(θ − ψ4) = tan

(
arctan

(
sin θ

cos θ

)
− arctan

(
− sinφ+ γ cos θ

− cosφ− γ sin θ

))
(A.64)

Using an equivalence of tan(u− v)

tan(θ − ψ4) =
tan

(
arctan

(
sin θ
cos θ

))
− tan

(
arctan

(
− sinφ+γ cos θ
− cosφ−γ sin θ

))
1 + tan

(
arctan

(
sin θ
cos θ

))
tan

(
arctan

(
− sinφ+γ cos θ
− cosφ−γ sin θ

)) (A.65)

This can be further simplified as

tan(θ − ψ4) =

(
sin θ
cos θ

)
−
(
− sinφ+γ cos θ
− cosφ−γ sin θ

)
1 +

(
sin θ
cos θ

) (− sinφ+γ cos θ
− cosφ−γ sin θ

) (A.66)

=
−(sin θ cosφ− cos θ sinφ+ γ)

−(sin θ sinφ+ cos θ cosφ)
(A.67)

=
− sin(θ − φ)− γ
− cos(θ − φ)

(A.68)

Now we obtain the extremal values of (θ − ψ4) for (θ − φ) ∈ I quadrant. If (θ − φ) ∈ I
quadrant then the extremal values of (θ − ψ4) can be computed as follows:

(θ − ψ4) = arctan

(
− sin(θ − φ)− γ
− cos(θ − φ)

)
(A.69)
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Note that the admissible values of the ratio γ satisfy γ ∈ (0, 1]. If (θ − φ) = 0 then

− sin(θ−φ)− γ ∈ [−1, 0) and − cos(θ−φ) = −1. If (θ−φ) = π
2 then − sin(θ−φ)− γ ∈

[−2,−1] and − cos(θ − φ) = 0.

If (θ− φ) = 0 then according to the value of the ratio γ, the possibles values of (θ−ψ4)

are within the extremal values:

(θ − ψ4) = arctan

(
0

−1

)
→ π (A.70)

(θ − ψ4) = arctan

(
−1

−1

)
=

5π

4
(A.71)

If (θ − φ) = π
2 then regardless of the value of the ratio γ, the value of (θ − ψ4) is:

(θ − ψ4) = arctan

(
−1

0

)
=

3π

2
(A.72)

(θ − ψ4) = arctan

(
−2

0

)
=

3π

2
(A.73)

Thus, if (θ − φ) ∈ [0, π2 ] then the extremal values of (θ − ψ4) ∈ (π, 3π
2 ]. Note that

the admissible values for the ratio γ ∈ (0, 1] can produce a bigger interval, but always

within the interval (π, 3π
2 ], as the ratio γ becomes smaller, the lower limit of the interval

approaches π.

It is important to stress that if (θ − φ) increases (θ − ψ4) also increases and vice-versa,

they have the same sense of variation.

Now we show that |φ̇(V max
e , ψ4, θ, φ)| monotonically increases or decreases. Recall that

φ̇(V max
e , ψ4, θ, φ) =

V max
e sin(θ − ψ4)

L cos(θ − φ)
(A.74)

If (θ − φ) ∈ I quadrant varying from 0 to π
2 then (θ − ψ4) increases within the interval

(π, 3π
2 ], therefore

• cos(θ − φ) ≥ 0, and its value is decreasing monotonically

• sin(θ − ψ4) < 0, and its value is decreasing monotonically

• | sin(θ − ψ4)| > 0, and its value is increasing monotonically

Hence, |φ̇(V max
e , ψ4, θ, φ)|monotonically increases. However, notice that φ̇(V max

e , ψ4, θ, φ)

is negative, meaning that it produces a rod clockwise rotation. Symmetrically, if (θ−φ) ∈
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I quadrant varying from π
2 to 0 then (θ−ψ4) decreases. Hence, |φ̇(V max

e , ψ4, θ, φ)| mono-

tonically decreases.

Analyzing u∗∗3 (V max
e , ψ4, θ, φ) and |u∗∗4 (|u∗∗3 |)|

Using a procedure similar to what has been performed above, we obtain

(ψ4 − φ) = arctan

(
γ cos(θ − φ)

−1− γ sin(θ − φ)

)
(A.75)

Recalling again that γ ∈ (0, 1], if (θ−φ) = 0 then γ cos(θ−φ) ∈ (0, 1] and (−1− γ sin(θ − φ)) =

−1. If (θ − φ) = π
2 then γ cos(θ − φ) = 0 and (−1− γ sin(θ − φ)) ∈ [−2,−1).

If (θ−φ) = 0 then according to the value of the ratio γ, the possibles values of (ψ4−φ)

are within the extremal values:

(ψ4 − φ) = arctan

(
1

−1

)
=

3π

4
(A.76)

(ψ4 − φ) = arctan

(
0

−1

)
→ π (A.77)

If (θ − φ) = π
2 then regardless of the value of the ratio γ, the value of (ψ4 − φ) is:

(ψ4 − φ) = arctan

(
0

−2

)
= π (A.78)

(ψ4 − φ) = arctan

(
0

−1

)
→ π (A.79)

Thus, if (θ − φ) ∈ [0, π2 ] then the extremal values of (ψ4 − φ) ∈ [3π
4 , π]. The admissible

values for the ratio γ ∈ (0, 1] can produce a smaller interval, but always within the

interval [3π
4 , π], as the ratio γ becomes smaller, the lower limit of the interval approaches

π. If (θ − φ) increases (ψ4 − φ) also increases and vice-versa, they have the same sense

of variation.

