Contenido

Introducción 1			
1	Pre 1.1 1.2 1.3	liminaresDefiniciones y resultados generalesConstrucción de una n -cuca para un enlace dadoDe n -cuca a k -cuca con $k < n$	7 7 11 13
2	Pro 2.1 2.2 2.3 2.4	piedades básicas de las 3-cucas Resultados básicos	17 17 24 31 34
3	Prin 3.1 3.2 3.3 3.4 3.5 3.6 3.7	ncipales resultados sobre 3-cucasPresentación en arcos para 3-cucasAplanamientoProblema inversoGráfica de vecindades de las órbitas de una 3-cuca dadaMovidas de 3-cuca3.5.1Movida 13.5.2Movida 23.5.3Movida 33.5.4Movida 43-cucas HorizontalesMadejas y el paréntesis de Kauffman para 3-cucas	37 42 44 56 58 59 61 63 65 70 80
4 <i>n</i> -cucas, para $n \ge 4$		87	
Bi	31bliografia		

INTRODUCCIÓN

Introducción

La teoría de nudos es de las ramas más nuevas de la matemática, tan nueva que se estudia de manera formal sólo a partir del siglo XX.

Es increíble que algo como los nudos, que ha estado presente durante toda la historia del hombre no haya ocupado su mente más que de forma artística o totalmente práctica (útil). Pero una vez abierta la puerta de la matemática de los nudos fue difícil detener la imaginación y el hambre de conocimiento de los matemáticos, tanto que hoy en día algunos de los problemas más interesantes son sobre teoría de los nudos.

Unas de las preguntas que más se obsessiona en hacer el matemático son: ¿Cuántos hay? y ¿Cómo son todos los que hay? Estas preguntas también se aplican a los nudos. Cuántos hay es fácil de responder: Hay una infinidad.

La segunda pregunta ha mantenido ocupados a los matemáticos-topólogos-nudólogos que los estudian a veces desde un punto de vista geométrico, otras topológico, combinatorio o algebraico. Ya se han inventado algunas formas de distinguir nudos, pero aún no hay un método que distinga efectivamente a dos nudos. Todavía no se sabe diferenciar dos nudos cualesquiera, pero sí se han clasificado algunas familias de nudos, por ejemplo, los llamados *enlaces racionales* a los que puede asociárseles un número racional sin ambigüedad.

En el libro "Calidoscopios y 3-Variedades" J. M. Montesinos construye el espacio lente L(5,2) como la cubierta doble ramificada de la esfera S^3 .

En seguida daremos una prueba alternativa, tal vez más intuitiva.

Tomemos una 3-bola B^3 y sea C el ecuador de $S^2 = \partial B^3$, marcamos 2p puntos (que llamaremos **nodos**) $v_i = (\cos \frac{2\pi i}{2p}, \sin \frac{2\pi i}{2p}) \operatorname{con} i = 0, \dots 2p - 1$. Tomamos dos arcos simples l_1 , l_2 que son bisectrices de los hemisferios definidos por C con extremos en v_0 y v_p para el arco l_1 ; v_q y v_{q+p} para l_2 (ver Figura 1).

Figura 1. Dos arcos inscritos en ∂B^3 .

Cada arco l_i define una reflexión ρ_i en su hemisferio.

 v_{5}

Figura 2

Podemos visualizar las reflexiones trazando arcos simples que pasan debajo de $l_1 y l_2 y$ que van uniendo parejas de nodos equivalentes bajo ρ_1 y ρ_2 (ver Figura 3).

Figura 3

Estos arcos definen caminos sobre el plano. Podemos colorear los dos caminos que comienzan en los extremos de l_1 y l_2 .

Estos caminos son intervalos (ver Lema 1.12).

Dos nodos consecutivos v_i, v_{i+1} tienen dos colores distintos, para todo i.

En la 3-bola B^3 tomamos una vecindad U del ecuador C, esto es, un toro sólido, y definimos $V = \overline{B^3 - U}.$

Por un lado V es una 3-bola con dos discos disjuntos marcados en su frontera y en cada uno de ellos está propiamente encajado un segmento de l_i . Al hacer las identificaciones que generan las reflexiones, el resultado es un 2-ovillo \overline{V} , donde los hilos son la imagen de $l_1 \cap V \ge l_2 \cap V$.

La parte divertida está en U. Tomamos 2p discos meridianos de U de tal manera que cada componente del exterior contenga un solo nodo v_i ; denotamos a cada una de estas bolas como B_i^3 , si $v_i \in B_i^3$ (ver Figura 4). Cada bola B_i^3 hereda el color de su nodo v_i . Para recuperar U se identifica B_i^3 con B_{i+1}^3 a lo largo de su disco meridiano común.

En el plano esta construcción se ve como en la Figura 2.

Figura 4

Si identificamos las bolas B_i^3 usando las reflexiones ρ_1 y ρ_2 , obtenemos dos bolas Q_1 y Q_2 (digamos que Q_1 es la unión de las bolas con *i* impar y Q_2 es la unión de las bolas con *i* par). Cada bola B_i^3 se pega con una bola B_j^3 y una bola B_k^3 a lo largo de un disco, respectivamente,

excepto B_0 , B_p , B_q , B_{p+q} . En cada una de estas bolas un disco de $B_i^3 \cap \partial B^3$ se identifica consigo mismo bajo la reflexión ρ_l correspondiente (ver Figura 5).

Figura 5

Las imágenes de los discos meridianos que definen a las B_i^3 se ven en Q_k como un disco D_k . Para recuperar $\frac{U}{\rho_1 \cup \rho_2}$, debemos identificar D_1 con D_2 y obtenemos una 3-bola \overline{U} con un par

de arcos propiamente encajados que son la imagen de $(l_1 \cup l_2) \cap U$, esto es, \overline{U} es un 2-ovillo. En nuestra representación plana $U = \bigcup B_i^3$ se ve como en la Figura 6 y marcamos la visualización de las reflexiones como antes pero ahora con parejas de discos meridianos, para obtener vecindades de los caminos con extremos en l_1 y l_2 (ver Figura 7).

Estas vecindades o regiones en particular pertenecen a $U \ge V$ luego también a $\overline{U} \ge \overline{V} \ge 0$ nos indican cómo se pegan estos dos 2-ovillos a lo largo de sus fronteras, esto es, partiendo de los extremos de $l_1 \ge l_2 \ge 0$ siguiendo las vecindades de los caminos. Obtenemos de esta manera S^3 con el enlace racional (p, q) inscrito.

Para contruir la cubierta doble ramificada a lo largo del enlace (p, q), tomamos dos copias de B, digamos B_1 y B_2 , e identificamos las dos caras contenidas en B_1 con las dos caras contenidas en B_2 según lo indican las reflexiones ρ_i . Claramente el resultado es el espacio lente L(p, q).

Para mayores detalles ver la prueba del Teorema 2.14 (página 28).

Figura 7

Es fácil caer en la tentación de preguntar ¿qué pasa si en lugar de tener dos regiones en la frontera de una 3-bola tenemos tres, o cuatro, o n regiones? y ¿ qué pasaría con la cubierta doble ramificada; qué espacio topológico es? ¿también la ramificación es un enlace? ¿cuál es la "traducción" de este espacio al plano? Y hasta podríamos preguntarnos si esta manera de generar espacios y enlaces nos ayuda a clasificarlos.

En este trabajo damos respuesta a algunas de estas preguntas. Definimos como *n*-cuca al espacio cociente $\frac{B^3}{\sim}$ donde se identifican *n* regiones de la frontera de la 3-bola de una manera similar a la identificación que hace Montesinos. En esta definición usamos una gráfica plana Γ sobre ∂B^3 donde cada cara es un disco; colocamos un número par de vértices en la frontera de cada cara de tal manera que las caras contiguas comparten vértices y una "bisectriz" en cada cara a lo largo de la cual haremos la identificación mediante una reflexión.

Para *n*-cucas en general se puede asociar el grupo generado por las permutaciones en los vértices de las caras de Γ dadas por las reflexiones de cada cara. Hasta el momento este grupo dice poco pero si agregamos las transposiciones que generan las "bisectrices" este grupo nos permite saber cuántas componentes tiene el enlace, por ejemplo. Otro problema interesante es

INTRODUCCIÓN

dar sólo las órbitas de estos grupos asociados a una n-cuca y recuperar la n-cuca y, si es posible, hacer esto de manera única.

La mayoría de los resultados de esta tesis se refieren a 3-cucas. El Teorema 2.14 muestra que el espacio cociente de la 3-bola con las identificaciones en la frontera también es S^3 y que la variedad generada por las "bisectrices" es un enlace. Esto nos permite trabajar con libertad con el enlace asociado a la 3-cuca que es la traducción de las identificaciones en la frontera de la 3-bola al plano. A la traducción en el plano le asociamos seis números a los que, queriendo generalizar los enlaces racionales, nos gusta agrupar en parejas (o sea, los pensamos como tres números racionales *sin reducir*).

Tomamos a estos seis números en el conjunto de los naturales. Estas sextetas se pueden ordenar usando algo parecido al orden lexicográfico y obtenemos un buen orden. Podemos generar infinidad de nudos a partir de las sextetas de números positivos. Todavía no entendemos si hay una relación topológico-algebraica entre estas sextetas de números y las 3-cucas o los nudos que generan. Sólo tenemos un par de resultados al respecto.

Aún entre las 3-cucas hay algunas que son nuestras favoritas, las llamamos 3-cucas "horizontales", son aquellas que una de sus caras tiene solamente arcos con extremos en la misma arista de la gráfica Γ ; a estos arcos los llamamos arcos "horizontales". Una pregunta interesante es si toda 3-cuca se puede llevar a una 3-cuca horizontal usando "movidas de cuca" (éstas son movidas en la proyección plana de una 3-cuca tales que no cambian la "estructura de cuca"). El Teorema 3.29 muestra que muchas 3-cucas pueden ser llevadas a 3-cucas horizontales usando movidas de cuca.

A continuación se describe el contenido de cada capítulo.

En el Capítulo 1 se definen las *n*-cucas, su diagrama, su enlace asociado, su enlace geométrico y la gráfica tipo Cayley de una *n*-cuca. Además se define el grupo de una *n*-cuca y se dan algunos resultados sobre estas definiciones. Se define la reducción de una *n*-cuca a una *k*-cuca con k < n y se da una condición de cuándo es posible hacer tal reducción. También se expone un algoritmo para construir una *n*-cuca a partir de una proyección de un enlace dado.

Los Capítulos 2 y 3 están centrados en el estudio de las 3-cucas. En el primero se obtienen resultados sobre el grupo de una 3-cuca, la relación entre el enlace asociado y el enlace geométrico de una 3cuca, relación que permite trabajar con los diagramas de cucas y obtener, a partir de estos, resultados sobre sus enlaces asociados. Se da una manera de codificar una 3-cuca con una sexteta de números enteros positivos (trabajo de D. Tejada y M. Toro) que es útil para generar 3-cucas computacionalmente y detectar, de aquí, propiedades sencillas de los enlaces asociados a estas, como el número de componentes o el tipo de nudo. Mientras que en el segundo se presenta también un algoritmo para obtener la presentación en arcos de una 3-cuca ([C]) y otro para encontrar la 3-cuca a partir de sus tres órbitas. Se introducen movidas de 3-cucas que son útiles para demostrar que muchas 3-cucas se pueden llevar a una 3-cuca horizontal. Por último se relacionan los resultados de 3-cucas horizontales con el álgebra de madejas, el polinomio paréntesis de Kauffman y el polinomio de Jones.

En el Capítulo 4 se menciona cómo debe ser la gráfica para una *n*-cuca con $n \ge 4$ y se observa que sólo para n = 4 la gráfica es única, así que quedan abiertas preguntas como: ¿Qué gráficas se deben usar para *n*-cucas con $n \ge 5$? ¿Cuáles son las relaciones topológico-algebraicas entre los números $p_1, p_2, p_3, n_1, n_2, n_3$ que definen una 3-cuca y el enlace asociado? ¿Se puede reconstruir la *n*-cuca a partir de las órbitas del grupo $\langle \rho_1, \rho_2, \ldots, \rho_n \rangle$ con ρ_i la permutación inducida por la bisectriz *i*-ésima? ¿Cómo se puede usar la teoría del álgebra de madejas para calcular el polinomio de Jones del enlace asociado a una *n*-cuca? etc., etc.

INTRODUCCIÓN

Capítulo 1

Preliminares

1.1 Definiciones y resultados generales

Sea $B^n = D^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, definimos como la *n*-bola a un subespacio homeomorfo a B^n en \mathbb{R}^m con $n \le m$.

Sea X un conjunto finito, S(X) es el grupo de permutaciones de elementos de X.

Definición 1.1. Un espacio topológico X se llama **complejo CW finito de dimensión 1** si existe un conjunto discreto finito $X^0 \subset X$ y X se obtiene de X^0 al añadirle un número finito de 1-células.

El conjunto discreto finito X^0 se llama el **conjunto de vértices** de X y el conjunto de 1-células de X se llama el **conjunto de aristas** de X.

Nota. Estos complejos se conocen como "gráficas realizadas" o simplemente "gráficas". En el resto del texto los llamaremos "**gráficas**" o "**gráficas finitas**".

Definición 1.2. Sea Γ una gráfica finita, entonces Γ se puede "codificar" con la pareja del conjunto de sus vértices V y un subconjunto E de $V \times V$ tal que $e \in E$ si y sólo si las entradas de e son extremos de una arista de Γ . A la pareja (V, E) se le llama **gráfica abstracta simple asociada a** Γ .

Cuando hay más de una arista entre dos vértices de Γ se añaden subíndices a los elementos correspondientes de E de tal manera que haya una correspondencia biyectiva entre las parejas de los extremos de las 1-células de Γ y los elementos de E. Al resultado se le llama la **gráfica abstracta asociada a** Γ .

Observación 1.3. Dada una gráfica abstracta es fácil construir una gráfica finita que la <u>realiza</u>.

Definición 1.4. Dada una gráfica finita Γ encajada en la esfera S^2 , definimos una **cara** de Γ como la cerradura de una componente conexa de $S^2 - \Gamma$.

Definición 1.5. Tomemos una gráfica finita Γ en S^2 con n caras P_1, \ldots, P_n , tal que no tenga vértices de valencia 1 o lazos, esto es, no se permite que existan vértices que sólo sean vértices de una única arista o aristas con ambos extremos en un mismo vértice.

Supongamos que para cada $i, P_i \cong D^2$ y que cada cara P_i tiene un número par de puntos $\{v_1, \ldots, v_{2p_i}\}$ marcados en ∂P_i pero tal que ningún v_j es un vértice de la gráfica Γ y $2p_i \ge 4$. A estos puntos los llamaremos **nodos**.

Por otro lado, si a es una arista de la gráfica Γ y $a = P_i \cap P_j$ para dos caras $P_i \neq P_j$, entonces pedimos que el conjunto de nodos de P_i en a coincida con el conjunto de nodos de P_j en a.

Supongamos también que cada P_i contiene un arco l_i con extremos los nodos x_i e y_i en ∂P_i tal que $\partial P_i - \{x_i, y_i\}$ es la unión de dos intervalos disjuntos con p-1 nodos en cada uno. A l_i le llamamos **bisectriz**. Tomemos todos los l_i arcos ajenos. La condición de que los nodos de cada cara P_i de la gáfica Γ sean al menos cuatro permite que en cada cara haya dos nodos que no pertenecen a la bisectriz de dicha cara.

Por último, definamos para cada $i = 1, ..., n, \varphi_i : P_i \to P_i$ el homeomorfismo reflexión en P_i a lo largo de l_i y que deja invariante al conjunto de nodos de P_i .

Entonces la terna $(\Gamma, \{P_i\}, \{\varphi_i\})$ se llama una *n*-precuca.

Afirmación 1.6. Sea F cara de la gráfica conexa $\Gamma \subset \mathbb{R}^2$, donde Γ no tiene vértices de valencia 1 o lazos, entonces $\partial F \subset \Gamma$.

Prueba. Sea F cara conexa de Γ , entonces existe una componente conexa $A \subset \mathbb{R}^2 - \Gamma$ tal que $\overline{A} = F$, luego $\partial F = \partial A$.

Tomemos $x \in \partial A$ tal que $x \notin \Gamma$, luego $x \in \mathbb{R}^2 - \Gamma$ y por lo tanto está en una de las componentes de $\mathbb{R}^2 - \Gamma$. Si $x \in A$, entonces $\partial A \cap A \neq \emptyset$ lo cual no es posible por ser A abierto de \mathbb{R}^2 . Por lo tanto $x \in B$ con B componente abierta de $\mathbb{R}^2 - \Gamma$ distinta de A, por lo que x no sería punto de acumulación de A; contradicción.

Afirmación 1.7. Sean F y G caras de la gráfica $\Gamma \subset \mathbb{R}^2$, entonces $F \cap G$ es vacío o es unión de aristas y vértices de Γ .

Prueba. Por definición de F y G exiten A y B componentes abiertas ajenas de $\mathbb{R}^2 - \Gamma$; por la afirmación anterior $\partial A, \partial B \subset \Gamma$.

Supóngase que $F \cap G \neq \emptyset$, sea $x \in F \cap G \subset \Gamma$, entonces x es vértice de Γ o está en el interior de una arista de Γ .

Si x es vértice ya terminamos. Supongamos que x está en el interior de una arista de Γ , luego existen $a_x \in \partial F$ y $b_x \in \partial G$ aristas de Γ tales que $x \in b_x$ y $x \in b_x$, esto es, $x \in x_a \cap b_x$. Pero por definición de gráfica, las aristas de Γ se intersecan en vértices, no se intersecan o son la misma arista.

Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una *n*-precuca; para cada *i* la bisectriz l_i de la cara P_i de \mathcal{A} en adelante se llamará **el poste** de P_i . Para el poste l_i , denotaremos por e_{i_1}, e_{i_2} a sus extremos. Escribimos

$$V(\mathcal{A}) := \{ (\varphi_1 \circ \varphi_2 \circ \cdots \circ \varphi_n)^k (e_{i_r}) | i = 1, \dots, n, r = 1, 2, k \in \mathbb{Z} \}$$

como el conjunto de nodos de \mathcal{A} .

Denotaremos como $V(P_i)$ al conjunto de nodos en la cara P_i . Entonces $V(\mathcal{A}) \subset \bigcup V(P_i)$; si $V(\mathcal{A})$ es un subconjunto propio de $\bigcup V(P_i)$, diremos que \mathcal{A} es una *n*-precuca redundante; si $V(\mathcal{A}) = \bigcup V(P_i)$, diremos que \mathcal{A} es una *n*-cuca.

Dada a una arista de Γ , denotaremos como V(a) al **conjunto de nodos de** \mathcal{A} en a.

Construiremos el diagrama de una n-cuca \mathcal{A} como sigue:

Para cada i = 1, ..., n, si $\#(P_i \cap V(\mathcal{A})) = 2p_i$, entonces dibujamos en P_i un arco l_i y $p_i - 1$ intervalos ajenos $a_1, a_2, ..., a_{p_i-1}$ propiamente encajados que interconectan a los vértices simétricos en P_i , con respecto a l_i ; hacemos esto de tal manera que los extremos de $a_i, x_i \in y_i$,

no estén en el poste l_i ; que x_j e y_j se intercambien bajo la reflexión φ_i ; y que a_j se interseque con el poste l_i en exactamente un punto. Marcamos cada intersección de los a_j con l_i como un paso inferior de l_i . El resultado de hacer esto en todas las caras de Γ se llama el **diagrama de** \mathcal{A} y se denota por $D(\mathcal{A})$. Ver Figura 1.1.

Figura 1.1. Construcción del diagrama de una n-cuca en una cara.

Figura 1.2. Diagrama asociado a una representación de los Anillos de los Borromeo como una 3-cuca.

Afirmación 1.8. Sea \mathcal{A} una n-cuca. Entonces el diagrama de \mathcal{A} es el diagrama de un enlace L.

