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Dr. Enrique Raúl Villa Diharce, Thesis Coadvisor

The Academic Coordination

Dr. Arturo Hernández Aguirre, Academic Coordinator and Thesis Advisor

Centro de Investigación en Matemáticas
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Abstract
Estimation of Distribution Algorithms based on Copula Functions

by

Rogelio Salinas Gutiérrez
Doctor of Science in Computer Science
Centro de Investigación en Matemáticas

Guanajuato, México, 2011
Dr. Arturo Hernández Aguirre, advisor

Dr. Enrique Raúl Villa Diharce, co-advisor

An important paradigm for solving continuous optimization problems has
been the use of the multivariate normal distribution in Estimation of Distri-
bution Algorithms (EDAs). However, as a consequence, linear dependencies
among variables in the selected population along with marginal and conditional
normal distributions must be assumed. These conditions could not be realistic
for some optimization problems.

This research work presents some novel proposals for modeling the depen-
dence structure of the selected individuals in continuous EDAs. The followed
research approach has been to model the most important dependencies in the
selected population and to estimate their associated parameters in the corre-
sponding multivariate distribution. Contributions of this doctoral dissertation
are, among others, the use of copula entropies for building the graphical model,
the incorporation of a procedure for selecting the most adequate copula function,
and the generalization of some well known EDAs.
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Resumen
Estimation of Distribution Algorithms based on Copula Functions

por

Rogelio Salinas Gutiérrez
Doctor en Ciencias con orientación en Ciencias de la Computación

Centro de Investigación en Matemáticas
Guanajuato, México, 2011

Dr. Arturo Hernández Aguirre, asesor
Dr. Enrique Raúl Villa Diharce, co-asesor

Un paradigma importante para resolver problemas de optimización en do-
minio continuo ha sido el uso de la distribución normal multivariada en los
Algoritmos de Estimación de Distribución (EDAs). Sin embargo, como conse-
cuencia, debe suponerse que las dependencias entre variables de la población
seleccionada son del tipo lineal y que las distribuciones marginales y condi-
cionales son también normales. Estas condiciones podŕıan no ser realistas para
algunos problemas de optimización.

Este trabajo de investigación presenta algunas propuestas nuevas para mo-
delar la estructura de dependencia entre los individuos seleccionados en EDAs
continuos. El enfoque seguido para esta investigación ha sido modelar las depen-
dencias más importantes en la población seleccionada y estimar sus parámetros
asociados en la correspondiente distribución multivariada. Algunas de las con-
tribuciones de esta tesis son el uso de entroṕıas de cópula para construir el mo-
delo gráfico, la incorporación de un procedimiento para seleccionar la función
de cópula más adecuada y la generalización de algunos EDAs bien conocidos.
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Chapter 1

Introduction

Nowadays, the optimization methods have been recognized as important tools
for finding optimal solutions in several fields, such as Computer Science, Statis-
tics, Artificial Intelligence, Operations Research, among others. In general, an
optimization problem can be modeled by a mathematical function. The feasi-
ble set of solutions for an optimization model is represented by a set of decision
variables. The quality of the decision variables is given by a function, commonly
named objective function. The interest in optimization consists of finding the
best possible solution in a reasonable period of time.

The optimization problems have been studied and solved with different pro-
posals. Some of these proposals, named metaheuristics, have been designed for
solving hard optimization problems. Although this kind of algorithms does not
guarantee global optimal, in practice, they usually find good solutions in a rea-
sonable period of time. The Evolutionary Computation (EC) is a subfield of
artificial intelligence that consists of metaheuristic techniques for solving opti-
mization problems. These metaheuristics use principles of Darwin’s theory and
they are also known as Evolutionary Algorithms (EAs). Each iteration in an
EA involves a competitive selection that chooses the best solutions. The so-
lutions with highest fitness are crossed over for creating new solutions. Some
individuals of the new population can be mutated in order to preserve diversity
in the solutions. In this way, the genetic operators cross over and mutation are
used for giving variation to the set of solutions.

Estimation of Distribution Algorithms (EDAs) are a new class of evolution-
ary optimization techniques that employ probabilistic models as a representation
of the relationships between variables in the population. This recent paradigm
in EC does not use genetic operators such as crossover and mutation. The goal
in EDAs is to model the dependencies in the best individuals and transfer them
into the next population. EDAs generate the new population by sampling from
the probabilistic model of promissory individuals. These evolutionary optimiza-
tion techniques have used several probabilistic models. For this reason, there
are a number of EDAs for discrete and continuous domains. Some of these
probabilistic models are based on Bayesian and Markov networks. Other EDAs
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1. Introduction

have used Gaussian assumptions, such as Gaussian kernels, Gaussian mixture
models and the multivariate Gaussian distribution.

Although there have been many applications and studies related to discrete
EDAs, it is interesting to design new EDAs for continuous domains. More
specifically, it is important to design multivariate distributions that represent
satisfactorily dependencies among continuous variables and that are relatively
easy to estimate and to sample.

On the other hand, in different areas such as finance, climate, oceanography,
hydrology, geodesy, and reliability researchers have used probabilistic models
that separate marginal distributions and the dependence structure. This has let
more flexibility for modeling multivariate data, without necessity of restricting
the marginal distributions. The way in which this can be done is by means
of the copula functions. In the last years, copula functions have became an
important option for modeling multivariate data.

This thesis has been developed in the research area of EC, with the aim
of implementing copula functions in continuous EDAs. In the following two
sections we present the motivation as well as the objectives of this work. We
finish this chapter by presenting the related work and the methodology.

1.1 Motivation

One motivation for this research is the fact that EDAs have the capacity of tak-
ing into account explicitly dependencies among variables in optimization prob-
lems. This characteristic, along with the possibility of transferring dependencies
into the next generation of new solutions, have received much attention from the
EC community. An important goal of modeling dependencies among variables
in an EDA is to learn the structure of the optimization problem (Bosman and
Grahl, 2005; Grahl et al., 2006). The learning of the problem structure by means
of a probabilistic model can help ensure an efficient optimization behavior.

Although EDAs have been investigated for discrete and continuous domains,
the works and contributions for continuous domains are mainly based on the
multivariate Gaussian distribution. The assumption of modeling dependencies
under this probabilistic model can not be realistic for some optimization prob-
lems. This observation gives an opportunity, and a motivation, for proposing
new continuous EDAs.

Another motivation is related to the growing use of copula functions for
getting flexible multivariate distributions. This is because of the important
contributions that copula theory has had in many research and application
works, such as finance Cherubini et al. (2004); Trivedi and Zimmer (2007),
climate Schölzel and Friederichs (2008), oceanography De-Waal and Van-Gelder
(2005), hydrology Genest and Favre (2007), geodesy Bacigál and Komorńıková
(2006), and reliability Monjardin (2007).

2



1.2 Objectives

1.2 Objectives

The main goal of this doctoral research is to study the incorporation of copula
functions into continuous EDAs. In particular, the objectives are the following:

General objective

• To investigate the copula theory for incorporating copula functions into
the modeling of dependencies among variables.

Specific objectives

• To study probabilistic models based on copula functions and to implement
them in continuous EDAs.

• To study the methods for estimating copula parameters and the proce-
dures for sampling from copula functions. If required, to propose algo-
rithms for learning copula parameters and sampling from copulas.

• To implement an copula based EDA in a programming language.

• To evaluate the performance of a copula based EDA and compare statis-
tically the results against other EDAs.

1.3 Background and related works

It is known that EDAs models explicitly the dependencies among variables for
solving optimization problems. This capacity is not presented in other EAs
such as the Genetic Algorithm (GA). Some representative works in this direc-
tion are the papers presented by Heinz Mühlenbein (Mühlenbein and Paaß,
1996; Mühlenbein, 1998; Mühlenbein et al., 1999). These studies make an im-
portant contribution for considering a new and promissory class of EAs in the
EC community.

The research in EDAs has been motivated by their capacity of taking into
account the interactions between variables. This source of knowledge has been
called linkage information and was investigated by different authors for extend-
ing simple GAs to process interrelations, i.e., building blocks (see Larrañaga,
2002b). Furthermore, it is possible to make theoretical analysis of the evolutive
proccess in EDAs (González, 2005).

EDAs have become a growing field into the EC community. Nowadays the
works in EDAs are presented in the three most important conferences of EC: Ge-
netic and Evolutionary Computation Conference (GECCO), Congress on Evolu-
tionary Computation (CEC) and Parallel Problem Solving from Nature (PPSN).

3



1. Introduction

According to Höns (2005), the EDA track for the GECCO and CEC appeared
in 2005. The publication of papers in several journals and the publication of
books such as (Larrañaga and Lozano, 2002; Pelikan et al., 2006), the presen-
tation of works in many other conferences, along with other academic activities
like seminars and workshops, give evidence that the research on EDAs is an
active research area in EC. For example, some doctoral dissertations have been
conducted for proposing and studying probabilistic models in discrete (Pelikan,
2002; Soto-Ortiz, 2003; Santana-Hermida, 2004; Shakya, 2006) and continuous
domains (Bosman, 2003). A study about the minimum relative entropy and
EDAs is presented in the doctoral work of Höns (2005). By means of Markov
chains and dynamical systems, a theoretical analysis for univariate EDAs is
done in the doctoral thesis of González (2005). Other doctoral theses apply
EDAs to the graph matching problem (image recognition) (Bengoetxea, 2002),
the optimization of composite laminates (Grosset, 2004), calibration models for
quantitative chemical applications (Mendiburu-Alberro, 2006), and combinato-
rial problems in graphical models (Romero-Asturiano, 2007). An investigation
about the implementation of parallel EDAs is shown in Očenášek (2002).

Nowadays there are several EDAs for optimization problems in discrete and
continuous domains. The EDAs can be classified as univariate, bivariate or
multivariate according to the complexity of their probabilistic model used to
learn the interactions between the variables. The univariate EDAs consider all
the variables as independent, for instance, the Univariate Marginal Distribu-
tion Algorithm (UMDA) (Mühlenbein, 1998; Larrañaga et al., 1999, 2000a), the
Population Based Incremental Learning (PBIL) (Baluja, 1994), and the com-
pact Genetic Algorithm (cGA)(Harik et al., 1998). The bivariate EDAs take
into account dependencies between pairs of variables and a few examples are the
Bivariate Marginal Distribution Algorithm (BMDA) (Pelikan and Mühlenbein,
1999), Mutual Information Maximizing Input Clustering (MIMIC) (De Bonet
et al., 1997; Larrañaga et al., 1999, 2000a), and Dependency-Trees (Baluja and
Davies, 1997). Many univariate and bivariate discrete EDAs have been extended
to continuous domains by using Gaussian probabilistic models.

For multiple dependencies in discrete domain the EDAs have used proba-
bilistic models such as the Polytree Approximation of Distribution Algorithm
(PADA) (Soto et al., 1999), Estimation of Bayesian Network Algorithm (EBNA)
(Etxeberria and Larrañaga, 1999; Larrañaga et al., 2000b) and Bayesian Opti-
mization Algorithm (BOA) (Pelikan et al., 1999).

For real-valued (continuous) multivariate variables the EDAs have used mostly
multivariate Gaussian distributions and some examples are the Estimation of
Multivariate Normal Algorithm (EMNA) (Larrañaga et al., 2001) and Estima-
tion of Gaussian Network Algorithm (EGNA) (Larrañaga et al., 1999, 2000a).
The EDA AMaLGaM (Bosman et al., 2008) and the algorithm CMA-ES (Igel
et al., 2006) are also based on the multivariate Gaussian distribution. Both
algorithms modify the estimated covariance matrix in order to improve the con-
vergence rate towards the optimum. Currently they are the state of the art in
real-valued optimization.

To the best of our knowledge the theses presented by Barba-Moreno (2007)
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and Ardeŕı-Garćıa (2007) are the first attempts to incorporate a multivariate
Gaussian copula function in EDAs. Since then, other related works have been
published. These papers present EDAs based on (1) the Gaussian copula func-
tion (Wang et al., 2009a; Wang and Zeng, 2010), and (2) Archimedean cop-
ula functions with a fixed dependence parameter (Wang et al., 2009b, 2010a,c;
Cuesta-Infante et al., 2010; Wang et al., 2010b). Unlike the previous papers
that use Archimedean copula functions, the works of Flores de la Fuente (2009)
and Gao (2009) present a way of estimating the copula parameter. All these
works, with exception of Flores de la Fuente (2009), only use multivariate copula
functions to model the dependence structure among decision variables and do
not employ graphical models. On the other hand, in (Salinas Gutiérrez et al.,
2009; Salinas-Gutiérrez et al., 2009, 2010c, 2011b), we have proposed the use of
the maximum likelihood method and copula entropies in order to (1) estimate
the copula parameters, and (2) build a graphical model which establishes the
most important dependencies between variables. One recent contribution of our
research work (Salinas-Gutiérrez et al., 2011b,a), it has been the incorporation
of a procedure for selecting the most adequate copula function.

1.4 Methodology

The performance of proposed algorithms will be tested from an empirical per-
spective. The numerical results will be

Metodolog a El desempe o del algoritmo se basa en su habilidad para en-
contrar el valor ptimo: aptitud y tasa de xitos. El desempe o del algoritmo es
estudiado desde una perspectiva emp rica: un algoritmo se ejecuta varias veces
en un conjunto de funciones de prueba. Los datos emp ricos se obtienen de
cada corrida: la mejor aptitud, n mero de evaluaciones de funci n (FE). El uso
de criterios de paro: convergencia local, soluci no ptima encontrada y n mero m
ximo de generaciones o FE. El desempe o de algoritmos se compara por medio
de herramientas estad sticas: prueba de hip tesis y t cnicas bootstrap.

The performance of the proposed algorithms is based their ability for findicng
the optimum in an optimization problemon numerical The ability of an algo-
rithm for finding the optimum will be taken into account In order to evaluate
the performance of the proposed algorithms

1.5 Structure of the thesis

The structure of the thesis is the following: chapter 2 presents a basic review
of EDAs, chapter 3 provides a brief introduction to copula functions, chapter 4
describes the implementation of copula functions in the chain and tree graphical
models and explains the copula selection procedure, chapter 5 presents regular
vines as well as some theoretical connections between the information theory
and the copula functions. Final remarks, contributions and future work are
commented in chapter 6.
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Chapter 2

Estimation of Distribution
Algorithms

A recent paradigm in Evolutionary Computation (EC) that deals with opti-
mization problems is the use of probabilistic models for searching and generat-
ing promissory solutions. Algorithms based on this principle have been called
Estimation of Distribution Algorithms (EDAs), Probabilistic Model Building
Genetic Algorithms (PMBGAs), and also as Iterated Density Estimation Algo-
rithms (IDEAs). In this chapter, we present a general introduction to this well
established class of Evolutionary Algorithms (EAs) along with a brief descrip-
tion of some well known EDAs.

2.1 Introduction

In this dissertation, the class of EAs that employs probabilistic models as a
representation of the relationships among variables is identified as EDAs. Sim-
ilar to Genetic Algorithms (GAs), EDAs are population based. However, this
new class of EAs does not use genetic operators such as crossover and muta-
tion for generating new individuals. Instead, in EDAs, the new individuals are
sampled from a probability distribution. Therefore, the goal in EDAs is to take
into account the dependencies of the best solutions and transfer them into the
next population. A pseudocode for EDAs is shown in Algorithm 1. The use
of the estimated model in step 4 allows one to explicitly take into account the
dependencies between decision variables and their structure. Step 5 shows the
possibility of incorporating the dependencies among the variables into the new
population, which greatly modifies the performance of an EDA.

The main advantage of using probabilistic distributions in evolutionary al-
gorithms is that the interrelations among the variables of a population are ex-
plicitly modeled. Thus, according to step 4 of Algorithm 1, the estimation of a
probabilistic model is an important procedure in EDAs. Therefore, ever since
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2. Estimation of Distribution Algorithms

Algorithm 1 Pseudocode for EDAs

1: Initialize the generation counter t←− 0
Generate the initial population P0 with N individuals at random.

2: Evaluate population Pt using the cost function.
3: Select a subset St from Pt according to the selection method.
4: Estimate a probabilistic model Mt from St.
5: Generate the new population Pt+1 by sampling from the model Mt

Assign t←− t + 1.
6: If stopping criteria are not reached go to step 2.

EDAs were introduced in the field of EC, many researchers have been interested
in proposing and enhancing new probabilistic models.

A number of EDAs have been proposed for optimization problems in discrete
and continuous domains. EDAs can be classified according to the complexity of
their probabilistic model used to learn the interactions between the variables.
The following sections present some of the most representative EDAs for discrete
and continuous search spaces.

2.2 Univariate EDAs

The univariate EDAs assume independence among all the variables. The inde-
pendence assumption reduces the complexity of a joint probabilistic distribution.
Thus, these algorithms do not take into account interactions between variables.
For these EDAs, the joint probabilistic distribution can be estimated as the
product of marginal distributions.

2.2.1 UMDA

The Univariate Marginal Distribution Algorithm (UMDA) was introduced by
Mühlenbein and Paaß (1996) for discrete domains and it is considered as one
of the early works in EDAs. The probabilistic model used by UMDA is the
univariate factorization for binary random variables:

P (X1, . . . , Xd) =

d∏

i=1

P (Xi) (2.1)

where Xi is a binary random variable, Xi ∈ {0, 1}. In order to estimate the
probabilistic model (2.1), the univariate marginal frequencies are calculated.

For continuous domains, the UMDA was adapted by Larrañaga et al. (1999,
2000a). This adaptation is known as Univariate Marginal Distribution Algo-
rithm for continuous domains (UMDAc). Unlike the UMDA, the probabilistic
model for UMDAc identifies the univariate structure in the sense that marginal
densities are selected via hypothesis tests. Once the densities have been identi-
fied, the estimation of the parameters is performed by their maximum likelihood
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2.2 Univariate EDAs

estimates.
In the particular case that all univariate densities are Gaussian distributions,

the UMDAc is called Univariate Marginal Distribution Algorithm for Gaussian
models

(
UMDAG

c

)
.

For both domains, binary and real-valued random variables, the parameters
of the marginal distributions are estimated by the maximum likelihood method.

2.2.2 PBIL

The Population-Based Incremental Learning (PBIL) algorithm was proposed
by Baluja (1994); Baluja and Caruana (1995) for solving optimization problems
in discrete domains. This algorithm uses a probability vector for representing
the population of individuals. At each iteration, individuals are generated by
sampling the probability vector and some of the best individuals are selected.
The selected set of individuals is used to update the probability vector by means
of the following rule:

pi = (1− α)pi + αp(xi), for i = 1, . . . , d (2.2)

where pi represents the probability of 1 for the ith binary random variable
in the solution, p(xi) is the estimated univariate marginal probability for each
variable xi, and α is a learning rate parameter between 0 and 1. The use of an
update rule for the probability vector gives PBIL a memory of previous good
solutions.

Some extensions of PBIL to continuous search spaces are proposed in (Rudlof
and Köppen, 1996; Servet et al., 1997; Sebag and Ducoulombier, 1998). The
algorithm presented in (Sebag and Ducoulombier, 1998), named PBILc, uses a
Gaussian model for the distribution of the population. At each generation, the
mean vector µ is updated from a linear combination of the best two and the
worst individuals in the current population,

µ(t+1) = (1− α) · µ(t) + α ·
(
xbest,1 + xbest,2 − xworst

)
. (2.3)

For the adaptation of the vector of variances, σ, four heuristics are proposed.
One of these proposals calculates the sample variance of the K best current
individuals. The other heuristics are: (1) to use a constant value; (2) to use
a self-adaptive (1, λ) evolution estrategy; (3) to calculate a linear combination
between the previous variance and the current sample variance.

2.2.3 Other univariate EDAs

cGA

The compact Genetic Algorithm (cGA) by Harik, Lobo, and Goldberg (1998)
was proposed for binary representations. Similar to PBIL, the cGA also uses a
probability vector. However, at each generation, the cGA updates the proba-
bility vector by using the best of only two individuals.