Now we show that |u∗∗4 (|u∗∗3 (V max
e , ψ4, θ, φ)|)| monotonically increases or decreases. The

term |u∗∗4 (|u∗∗3 |)| can be expressed as follows:

|u∗∗4 (|u∗∗3 |)| = max |θ̇| = 1

b

(
V max
p − |u∗∗3 (V max

e , ψ4, θ, φ)|
)

(A.80)

We will obtain the variation of |u∗∗4 | using |u∗∗3 |. Recall that:

u∗∗3 (V max
e , ψ4, θ, φ) =

V max
e cos(ψ4 − φ)

cos(θ − φ)
(A.81)
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If (θ − φ) ∈ I quadrant varying from 0 to π
2 then (ψ4 − φ) increases within the interval

[3π
4 , π]. Therefore

• cos(θ − φ) ≥ 0, and its value is decreasing monotonically

• cos(ψ4 − φ) < 0, and its value is decreasing monotonically

• | cos(ψ4 − φ)| > 0, and its value is increasing monotonically

Hence, |u∗∗3 (V max
e , ψ4, θ, φ)|monotonically increases and consequentially |u∗∗4 (|u∗∗3 |)|mono-

tonically decreases. Notice that, u∗∗3 (V max
e , ψ4, θ, φ) is negative, meaning that it produces

a pursuer backwards motion.

Symmetrically, if (θ−φ) ∈ I quadrant varying from π
2 to 0 then (ψ4−φ) decreases. Hence,

|u∗∗3 (V max
e , ψ4, θ, φ)| monotonically decreases and |u∗∗4 (|u∗∗3 |)| monotonically increases.

Finally, we show that, g4(ψ4, θ, φ) monotonically increases or decreases. If (θ − φ) ∈ I
quadrant and (θ − φ) varies from 0 to π

2 then sin(θ − φ) ≥ 0 in equation A.49 (Lemma

II), and its value is monotonically increasing. Hence, the value of g4(φ, θ, ψ4) is mono-

tonically increasing. Symmetrically, if (θ − φ) varies from π
2 to 0 then sin(θ − φ) ≥ 0

in the equation A.49 (Lemma II), and its value is monotonically decreasing. Therefore,

the value of g4(φ, θ, ψ4) is monotonically decreasing.

Case B: (θ − φ) ∈ II

Analyzing φ̇(V max
e , ψ4, θ, φ)

First, we obtain the extremal values of (θ − ψ4) for (θ − φ) ∈ II quadrant.

(θ − ψ4) = arctan

(
− sin(θ − φ)− γ
− cos(θ − φ)

)
(A.82)

If (θ − φ) = π
2 then − sin(θ − φ) − γ ∈ (−2,−1] and − cos(θ − φ) = 0. If (θ − φ) = π

then − sin(θ − φ)− γ ∈ [−1, 0) and − cos(θ − φ) = 1. If (θ − φ) = π
2 then regardless of

the value of the ratio γ, the value of (θ − ψ4) is:

(θ − ψ4) = arctan

(
−1

0

)
=

3π

2
(A.83)

(θ − ψ4) = arctan

(
−2

0

)
→ 3π

2
(A.84)
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If (θ−φ) = π then according to the value of the ratio γ, the possibles values of (θ−ψ4)

are within the extremal values:

(θ − ψ4) = arctan

(
−1

1

)
=

7π

4
(A.85)

and

(θ − ψ4) = arctan

(
0

1

)
→ 2π (A.86)

Thus, if (θ− φ) ∈ [π2 , π] then the extremal values of (θ− ψ4) ∈ [3π
2 , 2π). The admissible

values for the ratio γ ∈ (0, 1] can produce a bigger interval, but always within the interval

[3π
2 , 2π), as the ratio γ becomes smaller, the upper limit of the interval approaches 2π.

If (θ − φ) increases (θ − ψ4) also increases and vice-versa, they have the same sense of

variation.

Now we show that |φ̇(V max
e , ψ4, θ, φ)| monotonically increases or decreases. Recall that

φ̇(V max
e , ψ4, θ, φ) =

V max
e sin(θ − ψ4)

L cos(θ − φ)
(A.87)

If (θ− φ) ∈ II quadrant varying from π
2 to π then (θ−ψ4) increases within the interval

[3π
2 , 2π). Therefore

• cos(θ − φ) ≤ 0, and its value is decreasing monotonically

• | cos(θ − φ)| ≥ 0, and its value is increasing monotonically

• sin(θ − ψ4) < 0, and its value is increasing monotonically

• | sin(θ − ψ4)| > 0, and its value is decreasing monotonically

Hence, |φ̇(V max
e , ψ4, θ, φ)| monotonically decreases, and the value of φ̇(V max

e , ψ4, θ, φ) is

positive, meaning that it produces a rod counterclockwise rotation.