Prueba. Por la Afirmación 1.7 y por definición de *n*-cuca, para dos caras P_i y P_j con arista en común *a*, los nodos de P_i en *a* son los mismos que los nodos de P_j en *a*. Luego si *a* no es vacío, entonces para cada nodo *v* en *a* existen dos intervalos a_{i_l} y a_{j_k} del diagrama de \mathcal{A} , ambos con un extremo en *v*; o bien, si *v* es un extremo de poste, digamos de l_i , existe un intervalo a_{j_k} del diagrama de \mathcal{A} en P_j con extremo *v*.

Definición 1.9. Sea \mathcal{A} una *n*-cuca; al enlace asociado al diagrama de \mathcal{A} se le llama el **enlace** asociado a \mathcal{A} .

Definición 1.10. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una *n*-cuca y definimos

$$M(A) = \frac{B^3}{\cup \varphi_i}$$

con $\pi : B^3 \to M(A)$ la proyección canónica. Entonces la pareja $(M(A), \pi(\bigcup l_i))$ se llama el **enlace geométrico** de \mathcal{A} .

Por otro lado, el homeomorfismo φ_i induce una permutación de $V(\mathcal{A})$ que llamaremos ρ_i . Esto dado la siguiente nota.

Nota. Consideraremos la manera de recorrer la gráfica Γ como el trazo de una letra "G" partiendo de su vértice "derecho" hasta su vértice "izquierdo" al recorrer la arista de "arriba", continuando de nuevo hasta su vértice derecho al recorer la arista de "abajo" y terminando por la arista de en "medio" en el vértice "izquierdo" (ver Figura 1.3). Las aristas tendrán el sentido inducido. Y este sentido se seguirá considerando a menos que se indique lo contrario. Luego, los nodos se pueden numerar siguiendo el sentido de las aristas.

Figura 1.3

Observese que ρ_i es un producto de biciclos de los nodos de la cara P_i y que deja fijos a los extremos de l_i y a los nodos de $V(\mathcal{A})$ que no están contenidos en P_i .

Denotemos como $G(\mathcal{A}) = \langle \rho_1, \dots, \rho_n \rangle$ al subgrupo de permutaciones del grupo simétrico de $V(\mathcal{A}), S(V(\mathcal{A}))$, donde ρ_i es la permutación inducida por φ_i para cada $i = 1, \dots, n$.

Definición 1.11. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una *n*-cuca, entonces la **gráfica tipo Cayley** de \mathcal{A} es la gráfica abstracta de las órbitas de $G(\mathcal{A})$ en $V(\mathcal{A})$, esto es, es la gráfica que tiene como 0-celdas al conjunto $V(\mathcal{A})$ y la pareja $\{v, w\}$ es una arista si y sólo si $v \neq w$ y existe un $i \in \{1, \ldots, n\}$ tal que $\rho_i(v) = w$, con $v, w \in V(\mathcal{A})$.

Lema 1.12. Si \mathcal{A} es una n-cuca, entonces la realización de la gráfica tipo Cayley de \mathcal{A} es la unión ajena de n componentes, donde cada componente está formada por dos nodos de grado uno y varios de grado dos.

Prueba. Si en el diagrama de \mathcal{A} , $D(\mathcal{A})$, borramos las bisectrices l_1, \ldots, l_n , obtenemos n arcos que realizan a la gráfica tipo Cayley de \mathcal{A} , por la definición de $D(\mathcal{A})$.

Observación 1.13. La realización de cada órbita de $G(\mathcal{A})$ en la gráfica tipo Cayley de \mathcal{A} tiene exactamente dos extremos de poste.

Observación 1.14. Si σ_i es la trasposición que intercambia los extremos de l_i , entonces el subgrupo $\langle \rho_1, \ldots, \rho_n, \sigma_1, \ldots, \sigma_n \rangle \subset S(V(\mathcal{A}))$ tiene tantas órbitas como componentes tiene el enlace asociado a \mathcal{A} .

Observación 1.15. El subgrupo $\langle \rho_1 \sigma_1, \rho_2 \sigma_2, \dots, \rho_n \sigma_n \rangle$ también tiene tantas órbitas como componentes tiene el enlace asociado a \mathcal{A} .

1.2 Construcción de una *n*-cuca para un enlace dado

Dada una proyección reducida con n postes (n > 1) de un enlace L no separable construiremos una gráfica plana sobre $\pi(L)$ tal que cada cara sea un disco y cada poste, y sus pasos inferiores, estén contenidos en una y sólo una cara de la gráfica. Esto será suficiente para definir la n-cuca de la proyección $\pi(L)$, ya que la intersección entre la gráfica y $\pi(L)$ definirá los nodos de la cuca, cada poste definirá una bisectriz y ésta a su vez definirá el homeomorfismo que se visualiza como la reflexión de la cara a lo largo de la bisectriz, es claro que esta reflexión la dan los arcos inferiores al poste.

Construcción: Denotamos por l_i cada paso superior de $\pi(L)$ y tomamos una vecindad de l_i relativa a los extremos denotada por D_i .

Observación 1.16. Si en $\pi(L) \cup (\bigcup_i D_i)$ tenemos una situación como la de la Figura 1.4, entonces movemos la vecindad D_j , con todos los arcos que involucra, por debajo de uno de los postes l_i o l_k para obtener la Figura 1.5.

Figura 1.4

De ser necesario aplicamos las Movidas I y II de Riedemestier para reducir la proyección.

Nótese que siempre podemos hacer esta movida para eliminar fenómenos como el de la Figura 1.4, ya que la única manera de que esto no sea posible es teniendo un circuito cerrado que contenga a D_j Figura 1.6, pero esto implica que en la proyección tengamos componentes que pasan siempre por debajo de los postes, lo cual no es posible por ser L no separable.

Figura 1.6

Enseguida construimos los conjuntos de arcos

 $\Omega_{ij} = \{ a \subset \overline{\mathbb{R}^2 - \bigcup D_k} | a \text{ es un arco con un extremo en } D_i \text{ y el otro extremo en } D_j \}.$

Nótese que Ω_{ij} puede ser vacío y por la observación anterior todos los arcos en Ω_{ij} son contiguos.

Ahora colocamos arcos $\alpha_{i,j}$ y $\beta_{i,j}$ en $\mathbb{R}^2 - \bigcup_k \overline{D_k} - \bigcup_{i,j} \Omega_{ij}$, ambos arcos con uno de sus extremos en ∂D_i y el otro en ∂D_j siempre que sea posible, de tal manera que la región definida por ∂D_i , ∂D_j , $\alpha_{i,j}$ y $\beta_{i,j}$ contenga a Ω_{ij} .

Así la región

$$\bigcup_{i} \partial D_i \cup \bigcup \alpha_{i,j} \cup \bigcup \beta_{i,j}$$

genera una gráfica en el plano, pero todavía no es como queremos.

Tomamos esta gráfica y D_1 y D_j donde *j* es tal que $\alpha_{1,j}$ y $\beta_{1,j}$ existen. Eliminamos la arista sobre ∂D_1 que es parte de la región que forman ∂D_1 , ∂D_j , $\alpha_{1,j}$ y $\beta_{1,j}$. De manera sistemática continuamos eliminando aristas de $D_2, D_3, \ldots, D_{n-1}$ siempre que $\alpha_{i,j}$ y $\beta_{i,j}$ existan, con i < je $i, j = 1, \ldots n - 1$.

Por último, si en esta nueva gráfica existen regiones que no contengan arcos de $\pi(L)$ entonces colapsamos cada región en un punto. Así cada cara de la gráfica resultante tendrá uno y sólo un poste l_i de $\pi(L)$.

Ejemplo 1.17. Tomemos la siguiente proyección del trébol y apliquemos el método expuesto en esta sección. Ver Figura 1.7.

1.3 De *n*-cuca a *k*-cuca con k < n

Definición 1.18. Una *n*-cuca se **reduce** a una *k*-cuca, con k < n, si encontramos una representación de ella como una *k*-cuca.

Primero probaremos bajo qué condiciones es posible reducir el número de puentes de un enlace.

Definición 1.19. Sea \mathcal{D} el diagrama de un enlace L con n puentes y l_i un puente de L con extremos e_{i1}, e_{i_2} . Definimos al arco en L que contiene a e_{ij} , con j = 1, 2, y no pasa por l_i como la continuación de l_i que sale del extremo e_{ij} .

Teorema 1.20. Un enlace L con k puentes se reduce a un enlace con k-1 puentes si para al menos un puente l_i una de sus continuaciones, definida como α , comparte extremo con un puente l_t distinto de l_i , tal que $\alpha \cap l_t = \emptyset$.

Prueba. Tomemos α continuación del puente l_i con un extremo en e_{i1} y el otro extremo en e_{k1} que es extremo del puente l_t , donde $\alpha \cap l_t = \emptyset$. Luego "movemos" los pasos inferiores de l_i a lo largo de α hasta llegar al puente l_t . Esto último se hace de la siguiente manera: Tomamos el paso inferior de l_i más cercano a e_{i1} y definimos por a al intervalo de este paso inferior que resulta de cortar un poco antes y un poco después del cruce que marca el paso inferior. Sea β un arco con extremos los extremos de a tal que el disco formado por $a \cup \beta$ contiene a α y $\beta \cap l_t$ sea un sólo punto (que se marca en el diagrama como un paso inferior), β no interseca a otras continuaciones de puente y marcamos los cruces de β con los puentes como pasos inferiores.

Por último en el diagrama \mathcal{D} cambiamos el arco a por el arco β obteniendo un nuevo diagrama \mathcal{D}' con a lo más el mismo número de puentes, pero con un cruce inferior menos en uno de ellos (l_i) .

Continuamos este proceso hasta "mover" todos los pasos inferiores de l_i y así habremos reducido el número de puentes en 1. \blacksquare

Figura 1.7

Ejemplo 1.21. En la Figura 1.8 se toma una proyección del trébol y se aplica el método descrito en la demostración anterior.

Usando este resultado y la sección anterior (Seccin 1.2), obtenemos el Teorema deseado:

Teorema 1.22. Una k-cuca \mathcal{A} se reduce a una (k-1)-cuca si al menos una de sus órbitas comparte extremos con dos postes distintos y al seguir la realización de esta órbita en la gráfica tipo Cayley de \mathcal{A} , ésta no se interseca con el interior de al menos uno de los postes con los que comparte un extremo.

Figura 1.8

CAPÍTULO 1. PRELIMINARES

Capítulo 2

Propiedades básicas de las 3-cucas

Este capítulo es fundamental para el desarrollo de la teoría de 3-cucas. Ya que abundamos en las propiedades de sus permutaciones, de la gráfica tipo Cayley de \mathcal{A} y usando estas herramientas, y algunas más, podemos enunciar el Teorema 2.14 que nos permite manipular las 3-cucas como enlaces.

En la Sección 2.3 damos una manera de codificar las 3-cucas en una sexteta de números naturales. Luego, los enlaces que pueden representarse como una 3-cuca pueden ser entendidos como una sexteta de números enteros, en el Capítulo 3 abundaremos en este tema.

Por último describimos la manera de calcular el grupo fundamental de una 3-cuca. Sobre este tema no daremos mayores resultados.

2.1 Resultados básicos

La única gráfica conexa y sin lazos en ∂B^3 que tiene exactamente tres caras que son discos, es una gráfica tito teta mayscula; así que consideraremos solamente 3-cucas que tienen como gráfica asociada una gráfica tipo Θ .

Como ya observamos las órbitas de $G(\mathcal{A})$ para la 3-cuca \mathcal{A} son exactamente tres, que se realizan en la gráfica tipo Cayley de \mathcal{A} como tres intervalos ajenos. De aquí en adelante, para facilitar la notación asignaremos un color distinto a cada órbita (usaremos color rojo, azúl y verde para éstas órbitas). Usaremos estas convenciones sin previo aviso.

Observación [Observación Fundamental]. Si \mathcal{A} es una 3-cuca y $v \in V(\mathcal{A})$ se cumple que:

i) Si v es extremo de poste, entonces $\rho_i(v) \neq v$ para una única $i \in \{1, 2, 3\}$,

ii) Si v no es extremo de poste, entonces $\rho_i(v) = v$ para una única $i \in \{1, 2, 3\}$.

Nota. Vamos a estar usando esta última observación repetidamente y también sin previo aviso.

Teorema 2.1. Sea \mathcal{A} una 3-cuca, entonces $G(A) = \langle \rho_1, \rho_2, \rho_3 \rangle$ tiene las mismas órbitas que el grupo cíclico generado por el producto $g_0 := \rho_1 \rho_2 \rho_3 = \rho_3 \circ \rho_2 \circ \rho_1$.

Para que la demostración de este teorema sea evidente enunciaremos y demostraremos algunos lemas. Pero antes daremos algunas definiciones.

Denotaremos por $O_G(x)$ a la órbita de x bajo la acción del grupo G. En adelante O(x) será la órbita de un nodo $x \in V(\mathcal{A})$ bajo $G = G(\mathcal{A})$. Sean $x \in V(\mathcal{A})$ y $H := \langle g_0 \rangle = \langle \rho_1 \rho_2 \rho_3 \rangle$. Definimos el conjunto

$$\Omega(x) = \{ y \in O_G(x) | \forall h \in H, h(x) \neq y \}$$

Mostraremos que $\Omega(x) = \emptyset$.

Lema 2.2. Sea \mathcal{A} una 3-cuca, $x \in V(\mathcal{A})$ y $v, w \in O_G(x) - \Omega(x)$ nodos "consecutivos", esto es, en la gráfica tipo Cayley de \mathcal{A} , los nodos de $V(\mathcal{A})$ que están entre v y w, están en $\Omega(x)$. Entonces entre v y w hay cuando mucho dos nodos de $O_G(x)$.

Prueba. Supongamos que entre $v \neq w$ hay al menos tres nodos de $O_G(x)$.

Aplicamos $g_0 a w$; si $g_0(w)$ está a la izquierda de w respecto al dibujo en la Figura 2.1, como g_0 es producto de sólo tres reflexiones, entonces $g_0(w)$ (que no es elemento de $\Omega(x)$) está entre v y w. Lo cual contradice que v y w sean elementos en $O_G(x) - \Omega(x)$ consecutivos. Si $g_0(w)$ está a la derecha de w, entonces $g_0^{-1}(w)$ está a la izquierda y obtenemos la misma contradicción.

Figura 2.1. Los elementos que no pertenecen a $\Omega(x)$ están marcados por un \blacktriangle .

Lema 2.3. Sea \mathcal{A} una 3-cuca, $x \in V(\mathcal{A})$, si e es un extremo de poste en la órbita de x y v es el nodo adyacente al nodo e en la gráfica tipo Cayley de \mathcal{A} , entonces $e, v \notin \Omega(x)$.

Prueba. Sea w el nodo más cercano a e respecto a la gráfica tipo Cayley de \mathcal{A} tal que $w \notin \Omega(x)$ y tal que $w \neq e$.

Supongamos $v \neq w$. Obsérvese que w es consecutivo a sí mismo recorriendo el intervalo de w hacia e y después de e hacia w; entonces encontramos al menos tres nodos de $O_G(x)$, a saber, $v, e \neq v$, en $\Omega(x)$ que están entre $w \neq w$; obtenemos una contradicción con un argumento similar al de la demostración del lema anterior. Por lo tanto $v = w \neq \alpha(x)$.

Ahora

- i) si $\rho_1(v) = e$, entonces $\rho_2 \ge \rho_3$ dejan fijo a e; por lo tanto $g_0(v) = e \ge \alpha(x)$ (ver 2.3).
- ii) si $\rho_2(v) = e$, entonces $\rho_1(e) = \rho_3(e) = e$. Como una de las reflexiones debe dejar fijo a v, entonces

a) si $\rho_1(v) = v$, entonces $g_0(v) = e$ (ver Fig. 2.4);

b) si
$$\rho_3(v) = v$$
, entonces $g_0^{-1}(v) = e$ (ver Fig. 2.5);
en cualquier caso $e \notin \Omega(x)$.

iii) Si $\rho_3(v) = e$, entonces $g_0^{-1}(v) = e$ y, por lo tanto, $e \notin \Omega(x)$.

Lema 2.4. Sea \mathcal{A} una 3-cuca, $x \in V(\mathcal{A})$ y e un extremo de poste de la órbita de x, supongamos que $e, v_1, v_2, \ldots, v_r, v_{r+1}$ son nodos adyacentes en la gráfica tipo Cayley de \mathcal{A} , en ese orden, y que $v_1, v_2, \ldots, v_r \notin \Omega(x)$. Entonces $v_{r+1} \notin \Omega(x)$.

Prueba. Si r = 1, entonces tenemos lo siguiente:

i) Supongamos que $\rho_1(v_1) = e$. Tenemos que $\rho_2(v_1) = v_1$ o $\rho_3(v_1) = v_1$. Si $\rho_2(v_1) = v_1$ se sigue que $g_0(e) = v_2$ y $v_2 \notin \Omega(x)$.

Supongamos entonces que $\rho_3(v_1) = v_1$; luego si $\rho_3(v_2) = v_2 \Rightarrow g_0(e) = v_2$ y si $\rho_1(v_2) = v_2$, entonces $g_0^{-1}(v_1) = v_2$,

- ii) si $\rho_2(v_1) = e$, entonces si $\rho_1(v_1) = v_1 \Rightarrow g_0(e) = v_2$; así podemos suponer que $\rho_3(v_1) = v_1$; entonces $g_0^{-1}(e) = v_2$,
- iii) si $\rho_3(v_1) = e$, entonces si $\rho_2(v_1) = v_1 \Rightarrow g_0^{-1}(e) = v_2$; luego podemos suponer que $\rho_1(v_1) = v_1$; en caso de que $\rho_3(v_2) = v_2$, entonces $g_0(v_1) = v_2$, y si $\rho_1(v_2) = v_2$, entonces $g_0^{-1}(e) = v_2$.

Para $r\geq 2$ es más fácil. \blacksquare

Prueba.[Teorema 2.1] La demostración es inmediata de los lemas anteriores ya que éstos prueban que $\Omega(x)$ es vacío para cualquier $x \in V(\mathcal{A})$.

Observación 2.5. Si \mathcal{A} es una 3-cuca y ρ_1, ρ_2 y ρ_3 son sus permutaciones, hemos podido diseñar algoritmos para reconstruir el enlace L asociado a \mathcal{A} a partir de { ρ_1, ρ_2, ρ_3 } (por lo tanto podemos calcular el grupo fundamental de L, etc.), no describiremos aquí estos algoritmos.

En vista de esta observación, el teorema probado parecería de una gran importancia, al menos combinatoriamente, pues en vez de estudiar al grupo $\langle \rho_1, \rho_2, \rho_3 \rangle$ que normalmente tiene una gran cantidad de elementos, parecería que basta estudiar al grupo cíclico $\langle \rho_1 \rho_2 \rho_3 \rangle$ que con sus órbitas reconstruye la proyección del enlace L aunque en un orden distinto.

Con miras a probar el teorema principal de este capítulo (Teorema 2.14) enunciaremos algunos lemas y haremos algunas observaciones de éstos.

Lema 2.6 (Técnico). Sean \mathcal{A} una 3-cuca $y \ x \in V(\mathcal{A})$. Si $v, w \in O(x)$ son dos vértices adyacentes en la misma arista a de Γ , con $a = P_i \cap P_j$, y no son extremos de poste, entonces los subintervalos b y c de la gráfica tipo Cayley de \mathcal{A} que pasan por $v \ y \ w$, respectivamente, contenidos en $P_i \cup P_j$, cortan un rectángulo de $P_i \cup P_j$ cuyo interior es ajeno a la gráfica tipo Cayley de \mathcal{A} .

Prueba. Como todos los intervalos de la realización de la gráfica tipo Cayley de \mathcal{A} contenidos en la cara P_i son contiguos en P_i (y lo mismo para P_j) y dado que v y w son adyacentes, luego el interior del rectángulo de $P_i \cup P_j$ cortado por b y c es ajeno a la gráfica tipo Cayley de \mathcal{A} (Fig. 2.7).

Figura 2.7

Lema 2.7. Sea A una 3-cuca, entonces un nodo de cada órbita de G(A) debe ser adyacente a alguno de los vértices de Γ .