9



2. Estimation of Distribution Algorithms

RELEDA

The Reinforcement Learning Estimation of Distribution Algorithm (RELEDA)
by Paul and Iba (2003) uses reinforcement learning and marginal probability
distribution of selected individuals in order to generate a new population of
solutions. The RELEDA was proposed for optimization in discrete domains.

DEUM

The Distribution Estimation Using Markov Random Field (DEUM) by Shakya
(2006) proposes the use of the fitness function to estimate the parameters of
the distribution. This property distinguishes DEUM from other EDAs. Several
variants of DEUM are presented in (Shakya, 2006) by using different techniques
to sample Markov Random Fields.

2.3 Bivariate EDAs

Algorithms in this second category consider only pairwise interactions among
variables. Therefore, unlike univariate EDAs, the construction of a structure
is necessary in order to represent conditional distributions in the probabilistic
model. This class of algorithms has a good performance in problems where
pairwise interaction among variable exists.

2.3.1 MIMIC

The Mutual Information Maximizing Input Clustering (MIMIC) by De Bonet,
Isbell, and Viola (1997) proposes the use of a chain model for representing
bivariate dependencies among variables. The probabilistic model for discrete
domains is the following:

P (x) = P (xα1)P (xα2 |xα1) · · ·P
(
xαd
|xα(d−1)

)
, (2.4)

where x = (x1, . . . , xd) is a vector of variables and α = (α1, . . . , αd) is a
permutation of the integers between 1 and d. At each generation, the MIMIC
estimates the factorization (2.4) by searching for the best permutation between
the variables. A greedy algorithm is used to find a sub-optimal permutation
α. The greedy algorithm is based on the minimization of the Kullback-Leibler
between the full multivariate probability distribution and the proposed chain
model (2.4). Figure 2.1 shows an example of a chain graphical model.

The extension of the MIMIC algorithm to the continuous domain was pro-
posed by Larrañaga, Etxeberria, Lozano, and Peña (1999, 2000a). This adapta-
tion, named MIMICG

c , assumes that the underlying probability model for every
pair of variables is represented by a bivariate Gaussian distribution. The joint
density function is factorized by a chain structure, fitting the model as close
as possible to the empirical data by using one univariate marginal density and
d− 1 pairwise conditional density functions.
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2.3 Bivariate EDAs

X3 X1 X4 X5 X2

P (x1, x2, x3, x4, x5) = P (x3)P (x1|x3) P (x4|x1)P (x5|x4) P (x2|x5)

Figure 2.1: A chain graphical model over five variables.

X4

X2 X5

X1 X3

P (x1, x2, x3, x4, x5) = P (x4)P (x2|x4) P (x5|x4)P (x1|x5) P (x3|x5)

Figure 2.2: A tree graphical model over five variables.

2.3.2 Dependence trees

The Combining Optimizers with Mutual Information Trees by Baluja and Davies
(1997) uses a tree model for representing the pairwise interaction among discrete
variables. The COMIT algorithm employs the following probabilistic model:

P (x) = P (xβ1) P
(
xβ2 |xβp(2)

)
· · ·P

(
xβd
|xβp(d)

)
, (2.5)

where β = (β1, . . . , βd) is a permutation of integers 1, . . . , d, and p(i) maps
numbers 1 < i ≤ d to integers 1 ≤ p(i) < i. It can be noticed that each variable
in the factorization (2.5) is conditioned upon at most one parent. A graphical
example of this probabilistic model can be seen in Figure 2.2.

In COMIT, the factorization (2.5) is estimated by means of an algorithm
by Chow and Liu (1968) that is guaranteed to get the maximum likelihood tree
factorization.

2.3.3 BMDA

The Bivariate Marginal Distribution Algorithm (BMDA) by Pelikan and Mühlenbein
(1999) uses a forest of trees as probabilistic model. The factorization is given
by

P (x) =
∏

r∈R

P (xr)
∏

i∈V \R

P
(
xi|xj(i)

)
, (2.6)

where V denotes the set of d binary variables, R ⊆ V denotes the set of
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X4

X2 X5

X1

X3

P (x1, x2, x3, x4, x5) = P (x4)P (x2|x4)P (x5|x4)P (x1)P (x3|x1)

Figure 2.3: A forest of trees model over five variables.

root variables, and Xj(i) returns the variable connected to the variable Xi and
added before Xi. As can be noticed, the BMDA can have more than one root
variable. Figure 2.3 shows a graphical example of the factorization (2.6) for two
trees over five variables.

In the BMDA, the factorization is built by means of Pearson’s χ2 test on
the dependencies between pairs of variables.

2.4 Multivariate EDAs

Several EDAs have been proposed in the literature considering interaction be-
tween variables of order greater than two to factorize the probability distribu-
tion. The probabilistic model of this class of algorithms is more complex than
the one used by univariate and bivariate EDAs. For this reason, an advantage
is that dependencies between variables can be expressed properly, whereas a
drawback is that the probability model required for some problems can be ex-
cessively complex and, sometimes, computationally infeasible to search through
all possible models.

2.4.1 EcGA

The Extended compact Genetic Algorithm (ECGA) by Harik (1999) is a mul-
tivariate extension of the cGA for binary variables. The ECGA uses a greedy
algorithm for detecting groups of variables. For each group, a multivariate dis-
tribution is estimated. Thus, the probabilistic model used in ECGA is given by
the following factorization

P (x) =
∏

c∈m

P (xc) , (2.7)

where m is the set of disjoint subsets and P (xc) is the multivariate marginal
distribution of the group of variables xc in the subset c. In (Harik, 1999), the
factorization (2.7) is named Marginal Product Models (MPM).

The complexity of the MPM is taken into account for detecting non over-
lapping groups of variables. This complexity metric is based on (1) the sum of
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2.4 Multivariate EDAs

the entropies of the marginal distributions, and (2) the Minimum Description
Length (MDL).

2.4.2 Bayesian factorizations

Bayesian networks have been employed as probabilistic models in EDAs. A
Bayesian network consists of a set of variables and a set of directed edges be-
tween variables. In general, a Bayesian network specifies a unique joint prob-
ability distribution P (X) given by the product of all conditional probability
distributions:

P (X) =
d∏

i=1

P (Xi|pa(Xi)) , (2.8)

where pa(Xi) are the parents of Xi. Some graphical examples of Bayesian
networks are shown in Figures 2.1, 2.2 and 2.3. An important property for
Bayesian networks is that directed cycles are not allowed in its structure.

The following multivariate EDAs employ probabilistic models based on Bayesian
networks. Unlike the bivariate EDAs described in the last section, these algo-
rithms are able to model dependencies among two o more variables.

EBNA

The Estimation of Bayesian Network Algorithms (EBNA) was proposed for dis-
crete domains in the work of Etxeberria and Larrañaga (1999) and Larrañaga,
Etxeberria, Lozano, and Peña (2000b). At each generation, the selected individ-
uals are taken into account for learning the structure of the Bayesian network.
Depending on the method used for learning the structure, the EBNA presents
three different variants: the EBNABIC , the EBNAK2+pen, and the EBNAPC .
These algorithms are respectively based on (1) the Bayesian Information Cri-
terion (BIC), (2) the K2 algorithm with a penalising factor, and (3) the PC
algorithm.

LFDA

Similar to EBNABIC , the Learning Factorized Distribution Algorithm (LFDA)
by Mühlenbein and Mahnig (1999) also uses the BIC metric for building a
Bayesian factorization. However, the main difference is that in the LFDA the
complexity of the structure is controlled by the BIC metric and a restriction on
the maximum number of parents that each variable can have in the Bayesian
network.

BOA

The Bayesian Optimization Algorithm (BOA) by Pelikan, Goldberg, and Cantú-
Paz (1999) uses the Bayesian Dirichlet metric for measure the goodness of each
structure. At each generation, the BOA starts with an empty structure. In
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2. Estimation of Distribution Algorithms

order to reduce the cardinality of the search space, an explicit limit on the
number of parents per variable is used.

PADA

The Polytree Approximation of Distribution Algorithm (PADA) by Soto, Ochoa,
Acid, and de Campos (1999) uses a Bayesian network with a polytree structure
for binary variables. A polytree is a directed graph having a tree for its underly-
ing undirected graph, i.e., there is no more than one undirected path connecting
every pair of variables. For constructing the polytree, conditional dependencies
are detected. A detailed study of PADA is done in (Soto-Ortiz, 2003).

2.4.3 Multivariate Gaussian distributions

For real-valued variables, the multivariate Gaussian distribution has been widely
used as probabilist model. Besides the Gaussian density can be used as a joint
distribution, it is a very flexible model for being employed in kernels, mixture
distributions and Bayesian networks.

EMNA

The Estimation on Multivariate Normal Algorithm (EMNA) by Larrañaga,
Lozano, and Bengoetxea (2001) uses the multivariate Gaussian density for mod-
eling the dependencies among the variables of the selected individuals. The
parameters of the distribution, the vector of means and the covariance matrix,
are estimated by means of the maximum likelihood method.

EGNA

The Estimation of Gaussian Network Algorithm (EGNA) by Larrañaga et al.
(1999, 2000a) uses a multivariate Gaussian density based on a Bayesian network.
A multivariate Gaussian distribution represented by a Bayesian network is called
Gaussian network. The EGNA learns the Gaussian factorization of the selected
individuals in each generation. Once the network is learnt, it is used to sample
new individuals.

2.5 Summary

In this chapter we have presented a brief review of some well known EDAs.
According to the domain of decision variables in an optimization problem, the
EDAs can be classified as discrete or continuous. An important element that
distinguishes EDAs from other EAs is the use of a probabilistic model, which
explicitly expresses the interactions among decision variables. In EDAs, the
learning of a probabilistic model is based on the data provided by the selected
individuals. A general framework for learning a probabilistic model includes the
search of a structure (model selection) and the estimation of parameters (model
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2.5 Summary

fitting). For some EDAs, the structure of the probabilistic model is predefined
and the only requirement is to estimate (1) an ancestral ordering, and (2) the
parameters.

Depending on the domain, several probabilistic models have been incorpo-
rated to EDAs. For example, we have presented in this chapter, multinomial
distributions, multivariate normal distribution, Bayesian and Markov networks.
The learning of the probabilistic model can be based on the use of maximum
likelihood or some heuristic that takes into account the fitness values of the
best individuals. Thus, according to the probabilistic model used, most of the
research on EDAs has been conducted for studying their performance and de-
signing new algorithms.
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Chapter 3

Copula Functions

The copula functions are suitable tools in statistics for modeling dependencies,
not necessarily linear dependence, in several random variables. The copula
theory was introduced by Sklar (1959) to separate the effect of dependence
from the effect of marginal distributions in a joint distribution. Although copula
functions can model linear and nonlinear dependencies, they have been barely
used in computer science applications where nonlinear dependencies are common
and need to be represented. In this chapter, we provide an introduction to the
copula theory and present several copula functions.

3.1 Introduction

Copula functions have been widely used in economics and finance (Cherubini
et al., 2004; Dowd, 2008; Frees and Valdez, 1998; Trivedi and Zimmer, 2007; Ven-
ter et al., 2007). More recently copula functions have been used in other fields
such as climate (Schölzel and Friederichs, 2008), oceanography (De-Waal and
Van-Gelder, 2005), hydrology (Genest and Favre, 2007), geodesy (Bacigál and
Komorńıková, 2006), reliability (Monjardin, 2007), evolutionary computation
(Salinas-Gutiérrez et al., 2009, 2010c, 2011b) and engineering (Grigoriu, 2007).
By using copula theory, a joint distribution can be built with a copula function
and, possibly, several different marginal distributions. Copula theory has been
used also for modeling multivariate distributions in unsupervised learning prob-
lems such as image segmentation (Brunel et al., 2005; Flitti et al., 2005) and
retrieval tasks (Mercier et al., 2007; Sakji-Nsibi and Benazza-Benyahia, 2008;
Stitou et al., 2009). In (Jajuga and Papla, 2006), the bivariate Archimedean
copula functions Ali-Mikhail-Haq, Clayton, Frank and Gumbel are used for un-
supervised classification. These copulas are well defined for two variables but
when extended to three or more variables several complications arise, prevent-
ing their generalization and applicability. Some of these complications are (1)
the copula parameter is the same for all pairs, and (2) it is not possible to
model separately the dependence among all pairs of variables. For the Gaussian
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3. Copula Functions

copula however, there exist a simple “general formula” for any number of vari-
ables. The research works by Salinas-Gutiérrez et al. (2010b,a) introduce the use
of Gaussian copula in supervised classification, and compares an independent
probabilistic classifier with a copula-based probabilistic classifier.

Definition 3.1. A copula function is a joint distribution function of standard
uniform random variables. That is,

C(u1, . . . , ud) = P[U1 ≤ u1, . . . , Ud ≤ ud] ,

where Ui ∼ U(0, 1) for i = 1, . . . , d.

As a consequence of Definition 3.1, the copula density for continuous random
variables can be calculated as:

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud
. (3.1)

The interested reader is referred to (Joe, 1997; Nelsen, 2006; Trivedi and Zim-
mer, 2007) for a more formal definition of copula function. The following result,
known as Sklar’s theorem, gives the relevance and practical utility to copula
functions.

Theorem 3.1 (Sklar). Let F be a d-dimensional distribution function with

marginals F1, F2, . . . , Fd, then there exists a copula C such that for all x in R
d
,

F (x1, x2, . . . , xd) = C(F1(x1), F2(x2), . . . , Fd(xd)) ,

where R denotes the extended real line [−∞,∞]. If F1(x1), F2(x2), . . . , Fd(xd)
are all continuous, then C is unique. Otherwise, C is uniquely determined on
Ran(F1)×Ran(F2)× · · · ×Ran(Fd), where Ran stands for the range.

According to Theorem 3.1 and using the chain rule for differentiating com-
posite functions along with the Equation(3.1), any d-dimensional density f can
be represented as

f(x1, . . . , xd) =
d∏

i=1

fi(xi) · c(F1(x1), . . . , Fd(xd)) , (3.2)

where c is the density of the copula C, and fi(xi) is the marginal density of
variable xi. The Equation (3.2) shows that the dependence structure is modeled
by the copula function. This expression separates any joint density function into
the product of copula density and marginal densities. This contrasts with the
usual way to model multivariate distributions, which suffers from the restriction
that the marginal distributions are usually of the same type. The separation
between marginal distributions and a dependence structure explains the mod-
eling flexibility given by copula functions.

18



3.2 Bivariate copula functions

3.2 Bivariate copula functions

We start the presentation of the copula theory with an example in the two
dimensional case.

Example 3.1. Let f(x, y) = 4xy
[
1 + θ(1− 2x2)(1 − 2y2)

]
be a density func-

tion defined over the square with vertices {(0, 0), (0, 1), (1, 0), (1, 1)}, and where
θ is a real number between -1 and 1. The density and distribution function for
each random variable along with the joint distribution function can be calculated
as follows

f(x) =

∫ 1

0

f(x, y)dy = 2x , (3.3)

F (x) =

∫ x

0

2sds = x2 , (3.4)

f(y) =

∫ 1

0

f(x, y)dx = 2y , (3.5)

F (y) =

∫ y

0

2tdt = y2 , (3.6)

F (x, y) =

∫ y

0

∫ x

0

f(s, t)dsdt = x2y2
[
1 + θ(1 − x2)(1 − y2)

]
. (3.7)

As stated below, it is not difficult to see that variables X and Y are not
independent

f(x) · f(y) = 4xy 6= 4xy
[
1 + θ(1− 2x2)(1 − 2y2)

]
= f(x, y) . (3.8)

The result in (3.8) means that there is a statistical dependence between
variables X and Y . However, from (3.4), (3.6) and (3.7), we can see the fol-
lowing relationship between the joint distribution function and the marginal
distribution functions:

F (x, y) = F (x)F (y) [1 + θ(1− F (x))(1 − F (y))] . (3.9)

Thus, the joint distribution F (x, y) can be seen as a function of the marginal
distributions F (x) and F (y). This is precisely what Sklar’s theorem states for
any distribution function. Theorem 3.1 provides the theoretical basis for the
relationship in (3.9).

Moreover, the joint density f(x, y) can be also seen as a function of the
marginal densities and the marginal distributions:

19



3. Copula Functions

f(x, y) =
∂2F (x, y)

∂x∂y

= f(x)f(y) + θf(x)f(y)(1 − 2F (x))(1 − 2F (y))

= f(x)f(y) [1 + θ(1− 2F (x))(1 − 2F (y))]︸ ︷︷ ︸
dependence function

. (3.10)

The right hand of expression (3.10) shows once again that variables X and
Y are not independent. Nonetheless, the important result in (3.10) is that the
dependence structure of random variables X and Y can be explicitly modeled
by a function. Equations (3.2) and (3.10) can be compared in order to know
the copula density associated to the joint density f(x, y).

To conclude with this example, it can be noted that the parameter θ plays
an important role for describing the association between variables X and Y .
This parameter only appears in the joint functions and does not appear in the
marginal functions. When θ = 0, the dependence function in (3.10) is equal to
one and the variables X and Y are independent. ◭

An explicit expression for the dependence between variables could be useful
for computational and statistical purposes such as inference, modeling, simula-
tion, and measuring the association.

3.2.1 Fréchet-Hoeffding bounds and the product copula

Three important cases of bivariate copula functions are the Fréchet-Hoeffding
lower bound W (u, v), the Fréchet-Hoeffding upper bound M(u, v), and the prod-
uct copula Π(u, v). Fréchet-Hoeffding bounds describe complete negative and
positive dependence, whereas the product copula is related to independent vari-
ables.

The mathematical definition for these copula functions is the following:

W (u, v) = max(u + v − 1, 0) , (3.11)

M(u, v) = min(u, v) , (3.12)

Π(u, v) = uv . (3.13)

In Figure 3.1, the Fréchet-Hoeffding copulas and the product copula are
shown. It can be proven, see Nelsen (2006), that for any copula C,

W (u, v) ≤ C(u, v) ≤M(u, v) , (3.14)

The result in (3.14) explains why the Fréchet-Hoeffding copulas are called
bounds. Moreover, it means that the graph of any copula function is bounded
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Figure 3.1: Graphs and contour diagrams of (a) the Fréchet-Hoeffding lower
bound, (b) the product copula, and (c) the Fréchet-Hoeffding upper bound.

below and above by the graph of the Fréchet-Hoeffding lower bound and the
graph of the Fréchet-Hoeffding upper bound.

The Fréchet-Hoeffding lower bound and the Fréchet-Hoeffding upper bound
are also known as the minimum copula and the maximum copula (Cherubini
et al., 2004). A family of copulas that includes M , Π, and M is called compre-
hensive (Nelsen, 2006).

3.2.2 Some bivariate copulas

Farlie-Gumbel-Morgenstern copula

The Farlie-Gumbel-Morgenstern (FGM) copula can be seen as a slight modifi-
cation of the product copula (3.13). This copula function is defined as follows:

C(u, v) = uv (1 + θ(1− u)(1− v)) . (3.15)

The copula parameter θ in (3.15) takes values in the interval [−1, 1]. It can
be noted that, if θ equals zero, the independence case is considered by the FGM
copula function.

According to expression (3.1), the density function for the FGM copula can
be calculated by differentiating twice the distribution function (3.15)

c(u, v) = 1 + θ(1 − 2u)(1− 2v) . (3.16)
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3. Copula Functions

Figure 3.2 (a) shows the graph of a FGM copula distribution and a FGM
copula density for a negative dependence between variables.

The FGM copula was introduced in Example 3.1. Equations (3.9) and (3.10)
can be compared to the FGM copula distribution (3.15) and the FGM copula
density (3.16), respectively.

Frank copula

The Frank copula is defined by the following expression

C(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
. (3.17)

The dependence parameter θ in (3.17) may take any real value except the
zero. The Frank copula is considered a comprehensive family because the lim-
iting cases θ → ±∞, and θ → 0 include the Fréchet-Hoeffding bounds and the
product copula.