Symmetrically, if (θ − φ) ∈ II quadrant varying from π to π
2 then (θ − ψ4) decreases.

Hence, |φ̇(V max
e , ψ4, θ, φ)| monotonically increases.

Analyzing u∗∗3 (V max
e , ψ4, θ, φ) and |u∗∗4 (|u∗∗3 |)|

If (θ−φ) ∈ II quadrant then the extremal values of (ψ4−φ) can be computed as follows:

(ψ4 − φ) = arctan

(
γ cos(θ − φ)

−1− γ sin(θ − φ)

)
(A.88)

Since the ratio γ ∈ (0, 1], if (θ−φ) = π then γ cos(θ−φ) ∈ [−1, 0) and (−1− γ sin(θ − φ)) =

−1. If (θ − φ) = π
2 then γ cos(θ − φ) = 0 and (−1− γ sin(θ − φ)) ∈ [−2,−1).
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If (θ−φ) = π then according to the value of the ratio γ, the possibles values of (ψ4−φ)

are within the extremal values:

(ψ4 − φ) = arctan

(
0

−1

)
→ π (A.89)

and

(ψ4 − φ) = arctan

(
−1

−1

)
=

5π

4
(A.90)

If (θ − φ) = π
2 then regardless of the value of the ratio γ, the value of (ψ4 − φ) is:

(ψ4 − φ) = arctan

(
0

−2

)
= π (A.91)

(ψ4 − φ) = arctan

(
0

−1

)
= π (A.92)

Thus, if (θ − φ) ∈ [π2 , π] then the extremal values of (ψ4 − φ) ∈ [π, 5π
4 ]. The admissible

values of the ratio γ ∈ (0, 1] can produce a smaller interval but always within the interval

[π, 5π
4 ], as the ratio γ becomes smaller, the upper limit of the interval approaches π.

If (θ − φ) increases (ψ4 − φ) also increases and vice-versa, they have the same sense of

variation.

Now we show that |u∗∗4 (|u∗∗3 |)| monotonically increases or decreases by examining its

variation in terms of the value of |u∗∗3 (V max
e , ψ4, θ, φ)|. The term |u∗∗4 (|u∗∗3 |)| can be

expressed as follows:

|u∗∗4 (u∗∗3 )| = max |θ̇| = 1

b

(
V max
p − |u∗∗3 (V max

e , ψ4, θ, φ)|
)

(A.93)

Recall that:

u∗∗3 (V max
e , ψ4, θ, φ) =

V max
e cos(ψ4 − φ)

cos(θ − φ)
(A.94)

If (θ−φ) ∈ II quadrant varying from π
2 to π then (ψ4−φ) increases within the interval

(π, 5π
4 ]. Therefore

• cos(θ − φ) ≤ 0, and its value is decreasing monotonically

• | cos(θ − φ)| ≥ 0, and its value is increasing monotonically

• cos(ψ4 − φ) < 0, and its value is increasing monotonically

• | cos(ψ4 − φ)| > 0, and its value is decreasing monotonically
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Hence, |u∗∗3 (V max
e , ψ4, θ, φ)|monotonically decreases and consequentially |u∗∗4 (|u∗∗3 |)|mono-

tonically increases, and we have u∗∗3 (V max
e , ψ4, θ, φ) is positive, meaning that it produces

a forward motion.

Symmetrically, if (θ − φ) ∈ II quadrant varying from π to π
2 then (ψ4 − φ) decreases.

Hence, |u∗∗3 (V max
e , ψ4, θ, φ)| monotonically increases and |u∗∗4 (u∗∗3 )| monotonically de-

creases.

Finally, we show that g4(φ, θ, ψ4) monotonically increases or decreases. If (θ − φ) ∈ II
quadrant and (θ−φ) varies from π

2 to π then sin(θ−φ) ≥ 0, and its value is monotonically

decreasing. Therefore, the value of g4(φ, θ, ψ4) is monotonically decreasing. Symmetri-

cally, if (θ − φ) varies from π to π
2 then sin(θ − φ) ≥ 0 in the equation A.49, and its

value is monotonically increasing. Therefore, the value of g4(φ, θ, ψ4) is monotonically

increasing.

Analysis for ψ3

(θ − ψ3) = arctan

(
− sin(θ − φ) + γ

− cos(θ − φ)

)
(A.95)

If (θ − φ) ∈ [π, 3π
2 ] then (θ − ψ3) ∈ (0, π2 ] and φ̇(V max

e , ψ3, θ, φ) is negative, producing a

rod clockwise rotation. If (θ− φ) ∈ [3π
2 , 2π] then (θ− ψ3) ∈ [π2 , π) and φ̇(V max

e , ψ3, θ, φ)

is positive, meaning that it produces a rod counterclockwise rotation.

(ψ3 − φ) = arctan

(
−γ cos(θ − φ)

−1 + γ sin(θ − φ)

)
(A.96)

If (θ − φ) ∈ [π, 3π
2 ] then (ψ3 − φ) ∈ [3π

4 , π] and u∗∗3 (V max
e , ψ3, θ, φ) is positive, meaning

that it produces a pursuer forward motion. If (θ − φ) ∈ [3π
2 , 2π] then (ψ3 − φ) ∈ [π, 5π

4 ]

and u∗∗3 (V max
e , ψ3, θ, φ) is negative, causing the pursuer to move backward.