Prueba. Sea O_i una órbita arbitraria de $G(\mathcal{A})$, luego al menos existe un nodo v de O_i , i = 1, 2, 3, tal que v sea adyacente a un nodo w de alguna otra órbita O_j , con $j \neq i$.

Si $v \neq w$ no están en la misma arista de Γ , entonces existe un vértice de Γ que los separa por lo que v es adyacente a tal vértice. Supongamos que v y w están en la misma arista de Γ , entonces por el lema anterior las continuaciones de las órbitas en la gráfica tipo Cayley de \mathcal{A} son contiguas. Si éstas permanecen siempre contiguas, entonces los nodos de O_j hacen a \mathcal{A} una 3-precuca redundante. Lo que contradice a que \mathcal{A} sea una 3-cuca.

Lema 2.8. Sean \mathcal{A} una 3-cuca $y \alpha_1, \alpha_2$ arcos en la gráfica tipo Cayley de \mathcal{A} tales que $\alpha_1 y \alpha_2$ son contiguos en la cara P_i , con i = 1, 2, 3. Si $v \in \alpha_1 y w \in \alpha_2$ son nodos en ∂P_i , para algún i, adyacentes entre sí y adyacentes a un mismo vértice de Γ , entonces las continuaciones en la gráfica tipo Cayley de \mathcal{A} de v y w en sentido contrario a $\alpha_1 y \alpha_2$ dejan de ser contiguas.

Prueba. Por ser $v \neq w$ adyacentes a un vértice de Γ existen caras $P_j \neq P_k$ con $j \neq i \neq k$ tales que $v \in P_i \cap P_j \neq w \in P_i \cap P_k$, luego las continuaciones en la gráfica tipo Cayley de \mathcal{A} de $v \neq w$ en sentido opuesto a $\alpha_1 \neq \alpha_2$ están en diferentes caras, por lo que no pueden ser paralelas.

Observación 2.9. Del Lema 2.8 se tiene que si para una 3-cuca no hay nodos en una de las aristas de Γ , entonces los vértices de Γ son bicoloreados, es decir, tiene sólo nodos adyacentes de dos órbitas distintas; mientras que para las 3-cucas con al menos un nodo en cada arista de Γ , los vértices de Γ pueden ser bicoloreados o tricoloreados.

Lema 2.10. Sean \mathcal{A} una 3-cuca $y \ x \in V(\mathcal{A})$ tal que O(x) contiene dos nodos i_1, i_2 adyacentes al mismo vértice de Γ , entonces existen $d_1, d_2 \in O(x)$ adyacentes al otro vértice de Γ .

Prueba. Por estar en una gráfica tipo Teta, i_1, i_2 tienen por lo menos una cara de Γ en común, así podemos suponer que $i_1, i_2 \in P_i$ para algún i.

- **Primer caso.** Tomemos i_1 e i_2 extremos del poste de P_i , entonces P_i tiene sólo dos nodos lo que contradice que cada cara de Γ tiene al menos cuatro nodos. Así que este caso es imposible.
- Segundo caso. Supongamos que i_1 es extremo del poste de P_i e i_2 no; entonces hay una arista a de la gráfica tipo Cayley de \mathcal{A} en P_i que conecta a i_2 con $w_1 = \rho_i(i_2)$. Luego w_1 e i_1 son adyacentes sobre la misma arista de Γ (ver Fig. 2.8 (a)); en caso contrario i_1 es d_1 y w_1 es d_2 . (Ver Fig. 2.8 (b).) Luego supongamos que i_1 y w_1 son adyacentes en la misma arista de Γ . Definamos como \bar{a} al intervalo que es la continuación de w_1 que no pasa por i_2 y b al intervalo que es la continuación de i_1 , claramente \bar{a} no regresa a i_2 después de w_1 ya que las órbitas son intervalos, entonces el otro extremo de la órbita O(x) debe estar en alguno de los extremos de \bar{a} . Si el otro extremo de poste de O(x) está en la continuación de i_2 y no pasa por w_1 entonces \bar{a} y b deberán separarse por un vértice de Γ y ahí se encontrarán d_1 y d_2 ; en caso contrario, esto es, si el otro extremo de O(x)está en \bar{a} , entonces la continuación de b aun después de pasar por el poste con extremo en \bar{a} sigue siendo contiguo a \bar{a} y por lo tanto estas continuaciónes deberán separarse por un vértice de Γ con lo que nuevamente habremos encontrado a d_1 y d_2 .
- **Tercer caso.** $i_1 \in i_2$ no son extremos de poste. Definamos $w_1 := \rho_i(i_1) \ge w_2 := \rho_i(i_2)$, entonces:
 - **Subcaso 3.1** Si w_1 está en la misma arista que i_1 y w_2 está en la misma arista que i_2 , entonces w_1 es d_1 y w_2 es d_2 .(Figura 2.9.)
 - **Subcaso 3.2** Si w_1 y w_2 están en la misma arista, sin pérdida de generalidad, digamos que están en la misma arista que i_1 , entonces tenemos cuatro subsubcasos.

 W_{2}

 P_i

Figura 2.9

 i_2

- Sub-subcaso 3.2.1 Ambos extremos de O(x) están en $a ext{ y } b$ los intervalos que son las continuaciones en la gráfica tipo Cayley de \mathcal{A} de $w_1 ext{ y } w_2$ que no pasan por $i_1 ext{ e } i_2$, respectivamente. Si se encuentra el extremo de poste en a antes que en b, definamos como \overline{b} la continuación de b después del poste con extremo en a(ver Figura 2.10 izquierda), entonces $\overline{b} ext{ y } a$ son contiguas, aun si el otro extremo de O(x) está en la continuación de \overline{b} , y deberán separarse por un vértice de Γ , encontrando así a $d_1 ext{ y } d_2$; en otro caso, o sea, si el poste se encuentra en b antes que en a, definiremos como \overline{a} al intervalo que es la continuación de a despues del poste con extremo en b, entonces $\overline{a} ext{ y } b$ son contiguos (igual que con \overline{b} , aún si se llega al otro extremo de O(x)) y por lo tanto deben separarse con un vértice de Γ .
- Sub-subcaso 3.2.2 Supongamos que los dos extremo de poste de O(x) están en las continuaciones en la gráfica tipo Cayley de \mathcal{A} de i_1 e i_2 sin pasar por w_1 y w_2 , respectivamente. Luego las continuaciones en la gráfica tipo Cayley de \mathcal{A} de w_1 y w_2 que no pasan por i_1 e i_2 , respectivamente, deberán estar separadas por un vértice de Γ , ya que las órbitas son intervalos y no puede haber un poste entre las continuaciones en la gráfica tipo Cayley de \mathcal{A} de w_1 y w_2 (que no pasan por i_1 e i_2 , resp.) que los conecte.

Sub-subcaso 3.2.3 Supongamos que uno de los extremo de poste de O(x) está en el intervalo que es la continuación en la gráfica tipo Cayley de \mathcal{A} de i_1 que no pasa por w_1 . Llamemos a al intervalo que es la continuación de w_1 que no pasa por i_1 y b al intervalo que es la continuación de w_2 que no pasa por i_2 . Obsérvese que el otro extremo de la órbita O(x) no puede estar en a, ya que las órbitas son intervalos, y sí está en la continuación de i_2 (que no pasa por w_2); caemos en el Sub-subcaso (3.2.2) (Ver Figura 2.11.). Pero \bar{a} , que definimos como el intervalo que es la continuación de a después de pasar por el poste con extremo en la continuación en la gráfica tipo Cayley de \mathcal{A} w_2 que no pasa por i_2 , sigue siendo contigua a w_2 ; luego estas dos deberán estar separadas con un vértice de Γ .

Figura 2.11

Sub-subcaso 3.2.4 Un extremo de poste está en el intervalo que es la continuación de i_2 que no pasa por w_2 y el otro extremo en el intervalo que es la continuación en la gráfica tipo Cayley de \mathcal{A} de w_1 que no pasa por i_1 . Es análogo al Sub-subcaso 3.2.3.

Observación 2.11. Puede pasar que uno y sólo un i_l sea igual a uno y sólo un d_k , ya que si una arista de Γ tiene un sólo vértice entonces $i_l = d_k$ es adyacente a cada vértice de Γ

2.2 Teorema principal de 3-cucas

Antes de enunciar y demostrar el teorema principal de este capítulo establezcamos algunas notaciones-construcciones.

Recordemos que la gráfica $\Gamma \subset S^2 \subset B^3$ es una gráfica tipo teta para las 3-cucas.

Sea $U = \mathcal{N}(\Gamma)$ una vecindad regular de Γ en B^3 y escribimos $V = \overline{B^3 - \mathcal{N}(\Gamma)}$.

Daremos dos diferentes descomposiciones de $\mathcal{N}(\Gamma)$ que dependen de si la 3-cuca tiene nodos en cada arista de Γ o no. Obsérvese que ésta es una posibilidad, y por comodidad en caso de que una de las aristas de Γ no contenga nodos de \mathcal{A} tomaremos a esta arista como la arista de en medio.

Nota. Para fijar ideas y que nos sea más fácil la notación y los dibujos, ordenemos las caras de Γ , definamos las aristas de Γr_1 , r_2 y r_3 como se muestra en la Figura 2.12 y denotemos al vértice "izquierdo" de Γ como izq y al "derecho" como der.

Figura 2.12

Sin pérdida de generalidad podemos colocar a Γ de tal manera que para las 3-cucas que no tienen nodos en una de las aristas de Γ , tal arista sea r_3 .

Como ya mencionamos al inicio del capítulo los nodos de la 3-cuca \mathcal{A} se numeran en el sentido que se indica en la Figura 2.13, luego para cada pareja de nodos de una 3-cuca \mathcal{A} , v_i y v_{i+1} , adyacentes en la misma arista de Γ colocamos un arco esencial en $U \cap \partial B^3$ que pase por el punto medio del segmento $\overline{v_i v_{i+1}} \subset \Gamma$. Denotemos a este arco como γ_{i+1} .

Figura 2.13

Hacemos esto de tal manera que la división que hemos marcado en $U \cap \partial B^3$ sea compatible con las reflexiones de \mathcal{A} .

Construcción para 3-cuca con una arista de Γ sin nodos: Para estas 3-cucas agregamos un arco esencial σ en $U \cap \partial B^3$ tal que $\sigma \cap r_1 = \emptyset$, $\sigma \cap r_2 = \emptyset$, $|\sigma \cap r_3| = 1$ y $\gamma_i \cap \sigma = \emptyset$. Por último colocamos un par de arcos τ_1 y τ_2 , donde $\tau_l \subset P_3 \cap U \cap \partial B^3$ es esencial, $\tau_l \cap \gamma_i = \emptyset$, para l = 1, 2 y uno de los extremos de τ_1 es izq mientras que τ_2 tiene un extremo en *der*. Definimos τ como la unión de τ_1 , r_3 y τ_2 . (Ver Figura 2.14.)

De esta manera cada nodo de \mathcal{A} queda contenido en una región de $U \cap \partial B^3$ definida por los arcos $\gamma_i, \sigma \neq \tau$ quedando, así, aislado de los otros nodos de \mathcal{A} .

Por construcción de σ y τ éstos se cortan en exactamente un punto definiendo así dos subintervalos de τ que denotamos por τ_{izq} si el subintervalo de τ contiene al vértice izq y τ_{der} si el subintervalo contiene al vértice der; mientras que los subintervalos de σ que se generan por esta intersección son $\sigma \cap P_1$ y $\sigma \cap P_2$, donde $r_3 = P_1 \cap P_2$.

Construcción para 3-cuca con nodos en cada arista de Γ : Definamos $\alpha_1, \alpha_2 \ge \alpha_3$ tres arcos donde cada uno tiene un extremo en el vértice izq de $\Gamma \ge 0$ otro extremo en $\partial(U) \cap P_1$, $\partial(U) \cap P_2 \ge \partial(U) \cap P_3$, respectivamente, tales que $\alpha_s \cap \Gamma = \{izq\}, |\alpha_s \cap \partial U| = 1 \ge \alpha_s \cap \gamma_i = \emptyset$.

De la misma manera definimos β_1, β_2 y β_3 arcos con un extremo en el vértice der de Γ y el otro extremo en $\partial(U) \cap P_1, \partial(U) \cap P_2$ y $\partial(U) \cap P_3$, respectivamente, tales que $\beta_s \cap \Gamma = \{der\}, |\beta_s \cap \partial U| = 1$ y $\beta_s \cap \gamma_i = \emptyset$. (Vease Figura 2.15.)

Observación 2.12. Los arcos $\gamma_i, \alpha_j, \beta_k$ definen regiones que aislan a los nodos de \mathcal{A} .

Para cada nodo v_i denotamos a los dos rectángulos que lo contienen como $A^l(v_i) \subset P_l$ y $A^m(v_i) \subset P_m$, donde $l, m \in \{1, 2, 3\}$.

Hasta ahora las construcciones son en la superficie $\partial B^3 \cap U$, veamos qué pasa en el interior de B^3 .

Dependiendo de si la 3-cuca tiene nodos en cada arista de Γ o no, definimos los siguientes

Figura 2.14. Ejemplo de 3-cuca con una arista de Γ sin nodos de la 3-cuca.

subconjuntos de U, usando que $U \cong (U \cap \partial B^3) \times I$:

$$m_{i,i+1} = (\gamma_i \times I), \tag{2.1}$$

$$m(\tau_{izq}, \sigma \cap P_l) = (\tau_{izq} \cup (\sigma \cap P_l) \times I), \tag{2.2}$$

$$(\tau_{izq}, \sigma \cap P_k) = (\tau_{izq} \cup (\sigma \cap P_k) \times I),$$
(2.3)

$$m(\tau_{izq}, \sigma \cap P_k) = (\tau_{izq} \cup (\sigma \cap P_k) \times I),$$

$$m(\tau_{der}, \sigma \cap P_l) = (\tau_{der} \cup (\sigma \cap P_l) \times I),$$

$$m(\tau_{der}, \sigma \cap P_k) = (\tau_{der} \cup (\sigma \cap P_k) \times I),$$

$$(2.5)$$

$$(2.5)$$

$$a(\tau_{der}, \sigma \cap P_k) = (\tau_{der} \cup (\sigma \cap P_k) \times I), \qquad (2.5)$$

$$m(\alpha_s, \alpha_t) = ((\alpha_s \cup \alpha_t) \times I)$$
 y (2.6)

$$m(\beta_s, \beta_t) = ((\beta_s \cup \beta_t) \times I)$$
(2.7)

para $i \in J := \{1, \dots, \#(V(r_2)) - 1, \#(V(r_2)) + 1, \dots, \#(V(r_2)) + \#(V(r_1)) - 1, \#(V(r_2)) + \#(V(r_1)) + 1, \dots, \#(V(r_2)) + \#(V(r_1)) + \#(V(r_3)) - 1\}, s \neq t y s, t = 1, 2, 3.$

Figura 2.15. Ejemplo de 3-cuca con nodos de la cuca en cada una de las aristas de Γ .

Observemos que tales conjuntos definen discos meridianos de U y recordemos que U es un cubo con dos asas.

Observación 2.13. Los discos $m_{i,i+1}$, $m(\tau_a, \sigma \cap P_b)$, $m(\alpha_s, \alpha_t) \ y \ m(\beta_s, \beta_t)$ con $i \in J$, s, t = 1, 2, 3 tales que $s \neq t$, a representa el vértice izq o der y b el subíndice l o k, inducen una descomposición de U en 3-bolas. Denotamos cada 3-bola por $\partial B^3(v_i)$, donde v_i es el único nodo de $V(\mathcal{A})$ que está contenido en la 3-bola. Notemos que para cada nodo de \mathcal{A} hay una única de estas 3-bolas que lo contiene. Además, $\partial B^3(v_i)$ contiene a los dos rectángulos $A^l(v_i)$ $y \ A^m(v_i)$, para $v_i \in P_l \cap P_m$.

Notemos que ahora tenemos dos identificaciones: π y una segunda dada por ~ donde esta última relación identifica a $B^3(v_i)$ con $B^3(v_j)$ a lo largo de un disco si y sólo si $B^3(v_i) \cap B^3(v_j)$ es uno de los discos $m_{i,j}$, $m(\alpha_s, \alpha_t)$, $m(\beta_s, \beta_t)$ ó $m(\tau_a, \sigma \cap P_b)$, lo que es equivalente a decir que $B^3(v_i)$ y $B^3(v_j)$ comparten discos meridianos.

Para que la notación y la prueba del siguiente teorema nos sea más sencilla dotaremos a las órbitas de colores, uno distinto para cada una de ellas. Usando esta coloración podemos heredar una coloración para cada 3-bola $B^3(v_i)$ que contiene a un único v_i de \mathcal{A} , adoptando precisamente el color de la órbita que contiene a v_i , luego heredamos una coloración para los discos definidos en las ecuaciones (2.1-2.7), donde éstos tendrán la coloración del nodo adyacente a v_i , así los discos $m_{i,i+1}$ tienen un solo color, el de la órbita de v_{i+1} ; mientras que los discos $m(\tau_a, \sigma \cap P_b)$, $m(\alpha_s, \alpha_t)$ y $m(\beta_s, \beta_t)$ comparten dos colores (no necesariamente distintos) bien definidos por $\alpha_s, \beta_s, \tau_{izq}, \tau_{der}, \sigma \cap P_l$ y $\sigma \cap P_k$, dependiendo de las órbitas de los dos nodos en $V(\mathcal{A})$ adyacentes a v_i en Γ (sin contar los vértices de Γ). Y además ésta misma descomposición y coloración para U induce una descomposición y coloración para $\partial(V - \{(P_1 \cap V) \cup (P_2 \cap V) \cup (P_3 \cap V)\})$ en rectángulos de colores.

Ahora enunciamos y probamos uno de los teoremas más importantes de este trabajo.

Teorema 2.14. Sea \mathcal{A} una 3-cuca y sea L su enlace asociado. Entonces L es el enlace geométrico de \mathcal{A} en S^3 .

Prueba. Sean $U = \mathcal{N}(\Gamma)$ una vecindad regular de Γ en B^3 y $V = \overline{B^3 - \mathcal{N}(\Gamma)}$.

Mostraremos que $(\pi(U), \pi((l_1 \cup l_2 \cup l_3) \cap U))$ y $(\pi(V), \pi((l_1 \cup l_2 \cup l_3) \cap V))$ son dos 3-ovillos triviales.

Dado que $P_1 \cap V$, $P_2 \cap V$ y $P_3 \cap V$ son discos ajenos, por lo tanto $\pi(V)$ es una 3-bola y $\pi(P_1 \cap V)$, $\pi(P_2 \cap V)$ y $\pi(P_3 \cap V)$ son discos trivializadores ajenos para $\pi(l_1 \cap V)$, $\pi(l_2 \cap V)$ y $\pi(l_3 \cap V)$, respectivamente, esto es, un 3-ovillo. Además, como ya mencionamos, la frontera de V sin los discos que contienen a las caras de Γ , está formada por rectángulos de colores, tales que al aplicar π se pegan a lo largo de un intervalo, siempre y cuando los intervalos correspondientes sean simétricos respecto al poste de una de las caras de \mathcal{A} . Formando así tres regiones en la frontera de $\pi(V)$, una por cada color de las órbitas de \mathcal{A} .

Definición 2.15. A la gráfica formada por las tres regiones de colores en $\partial \pi(V)$ dadas en la construcción anterior se le llama gráfica de vecindades de las órbitas de \mathcal{A} .

Ejemplo 2.16. La siguiente 3-cuca tiene colocada una vecindad de la gráfica Γ , la descomposición de tal vecindad descrita arriba y el resultado de aplicar π , que se representa por las lineas punteadas en la Figura 2.16 arriba. La Figura 2.16 abajo muestra sólo las vecindades de las órbitas.

Nota. Esta definición se volverá a usar en la Sección 3.4.

Para la segunda parte de la prueba será conveniente partir al cubo con dos asas U en 3-bolas, aplicar π y recontruirlo.