The density function for the Frank copula is given by

c(u, v) =
−θ(e−θ − 1)e−θ(u+v)

((e−θu − 1)(e−θv − 1) + (e−θ − 1))
2 . (3.18)

The Frank copula is mostly appropiate for data that exhibit weak depen-
dence between extreme values and strong dependence between centered values
(Trivedi and Zimmer, 2007). Figure 3.2 (b) shows the graph of a Frank cop-
ula distribution and a Frank copula density for a positive dependence between
variables. The Frank copula belongs to an important class of copulas known as
Archimedean copulas.

Gaussian copula

This copula function is based on the bivariate standard normal distribution and
hence, it does not have a closed form as the previous copula functions. The
Gaussian copula distribution and the Gaussian copula density are given by the
following expressions:

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

e−
1
2 t′Σ−1t

2π|Σ|1/2
dt1dt2 , (3.19)

c(u, v) =
(
1− θ2

)1/2
exp

(
− (x2 + y2 − 2θxy)

2(1− θ2)
+

(x2 + y2)

2

)
, (3.20)

where Σ is a correlation matrix with Σ12 = θ ∈ (−1, 1), Φ is the cumulative
distribution function of the marginal standard normal distribution, x = Φ−1(u),
and y = Φ−1(v). As the copula parameter θ approaches −1 and 1, the Gaussian
copula attains the Fréchet-Hoeffding lower and upper bound, respectively.
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3.2 Bivariate copula functions

Similar to the Frank copula, the Gaussian copula permits negative and posi-
tive dependence between the marginals. Moreover, the Gaussian copula is also a
comprehensive family in the sense that both Fréchet-Hoeffding bounds and the
product copula are included in the range of permissible dependence. However,
unlike the Frank copula, this copula function is appropiate for data that ex-
hibit weak dependence between centered values and strong dependence between
extreme values.

The Gaussian copula is a good example of a copula function defined in
terms of a very well known distribution. Not surprising, the estimation of the
copula parameter θ and the sampling procedure for the Gaussian copula is also
based on the estimation and sampling methods of the bivariate standard normal
distribution.

Figure 3.2 (c) shows the graph of a Gaussian copula distribution and a
Gaussian copula density for a negative dependence between variables. The
Gaussian copula belongs to the class of elliptical copulas.
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(a) (b) (c)

Figure 3.2: Distribution (top) and density (bottom) functions for (a) the FGM
copula with θ = −0.8, (b) the Frank copula with θ = 10, and (c) the Gaussian
copula with θ = −0.8.
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3. Copula Functions

3.2.3 Estimation of the parameter

For parametric bivariate copula functions, Kendall’s correlation rank can be
expressed in terms of the copula parameter (see Nelsen, 2006).

Theorem 3.2. Let X and Y be continuous random variables whose copula is
C. Then the population version of Kendall’s tau for X and Y is given by

τ(X, Y ) = 4

∫ 1

0

∫ 1

0

C(u, v; θ)dC(u, v; θ) − 1 , (3.21)

where u = FX(x) and v = FY (y).

Theorem 3.2 states a relationship between the copula parameter θ and the
measure of association Kendall’s tau. For this reason, given a nonparametric
estimation of Kendall’s tau from data {(xi, yi)}ni=1, the relation (3.21) can be
used for estimating the dependence parameter θ. Moreover, given that Kendall’s
tau is invariant under continuous and increasing transformations, the nonpara-
metric estimation of Kendall’s tau can be also calculated from the transformed
data {(ui, vi)}ni=1, where ui = FX(xi) and vi = FY (yi). However, for this thesis,
the nonparametric estimation of the copula parameter via Kendall’s tau, is only
the initial step for learning such parameter.

The dependence parameter θ of a bivariate copula function can be estimated
using the maximum likelihood method along with the nonparametric estimation
of Kendall’s tau. To do so, the one-dimensional log-likelihood function

ℓ (θ; {(ui, vi)}ni=1) =

n∑

i=1

ln c(ui, vi; θ) , (3.22)

is maximized using as starting point the nonparametric estimation of Kendall’s
tau. In this thesis the copula parameters are estimated via the maximum likeli-
hood method. It has been shown in (Weiß, 2011) that the maximum likelihood
estimator has better properties than other estimators.

3.2.4 Sampling from a copula function

In general, there are several methods for making pseudo-random draws from a
bivariate distribution, for example, the conditional sampling method and other
Monte Carlo methods. In the case of a bivariate copula function these methods
can be also used for generating samples. However, in order to simulate data in
EDAs, a convenient method used in this thesis is the conditional sampling.

For sampling from bivariate copula functions, the Algorithm 2 gives the steps
of simulating variates.

We explain the application of Algorithm 2 in a practical example.

Example 3.2. Consider the simulation of the Frank copula for different values
of the dependence parameter θ. For applying Algorithm 2, it is necessary to
calculate the partial derivative of the Frank copula respect to the variable u:
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3.3 Multivariate copulas

Algorithm 2 Pseudocode for generating samples from a bivariate copula func-
tion
1: Draw two independent random variables (u, t) from an uniform distribution

U(0, 1).

2: Solve t = Cv(v|u; θ) for v, where Cv(v|u; θ) =
∂C

∂u
is the conditional distri-

bution of V given U .
The pair (u, v) is a simulation from the bivariate copula function C(u, v; θ).

∂C

∂u
=

e−θu(e−θv − 1)

(e−θu − 1)(e−θv − 1) + (e−θ − 1)
. (3.23)

Once the conditional distribution of V given U is calculated (3.23), the next
step consists in solving the following equation for v:

t =
e−θu(e−θv − 1)

(e−θu − 1)(e−θv − 1) + (e−θ − 1)
, (3.24)

where t is a number in the interval (0, 1).
The solution for v is given by the expression

v = −1

θ
ln

(
(1− t)e−θu + te−θ

(1− t)e−θu + t

)
. (3.25)

Therefore, a simulation of the Frank copula follows the next steps

1. Draw an observation of the random variable U by sampling from the
uniform distribution U(0, 1). For getting an observation of the random
variable V , it is necessary to have an independent auxiliar sample t from
the uniform distribution U(0, 1).

2. The observation of the random variable V is made by means of the ex-
pression (3.25) and the values of (u, t).

The example is concluded by showing in Figure 3.3 two data sets simulated
from the Frank copula.

◭

A selected number of bivariate copula are presented in the Appendix A.

3.3 Multivariate copulas

Two recognized groups of copula functions in the literature are the elliptical class
and the Archimedean class. Some bivariate copula functions of these classes have
already been introduced in the previous section.
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(a) θ = −15 (b) θ = 10

Figure 3.3: Two samples of 500 points each from the Frank copula function
for (a) a negative dependence, and (b) a positive dependence. All marginal
distributions are uniform.

3.3.1 The Gaussian copula

An important parametric family is the multivariate Gaussian copula. This cop-
ula function along with the multivariate Student’s copula are members of the
elliptical copulas.

Definition 3.2. The copula associated to the multivariate standard normal
distribution is called Gaussian copula.

According to Definition 3.2 and Theorem 3.1, if the d-dimensional distribu-
tion of a random vector (Z1, . . . , Zd) is a joint standard normal distribution,
then the associated Gaussian copula has the following expression:

C(Φ(z1), . . . , Φ(zd); Σ) =

∫ z1

−∞

· · ·
∫ zd

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · · dt1 , (3.26)

or equivalently,

C(u1, . . . , ud; Σ) =

∫ Φ−1(u1)

−∞

· · ·
∫ Φ−1(ud)

−∞

e−
1
2 t′Σ−1t

(2π)(n/2)|Σ|1/2
dtd · · ·dt1 , (3.27)

where Φ is the cumulative distribution function of the marginal standard
normal distribution and Σ is a symmetric matrix with main diagonal of ones.
The elements outside the main diagonal of matrix Σ are the pairwise correlations
ρij between variables Zi and Zj , for i, j = 1, . . . , d and i 6= j. It can be noticed
that a d-dimensional standard normal distribution has mean vector zero and a
correlation matrix Σ with d(d− 1)/2 parameters.
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3.3 Multivariate copulas

The dependence parameters ρij of a d-dimensional Gaussian copula can be
estimated using the maximum likelihood method. To do so, the steps of Algo-
rithm 3 can be followed. Algorithm 3 is based on reference (Cherubini et al.,
2004).

Algorithm 3 Pseudocode for estimating Gaussian copula parameters

1: Transform values of each variable uj by calculating zj = Φ−1(uj), for j =
1, . . . , d, where Φ is the cumulative standard normal distribution function.

2: Build the sample data matrix z = {(z1i, z2i, . . . , zdi)}ni=1.

3: Estimate the correlation matrix Σ̂ using pseudo observations zi =
(z1i, z2i, . . . , zdi) and the formula

Σ̂ =
1

n

n∑

i=1

z′izi .

Due to Equation (3.1), the d-dimensional Gaussian copula density can be
calculated as:

c(Φ(z1), . . . , Φ(zd); Σ) =

1
(2π)(d/2)|Σ|1/2 e−

1
2 z′Σ−1z

∏d
i=1

1
(2π)1/2 e−

1
2 z2

i

=
1

|Σ|1/2
e−

1
2 z′(Σ−1−I)z . (3.28)

Given that a Gaussian copula is also a distribution function, it is possible
to simulate data from it. The main steps are the following: once a correlation
matrix Σ is specified, a data set can be generated from a joint standard normal
distribution. The next step consists of transforming this data set using the
cumulative distribution function Φ. Algorithm 4 and Figure 3.4 illustrate the
sampling procedure for different correlations.

Algorithm 4 Pseudocode for generating data from a Gaussian copula

1: Simulate observations (z1, . . . , zd) from a joint standard normal distribution
with correlation matrix Σ.

2: Calculate ui = Φ(zi) where Φ is the cumulative standard normal distribution
function, for i = 1, . . . , d.

Figure 3.4 (a)-(top) shows a sample drawn from a bivariate standard normal
distribution with correlation ρ = −0.70 (step 1, Algorithm 4). The histogram
on the vertical axis and the histogram on the horizontal axis illustrate that both
marginals are univariate standard normal distributions. This data set is used to
obtain a sample from a Gaussian copula, as shown in Figure 3.4 (a)-(bottom)
(step 2, Algorithm 4). Both histograms illustrate that marginals are uniform,
according to Definition 3.1. In order to appreciate how the correlation parame-

27



3. Copula Functions

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) ρ = −0.70 (b) ρ = 0.90

Figure 3.4: A sample of 500 points from a standard normal distribution (top)
and the corresponding sample for a Gaussian copula (bottom) with (a) a nega-
tive dependence, and (b) a positive dependence. Histograms show the marginal
distribution for each variable.
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3.3 Multivariate copulas

ter modifies the dependence structure, Figure 3.4 (b) shows the corresponding
information with ρ = 0.90.

An important result for parametric bivariate copulas is explained through
Equation (3.21), which relates the dependence parameter θ of a copula and
Kendall’s τ . For a bivariate Gaussian copula, Equation (3.21) can be written as

τ =
2

π
arcsin(ρ) . (3.29)

As a consequence, the data sets in Figure 3.4 (a)-(top,bottom) have the same
concordance value, measured in Kendall’s τ . A similar statement can be said
for Figure 3.4 (b)-(top,bottom).

Given that is well established how to estimate correlation matrices, evaluate
densities, and calculate integrals for the multidimensional normal distribution,
the Gaussian copula function is relatively easy to implement.

3.3.2 Archimedean copulas

Another important class of copulas are the Archimedean copulas. These copulas
are popular because they are easily constructed and are able of capturing wide
ranges of dependence.

The construction of an Archimedean copula is based on the definition of a
generator function ϕ. A function ϕ is called generator if it satisfies the following
conditions

• ϕ(t) : [0, 1]→ [0,∞]

• ϕ is continuous

• ϕ is strictly decreasing, i.e. ϕ′(t) < 0 for all 0 < t < 1

• ϕ is convex, i.e. ϕ′′(t) > 0 for all 0 < t < 1

• ϕ(1) = 0

Any function ϕ that satisfied these properties is capable of generating an
Archimedean copula. The above conditions are necessary for ensuring the exis-
tence of the pseudo-inverse ϕ[−1]. The pseudo-inverse of ϕ is the function given
by

ϕ[−1](t) =

{
ϕ−1(t) 0 ≤ t ≤ ϕ(0)
0 ϕ(0) ≤ t ≤ ∞ (3.30)

It can be noticed that the pseudo-inverse ϕ[−1] is continuous and nonincreas-
ing on [0,∞], and strictly decreasing on [0, ϕ(0)]. Moreover, the composition of
the pseudo-inverse with the generator gives the identity, ϕ[−1] (ϕ(t)) = t.

When the additional condition ϕ(0) =∞ is also satisfied, the pseudo-inverse
of ϕ coincides with the usual inverse ϕ[−1] = ϕ−1, and the function ϕ is said to
be a strict generator.
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3. Copula Functions

The following theorem gives the necessary and sufficient conditions for gen-
erating multivariate Archimedean copulas.

Theorem 3.3. Let ϕ be a continuous, strictly decreasing function from [0, 1] to
[0,∞] such that ϕ(0) = ∞ and ϕ(1) = 0, and let ϕ−1 denote the inverse of ϕ.
If C is the function from [0, 1]d to [0, 1] given by

C(u1, u2, . . . , ud) = ϕ−1(ϕ(u1) + ϕ(u2) + · · ·+ ϕ(ud)) , (3.31)

then C is a multivariate copula for all d ≥ 2 if and only if ϕ−1 is completely
monotonic on [0,∞).

Theorem 3.3 requires a strict generator ϕ and a completely monotonic inverse
ϕ−1 for defining a multivariate Archimedean copula. A function g(t) is called
completely monotonic on an interval I if it is continuous there and has derivatives
of all orders that alternate in sign, i.e.,

(−1)k dk

dtk
g(t) ≥ 0 , (3.32)

for all t in the interior of I and k ∈ {0, 1, 2, . . .}.
We present two multivariate Archimedean copulas.

Frank copula

The generator function and its inverse are given by

ϕ(t) = −ln

(
e−θt − 1

e−θ − 1

)
, (3.33)

ϕ−1(s) = −1

θ
ln
(
1 + e−s(e−θ − 1)

)
, (3.34)

where θ > 0 in order to make ϕ−1(s) completely monotonic. The multivari-
ate Frank copula is given by

C(u1, u2, . . . , ud) = −1

θ
ln

(
1 +

∏d
i=1(e

−θui − 1)

(e−θ − 1)d−1

)
, (3.35)

with θ > 0 when d ≥ 3. For d = 2, θ can also take values less than zero.

Gumbel copula

The generator for the Gumbel copula is given by

ϕ(t) = (−ln(t))θ , (3.36)

and the inverse

ϕ−1(s) = e−s1/θ

. (3.37)
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3.4 Summary

The inverse is completely monotonic if θ > 1. The multivariate Gumbel
copula is therefore

C(u1, u2, . . . , ud) = exp



−
[

d∑

i=1

(−ln ui)
θ

]1/θ


 , (3.38)

with θ > 1 when d ≥ 3. For d = 2, θ can also include the value one.

The two dimensional case

Less constraints of the generator function ϕ are required for defining bivariate
Archimedean copulas.

Theorem 3.4. Let ϕ be a continuous, strictly decreasing function from [0, 1]
to [0,∞] such that ϕ(1) = 0, and let ϕ[−1] be the pseudo-inverse of ϕ defined by
(3.30). Then the function C from [0, 1]2 to [0, 1] given by

C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)) , (3.39)

is a bivariate copula if and only if ϕ is convex.

The proof of Theorem 3.4 can be seen in (Nelsen, 2006). It can be noticed
in Theorem 3.4 that it is not necessary to use a strict generator function ϕ, nor
a completely monotonic inverse ϕ−1.

Some of the copula functions used in this thesis are bivariate Archimedean
copulas. A description of their generator function ϕ is shown in Table 3.1 along
with their relationship with the Fréchet-Hoeffding and the product copulas.

More details about the bivariate copulas in Table 3.1 are presented in the
Appendix A.

3.4 Summary

In this chapter we have shown that the copula theory is related to the study of
dependencies among random variables and that the copula functions are proba-
bility distribution functions. An important characteristic of copula functions is
their theoretical support for modeling any kind of dependence among random
variables. However, for application purposes, the user must be able to select the
adequate copula function according to the information provided by the data.

Methods for estimating the copula parameters have been presented in this
chapter. Furthemore, we have also presented methods for sampling from copula
functions. In this dissertation, the proposed EDAs estimate the copula pa-
rameters by using the maximum likelihood method. The conditional sampling
method is used to simulate new individuals.
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3. Copula Functions

Table 3.1: Bivariate Archimedean copulas.

Generator Range Strict Limiting and
ϕ(t) of θ special cases

Ali-Mikhail-Haq

ln
1− θ(1− t)

t
[−1, 1) yes C0 = Π

Clayton

1

θ

(
t−θ − 1

)
[−1,∞)\{0} θ ≥ 0

C−1 = W
C0 = Π

C∞ = M

Frank

−ln

(
e−θt − 1

e−θ − 1

)
(−∞,∞)\{0} yes

C−∞ = W
C0 = Π

C∞ = M

Gumbel

(−ln(t))
θ [1,∞) yes

C1 = Π
C∞ = M
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Chapter 4

EDAs and Copula
Functions

This chapter presents the incorporation and use of copula functions for modeling
dependencies among continuous variables in Estimation of Distribution Algo-
rithms (EDAs). We show how copula functions can be used along with graphical
models for defining new EDAs. Moreover, this chapter also show how the use
of mutual information in the learning of graphical models implies a natural way
of employing copula functions.

4.1 Introduction

The research on EDAs has been conducted in proposing and enhancing prob-
abilistic models. Most of the probabilistic models used in EDAs for discrete
domains are based on graphical models such as Bayesian and Markov Networks
(De Bonet et al., 1997; Baluja and Davies, 1997; Soto et al., 1999; Pelikan and
Mühlenbein, 1999; Pelikan et al., 1999; Santana-Hermida, 2004; Shakya, 2006).
The discrete EDAs have been widely studied and they have been also used in
several applications. However, for continuous domains, the Gaussian distribu-
tion is the most used assumption over the probabilistic model (Larrañaga et al.,
1999, 2000a, 2001; Bosman, 2003). For this reason, one of the current challenges
for designing new continuous EDAs is finding multivariate models to adequately
represent dependencies among the decision variables.

On the other hand, during the last decade, the copula functions have been
widely used in many applications where nonlinear dependencies arise among
variables. By using copula functions it is possible to separate the effect of
dependence from the effect of marginal distributions in a joint distribution.
However, they have been barely used in computer science applications where
nonlinear dependencies are common and need to be represented.

One motivation for this research has been the possibility of proposing new
EDAs for continuous domains. The copula based EDAs are able, at the same
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4. EDAs and Copula Functions

time, (1) to use flexible marginal distributions, and (2) to model dependencies
among variables. As we have presented in the previous chapter, the copula
theory gives the means for getting such EDAs.

4.2 Copula functions and graphical models

Despite copula functions can model dependencies among all pairwise variables
sometimes it is not clear what multivariate copula function must be chosen.
However, by means of graphical models (Whittaker, 1990; Lauritzen, 1996) it
is possible to model the most important dependencies or associations between
variables. This is the case for a copula function, because a multivariate copula
function is also a probabilistic model. We propose in this thesis to use directed
acyclic graphs in EDAs as graphical models for multivariate copula functions.
Two of these models are illustrated in Figure 4.1 and are based on pairwise
conditional distributions.