We show now that g3(ψ3, θ, φ) monotonically increases or decreases. If (θ − φ) ∈ III
quadrant, and (θ−φ) varies from π to 3π

2 then sin(θ−φ) ≤ 0 in equation A.51 (Lemma

II), and its value is monotonically decreasing. Consequently, − sin(θ − φ) ≥ 0 in equa-

tion A.51 (Lemma II), and its value is monotonically increasing. Hence, the value of

g3(ψ3, θ, φ) is monotonically increasing. Symmetrically, if (θ − φ) varies from 3π
2 to π

then the value of g3(ψ3, θ, φ) is monotonically decreasing. If (θ − φ) ∈ IV quadrant,

and (θ − φ) varies from 3π
2 to 2π then sin(θ − φ) ≤ 0 (in equation A.51, Lemma II),

and its value is monotonically increasing. Consequently, − sin(θ − φ) ≥ 0 (in equation

A.51, Lemma II), and its value is monotonically decreasing. Therefore, the value of

g3(ψ3, θ, φ) is monotonically decreasing. Symmetrically, if (θ − φ) varies from 2π to 3π
2

then the value of g3(ψ3, θ, φ) is monotonically increasing.
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Analysis of ψ2

(θ − ψ2) = arctan

(
sin(θ − φ)− γ

cos(θ − φ)

)
(A.97)

If (θ− φ) ∈ [π, 3π
2 ] then (θ− ψ2) ∈ (π, 3π

2 ], and φ̇ is positive, which generates a counter-

clockwise rotation. If (θ − φ) ∈ [3π
2 , 2π] then (θ − ψ2) ∈ [3π

2 , 2π), and φ̇(V max
e , ψ2, θ, φ)

is negative, which generates a clockwise rotation.

(ψ2 − φ) = arctan

(
γ cos(θ − φ)

1− γ sin(θ − φ)

)
(A.98)

If (θ − φ) ∈ [π, 3π
2 ] then (ψ2 − φ) ∈ [7π

4 , 2π], then u∗∗3 (V max
e , ψ2, θ, φ) is negative, which

generates a backward pursuer motion. If (θ − φ) ∈ [3π
2 , 2π] then (ψ2 − φ) ∈ [0, π4 ], and

u∗∗3 (Vemax, ψ2, θ, φ) is positive, which generates a forward pursuer motion.

Analysis of ψ1

(θ − ψ1) = arctan

(
sin(θ − φ) + γ

cos(θ − φ)

)
(A.99)

If (θ−φ) ∈ [0, π2 ] then (θ−ψ1) ∈ (0, π2 ] and φ̇(V max
e , ψ1, θ, φ) is positive, which generates a

counterclockwise rotation. If (θ−φ) ∈ [π2 , π] then (θ−ψ1) ∈ [π2 , π) and φ̇(V max
e , ψ1, θ, φ)

is negative, which generates a clockwise rotation.

(ψ1 − φ) = arctan

(
−γ cos(θ − φ)

1 + γ sin(θ − φ)

)
(A.100)

If (θ − φ) ∈ [0, π2 ] then (ψ1 − φ) ∈ [7π
4 , 2π] and u∗∗3 (V max

e , ψ1, θ, φ) is positive, which

generates a forward pursuer motion. If (θ − φ) ∈ [π2 , π] then (ψ1 − φ) ∈ [0, π4 ] and

u∗∗3 (V max
e , ψ1, θ, φ) is negative, which generates backward pursuer motion.

A.5 Proof of Corollary 3.4

Corollary 3.4. If (θ − φ) ∈ (0, π2 ) ∪ (π, 3π
2 ) then the DPDR is clockwise (cw), i.e.

sgn(u∗∗4 ) = s(θ, φ) = −1 (as given by Eq. 3.30), and the DEDR is also clockwise (cw),

i.e. sgn(φ̇(ψi)) = −1. Conversely, if (θ − φ) ∈ (π2 , π) ∪ (3π
2 , 2π) then the DPDR is

counterclockwise (ccw) sgn(u∗∗4 ) = s(θ, φ) = +1 (as given by Eq. 3.30), and the DEDR

is also counterclockwise (ccw) sgn(φ̇(ψi)) = +1. Thus, the following controls must be
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applied by the players according to the value of (θ−φ), to obtain the required direction

of rotation of both u∗∗4 and φ̇(V max
p ,K, θ, φ).

The evader control u∗2, is given in table 3.1.

The sign (direction of rotation) of u∗∗4 = max |θ̇| = 1
b (V

max
p −|u∗∗3 |) is defined by equation

3.30.

Proof. Figure A.1 illustrates the direction of rotation for the pursuer strategy. In that

figure the orientation of the pursuer heading θ is measured with respect to the value

of φ, the rod’s orientation. The pursuer rotates its heading either clockwise θ− or

counterclockwise θ+ based on the direction that requires a smaller rotation to reach

a parallel alignment of the robot heading with respect to the rod orientation, that is

(θ−φ) = {0, π, 2π}, without bringing the pursuer heading (pursuer wheels) and the rod

closer to perpendicularity (i.e. (θ − φ) = {π2 ,
3π
2 }.