Las divisiones de U que nos convienen son precisamente las que construimos arriba para cada uno de los casos; si la 3-cuca tiene vértices en cada arista de Γ o no. Luego calcularemos la imagen de U bajo π .

Pero antes es necesario hacer una distinción en el tipo de órbitas de $G(\mathcal{A})$.

Supongamos que cada órbita tiene a lo más un nodo adyacente a cada vértice de Γ .

Sea e_1 un nodo en $V(\mathcal{A})$ tal que e_1 es un extremo de poste, digamos del poste l_j ; entonces exactamente una reflexión φ_i actúa en e_1 y las dos 3-bolas $B^3(e_1)$ y $B^3(\varphi_i(e_1))$ se pegan por medio de π a lo largo de los discos (rectángulos) $A^i(e_1)$ y $A^i(\varphi_i(e_1))$, con lo que obtenemos la 3-bola $B^3(e_1) \sqcup B^3(\varphi_i(e_1))$. Supongamos ahora que $\varphi_i(e_1)$ no queda fija con φ_k , entonces a la 3-bola $B^3(e_1) \sqcup B^3(\varphi_i(e_1))$ le pegamos la 3-bola $B^3(\varphi_k(\varphi_i(e_1)))$ ahora a lo largo del disco $A^k(\varphi_i(e_1))$ y $A^k(\varphi_k(\varphi_i(e_1)))$ y obtenemos nuevamente una 3-bola, a saber, $B^3(e_1) \sqcup B^3(\varphi_i(e_1)) \sqcup$ $B^3(\varphi_k(\varphi_i(e_1)))$. Siguiendo la órbita de e_1 vamos obteniendo cada vez una 3-bola, hasta llegar al otro extremo de poste $e'_1 \in O(e_1)$, digamos del poste l_t que no es necesariamente distinto a l_j . Así al seguir la realización de la órbita $O(e_1)$ en la gráfica tipo Cayley de \mathcal{A} se van pegando 3-bolas y el resultado es una 3-bola.

Figura 2.16

Observemos que el segmento de la gráfica Γ que contiene a e_1 dado por $\Gamma \cap A^j(e_1)$ se identifica con el segmento de $\Gamma \cap A^t(e'_1)$ que contiene el extremo de poste e'_1 . Hasta el momento tenemos la 3-bola

$$B^{3}(e_{1}) \sqcup B^{3}(\varphi_{i}(e_{1})) \sqcup \cdots \sqcup B^{3}(e_{1}')$$

que tiene un disco en su frontera formado por los rectángulos $A^{j}(e_{1})$ y $A^{t}(e'_{1})$ que contienen a los pedazos de poste $l_{j} \cap U$ y $l_{t} \cap U$, pegados a lo largo de los intervalos $A^{j}(e_{1}) \cap \Gamma$ y $A^{t}(e'_{1}) \cap \Gamma$. Luego, usando π , $A^{j}(e_{1}) \cap A^{t}(e'_{1})$ se identifica consigo mismo a lo largo de $(l_{j} \cup l_{t}) \cap U$ generando una 3-bola que denotamos por $B^{3}(O(e_{1}))$. Nótese además que $B^{3}(O(e_{1}))$ contiene un arco propiamente encajado homeomorfo a $l_{j} \cup l_{t}$.

Recordemos que una 3-cuca tiene seis extremos de poste y que cada órbita contiene exactamente dos.

Tomamos e_2 y e_3 extremos de poste tales que $e_2 \notin \{e_1, e'_1\}$ y $e_3 \notin \{e_1, e'_1, e_2, e'_2\}$, donde e'_2 se genera de manera análoga a e'_1 . Contruimos así $B^3(O(e_2))$ y $B^3(O(e_3))$.

La bola $B^3(O(e_k))$, con k = 1, 2, 3, contiene al arco $\pi((l_{j_k} \cup l_{t_k}) \cap U)$ propiamente encajado con disco trivializador dado por $\pi(\partial(A^j(e_k) \cup A^t(e'_k)))$, con $e_k \subset l_{j_k}$ y $e'_k \subset l_{t_k}$.

Por último reconstruyamos con la segunda identificación \sim .

Nota. Para facilitar la terminología tomemos un color para cada 3-bola, que es exactamente el color que le corresponde a la órbita que contiene.

Observemos que cada 3-bola $B^3(O(e_1))$, $B^3(O(e_2))$ y $B^3(O(e_3))$ tiene marcados dos discos coloreados en su frontera de distinto color al de la 3-bola, que se formaron al identificar las 3-bolas $B^3(e_k)$ con $B^3(\varphi_i(e_k))$, etc.; y al hacer la identificación bajo π de los segmentos de poste l_{j_k} y l_{t_k} .

Así para:

• 3-cucas sin nodos de \mathcal{A} en una de las aristas (ya habíamos acordado que ésta arista sería r_3) dos de sus 3-bolas $B^3(O(e_k))$ tienen en su frontera un disco de un solo color distinto al de la bola y distintos entre si con un intervalo de forma radial, dentro de cada disco, del color de la otra bola de esta forma. Mientras que la única órbita que tiene un nodo adyacente a cada vértice de Γ genera una 3-bola con un disco formado por dos colores (los dos colores de las 3-bolas anteriores) separados por un diámetro (del color de esta órbita). Al completar la aplicación de la identificación \sim , este diámetro se identifica de manera simétrica formando así una 3-variedad como se muestra en la Figura 2.17.

Estas tres 3-variedades se pegan precisamente por las regiones de colores compartidos, esto es si una 3-bola es verde con disco rojo e intervalo amarillo se identifica con la 3-variedad (que debe ser roja) por la región verde y el intervalo rojo, etc. Perdiéndose así la singularidad y obteniendo, por lo tanto, una 3-bola.

- 3-cucas con vértices en cada arista de Γ y tal que cada órbita tiene exactamente un nodo adyacente a cada vértice de Γ . Cada 3-bola $B^3(O(e_k))$ tiene en su frontera dos discos de dos colores distintos a los de la 3-bola. Identificamos las tres 3-bolas a través \sim .
- 3-cucas con vértices en cada arista de Γ, donde una órbita tiene dos nodos adyacentes a un vértice de Γ, que por el Lemma 2.10 existen otros dos nodos de la misma órbita adyacentes al otro vértice de Γ; la 3-bola correspondiente a esta órbita con cuatro nodos adyacentes a los vértices de Γ tendrá en su frontera un disco con cuatro regiones y tres colores. Al hacer la identificación de las dos regiones del mismo color de la bola, obtenemos una dona degenerada, es decir, una 3-bola en la que un diámetro se colapsó a un punto. Sólo hay una de estas donas degeneradas gracias al Lema 2.10. La singularidad se pierde al pegar cualquiera de las otras dos bolas por sus discos coloreados, esto usando nuevamente ~.

Figura 2.17

En cada uno de estos casos se obtiene una 3-bola con tres arcos homeomorfos a $\pi((l_{j_k} \cup l_{t_k}) \cap U)$ desanudados y desenlazados cuya frontera está formada por un "tapiz" de rectángulos de colores, ya que así era la frontera de U antes de aplicar \sim .

Así tenemos dos 3-ovillos con una regla para pegar sus fronteras dada por los rectángulos de colores en cada una de ellas, obteniendo una 1-variedad que es el enlace geométrico de \mathcal{A} .

Por lo tanto el enlace asociado de ${\mathcal A}$ es su enlace geométrico. Con lo que terminamos la demostración. \blacksquare

Veamos algunos resultados que son consecuencia de la demostración del teorema.

Observación 2.17. Lo que nos dice este teorema es que todas las 3-cucas tienen una representación en tres puentes. Aunque también aparecen enlaces de uno o dos puentes (Sección 1.3).

2.3 Codificación de una 3-cucas como una sexteta

Tomando la idea de M. Toro y D. Tejada sobre la codificación de las 3-mariposas, desarrollamos una manera de codificar las 3-cucas.

Sea $\mathcal{A} = (\Gamma, \{P_i\}_{i=1}^3, \{\varphi_i\}_{i=1}^3)$ una 3-cuca, denotamos por r_1, r_2, r_3 las aristas de Γ de la manera en que aparecen en la Figura 2.18.

Nombramos las caras de Γ como: P_1 la cara definida por r_2 y r_3 , P_2 la definida por r_1 y r_3 y P_3 la definida por r_1 y r_2 .

Por definición de 3-cuca cada cara P_i tiene un número par de nodos, ya habíamos denotado este número por $2p_i$.

Se puede calcular que el número de nodos en r_1 es $p_2 + p_3 - p_1$, en r_2 es $p_1 + p_3 - p_2$ y en r_3 es $p_1 + p_2 - p_3$. Así (p_1, p_2, p_3) determina el número de nodos en cada arista.

Fijemos una orientación en cada cara, esta orientación será como se muestra en la Figura 2.19 y hereda, respecto a cada cara, una orientación a los nodos.

Figura 2.19

Ejemplo 2.18. Tomemos la siguiente 3-cuca con $p_1 = 5$, $p_2 = 4$ y $p_3 = 3$. Observemos que los nodos tienen distinta numeración dependiendo de la cara (Figura 2.20).

Para colocar el poste en cada cara P_i primero colocamos un extremo en el n_i -ésimo nodo de la cara P_i , según la orientación anterior; el otro extremo del poste l_i se coloca en la posición $n_i + p_i$. Si $n_i + p_i > 2p_i$, tomamos como nuevo n_i al valor $(n_i + p_i) \mod 2p_i$. Así la sexteta $(p_1, n_1, p_2, n_2, p_3, n_3)$ determina la 3-cuca \mathcal{A} .

Ejemplo 2.19. En el ejemplo 2.18 tomemos $n_1 = 5$, $n_2 = 2$, $n_3 = 3$ (ver Figura 2.21).

Observación 2.20. Sin afán de ser redundantes, sino de que que de claro, los vértices de Γ no son nodos de las caras.

Teorema 2.21. Sea \mathcal{A} una 3-cuca y $(p_1, n_1, p_2, n_2, p_3, n_3)$ su codificación como sexteta, entonces la 3-cuca que representa $(p_2, n_2, p_3, n_3, p_1, n_1)$ y la 3-cuca que representa $(p_3, n_3, p_1, n_1, p_2, n_2)$ tienen el mismo enlace asociado que \mathcal{A} .

Figura 2.21

Prueba. Haciendo una rotación de la esfera ∂B^3 en $\frac{2\pi}{3}$ usando como eje el determinado por los vértices de Γ tenemos la nueva gráfica tipo teta con caras P_2 , P_3 y P_1 , en el orden y con la orientación que se muestra en la Figura 2.22.

Para obtener la codificación $(p_3, n_3, p_1, n_1, p_2, n_2)$ se vuelve a aplicar la rotación anterior.

Figura 2.22

2.4 Grupo fundamental de una 3-cuca

Dada una 3-cuca \mathcal{A} y su enlace asociado L, orientamos L y colocamos g_1, g_2 y g_3 generadores en los postes l_1, l_2 y l_3 , respectivamente. Para cada intervalo en la gráfica tipo Cayley de \mathcal{A} (descrito por su órbita en $G(\mathcal{A})$) colocaremos una 2-asa que lo contenga, es decir, la 2-asa se pega a lo largo de la frontera de una vecindad regular del intervalo sobre ∂B^3 ; ésta define la relación asociada al intervalo. Podemos eliminar una de las relaciones, así

$$\pi_1(L) = \langle g_1, g_2, g_3 : r_2 = 1, r_1 = 1 \rangle.$$

Detrás de este cálculo está el Teorema de Van Kampen y el hecho de que el exterior de los postes en B^3 unión las tres 2-asas es igual al complemento del enlace.

Ejemplo 2.22. Tomemos la 3-cuca definida por el siguiente diagrama. Su enlace asociado es el enlace de Borromeo.

En la Figura 2.23, etiquetamos los generadores $g_1, g_2 y g_3 y$ describimos la frontera de la vecindad de uno de los intervalos sobre ∂B^3 en color azul.

Figura 2.23

El grupo resultante es:

 $\langle g_1, g_2, g_3: g_3g_1^{-1}g_2^{-1}g_1g_2g_3g_2^{-1}g_1^{-1}g_2g_1g_3^{-1} = 1, g_1g_3g_2g_3^{-1}g_2^{-1}g_1^{-1}g_2g_3g_2^{-1}g_3^{-1}g_1^{-1} = 1 \rangle.$

CAPÍTULO 2. PROPIEDADES BÁSICAS DE LAS 3-CUCAS

Capítulo 3

Principales resultados sobre 3-cucas

En este capítulo daremos resultados que se fueron obteniendo a lo largo de la exploración del conjunto de las 3-cucas. Para algunos de estos resultados, como los obtenidos en las secciones 3.1 y 3.7 se usaron, claramente, teorías ya conocidas, para otros se usó ampliamente la teoría de gráficas y el resto fue producto de la imaginación.

3.1 Presentación en arcos para 3-cucas

Antes de dar la construcción de la presentación en arcos para una 3-cuca demos un par de definiciones.

Definición 3.1. Una gavilla de semiplanos es una descomposición de la 3-esfera en discos abiertos como páginas y un círculo desanudado como encuadernado. Un enlace L puede ser colocado en presentacion en arcos si existe un encaje de L en una gavilla de medios planos, es decir L interseca al "lomo" de la gavilla en puntos y a los semiplanos en arcos con extremos en el lomo, pero de modo que hay a lo mucho un arco en cada semiplano. Tal encaje es una presentación en arcos de L. El número mínimo de planos que se necesitan para presentar un enlace dado L de esta manera es llamado el índice de arcos de L y se denota por $\alpha(L)$.

Ejemplo 3.2. En las siguientes figuras tenemos un ejemplo de un enlace en presentación en arcos. En el primer dibujo la gavilla de semiplanos está claramente representada, en el segundo dibujo tenemos la manera clásica de dibujar la presentación.

Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca, $D(\mathcal{A})$ su diagrama asociado y L su enlace asociado. Ya hemos definido las aristas de Γ r_1, r_2 y r_3 como se muentra en la Figura 3.1.

Tomemos un punto x_1 en r_2 a una distancia $\varepsilon_1 > 0$ del vértice derecho de Γ , der, suficientemente pequeño para que el intervalo en r_2 con extremos x_1 y der no contenga nodos de \mathcal{A} . De la misma manera tomemos un punto x_2 en r_3 a una distancia $\varepsilon_2 > 0$ del vértice izquierdo de Γ , izq, suficientemente pequeño para que el intervalo en r_3 con extremos x_2 e izq no contenga nodos de \mathcal{A} . Definimos como h al intervalo que resulta de extraer los intervalos abiertos $\overline{x_1, der}$ y $\overline{x_2, izq}$ de la gráfica Γ .

El diagrama $D(\mathcal{A}) - (\overline{x_1, der} \cup \overline{x_2, izq})$ es "casi" una presentación en arcos de L, haremos unas transformaciones y una modificación a h para que esto sea claro.

Bajo las siguientes isotopías del plano llevamos h a una posición horizontal.

Figura 3.2

Veamos qué pasa con los arcos que forman el diagrama de ${\mathcal A}$ al hacer la transformación anterior.

A los arcos que están en la cara P_2 con extremos en los intervalos r_3 y r_1 , la composición de las isotopías anteriores, los lleva a la siguiente posición:

Algo similar pasa con los arcos de la cara P_3 del diagrama de \mathcal{A} que tienen extremos en las aristas r_2 y r_1 .

Para los arcos del diagrama de \mathcal{A} en la cara P_1 con ambos extremos en la arista r_2 tenemos lo siguiente:

Mientras que para los arcos con ambos extremos en la arista r_3 , que también están en la cara P_1 , se tiene:

Lo único extraño o menos fácil de visualizar es lo que pasa con los arcos que están en la cara P_1 con un extremo en la arista r_2 y otro extremo en r_3 , para éstos pasa lo siguiente:

Aquí modificamos h. Prolongamos el intervalo h de tal manera que se interseque una vez con los arcos, en el nuevo diagrama, que provienen de arcos con un extremo en r_2 y otro en r_3 , como se muestra en la siguiente figura.

Así cada arco en la parte superior y en la parte inferior del intervalo tiene extremos en h y pueden ser encajados en un semiplano semiabierto con frontera en h. Con lo que obtenemos un encaje de L en una gavilla de semiplanos.

Ejemplo 3.3. La 3-cuca del ejemplo 2.20 tiene el siguiente diagrama.

3.1. PRESENTACIÓN EN ARCOS PARA 3-CUCAS

Para obtener su presentación en arcos primero cortamos Γ para obtener el intervalo h.

Notemos que, para facilitar la visualización de las isotopías descritas arriba (ver Figura 3.2), hemos coloreado del mismo color los arcos en la misma cara.

La presentación en arcos para esta 3-cuca, después de las isotopías, es la siguiente.

Nota. Por conveniencia hacemos que los cruces que se forman con el poste que va de la parte superior a la inferior del eje h se dibujen en la parte superior; ésto no tiene ninguna otra justificación.

3.2 Aplanamiento

En esta sección definiremos la "gráfica" de una 3-cuca. Probaremos de manera constructiva que tal gráfica tiene una realización en el plano y diremos para cuáles 3-cucas la realización plana de su gráfica es única. Pero antes daremos algunos conceptos de gráficas planas, las demostraciones de las proposiciones pueden encontrarse en [G].

Definición 3.4. Una gráfica plana es una gráfica que tiene un encaje en el plano.

Proposición 3.5. Una gráfica plana G permanece plana si cualquier arista es subdividida o si una nueva arista a es pegada por un vértice $v \in V_G$ y se agrega el otro extremo de a como un nuevo vértice.

Definición 3.6. Una arista que une dos vértices de un ciclo pero no es arista del mismo ciclo se llama **cuerda**.

Proposición 3.7. Una gráfica plana sigue siendo plana si se agrega una cuerda en un ciclo que bordea una cara en el encaje plano.

Regresando a las 3-cucas probemos el siguiente lema.

Lema 3.8. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca, entonces existe una arista en la realización de la gráfica tipo Cayley de \mathcal{A} cuyos extremos están en distintas aristas de Γ .

Antes de la demostración recordemos que la gráfica tipo Cayley de \mathcal{A} está definida por los nodos $V(\mathcal{A})$ y las aristas son parejas de nodos de \mathcal{A} , $\{v, w\}$ si y sólo si $v \neq w$ y existe un $i \in \{1, \ldots, n\}$ tal que $\rho_i(v) = w$.

Prueba. [Lema 3.8] Supongamos que en la realización de la gráfica tipo Cayley de \mathcal{A} no existe una arista con extremos en distintas aristas de Γ .

Tomemos P_i una cara de Γ , l_i el poste en P_i y e_{i_1} uno de sus extremos, supongamos que e_{i_1} está en la arista r de Γ . Sea $j \in \{1, 2, 3\}$ y $j \neq i$ tal que $P_j \cap P_i = r$. Luego por hipótesis $\rho_j(e_{i_1}) \in r$ y por ser \mathcal{A} una 3-cuca debe existir en $r \ e_{j_1}$ extremo de l_j entre e_{i_1} y $\rho(e_{i_1})$, pero, nuevamente por hipótesis, $\rho_i(e_{j_1}) \in r$ teniendo, de manera general la Figura 3.3.

Figura 3.3

Observemos que las realizaciones de las órbitas de e_{i_1} y de e_{j_1} en la gráfica tipo Cayley de \mathcal{A} van formando un par de espirales que se persiguen, o que son paralelas.

Hay tres opciones para colocar los extremos e_{i_2} y e_{j_2} .

- a) Los extremos de poste e_{i_2} y e_{j_2} están sobre r y en algún momento son parte de las órbitas de e_{i_1} y de e_{j_1} , recordemos que debe haber exactamente dos extremos de poste por órbita. Pero esto dejaría a la órbita faltante (en 3-cucas siempre hay tres órbitas) aislada de las otras dos y de los postes l_i y l_j . Por lo que el resultado no es una 3-cuca.
- b) Si al menos uno de los extremos de poste e_{i_2} o e_{j_2} está sobre r, entonces una de las órbitas, la de e_{i_1} o la de e_{j_1} contiene al nodo e_{i_2} y la otra no podrá tener otro extremo de poste. Nuevamente el resultado no es una 3-cuca.