Xα1 Xα2 Xα3 Xα4 Xα5

f(x) = f (xα1 ) f (xα2 |xα1 ) f (xα3 |xα2) f (xα4 |xα3) f (xα5 |xα4)

(a)

Xβ1

Xβ2 Xβ3

Xβ4 Xβ5

f(x) = f (xβ1) f (xβ2 |xβ1) f (xβ3 |xβ1) f (xβ4 |xβ3) f (xβ5 |xβ3)

(b)

Figure 4.1: Two joint distributions over five variables represented by (a) a chain
graphical model and (b) a tree graphical model.
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4.2 Copula functions and graphical models

4.2.1 The chain graphical model

A chain graphical model for a d-dimensional continuous random vector X rep-
resents a probabilistic model with the following density:

fchain(x) = f (xα1)

d∏

i=2

f
(
xαi |xα(i−1)

)
, (4.1)

where α = (α1, . . . , αd) is a permutation of the integers between 1 and d.
Figure 4.1 (a) shows an example of a chain graphical model.

In practice the permutation α is unknown and the chain graphical model
must be learnt from data. A way of choosing the permutation α is based on
the Kullback-Leibler divergence. This divergence is an information measure
between two distributions. It is always non-negative for any two distributions,
and is zero if and only if the distributions are identical. Hence, the Kullback-
Leibler divergence can be interpreted as a measure of the dissimilarity of two
distributions. Then, the goal is to choose a permutation α that minimizes the
Kullback-Leibler divergence between the true distribution f(x) of the data set
and the distribution associated to a chain model, fchain(x). In this case the
Kullback-Leibler divergence, DKL, of a continuous random vector X with joint
densities f and fchain is given by:

DKL (f ||fchain) = Ef(x)

[
log

f(x)

fchain(x)

]

= −H(X) + H(Xα1) +

d∑

i=2

H(Xαi |Xα(i−1)
) . (4.2)

The first term in the divergence (4.2) is the entropy of the joint distribution
f(x) and does not depend on the permutation α. The second and third terms are
taken into account for minimizing the Kullback-Leibler divergence. However, it
can be noticed that there is not a direct solution without considering all possible
permutations. For this reason it is necessary to employ a greedy algorithm in
order to find a sub-optimal permutation α.

In the EDA literature, the algorithm that uses a chain graphical model is
the Mutual Information Maximizing Input Clustering (MIMIC). This algorithm
proposes a way to find a permutation in the following way: 1) set as root the
variable with the lowest marginal entropy, and 2) choose the variable whose
conditional entropy with respect to the previous variable is the lowest. The
chain is built by repeating the previous step with the rest of the variables.

The MIMIC algorithm for continuous variables uses bivariate Gaussian dis-
tributions. This assumption gives a direct way of calculating marginal and
conditional entropies, however it can not be realistic for some optimization prob-
lems.

In this work we employ an equivalent expression for minimizing the Kullback-
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Leibler divergence (4.2). It is well known in information theory (Cover and
Thomas, 1991) that the conditional entropy between variables S and T is related
to its mutual information I(S, T ) as follows:

H(T |S) = H(T )− I(S, T ) , (4.3)

where

I(S, T ) = Ef(s,t)

[
log

f(s, t)

f(s) · f(t)

]
.

Substituting conditional entropies in Equation (4.2) by the relation given by
Equation (4.3), the Kullback-Leibler divergence can be written as:

DKL (f ||fchain) = −H(X) +
d∑

k=1

H(Xk)−
d∑

i=2

I(Xαi , Xα(i−1)
) . (4.4)

According to Equation (4.4), minimizing the Kullback-Leibler divergence is
equivalent to maximizing the total sum:

Jchain(X) =
d∑

i=2

I(Xαi , Xα(i−1)
) . (4.5)

A sub-optimal permutation α can be found by taking into account just the
total sum of pairwise mutual information. As we shall show later, the entropy
of the copula function gives a natural way for computing the Equation (4.5).

4.2.2 The tree graphical model

The joint density for a tree graphical model is given by:

ftree(x) = f (xβ1)

d∏

i=2

f
(
xβi |xβp(i)

)
, (4.6)

where β = (β1, . . . , βd) is a permutation of integers 1, . . . , d, and p(i) maps
numbers 1 < i ≤ d to integers 1 ≤ p(i) < i. Each variable in Equation (4.6) is
conditioned upon at most one parent. It can be noticed that the chain graphical
model is a special case of the tree graphical model when p(i) = i − 1. Figure
4.1 (b) shows an example of a tree graphical model.

In a similar way to the learning of a chain graphical model, a tree model
can be learned by minimizing the Kullback-Leibler divergence between the true
density function f(x) and the proposed density function, ftree(x):

DKL (f ||ftree) = −H(X) +

d∑

k=1

H(Xk)−
d∑

i=2

I(Xβi , Xβp(i)
) . (4.7)

The first two terms in Equation (4.7) are entropies and do not depend on the
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tree graphical structure. The third term is the sum of all mutual information
associated to the d−1 tree branches. Therefore, minimizing the Kullback-Leibler
divergence is equivalent to maximizing the total sum:

Jtree(X) =

d∑

i=2

I(Xβi , Xβp(i)
) . (4.8)

The optimization problem (4.8) was presented in (Chow and Liu, 1968) as
the total branch weight and it has been used for the learning of dependence
trees. The optimal tree is the one that produces the highest total sum of mutual
information. Since the amount of mutual information for every pair of nodes
is independent of the rest, Kruskal’s algorithm can be used for maximizing the
summation in Equation (4.8).

4.2.3 Copula entropy and mutual information

By using copula functions, see Equation (3.1), the joint density represented by
a chain model can be written as

fchain(x) = f (xα1 )

d∏

i=2

f
(
xαi |xα(i−1)

)

= f (xα1 )

d∏

i=2

f (xαi) · f
(
xα(i−1)

)
· c
(
uαi , uα(i−1)

)

f
(
xα(i−1)

)

=
d∏

k=1

f (xk)
d∏

i=2

c
(
uαi , uα(i−1)

)
. (4.9)

The above result is very illustrative. From Sklar’s theorem we know that
there is an unique copula function wich models the dependence structure. The
equation (4.9) states that the copula density associated to a chain graphical
model, cchain(u), can be decompose into the product of bivariate copula func-
tions:

cchain(u) =

d∏

i=2

c
(
uαi , uα(i−1)

)
. (4.10)

This is an interesting and practical consequence, because any multivariate
copula function associated to a chain model can be built by employing the
adequate bivariate copula functions.

Moreover, the copula function associated to the chain model can be also
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graphically represented by a chain. To see that,

cchain(u) =

d∏

i=2

c
(
uαi , uα(i−1)

)

=

d∏

i=2

c
(
uαi |uα(i−1)

)
. (4.11)

The previous calculations used the fact that the marginal distributions of a
copula function are uniform distributions. It can be noted that Equation (4.11)
is similar to Equation (4.1).

For the case of a tree model it is not difficult to see the following:

ftree(x) = ctree(u)

d∏

k=1

f (xk) , (4.12)

where

ctree(u) =
d∏

i=2

c
(
uβi , uβp(i)

)
. (4.13)

The result in Equation 4.13 states that the copula function associated to
a joint distribution with a tree graphical model is also represented by a tree.
Figure 4.2 illustrates the results given by Equations (4.9) to (4.13) for a joint
distribution with five variables.

Next, we discuss how the learning of a chain model or a tree model for the
random vector X is related to the entropy of a copula function. We have seen
that picking the sub optimal permutation for a chain model and the optimal
permutation for a tree model depends on the total sum of pairwise mutual
information, Equations (4.5) and (4.8).

In this thesis we propose the use of the following relationship, presented in
(Davy and Doucet, 2003), between the mutual information of variables (S, T )
and the entropy of their associated copula function:

I(S, T ) = −H(U, V ) , (4.14)

where copula variables (U, V ) are related to variables (S, T ) by their marginal
distribution function, i.e., u = FS(s) and v = FT (t).

Therefore, the Equation (4.5) can be written as:

Jchain(X) = −
d∑

i=2

H(Uαi , Uα(i−1)
) . (4.15)

A consequence of Equation (4.15) is that a sub optimal permutation α for
a chain model can be learned by using the sum of bivariate copula entropies in-
stead of the sum of pairwise mutual information. This can be taken into account
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Uα1 Uα2 Uα3 Uα4 Uα5

Xα1 Xα2 Xα3 Xα4 Xα5

f(x) = c (uα1 , uα2) c (uα2 , uα3) c (uα3 , uα4) c (uα4 , uα5)
∏5

k=1 f (xk)

(a)

Uβ1

Uβ2

Xβ2

Xβ1 Uβ3

Uβ4

Xβ4

Xβ3 Uβ5

Xβ5

f(x) = c (uβ1, uβ2) c (uβ1 , uβ3) c (uβ3 , uβ4) c (uβ3 , uβ5)
∏5

k=1 f (xk)

(b)

Figure 4.2: Two joint distributions with their associated copula function over
five variables represented by (a) a chain graphical model and (b) a tree graphical
model.
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for proposing a new greedy algorithm for the MIMIC with copula functions. For
instance, 1) choosing the two variables with the lowest copula entropy and set
them the first elements in the chain, and 2) new chain links can be added to
the chain by selecting variables with the lowest copula entropy according to the
variables in the ends of the chain. This is shown in Algorithm 5.

Algorithm 5 Greedy algorithm to pick a permutation α in a chain model

1: Choose (αm, αm+1) = argminj 6=k Ĥ(Uj , Uk), where Ĥ() is an estimation of
the copula entropy between the variables uj = FXj (xj) and uk = FXk

(xk).
2: Choose variables with the lowest copula entropy with respect to any of the

ends of the chain. The constraint is to avoid a circular chain.
3: The order of the chain defines permutation α.

For a tree graphical model is also possible to use the sum of pairwise mutual
information for learning the optimal permutation β. This can be done by also
using Kruskal’s algorithm because the pairwise mutual information are replaced
by the estimated copula entropies.

The relationship between the entropy of a bivariate copula function and
the marginal mutual information of two variables, Equation (4.14), has both
theoretical and practical importance: 1) the mutual information is given by
the copula function regardless the marginal distributions, and 2) the estimation
of the copula entropy can be more accurate than the estimation of mutual
information because the copula domain is always bounded and standardized.

In this work the mutual information is estimated by using a Monte Carlo
simulation. Algorithm 6 illustrates the sampling procedure for estimating the
entropy of a bivariate copula function.

Algorithm 6 Monte Carlo method for estimating the copula entropy

1: Simulate several random samples {(ui, vi)}mi=1 from the copula distribution
c(u, v) with dependence parameter θ.

2: Calculate

Ĥ(U, V ) = − 1

m

m∑

i=1

log c(ui, vi; θ) .

The quantity Ĥ(U, V ) is an estimation of the copula entropy H(U, V ).

4.2.4 Sampling from Bayesian networks

Once the structure of a Bayesian network is known, a sample can be gener-
ated by following the order established by the conditional dependencies. The
common choice for sampling from EDAs is the Probabilistic Logic Sampling
(PLS) method (Henrion, 1988). In this algorithm, given an ancestral ordering
π = (π1, . . . , πd), a variable Xπi is sampled after all its parents pa(Xπi) have
already been sampled. Algorithm 7 shows a pseudocode of the PLS.
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Algorithm 7 Pseudocode of the PLS

1: Let π = (π1, . . . , πd) be an ancestral ordering of the variables.
2: for i = 1→ N do
3: for j = 1→ d do
4: Sample a value xπj for the variable Xπj using the conditional distribu-

tion f
(
xπj |pa(xπj )

)
, where pa(xπj) is the configuration already sam-

pled for the parents of Xπj .
5: end for
6: end for

In order to use the PLS, variables must be ordered in such a way that the
values for parents pa(Xπi) must be assigned before Xπi is sampled. An ordering
of the variables satisfying such a property is called an ancestral ordering. For
the graphical models presented in this section, the ancestral ordering is given
when the permutation of indexes is found.

Some excellent references about PLS are (Jensen and Nielsen, 2007) and
(Neapolitan, 2004). The reference (Larrañaga, 2002a) presents other methods
for the simulation of Bayesian networks.

4.3 Our proposed EDAs

Our research has been conducted for designing new continuous EDAs. These
EDAs are described below.

4.3.1 Incorporating copula functions

In (Salinas Gutiérrez et al., 2009; Salinas-Gutiérrez et al., 2009) we have pre-
sented an EDA based on a chain graphical model and bivariate copula functions.
Every chain link in the graphical model represents the dependence between two
decision variables. A bivariate copula function is used for modeling such de-
pendence. The relationship between the mutual information and the bivariate
copula entropy (Davy and Doucet, 2003) is used for measuring the dependence
between variables. The probabilistic model used in this subsection can be seen
as a generalization of the well known EDA MIMICG

c (Larrañaga et al., 1999,
2000a). In this work, for the first time, the estimation of copula parameters by
means of the maximum likelihood function is presented.

Description of the Chain Frank

Beta
EDA and the Chain Gaussian

Beta
EDA

The EDAs presented in (Salinas-Gutiérrez et al., 2009) use a chain graphical
model and two different dependence functions: a Frank copula and a Gaus-
sian copula. These copulas are chosen because their dependence parameter
have associated all range values of Kendall’s tau. This means that negative
and positive dependence between the marginals are considered in both copulas.
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However, they differ in the way they model extreme and centered values (Trivedi
and Zimmer, 2007). For instance, a Frank copula is mostly appropiate for data
that exhibit weak dependence between extreme values and strong dependence
between centered values.

In order to build the chain graphical model and according to Equation (4.14),
the copula entropy between each pair of variables is calculated for estimating
the mutual information. Then, the pair of variables with the largest mutual
information are selected as the first chain link. The following variables (chain
links) are chosen according to their mutual information with respect to the
previous variable. Algorithm 8 shows a straightforward greedy algorithm for
building the chain graphical model.

Algorithm 8 Greedy algorithm to pick a permutation α

1: Choose (α1, α2) = arg minj 6=k Ĥ(Uj , Uk), where Ĥ() is an estimation of the
copula entropy between the variables uj = FXj (xj) and uk = FXk

(xk).

2: Choose αk = arg maxj Ĥ(Uαk−1
, Uj), where j 6= α1, . . . , αk−1 and

k = 3, 4, . . . , d− 1, d.

For a Gaussian copula there is a direct way to calculate its entropy and
mutual information; for a Frank copula its entropy is estimated with a numerical
approximation (Algorithm 6).

Once a permutation α is found, generating samples follows the steps of
Algorithm 7. In order to do it, we first sample variable Uα1 ∼ U(0, 1) and then
we sample variables Uαk

∼ C(Uαk
|Uαk−1

= uαk−1
) from the conditional copula

of Uαk
given the value of Uαk−1

for k = 2, . . . , d. After that, the values of Ui

are used to find quantiles Xi through expression Xi = F−1
Xi

(Ui).

It is important to say that, by means of the copula theory, the MIMICG
c is

a particular copula based EDA with Gaussian copulas and Gaussian marginal
distributions.

For the proposed EDAs, Beta distributions are used as marginal distribu-
tions. In order to estimate the parameters of the probabilistic model, Equation
(4.9), we use the Inference Function for Margins method (IFM) (Cherubini et al.,
2004). This method is based on maximum likelihood and estimates first the pa-
rameters of marginal distributions and then use them to estimate parameters of
copulas. The test problems used in this subsection have bounded search space.
Each value of variable Xi from search space is transformed to a value in (0, 1)
through a linear transformation. This explains why we use Beta distributions
as marginals.

We summarize in Algorithm 9 the proposed approach. The main aspects,
such as the estimation of the probabilistic model and the generation of the new
population, are also shown.
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Algorithm 9 Pseudocode for estimating the model and generating a new pop-
ulation
1: for j = 1→ d do
2: For each variable Xj , estimate its marginal Beta parameters (aj , bj).
3: Determine Uj = Fj(Xj ; aj , bj), where Fj is the cumulative Beta distribu-

tion function.
4: end for
5: Calculate all pairwise concordance measures Kendall’s tau.
6: Obtain an initial approximation to each bivariate dependence parameter

using the corresponding relationship with Kendall’s tau (Appendix A).
7: Estimate copula parameters using their initial approximations and the max-

imum likelihood method.
8: Calculate all pairwise copula entropies. For Frank copulas use Algorithm 6,

for Gaussian copulas use Equation (5.12).
9: Use a greedy algorithm to pick a permutation α, Algorithm 8.

10: Simulate Uα1 from the uniform distribution U(0, 1).
11: for k = 2→ d do
12: Simulate Uαk

from conditional copula C(Uαk
|Uαk−1

).
13: end for
14: for j = 1→ d do
15: Determine Xj using quasi-inverse F−1

j (Uj).
16: end for

Experiments

We use three algorithms in order to optimize five test problems. One of these
algorithms is MIMICG

c , the other two algorithms are the proposed EDAs. They
are represented by the following notation:

• Chain Frank
Beta : A chain graphical model with bivariate Frank copula func-

tions and Beta marginal distributions.

• Chain Gaussian
Beta : A chain graphical model with bivariate Gaussian copula

functions and Beta marginal distributions.

The test problems used in the experiments are the Ackley, Griewangk, Ras-
trigin, Rosenbrock, and Sphere functions. These test functions are described in
Appendix B. We use test problems in 10 dimensions. Each algorithm is run 30
times for each problem. The population size is 100. The maximum number of
evaluations is 300,000. However, when convergence to a local minimum is de-
tected the run is stopped. Any improvement less than 1× 10−6 in 25 iterations
is considered as convergence. The goal is to reach the optimum with an error
less than 1× 10−6.
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Numerical results

In Table 4.1 we report the fitness value reached by the algorithms in all test
functions. The information about the number of evaluations required by each
algorithm is reported in Table 4.2.

Table 4.1: Descriptive fitness results for all test functions.

Algorithm Best Median Mean Worst Std. deviation

Ackley

MIMICG
c 6.47E-007 8.65E-007 8.62E-007 9.97E-007 1.06E-007

Chain Frank
Beta 5.79E-007 2.29E-006 3.06E-003 4.71E-002 9.31E-003

Chain Gaussian
Beta 5.62E-007 9.07E-007 3.64E-006 7.80E-005 1.41E-005

Griewangk

MIMICG
c 3.92E-007 8.66E-007 1.30E-003 3.88E-002 7.09E-003

Chain Frank
Beta 4.30E-007 9.38E-007 2.99E-003 2.90E-002 6.81E-003

Chain Gaussian
Beta 1.46E-007 8.11E-007 1.81E-002 4.31E-001 7.85E-002

Rastrigin

MIMICG
c 4.17E-007 9.96E-001 3.37E+000 2.33E+001 6.24E+000

Chain Frank
Beta 2.21E+000 4.99E+000 8.05E+000 3.69E+001 9.43E+000

Chain Gaussian
Beta 7.49E-007 4.00E+000 5.48E+000 2.68E+001 5.35E+000

Rosenbrock

MIMICG
c 7.31E+000 8.03E+000 8.89E+000 2.43E+001 3.17E+000

Chain Frank
Beta 6.87E+000 7.83E+000 7.95E+000 9.69E+000 6.44E-001

Chain Gaussian
Beta 6.26E+000 8.15E+000 8.53E+000 1.48E+001 1.78E+000

Sphere

MIMICG
c 3.55E-007 7.00E-007 7.10E-007 9.86E-007 2.02E-007

Chain Frank
Beta 3.39E-007 7.40E-007 3.03E-001 8.23E+000 1.50E+000

Chain Gaussian
Beta 3.42E-007 8.92E-007 4.85E-001 1.22E+001 2.23E+000

To properly compare the performance of the algorithms (using the optimum
value reached), we conducted a hypothesis test for comparing the fitness aver-
ages. For all optimization problems, the test is applied to each pair of algorithms
and is based on a Bootstrap method. Table 4.3 shows the confidence interval
for the means, and the corresponding p-value.

Discussion

For the Ackley problem, intervals confidence show significant differences between
MIMICG

c and Gaussian copula against Frank copula. This means that a depen-
dence structure based on Gaussian copula is more adequate than a dependence
structure based on Frank copula.