If (θ−φ) is within the first or third quadrant then the pursuer rotates clockwise θ−, and if

(θ−φ) is within the second or fourth quadrant then the pursuer rotates counterclockwise

θ+.

φ

III

III IV

θ

θθ III

III θ IV

CWCCW

CW CCW

Figure A.1: Direction of rotation

Symmetrically, the evader must select a rod’s counterclockwise or a clockwise rotation,

based on the current state of rod and pursuer wheels orientation. The evader control

ψi must produce a rod rotation that brings the rod perpendicular to the pursuer wheels

(pursuer heading) without bringing the rod and the pursuer heading (pursuer wheels)

closer to parallelism (i.e.(θ − φ) = {0, π, 2π}). Therefore, if (θ − φ) is in the first or

third quadrant the evader should rotate the rod clockwise (φ−), and if (θ − φ) is in

the second or fourth quadrant the evader should rotate the rod counterclockwise (φ+).

Furthermore, the evader control must maximize g.

By Lemma II, if (θ−φ) ∈ [0, π] then g is maximized by ψ1 and ψ4, and if (θ−φ) ∈ [π, 2π]

then g is maximized by ψ2 and ψ3. Hence, If (θ−φ) ∈ [0, π] then the evader must select

either ψ1 or ψ4, and if (θ − φ) ∈ [π, 2π] then the evader must select either ψ2 or ψ3
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Refer to table 3.1. If (θ−φ) ∈ [0, π2 ] the evader must select ψ4, since it produces a rod’s

clockwise rotation, if (θ − φ) ∈ [π2 , π], the evader must also select ψ4, since it produces

a counterclockwise rotation. Similarly, if (θ − φ) ∈ [π, 3π
2 ] the evader must select ψ3,

since it produces a rod’s clockwise rotation, and if (θ − φ) ∈ [3π
2 , 2π] the evader must

also select ψ3. Hence, ψ1 and ψ2 are not used.

A.6 Proof of remaining cases of Theorem 3.8

Proof. Case II (θ − φ) ∈ [π2 , π]

First, assume that M(V max
e , V max

p , θ, φ) < 0 at the beginning of the game. This implies

that max |θ̇(t0)| > |φ̇(t0)| and V max
p | cos(θ − φ)| > |u∗1| · g(φ, θ, u∗2). By Lemmas II and

III g(φ, θ, u∗2) is maximal and varies monotonically by applying the optimal u∗2 = ψ4. By

Lemma III g(φ, θ, u∗2) monotonically decreases and | cos(θ − φ)| monotonically increases

as (θ − φ) varies from π
2 to π.

If max |θ̇(t0)| > |φ̇(t0)| then (θ(t0)−φ(t0)) < (θ(t0+ε)−φ(t0+ε)) for ε→ 0. By Lemma III

max |θ̇| monotonically increases and |φ̇| monotonically decreases as (θ−φ) varies from π
2

to π. Hence ∀t > t0, max |θ̇(t)| > |φ̇(t)|. Therefore ∀t > t0, (θ(t0)−φ(t0)) < (θ(t)−φ(t)),

and (θ(t)− φ(t)) increases monotonically until it reaches π yielding a pursuer winning.

Now assume that M(V max
e , V max

p , θ, φ) > 0 at the beginning of the game. This implies

that max |θ̇(t0)| < |φ̇(t0)| and V max
p | cos(θ − φ)| < |u∗1| · g(φ, θ, u∗2). Then by Lemma III

g(φ, θ, u∗2) monotonically increases by applying the optimal u∗2 = ψ4, and | cos(θ − φ)|
monotonically decreases as (θ − φ) varies from π to π

2 .

If max |θ̇(t0)| < |φ̇(t0)| then (θ(t0)−φ(t0)) > (θ(t0 + ε)−φ(t0 + ε)) for ε→ 0. By Lemma

III max |θ̇| monotonically decreases and |φ̇| monotonically increases as (θ − φ) varies

from π to π
2 . Hence ∀t > t0, max |θ̇(t)| < |φ̇(t)|. Therefore (θ(t0)−φ(t0)) > (θ(t)−φ(t))

and (θ(t)− φ(t)) decreases monotonically until it reaches π
2 yielding an evader winning.

Case III (θ − φ) ∈ [π, 3π
2 ]

First, assume that M(V max
e , V max

p , θ, φ) < 0 at the beginning of the game. This implies

that max |θ̇(t0)| > |φ̇(t0)| and V max
p | cos(θ − φ)| > |u∗1| · g(φ, θ, u∗2). By Lemmas II and

III g(φ, θ, u∗2) is maximal and varies monotonically by applying the optimal u∗2 = ψ3. By

Lemma III g(φ, θ, u∗2) monotonically decreases and | cos(θ − φ)| monotonically increases

as (θ − φ) varies from 3π
2 to π.
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If max |θ̇(t0)| > |φ̇(t0)| then (θ(t0)−φ(t0)) > (θ(t0+ε)−φ(t0+ε)) for ε→ 0. By Lemma III

max |θ̇| monotonically increases and |φ̇| monotonically decreases as (θ−φ) varies from 3π
2

to π. Hence ∀t > t0, max |θ̇(t)| > |φ̇(t)|. Therefore ∀t > t0, (θ(t0)−φ(t0)) > (θ(t)−φ(t)),

and (θ(t)− φ(t)) decreases monotonically until it reaches π yielding a pursuer winning.