Recordemos que definimos las aristas de Γ como r_1, r_2 y r_3 como en la Figura 3.4, los vértices de Γ como *izq* al vértice izquierdo y *der* al vértice derecho tomando la gráfica Γ , que tiene forma de letra teta mayúscula, colocada en el plano como en la figura anterior y que los nodos de \mathcal{A} tienen una manera de recorrerlos, luego también una manera de ordenarlos.

Definición 3.9. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca. Denotada por $\mathcal{G}(\mathcal{A})$ a la gráfica inducida por una proyección de las órbitas de \mathcal{A} unión la gráfica Γ . O sea, la gráfica formada por los vértices de Γ unión el conjunto de nodos de $\mathcal{A}, V(\mathcal{A})$; y el conjunto de aristas está formado por las parejas $\{\#(V(r_2)), izq\}, \{\#(V(r_2))+1, izq\}, \{\#(V(r_2))+\#(V(r_1))+\#(V(r_1)), izq\}, \{\#(V(r_2))+\#(V(r_1)), der\}, \{\#(V(r_2))+\#(V(r_1))+1, der\}, \{1, der\}, \{k, k+1\}$ con $k = 1, \ldots, \#(V(r_2)) - 1, \#(V(r_2)) + 1, \ldots, \#(V(r_2)) + \#(V(r_1)) - 1, \#(V(r_2)) + \#(V(r_1)) + 1, \ldots, \#(V(r_2)) + \#(V(r_1)) + \#(V(r_3)) - 1$ y las parejas $\{k, \rho_i(k)\}$ siempre que $\rho_i(k) \neq k$, para todo $i \in \{1, 2, 3\}$ y para todo $k \in \{1, \ldots, \#(V(r_1)) + \#(V(r_2)) + \#(V(r_3))\}$.

Tomemos la gráfica máxima formada por los cuatro vértices $\{izq, der, a, b\}$, donde $a \ge b$ son los vértices que forman la arista dada en el Lema 3.8, es sabido que esta gráfica es plana. A

partir de esta gráfica plana completamos la gráfica $\mathcal{G}(\mathcal{A})$ de la siguiente manera: agregamos los vértices (que son nodos de \mathcal{A} y las aristas que faltan, pero estas aristas son de dos tipos, las aristas que estan sobre la gráfica y que se forman por agregar vértices y las aristas de las órbitas, que son cuerdas. Luego, por las proposiciones 3.5 y 3.7 tenemos el siguiente

Teorema 3.10. La gráfica de una 3-cuca es plana.

Observación 3.11 (Importante). Nótese que la gráfica de A determina a la cuca, esto es, determina las caras, los nodos y los postes que a su vez determinan los homeomorfismos.

3.3 Problema inverso

Dadas las tres órbitas de una 3-cuca y de un encaje en el plano de éstas se va a recontruir una 3-cuca con el mismo conjunto de órbitas. Pueden existir dos enlaces distintos. Esto se hace tomando primero las tres órbitas de una 3-cuca para colocarlas sobre un intervalo I, generando así una gráfica plana a la que posteriormente se le agregarán dos vértices (izq, der) y dos aristas, de tal manera que el resultado sea una gráfica tipo θ que determina las caras y los homeomorismos que describen a la 3-cuca.

Algoritmo

 G_0 Colocamos en el plano extendido un intervalo horizontal I con $\#(V(\mathcal{A}))$ vértices marcados en él en órden de derecha a izquierda (estos vértices son los nodos de $V(\mathcal{A})$); etiquetados por $\{1, 2, \ldots, \#(V(\mathcal{A}))\}$. Ésta será la gráfica inicial G_0 . Observemos que G_0 es el eje h definido en la Sección 3.1.

- G_1 Elegimos una órbita $O_i,$ un vértice x en tal órbita y $\{x,y\}$ una arista en la gráfica tipo Cayley de $\mathcal A$, si
 - a) |x y| es par, o sea, que en *I* hay un número impar de vértices de $V(\mathcal{A})$ entre $x \in y$, entonces agregamos a la gráfica G_0 un arco que representa la arista $\{x, y\}$ como en la Figura 3.5.

Figura 3.5

Sea e el vértice de en medio entre $x \in y$ sobre I, entonces agregamos también una arista con uno de sus extremos en e como se muestra en la Figura 3.6. A este tipo de aristas las llamaremos **secciones de poste**. Posteriormente será claro el por qué de este nombre.

- i iguia 0.0
- b) |x y| es impar; entonces el arco que se agrega a la gráfica G_0 se ve como en la Figura 3.7.

Nota. Las aristas de la gráfica tipo Cayley de \mathcal{A} de un vértice x, o secciones de poste con extremo en x, se agregan de tal manera que sean opuestas entre ellas respecto al intervalo I, esto es, localemente debe tenerse la Figura 3.8 o la Figura 3.9.

 G_2 Usaremos los vértices $x \in y$ para seguir agregando aristas de la gráfica tipo Cayley de \mathcal{A} o secciones de postes con la condición dada por la nota anterior. Primero para el vértice x:

Si existe una arista $\{x, y'\}$ con $y' \neq y$, entonces se aplican las condiciones a) y b) dadas para generar G_1 con la condición de la nota anterior. Si tal arista $\{x, y'\}$ no existe en la

gráfica tipo Cayley de \mathcal{A} quiere decir que x es un extremo de poste, en este caso agregamos una pequeña arista J_x opuesta al arco que representa la arista $\{x, y\}$ respecto al intervalo I tal que $G_1 \cap J_x = \{x\}$.

Hacemos esto mismo para el vértice y.

 G_t Repetimos el argumento dado en la construcción de G_2 para aquellos vértices que en la gráfica G_{t-1} les fueron agregados los arcos que representan sus aristas en la gráfica tipo

Cayley de $\mathcal A$, hasta t=n con $n=n_1+n_2+n_3+3$ donde n_i es la longitud de la órbita O_i para i=1,2,3.

 G'_n Por último agregaremos los vértices izq y der que subdividen a un par de aristas de $I \{x_0, x_0 + 1\}$ y $\{y_0, y_0 + 1\}$ en G_n , respectivamente, con $x_0, y_0 \in \{1, \ldots, \#(V(\mathcal{A}))\}$ y $x_0 \leq y_0$; y las aristas $\{1, der\}$ y $\{\#(V(\mathcal{A})), izq\}$ que se realizan en G'_n como los arcos correspondientes.

Las condiciones para hacer estas modificaciones son las siguientes:

- **Condición 1** La subgráfica plana formada por los vértices izq y der, el subintervalo de I con extremos en der e izq y las aristas $\{1, der\}$ y $\{\#(V(\mathcal{A})), izq\}$ forman una gráfica tipo teta, no importa si en una de las aristas de esta subgráfica no hay nodos de $V(\mathcal{A})$.
- **Condición 2** Los arcos que representan las aristas $\{1, der\}$ y $\{\#(V(\mathcal{A})), izq\}$ se agregan a la gráfica plana G_n de tal manera que las regiones que generan el intervalo I y las aristas $\{1, der\}$ y $\{\#(V(\mathcal{A})), izq\}$ contengan exactamente dos intervalos de la forma J_x que representan el inicio de un poste.

La gráfica G'_n es una proyección plana de la gráfica $\mathcal{G}(\mathcal{A})$ de la 3-cuca \mathcal{A} para la cual conocíamos sus órbitas.

Esta última etapa del algoritmo en algunas ocaciones no tiene resultado único, esto se explica y justifica a continuación.

Lema 3.12. Dados $x, y \in V(\mathcal{A})$ tal que $\rho_1(x) = y$. $x \in y$ son de la distinta paridad si y sólo $x \in y$ no están en la misma arista de Γ .

Prueba. Supongamos que $x \in y$ son de distinta paridad y y > x. Por hiótesis $\rho_1(x) = y$, entonces entre $x \in y$ debe haber un número impar de nodos denotado por a. Si $x \in y$ están en la misma arista entonces x + a + 1 = y, luego x - y es un número parar y por lo tanto $x \in y$ tienen la misma paridad, lo cual es una contradicción.

Por otro lado, sin pérdida de generalidad $x \in r_2$ e $y \in r_3$, tomemos $b = y - r_2 - r_3 - 1$ y dado que a = x + b - 1 debe ser impar se tiene:

- Si x es par entonces b debe ser par y por lo tanto y es impar.
- Si x es impar entonces b debe ser impar y por lo tanto y es par.

Del lema anterior podemos concluir que si en una de las órbitas del grupo de permutaciones una 3-cuca \mathcal{A} hay nodos pares e impares entonces al menos existe en la gráfica G_n un arco de la forma dada en la Figura 3.10.

Así para colocar el vértice der y la arista $\{\#(V(\mathcal{A})), der\}$ tal que cumplan las condiciones 1 y 2 para generar la gráfica G'_n , sólo podrá colocarse de una forma (ver Figura 3.11).

Cuando no existen este tipo de arcos (con un extremo par y otro impar) en la gráfica G_n tanto el vértice der como la arista $\{\#(V(\mathcal{A})), der\}$ pueden colocarse (por principio) en más de un lugar, las condiciones dadas al generar G_n permitirán o no que haya más de una forma de colocarlos y si esta ambigüedad es posible, se generan dos 3-cucas distintas.

Figura 3.11. El arco punteado representa la arista $\{v, der\}$.

Definición 3.13. A dos 3-cucas A_1 y A_2 las llamamos **gemelas** si tienen órbitas iguales pero las sextetas que las codifican son distintas.

Ejemplo 3.14. Las siguientes son dos 3-cucas gemelas (Figura 3.12).

Figura 3.12

Observación 3.15. Generalmente los enlaces asociados de dos 3-cucas gemelas son distintos. Por el Lema 3.12 sabemos que existen 3-cucas con órbitas que contien sólo nodos etiquetados

3.3. PROBLEMA INVERSO

con números pares o sólo con números impares, para las cuales se puede encontrar una 3-cuca gemela de la primera. Ésto depende de si al colocar los vértices $der \ e \ izq$ y las aristas $\{1, izq\}$ y $\{\#(V(\mathcal{A})), der\}$ la gráfica con vértices $\{izq, der\}$ y aristas $\{izq, der\}$ como subintervalo de I (en el algoritmo anterior), $\{1, izq\}$ y $\{\#(V(\mathcal{A})), der\}$ forman una gráfica tipo teta mayúscula y no una gráfica tipo anteojos, esto es, $\bigcirc - \bigcirc$.

Definición 3.16. Dada una 3-cuca $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$, decimos que una arisa de la gráfica tipo Cayley de \mathcal{A} es una **arista horizontal** si sus extremos están sobre la misma arista de Γ y llamamos a una 3-cuca **horizontal** si todas las aristas en al menos una de las caras son horizontales.

Del Lema 3.12 para una 3-cuca \mathcal{A} con sólo números pares o impares en cada una de sus órbitas, \mathcal{A} es horizontal.

Hemos dicho que la gráfica Γ se dibuja de la siguiente manera.

Al colocar en una 3-cuca horizontal el poste l_2 , uno de sus extremos no podrá estar sobre r_3 y ser nodo central de los nodos de $V(\mathcal{A})$ en r_3 . Ya que si esto pasa los postes l_1 y l_2 deben compartir el extremo en r_3 lo que contradice a la definición de *n*-cuca.

Definición 3.17. El **eje vertical** de Γ es el eje que pasa por el punto medio de cada arista de Γ .

Luego podemos decir que un nodo de \mathcal{A} está a la izquierda o a la derecha de Γ respecto al eje vertical o simplemente que está a la izquierda o a la derecha de Γ .

De lo anterior tenemos que esencialemente hay cuatro clases de 3-cucas horizontales dependiendo de la posición del poste de P_2 (ver Figura 3.13).

Se han hecho cálculos precisos sobre cómo ir de la codificación en sexteta de una 3-cuca \mathcal{A}_1 a la codificación en sexteta de su gemela \mathcal{A}_2 , si es que esta existe. Estos cálculos se presentan a continuación pero será necesario introducir más notación.

Para una 3-cuca horizontal dada \mathcal{A} denotamos como:

- Arcos de tipo "x" a arcos de la gráfica tipo Cayley de \mathcal{A} en P_1 con ambos extremos en r_2 ,
- arcos de tipo "y" a los arcos de la gráfica tipo Cayley de ${\mathcal A}$ en P_1 con ambos extremos en $r_3,$
- arcos de tipo "a" a aquellos arcos de la gráfica tipo Cayley de \mathcal{A} en P_2 con extremos en la misma arista de Γ y que están del lado derecho izquierdo de Γ .
- arcos de tipo "b" a los arcos de la gráfica tipo Cayley de \mathcal{A} en P_2 con extremos en la misma arista de Γ y que están del lado derecho de Γ .

Figura 3.13

Tomando el parámetro t como la posición del extremo del poste l_3 con numeral más pequeño tenemos:

• arcos del tipo "d", que son aquellos arcos de la gráfica tipo Cayley de \mathcal{A} en P_3 con un extremo entre el nodo 1 y el t-1, incluyendo los nodos 1 y t-1.

Si definimos $2p_3 = #(V(r_2)) + #(V(r_1))$ que es el número de nodos de $V(\mathcal{A})$ en P_3 , entonces decimos que:

• Los arcos de tipo "f" son aquellos en la gráfica tipo Cayley de \mathcal{A} en P_3 con uno de sus extremos entre el nodo $p_3 - t$ y el nodo p_3 , incluyendo los nodos $p_3 - t$ y p_3 .

Además denotamos como:

- X al número de arcos de tipo x,
- Y al número de arcos de tipo y,
- A al número de arcos de tipo a,
- B al número de arcos de tipo b,
- C al número de arcos de tipo c.

Y observamos que hay

- t-1 arcos de tipo d,
- $p_3 t$ arcos de tipo f.

Si conocemos los parámetros (X, Y, A, B, p_3, t) para un dibujo plano de una 3-cuca podemos, usando matrices de trancisión, encontrar los parámetros para la codificación en sexteta $(p_1, n_1, p_2, n_2, p_3, n_3)$ y viceversa. De hecho tenemos que $s = p_3$ y $t = n_3$. Para cada Clase de 3-cuca horizontal se calcula el parámetro p_3 que es, como ya se mencionó, igual a $\frac{1}{2}[\#(V(r_2)) + \#(V(r_1))].$

Clase A. Una 3-cuca de Clase A no tiene gemela si exite un arco de la gráfica tipo Cayley de \mathcal{A} en la cara P_3 con extremos ε, η , con ε extremo de un arco tipo "a" o tipo "x" y η un extremo de arco de tipo "c" o de tipo "b", donde $\varepsilon < t < \eta$ o $\varepsilon < t + p_3 < \eta$ y $t - \varepsilon = \eta - t$ o $(t + p_3) - \varepsilon = \eta - (t + p_3)$, respectivamente.

Sea \mathcal{A} una 3-cuca con parámetros (X, Y, A, B, p_3, t) tal que \mathcal{A} si tiene gemela, entonces la transformación $g_A : (X, Y, A, B) \to (p_1, n_1, p_2, n_2)$ está dada por $g_A(w) = \mathbf{a}(w) + \mathbf{C}_{\mathbf{a}}$, donde

$$\mathbf{a} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C}_{\mathbf{a}} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}.$$

Ahora daremos las matrices de trancisión para ir de la sexteta que determina a una 3-cuca hotizontal de Clase A a la sexteta que determina a su 3-cuca gemela. Pero es necesario subdividir esta clase de 3-cucas horizontales dependiendo de la posición del extremo del poste de la cara P_3 , $p_3 + t$.

Clase A.1. Si el extremo $p_3 + t$ del poste l_3 es nodo de alguno de los arcos de tipo "x" o nodo de un arco tipo "a", entonces la transformación $f_{A_1} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ está dada por: $f_{A_1}(v) = \mathbf{A_1}(v) + \mathbf{C_{A_1}}$, donde

$$\mathbf{A_1} = \begin{pmatrix} 0 & 2 & 0 & 1 & 1 \\ 0 & 2 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 1 & -4 & 1 & -2 & -1 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C_{A_1}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 4 \\ 1 \end{pmatrix}.$$

En este caso $p_3 = p'_1 - 3n'_1 + p'_2 - n'_2 + 2$.

Clase A.2. Cuando los extremos $t y p_3 + t$, del poste l_3 , son extremos de un arco tipo "c" o de un arco tipo "b" la transformación de trancisión $f_{A_2} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ está dada por: $f_{A_2}(v) = \mathbf{A_2}(v) + \mathbf{C_{A_2}}$, donde

$$\mathbf{A_2} = \begin{pmatrix} 0 & 2 & 0 & 1 & 1 \\ 0 & 2 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 2 & -5 & 2 & -2 & -2 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C_{A_2}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 5 \\ 1 \end{pmatrix},$$

y $p_3 = p'_1 - 3n'_1 + 3p'_2 - n'_2 + 2.$

Figura 3.14. 3-cucas de clase Clase A.

En ambos casos $p'_3 = p_1 + p_2 - 3n_1 - n_2 + 2$.

Clase B. Una 3-cuca de Clase B no tiene arcos del tipo "b" con extremo en la frontera de la cara $P_{\rm 3}.$

Éstas 3-cucas no tienen gemela si existe un arco en la gráfica tipo Cayley de \mathcal{A} en la cara P_3 con extremos ε, η tales que ε es extremo de un arco tipo "a" o tipo "x" y η es extremo de un arco tipo "c", donde $\varepsilon < t < \eta$ o $\varepsilon < t + p_3 < \eta$ y $t - \varepsilon = \eta - t$ o $(t + p_3) - \varepsilon = \eta - (t + p_3)$, respectivamente

Sea \mathcal{A} una 3-cuca con parámetros (X, Y, A, B, p_3, t) tal que \mathcal{A} si tiene gemela, entonces la transformación $g_B : (X, Y, A, B) \to (p_1, n_1, p_2, n_2)$ está dada por $g_B(w) = \mathbf{b}(w) + \mathbf{C}_{\mathbf{b}}$, donde

$$\mathbf{b} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & -1 \\ 0 & 2 & 1 & -2 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C}_{\mathbf{b}} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Nuevamente tenemos que separar esta clase dependiendo de la posición del extremo $p_3 + t$ del poste l_3 .

Figura 3.15. 3-cucas de clase Clase B.

Clase B.1. Si el extremo $p_3 + t$ del poste l_3 es nodo de alguno de los arcos de tipo "x" o nodo de un arco tipo "a", entonces la transformación $f_{B_1} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ está dada por: $f_{B_1}(v) = \mathbf{B_1}(v) + \mathbf{C_{B_1}}$, donde

$$\mathbf{B_1} = \begin{pmatrix} 0 & 2 & -1 & 1 & 1 \\ 0 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \\ 1 & -4 & 3 & -2 & 1 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \mathbf{y} \mathbf{C_{B_1}} = \begin{pmatrix} -2 \\ -1 \\ -1 \\ 2 \\ 1 \end{pmatrix}$$

En este caso $p_3 = -p'_1 - n'_1 + 2p'_2 - n'_2 + 2.$

Clase B.2. Igual que para las 3-cucas de Clase A.2, cuando el extremo $p_3 + t$ del poste l_3 es extremo de un arco tipo "c", la transformación de trancisión $f_{B_2} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ está dada por: $f_{B_2}(v) = \mathbf{B_2}(v) + \mathbf{C_{B_2}}$, donde

$$\mathbf{B_2} = \begin{pmatrix} 0 & 2 & -1 & 1 & 1 \\ 0 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \\ 2 & -5 & 4 & -2 & -2 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \text{ y } \mathbf{C_{B_2}} = \begin{pmatrix} -2 \\ -1 \\ -1 \\ 5 \\ 1 \end{pmatrix}.$$

En este caso $p_3 = -5p'_1 + 3n'_1 + 3p'_2 - n'_2 + 2$.