For the Griewangk problem, the algorithm that shows the best behaviour
is MIMICG

c , closely followed by Frank copula algorithm. In this case, interval
confidence between MIMICG

c and Gaussian copula shows that better results are
obtained using both Gaussian dependence structure and marginals.
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Table 4.2: Descriptive results for function evaluations in all test functions.

Algorithm Mean Std. deviation

Ackley

MIMICG
c 7660.30 131.24

Chain Frank
Beta 9310.30 1761.88

Chain Gaussian
Beta 7657.00 675.63

Griewangk

MIMICG
c 6927.70 1581.97

Chain Frank
Beta 8343.40 2460.13

Chain Gaussian
Beta 7835.20 2825.34

Rastrigin

MIMICG
c 11788.60 3146.69

Chain Frank
Beta 17055.40 5262.08

Chain Gaussian
Beta 15408.70 4511.01

Rosenbrock

MIMICG
c 12841.30 2665.61

Chain Frank
Beta 14280.10 1355.85

Chain Gaussian
Beta 14016.10 1666.29

Sphere

MIMICG
c 6175.30 154.87

Chain Frank
Beta 7069.60 2829.51

Chain Gaussian
Beta 7874.80 3144.74

The MIMICG
c is the algorithm that performed best for the Rastrigin problem.

For this problem there is statistically significant difference in the mean fitness
between the MIMICG

c and the Frank copula algorithms. Although results of
Frank copula algorithm are not statistically different of Gaussian copula, is
more suitable for this problem to choose a Gaussian structure than a Frank
dependence. Respect to marginals distributions we can say something similar
between Gaussian copula algorithm and MIMICG

c in the sense that is more
adequate to choose Gaussian marginals than Beta marginals.

For the Rosenbrock problem, the intervals confidence shows statistical dif-
ferences between MIMICG

c and Gaussian copula against Frank copula. In this
case, a Frank dependence between marginals is more adecuate than a Gaussian
strucuture between marginals. Fitness results between MIMICG

c and Gaussian
copula algorithm show no difference between Gaussian or Beta marginals if
structure dependence is modeled by a Gaussian copula.

Finally, the fitness results for Sphere problem indicate that MIMICG
c ob-

tained the global minimum in all the executions. The selection of Gaussian
structure and Gaussian marginals is more adecuate for this problem.

Regarding the number of fitness function evaluations, Table 4.2, the three
algorithms performed in a similar way.
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Table 4.3: Results for the difference between fitness means in each problem.
A 95% interval confidence and a p-value are obtained through a Bootstrap
technique.

Compared algorithms 95% Interval p-value

Ackley

MIMICG
c vs. Chain Frank

Beta -6.15E-03 -7.37E-04 8.13E-02

MIMICG
c vs. Chain Gaussian

Beta -7.89E-06 1.69E-08 1.94E-01

Chain Frank
Beta vs. Chain Gaussian

Beta 7.28E-04 6.14E-03 8.17E-02

Griewangk

MIMICG
c vs.Chain Frank

Beta -4.47E-03 1.29E-03 3.26E-01

MIMICG
c vs. Chain Gaussian

Beta -4.50E-02 -4.33E-04 1.62E-01

Chain Frank
Beta vs. Chain Gaussian

Beta -4.34E-02 1.37E-03 2.60E-01

Rastrigin

MIMICG
c vs. Chain Frank

Beta -8.11E+00 -1.48E+00 2.48E-02

MIMICG
c vs. Chain Gaussian

Beta -4.49E+00 3.20E-01 1.60E-01

Chain Frank
Beta vs. Chain Gaussian

Beta -5.09E-01 5.87E+00 1.89E-01

Rosenbrock

MIMICG
c vs. Chain Frank

Beta 1.34E-01 2.01E+00 1.12E-01

MIMICG
c vs. Chain Gaussian

Beta -6.13E-01 1.50E+00 5.68E-01

Chain Frank
Beta vs. Chain Gaussian

Beta -1.18E+00 -6.44E-02 9.48E-02

Sphere

MIMICG
c vs. Chain Frank

Beta -8.51E-01 -1.16E-03 1.45E-01

MIMICG
c vs. Chain Gaussian

Beta -1.28E+00 -1.72E-02 1.42E-01

Chain Frank
Beta vs. Chain Gaussian

Beta -9.84E-01 5.46E-01 6.80E-01

Conclusions

In this subsection we have introduced the use of bivariate copula functions
for solving high dimensional optimization problems in EDAs. According to
numerical experiments, the selection of the copula function for modeling the
structure dependence and the selection of the marginal distribution can help
achieving better fitness results. For each algorithm, we have fixed a copula
family and a particular marginal distribution. However, it is not necessary to
do it. We state that fitness results are a consequence of the selected copula
functions and marginal distributions.

The three algorithms performed very similar, however, more experiments
are necessary with different probabilistic models in order to identify where the
copula functions mean a clear advantage to EDAs.

4.3.2 Incorporating a copula selection procedure

The previous works consider the use of a fixed copula function. Based on this
observation, the works (Salinas-Gutiérrez et al., 2011b,a) are a recent contribu-
tion for selecting copula functions. A tree graphical model is employed in this
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subsection. A copula function is selected for modeling the dependence between
variables in each tree branch. The copula function is selected from a set of six
bivariate copula functions and it is selected according to the likelihood function.

Description of the Chain Select

Kernel
EDA and the Tree Select

Kernel
EDA

As already described in section 4.2, it has been explained how to incorporate
copula functions for modeling bivariate dependencies in tree branches and chain
links. However, in order to gain modeling flexibility, it is not necessary that all
chain links or tree branches are modeled by the same family of copula functions.
In this thesis we propose a procedure for selecting copula functions in EDAs.

Two well known tools in statistics for model selection are the Akaike in-
formation criterion (AIC) and the Bayesian information criterion (BIC). These
criteria employ the maximized value of the likelihood function (Lmax) for the
estimated model, the number of parameters to be estimated (k) and the sample
size (n):

AIC = −2 ln(Lmax) + 2k (4.16)

BIC = −2 ln(Lmax) + k ln(n) . (4.17)

For a particular chain link or tree branch, the selection of a bivariate copula
function from Appendix A can be done just by means of any of the criteria
in Equations (4.16) and (4.17). However, in each generation of an EDA, the
selected population has a fixed size. Moreover, the bivariate copula functions
from Appendix A have one parameter. Hence, it can be noted that for any of
the criteria AIC and BIC, the selection of a copula function just depends on
the maximized value of the likelihood function, Lmax. For that reason in this
research work we propose a copula selection procedure based on the highest
value of the log-likelihood function (Equation (3.22)).

In this thesis we assess the performance of two EDAs based on the chain and
the tree graphical models. Both EDAs select the copula function for each chain
link and tree branch. This modeling flexibility is not present in others EDAs
based on copula functions, where just one copula function is previously chosen
and used for modeling the dependence structure.

Experiments

In order to investigate the performance of the proposed EDAs, a benchmark of
eleven functions for continuous optimization is utilized in the experiments. The
conducted comparisons are made for contrasting the proposed algorithms with
EDAs based on Gaussian distributions. Thus, we employ in the experiments
four EDAs represented by the following notation

• Chain Gaussian
Gaussian : A chain graphical model with Gaussian copula functions

and Gaussian marginals.
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• Chain Select
Kernel : A chain graphical model with the copula selection procedure

and Gaussian kernels as marginals.

• Tree Gaussian
Gaussian : A tree graphical model with Gaussian copula functions and

Gaussian marginals.

• Tree Select
Kernel : A tree graphical model with the copula selection procedure

and Gaussian kernels as marginals.

Six copula functions are available to choose from Appendix A. These copula
functions have appeared frequently in the literature and have been used in a
broad range of applications. For instance, the Ali-Mikhail-Haq, Clayton, Farlie-
Gumbel-Morgenstern, Frank and Gaussian copula functions can model negative
and positive dependences between the marginals. One exception is the Gumbel
copula which does not model negative dependence. The Ali-Mikhail-Haq and
Farlie-Gumbel-Morgenstern copula functions are adequate for marginals with
modest dependence. When dependence is strong between extremes values, the
Clayton and Gumbel copula functions can model left and right tail association
respectively. Frank copula is appropiate for data that exhibit weak dependence
between extreme values and strong dependence between centered values, while
Gaussian copula is adequate for data that exhibit weak dependence between
centered values and strong dependence between extreme values.

Appendix B shows the description of the test functions to be minimized:
Ackley, Cigar, Cigar Tablet, Ellipsoid, Griewangk, Rastrigin, Schwefel 1.2,
Sphere Model, Trid, Two Axes, and Zakharov. The benchmark test suite in-
cludes separable functions and non-separable functions, from which there are
unimodal and multimodal functions. In addition, the search domains are sym-
metric and asymmetric. All test functions are scalable.

We use test problems in 4, 8, 10, 12 and 16 dimensions. Each EDA is run 20
times for each problem. The population size is ten times the problem dimension.
The maximum number of evaluations is 100,000. However, when convergence
to a local minimum is detected the run is stopped. Any improvement less than
1 × 10−6 in 30 iterations is considered as premature convergence. The goal is
to reach the optimum with an error less than 1× 10−4.

Numerical results

The results in dimensions 4, 8, and 16 for separable functions are reported
in Table 4.4, whereas the results for non-separable functions are reported in
Table 4.5. Tables 4.4 and 4.5 report descriptive statistics for the fitness values
reached in all the runs. For each algorithmn and dimension, the minimum,
median, mean, maximum, standard deviation and success rate are shown. The
minimum (maximum) value reached is labelled best (worst). The success rate
is the proportion of runs in which an algorithm found the global optimum.
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Table 4.4: Descriptive results of the fitness for separable functions.

Algorithm Dimension Best Median Mean Worst
Standard Success
deviation rate

Cigar

Chain Gaussian
Gaussian

d = 4 2.05E-5 7.70E-5 2.08E-1 2.89E+0 6.65E-1 0.70
d = 8 2.21E-5 8.32E-5 3.00E-1 4.36E+0 9.91E-1 0.80

d = 16 3.56E-5 6.95E-5 1.04E-2 2.01E-1 4.49E-2 0.90

Chain Select
Kernel

d = 4 1.47E-5 8.00E-5 3.49E+0 6.98E+1 1.56E+1 0.80 +
d = 8 3.85E-5 7.14E-5 7.00E-5 * 9.98E-5 1.76E-5 1.00 +

d = 16 3.70E-5 7.95E-5 7.58E-5 9.88E-5 1.72E-5 1.00 +

Tree Gaussian
Gaussian

d = 4 1.26E-5 7.61E-5 1.13E+0 8.64E+0 2.70E+0 0.75
d = 8 3.19E-5 7.80E-5 1.88E-2 2.70E-1 6.24E-2 0.80

d = 16 3.22E-5 9.03E-5 2.71E-1 3.33E+0 7.63E-1 0.70

Tree Select
Kernel

d = 4 7.20E-6 8.55E-5 1.60E+3 3.18E+4 7.10E+3 0.65
d = 8 1.79E-5 7.42E-5 8.99E-4 * 1.66E-2 3.70E-3 0.95 +

d = 16 4.74E-5 7.85E-5 7.74E-5 * 9.57E-5 1.43E-5 1.00 +

Cigar Tablet

Chain Gaussian
Gaussian

d = 4 1.50E-5 7.04E-5 4.43E+2 8.84E+3 1.98E+3 0.70
d = 8 3.26E-5 8.18E-5 4.86E-1 5.31E+0 1.39E+0 0.80

d = 16 2.87E-5 7.15E-5 6.92E-5 9.99E-5 1.86E-5 1.00

Chain Select
Kernel

d = 4 1.81E-5 6.67E-5 3.49E+1 6.25E+2 1.40E+2 0.70
d = 8 4.51E-5 7.72E-5 7.50E-5 * 9.95E-5 1.92E-5 1.00 +

d = 16 4.47E-5 8.10E-5 7.86E-5 9.65E-5 1.59E-5 1.00

Tree Gaussian
Gaussian

d = 4 6.93E-6 9.40E-5 3.85E+0 5.08E+1 1.16E+1 0.55
d = 8 3.28E-5 7.09E-5 7.45E+2 1.49E+4 3.33E+3 0.95

d = 16 4.63E-5 8.38E-5 5.12E-1 1.02E+1 2.29E+0 0.90

Tree Select
Kernel

d = 4 1.55E-5 9.27E-5 1.65E+0 1.38E+1 3.86E+0 0.55
d = 8 3.82E-5 7.74E-5 6.98E-5 9.01E-5 1.70E-5 1.00 +

d = 16 5.94E-5 8.49E-5 8.14E-5 9.97E-5 1.36E-5 1.00 +

Ellipsoid

Chain Gaussian
Gaussian

d = 4 2.19E-5 6.72E-5 9.78E+0 1.95E+2 4.36E+1 0.85
d = 8 2.49E-5 6.26E-5 3.24E+0 6.34E+1 1.42E+1 0.70

d = 16 5.20E-5 8.49E-5 2.26E+1 2.57E+2 6.83E+1 0.75

Chain Select
Kernel

d = 4 2.28E-5 8.41E-5 5.43E-1 8.40E+0 1.90E+0 0.75
d = 8 2.30E-5 7.00E-5 6.65E-5 * 9.53E-5 1.96E-5 1.00 +

d = 16 4.87E-5 8.34E-5 7.95E-5 * 9.78E-5 1.59E-5 1.00 +

Tree Gaussian
Gaussian

d = 4 1.44E-5 7.82E-5 4.25E+1 8.41E+2 1.88E+2 0.65
d = 8 4.54E-5 7.69E-5 1.08E-1 1.21E+0 3.29E-1 0.80

d = 16 3.88E-5 9.33E-5 4.29E-1 3.33E+0 9.40E-1 0.55

Tree Select
Kernel

d = 4 1.26E-5 6.79E-5 6.19E-2 * 6.76E-1 1.85E-1 0.80 +
d = 8 3.86E-5 7.68E-5 7.51E-5 * 9.76E-5 1.66E-5 1.00 +

d = 16 4.32E-5 8.27E-5 7.93E-5 ** 9.95E-5 1.62E-5 1.00 +

Rastrigin

Chain Gaussian
Gaussian

d = 4 3.83E-5 2.39E+0 2.31E+0 4.73E+0 1.56E+0 0.10
d = 8 1.10E+1 2.04E+1 2.02E+1 2.77E+1 4.40E+0 0.00

d = 16 5.74E+1 7.40E+1 7.41E+1 8.64E+1 8.65E+0 0.00

Chain Select
Kernel

d = 4 3.20E-6 7.82E-5 9.75E-1 ** 8.55E+0 2.28E+0 0.75 +
d = 8 3.97E-5 1.55E+1 1.38E+1 ** 2.89E+1 1.07E+1 0.15 +

d = 16 5.18E+1 7.42E+1 7.52E+1 9.39E+1 1.14E+1 0.00

Tree Gaussian
Gaussian

d = 4 1.25E-5 2.31E+0 2.55E+0 5.17E+0 1.49E+0 0.10
d = 8 1.03E+1 1.96E+1 1.87E+1 2.59E+1 4.45E+0 0.00

d = 16 6.16E+1 7.28E+1 7.29E+1 8.55E+1 6.57E+0 0.00

Tree Select
Kernel

d = 4 5.48E-7 8.62E-5 6.40E-1 ** 5.80E+0 1.35E+0 0.60 +
d = 8 3.42E-5 1.32E+1 1.05E+1 ** 2.92E+1 1.04E+1 0.40 +

d = 16 2.66E+1 8.22E+1 7.89E+1 1.04E+2 1.57E+1 0.00

Sphere Model

Chain Gaussian
Gaussian

d = 4 5.90E-6 6.81E-5 1.37E-2 2.74E-1 6.11E-2 0.90
d = 8 3.59E-5 7.39E-5 7.22E-5 9.99E-5 1.84E-5 1.00

d = 16 4.25E-5 7.75E-5 7.62E-5 9.77E-5 1.53E-5 1.00

Chain Select
Kernel

d = 4 2.54E-5 5.10E-5 5.43E-5 * 9.99E-5 2.16E-5 1.00 +
d = 8 2.16E-5 7.84E-5 7.07E-5 9.65E-5 2.35E-5 1.00

d = 16 5.29E-5 8.22E-5 8.00E-5 9.95E-5 1.29E-5 1.00

Tree Gaussian
Gaussian

d = 4 3.90E-6 4.38E-5 5.08E-5 9.86E-5 3.08E-5 1.00
d = 8 3.19E-5 7.05E-5 6.74E-5 9.77E-5 1.75E-5 1.00

d = 16 3.92E-5 7.09E-5 7.06E-5 9.57E-5 1.41E-5 1.00

Tree Select
Kernel

d = 4 8.63E-6 6.40E-5 9.46E-3 1.12E-1 2.78E-2 0.80
d = 8 1.50E-5 5.64E-5 5.97E-5 9.75E-5 2.19E-5 1.00

d = 16 4.89E-5 8.23E-5 8.10E-5 9.70E-5 1.24E-5 1.00

Two Axes

Chain Gaussian
Gaussian

d = 4 9.16E-6 6.35E-5 2.73E+0 4.20E+1 9.50E+0 0.75
d = 8 2.49E-5 9.49E-5 7.83E-1 4.18E+0 1.30E+0 0.60

d = 16 4.86E-5 9.60E-5 4.16E-1 4.91E+0 1.14E+0 0.55

Chain Select
Kernel

d = 4 2.89E-5 2.88E-3 8.60E-1 1.08E+1 2.59E+0 0.50
d = 8 3.48E-5 6.88E-5 6.62E-5 ** 9.06E-5 1.52E-5 1.00 +

d = 16 4.14E-5 8.05E-5 7.81E-5 * 9.79E-5 1.64E-5 1.00 +

Tree Gaussian
Gaussian

d = 4 2.08E-5 7.61E-5 6.14E-1 1.03E+1 2.31E+0 0.70
d = 8 2.15E-5 1.27E-2 1.51E+0 1.19E+1 2.89E+0 0.40

d = 16 5.30E-5 1.87E-3 5.24E-1 3.80E+0 9.78E-1 0.50

Tree Select
Kernel

d = 4 1.79E-5 8.71E-5 1.02E-1 1.69E+0 3.76E-1 0.65
d = 8 3.18E-5 7.15E-5 6.93E-5 ** 9.73E-5 1.42E-5 1.00 +

d = 16 5.83E-5 7.99E-5 7.87E-5 ** 9.78E-5 1.17E-5 1.00 +

* denotes that the EDA with copula selection procedure outperforms the
corresponding EDA with Gaussian copula, at α = 0.10
** denotes that the EDA with copula selection procedure outperforms the
corresponding EDA with Gaussian copula, at α = 0.05
+ denotes that the EDA with copula selection procedure has greater
success rate than the EDA with Gaussian copula
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4. EDAs and Copula Functions

Table 4.5: Descriptive results of the fitness for non-separable functions.