Now assume that M(V max
e , V max

p , θ, φ) > 0 at the beginning of the game. This implies

that max |θ̇(t0)| < |φ̇(t0)| and V max
p | cos(θ − φ)| < |u∗1| · g(φ, θ, u∗2). Then by Lemma III

g(φ, θ, u∗2) monotonically increases by applying the optimal u∗2 = ψ3, and | cos(θ − φ)|
monotonically decreases as (θ − φ) varies from π to 3π

2 .

If max |θ̇(t0)| < |φ̇(t0)| then (θ(t0)−φ(t0)) < (θ(t0 + ε)−φ(t0 + ε)) for ε→ 0. By Lemma

III max |θ̇| monotonically decreases and |φ̇| monotonically increases as (θ−φ) varies from

π to 3π
2 . Hence ∀t > t0, max |θ̇(t)| < |φ̇(t)|. Therefore (θ(t0) − φ(t0)) < (θ(t) − φ(t))

and (θ(t)−φ(t)) increases monotonically until it reaches 3π
2 yielding an evader winning.

Case IV (θ − φ) ∈ [3π
2 , 2π]

First, assume that M(V max
e , V max

p , θ, φ) < 0 at the beginning of the game. This implies

that max |θ̇(t0)| > |φ̇(t0)| and V max
p | cos(θ − φ)| > |u∗1| · g(φ, θ, u∗2). By Lemmas II and

III g(φ, θ, u∗2) is maximal and varies monotonically by applying the optimal u∗2 = ψ3. By

Lemma III g(φ, θ, u∗2) monotonically decreases and | cos(θ − φ)| monotonically increases

as (θ − φ) varies from 3π
2 to 2π.

If max |θ̇(t0)| > |φ̇(t0)| then (θ(t0)−φ(t0)) < (θ(t0 + ε)−φ(t0 + ε)) for ε→ 0. By Lemma

III max |θ̇| monotonically increases and |φ̇| monotonically decreases as (θ − φ) varies

from 3π
2 to 2π. Hence ∀t > t0, max |θ̇(t)| > |φ̇(t)|. Therefore ∀t > t0, (θ(t0) − φ(t0)) <

(θ(t) − φ(t)), and (θ(t) − φ(t)) increases monotonically until it reaches 2π yielding a

pursuer winning.

Now assume that M(V max
e , V max

p , θ, φ) > 0 at the beginning of the game. This implies

that max |θ̇(t0)| < |φ̇(t0)| and V max
p | cos(θ − φ)| < |u∗1| · g(φ, θ, u∗2). Then by Lemma III

g(φ, θ, u∗2) monotonically increases by applying the optimal u∗2 = ψ3, and | cos(θ − φ)|
monotonically decreases as (θ − φ) varies from 2π to 3π

2 .

If max |θ̇(t0)| < |φ̇(t0)| then (θ(t0)−φ(t0)) > (θ(t0 + ε)−φ(t0 + ε)) for ε→ 0. By Lemma

III max |θ̇| monotonically decreases and |φ̇| monotonically increases as (θ−φ) varies from

2π to 3π
2 . Hence ∀t > t0, max |θ̇(t)| < |φ̇(t)|. Therefore (θ(t0) − φ(t0)) > (θ(t) − φ(t))

and (θ(t)−φ(t)) decreases monotonically until it reaches 3π
2 yielding an evader winning.
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Appendix B - Surveillance and

Capture Strategies for an

Omnidirectional Agent and a

Differential Drive Robot

B.1 Proof of Lemma 4.1

Lemma 4.1. Let δ∗(L) be the curve separating the regions where M(L, δ) < 0 and

M(L, δ) > 0 (refer to Fig. B.1).

1. There is a critical value L = L∗o such that δ∗(Lo) = 0.

2. For L > L∗o, δ
∗(L) is a strictly increasing function.

3. If L→∞ then δ∗(L)→ cos−1
(
V max
e
V max
p

)
≤ π

2 .

4. For L <∞, δ∗(L) < cos−1
(
V max
e
V max
p

)
≤ π

2 .

Proof. From (4.7), and recalling that M(L, δ∗(L)) = 0, we have that

M(L, δ∗(L)) = V max
e

√
1 +

2b

L
sin(δ∗(L)) +

(
b

L

)2

− V max
p cos(δ∗(L)) = 0 (B.1)

If δ∗(L) = 0 then

M(L, 0) = V max
e

√
1 +

(
b

L

)2

− V max
p = 0 (B.2)
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*

M > 0

M < 0

π/2

o

δ*

δ

L
L

Figure B.1: Detail of Fig. 4.1, for δ ∈ [0, π2 ]

From the last expression, and by doing some algebra, we obtain the value Lo such that

δ∗(Lo) = 0

L∗o =
V max
e b√

(V max
p − V max

e )(V max
p + V max

e )
(B.3)

which may also be written as:

L∗o =
ρb√

1− ρ2
(B.4)

where

ρ =
V max
e

V max
p

(B.5)

This proves the first part of the lemma.