En ambos casos $p'_3 = p_1 + 2p_2 - 3n_1 - n_2 + 2$.

Clase C. $g_C: (X, Y, A, B) \to (p_1, n_1, p_2, n_2)$ está dada por $g_C(w) = \mathbf{c}(w) + \mathbf{C_c}$, donde

$$\mathbf{c} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C}_{\mathbf{c}} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$

Figura 3.16. 3-cucas de clase Clase C.

En estos casos no hay arcos de tipo "a" en la frontera de la cara P_3 .

Clase C.1. Si el extremo p_3+t del poste l_3 es nodo de alguno de los arcos de tipo "x", entonces la transformación $f_{C_1}:(p_1,n_1,p_2,n_2,n_3) \rightarrow (p'_1,n'_1,p'_2,n'_2,n'_3)$ está dada por: $f_{C_1}(v) = \mathbf{C_1}(v) + \mathbf{C_{C_1}}$, donde

$$\mathbf{C_1} = \begin{pmatrix} 0 & 2 & -1 & 1 & 1 \\ 0 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 1 & -4 & 3 & -2 & -1 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \text{ y } \mathbf{C_{C_1}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 4 \\ 1 \end{pmatrix}.$$

3.3. PROBLEMA INVERSO

En este caso $p_3 = p'_1 - 3n'_1 + 2p'_2 - n'_2 + 2$.

Clase C.2. Cuando el extremo $p_3 + t$ del poste l_3 es extremo de un arco tipo "c" o de un arco tipo "b" la transformación de trancisión está dada por: $f_{C_2} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ con $f_{C_2}(v) = \mathbf{C_2}(v) + \mathbf{C_{C_2}}$, donde

$$\mathbf{C_2} = \begin{pmatrix} 0 & 2 & -1 & 1 & 1 \\ 0 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 0 & -3 & 2 & -2 & 0 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C_{C_2}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 3 \\ 1 \end{pmatrix}$$

En este caso $p_3 = p'_1 - 3n'_1 + p'_2 - n'_2 + 2.$

En ambos casos $p'_3 = p_1 + 2p_2 - 3n_1 - n_2 + 2$.

- Clase D. En estos casos no hay arcos de tipo "a" ni arcos de tipo "b" en la frontera de la cara P_3 .
 - Clase D.1. Si el extremo $p_3 + t$ del poste l_3 es nodo de alguno de los arcos de tipo "x", entonces la transformación $f_{D_1} : (p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ está dada por: $f_{D_1}(v) = \mathbf{D}_1(v) + \mathbf{C}_{\mathbf{D}_1}$, donde

$$\mathbf{D_1} = \begin{pmatrix} 0 & 2 & -2 & 1 & 1 \\ 0 & 2 & -2 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 1 & -4 & 5 & -2 & -1 \\ 1 & -1 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C_{D_1}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 4 \\ 1 \end{pmatrix}.$$

En este caso $p_3 = p'_1 - 3n'_1 + 2p'_2 - n'_2 + 2$.

Clase D.2. Cuando el extremo $p_3 + t$ del poste l_3 es extremo de un arco tipo "c", la transformación de trancisión está dada por: f_{D_2} : $(p_1, n_1, p_2, n_2, n_3) \rightarrow (p'_1, n'_1, p'_2, n'_2, n'_3)$ con $f_{D_2}(v) = \mathbf{D_2}(v) + \mathbf{C_{D_2}}$, donde

$$\mathbf{D_2} = \begin{pmatrix} 0 & 2 & -2 & 1 & 1 \\ 0 & 2 & -2 & 1 & 0 \\ 1 & -1 & 1 & 0 & -1 \\ 0 & -3 & 4 & -2 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \mathbf{y} \ \mathbf{C_{D_2}} = \begin{pmatrix} -2 \\ -1 \\ 1 \\ 3 \\ 1 \end{pmatrix}.$$

En este caso $p_3 = p'_1 - 3n'_1 + p'_2 - n'_2 + 2$.

En ambos casos $p'_3 = p_1 + 3p_2 - 3n_1 - n_2 + 2$.

Así $(p'_1, n'_1, p'_2, n'_2, p'_3, n'_3)$ será la sexteta que codifica a la 3-cuca \mathcal{A}_2 que es la gemela de \mathcal{A}_1 .

Observación 3.18. Las 3-cucas de Clase C y de Clase D siempre tienen gemela.

Figura 3.17. 3-cucas de clase Clase D.

3.4 Gráfica de vecindades de las órbitas de una 3-cuca dada

En la demostración del Teorema 2.14 se define para una 3-cuca \mathcal{A} la gráfica de vecindades de las órbitas de \mathcal{A} (Definición 2.15), que denotaremos por $\mathcal{GO}(\mathcal{A})$, como la gráfica formada por las regiones definidas en la frontera de un 3-ovillo, que es el resultado de identificar ciertos discos en el complemento de una vecindad de Γ seccionada en 3-bolas. (Ver página 28.)

Observación 3.19. Por ser $\mathcal{GO}(\mathcal{A})$ una gráfica en el plano con tres caras, entonces las posibilidades para $\mathcal{GO}(\mathcal{A})$ se dan en la Figura 3.18.

Nota. Diremos que una gráfica es de tipo **anteojos** si es de la forma $\bigcirc -\bigcirc$.

Definición 3.20. Una órbita O_i de una 3-cuca $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$, con $i \in 1, 2, 3$, es una órbita que **aisla a las otras órbitas** si no hay nodos de O_j adyacentes a los nodos de O_k con

Figura 3.18

 $i \neq j \neq k, i \neq k.$

Lema 3.21. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca tal que alguna de las siguientes ocurre:

- a) \mathcal{A} tiene nodos en cada arista de Γ y O_i es una órbita de \mathcal{A} con dos nodos adyacentes a un solo vérice de Γ .
- b) \mathcal{A} no tiene nodos en una arista de Γ y O_i es la órbita de \mathcal{A} con dos nodos adyacentes a los vértices de Γ .

Entonces O_i es una órbita que aisla a las otras órbitas.

Prueba. La demostración se hará por contradicción.

Supongamos que en una arista de Γ existen $x' \in O_j$ e $y' \in O_k$ nodos adyacentes con $j \neq k \neq i, i \neq j$ e $i, j, k \in \{1, 2, 3\}$. Luego sus continuaciones, en al menos uno de los sentidos, en la gráfica tipo Cayley de \mathcal{A} permanecen contiguas.

Por otro lado, por el Lema 2.7 que dice que cada órbita tiene al menos un nodo adyacente a los vértices de Γ , tenemos que para ambas hipótesis a) y b) hay un solo nodo x en O_j adyacente a un vértice de Γ y un solo nodo y en O_k adyacente al otro vértice de Γ , esto es, O_j y O_k no tienen nodos adyacentes al mismo vértice de Γ . Denotemos por v a uno de los nodos de O_i adyacente a un vértice de Γ y en la misma cara que x y por w a uno de los nodos de O_i adyacente al otro vértice de Γ con cara común a la de y. Luego las continuaciones en la gráfica tipo Cayley de \mathcal{A} de x y v son contiguas en una cara de Γ y permanecen así al seguir las órbitas en la gráfica tipo Cayley de \mathcal{A} en un sentido ya que en el otro se separan por el vértice de Γ . Del mismo modo las continuaciones en la gráfica tipo Cayley de \mathcal{A} de las órbitas O_k y O_i permanecen contiguas después de pasar por la cara que contiene a y y a w.

Las continuaciones en la gráfica tipo Cayley de \mathcal{A} de las órbitas $O_j \ge O_i$ son contiguas y no pueden regresar de manera adyacente a un vértice de Γ , pues, de ser así la órbita O_j sería un S^1 trivial en el enlace asociado de \mathcal{A} . Habíamos supuesto que las continuaciones de $O_j \ge O_k$ también son contiguas a partir de una cara de Γ (elegida en la hipótesis de contradicción), luego cuando, por ejemplo, al perseguir la órbita O_j llegamos a e, que es un extremo de un poste l, las órbitas $O_k \ge O_i$ tienen nodos adyacentes a e que se intercambian por medio de la reflección que induce el poste l. Lo cual es una contradicción al hecho de que las 3-cucas tienen exactamente tres órbitas distintas.

Lema 3.22. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca. Existe una órbita O_i de \mathcal{A} que aisla a las otras órbitas si y sólo si la gráfica de vecindades de las órbitas de \mathcal{A} es de tipo anteojos.

Prueba. Sea O_i órbita de \mathcal{A} que aisla a las otras órbitas, luego las caras de la gráfica de vecindades de las órbitas de \mathcal{A} que contienen a O_j y a O_k , con $j \neq i \neq k$ y $i, j, k \in \{1, 2, 3\}$, no tienen frontera en común y por lo tanto la gráfica debe ser de tipo anteojos.

Por otro lado, si la gráfica de vecindades de las órbitas de \mathcal{A} es de tipo anteojos, entonces las órbitas $O_j \ge O_k$ no tienen nodos adyacentes en Γ ya que las fronteras de sus vecindades no se intersecan.

3.5 Movidas de 3-cuca

En esta sección definiremos movidas de cuca usando las gráficas de vecindades de las órbitas de una 3-cuca \mathcal{A} .

En las secciones anteriores hemos distinguido a las 3-cucas según la existencia de nodos de la 3-cuca en una arista de su gráfica Γ y según cuántos nodos de cada órbita hay de manera adyacente a cada vértice de Γ . Éstas mismas distinciones son importantes para definir las "Movidas de 3-cucas" y sus inversas, así que les daremos un nombre especial según tengan una de estas propiedades.

Llamemos como:

- 3-cucas Tipo 1 a las 3-cucas sin nodos en una de las aristas de Γ.
- 3-cucas Tipo 2 a las 3-cucas con nodos en cada arista de Γ.
- 3-cucas Tipo 2-Bi a las 3-cucas Tipo 2 donde una de sus órbitas tiene dos nodos adyacentes a un mismo vértice de Γ.
- 3-cucas Tipo 2-Tri a las 3-cucas Tipo 2 dónde cada una de sus órbitas tiene exactamente un nodo adyacente a cada vértice de Γ.

A continuación definiremos las Movidas de 3-cucas y daremos sus descripciones, pero antes veamos un diagrama que ayudará a observar las relaciones entre estas movidas, sus inversas y que, efectivamente, todos los tipos de 3-cucas están involucradas en estas movidas.

Nota. La siguiente notación se usará en todas las construcciones de las movidas. Denotaremos como I_i , I_j y I_k a las realizaciones de las órbitas O_i , O_j y O_k en la gráfica tipo Cayley de \mathcal{A} , respectivamente.

3.5.1 Movida 1

Esta movida se aplica a las 3-cucas Tipo 1, esto es, podremos aplicar esta movida a $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca sin nodos de \mathcal{A} en una de las aristas de Γ . Definamos como O_i la órbita de \mathcal{A} con dos nodos adyacentes a los vértices de Γ , como O_j y O_k a las otras dos órbitas de \mathcal{A} .

- **Paso 0.** Elegimos una de las órbitas O_j u O_k , sin pérdida de generalidad y sólo para facilitar la notación tomemos O_j .
- **Paso 1.** Tomamos las realizaciones de la gráfica Γ y de las órbitas O_i y O_k en la esfera ∂B^3 .
- **Paso 2.** Definimos $V_i, V_k \subset \partial B^3$ vecindades disjuntas, relativas a los extremos, de I_i e I_k , respectivamente. Estas vecindades se toman de tal manera que ∂V_i y ∂V_k crucen transversalmente a Γ y el número de cruces sea el doble que el número de elementos de la órbita correspondiente.
- **Paso 3.** Construimos el conjunto N formado por las parejas (x, y) donde $x \in \partial V_i \cap \Gamma$, $y \in \partial V_k \cap \Gamma$ y x e y sean adyacentes a los vértices de Γ .

Nota. La órbita O_k tiene un nodo adyacente a uno de los vértices de Γ y O_i tiene un nodo adyacente al otro vértice de Γ (O_i tiene un nodo adyacente a cada vértice de Γ), luego existe un elemento $x \in \partial V_i \cap \Gamma$ adyacente a un vértice de Γ y un elemento $y \in \partial V_k \cap \Gamma$ adyacente al otro vértice de Γ .

Paso 4. Tomamos $(x, y) \in N$ con x adyacente a un vértice de Γ e y adyacente al otro vértice de Γ tal que $x \in y$ no esten sobre la misma arista de Γ . Construimos la gráfica conexa $\partial V_i \cup \partial V_k \cup \overline{xy}_{\Gamma}$ que es una gráfica tipo anteojos.

Lema 3.23. Dada \mathcal{A} 3-cuca, siempre existe una pareja $(x, y) \in N$ con x adyacente a un vértice de Γ e y adyacente al otro vértice de Γ tal que x e y no estén sobre la misma arista de Γ .

Prueba. Supongamos que no existe tal pareja (x, y), luego los nodos de \mathcal{A} de dos órbitas adyacentes a los vértices de Γ se ven como en la Figura 3.19.

Por otro lado recordemos que las órbitas son intervalos y por el Teorema de la curva de Jordan, no es posible que estas dos órbitas sean órbitas de una 3-cuca. ■

- **Paso 5.** Colapsamos sobre Γ los nodos $x \in y$ en un solo punto v que es el punto medio de la arista de Γ en la que no hay nodos de A. Ésto se debe hacer de la manera que se muestra en la Figura 3.20.
- **Paso 6.** Sea R la componente no acotada de la gráfica resultante del paso anterior que no contiene a las realizaciones de las órbitas O_i y O_k . Colocamos un arco I'_j en R tal que

Figura 3.20

tenga extremos en Γ , sea contiguo a ∂R , los cruces de este intervalo con Γ deben ser transversales, salvo en $\partial I'_j$ claro está, y por último los nodos adyacentes a los nodos $I'_j \cap \Gamma$ sólo pueden ser nodos de $\partial V_i \cap \Gamma$ o de $\partial V_k \cap \Gamma$.

Después de estos pasos obtenemos en ∂B^3 una gráfica Γ con tres intervalos sobre ella que representan las tres órbitas de una 3-cuca \mathcal{A}' , éstos son elementos suficientes para definir los homeomorfismos φ'_i y por lo tanto a $\mathcal{A}' = (\Gamma, \{P'_i\}, \{\varphi'_i\}).$

Ejemplo 3.24. En la Figura 3.21 se observa una 3-cuca y la 3-cuca resultante de haber aplicado a la primera la Movida 1.

Figura 3.21

3.5.2 Movida 2

Esta movida se aplica a las 3-cucas Tipo 1 y a las 3-cucas Tipo 2-Bi. Para estos dos tipos de 3-cucas existe una órbita con un nodo adyacente a uno de los vértices de Γ y otro adyacente al otro vértice de Γ , denotemos a esta órbita como O_i . Esta movida se aplica sólo a esta órbita O_i .

Paso 1. Tomamos las realizaciones de la gráfica Γ y de las órbitas O_j y O_k en la esfera ∂B^3 .

- **Paso 2.** Definimos $V_j, V_k \subset \partial^3$ vecindades disjuntas, relativas a los extremos de I_j e I_k , respectivamente. Estas vecindades se toman de tal manera que ∂V_j y ∂V_k crucen transversalmente a Γ y el número de cruces sea el doble que el número de elementos de la órbita correspondiente.
- **Paso 3.** Construimos el conjunto N formado por las parejas (x, y) donde $x \in \partial V_j \cap \Gamma$, $y \in \partial V_k \cap \Gamma$ y x e y sean adyacentes a los vértices de Γ .

Nota. Cada órbita $O_j ext{ y } O_k$ debe tener un sólo nodo adyacente a un vértice de Γ , pero por el Lema 3.21 O_i es una órbita que aisla a las otras órbitas, luego los nodos de $O_j ext{ y } de O_k$ adyacentes a los vértices de Γ no están sobre la misma arista de Γ por lo que existe un elemento $x \in \partial O_j \cap \Gamma$ adyacente a un vértice de $\Gamma ext{ y }$ un elemento $y \in \partial V_k \cap \Gamma$ adyacente al otro vértice de Γ .

Aquí debemos separar el proseso en dos casos.

- Caso a) El resultado será una 3-cuca Tipo 1.
 - **Paso 4.** Tomamos un elemento $(x, y) \in N$ con x adyacente a un vértice de Γ e y adyacente al otro vértice de Γ y construimos la gráfica conexa $\partial V_i \cup \partial V_k \cup \overline{xy}_{\Gamma}$ que es una gráfica tipo anteojos \bigcirc — \bigcirc .
 - **Paso 5.** Colapsamos sobre Γ los nodos $x \in y$ en el punto medio de la arista de Γ en la que no hay nodos de \mathcal{A} , denotamos a este punto como v. Ésto se debe hacer de la manera que se muestra en la Figura 3.22.

- **Paso 6.** Sea R la componente no acotada de la gráfica resultante del paso anterior que no contiene a las realizaciones de las órbitas $O_j ext{ y } O_k$. Colocamos un arco I'_i en Rtal que tenga extremos en Γ sea contiguo a ∂R . Los cruces de este intervalo con Γ deben ser transversales, salvo en $\partial I'_i$ claro está, y por último los vértices adyacentes a los vértices $I'_i \cap \Gamma$ sólo pueden ser nodos de $\partial V_i \cap \Gamma$ o de $\partial V_k \cap \Gamma$.
- Caso b) Si existen dos elementos $(x_1, y_1), (x_2, y_2) \in N$ con $\overline{x_i y_i}_{\Gamma}$ camino que sólo pasa por un vértice de Γ , entonces los pasos a seguir son los siguientes y el resultado será una 3-cuca Tipo 2-Tri.

Paso 4. Generamos la gráfica conexa $\partial V_i \cup \partial V_k \cup \overline{x_1y_1}_{\Gamma} \cup \overline{x_2y_2}_{\Gamma}$.

Nota. En cada región de $\overline{\partial B^3 - \Gamma}$ la realización de la gráfica tipo Cayley de \mathcal{A} genera, en cada cara, arcos que denotamos por a_s , que son contiguos y tienen extremos

en Γ . Al colocar las vecindades V_j y V_k descritas en el Paso 2, también se generan arcos en cada región de $\overline{\partial B^3 - \Gamma}$ que son contiguos entre sí y contiguos a los arcos a_s .

- **Paso 5.** Colocamos los extremos de los postes de \mathcal{A} en Γ y entre los extremos de un arco a_s , para algún s, innermost de $(\partial V_i \cup \partial V_k) \cap \overline{\partial B^3 \Gamma}$.
- **Paso 6.** En el complemento de la gráfica formada en el Paso 4 hay dos regiones con un intervalo en su interior. En las dos regiones restantes contamos el número de extremos de poste colocados en el Paso 5. Si ambas regiones contienen un solo extremo de poste, entonces esta movida no se puede terminar y debemos usar otra pareja de elementos de N. Por otro lado si en alguna de estas regiones no hay extremos de poste, entonces tal región se colapsa en un punto y seguimos con el Paso 7.
- **Paso 7.** En el complemento de la gráfica resultante del Paso 6 existe una región R que no contiene a las realizaciones de las órbitas O_j y O_k , colocamos un arco I'_i en esta región R, tal que tenga extremos en Γ , sea contiguo a ∂R , los cruces de este intervalo con Γ sean transversales y los nodos adyacentes a los nodos $I'_i \cap \Gamma$ sean sólo nodos de $\partial V_i \cap \Gamma$ y de $\partial V_k \cap \Gamma$.

Nuevamente estos tres inervalos I'_i , $I_j \in I_k$ sobre la gráfica Γ son elementos suficientes para definir la nueva 3-cuca \mathcal{A} .

Ejemplo 3.25. Ejemplo de la Movida 2 Caso a), ver Figura 3.23.

Figura 3.23

3.5.3 Movida 3

Esta movida se aplica a cualquiera de las tres órbitas de una 3-cuca de Tipo 2-Tri. Denotaremos como I_l a la realización en la gráfica tipo Cayley de \mathcal{A} de la órbita O_l .

Paso 0. Se elige una órbita, digamos O_i , para hacer la movida.