Algorithm Dimension Best Median Mean Worst
Standard Success
deviation rate

Ackley

Chain Gaussian
Gaussian

d = 4 2.15E-5 7.34E-5 9.11E-3 1.65E-1 3.68E-2 0.90
d = 8 5.56E-5 8.48E-5 8.11E-5 9.94E-5 1.51E-5 1.00

d = 16 7.27E-5 8.85E-5 8.82E-5 9.94E-5 7.43E-6 1.00

Chain Select
Kernel

d = 4 2.80E-5 7.04E-5 6.99E-5 * 9.74E-5 2.12E-5 1.00 +
d = 8 6.40E-5 8.92E-5 8.49E-5 9.87E-5 1.15E-5 1.00

d = 16 7.59E-5 9.20E-5 9.00E-5 9.88E-5 7.27E-6 1.00

Tree Gaussian
Gaussian

d = 4 3.72E-5 6.25E-5 6.71E-5 1.49E-4 2.63E-5 0.90
d = 8 5.03E-5 7.88E-5 7.91E-5 9.88E-5 1.52E-5 1.00

d = 16 7.29E-5 9.24E-5 8.85E-5 9.92E-5 8.80E-6 1.00

Tree Select
Kernel

d = 4 2.57E-5 7.16E-5 1.19E-2 1.94E-1 4.36E-2 0.85
d = 8 4.81E-5 8.72E-5 8.39E-5 9.82E-5 1.24E-5 1.00

d = 16 6.13E-5 9.13E-5 8.82E-5 9.99E-5 1.04E-5 1.00

Griewangk

Chain Gaussian
Gaussian

d = 4 3.43E-2 1.01E-1 1.10E-1 2.20E-1 5.28E-2 0.00
d = 8 1.81E-1 3.67E-1 3.69E-1 5.53E-1 9.73E-2 0.00

d = 16 3.58E-5 8.18E-5 7.81E-5 9.92E-5 1.79E-5 1.00

Chain Select
Kernel

d = 4 2.96E-2 1.02E-1 1.19E-1 2.83E-1 6.68E-2 0.00
d = 8 7.40E-3 2.03E-1 2.21E-1 ** 5.22E-1 1.31E-1 0.00

d = 16 6.51E-5 8.02E-5 8.15E-5 9.92E-5 9.65E-6 1.00

Tree Gaussian
Gaussian

d = 4 4.79E-2 1.26E-1 1.26E-1 2.21E-1 5.21E-2 0.00
d = 8 1.58E-1 3.80E-1 3.78E-1 5.49E-1 1.10E-1 0.00

d = 16 4.41E-5 7.60E-5 7.68E-5 9.70E-5 1.30E-5 1.00

Tree Select
Kernel

d = 4 2.90E-2 8.92E-2 1.02E-1 * 2.06E-1 5.05E-2 0.00
d = 8 5.40E-5 2.45E-1 2.53E-1 ** 5.34E-1 1.52E-1 0.05 +

d = 16 2.93E-5 7.59E-5 7.50E-5 9.97E-5 1.80E-5 1.00

Schwefel 1.2

Chain Gaussian
Gaussian

d = 4 2.53E-5 6.00E-3 1.49E-1 9.44E-1 2.76E-1 0.40
d = 8 9.94E-5 4.89E-2 2.82E-1 2.04E+0 5.92E-1 0.10

d = 16 1.38E-2 3.94E-1 1.07E+0 5.60E+0 1.56E+0 0.00

Chain Select
Kernel

d = 4 1.84E-5 9.74E-5 1.43E-2 ** 1.41E-1 3.58E-2 0.60 +
d = 8 4.95E-5 1.01E-4 8.38E-3 ** 7.25E-2 1.83E-2 0.50 +

d = 16 9.54E-5 2.77E-4 2.14E-2 ** 2.21E-1 5.08E-2 0.40 +

Tree Gaussian
Gaussian

d = 4 5.82E-6 7.78E-5 1.02E-2 5.44E-2 1.78E-2 0.55
d = 8 9.65E-5 1.94E-2 4.50E-1 3.44E+0 8.87E-1 0.05

d = 16 3.66E-2 4.34E-1 1.15E+0 6.78E+0 1.81E+0 0.00

Tree Select
Kernel

d = 4 3.03E-5 8.15E-5 7.26E-2 1.39E+0 3.10E-1 0.65 +
d = 8 5.21E-5 9.52E-5 3.84E-4 ** 2.66E-3 7.50E-4 0.75 +

d = 16 9.47E-5 2.89E-4 4.85E-3 ** 6.74E-2 1.54E-2 0.40 +

Trid

Chain Gaussian
Gaussian

d = 4 -1.60E+1 -1.60E+1 -1.58E+1 -1.17E+1 9.63E-1 0.65
d = 8 -1.12E+2 -1.12E+2 -1.11E+2 -1.04E+2 2.14E+0 0.65

d = 16 -8.00E+2 -8.00E+2 -7.92E+2 -6.92E+2 2.41E+1 0.55

Chain Select
Kernel

d = 4 -1.60E+1 -1.60E+1 -1.60E+1 -1.56E+1 9.51E-2 0.80 +
d = 8 -1.12E+2 -1.12E+2 -1.12E+2 * -1.12E+2 7.85E-4 0.90 +

d = 16 -8.00E+2 -8.00E+2 -8.00E+2 * -7.99E+2 1.26E-1 0.60 +

Tree Gaussian
Gaussian

d = 4 -1.60E+1 -1.60E+1 -1.59E+1 -1.48E+1 2.68E-1 0.65
d = 8 -1.12E+2 -1.12E+2 -1.12E+2 -1.09E+2 8.04E-1 0.55

d = 16 -8.00E+2 -8.00E+2 -7.99E+2 -7.93E+2 1.68E+0 0.45

Tree Select
Kernel

d = 4 -1.60E+1 -1.60E+1 -1.60E+1 * -1.60E+1 1.86E-4 0.90 +
d = 8 -1.12E+2 -1.12E+2 -1.12E+2 -1.10E+2 6.22E-1 0.65 +

d = 16 -8.00E+2 -8.00E+2 -8.00E+2 -7.97E+2 9.42E-1 0.60 +

Zakharov

Chain Gaussian
Gaussian

d = 4 3.84E-5 9.59E-5 1.26E-1 2.13E+0 4.78E-1 0.55
d = 8 8.76E-5 1.36E-2 1.23E-1 9.53E-1 2.38E-1 0.05

d = 16 8.52E-5 2.56E-3 7.51E-3 3.13E-2 9.44E-3 0.20

Chain Select
Kernel

d = 4 1.05E-5 6.76E-5 4.47E-3 * 8.44E-2 1.88E-2 0.90 +
d = 8 4.18E-5 9.80E-5 2.51E-3 ** 4.62E-2 1.03E-2 0.80 +

d = 16 5.93E-5 9.79E-5 1.65E+1 1.45E+2 3.66E+1 0.70 +

Tree Gaussian
Gaussian

d = 4 1.99E-5 7.41E-4 1.87E-2 1.35E-1 3.90E-2 0.50
d = 8 9.92E-5 8.63E-3 6.46E-2 4.05E-1 1.13E-1 0.05

d = 16 8.52E-5 3.34E-2 3.56E-1 4.80E+0 1.06E+0 0.15

Tree Select
Kernel

d = 4 1.58E-5 7.83E-5 2.10E-1 2.60E+0 6.55E-1 0.65 +
d = 8 3.86E-5 9.87E-5 1.59E-2 * 3.11E-1 6.94E-2 0.85 +

d = 16 8.07E-5 9.05E-5 1.40E+1 1.22E+2 3.65E+1 0.80 +

* denotes that the EDA with copula selection procedure outperforms the corresponding EDA with
Gaussian copula, at α = 0.10
** denotes that the EDA with copula selection procedure outperforms the corresponding EDA with
Gaussian copula, at α = 0.05
+ denotes that the EDA with copula selection procedure has greater success rate than the EDA with
Gaussian copula

In order to properly compare the performance of the algorithms, we con-
ducted a hypothesis test to determine if the copula selection procedure can
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help in improving results. The hypotheses for the test are H0 : µa ≤ µb vs.
H1 : µa > µb, where µa stands for the fitness average of an EDA based on
Gaussian copula and µb stands for the fitness average of an EDA based on cop-
ula selection. The statistical comparisons are for the algorithms with the same
graphical model. The hypothesis test is based on a Bootstrap method. When
a null hypothesis can be rejected, the corresponding average µb is marked with
an asterix (*).

Besides the average fitness, the success rate is another performance measure
that can help in the comparisons of the algorithms. Figures 4.3 and 4.4 show
respectively the success rate in each dimension for separable and non-separable
functions. If the success rate of an EDA based on copula selection is greater
than the success rate of the corresponding algorithm without copula selection,
it is marked with a plus sign (+).

Discussion

Separable functions. In general, the unimodal and separable functions are
not difficult to solve. The algorithms have a good performance in solving all
the functions with exception of the multimodal Rastrigin function. However,
the statistical tests and the success rates show that the EDAs based on copula
selection can achieve and outperform the results founded by the algorithms
based on Gaussian copula.

The success rates for EDAs based on copula selection do not decrease with
the dimension problem in all separable functions, except the Rastrigin function.
Moreover, their success rate in functions Cigar, Cigar Tablet, Ellipsoid, Sphere
model, and Two Axes is always 100% in dimension 16.

Non-separable functions. It is known that this kind of test functions have
associations or dependencies among their variables, thus, they are difficult to
solve. The performance of all algorithms in the Ackley and Griewangk functions
shows that their success rate does not decrease its value with the dimension
problem. For the Schwefel 1.2, Trid, and Zakharov functions, all the algorithms
success rates decrease with the dimensionality.

Conclusions

In this subsection a copula selection procedure for continuous EDAs has been
introduced. The implementation of this procedure is shown in two well known
graphical models. According to the numerical experiments the selection of a
copula function for modeling the dependence structure can help achieving better
fitness values. This means that dependencies between decision variables must
be modeled adequately in order to get good solutions.

The EDA based on a chain graphical model and the EDA based on a tree
graphical model, both with a copula selection procedure, have a better perfor-
mance than EDAs based on multivariate Gaussian distributions. The success
rate already indicates a better performance of the algorithms adapted with cop-
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Figure 4.3: Success rate in each dimension for separable functions. The hor-
izontal axis represents the dimension problem and the vertical axis represents
the success rate. The solid line is used for the EDAs based on copula selection
and the dashed line for the EDAs based on the Gaussian copula.
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Figure 4.4: Success rate in each dimension for non-separable functions. The
horizontal axis represents the dimension problem and the vertical axis represents
the success rate. The solid line is used for the EDAs based on copula selection
and the dashed line for the EDAs based on the Gaussian copula.
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ula selection in higher dimension. Although the statistical comparisons show
similar performances of both algorithms in reaching the function optima, the
success rate clearly indicates that EDAs with copula selection are more robust
since they reach the optima in a larger number of experiments. For every func-
tion six comparisons are shown in the Tables 4.4 and 4.5, that is, two algorithms
times three dimensions. The tables show a total of 66 comparisons. Out of the
36 comparisons for the separable functions, the EDA with copula selection excels
in 22 cases, it has similar performance in 9 cases, and it is outperformed in only
5 cases. Similarly, out of the 30 comparisons for the non separable functions,
the EDA with copula selection excels in 20 cases, it has similar performance in 9
cases, and it is outperformed in only one case. This could imply that the EDAs
based on a copula selection procedure are more adequate than algorithms with
a fixed dependence function for non-separable optimization problems. Nonethe-
less, more experiments are necessary with different graphical models in order to
identify where the copula functions have a clear advantage to EDAs.

4.4 Summary

We have presented in this chapter the incorporation of copula functions into
continuous EDAs. Moreover, we have also shown how the structure of a proba-
bilistic model can be learnt by taking into account the dependence among vari-
ables, regardless the behavior of marginal distributions. The proposed EDAs
presented in this chapter use the copula entropy as a measure of dependence.

The EDAs presented in this chapter integrate copula functions into graphical
models. From a theoretical point of view, this provides the following advantages:
(1) the most important dependencies are represented by the graphical model,
(2) dependencies can be linear or nonlinear, (3) any joint distribution can be
factorized by copula functions of lower order, (4) copula functions can be from
different family, and (5) marginal distributions can be selected separately.
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Chapter 5

The D-vine EDA

The goal of this chapter is to present regular vines and show how they can be
incorporated into continuous EDAs. Regular vines are graphical models that
represent multivariate distributions using bivariate and conditional bivariate
copula functions. In particular, a subset of regular vines known as D-vine is
adapted for optimizing several benchmark functions.

5.1 Regular vines

A class of undirected graphs for representing high dimensional probability dis-
tributions are named vines. These kind of graphs use bivariate and conditional
bivariate copula functions.

According to Kurowicka and Cooke (2002), a vine on d variables is a set of
nested trees, where the edges of the tree j are the nodes of the tree j + 1, for
j = 1, . . . , d−2, and each tree has the maximum number of edges. We illustrate
the concept of a vine in the following example.

Example 5.1 (Three dimensions). Let (X1, X2, X3) be a three dimensional
random vector with a joint density function f(x1, x2, x3). A well known facto-
rization for the trivariate density is given by the expression

f(x1, x2, x3) = f(x1) · f(x2|x1) · f(x3|x1, x2) . (5.1)

From the copula theory and Equation 3.2, the joint density can also be
factorized as

f(x1, x2, x3) = f(x1) · f(x2) · f(x3) · c(u1, u2, u3) . (5.2)

However, once again by means of Equation (3.2), we can decompose the
conditional distributions into bivariate copulas and marginal densities

f(x2|x1) =
f(x1, x2)

f(x1)
= c(u1, u2) · f(x2) , (5.3)
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5. The D-vine EDA

f(x3|x1, x2) =
f(x1, x2, x3)

f(x1, x2)

=
f(x1, x3|x2) · f(x2)

f(x1|x2) · f(x2)

=
c(u1, u3|u2) · f(x1|x2) · f(x3|x2)

f(x1|x2)

= c(u1, u3|u2) · c(u2, u3) · f(x3) . (5.4)

Inserting expressions (5.3) and (5.4) into Equation (5.1) gives

f(x) = c(u1, u2) · c(u2, u3) · c(u1, u3|u2) ·
3∏

k=1

f (xk) . (5.5)

The pair copula decomposition in Equation (5.5) can be represented by a
graphical structure. Figure 5.1 (a) shows a graph with 6 nodes and 6 edges.
Figure 5.1 (b) shows a vine with 5 nodes, 2 trees and 3 edges. The contents
of each node in the vine represents the indexes of the random variables. For
example, the node with number two is related to random variables (X2, U2).
Two edges in the vine are associated to marginal bivariate copulas, whereas one
edge is associated to a conditional bivariate copula.

U1 U2 U3

X1 X2 X3

c(u1, u2) c(u2, u3)

c(u1, u3|u2)

1 2 3 T1

1,2 2,3 T2

1,2 2,3

1,3|2

(a) (b)

Figure 5.1: (a) An undirected graphical model. (b) A tipical vine representation.
Both graphs, (a) and (b), refer to the trivariate density function (5.5). See text
for details.

By comparing Equations (5.2) and (5.5), we see that a trivariate copula
density can be built using only bivariate copulas as building blocks:

c(u1, u2, u3) = c(u1, u2) · c(u2, u3)︸ ︷︷ ︸
marginals

· c(u1, u3|u2)︸ ︷︷ ︸
conditional

. (5.6)
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5.1 Regular vines

From Figure 5.1 (b), it can be noticed that the edges of the first tree T1

are the nodes of the second tree T2 and each tree has the maximum number of
edges, i.e., two and one edges respectively. Moreover, from Equation 5.6, it can
be seen that the tree T1 is related to the marginal bivariate copulas and the
nested tree T2 is related to the conditional bivariate copula. ◭

Several comments can be said from the exposition of Example 5.1. For
example, the vine representation for the joint density function is not unique.
There are six different permutations for the indexes of variables, but only three
permutations give different factorizations.

Vines give a way of extending bivariate copula functions to higher dimen-
sions. By selecting an adequate set of bivariate copula functions, it is possible
to design new d-dimensional copulas. Moreover, vines can be easily adapted to
higher dimensions.

Finally, besides vines are graphical representations of pair copula decompo-
sitions, they can provide a more flexible representation of the joint distribution.

In this thesis, we are interested in using a special subset of vines as prob-
abilistic models in EDAs. We refer to regular vines and present its formal
definition (Kurowicka and Cooke, 2006).

Definition 5.1 (Regular vine). V is a regular vine on d elements if

1. V = (T1, . . . , Td−1), where Ti is a tree1 for all i = 1, . . . , d− 1.

2. T1 is a connected tree with nodes N1 = {1, . . . , d} and edges E1. For
i = 2, . . . , d− 1, Ti = (Ni, Ei) is a connected tree with nodes Ni = Ei−1.

3. For i = 2, . . . , d− 1, if {a, b} ∈ Ei, then #a△b = 2, where △ denotes the
symmetric difference. In other words, if a and b are nodes of Ti connected
by an edge in Ti, where a = {a1, a2} and b = {b1, b2}, then exactly one of
the ai equals one of the bi. This condition is called the proximity condition.

The first and second properties in Definition 5.1 refer to vines. Third prop-
erty (Bedford and Cooke, 2001, 2002) refers to the proximity condition in a
regular vine, since it expresses the fact that two edges in tree j are joined by an
edge in tree j + 1 only if these edges share a common node, j = 1, . . . , d− 2.

Two families of regular vines are the D-vine and the canonical vine (C-
vine)2. These special cases of regular vines impose additional restrictions and
are characterized by minimal and maximal degrees of nodes in the trees.

Definition 5.2 (C-vine, D-vine). A regular vine is called a

1. Canonical or C-vine if each tree Ti has a unique node of degree d − i.
The node with maximal degree in T1 is the root.

1A tree, as defined in Kurowicka and Cooke (2006), can be considered as a forest of trees.
A tree in which all nodes are connected is termed as a connected tree

2D-vines were originally called drawable vines, while canonical vines owe their name to the
fact that they are the most natural for sampling (Kurowicka and Cooke, 2006).
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5. The D-vine EDA

2. D-vine if each node in T1 has a degree of at most 2.

Examples of canonical and D-vines on 4 nodes are shown in Figures 5.2 and
5.3 respectively.

2

1 3 T1

4

1,2

1,3

1,4

1,3

1,2 T2

1,4

2,3|1

2,4|1

2,3|1 2,4|1 T3

3,4|1,2

f(x) = c(u1, u2) · c(u1, u3) · c(u1, u4)︸ ︷︷ ︸
T1

· c(u2, u3|u1) · c(u2, u4|u1)︸ ︷︷ ︸
T2

· c(u3, u4|u1, u2)︸ ︷︷ ︸
T3

·f (x1) · f (x2) · f (x3)

Figure 5.2: Example of a four-dimensional C-vine.

Figure 5.3 shows a D-vine on four variables. The tree T1 is built on marginal
pairwise variables, whereas the tree T2 takes into account conditional pairwise
variables. Observe how tree T2 is built on tree T1. The last tree, T3, involves
variables U1 and U4 conditioned on variables U2, and U3. Every tree, except tree
T1, has associated conditional bivariate distributions. References (Aas et al.,
2009; Kurowicka and Cooke, 2006) provide formal definitions of regular vines
and illustrative information.

From a theoretical point of view, it is possible to model any d-dimensional
dependence structure by means of a D-vine and bivariate copulas. However, for
practical purposes, it is not necessary to build the complete D-vine, it is enough
to select an adequate permutation of variables in order to define tree T1 with
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5.2 Copulas and information theory measures

1 2 3 4 T1

1,2 2,3 3,4 T2

1,3|2 2,4|3 T3

1,2 2,3 3,4

1,3|2 2,4|3

1,4|2,3

f(x) = c(u1, u2) · c(u2, u3) · c(u3, u4)︸ ︷︷ ︸
T1

· c(u1, u3|u2) · c(u2, u4|u3)︸ ︷︷ ︸
T2

· c(u1, u4|u2, u3)︸ ︷︷ ︸
T3

·f (x1) · f (x2) · f (x3)

Figure 5.3: Example of a four-dimensional D-vine.

the greatest information about the d-dimensional distribution. After the tree
T1 is chosen, we can build tree T2 to increase the information of tree T1.

Before presenting the implementation of a D-vine into an EDA, we pro-
vide some theoretical relationships between multivariate distributions and their
associated copula functions.

5.2 Copulas and information theory measures

In this thesis, the Kullback-Leibler divergence has been used as a measure of the
difference between two probability distributions. Below, we prove an important
relationship between the Kullback-Leibler divergence and copula functions.

Proposition 5.1. Let f and g be two d-dimensional density functions with
marginal densities fi and gi, respectively for i = 1, . . . , d. Then, the Kullback-
Leibler divergence between multivariate densities f and g is given by the expres-
sion,

DKL (f ||g) =
d∑

i=1

DKL (fi||gi) + DKL (cf ||cg) ,

where cf and cg are the associated copula functions for multivariate densities f
and g.