Note that as ρ → 1, L∗o → ∞, which implies that the OA can always break constant

distance surveillance, which implies, as shown below, that the OA can always obtain

an arbitrary distance from the DDR. On the other hand, for ρ ≈ 0, L∗o → 0. In what

follows it will always be assumed that ρ < 1.

From (4.7), we observe that in order to keep a constant value of 0 for M(L, δ), if we

increase the value of L, then we have also to increase the value of δ. Therefore, δ∗(L) is

an strictly increasing function with respect to L > L∗o, which proves the second part of

the lemma.

If L→∞ we have that (B.1) takes the form

M(L, δ∗(L)) = V max
e − V max

p cos(δ∗∞) = 0 (B.6)

By straight forward manipulation of (B.6), we obtain

δ∗∞ = cos−1 (ρ) (B.7)
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Note that δ∗∞ < π
2 , and for ρ ≈ 0, δ∗∞ → π

2 . This proves the last part of the lemma.

B.2 Proof of Theorem 4.3

Theorem 4.3. Assume that for the initial configuration M(LI , δI) < 0. Given ε > 0,

define L∗B = L∗o + ε. Let (LI , LG, L) > L∗B + ε, be the initial, the goal and the current

distance between the DDR and the OA. The DDR can reach a distance L ∈ [LG −
ε, LG + ε] in finite time, using the following strategy:

1. If δ(L) > 0, move at constant L, changing the DDR’s heading until it is parallel

to the orientation of the rod, i.e., make δ(L) = 0.

2. If δ(L) = 0, move during a time T̂ = min(T ∗, |L−LG|2V max
p

) directly towards or away

from the position of the OA at time t, depending on the sign of L − LG, with a

velocity V = sgn(L− LG) · V max
p where

T ∗ = min

(
ε

2V max
p

,
L∗B sin(δ∗(L∗B))

V max
e

)
(B.8)

Proof. It follows directly from the results in Chapter 3 that if M(L, δ) < 0 the DDR

can make δ(L) = 0 in finite time, using the controls u∗3, u
∗
4. For the second part of the

strategy, one has to show that if the DDR moves with a velocity V = sgn(L−LG) ·V max
p

during a time T̂ , |L− LG| will decrease and the system will remain in the region where

M(L, δ) < 0. To do this, we consider two cases:

B LLo
* L*

δ (L)
*

L

δ ε ε

B

C

ALG

Figure B.2: Auxiliary constructions for the case LG < L (see text)

Case I: LG < L.

In this case, we show that in (L, δ) space, after an incremental motion of duration T̂ ,

the new system configuration (L′, δ′) falls inside the shaded rectangle of Fig. B.2, with

A = L−(V max
p −V max

e )T̂ ; B = L∗B+ε and C = δ∗(L∗B), which means that L is decreasing

as a function of time, and the system never leaves the region where M(L, δ) < 0.
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Since the DDR wants to decrease the inter-player distance, it moves toward the OA

during a time T̂ . In order to show that L′ < L, it is enough to consider the worst case

for the bound A, namely, when the OA moves directly away from the DDR at maximum

speed, in which case, L′ = A < L. We use an analogous reasoning in order to prove the

next cases.

To show that L′ ≥ B, again one considers the worst case for this bound, namely, when

the OA moves directly towards the DDR at maximum speed. In this case, from the

definitions of T̂ and T ∗, one has that

L′ = L− (V max
p + V max

e )T̂ > L− 2V max
p T̂ > L− ε > B (B.9)

Finally, for the bound C, the worst case obtains when the OA moves perpendicularly to

the rod at maximum speed (see Fig. B.3). In this case, the final angle δ′ satisfies:

sin(δ′) ≤ V max
e T ∗

L′
<
V max
e T ∗

L∗B
≤ sin(δ∗(L∗B)) (B.10)

where the last inequality follows from (B.8). Since the sin(·) function is increasing in

the interval [0, π2 ], one gets from Lemma 4.1 that δ′ < δ∗(L∗B) < δ∗(L′).

’

p ’

V
p

max
T̂

p

V
e

^

x

maxT

y

δ

Figure B.3: The DDR moves toward the OA, and the OA moves perpendicularly to
the rod at maximum speed.

Case II: LG > L.

In this case there are only two bounds to consider for the new configuration (L′, δ′) (see

Fig. B.4): D = L+ (V max
p − V max

e )T̂ and C = δ∗(L∗B). The first one obtains when the

OA moves directly towards the DDR at maximum speed, in which case, L′ = D > L,

and the second one when the DDR moves perpendicularly to the rod at time t, as in

case I, in which case,

sin(δ′) ≤ V max
e T ∗

L′
< sin(δ∗(L∗B)) < sin(δ∗(L′)) (B.11)

and therefore δ′ < δ∗(L′) as above. This completes the proof.