Definamos como v_1, v_2 los nodos en O_i adyacentes a izq y der, respectivamente.

Tenemos dos casos:

Caso a) Si $v_1 \neq v_2$

- **Paso 1.** Se cambia el arco $\alpha \in I_i$, que conecta los nodos v_1, v_2 por el arco α' con extemos v_1, v_2 tal que pase entre los intervalos I_j e I_k .
- **Paso 2.** Sustituimos I_i por $I'_i = (I_i \alpha) \cup \alpha'$. Bajo un isotopía en ∂B^3 cada segmento de $I'_i \cap \overline{\partial B^3 \Gamma}$ con extremos en $I'_i \cap \Gamma$ debe estar bajo un poste, para asegurar la estructura de cuca.
- Caso b) Si $v_1 = v_2 := v y v \in P_l \cap P_m$:
 - **Paso 1.** Definimos $v_1 = B(\epsilon, v) \cap P_l \cap I_i$ y $v_2 = B(\epsilon, v) \cap P_m \cap I_i$ con $\epsilon > 0$ pero suficientemente pequeño para que no se inteseque con ningún otro arco de la gráfica Γ , ni arcos de la Gráfica tipo Cayley de \mathcal{A} .
 - **Paso 2** Hacemos los pasos 2 y 3 para el Caso a), sólo que tenemos dos soluciones distintas, una cuando α' continúa por la derecha de v_1 y otra cuando α' continúa por la izquierda de v_1 . (Ver Figura 3.24.)

Figura 3.24

Observemos que el resultado en el Caso b) es una 3-cuca Tipo 1.

Ejemplo 3.26. Ejemplo de la Movida 3 Caso a), ver Figura 3.25.

Figura 3.25

3.5.4 Movida 4

Esta movida se aplica a cualquiera de las órbitas de una 3-cuca $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ con nodos en cada arista de Γ y que tengan un nodo de cada órbita de \mathcal{A} adyacente a cada uno de los vértices de Γ , esto es, a 3-cucas Tipo 2-Tri.

Paso 0. Elegimos una órbita O_i de \mathcal{A} , a la cual aplicaremos la movida.

- **Paso 1.** Tomamos las realizaciones de Γ y de la gráfica tipo Cayley de \mathcal{A} en ∂B^3 .
- **Paso 2.** Elegimos x uno de los dos nodos de O_i adyacente a los vértices de Γ . Para fijar ideas digamos que x es adyacente a der y supongamos que $x \in \partial P_l \cap \partial P_s$.
- **Paso 3.** Tomamos un disco $D \subset \partial B^3$ con centro x y radio suficientemente pequeño para que los conjuntos $D \cap \Gamma$ y $D \cap I_i$ sean intervalos y $D \cap I_j = \emptyset$, para $j \neq i, j \in \{1, 2, 3\}$. Denotamos como α al intervalo $\overline{D \cap I_i}$ y como a_1, a_2 a sus extremos.

Nótese que $I_i - \alpha$ son dos intervalos en cuyos extremos hay un nodo de \mathcal{A} que es extremo de poste.

En los siguientes pasos se explica cómo colocar un arco β en $\partial B^3 - (D \cup (\bigcup_{i=1}^3 I_i)) \cup \partial D$ con extremos en $\partial D - \Gamma$ de tal manera que $\beta(0)$ y $\beta(1)$ estén separados por a_1 y a_2 , esto es, los extremos de β estén alternados con los extremos de α . Cuando podamos colocar β que cumpla esto último diremos que **cerramos correctamente a** β .

Por construcción los extremos de β y de α están en $\partial B^3 - \Gamma$, sólo para hacer más fácil la notación diremos que $\beta(0)$ y a_1 están en la misma cara, digamos P_l , por lo que se generan dos casos:

Caso a) El nodo a_1 está sobre $\partial D \cup \Gamma$ y entre $\beta(0)$ y el vértice der de Γ .

Paso 4. Al hacer $t \to 1$, construimos β contiguo a los intervalos I_j , $j \in \{1, 2, 3\}$ y dado que cada órbita tiene un nodo adyacente a *der*, entonces en algún tiempo $t_0 \in [0, 1]$ $\beta(t_0) \in \Gamma$ es adyacente a *der*, luego para $\varepsilon > 0$ suficientemente pequeño, $\beta(t_0 - \varepsilon)$ está en el interior de una cara de $\partial B^3 - \Gamma$.

Cuando $\beta(t_0 - \varepsilon)$ está en la cara P_s tenemos a $\beta(t_0 - \varepsilon)$ en la posición deseada y podemos cerrar correctamente a β (ver Figura 3.26).

Cuando $\beta(t_0 - \varepsilon)$ está en la cara P_l continuamos β por la cara cuya frontera no contiene a x y seguimos de manera contigua a I_j con $j \neq i$. Luego en un tiempo $t_1 \in [0, 1]$ y $t_1 > t_0 \ \beta(t_1)$ está en la cara P_s , dado que lo colocamos contiguo a I_j . Así podemos cerrar correctamente a β (ver Figura 3.27).

Por último, cuando $\beta(t_0 - \varepsilon)$ está en la cara de Γ cuya frontera no contiene a x continuamos β hacia P_s , sin pasar por P_l , y cerramos correctamente a β (ver Figura 3.28).

Caso b) El nodo $\beta(0)$ está sobre $\partial D \cup \Gamma$ y entre a_1 y el vértice der de Γ .

Paso 4. Al igual que en el Caso a), al hacer $t \to 1 \beta$ es contiguo a los intervalos I_j , nuevamente en un tiempo $t_0 \beta(t_0)$ está en Γ y es adyacente a *der* y para $\varepsilon > 0$ suficientemente pequeño, $\beta(t_0 - \varepsilon)$ está en el interior de una cara de $\partial B^3 - \Gamma$.

Figura 3.26

Figura 3.27

Cuando $\beta(t_0 - \varepsilon)$ está en la cara P_l o en la cara cuya frontera no contiene a x continuamos a β por la cara P_s de tal manera que siga contiguo al intervalo de $I_i - \alpha$ que tiene como extremo a a_2 hasta regresar a la cara P_s , adyacente a a_2 y del lado opuesto al que contien a *der*. De esta manera podemos cerrar correctamente a β , (ver Figura 3.29).

Figura 3.28

Si $\beta(t_0 - \varepsilon)$ está en la cara P_s no es posible cerrar a β correctamente. Pero podemos "corregir" β de la siguiente manera:

Definimos como O_j a la órbita distinta de O_i con nodo adyacente a *der* en la frontera de las caras distintas a P_l , (ver Figura 3.30).

En un tiempo $t_1 \in [0, 1]$ con $t_1 < t_0$, $\beta(t_1)$ es adyacente al vértice izq de Γ y es adyacente a un nodo de O_j , corregimos β a partir de $t_1 - \eta$ con η suficientemente pequeño para que $\beta(t_1 - \eta)$ permanezca en la cara que comparten el nodo de O_i y el nodo de O_j adyacentes a izq. Y continuamos a β de manera contigua a O_i y a O_k con $i \neq k \neq j$. De esta manera el nuevo $\beta(t_0 - \varepsilon)$ estará en P_l o en la cara que no contiene a x.

Una vez construido el arco β tal que cierre correctamente continuamos con la construcción de la movida.

Paso 5. Colocamos en D dos arcos disjuntos $\overline{a_1\beta(1)}$ y $\overline{a_2\beta(0)}$.

Paso 6. Sustituinos I_i por $I'_i := \overline{I_i - \alpha} \cup \beta \cup \overline{a_1\beta(1)} \cup \overline{a_2\beta(0)}$.

Nota. En el Caso a), cuando $\beta(t_0 - \varepsilon)$ está en la cara que no contiene a x, el resultado del Paso 7 es como en el dibujo de la izquierda de la Figura 3.31, por lo que hay que hacer una isotopía en ∂B^3 de tal manera el resultado sea un arco como en el dibujo de la derecha de la Figura 3.31. Se hace esto para conservar la estructura de cuca.

Los casos a) y b) dan dos posibilidades distintas de construir I'_i y siempre es posible llegar al Paso 7, por lo que siempre existen dos 3-cucas resultantes claramente distintas a \mathcal{A} ya que \mathcal{A}' contiene una órbita con dos pares de nodos, cada par adyacente a un vértice de Γ .

Conclusion: Para todas las movidas que hemos definido, el enlace asociado de \mathcal{A}' es equivalente a L ya que sólo se sustituyó el arco I_i (I_j para la Movida 1), que es la realización de la órbita

Figura 3.29

Figura 3.30

Figura 3.31

 O_i (O_j para la Movida 1) en la gráfica tipo Cayley de \mathcal{A} , por el arco I'_i (I'_j para la Movida 1) construido en el último paso de cada movida. Nótese que esta sustitución se hizo usando el enlace asociado de \mathcal{A} y la gráfica Γ . Y observamos que, al "soltar" el arco $I_i \subset \partial B^3$ ($I_j \subset \partial B^3$ para la Movida 1) dentro de la bola B^3 de tal forma que sólo sus extremos permanecen en ∂B^3 , la unión de este nuevo arco e I'_i (I'_j para la Movida 1) es un disco en B^3 por lo que ambos enlaces son equivalentes y así también lo son los enlaces geométricos de \mathcal{A} y de \mathcal{A}' .

Ejemplo 3.27. Ejemplo de la Movida 4. Figura 3.32.

Figura 3.32

3.6 3-cucas Horizontales

En esta sección definiremos los arcos horizontales y verticales en una 3-cuca; las 3-cucas horizontales y mostraremos qué tipo de 3-cucas pueden llevarse, bajo movidas de cuca, a 3-cucas horizontales.

Definición 3.28. Un arco en la gráfica tipo Cayley de una 3-cuca \mathcal{A} es un arco **horizontal** si sus extremos están sobre la misma arista de Γ , en otro caso se le llama arco **vertical**. Una 3-cuca es **horizontal** si para una de sus caras todos los arcos de la gráfica tipo Cayley de \mathcal{A} son horizontales.

Diremos que una 3-cuca es **simple** si no es de Tipo 2-Bi, esto es, si no tiene una órbita con dos nodos adyacentes a un solo vértice de Γ .

Teorema 3.29. Sea $\mathcal{A} = (\Gamma, \{P_i\}, \{\varphi_i\})$ una 3-cuca con enlace L. Si en la gráfica tipo Cayley de \mathcal{A} la realización de al menos una de las órbitas de \mathcal{A} no tiene arcos verticales en al menos una de las caras de Γ , entonces existe una 3-cuca horizontal \mathcal{A}' con enlace asociado equivalente a L.

Prueba. Supongamos que \mathcal{A} no es horizontal. Sea O_i la órbita de \mathcal{A} tal que su realización en la gráfica tipo Cayley de \mathcal{A} no tiene arcos verticales en una de las caras de Γ y sea P_j tal cara, cuyas aristas son a y b, esto es, $a \cup b = \partial P_j$.

Denotamos por I_l a la realización en la gráfica tipo Cayley de \mathcal{A} de la órbita O_l , para $l = \{1, 2, 3\}.$

Si \mathcal{A} tiene al menos dos nodos de la misma órbita adyacentes en Γ , se aplica la Movida 2 a esta órbita hasta que ya no sea posible aplicarla más. Si en el proceso se obtiene una 3-cuca horizontal, habremos terminado.

Luego podemos suponer que \mathcal{A} es simple, esto es, \mathcal{A} puede ser de Tipo 1 o de Tipo 2-Tri.

Separaremos la demostración dependiendo del Tipo de 3-cuca y en cada caso se analizará el número de arcos verticales en la cara P_i , número que denotamos por η .

Nota. Los nodos serán representados en las figuras como:

- si el nodo pertenece a la órbita O_k ,
- \blacktriangle para nodos de la órbita O_l ,
- **\blacksquare** para nodos de la órbita O_m .

Para $\eta > 1$ etiquetamos los arcos verticales en la cara P_j como sigue: γ_1 es el arco vertical en P_j con uno de sus extremos adyacente a izq (nótese que ambos extremos no pueden ser adyacentes a izq ya que los extremos del poste de P_j deben estar intercalados con los nodos de los arcos de la gráfica tipo Cayley de \mathcal{A} en P_j), γ_{t+1} es contiguo a γ_t , con $t \ge 1$. Luego uno de los extremos del arco γ_{η} es adyacente a *der*. Además suponemos que $\gamma_t \in I_k$ para t impar y $\gamma_t \in I_l$ para t par.
\mathcal{A} Tipo 1

- $\eta = 1$. Sea γ el único arco vertical en P_j y denotemos como $x \in y$ a los extremos de γ .
 - Por definición, cuando \mathcal{A} es de Tipo 1 en una de las aristas de Γ no hay nodos de \mathcal{A} . Si suponemos que un extremo de γ es el único nodo en la arista que lo contiene, entonces una de las caras de Γ sólo tiene un nodo, lo cual es imposible. Por lo que en cada arista que contiene a cada extremo de γ debe haber más nodos de \mathcal{A} , luego en la cara P_j hay arcos de la gráfica tipo Cayley de \mathcal{A} horizontales con extremos en cada uno de las aristas de la cara P_j , o al menos cada arista de ∂P_j contiene a los extremos del poste de P_j .

Así en general tenemos la Figura 3.33, donde $v_1, v_2 \in V(\mathcal{A})$, $v_1 \in y$ están en la misma arista de Γ , v_1 es el vértice adyacente a izq, v_2 y x está en la misma arista de Γ y v_2 es adyacente a *der*.

Figura 3.33

Aplicamos la Movida 2 Caso b) como se muestra en la Figura 3.34 para obtener \mathcal{A}' que es una 3-cuca Tipo 2-Tri que no tiene arcos verticales en P_j .

Observación 3.30. Para $\eta > 1$, tomamos $v_1, v_2 \in V(\mathcal{A})$ con v_1 adyacente a izq y v_2 adyacente a der y $v_1, v_2 \in \partial P_j$. Entonces v_1 y v_2 deben pertenecer a dos órbitas distintas de \mathcal{A} , de otro modo la órbita que los contiene, O_m con $k \neq m \neq l$, es órbita que aisla a las otras órbitas (Lemma 3.21) y por lo tanto O_k y O_l no pueden tener nodos adyacentes en la misma arista de Γ .

 η par. Si los extremos del poste de P_j están en distintas aristas de Γ. Luego en particular una de las aristas, digamos *a*, contiene al menos $\eta + 1$ nodos de $V(\mathcal{A})$, que es número impar. Este número aumenta en dos por cada arco horizontal de la gráfica tipo Cayley de \mathcal{A} en P_j y dado que \mathcal{A} es Tipo 1, entonces Γ tiene una cara con un número impar de nodos, luego no existe una 3-cuca con estas condiciones de η y del

Figura 3.34

poste de P_j .

De lo anterior podemos suponer que los extremos del poste P_j están en la misma arista de Γ , sin pérdida de generalidad supongamos que están sobre a.

Si $\eta = 2$, entonces una de las caras de Γ tiene sólo dos nodos lo que contradice la definición de *n*-cuca. Por lo tanto $\eta \ge 4$.

Por la observación anterior tomemos $v_1 \ge v_2$ en distintas órbitas de \mathcal{A} .

Sin pérdida de generalidad supóngamos que $v_1 \in I_l$ y $v_2 \in I_m$ con $k \neq m \neq l$. Así tenemos la Figura 3.35.

Aplicamos la Movida 2 a la órbita O_l . Observemos que no importa en qué sentido de la continuación del arco γ_{η} esté un extremo del intervalo I_l , de cualquier manera γ_{η} deja de ser un arco vertical en P_j de \mathcal{A}' .

Si uno de los extremos del intervalo I_l está en la continuación en la gráfica tipo Cayley de \mathcal{A} de v_1 que no va de manera contigua a la continuación en la gráfica tipo Cayley de \mathcal{A} de γ_1 , entonces al aplicar la Movida 2 v_1 deja de estar en la cara P_j (ver Figura 3.36).

Pero si uno de los extremos del intervalo I_l está en la continuación en la gráfica tipo Cayley de \mathcal{A} de v_1 que si va de manera contigua a la continuación en la gráfica tipo Cayley de \mathcal{A} de γ_1 , entonces la gráfica tipo Cayley de la 3-cuca resultante después de aplicar la Movida 2 puede contener un nuevo arco vertical en P_j generado por el arco que contiene a v_1 , denotamos a este nuevo arco como γ_0 . (Ver Figura 3.37.) Probemos que no es posible que exista tal arco γ_0 .

La gráfica tipo Cayley de \mathcal{A}' tiene tres intervalos I_k , $I'_l \in I_m$, sin cambiar notación, aplicamos la Movida 2 pero ahora a la órbita I_k en \mathcal{A}' . Observemos que en P_j tenemos un nuevo nodo v'_1 en *a* adyacente a izq, donde v'_1 pertenece O_m si γ_η generó

un arco horizontal en P_j (ver Figura 3.38)) y v'_1 pertenece a la órbita O_k si γ_{η} no generó un arco horizontal de P_j (ver Figura 3.39).

En el primer caso (Figura 3.38), esto es, cuando la Movida 2 aplicada a \mathcal{A} genera un arco vertical en P_j a partir de γ_η , un extremo del intervalo I_l , denotado por e, está en la continuación de γ_η que va contigua a la continuación en la gráfica tipo Cayley de \mathcal{A} de v_2 , luego las continuaciones contiguas de $\gamma_{\eta-1}$ y γ_{η} ; y de γ_{η} y v_2 deben separarse por un vértice de Γ antes de llegar a e, de lo contrario $\gamma_{\eta-1}$ y v_2 pertenecen al mismo intervalo en la gráfica tipo Cayley de \mathcal{A} (Ver Figura 3.40). Pero no existen nodos de \mathcal{A} adyacentes a los vértices de Γ que permitan que esto pase. Por lo tanto γ_{η} no genera un arco vertical en \mathcal{A}' al hacer la Movida 2.

Tomemos el segundo caso (Figura 3.39). La única manera para que la Movida

2 aplicada en \mathcal{A}' a la órbita O_k genere una 3-cuca \mathcal{A}'' con el mismo número de arcos verticales que \mathcal{A}' en P_j es cuando un extremo del intervalo I_k está sobre la continuación de v'_1 que va contigua a la continuación en la gráfica tipo Cayley de \mathcal{A} del arco γ_0 (ver Figura 3.41), pero bajo estas condiciones no es posible continuar γ_1 hasta que pase por v'_1 usando los homeomorfismos de \mathcal{A}' , por lo tanto no existe una 3-cuca con estas condiciones, esto es, al aplicar la Movida 2 a la 3-cuca \mathcal{A}' se reduce el número de arcos verticales en P_j .

Cuando $v_1 \in I_k$ y $v_2 \in I_l$ el análisis es simililar salvo que la Movida 2 se aplica primero a la órbita O_k y de ser necesario, a la 3-cuca resultante se le aplica la Movida 2 a O_l .

Figura 3.40

 η impar. Notemos primero que si ambos extremos del poste de P_j están en la misma arista de Γ , entonces una de las caras de Γ tiene un número impar de nodos, lo que contradice la definición de *n*-cuca. Luego podemos suponer que los extremos del poste de P_j están en distintas aristas de Γ , y así tenemos de manera general la Figura 3.42. Al aplicar la Movida 2 a la órbita O_k los arcos γ_1 y γ_{η} pueden desaparecer de P_j o pueden generar arcos horizontales en \mathcal{A}' , en ambos casos se disminuye el número de arcos verticales.

${\mathcal A}$ Tipo 2-Tri.

 $\eta = 1$ Sea γ el único arco vertical en P_j , supóngase que $\gamma \subset I_k$, para algún $k \in \{1, 2, 3\}$. Por hipótesis $k \neq i$. Sea $\{x, y\} = \partial \gamma$.

Aplicamos la Movida 3 para cambiar el intervalo I_k por I'_k , donde I'_k no tiene arcos verticales en P_j , esto ya que los otros dos intervalos que describen órbitas de \mathcal{A} tienen sólo arcos horizontales en P_j .