Proof. By definition, we have that
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5. The D-vine EDA

DKL (f ||g) = Ef(x)

[
log

f(x)

g(x)

]

= Ef(x)

[
log

∏d
i=1 fi · cf∏d
i=1 gi · cg

]

= Ef(x)

[
log

d∏

i=1

fi

gi
+ log

cf

cg

]

=
d∑

i=1

Ef(x)

[
log

fi

gi

]
+ Ef(x)

[
log

cf

cg

]

=
d∑

i=1

DKL (fi||gi) + Ef(x)

[
log

cf

cg

]
.

It is known that ui = Fi(xi) for i = 1, . . . , d. By using a change of variables
we have

Ef(x)

[
log

cf

cg

]
=

∫
f(x) log

(
cf

cg

)
dx

=

∫ d∏

i=1

fi · cf log

(
cf

cg

)
1

∏d
i=1 fi

du

=

∫
cf log

(
cf

cg

)
du

= DKL (cf ||cg) .

Therefore,

DKL (f ||g) =

d∑

i=1

DKL (fi||gi) + DKL (cf ||cg) .

Proposition 5.1 gives an encouragement for using copula functions. When a
probabilistic model is proposed for a multivariate data set, the Kullback-Leibler
divergence between the unknown density of the data set and the proposed den-
sity model depends on the selection of marginal densities and the copula func-
tion. Under the assumption that marginal densities are well selected, the pro-
posed density differs only from the unknown density in the term related to the
dependence among variables.

Proposition 5.2. Let f be a d-dimensional density function with marginal
densities fi for i = 1, . . . , d. Then, the Kullback-Leibler divergence between the
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5.2 Copulas and information theory measures

multivariate density f and the product of marginal densities
∏d

i=1 fi is given by
the expression,

DKL

(
f ||

d∏

i=1

fi

)
= −H (U1, . . . , Ud) ,

where H (U1, . . . , Ud) is the entropy of the copula function for the multivariate
density f .

Proof. Using Proposition 5.1

DKL

(
f ||

d∏

i=1

fi

)
=

d∑

i=1

DKL (fi||fi) + DKL (cf ||1)

= DKL (cf ||1) .

But,

DKL (cf ||1) =

∫
cf log

(cf

1

)
du

= −H (U1, . . . , Ud) .

Thus,

DKL

(
f ||

d∏

i=1

fi

)
= −H (U1, . . . , Ud) .

For the particular case of a two-dimensional random vector (X1, X2), it is
known that the Kullback-Leibler divergence between the bivariate density f
and the product of marginal densities f1 · f2 is equal to the mutual information
between variables X1 and X2. In this sense, Proposition 5.2 gives a theoretical
support for the connection between mutual information and the entropy of a
bivariate copula function presented in Davy and Doucet (2003) (see Equation
(4.14)).

The following result was presented in Jenison and Reale (2004) and shows
the relationship among the entropies of marginal densities, the entropy of the
original distribution, and the entropy of the copula function.

Proposition 5.3. Let f be a d-dimensional density function with marginal
densities fi for i = 1, . . . , d. Then, the entropy of the associated copula function
is given by,

H (U1, . . . , Ud) = H (X1, . . . , Xd)−
d∑

i=1

H(Xi) .

Proof. We first calculate the Kullback-Leibler divergence
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5. The D-vine EDA

DKL

(
f ||

d∏

i=1

fi

)
= Ef(x)

[
log

f(x)
∏d

i=1 fi

]

= Ef(x) [log f(x)]− Ef(x)

[
log

d∏

i=1

fi

]

= −H (X1, . . . , Xd) +

d∑

i=1

H(Xi) .

By using the result of Proposition 5.2, we complete the proof.

From the information theory, it is known that the sum of marginal entropies
is greater o equal than the joint entropy. As a consequence, Proposition 5.3
states that the entropy of a copula function is non positive.

We present in the next proposition, two results for bivariate and trivariate
dependence structures.

Proposition 5.4. Let X1, X2 and X3 be continuous random variables with
joint and marginal densities. The following expressions hold for the mutual
information and the conditional mutual information,

I (X1, X2) = I (U1, U2) ,

I (X1, X2|X3) = I (U1, U2|U3) ,

where U1, U2 and U3 are the variables of the corresponding copula function.

Proof. By using Proposition 5.2 and the fact that marginal densities are uniform
for copula functions,

I (X1, X2) = DKL (f ||f1 · f2)

= DKL (cf ||1)

=

∫
cf log (cf ) du

= I (U1, U2) .

Similarly,

I (X1, X2|X3) = DKL

(
f ||f1|3 · f2|3 · f3

)

= DKL (cf ||c(u1, u3) · c(u2, u3))

=

∫
cf log

(
cf

c(u1, u3) · c(u2, u3)

)
du

= I (U1, U2|U3) .
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5.3 The proposed EDA

For calculating the mutual information, we can employ the bivariate copula
entropy and Equation (4.14). For the case of the conditional mutual information,
we can employ the relationship

I (X1, X2|X3) = H(X1) + H(X2) + H(X3)−H(X1, X2, X3)

−I(X1, X3)− I(X2, X3) , (5.7)

and by doing the corresponding substitutions,

I (X1, X2|X3) = −H(U1, U2, U3) + H(U1, U3) + H(U2, U3) . (5.8)

The results in Proposition 5.4 show that, under the assumption that marginal
distributions are well fitted, the source of information about the dependence
between variables can be calculated by using only copula functions. These
results along with Equations (4.14) and (5.8) will be used for constructing the
graphical structure of the D-vine EDA.

We illustrate how permutations of variables can modify the amount of in-
formation for each tree in a C-vine and a D-vine.

Example 5.2. Consider a four-dimensional Gaussian copula with correlation
matrix given by

Σ =





1.00 0.61 0.62 0.39
0.61 1.00 0.47 0.50
0.62 0.47 1.00 0.49
0.39 0.50 0.49 1.00





Over all possible permutations of variables (U1, U2, U3, U4), we build C-vines
and D-vines. For each regular vine, we calculate the amount of information given
for each tree. The amount of information is related to the bivariate copula func-
tions in each tree. In this case, we calculate the mutual information associated
to each bivariate copula. Tables 5.2 and 5.2 show the different contributions of
a C-vine and a D-vine for the Gaussian copula.

It can be seen that by truncating the C-vine or the D-vine some piece of in-
formation can be lost. A motivation for truncating the C-vine or the D-vine is
to reduce the complexity of the model and reduce the number of conditional bi-
variate copulas. However, it is a convenient procedure for choosing an adequate
permutation without a huge loss of information. ◭

5.3 The proposed EDA

Description of the truncated D-vine

In order to show how a probabilistic model based on a D-vine can be used in
EDAs we propose an approximation based on two trees, T1 and T2. We define
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5. The D-vine EDA

Table 5.1: Amount of information given for each tree in a C-vine.

Permutation of roots T1 T2 T3

1 - 2 - 3 - 4 0.557762 0.080097 0.052155
1 - 2 - 4 - 3 0.557762 0.080097 0.052155
1 - 3 - 2 - 4 0.557762 0.073815 0.058437
1 - 3 - 4 - 2 0.557762 0.073815 0.058437
1 - 4 - 2 - 3 0.557762 0.131869 0.000383
1 - 4 - 3 - 2 0.557762 0.131869 0.000383
2 - 1 - 3 - 4 0.501336 0.136523 0.052155
2 - 1 - 4 - 3 0.501336 0.136523 0.052155
2 - 3 - 1 - 4 0.501336 0.18778 0.000898
2 - 3 - 4 - 1 0.501336 0.18778 0.000898
2 - 4 - 1 - 3 0.501336 0.066718 0.12196
2 - 4 - 3 - 1 0.501336 0.066718 0.12196
3 - 1 - 2 - 4 0.504671 0.126907 0.058437
3 - 1 - 4 - 2 0.504671 0.126907 0.058437
3 - 2 - 1 - 4 0.504671 0.184445 0.000898
3 - 2 - 4 - 1 0.504671 0.184445 0.000898
3 - 4 - 1 - 2 0.504671 0.07355 0.111793
3 - 4 - 2 - 1 0.504671 0.07355 0.111793
4 - 1 - 2 - 3 0.363622 0.32601 0.000383
4 - 1 - 3 - 2 0.363622 0.32601 0.000383
4 - 2 - 1 - 3 0.363622 0.204433 0.12196
4 - 2 - 3 - 1 0.363622 0.204433 0.12196
4 - 3 - 1 - 2 0.363622 0.2146 0.111793
4 - 3 - 2 - 1 0.363622 0.2146 0.111793

a class of density functions based on a truncated D-vine:

fD-vine(x) =

d∏

k=1

f(xk)

2∏

i=1

d−i∏

j=1

cγj ,γj+i|γj+1
, (5.9)

where γ = (γ1, . . . , γd) is a permutation of the integers between 1 and
d. Therefore, the d-dimensional density fD-vine(x) defined in Equation (5.9)
is composed by the product of marginal densities and a copula density given
by a D-vine with only two trees. Then, the goal is to choose a permutation
γ = (γ1, . . . , γd) that minimizes the Kullback-Leibler divergence between the
true density function f(x) and the proposed density function fD-vine(x):
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5.3 The proposed EDA

Table 5.2: Amount of information given for each tree in a D-vine.

Permutation tree T1 T1 T2 T3

1 - 2 - 3 - 4 0.494779 0.194337 0.000898
1 - 2 - 4 - 3 0.513812 0.054242 0.12196
1 - 3 - 2 - 4 0.511228 0.177889 0.000898
1 - 3 - 4 - 2 0.523704 0.054517 0.111793
1 - 4 - 2 - 3 0.351145 0.216909 0.12196
1 - 4 - 3 - 2 0.344588 0.233633 0.111793
2 - 1 - 3 - 4 0.61255 0.019027 0.058437
2 - 1 - 4 - 3 0.452468 0.237164 0.000383
2 - 3 - 1 - 4 0.449883 0.181695 0.058437
2 - 3 - 4 - 1 0.344588 0.233633 0.111793
2 - 4 - 1 - 3 0.468916 0.220715 0.000383
2 - 4 - 3 - 1 0.523704 0.054517 0.111793
3 - 1 - 2 - 4 0.619107 0.018752 0.052155
3 - 1 - 4 - 2 0.468916 0.220715 0.000383
3 - 2 - 1 - 4 0.439991 0.197868 0.052155
3 - 2 - 4 - 1 0.351145 0.216909 0.12196
3 - 4 - 1 - 2 0.452468 0.237164 0.000383
3 - 4 - 2 - 1 0.513812 0.054242 0.12196
4 - 1 - 2 - 3 0.439991 0.197868 0.052155
4 - 1 - 3 - 2 0.449883 0.181695 0.058437
4 - 2 - 1 - 3 0.619107 0.018752 0.052155
4 - 2 - 3 - 1 0.511228 0.177889 0.000898
4 - 3 - 1 - 2 0.61255 0.019027 0.058437
4 - 3 - 2 - 1 0.494779 0.194337 0.000898

DKL (f ||fD-vine) = Ef(x)

[
log

f(x)

fD-vine(x)

]

= −H(X) +

d∑

k=1

H(Xk)−
d∑

i=2

I(Xγ(i−1)
, Xγi)

−
d∑

i=3

I(Xγ(i−2)
, Xγi |Xγ(i−1)

) , (5.10)

where H(Xk) denotes the entropy of the continuous random variable Xk,
I(Xγ(i−1)

, Xγi) is the marginal mutual information between (Xγ(i−1)
, Xγi) and

I(Xγ(i−2)
, Xγi |Xγ(i−1)

) is the conditional mutual information between (Xγ(i−2)
, Xγi)

given Xγ(i−1)
. The first two terms in the divergence do not depend on γ. There-

65



5. The D-vine EDA

fore, minimizing the Kullback-Leibler is equivalent to maximizing

JD-vine(X) =

d∑

i=2

I(Xγ(i−1)
, Xγi) +

d∑

i=3

I(Xγ(i−2)
, Xγi |Xγ(i−1)

) . (5.11)

It can be proved that there is a close relationship between the mutual in-
formation and the copula entropy. Equation (4.14) can be used in order to
calculate marginal mutual information of any two arbitrary variables S and T .

An important consequence for bivariate Gaussian copulas is that, by defini-
tion, its entropy is equal to the negative of mutual information of two variables
with standard joint Gaussian distribution

H(U1, U2) =
1

2
log(1 − θ2) , (5.12)

where θ is the correlation parameter.
For three arbitrary variables (X1, X2, X3), we state that

H(U1, U2, U3) = −I(X1, X3|X2)− I(X1, X2)− I(X2, X3)

= −I(X1, X2, X3)

= −DKL(f(x1, x2, x3)||f1f2f3) . (5.13)

The result in Equation (5.13) implies that the entropy of a trivariate Gaus-
sian copula is given by:

H(U1, U2, U3) =
1

2
log(1 + 2θ12θ13θ23 − θ2

12 − θ2
13 − θ2

23) . (5.14)

The optimal permutation γ is the one that produces the highest marginal
and conditional pairwise mutual information with respect to the true distri-
bution. But due to computational efficiency reasons we will employ a greedy
algorithm based on (De Bonet et al., 1997). We select the three variables with
the smallest copula entropy (5.14) and choose a random order to make a chain.
The following variables of γ are chosen according to their mutual information
with respect to any of the variables in the ends of the chain. Algorithm 10 shows
a straightforward greedy algorithm to find a permutation γ.

Algorithm 10 Greedy algorithm to pick a permutation γ in a D-vine

1: Find (γm−1, γm, γm+1) = argminj 6=k 6=l Ĥ(Uj , Uk, Ul), where Ĥ() is an es-
timation of the Gaussian copula entropy among variables uj = FXj (xj),
uk = FXk

(xk), and ul = FXl
(xl).

2: Choose variables with the greatest mutual information with respect to any
of the ends of the chain. The constraint is to avoid a circular chain.

3: The order of the chain defines permutation γ.
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5.3 The proposed EDA

5.3.1 Incorporating a new graphical model

In (Salinas-Gutiérrez et al., 2010c), a regular vine (Bedford and Cooke, 2001,
2002) is considered as a graphical model for designing a new EDA. This EDA
is based on a particular family of regular vines called D-vine. In this work we
propose a greedy algorithm for building such graphical model and we also show
the theoretical relationship between the entropy of a trivariate copula function
and the conditional mutual information.

Description of the D-vine Gaussian

Beta EDA

The probabilistic model used by the D-vine EDA has been previously presented
in subsection 5.3. Once a permutation γ is found, generating samples follows
the steps of Algorithm 7. We summarize the proposed approach in Algorithm
11.

Algorithm 11 Pseudocode for estimating the model and generating a new
population

1: for j = 1→ d do
2: For each variable Xj , estimate its marginal Beta parameters (aj , bj).
3: Determine Uj = Fj(Xj ; aj , bj), where Fj is the cumulative Beta distribu-

tion function.
4: end for
5: Estimate the parameters of the Gaussian copula Σ using Algorithm 3.
6: Calculate all bivariate and trivariate copula entropies, Equations (5.12) and

(5.14).
7: Pick a permutation γ for the graphical model using Algorithm 10.
8: Simulate Uγ1 from a uniform distribution U(0, 1).
9: Simulate Uγ2 from the conditional Gaussian copula C(Uγ2 |Uγ1).

10: for k = 3→ d do
11: Simulate Uγk

from the conditional Gaussian copula C(Uγk
|Uγk−2

, Uγk−1
).

12: end for
13: for j = 1→ d do
14: Determine Xj using quasi-inverse F−1

j (Uj).
15: end for

It is important to say that the graphical model used in the algorithm MIMIC
is a particular case of the D-vine EDA when there is no tree T2. The graphical
model used in the algorithm UMDA is also a particular case of the D-vine EDA
when there are no trees T1 and T2.

For each decision variable in the proposed algorithm, the Beta distribution
is used as marginal distribution. The test problems used in this subsection
have bounded search space. Each value of variable Xi from the search space is
transformed to a value in (0, 1) through a linear transformation. This explains
why we use Beta distributions as marginals.

Given that the proposed algorithm uses a D-vine graphical model, Gaussian
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copulas, and Beta marginal distributions, a specific notation employed in this
thesis for the D-vine EDA is D-vine Gaussian

Beta .

Experiments

Algorithms MIMICG
c , UMDAG

c along with the proposed algorithm D-vine Gaussian
Beta ,

are used to optimize three test problems. The probabilistic model in MIMICG
c

is built using Algorithm 10 and changing conditional mutual information to
marginal mutual information in Step 1. The test functions Ackley, Rosenbrock,
and Sphere are used in the experiments. The test functions are described in
Appendix B. We use test problems in 10 dimensions. Each algorithm is run 30
times for each problem. The population size is 300 and the number of selected
individuals is 200. The maximum number of evaluations is 300,000. However,
when convergence to a local minimum is detected, the run is stopped. Any
improvement less than 1× 10−6 in 25 iterations is considered convergence. The
goal is to reach the optimum with an error less than 1× 10−6.

Numerical results

In Table 5.3 we report the fitness value reached by the algorithms in all test
functions. The information about the number of evaluations required by each
algorithm is reported in Table 5.4.

Table 5.3: Descriptive fitness results for all test functions.

Algorithm Best Median Mean Worst Std. deviation

Ackley

D-vine Gaussian
Beta 2.71E-005 4.11E-005 4.09E-005 5.16E-005 5.82E-006

MIMICG
c 2.89E-005 3.91E-005 3.92E-005 4.95E-005 5.21E-006

UMDAG
c 2.83E-005 4.08E-005 4.15E-005 5.07E-005 4.63E-006

Rosenbrock

D-vine Gaussian
Beta 0.20 5.75 5.28 9.21 2.70

MIMICG
c 0.91 6.40 6.42 13.48 2.72

UMDAG
c 7.93 8.02 8.10 10.28 0.42

Sphere

D-vine Gaussian
Beta 3.37E-007 7.75E-007 7.48E-007 9.99E-007 1.69E-007

MIMICG
c 4.48E-007 8.47E-007 8.14E-007 9.96E-007 1.52E-007

UMDAG
c 4.20E-007 8.56E-007 8.11E-007 9.94E-007 1.64E-007

To properly compare the performance of the algorithms (using the optimum
value reached), we conduct a hypothesis test based on a Bootstrap method for
the differences between the means of the three comparison pairs, for all test
problems. Table 5.5 shows the confidence intervals for the means, and the
corresponding p-values.

68



5.3 The proposed EDA

Table 5.4: Descriptive function evaluations for all test functions.

Algorithm Mean Std. deviation

Ackley

D-vine Gaussian
Beta 74691.20 3810.83

MIMICG
c 77063.27 4773.64

UMDAG
c 76873.90 3924.77

Rosenbrock

D-vine Gaussian
Beta 239797.47 111039.69

MIMICG
c 223295.83 119242.76

UMDAG
c 291245.87 47948.36

Sphere

D-vine Gaussian
Beta 65402.27 905.32

MIMICG
c 65920.53 960.83

UMDAG
c 67624.83 1099.53

Discussion

According to Table 5.3, the Ackley problem is solved in a similar way by the
three algorithms. Table 5.5 shows no differences in algorithms at a significance
level α = 0.05. However, if we consider a significance level of α = 0.08, the p-
value shows a significant difference between MIMICG

c and UMDAG
c . This would

mean that a dependence structure based on a MIMICG
c is more adequate than

an independence structure.
For the Rosenbrock problem, the algorithm that shows the best behaviour

is D-vine EDA. Although D-vine EDA has a standard deviation greater than
UMDAG

c , we can see in Table 5.3 that the range of values reached by D-vine
is closer to the global minimum than the range of values of UMDAG

c . P-values
indicate that D-vine EDA and MIMICG

c are statistically different from UMDAG
c .