Appendix B. Appendix - Surveillance and Capture Strategies for an Omnidirectional
Agent and a Differential Drive Robot 119
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δ (L)
*

δ ε

B
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L D L

Figure B.4: Auxiliary constructions for the case LG > L (see text)

Note that in both cases, since

T̂ ≤ ε

2V max
p

<
ε

2V max
e

(B.12)

the bound on the magnitude of the maximum overshoot (or undershoot) from the target

distance is

(V max
p + V max

e )T̂ < 2V max
p T̂ ≤ ε (B.13)

Note also that, this overshoot or undershoot is due to the assumption that while one of

the players changes the inter-player distance, the motion direction of the other player is

unknown. In the worst case a player would move in the opposite direction to the one

assumed to establish the bounds.
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Appendix C - Time-Optimal

Motion Strategies for Capturing

an Omnidirectional Evader using

a Differential Drive Robot

C.1 A or B are instantaneously zero at the switching in-

stant in Lemma 6.3

From Lemma 6.3, the Hamiltonian depends linearly on the controls of the DDR, and the

DDR’s controls are restricted to being between an upper and lower bound. To minimize

the Hamiltonian, the controls need to be as big or as small as possible, depending on the

sign of A and B. When A or B are zero in the Hamiltonian, the Pontryagin’s principle

fails to yield a solution, because the control associated with the term equal to zero is

not defined properly and could take any value. In particular, one can instantaneously

assign to that control the optimal value before the zero crossing. If A or B are different

from zero during any non-zero time interval then the solution is straightforward and

corresponds to a bang-bang control that switches from the largest to the smallest value

whenever A or B change sign.

Theorem C.1. The value of A = −yVx
b +

xVy
b − Vy or B = yVx

b −
xVx
b − Vy inside the

switch functions in Eq. (6.12) is instantaneously zero when the DDR switches controls.
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Proof. To prove that in our game, A or B are non-zero during any non-zero time interval,

we show that if B = 0 then B̊ 6= 0, where B̊ = dB
dτ . And if A = 0 then Å 6= 0. Note that

we are considering retro-time, which means that the time τ is measured starting from

the capture condition. From Lemmas 6.1 and 6.3, if s ∈ [0, π2 ], u1 and u2 are initially

equal to V max
p . From Lemma 6.11, we know that for this case u2 will switch its value

first. This means that B has a zero crossing before A. From Lemma 6.3, we have that

B =
yVx
b
− xVy

b
− Vy (C.1)

From (C.1), we have that

B̊ =
yV̊x
b

+
ẙVx
b
− xV̊y

b
− x̊Vy

b
− V̊y (C.2)

From Lemma 6.6, when u1 and u2 are initially equal to V max
p

V̊x = 0, V̊y = 0

Vx = λ sin s, Vy = λ cos s
(C.3)

where λ is a positive constant value. Substituting (C.3) into (C.2), we obtain

B̊ = ẙλ sin s− x̊λ cos s (C.4)

The corresponding transition equation in retro-time is given by

x̊ = −V max
e sin s

ẙ = −V max
e cos s+ V max

p

(C.5)

Substituting (C.5) into (C.4), and assuming that u1 and u2 are set equal to V max
p when

B = 0, we get that if B = 0 then

B̊ =
V max
p λ sin s

b
(C.6)

From the last expression, we observe that B̊ 6= 0 for s ∈ (0, π2 ]. This means that B

is only zero instantaneously. The case s = 0, corresponds to the singular surface in

Lemma 6.25. For that case, we have proved in Lemma 6.25 that both A and B are

always constant and different from zero.
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The other case, where B has a zero crossing before A, is obtained assuming that s ∈
[π2 , π), where u1 and u2 are initially equal to −V max

p . The procedure to prove it is

analogous to the one described above. If s ∈ (π, 3π
2 ] then u1 and u2 are initially equal

to −V max
p . From Lemma 6.11, we know that for this case u1 will switch its value first.

This means that A will have a zero crossing before B. From Lemma 6.3, we have that

A =
−yVx
b

+
xVy
b
− Vy (C.7)

From (C.7), we have that

Å = −yV̊x
b
− ẙVx

b
+
xV̊y
b

+
x̊Vy
b
− V̊y (C.8)

From Lemma 6.6, when u1 and u2 are initially equal to −V max
p

V̊x = 0, V̊y = 0

Vx = λ sin s, Vy = λ cos s
(C.9)

where λ is a positive constant value. Substituting (C.9) into (C.8), we obtain

Å = −ẙλ sin s+ x̊λ cos s (C.10)

The corresponding transition equation in retro-time is given by

x̊ = −V max
e sin s

ẙ = −V max
e cos s− V max

p

(C.11)

Substituting (C.11) into (C.10), and assuming that u1 and u2 are set equal to −V max
p if

A = 0, we get that if A = 0 then

Å =
V max
p λ sin s

b
(C.12)

From the last expression, we observe that Å 6= 0 for s ∈ (π, 3π
2 ]. This means that A

is only zero instantaneously. The case s = π, corresponds to the singular surface in

Lemma 6.25. For that case, we have proved in Lemma 6.25 that both A and B are

always constant and different to zero. The other case where A has a zero crossing before
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B is obtained assuming that s ∈ [3π
2 , 2π), where u1 and u2 are initially equal to V max

p .

The procedure to prove it is analogous to the one described above.
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