3.6. 3-CUCAS HORIZONTALES

 η par. Lo que haremos es probar que no existe una 3-cuca \mathcal{A} tal que al aplicar tres veces la Movida 3 de manera consecutiva (primero a O_k de \mathcal{A} , luego a O_l de \mathcal{A}' y por último a O'_k de \mathcal{A}'' , con $k \neq l$), la 3-cuca resultante \mathcal{A}''' tenga en su gráfica tipo Cayley η o más arcos vérticales en P_i .

Sin pérdida de generalidad tomemos e uno de los extremos del poste de P_j que está entre uno de los extremos del arco γ_{η} y *der* sobre la arista de Γ , a, y denotemos por v al nodo de $V(\mathcal{A})$ en a adyacente a *der*.

Ya que η es par, entonces $\gamma_{\eta} \in I_l$, luego v puede estar en O_k o en O_m .

Supongamos que $v \in O_k$ y apliquemos a la órbita O_k de \mathcal{A} la Movida 3 para obtener la 3-cuca \mathcal{A}' para la cual onservamos la notación de los arcos verticales de \mathcal{A} .

En la gráfica tipo Cayley de $\mathcal{A}' \gamma_1$ ya no es vertical. Si \mathcal{A}' tiene al menos η arcos de la su gráfica tipo Cayley verticales en P_j , entonces el nuevo arco vertical, que denotamos por $\gamma_{\eta+1}$, fue generado a partir de la continuación del nodo v. Entonces la continuación en la gráfica tipo Cayley de \mathcal{A} de v que va contigua a la continuación de γ_{η} llega a un extremo de I_k antes de pasar de manera aydacente a un vértice de Γ . Ésta condición la hereda $\gamma_{\eta+1}$. (Ver Figura 3.43.)

Figura 3.43

 \mathcal{A}' tiene como órbitas O'_k , O_l y O_m y un nuevo nodo v' en *a* adyacente a *der* que debe pertenecer a O_l .

Aplicamos la Movida 3 a la órbita O_l de la 3-cuca \mathcal{A}' , con \mathcal{A}'' la 3-cuca resultante y nuevamente conservamos la notación que tienen los arcos verticales en P_i en \mathcal{A}' .

Observamos que en la gráfica tipo Cayley de $\mathcal{A}'' \gamma_2$ ya no es vertical. Si \mathcal{A}'' tiene al menos η arcos de la gráfica tipo Cayley verticales en P_j , entonces el nuevo arco vertical, que denotamos por $\gamma_{\eta+2}$, fue generado a partir de la continuación del nodo v', y la continuación en la gráfica tipo Cayley de \mathcal{A}' de v' que va contigua a la continuación de $\gamma_{\eta+1}$ llega a un extremo de I_l antes de que pase de manera aydacente a un vértice de Γ . Ésta condición la hereda $\gamma_{\eta+2}$. (Ver Figura 3.44.)

Figura 3.44

Ahora \mathcal{A}'' tiene como órbitas O'_k , O'_l y O_m y un nuevo nodo v'' en *a* adyacente a *der* que debe pertenecer a O'_k .

Ahora aplicamos la Movida 3 a la órbita O'_k de la 3-cuca \mathcal{A}'' , con \mathcal{A}''' la 3-cuca resultante y conservamos la notación que tienen los arcos verticales en P_i en \mathcal{A}'' .

En la gráfica tipo Cayley de $\mathcal{A}''' \gamma_3$ ya no es vertical. Si \mathcal{A}''' tiene al menos η arcos de la gráfica tipo Cayley verticales en P_j , entonces el nuevo arco vertical, que denotamos por $\gamma_{\eta+3}$, fue generado a partir de la continuación del nodo v''. La continuación en la gráfica tipo Cayley de \mathcal{A}'' de v'' que va contigua a la continuación de $\gamma_{\eta+2}$ llega a un extremo de I'_k antes que pase de manera aydacente a un vértice de Γ . Ésta condición la hereda $\gamma_{\eta+3}$. (Ver Figura 3.45.)

Entonces en \mathcal{A}''' las continuaciones de las parejas de arcos $\{\gamma_{\eta+1}, \gamma_{\eta+2}\}$ y $\{\gamma_{\eta+2}, \gamma_{\eta+3}\}$, en el sentido que va a los extremos del intervalo I''_k , se deben separar por un vértice de Γ , pero sólo disponemos de una pareja de nodos adyacentes a izq, uno de O''_k y el otro de O'_l , por lo que no existe \mathcal{A}''' con η arcos de su gráfica tipo Cayley verticales en P_j , esto es, a lo más debemos aplicar tres veces la Movida 3 para que se reduzca el número de arcos verticales. Así aplicando un número finito de veces esta movida eliminamos a todos los arcos verticales de la cara P_j .

Cuando $v \in O_m$ el análisis es el mismo, sólo que los extremos de los intervalos están en el sentido opuesto y entonces el diagrama se ve como:

 η impar. Se aplica la Movida 3 a la órbita O_k . Luego en la 3-cuca resultante $\mathcal{A}' \gamma_1 y \gamma_\eta$ dejan

Figura 3.45

de ser verticales, no importa en qué arista estén los estremos del poste de P_j . Así \mathcal{A}' tiene

menos de η arcos verticales.

3.7 Madejas y el paréntesis de Kauffman para 3-cucas

En esta sección introduciremos las nociones de *p*-cuarto y madeja, enunciaremos la definición del **paréntesis de Kauffman** y expondremos la teoría de madejas para el paréntesis de Kauffman (teoría perfectamente compatible con el polinomio de Jones). Posteriormente diremos cómo separar una 3-cuca horizontal en dos *p*-cuartos y de qué manera se podría calcular el paréntesis de Kauffman para la 3-cuca.

Definición 3.31. Un *p*-cuarto R es un dominio conexo en \mathbb{R}^2 (generalmente un rectángulo), donde para una pareja de lados opuestos colocamos p cuerdas que entran y salen. Pueden existir, en el interior de R, curvas simples cerradas (ver Figura 3.46).

Figura 3.46

Definición 3.32. La madeja de un *p*-cuarto S(R) es el conjunto de todas las colecciones de cuerdas en el interior de R que conectan las *n* cuerdas de un lado de *R* con las *n* cuerdas del lado opuesto.

Dadas $s_1, s_2 \in S(R)$, se tiene que $s_1 = s_2$ si existe una isotopía regular que lleve s_1 en s_2 , esto es, que se pueda ir de una a la otra con movidas 2 y 3 de Reidemeister.

Definimos en S(R) una operación binaria por yuxtaposición, esto es:

$$\mathbf{s}_i \cdot \mathbf{s}_j = \mathbf{i} \mathbf{s}_i \mathbf{i} \mathbf{s}_j \mathbf{i}$$

Una **tercia de madejas** es definida como una tercia de elementos de una madeja que son idénticos salvo por un cruce, de tal manera que si en el primer elemento tenemos \times , en el segundo elemento debemos tener \rightarrow y en el elemento restante de la madeja debemos tener \sim . Denotamos al conjunto de todas las tercias de madejas como T.

Sea *F* el campo de cocientes de $\mathbb{Z}[x, x^{-1}]$, sea V(S(R)) el espacio vectorial generado por S(R)sobre *F* y M(S(R)) el subespacio vectorial de V(S) generado por $\{s_{i} - xs_{i} - x^{-1}s_{i}, \bigcirc \cup s + (x^{2} + x^{-2})s : (s_{i}, s_{i}, s_{i}) \in \mathbb{T}, \bigcirc$ es el enlace trivial y $s \in S(R)$ }. Definimos la linealización L(S) por L(S(R)) = V(S(R))/M(S(R)). L(S(R)) es un espacio vectorial y además es un álgebra bajo la extensión, a L(S(R)), de la operación binaria \cdot .

En [Gi] se prueba que, una vez numeradas las cuerdas de R, $\{s_{\pi} : \pi \in S_p\}$ es una base para L(S), donde $s_{\pi} = \pi(s)$ y $s \in S(R)$ sin lazos triviales.

Definición 3.33. Definimos el corchete de Kauffman como la aplicación $[]: S(R) \to L(S(R))$ donde:

$$\begin{matrix} [\bigcup]=1,\\ [s_{i}]=x[s_{i}]+x^{-1}[s_{i}],\\ [\bigcup\cup s]=(-x^2-x^{-2})[s]. \end{matrix}$$

Definición 3.34. Sea $s \in S(R)$, definimos el **numerador de** s, N(s) como el enlace obtenido por cerrar s de la siguiente manera:

Para r, s elementos de la madeja definimos el dual de s como $s^*(r) = [N(r \cdot s)]$. Definido de esta manera s^* puede ser extendido linealmente a todo L(S(R)).

La definición del dual de un elemento de la madeja nos permite construir una forma bilineal φ en el espacio vectorial L(S(R)), donde $\varphi(s_1, s_2) = [N(s_1 \cdot s_2)]$. Para $B = \{p_1, \ldots, p_n\}$ una base cualquiera para L(S(R)) definimos la matriz $M_{i,j} = \varphi(p_i, p_j)$.

Luego, dado que cualquier forma bilineal tiene una matriz A que se determina de tal manera que para $\alpha = \alpha_1 p_1 + \dots + \alpha_n p_n$ y $\beta = \beta_1 p_1 + \dots + \beta_n p_n$

$$\varphi(\alpha,\beta) = (\alpha_1,\ldots,\alpha_n)A \begin{pmatrix} \beta_1\\ \vdots\\ \beta_n \end{pmatrix}$$

Al aplicar φ en los elementos de la base es claro que A = M.

Notemos que también podriamos tomar la base canónica $\{e_1, \ldots, e_n\}$ donde $e_i^*(e_j) = \delta_{i,j}$, con $\delta_{i,j}$ la delta de Kronecker y con esta base tenemos que si $\alpha = x_1e_1 + \cdots + x_ne_n$ y $\beta = y_1e_1 + \cdots + y_ne_n$, entonces

$$\begin{split} \varphi(\alpha,\beta) &= \sum_{k,l} b_{k,l} e_k^* (\sum_i x_i e_i) \cdot e_l^* (\sum_j y_j e_j) \\ &= \sum_{k,l} b_{k,l} \left(\sum_i x_i e_k^* (e_i) \right) \cdot \left(\sum_j y_j e_l^* (e_j) \right) \\ &= \sum_{k,l} b_{k,l} x_k y_l = \sum_k x_k \left(\sum_l b_{k,l} \cdot y_l \right) \\ &= \sum_k x_k [b_{i,j}]_k (y_1, \dots, y_n) = (x_1, \dots, x_n) [b_{i,j}] (y_1, \dots, y_n). \end{split}$$

Ahora, aplicando φ en α y β , pero escritos en la base B, tenemos:

$$\begin{split} \varphi(\alpha,\beta) &= \sum_{k,l} a_{k,l} p_k^*(\alpha) \cdot p_l^*(\beta) \\ &= \sum_{k,l} a_{k,l} p_k^*(\sum_i \alpha_i p_i) \cdot p_l^*(\sum_j \beta_j p_j) \\ &= \sum_{k,l} a_{k,l} \left(\sum_i \alpha_i p_k^*(p_l) \right) \left(\sum_j \beta_j p_l^*(p_j) \right) \\ &= \sum_l \left(\sum_i \alpha_i \sum_k a_{l,k}^T M_{k,i} \right) \left(\sum_j \beta_j M_{l,j} \right) \\ &= \sum_l \sum_i \alpha_i [A^T M]_{l,i} \sum_j \beta_j M_{l,j} \\ &= \sum_i \sum_j \alpha_i \sum_l [A^T M]_{i,l}^T M_{l,j} \beta_j \\ &= \sum_i \sum_j \alpha_i [M^T A M]_{i,j} \beta_j = (\alpha_1, \dots, \alpha_n) M^T A M(\beta_1, \dots, \beta_n) \end{split}$$

En [Gi] se calcula $A = (M^T)^{-1}$, luego $\varphi(\alpha, \beta) = (\alpha_1, \dots, \alpha_n) M(\beta_1, \dots, \beta_n)$.

La gran diferencia con el artículo [Gi] es que en dicho artículo se pretende tener la igualdad $\varphi(\alpha,\beta) = (\alpha_1,\ldots,\alpha_n)(M^T)^{-1}(\beta_1,\ldots,\beta_n)$, lo cual, según los cálculos anteriores, es claramente erróneo.

A continuación enunciaremos algunos lemas sencillos.

Lema 3.35. Sea M la matriz definida como arriba, entonces M es simétrica.

Prueba. Bajo una transformación en el plano podemos llevar la gráfica de la izquierda en la gráfica de la derecha en la Figura 3.47.

Figura 3.47

Conjetura. M definida como arriba es invertible. Ahora, un par de lemas que facilitan los cálculos de la matríz M.

Lema 3.36. Sean p_1, p_2 madejas de la forma $\underbrace{\vdots \quad s_i \quad \vdots}_{i \quad lema}$ de un p-cuarto, para i = 1, 2. Entonces $\psi(p_1, p_2) := [N(p_1 \cdot p_2)] = d \cdot \varphi(p_1, p_2), \text{ con } \varphi(p_1, p_2) := [N(s_1 \cdot s_2)] \ y \ d = -x^2 - x^{-2}.$

Prueba. La prueba es clara con la siguiente figura.

Nota. Dada $s_i \stackrel{\fbox{}}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\quad}}}}}}}}}{\operatorname{mente} \stackrel{\fbox{}}{\stackrel{\fbox{}}{\stackrel{$:}{\stackrel{$:}{\stackrel{$:}{\quad}}}}{\underset{{:}{\quad}{\quad}}{\operatorname{como}} s_i^T}$.

Lema 3.37. Sean s_i, s_j madejas sin cruces y s_i^T, s_j^T sus imagenes reflejadas, respectivamente. Entonces $(s_i \cdot s_j)^T = s_i^T \cdot s_j^T$. **Prueba.** El lema es claro ya que las madejas no tienen cruces.

Observación 3.38. De este lema concluimos que $[N(s_i \cdot s_j)^T] = [N(s_i^T \cdot s_j^T)].$

Lema 3.39. Sea p una madeja de la forma $\xrightarrow{i} y q$ una de la forma $\xrightarrow{i} r$, ambas madejas de un p-cuarto, entonces $\psi(p,q) = \phi(u,v)$, donde u, v son madejas de un (p-2)-cuarto $y \phi(u,v)$ es la aplicación [N(u,v)].

Prueba. Al tomar el numerador del producto observamos que los arcos extremos pueden contraerse (ver Figura 3.48).

Al simplificar $s \ge t$ obtenermos $u \ge v$.

Ahora conectaremos esta teoría con las 3-cucas horizontales.

Definición 3.40. Sea \mathcal{A} una 3-cuca horizontal, con enlace asociado L, cuyos arcos horizontales están en la cara P_1 . Definimos la **circunferencia de separación** C como la circunferencia en S^2 que divide al poste de la cara P_1 en dos, quedando en una de las regiones definidas por la circunferencia los arcos horizontales de P_1 con extremos en r_3 , un segmento del poste de P_1 , el poste de P_2 y los arcos de la gráfica tipo Cayley de \mathcal{A} en la cara P_2 ; en la otra región estarán los arcos horizontales de P_1 con extremos en r_2 , el otro segmento del poste de P_2 , el poste de la cara P_3 y todos los arcos de la gráfica tipo Cayley de \mathcal{A} en P_3 (ver Figura 3.49).

Denotamos C(l) = C al círculo de separación que contiene l nodos, donde

 $l = #(\{ \text{El enlace asociado a } \mathcal{A} \} \cap C).$

Es claro que l debe ser par, digamos l = 2h. Luego ya que $S^2 - C$ tiene dos componentes, cada una de ellas es un h-cuarto con frontera C.

Fijamos un sentido para numerar los l nodos de C como en la Figura 3.50.

Para poder usar la forma bilineal φ descrita anteriormente es necesario multiplicar los dos *h*-cuartos que define *C* y tomar el numerador del producto. Pero para obtener el mismo enlace asociado con el que empezamos debemos tener cuidado de hacerlo con la orientación correcta de los nodos ya que por un lado tenemos el cuarto M_1 definido en la Figura 3.51 y por otro lado el *h*-cuarto M_2 definido en la Figura 3.52, en esta misma figura se muestra cómo deben

Figura 3.49

orientarse los hilos de la madeja M_2 para que $N(M_1 \cdot M_2)$ sea la 3-cuca original y así al calcular $[N(M_1 \cdot M_2)]$ habremos calculado [L]. Lamentablemente el cálculo de madejas para 3-cucas se vuelve un poco complicado, así que dejaremos estos cálculos para trabajos futuros.

Figura 3.51

Figura 3.52

Obtenemos de esta manera las dos madejas das en la Figura 3.53.

Luego $\varphi(M_1, M_2) = [N(M_1 \cdot M_2)] = [\underbrace{M_1 \quad M_2}]$ que es el paréntesis de Kauffman del enlace asociado a la 3-cuca original.

Una vez que hemos calculado el paréntesis de Kauffman de una 3-cuca horizontal podemos calcular su polinomio de Jones usando el siguiente resultado ya conocido.

Teorema 3.41. Dado D un diagrama de un enlace L, el polinomio de Jones de L se calcula como

$$J(L) = -x^{3w(D)}[D]|_{x \to t^{\frac{1}{4}}}.$$

Prueba. Ver [K]. ■

Capítulo 4

n-cucas, para $n \ge 4$

¿Cómo debe ser la gráfica Γ para las n-cucas con $n \geq 4?$

Construiremos Γ a partir de su gráfica dual.

Tomemos $V = \{n \text{ vértices en el plano}\} = \{v_i\}_{i=1}^n \text{ y } E = \{\text{arista de } v_i \text{ a } v_j \text{ para } i \neq j\}$. El conjunto de vértices representa a los n postes de la n-cuca y las aristas representan los arcos que van de un poste a otro (no se permiten lazos, pues en las n cucas no hay arcos que vayan de un poste en si mismo antes de pasar por debajo de otro), entonces la gráfica dual a G = (V, E) G^* será la gráfica Γ para las n-cucas. (Ver Figura 4.1).

Figura 4.1. Las aristas de las gráficas duales están dibujadas con lineas punteadas.

Para n = 3 la gráfica dual de G es una gráfica tipo Θ ; mientras que para n = 4 la gráfica dual es el tetraedro.

Sabemos que para más de cuatro vértices no existe una gráfica completa plana, así que sólo podemos dar subgráficas planas de la gráfica máxima de cinco vértices.

Conjetura. Dada \mathcal{A} una *n*-cuca y L su enlace asociado. Entonces L^* es el enlace geométrico de \mathcal{A} .

Este resultado generalizaría el Teorema 2.14.

CAPÍTULO 4. N-CUCAS, PARA $N \ge 4$

Bibliografía

- [C] Cromwell, Peter R., Knots and links, Cambridge University Press, New York, 2004.
- [D] Diestel, Reinhard., Graph Theory, Berlín: Springer Verlag, 2006.
- [G] Gross, Jonathan y Yellen, Jay., Graph Theory and its aplications, Boca Ratón, Florida: CRC Press, 1999.
- [Gi] Giller. C.A., A Family of Links and the Conway calculus, Trans. AMS, 207, (1982), 75-109.
- [H] Hatcher, Allen., Algebraic Topology, Cambridge University Press, New York, 2002.
- [HMTT] Hilden, M. H.; Montesinos, J. M.; Tejada, D. M.; Toro, M. M., Butterflies and 3-manifolds, Rev. Acad. Colombiana Cienc. Exact. Fís. Natur. 28 (2004), no. 106, 71–78.
- [K] Kauffman, L.H., On Knots, Princeton Univ. Press, Princeton, 1987.
- [M] Montesinos, J.M., Calidoscopios y 3-Variedades. Medellín, Colombia: Universidad Nacional de Colombia, Sede Medellín, 2003.
- [Prz-Y] Przytycki, J.; Yasukhara, A., Symmetry of links and classification of lens spaces. Geom. Dedicata 98 (2003), 57–61.
- [W] Watkins, M. Notes: A Short Survey of Lens Spaces. 1989-90