In these cases, the confidence intervals between D-vine EDA vs. UMDAG
c and

MIMICG
c vs. UMDAG

c show that better results are obtained using dependence
structure. However, if we consider a significance level of α = 0.11, the p-value
shows a significant difference between D-vine EDA and MIMICG

c .
D-vine, MIMICG

c and UMDAG
c obtain the global minimum in all the runs

for the Sphere Model problem. There are no statistical differences between all
the algorithms and also the number of evaluations is similar. This means that
the univariate EDA is the adequate tool for the Sphere problem.

Conclusions

In this subsection, we have introduced the regular vine graphical models in
EDAs. According to numerical experiments the selection of a graphical model
for modeling dependence structure can help achieve better fitness results. D-
vine EDA obtain a better performance than MIMIC and UMDA in a well known
hard optimization problem such as the Rosenbrock function. This means that
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Table 5.5: Results for the difference between fitness means in each problem.
A 95% confidence interval and a p-value are obtained through a Bootstrap
technique.

Compared algorithms 95% Interval p-value

Ackley

D-vine Gaussian
Beta vs. MIMICG

c -1.0E-06 4.4E-06 2.3E-01

D-vine Gaussian
Beta vs. UMDAG

c -3.2E-06 2.0E-06 6.8E-01

MIMICG
c vs. UMDAG

c -4.7E-06 2.0E-07 7.8E-02

Rosenbrock

D-vine Gaussian
Beta vs. MIMICG

c -2.5 1.7E-01 1.1E-01

D-vine Gaussian
Beta vs. UMDAG

c -3.8 -1.9 3.3E-05

MIMICG
c vs. UMDAG

c -2.6 -6.9E-01 2.0E-03

Sphere

D-vine Gaussian
Beta vs. MIMICG

c -1.4E-07 1.5E-08 1.2E-01

D-vine Gaussian
Beta vs. UMDAG

c -1.4E-07 2.0E-08 1.4E-01

MIMICG
c vs. UMDAG

c -7.6E-08 8.1E-08 9.4E-01

dependencies between decision variables must be modeled adequately in order
to get good solutions.

UMDA does not outperform D-vine EDA and MIMIC in any optimization
problem. The UMDA results are similar to D-vine EDA and MIMIC in the
Sphere Model. This is because Sphere Model is not a hard optimization prob-
lem and it is more adequate for EDAs without dependence models. All three
algorithms perform in a similar way when solving the Ackley function. In this
case one may be tempted to quickly say that a complex probabilistic model was
outperformed by a more simple model such as the UMDA. However, a smarter
learning algorithm for the D-vine graphical model could build such simpler mod-
els.

Although we use the same copula function and the same marginal distribu-
tion for the proposed EDA, it is not necessary. We state that fitness results
in a EDA are the consequence of the selected marginal distributions, copula
functions and graphical model.

5.4 Summary

In this chapter, we have presented the incorporation of a new graphical model
into continuous EDAs. Theoretical results concerning measures such as entropy
and mutual information along with copula functions have been provided for
designing a truncated D-vine.
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Chapter 6

Conclusions

This dissertation uses elements and methods from information theory, graphical
models, and copula theory for designing multivariate distributions and apply-
ing them into optimization problems. Our approach has been to model the
most important dependencies in the selected population and to estimate their
associated parameters in the corresponding multivariate distribution.

Chapter 3 provides a computational introduction to the copula theory, while
chapter 4 describes how copula functions can be integrated into graphical mod-
els for learning a multivariate distribution of the dependence structure among
decision variables of the selected population. The approach followed in this the-
sis has been mainly motivated by the possibility of proposing novel probabilistic
models in EDAs.

This doctoral work has been conducted for investigating the incorporation of
copula functions as probabilistic models into continuous EDAs. Although there
have been published other works related to the application of copula theory in
continuous EDAs, this doctoral dissertation presents the following contributions:

• The estimation of copula parameters. Some related works that incorpo-
rate copula functions in EDAs use predefined values for the parameters,
however, it makes no sense in most practical cases. Our contribution for
estimating the parameters of the copula functions has been to use the
maximum likelihood method. This method is a well established proce-
dure for doing statistical inference with a solid theoretical support. This
model fitting for the copula functions has been done since the initial stage
of our research work.

• The use of copula entropies for building the graphical model. For most
of the EDAs, the learning of a predefined structure in the probabilistic
model is made by minimizing the Kullback-Leibler divergence. In partic-
ular, the learning of structures such as a chain and a tree is done by the
minimization of the total sum of the conditional entropies. This way of
learning the structure of the probabilistic model is affected by the depen-
dence among variables and the behavior of marginal distributions. Our
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proposed algorithms can learn the structure of the probabilistic model
only by taking into account the dependence among variables, regardless
the marginal distributions. It can be done by using the copula entropy as
a measure of dependence. Moreover, in this research, we have provided
the relationship between the entropy of a copula function and the measure
known as mutual information.

• Flexibility for choosing the marginal distributions. Nowadays, the research
on continuous EDAs has been mainly based on the use of the multivariate
normal distribution as probabilistic model. A direct consequence is that
each marginal distribution is restricted to be of the same type, i.e., be
an univariate normal distribution. We have described in this thesis how
the separation between marginal distributions and a dependence structure
explains the modeling flexibility given by copula functions.

• Flexibility for modeling the dependence among variables. Given that most
of the literature for continuous EDAs has explored the use of the multivari-
ate normal distributions as probabilistic models, only linear dependencies
can be modeled. The assumption of modeling dependencies under the
multivariate normal distribution can not be realistic for some optimiza-
tion problems. By means of copula functions, a wide range of dependencies
can be incorporated to our proposed algorithms.

• An extension for some continuous EDAs. Several EDAs that employ the
multivariate normal distribution assumption can be seen as particular in-
stances of our proposed algorithms. They can be obtained by modeling
the dependence structure with a Gaussian copula and by using, for each
decision variable, the univariate normal distribution as marginal distribu-
tion.

• A first study about the natural connection between copula functions and
graphical models. Besides the previous contributions, we have investigated
the promising idea of the incorporation of copula functions into graphical
models. A practical consequence is that any joint distribution can be
factorized by copula functions of lower order, with no restriction over the
class of copula functions and the family of marginal distributions. Other
consequences are that the most important dependencies are represented
by the graphical model and these dependencies can be linear or nonlinear.

• One recent contribution of our research work has been the incorporation
of a procedure for selecting the most adequate copula function.

• A step towards the learning of the problem structure. An important goal of
modeling dependencies among variables in an EDA is to learn the structure
of the optimization problem. The learning of the problem structure by
means of a probabilistic model can help ensure an efficient optimization
behavior.
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• A new research direction in EDAs. This work has opened a new research
direction for continuous EDAs. The incorporation of copula functions in
continuous EDAs represents a promising opportunity for designing more
flexible EDAs and for investigating their performance.

This thesis has concentrated on investigating the incorporation of copula
functions into continuous EDAs. The performance of the proposed EDAs has
been investigated empirically and the theoretical support of the probabilistic
models have been presented. However, it is necessary to provide some critical
observations regarding them. The idea of using a probabilistic model in EDAs
is that the structural features of an optimization problem can be captured and
exploited, in order to efficiently find an optimum value. This shows the following
drawbacks:

• The structure of a given optimization problem is unknown. In general,
it is not possible to select the most suitable probabilistic model before
applying it in an EDA. Thus, the performance of an EDA depends on
how well the proposed probabilist model emulates the structure of the
optimization problem.

• Copula selection. Although we have provided in this thesis the incorpora-
tion of a procedure for selecting copula functions, this does not ensure that
the overfitting is avoided. It is well known, (Bosman, 2003), that selecting
a model based on the maximum likelihood is equivalent to select it with
minimal entropy. Therefore, it is convenient to prevent the possibility of
losing the ability to generalize the data through a copula function.

A general limitation of using our proposed algorithms is given by the No
Free Lunch theorem (NFL). Informally speaking, this theorem states that the
average performance for all optimization algorithms over all possible problems
is the same. So, there is no the best optimizer for all problems. However,
for a given optimization problem, the NFL can be circumvent by incorporating
knowledge about the problem.

Conclusions regarding the performance of the proposed EDAs have already
been discussed in chapter 4. The most important ones are briefly commented
next. According to our experiments, the performance of the copula based EDA
strongly depends on the selected marginal distributions, copula functions and
the graphical model. This shows that dependencies between decision variables
must be modeled adequately in order to get good solutions. The EDA based on a
chain graphical model and the EDA based on a tree graphical model, both with
a copula selection procedure, have a better performance than EDAs based on
multivariate Gaussian distributions. The success rate already indicates a better
performance of the algorithms adapted with copula selection in higher dimen-
sion. The obtained performance results suggest that the incorporation of copula
functions is a real option for designing new continuous EDAs. Moreover, our
reported experiments have shown that modeling adequately the dependencies
between decision variables is a good mechanism for getting better performance
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results. Furthermore, the presented methods for learning probabilistic models
can be applied to other problems not necessarily related to optimization. For
example, in (Salinas-Gutiérrez et al., 2010a,b) we have applied Gaussian copulas
to classification problems.

Our research is a first step towards the almost unexplored field of EDAs
based on copula functions. We believe that there are many directions for future
research. For example, it would be interesting to further explore the connections
between graphical models, copula functions and concepts from information the-
ory. More experiments are necessary with different probabilistic models in order
to identify the class of function properties where the copula functions provide
advantages to EDAs. Given that all the algorithms presented in this dissertation
estimate their probabilistic parameters only by means of maximum likelihood,
an immediate research work will focus on the design of algorithms with diversity
maintenance, or similar strategies, for enhancing the performance. A study of
the adaptation and performance of EDAs based on copula functions is also nec-
essary for solving problems from multiobjective optimization and constrained
optimization. Finally, the copula functions that we have used for designing
probabilistic models are a small part of the known set of copula functions. In
particular, more Archimedean copulas can be investigated and nonparametric
copula functions can be also considered.
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Gaussiana. Universidad de La Habana, La Habana, Cuba, June 2007. Bach-
elor’s thesis, in Spanish. 5
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R. Höns. Estimation of Distribution Algorithm and Minimum Relative Entropy.
PhD thesis, University of Bonn, Bonn, Germany, 2005. 4

C. Igel, T. Suttorp, and N. Hansen. A computational efficient covariance matrix
update and a (1+1)-CMA for evolution strategies. In Proceedings of the 8th
annual conference on Genetic and evolutionary computation, GECCO ’06,
pages 453–460. ACM, 2006. 4

K. Jajuga and D. Papla. Copula Functions in Model Based Clustering. In
M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nürnberger, and W. Gaul, editors,
From Data and Information Analysis to Knowledge Engineering, Studies in
Classification, Data Analysis, and Knowledge Organization, pages 606–613.
Springer Berlin Heidelberg, 2006. 17

R.L. Jenison and R.A. Reale. The Shape of Neural Dependence. Neural Com-
putation, 16:665–672, 2004. 61

F.B. Jensen and T.D. Nielsen. Bayesian Networks and Decision Graphs. Infor-
mation Science and Statistics. Springer, 2007. 41

H. Joe. Multivariate models and dependence concepts. Chapman & Hall, London,
1997. 18

D. Kurowicka and R. Cooke. Uncertainty Analysis. Wiley Series in Probability
and Statistics. Wiley, 2006. 57, 58

D. Kurowicka and R. Cooke. The vine copula method for representing high
dimensional dependent distributions: application to continuous belief nets.
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nauer, and H.P. Schwefel, editors, Parallel Problem Solving from Nature –
PPSN V, volume 1498 of Lecture Notes in Computer Science, pages 418–427.
Springer Berlin / Heidelberg, 1998. 9

I. Servet, L. Trave-Massuyes, and D. Stern. Telephone Network Traffic Over-
loading Diagnosis and Evolutionary Computation Techniques. In J.K. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evo-
lution. Third European Conference AE ’97, volume 1363 of Lecture Notes in
Computer Science, pages 137–144. Springer Berlin / Heidelberg, 1997. 9

S.K. Shakya. DEUM: A framework for an Estimation of Distribution Algorithm
based on Markov Random Fields. PhD thesis, The Robert Gordon University,
Aberdeen, United Kingdom, April 2006. 4, 10, 33
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Appendix A

Selected copula functions

There are many copula functions. This appendix shows a brief description of
the copula functions selected for this thesis.

A.1 Ali-Mikhail-Haq

Distribution function

C(u, v) =
uv

1− θ(1− u)(1− v)

Conditional distribution function

∂C

∂u
=

v (1− θ(1 − v))

(1− θ(1 − u)(1− v))
2

Density function

c(u, v) =
1 + θ(u + v + uv − 2)− θ2(u + v − uv − 1)

(1− θ(1 − u)(1− v))
3

Dependence parameter
θ ∈ [−1, 1)

Kendall’s tau

τ =

(
3θ − 2

3θ

)
− 2

3

(
1− 1

θ

)2

ln(1 − θ)

Copula class: Archimedean. The generator function is shown in Table 3.1.
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A. Selected copula functions

A.2 Clayton

Distribution function

C(u, v) = max
{
(u−θ + v−θ − 1)−1/θ, 0

}

Conditional distribution function

∂C

∂u
= u−θ−1

(
u−θ + v−θ − 1

)− 1
θ −1

Density function

c(u, v) = (1 + θ) (uv)
−θ−1 (

u−θ + v−θ − 1
)−2−1/θ

Dependence parameter
θ ∈ [−1,∞)\{0}

Kendall’s tau

τ =
θ

θ + 2

Copula class: Archimedean. The generator function is shown in Table 3.1.

A.3 Farlie-Gumbel-Morgenstern

Distribution function

C(u, v) = uv (1 + θ(1 − u)(1− v))

Conditional distribution function

∂C

∂u
= v2 (θ(2u− 1)) + v (1 + θ(1− 2u))

Density function
c(u, v) = 1 + θ(1− 2u)(1− 2v)

Dependence parameter
θ ∈ [−1, 1]

Kendall’s tau

τ =
2

9
θ

Copula class: Nor Archimedean, nor elliptical.
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A.4 Frank

A.4 Frank

Distribution function

C(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)

Conditional distribution function

∂C

∂u
=

e−θu(e−θv − 1)

(e−θu − 1)(e−θv − 1) + (e−θ − 1)

Density function

c(u, v) =
−θ(e−θ − 1)e−θ(u+v)

((e−θu − 1)(e−θv − 1) + (e−θ − 1))
2

Dependence parameter

θ ∈ (−∞,∞)\{0}

Kendall’s tau

τ = 1− 4

θ

[
1− 1

θ

∫ θ

0

t

et − 1
dt

]

Copula class: Archimedean. The generator function is shown in Table 3.1.

A.5 Gaussian

Distribution function

C(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

e−
1
2 t′Σ−1t

2π|Σ|1/2
dt1dt2

where Σ is a correlation matrix with Σ12 = θ

Density function

c(u, v) =
(
1− θ2

)1/2
exp

(
− (x2 + y2 − 2θxy)

2(1− θ2)
+

(x2 + y2)

2

)

where x = Φ−1(u) and y = Φ−1(v)

Dependence parameter
θ ∈ (−1, 1)

Kendall’s tau

τ =
2

π
sin−1(θ)
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A. Selected copula functions

Copula class: Elliptical.

A.6 Gumbel

Distribution function

C(u, v) = exp
(
−(ũθ + ṽθ)1/θ

)

where ũ = −ln(u) and ṽ = −ln(v)

Conditional distribution function

∂C

∂u
=

(
ln u

ln C(u, v)

)θ−1
C(u, v)

u

Density function

c(u, v) =
C(u, v)

uv

(ũṽ)
θ−1

(ũθ + ṽθ)
2−1/θ

(
(ũθ + ṽθ)1/θ + θ − 1

)

where ũ = −ln(u) and ṽ = −ln(v)

Dependence parameter
θ ∈ [1,∞)

Kendall’s tau

τ = 1− 1

θ

Copula class: Archimedean. The generator function is shown in Table 3.1.
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Appendix B

Benchmark functions

This appendix shows a brief description of the test functions selected for this
thesis.

B.1 Ackley

Mathematical definition

g(x) = −20 · exp



−0.2

√√√√1

d
·

d∑

i=1

x2
i



− exp

(
1

d
·

d∑

i=1

cos(2πxi)

)
+ 20 + exp(1)

Search domain
x ∈ [−10, 10]d

Global minimum
g(0) = 0

Properties: Multimodal, non-separable.

B.2 Cigar

Mathematical definition

g(x) = x2
1 +

d∑

i=2

106x2
i

Search domain
x ∈ [−10, 5]d

Global minimum
g(0) = 0
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B. Benchmark functions

Properties: Unimodal, separable.

B.3 Cigar Tablet

Mathematical definition

g(x) = x2
1 +

d−1∑

i=2

104x2
i + 108x2

d

Search domain
x ∈ [−10, 5]d

Global minimum
g(0) = 0

Properties: Unimodal, separable.

B.4 Ellipsoid

Mathematical definition

g(x) =
d∑

i=1

106 i−1
d−1 x2

i

Search domain
x ∈ [−10, 5]d

Global minimum
g(0) = 0

Properties: Unimodal, separable.

B.5 Griewangk

Mathematical definition

g(x) = 1 +

d∑

i=1

x2
i

4000
−

d∏

i=1

cos

(
xi√

i

)

Search domain
x ∈ [−600, 600]d

Global minimum
g(0) = 0

Properties: Multimodal, non-separable.
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B.6 Rastrigin

B.6 Rastrigin

Mathematical definition

g(x) =

d∑

i=1

(x2
i − 10cos(2πxi) + 10)

Search domain
x ∈ [−5.12, 5.12]d

Global minimum
g(0) = 0

Properties: Multimodal, separable.

B.7 Rosenbrock

Mathematical definition

g(x) =

d−1∑

i=1

[100 · (xi+1 − x2
i )

2 + (1 − xi)
2]

Search domain
x ∈ [−10, 10]d

Global minimum
g(1) = 0

Properties: Unimodal, non-separable.

B.8 Schwefel 1.2 (Quadric)

Mathematical definition

g(x) =
d∑

i=1




i∑

j=1

xj




2

Search domain
x ∈ [−40, 60]d

Global minimum
g(0) = 0

Properties: Unimodal, non-separable.
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B. Benchmark functions

B.9 Sphere Model

Mathematical definition

g(x) =
d∑

i=1

x2
i

Search domain
x ∈ [−600, 600]d

Global minimum
g(0) = 0

Properties: Unimodal, separable.

B.10 Trid

Mathematical definition

g(x) =
d∑

i=1

(xi − 1)2 −
d∑

i=2

xixi−1

Search domain
x ∈ [−d2, d2]d

Global minimum

g(x) =
−d(d + 4)(d− 1)

6

Properties: Unimodal, non-separable.

B.11 Two Axes

Mathematical definition

g(x) =

⌊d/2⌋∑

i=1

106x2
i +

d∑

i=⌊d/2⌋

x2
i

Search domain
x ∈ [−10, 5]d

Global minimum
g(0) = 0

Properties: Unimodal, separable.
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B.12 Zakharov

B.12 Zakharov

Mathematical definition

g(x) =

d∑

i=1

x2
i +

(
d∑

i=1

0.5ixi

)2

+

(
d∑

i=1

0.5ixi

)4

Search domain
x ∈ [−5, 10]d

Global minimum
g(0) = 0

Properties: Unimodal, non-separable.
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México. In 1996 he started his studies in applied mathematics at the Univer-
sidad Autónoma de Aguascalientes and received his bachelor’s degree 5 years
later.

In 2001 Rogelio moved to Guanajuato, México where he followed a master
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cuencias naturales para vigas elásticas con efecto de cortante e inercia rotacional.
Caso empotrado-articulado. Revista Internacional de Métodos Numéricos para
Cálculo y Diseño en Ingenieŕıa, 21(1):3–21, 2005.
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Ciencias Aplicadas, ITESM-CIMNE, 2004.
Available at
http://congress.cimne.upc.es/mty2004/memorias/html/III Congreso.htm
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